A new X-ray census of rotation powered pulsars
Abstract
To date, over 4,000 pulsars have been detected. In this study, we identify 231 X-ray counterparts of ATNF pulsars by performing a spatial cross-match across the Chandra, XMM-Newton observational catalogs. This dataset represents the largest sample of X-ray counterparts ever compiled, including 98 normal pulsars (NPs) and 133 millisecond pulsars (MSPs). Based on this significantly expanded sample, we re-establish the correlation between X-ray luminosity and spin-down power, given by across the whole X-ray band. The strong correlation is also observed in hard X-ray band, while in soft X-ray band there is no significant correlation. Furthermore, shows a strong correlation with spin period and characteristic age for NPs. For the first time, we observe a strongly positive correlation between and the light cylinder magnetic field () for MSPs, with both NPs and MSPs following the relationship , consistent with the outer-gap model of pulsars that explains the mechanism of X-ray emission. Additionally, we investigate potential X-ray counterparts for GPPS pulsars, finding a lower likelihood of detection compared to ATNF pulsars.
1 Introduction
In the 1930s, stellar evolution theories predicted that neutron stars (NSs) could form when a massive star exhausts its fuel and undergoes gravitational collapse (Baade & Zwicky, 1934). Many years later, the existence of NSs was confirmed by the discovery of radio pulsars in August 1967 (Hewish et al., 1968). NSs can be powered either by rotational kinetic energy, magnetic energy, or accretion, and they manifest in various ways. Rotation-powered pulsars (RPPs) account for over 90% of the population, emitting beams of electromagnetic radiation due to high-energy processes occurring at the magnetic poles or in the surrounding region (Lyne & Graham-Smith, 2012).
As of now, there are RPPs in the Australia Telescope National Facility (ATNF) Pulsar Catalogue (version 2.3.0, Manchester et al., 2005)111https://www.atnf.csiro.au/people/pulsar/psrcat/. The Fermi/LAT mission has revealed that about 10% of the known RPPs are visible in the Gamma-ray band (Smith et al., 2023). Furthermore, over a hundred X-ray RPPs have been reported (Becker & Truemper, 1997; Becker & Trümper, 1999; Chang et al., 2023). In contrast, the optical and IR emissions have been poorly studied (Mignani, 2011, 2018), and the optical pulsations were revealed for less than 1% of NSs (Lyne & Graham-Smith, 2012; Ambrosino et al., 2017). The radiation mechanisms of broadband emissions from RPPs are not yet completely clarified, especially for photons energies lower than the gamma-ray band. In this context much effort has been devoted to statistical studies. A notable positive correlation between X-ray luminosity () and pulsar spin-down power () has been documented (e.g. Becker & Truemper, 1997; Rea et al., 2012; Chang et al., 2023). However, for some pulsars, their distances still have large uncertainties, and X-ray emission may arise from a mix of components. As a result, the scatter in this relation is large (e.g. Possenti et al., 2002; Li et al., 2008), highlighting the need for more data to better understand X-ray emission from RPPs.
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the most sensitive radio telescope used for discovering pulsars (Nan et al., 2011; Jiang et al., 2019). FAST has discovered more than 1,000 pulsars (Li et al., 2018; Qian et al., 2019; Weng et al., 2022; Han et al., 2021, 2024), in particular with two key science projects: the Commensal Radio Astronomy FAST Survey (CRAFTS, Li et al., 2018) and the Galactic Plane Pulsar Snapshot (GPPS) survey (Han et al., 2021, 2024). Until November 2024, the GPPS program has discovered 751 pulsars222http://zmtt.bao.ac.cn/GPPS/GPPSnewPSR.html, including some very faint sources. Detailed studies on these sources are progressing steadily (Su et al., 2023; Zhou et al., 2023).
In this paper, we use all available archived X-ray observations from the Chandra and XMM-Newton missions to explore potential associations between X-ray point sources and pulsars identified in the ATNF and GPPS catalogs. In Section 2, we present a spatial matching analysis to construct the pulsar sample, and examine the correlation between X-ray luminosity and timing parameters for ATNF pulsars. In Section 3, we employ the results of the correlation to constrain possible counterparts for GPPS pulsars. Finally, the discussion and conclusions are presented in Section 4.
2 ATNF Pulsars
2.1 Sample construction
Various mechanisms have been proposed to explain the generation of X-ray emission from pulsars. For some young pulsars, surface thermal radiation (e.g. “Magnificent Seven”, “Central Compact Objects”) or magnetic field decay (e.g. “Rotating Radio Transient” and Magnetars) may contribute to the X-ray emission (Torii et al., 1998; Gotthelf et al., 2013; Chang et al., 2023). In certain cases, this results in X-ray luminosity that exceeds the pulsar’s spin-down luminosity. X-ray emission from Be/Gamma-ray Binaries is thought to arise from the shock between the stellar wind and the pulsar wind (Johnston et al., 1992; Miller et al., 2013; Weng et al., 2022). Alternatively, in this study, we focus exclusively on RPPs where rotational energy is the dominant source of X-ray emission. The non-thermal power-law component of their emission can be interpreted as magnetospheric radiation. The origin of the thermal emission, however, remains debated and is likely due to the bombardment of charged particles returning from the magnetosphere onto the polar cap region.
As a leading international facility in radio astronomy, the ATNF catalog offers a comprehensive sample of pulsars, encompassing all published RPPs while excluding accretion-powered pulsars. In this work, we search for X-ray counterparts of 3,630 pulsars listed in the ATNF pulsar catalog v2.3.0333https://www.atnf.csiro.au/people/pulsar/psrcat/ (Manchester et al., 2005) by using the XMM-Newton Serendipitous Source Catalog 444https://heasarc.gsfc.nasa.gov/W3Browse/xmm-newton/xmmssc.html (4XMM-DR13 Version, Webb et al., 2020), the Chandra Source Catalog Release 2.0 555https://cxc.cfa.harvard.edu/csc2.1/index.html (CSC 2.0, Evans et al., 2010, 2024). If the angular separation between a pulsar and an X-ray source, with a detection confidence level greater than 3-sigma, satisfies the condition , we consider the X-ray source to be the counterpart of the pulsar. and denote the right ascension and declination of a source, and represent the positional uncertainties at the 2-sigma confidence level for the X-ray source and the pulsar, respectively. For most radio-loud pulsars, timing procedure leads to achieve positional accuracy down to milliarcseconds, and we use the Third Fermi/LAT Catalog of Gamma-ray Pulsars Catalog (3PC)666https://fermi.gsfc.nasa.gov/ssc/data/access/lat/3rd_PSR_catalog/ (Smith et al., 2023) to obtain more precise positions for radio-quiet and radio-faint pulsars. The typical positional accuracy of XMM-Newton serendipitous point source detections is generally less than 1.57′′, and the on-axis spatial resolution of Chandra data is sub-arcsecond. However, the X-ray positional accuracy can sometimes be overestimated, leading to some counterparts being missed. We verified the results by cross-referencing with compiled literature tables, identifying 19 counterparts for 8 normal pulsars (NPs) and 11 millisecond pulsars (MSPs) (Li et al., 2008; Lee et al., 2018; Coti Zelati et al., 2020; Chang et al., 2023). In sum, by positional cross-matching, we identify 121 counterparts of pulsars, comprising 65 MSPs and 56 NPs.
In some cases, the positions of X-ray sources in the two X-ray catalogs are imprecise. For sources located in supernova remnants (SNRs) or pulsar-wind nebulae (PWNe), the extended X-ray emission complicates accurate positioning. Because MSPs in globular clusters (GCs) are relatively dense and faint, they are challenging to resolve using the pipelined processing methods applied in the Chandra CSC 2.0 catalog. However, some studies have conducted more detailed analyses of these sources, yielding additional X-ray counterparts (e.g. Hsiang & Chang, 2021; Zhao & Heinke, 2022). We collected data from the literature on 68 MSPs in 29 GCs and 42 NPs associated with SNRs or PWNe, incorporating these into our sample as a significant supplement. However, their luminosities are reported across the entire X-ray band, as detailed spectral analyses are lacking.
In total, we identify 231 X-ray counterparts of pulsars, including 98 NPs and 133 MSPs. Their properties, spanning radio, X-ray, and Gamma-ray bands, are listed in Table 2.
2.2 Probability of spatial coincidence
In principle, an association can be unambiguously confirmed as a real counterpart only when X-ray pulsations are detected. However, in most cases, the time resolution of imaging X-ray observations is insufficient for pulsation searches. The time resolution of Chandra data is 3.2 s777https://cxc.harvard.edu/cdo/about_chandra/, and the time resolution of XMM-Newton EPIC-pn’s full frame mode observation data is 73.4 ms888https://heasarc.gsfc.nasa.gov/docs/xmm/uhb/epicmode.html. Nevertheless, X-ray pulsations have been reported for 51 NPs and 18 MSPs in the literature (see Table 2).
We also estimate the probability of positional coincidence using the log - log distribution at the Galactic center (Muno et al., 2003). According to the discussion in Section 4.1 of Muno et al. (2003) (see also Figure 10 in their paper), the surface density of sources is extremely high, 15,000 sources deg-2 above the flux limit of erg cm-2 s-1 in the 2.0–8.0 keV range. This corresponds to 0.009 contaminating sources within the 1.57′′ location error circle (the typical XMM-Newton positional resolution). However, we argue that the chance coincidence probability is likely much lower for the following reasons: 1. The fluxes of pulsars analyzed in this work are mostly greater than erg cm-2 s-1, with a median value of erg cm-2 s-1 for NPs and MSPs; 2. The surface density at the pulsar position should be much smaller than at the Galactic center; 3. Chandra sources exhibit even smaller positional uncertainties and a lower likelihood of coincidence. Moreover, more refined analyses have been performed on a large proportion of MSPs in GCs (e.g. Hsiang & Chang, 2021; Zhao & Heinke, 2022, Section 2.1), and sources detected within PWNe can also be considered secure associations. Therefore, we conclude that the probability of positional coincidence is very low, even if there is an absence of X-ray pulsations.
2.3 Pulsar parameters
According to the magnetic dipole radiation model for pulsars, rotation power is assumed to be transformed into dipole radiation loss energy. The energy loss rate can be expressed as , where a typical moment of g cm2 is assumed. Other parameters can be derived from the observed rotational period and its derivative , as described by the following relations: the characteristic age , the surface magnetic field strength G, the magnetic field at light cylinder G.
In this work, distances are estimated using the Dispersion measure (DM) based on the YMW16 electron distribution model (Yao et al., 2017). For radio-quiet or radio-faint Gamma-ray pulsars, we adopt pseudo-distances inferred from the spin-down power and the energy flux above 100 MeV. As a result, upper limits on luminosities across all bands are provided for these sources, with relevant references listed in Table 2. The luminosities of radio-loud pulsars in the radio and Gamma-ray bands are taken from the ATNF catalog and Fermi Pulsar catalog. However, it is important to note that the uncertainty in luminosity is typically dominated by the uncertainty in the DM distance, and could deviate significantly from the actual value. For example, the distance of 93 pc for PSR J1057-5226 is derived using the YMW16 model (Yao et al., 2017), while NE2001 model places it at 720 pc (Cordes & Lazio, 2002), showing an order-of-magnitude difference (Kerr et al., 2018). Moreover, it has been cautioned that the DM distances for some pulsars are over-estimated and questionable, especially for the pulsars in the direction of the Local Arm or the tangential direction of spiral arms (Han et al., 2021). Following Chang et al. (2023), we adopt an uncertainty of 40% in distances in this work. The X-ray luminosity is derived from flux and distance, and its error is calculated based on the error transfer formula.

2.4 Correlation of parameters
It has been reported that, the X-ray luminosity of RPPs is strongly correlated with , but is orders of magnitude lower than (, Arzoumanian et al., 2011; Rea et al., 2012; Vahdat et al., 2022; Chang et al., 2023). The correlation was first explored in the soft X-ray band (0.1–2.4 keV) by Becker & Truemper (1997) using ROSAT data, leading to the relation . Possenti et al. (2002) later extended this analysis to the 2-10 keV band, obtaining . Li et al. (2008) made a significant advancement by separating the X-ray luminosity contributions from pulsars and their associated PWNe, reporting and in 2-10 keV. Recently, Chang et al. (2023) used the non-thermal X-ray luminosity in 0.5–8 keV band for 68 RPPs, finding .
In this work, we use X-ray luminosities in 0.3–10.0 keV range for XMM-Newton and in 0.5–7.0 keV range for Chandra, further categorizing the data into Soft X-ray (SX) band ( 2 keV), Hard X-ray (HX) band ( 2 keV). To avoid unscientific results, we exclude pulsars with unavailable or negative values for from the analysis. The upper limits of luminosities for radio-quite or radio faint Gamma-ray pulsars are shown in Figures 1-3, but are not included in the correlation analysis. We plot versus luminosities in the X-ray, Gamma-ray and radio bands in Figure 1, employing Pearson and Spearman correlation tests to assess the strength of linear and monotonic correlations, respectively. The results, summarized in Table 1, show that the X-ray and gamma-ray bands exhibit a strong correlation between and luminosity, approximating . The explicit linear fit across the entire band yields , consistent with the findings of Chang et al. (2023). The data align with the broken power-law fitting results in their study.
In general, the thermal component primarily contributes to the soft X-rays, while the non-thermal component dominates hard X-rays and could also contribute significantly to the soft X-rays. Consequently, the correlation in the soft X-ray band becomes noticeably weaker (the Pearson correlation coefficient ) compared to that of Becker & Truemper (1997) due to the mixture of thermal and non-thermal emissions (Figure 1 and Table 1). The correlation in the hard X-ray band remains strong (), suggesting that harder X-ray emission may provide valuable insights into the process of rotational energy loss being converted into X-rays (Possenti et al., 2002).
Because additional unpulsed X-ray emission may originate from young PWNe or from intrabinary shocks in MSPs (Becker & Truemper, 1997; Becker & Trümper, 1999; Zhang & Cheng, 2003; Chang et al., 2023), the correlation coefficient for MSPs () is generally smaller than that of NPs (), as shown in Table 1. In our sample, 110 sources (MSPs in GCs or NPs associated with PWNe) are adopted from the literature, which only provided the luminosities in the whole X-ray band (Hsiang & Chang, 2021; Zhao & Heinke, 2022). Fitting across the entire X-ray band yields a best-fit slope () higher than those in the soft () and hard () X-ray bands (Figure 1 and Table 1), indicating a discrepancy between the sources from literature and those derived from spatial matching. However, we cannot determine whether this small discrepancy is intrinsic or due to systematic differences in flux calculations. The number of pulsars involved in each fitting is listed in Table 1 as well.
The linear correlation between X-ray luminosity and spin-down power strongly supports the magnetic dipole model, in which magnetic dipole radiation extracts rotational kinetic energy and causes the spin-down. We further investigate the correlation between X-ray luminosity and five timing parameters, as shown in Figures 2, 3, and Table 1. For correlations where the Pearson correlation coefficients , we use curve_fit module in Scipy package to plot fitting lines showing the trend, and provide fitting errors at 1-sigma confidence level. In Figure 2 panels a and b, the best fits for and of NPs are and , respectively. Since pulsar timing parameters are functions of and , the best fit in two-dimension is found to be . In panel c, the surface magnetic strength () shows no significant correlation with , consistent with the result from Chang et al. (2023). In panel d, the grey regions represent theoretical lines for G under the assumption that . The distribution ranges for MSPs and NPs fall between 6-10 and 10-14, consistent with the values calculated from detected and . It is worth noting that MSPs are old neutron stars “recycled” by the accretion of mass and angular momentum from a companion star in a mass-transfer binary (Bhattacharya & van den Heuvel, 1991), so the characteristic age might deviate from the real age for MSPs.


In Figure 3 panel a, we report for the first time a strong correlation between and for MSPs. The fitting line reveals a consistent relationship for both NPs and MSPs, approximately . This strong correlation is also found in the Gamma-ray band, with Pearson correlation coefficients for MSPs and for NPs (Table 1.c). This result provides valuable constraints for high-energy emission models of pulsars. The outer-gap model offers an explanation for these emissions, suggesting that Gamma-rays are produced in the outer-gap by electron-positron pairs () through inverse Compton scattering or curvature radiation processes (Cheng et al., 1986). As these gamma-rays travel back toward the neutron star surface, they convert into secondary electron-positron pairs via photon-photon pair creation. These secondary pairs then emit non-thermal X-rays through synchrotron radiation near the light cylinder (Cheng et al., 1998; Takata et al., 2012).
We also note that with the same , X-ray luminosity of NPs tends to exceed that of MSPs. Therefore, two-dimensional fitting is also performed, as shown in panel b of Figure 3. The best fitting between and , is . This result is consistent with the correalation, as .
a. Correlation between and luminosities in different bands
ALL
MSP
NP
0.83
0.83
0.62
0.64
0.83
0.86
(176 sources)
(83 sources)
(93 sources)
0.51
0.55
0.56
0.57
0.54
0.47
(110 sources)
(58 sources)
(52 sources)
0.73
0.75
0.65
0.61
0.83
0.85
(114 sources)
(53 sources)
(51 sources)
0.77
0.76
0.72
0.75
0.79
0.76
(106 sources)
(50 sources)
(56 sources)
0.49
0.46
0.37
0.15
0.40
0.33
(110 sources)
(52 sources)
(58 sources)
b. Correlation between X-ray luminosity and timing parameters
MSP
NP
-0.33
-0.36
-0.72
-0.73
(132 sources)
(93 sources)
0.10
0.09
0.58
0.60
(83 sources)
(93 sources)
-0.05
-0.05
0.26
0.27
(83 sources)
(93 sources)
-0.30
-0.31
-0.76
-0.78
(83 sources)
(93 sources)
0.64
0.69
0.82
0.85
(83 sources)
(93 sources)
c. Correlation between Gamma-ray luminosity and timing parameters
MSP
NP
-0.53
-0.57
-0.71
-0.70
(52 sources)
(56 sources)
0.41
0.24
0.44
0.46
(50 sources)
(56 sources)
0.20
0.06
0.12
0.17
(50 sources)
(56 sources)
-0.58
-0.55
-0.66
-0.68
(50 sources)
(56 sources)
0.71
0.75
0.79
0.79
(50 sources)
(56 sources)
Note: is the index of a power function by a linear fitting and the error is given at 1-sigma confidence level, such as . is the Pearson correlation coefficient measuring the linear correlation. and is the Spearman correlation coefficient and significance level measuring monotone correlation.
3 GPPS Pulsars
3.1 Sample construction and data collection
To discover pulsars within the Galactic latitude of from the Galactic plane, the GPPS survey team designed the snapshot observation mode. In this mode, a sky patch of approximately 0.1575 square degrees is surveyed by four pointings using three-beam switching of the 19 beams from the L-band 19-beam receiver on FAST (see Han et al., 2021, for more details). The L-band resolution is about (Jiang et al., 2019), so the initial position of a pulsar detected from one beam has an accuracy of 1.5′. This accuracy can be significantly improved () with a long-term timing campaign (Su et al., 2023). We search for candidate X-ray counterparts within a circle centered on the position of GPPS pulsars with a radius of 1.5′. Only point-like X-ray sources are selected by setting the extent flag for XMM-Newton sources and for Chandra sources. The spatial match between the GPPS pulsars and the XMM-Newton and Chandra catalogs yields 48 associations (Table 3).
3.2 Parameters analysis
We convert the fluxes listed in the catalogs to the isotropic X-ray luminosities in the 0.3–10 keV, 0.5–7 keV bands for XMM-Newton and Chandra catalogs, respectively. The X-ray point sources exhibit X-ray luminosities ranging from erg s-1 to erg s-1. Assuming that the GPPS pulars share the same (Figure 1) correlation with the ATNF pulsars, the spin-down power can be calculated with the observed X-ray luminosity. The period of GPPS pulsars is provided in the catalog, and the period derivative can be derived using the formula . For most sources, the and derived from the relation appear excessively high. It is illogical for many sources to have values smaller than 1 kyr or magnetic fields greater than the critical value of G (Figure 4). Excluding these suspicious sources, there remain 27 X-ray point sources located within 16 pulsar’s positional error circles. However, it is important to note that a large proportion of these X-ray point sources are not actual X-ray counterparts of the GPPS pulsars. Due to FAST’s angular resolution of 2.9′, the probability to find an unrelated X-ray source within a positional error circle is times higher than that for the ATNF pulsars. Hence, there may be multiple X-ray sources surrounding the GPPS pulsars within 1.5′ (e.g. J1855+0139g and J2021+4024g).
As discussed above, X-ray luminosity of RPPs is positively correlated with their rotational energy loss (Becker & Truemper, 1997; Li et al., 2008; Arzoumanian et al., 2011; Vink et al., 2011; Rea et al., 2012; Vahdat et al., 2022; Chang et al., 2023). Assuming (Figure 1), the derived values of are larger than when . In contrast, more than 60 newly discovered pulsars by FAST have timing solutions, and their spin-down powers are mostly less than (Li et al., 2018; Su et al., 2023; Wu et al., 2023). We estimate the fluxes of these pulsars using the detected and , finding that almost 87% are lower than . However, most sources detected by XMM-Newton and Chandra have fluxes over and , respectively (Webb et al., 2020; Primini et al., 2011). Only the MSP, PSR J1953+1844, is found to be associated with a faint X-ray point source, 2CXO J195337.9+184454 (R.A. = 19:53:38.0, Dec. = +18:44:54.4) with a separation of less than 0.2′′ (Pan et al., 2023). Thus we conclude that the X-ray counterparts of FAST newly discovered pulsars are less likely to be found in the mentioned XMM-Newton and Chandra catalogs compared to ATNF pulsars, and the point sources with high X-ray luminosity are likely to be coincidences with GPPS pulsars.

4 Discussion and Summary
In this work, we search for the X-ray counterparts of ATNF pulsars by cross-correlating their positions with the XMM-Newton, Chandra catalogs. A total of 231 X-ray counterparts are identified, including 98 NPs and 133 MSPs, making this the largest and most comprehensive catalog to date.
(1) X-ray luminosity of pulsars shows a strong correlation with spin-down power across the entire X-ray band for both NPs and MSPs, following the relation , which is consistent with the findings of Chang et al. (2023) within the error margins. The positive correlation is particularly strong in the hard X-ray band, while in the soft band, the correlation weakens compared to Becker & Truemper (1997), likely due to the presence of mixed thermal and non-thermal components.
(2) In traditional RPP theories, magnetic dipole radiation extracts rotational kinetic energy from neutron star, and translates it into electromagnetic radiation, including X-ray emissions. This suggests an expected positive correlation between the magnetic field and electromagnetic radiation. However, no significant correlation is observed between and . On the other hand, we observe strong correlations between X-ray luminosity and the pulsar parameters , , and for NPs. Notably, this study is the first to report a strong correlation between and luminosities in the X-ray and Gamma-ray bands of both NPs and MSPs. These findings suggest that the high energy emission from RPPs can be more effectively explained by the outer-gap model. The best fit for as a function of and in two dimension is .
(3) For all detected pulsars,luminosities in the radio and Gamma-ray bands do not show significant correlations with timing parameters. However, when examining the correlation for pulsars with X-ray counterparts listed in Table 2 and calculating the Pearson and Spearman correlation coefficients (see Table 1), we find that Gamma-ray luminosity shows a strong correlation with , , and , similar to the correlations seen in the X-ray band. In contrast, we still find no significant correlations in the radio band.
(4) We identify 27 putative associations around the 16 GPPS pulsars. However, by examining the properties of GPPS pulsars with available timing solutions, we find that their tend to be below erg s-1, and most estimated fluxes are below the detection thresholds of current X-ray telescopes, unless long-term exposure is available. Consequently, we conclude that the likelihood of discovering actual the X-ray counterparts is lower compared to the ATNF pulsars. A portion of the X-ray point sources selected in this work are likely coincidental and unrelated to the GPPS pulsars.
Acknowledgements – We would like to thank the referee for valuable suggestions and comments that improved the clarity of the paper. This research has made use of data collected by ATNF, FAST and two X-ray missions, Chandra, and XMM-Newton. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. S.S.W. thank Profs. Jin-Lin Han, Hao Tong, and Ren-Xin Xu for many valuable discussions.The authors thank supports from the National Natural Science Foundation of China under Grants 12473041, 12033006, 12373051, and 12393852.
Data Availability – The XMM-Newton, and Chandra point source catalogs used in this work are available from https://heasarc.gsfc.nasa.gov/W3Browse/xmm-newton/xmmssc.html, and https://cxc.cfa.harvard.edu/csc2.1/index.html, respectively. The information of ATNF and FAST GPPS pulsars are available on the webpage of https://www.atnf.csiro.au/people/pulsar/psrcat/ and the GPPS survey http://zmtt.bao.ac.cn/GPPS/GPPSnewPSR.html, respectively.
Table 2 will be updated regularly online: https://xray-pulsar.github.io/counterparts/.
References
- Ambrosino et al. (2017) Ambrosino, F., Papitto, A., Stella, L., et al. 2017, Nature Astronomy, 1, 854, doi: 10.1038/s41550-017-0266-2
- Archibald et al. (2010) Archibald, A. M., Kaspi, V. M., Bogdanov, S., et al. 2010, ApJ, 722, 88, doi: 10.1088/0004-637X/722/1/88
- Arzoumanian et al. (2011) Arzoumanian, Z., Gotthelf, E. V., Ransom, S. M., et al. 2011, ApJ, 739, 39, doi: 10.1088/0004-637X/739/1/39
- Baade & Zwicky (1934) Baade, W., & Zwicky, F. 1934, Proceedings of the National Academy of Science, 20, 259, doi: 10.1073/pnas.20.5.259
- Becker & Truemper (1997) Becker, W., & Truemper, J. 1997, A&A, 326, 682, doi: 10.48550/arXiv.astro-ph/9708169
- Becker & Trümper (1999) Becker, W., & Trümper, J. 1999, A&A, 341, 803, doi: 10.48550/arXiv.astro-ph/9806381
- Becker et al. (2004) Becker, W., Weisskopf, M. C., Tennant, A. F., et al. 2004, ApJ, 615, 908, doi: 10.1086/424498
- Bhattacharya & van den Heuvel (1991) Bhattacharya, D., & van den Heuvel, E. P. J. 1991, Phys. Rep., 203, 1, doi: 10.1016/0370-1573(91)90064-S
- Camilo et al. (2009) Camilo, F., Ray, P. S., Ransom, S. M., et al. 2009, ApJ, 705, 1, doi: 10.1088/0004-637X/705/1/1
- Chang et al. (2023) Chang, H.-K., Hsiang, J.-Y., Chu, C.-Y., et al. 2023, MNRAS, 520, 4068, doi: 10.1093/mnras/stad400
- Cheng et al. (1998) Cheng, K. S., Gil, J., & Zhang, L. 1998, ApJ, 493, L35, doi: 10.1086/311117
- Cheng et al. (1986) Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500, doi: 10.1086/163829
- Cordes & Lazio (2002) Cordes, J. M., & Lazio, T. J. W. 2002, arXiv e-prints, astro, doi: 10.48550/arXiv.astro-ph/0207156
- Coti Zelati et al. (2020) Coti Zelati, F., Torres, D. F., Li, J., & Viganò, D. 2020, MNRAS, 492, 1025, doi: 10.1093/mnras/stz3485
- Danilenko et al. (2020) Danilenko, A., Karpova, A., Ofengeim, D., Shibanov, Y., & Zyuzin, D. 2020, MNRAS, 493, 1874, doi: 10.1093/mnras/staa287
- Ding et al. (2024) Ding, R., Cao, S., Wang, S., et al. 2024, The Astronomer’s Telegram, 16875, 1
- Duvidovich et al. (2019) Duvidovich, L., Giacani, E., Castelletti, G., Petriella, A., & Supán, L. 2019, A&A, 623, A115, doi: 10.1051/0004-6361/201834590
- Evans et al. (2010) Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 37, doi: 10.1088/0067-0049/189/1/37
- Evans et al. (2024) Evans, I. N., Evans, J. D., Martínez-Galarza, J. R., et al. 2024, ApJS, 274, 22, doi: 10.3847/1538-4365/ad6319
- Gotthelf & NuSTAR Observatory Team (2014) Gotthelf, E., & NuSTAR Observatory Team. 2014, in The X-ray Universe 2014, ed. J.-U. Ness, 85
- Gotthelf et al. (2013) Gotthelf, E. V., Halpern, J. P., & Alford, J. 2013, ApJ, 765, 58, doi: 10.1088/0004-637X/765/1/58
- Guillot et al. (2019) Guillot, S., Kerr, M., Ray, P. S., et al. 2019, ApJ, 887, L27, doi: 10.3847/2041-8213/ab511b
- Han et al. (2021) Han, J. L., Wang, C., Wang, P. F., et al. 2021, Research in Astronomy and Astrophysics, 21, 107, doi: 10.1088/1674-4527/21/5/107
- Han et al. (2024) Han, J. L., Zhou, D. J., Wang, C., et al. 2024, arXiv e-prints, arXiv:2411.15961, doi: 10.48550/arXiv.2411.15961
- Hare et al. (2021) Hare, J., Volkov, I., Pavlov, G. G., Kargaltsev, O., & Johnston, S. 2021, ApJ, 923, 249, doi: 10.3847/1538-4357/ac30e2
- Hermsen et al. (2018) Hermsen, W., Kuiper, L., Basu, R., et al. 2018, MNRAS, 480, 3655, doi: 10.1093/mnras/sty2075
- Hessels et al. (2004) Hessels, J. W. T., Roberts, M. S. E., Ransom, S. M., et al. 2004, ApJ, 612, 389, doi: 10.1086/422408
- Hewish et al. (1968) Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709, doi: 10.1038/217709a0
- Ho et al. (2022) Ho, W. C. G., Kuiper, L., Espinoza, C. M., et al. 2022, ApJ, 939, 7, doi: 10.3847/1538-4357/ac8743
- Hsiang & Chang (2021) Hsiang, J.-Y., & Chang, H.-K. 2021, MNRAS, 502, 390, doi: 10.1093/mnras/stab025
- Jiang et al. (2019) Jiang, P., Yue, Y., Gan, H., et al. 2019, Science China Physics, Mechanics, and Astronomy, 62, 959502, doi: 10.1007/s11433-018-9376-1
- Johnston et al. (1992) Johnston, S., Manchester, R. N., Lyne, A. G., et al. 1992, ApJ, 387, L37, doi: 10.1086/186300
- Kerr et al. (2018) Kerr, M., Coles, W. A., Ward, C. A., et al. 2018, MNRAS, 474, 4637, doi: 10.1093/mnras/stx3101
- Kim et al. (2020) Kim, S. I., Hui, C. Y., Lee, J., et al. 2020, A&A, 637, L7, doi: 10.1051/0004-6361/202037873
- Lee et al. (2018) Lee, J., Hui, C. Y., Takata, J., et al. 2018, ApJ, 864, 23, doi: 10.3847/1538-4357/aad284
- Li et al. (2018) Li, D., Wang, P., Qian, L., et al. 2018, IEEE Microwave Magazine, 19, 112, doi: 10.1109/MMM.2018.2802178
- Li et al. (2008) Li, X.-H., Lu, F.-J., & Li, Z. 2008, ApJ, 682, 1166, doi: 10.1086/589495
- Lin et al. (2014) Lin, L. C. C., Hui, C. Y., Li, K. T., et al. 2014, ApJ, 793, L8, doi: 10.1088/2041-8205/793/1/L8
- Lin et al. (2009) Lin, L. C.-C., Takata, J., Hwang, C.-Y., & Liang, J.-S. 2009, MNRAS, 400, 168, doi: 10.1111/j.1365-2966.2009.15468.x
- Lu et al. (2007) Lu, F., Wang, Q. D., Gotthelf, E. V., & Qu, J. 2007, ApJ, 663, 315, doi: 10.1086/518713
- Lyne & Graham-Smith (2012) Lyne, A., & Graham-Smith, F. 2012, Pulsar Astronomy
- Manchester et al. (2005) Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993, doi: 10.1086/428488
- Marelli (2012) Marelli, M. 2012, arXiv e-prints, arXiv:1205.1748, doi: 10.48550/arXiv.1205.1748
- Marelli et al. (2016) Marelli, M., Pizzocaro, D., De Luca, A., et al. 2016, ApJ, 819, 40, doi: 10.3847/0004-637X/819/1/40
- Marelli et al. (2014) Marelli, M., Harding, A., Pizzocaro, D., et al. 2014, ApJ, 795, 168, doi: 10.1088/0004-637X/795/2/168
- McGowan et al. (2006) McGowan, K. E., Zane, S., Cropper, M., Vestrand, W. T., & Ho, C. 2006, ApJ, 639, 377, doi: 10.1086/497327
- Mignani (2011) Mignani, R. P. 2011, Advances in Space Research, 47, 1281, doi: 10.1016/j.asr.2009.12.011
- Mignani (2018) —. 2018, Galaxies, 6, 36, doi: 10.3390/galaxies6010036
- Miller et al. (2013) Miller, J. J., McLaughlin, M. A., Rea, N., et al. 2013, ApJ, 776, 104, doi: 10.1088/0004-637X/776/2/104
- Muno et al. (2003) Muno, M. P., Baganoff, F. K., Bautz, M. W., et al. 2003, ApJ, 589, 225, doi: 10.1086/374639
- Nan et al. (2011) Nan, R., Li, D., Jin, C., et al. 2011, International Journal of Modern Physics D, 20, 989, doi: 10.1142/S0218271811019335
- Ng et al. (2007) Ng, C. Y., Romani, R. W., Brisken, W. F., Chatterjee, S., & Kramer, M. 2007, ApJ, 654, 487, doi: 10.1086/510576
- Pan et al. (2023) Pan, Z., Lu, J. G., Jiang, P., et al. 2023, Nature, 620, 961, doi: 10.1038/s41586-023-06308-w
- Pandel & Scott (2012) Pandel, D., & Scott, R. 2012, in American Institute of Physics Conference Series, Vol. 1505, High Energy Gamma-Ray Astronomy: 5th International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A. Aharonian, W. Hofmann, & F. M. Rieger (AIP), 329–332, doi: 10.1063/1.4772264
- Papitto et al. (2015) Papitto, A., de Martino, D., Belloni, T. M., et al. 2015, MNRAS, 449, L26, doi: 10.1093/mnrasl/slv013
- Park et al. (2023) Park, J., Kim, C., Woo, J., et al. 2023, ApJ, 945, 66, doi: 10.3847/1538-4357/acba0e
- Pletsch et al. (2012) Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012, ApJ, 744, 105, doi: 10.1088/0004-637X/744/2/105
- Possenti et al. (2002) Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993, doi: 10.1051/0004-6361:20020472
- Primini et al. (2011) Primini, F. A., Houck, J. C., Davis, J. E., et al. 2011, ApJS, 194, 37, doi: 10.1088/0067-0049/194/2/37
- Qian et al. (2019) Qian, L., Pan, Z., Li, D., et al. 2019, Science China Physics, Mechanics, and Astronomy, 62, 959508, doi: 10.1007/s11433-018-9354-y
- Razzano et al. (2023) Razzano, M., Fiori, A., Saz Parkinson, P. M., et al. 2023, A&A, 676, A91, doi: 10.1051/0004-6361/202345873
- Rea et al. (2012) Rea, N., Pons, J. A., Torres, D. F., & Turolla, R. 2012, ApJ, 748, L12, doi: 10.1088/2041-8205/748/1/L12
- Renaud et al. (2010) Renaud, M., Marandon, V., Gotthelf, E. V., et al. 2010, ApJ, 716, 663, doi: 10.1088/0004-637X/716/1/663
- Rigoselli & Mereghetti (2018) Rigoselli, M., & Mereghetti, S. 2018, A&A, 615, A73, doi: 10.1051/0004-6361/201732408
- Rigoselli et al. (2022) Rigoselli, M., Mereghetti, S., Anzuinelli, S., et al. 2022, MNRAS, 513, 3113, doi: 10.1093/mnras/stac1130
- Rigoselli et al. (2019) Rigoselli, M., Mereghetti, S., Suleimanov, V., et al. 2019, A&A, 627, A69, doi: 10.1051/0004-6361/201935485
- Smith et al. (2023) Smith, D. A., Bruel, P., Clark, C. J., et al. 2023, arXiv e-prints, arXiv:2307.11132, doi: 10.48550/arXiv.2307.11132
- Su et al. (2023) Su, W. Q., Han, J. L., Wang, P. F., et al. 2023, MNRAS, 526, 2645, doi: 10.1093/mnras/stad2159
- Takata et al. (2012) Takata, J., Cheng, K. S., & Taam, R. E. 2012, ApJ, 745, 100, doi: 10.1088/0004-637X/745/1/100
- Tanashkin et al. (2022) Tanashkin, A. S., Karpova, A. V., Potekhin, A. Y., Shibanov, Y. A., & Zyuzin, D. A. 2022, MNRAS, 516, 13, doi: 10.1093/mnras/stac2164
- Torii et al. (1998) Torii, K., Kinugasa, K., Katayama, K., Tsunemi, H., & Yamauchi, S. 1998, ApJ, 503, 843, doi: 10.1086/306038
- Vahdat et al. (2022) Vahdat, A., Posselt, B., Santangelo, A., & Pavlov, G. G. 2022, A&A, 658, A95, doi: 10.1051/0004-6361/202141795
- Van Etten et al. (2012) Van Etten, A., Romani, R. W., & Ng, C. Y. 2012, ApJ, 755, 151, doi: 10.1088/0004-637X/755/2/151
- Vink et al. (2011) Vink, J., Bamba, A., & Yamazaki, R. 2011, ApJ, 727, 131, doi: 10.1088/0004-637X/727/2/131
- Webb et al. (2020) Webb, N. A., Coriat, M., Traulsen, I., et al. 2020, A&A, 641, A136, doi: 10.1051/0004-6361/201937353
- Weng et al. (2022) Weng, S.-S., Qian, L., Wang, B.-J., et al. 2022, Nature Astronomy, 6, 698, doi: 10.1038/s41550-022-01630-1
- Wu et al. (2023) Wu, Q. D., Yuan, J. P., Wang, N., et al. 2023, MNRAS, 522, 5152, doi: 10.1093/mnras/stad1323
- Yao et al. (2017) Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29, doi: 10.3847/1538-4357/835/1/29
- Zhang & Cheng (2003) Zhang, L., & Cheng, K. S. 2003, A&A, 398, 639, doi: 10.1051/0004-6361:20021570
- Zhao & Heinke (2022) Zhao, J., & Heinke, C. O. 2022, MNRAS, 511, 5964, doi: 10.1093/mnras/stac442
- Zheng et al. (2023) Zheng, D., Wang, Z., Zhang, X., Chen, Y., & Xing, Y. 2023, ApJ, 952, 158, doi: 10.3847/1538-4357/ace10b
- Zhou et al. (2023) Zhou, D. J., Han, J. L., Xu, J., et al. 2023, Research in Astronomy and Astrophysics, 23, 104001, doi: 10.1088/1674-4527/accc76
- Zyuzin et al. (2018) Zyuzin, D. A., Karpova, A. V., & Shibanov, Y. A. 2018, MNRAS, 476, 2177, doi: 10.1093/mnras/sty359
- Zyuzin et al. (2021) Zyuzin, D. A., Karpova, A. V., Shibanov, Y. A., Potekhin, A. Y., & Suleimanov, V. F. 2021, MNRAS, 501, 4998, doi: 10.1093/mnras/staa3991
Name | X-ray source | Ref | |||||||
---|---|---|---|---|---|---|---|---|---|
s | s/s | kpc | |||||||
NP | |||||||||
J0002+6216 | 2CXO J000258.1+621609 | 0.115364 | 6.357 | T | |||||
J0007+7303 | 2CXO J000701.5+730308p | 0.315873 | 1.4 | T, 1 | |||||
J0058-7218 | 2CXO J005816.8-721805p | 0.021766 | 59.7 | — | T, 2 | ||||
J0108-1431 | 4XMM J010808.3-143150 | 0.807565 | 0.21 | — | T | ||||
J0117+5914 | 4XMM J011738.6+591438 | 0.101439 | 1.768 | — | T | ||||
J0205+6449b | 2CXO J020537.9+644941p | 0.065716 | 3.2 | — | — | 3, 4 | |||
J0357+3205 | 4XMM J035752.1+320519 | 0.444104 | 0.835 | T | |||||
J0358+5413b | 2CXO J035853.7+541313p | 0.156384 | 1 | — | — | — | 3, 5 | ||
J0359+5414c | 2CXO J035926.0+541455 | 0.079427 | 1.887 | 6 | |||||
J0534+2200b | 4XMM J053431.1+220101p | 0.033392 | 2 | — | — | 3, 4 | |||
J0537-6910b | 2CXO J053747.4-691019p | 0.016122 | 49.7 | — | — | — | 3, 2 | ||
J0538+2817b | 4XMM J053825.1+281709p | 0.143158 | 1.3 | — | — | — | 7 | ||
J0540-6919b | 4XMM J054011.0-691954p | 0.05057 | 49.7 | — | — | 3, 4 | |||
J0554+3107b | 4XMM J055405.0+310741 | 0.464961 | 2 | — | — | 8 | |||
J0614+2229 | 4XMM J061416.8+222953 | 0.33496 | 3.5 | — | T | ||||
J0630-2834 | 4XMM J063049.3-283443p | 1.244419 | 0.32 | — | T, 9 | ||||
J0633+0632 | 4XMM J063344.1+063230p | 0.297395 | 1.355 | T, 10 | |||||
J0633+1746b | 4XMM J063354.2+174614p | 0.237099 | 0.19 | — | — | 3, 4 | |||
J0659+1414b | 4XMM J065948.1+141421p | 0.384921 | 0.159 | — | — | 3, 4 | |||
J0742-2822 | 2CXO J074249.0-282243 | 0.166762 | 2 | T | |||||
J0826+2637 | 4XMM J082651.4+263721p | 0.530661 | 0.5 | — | T, 11 | ||||
J0835-4510b | 4XMM J083520.4-451032p | 0.089328 | 0.28 | — | — | — | 3, 4 | ||
J0908-4913 | 2CXO J090835.4-491305 | 0.106769 | 1 | T | |||||
J0922+0638 | 4XMM J092214.0+063822 | 0.430627 | 1.1 | T | |||||
J0946+0951 | 4XMM J094607.7+095159p | 1.097706 | 0.892 | — | T, 12 | ||||
J0953+0755 | 4XMM J095309.2+075536p | 0.253065 | 0.261 | — | T, 13 | ||||
J1016-5857b | 2CXO J101621.2-585711 | 0.107386 | 3.162 | — | — | 3 | |||
J1023-5746 | 2CXO J102302.8-574606 | 0.111472 | 2.08 | T | |||||
J1028-5819 | 2CXO J102827.8-581906 | 0.091403 | 1.423 | T | |||||
J1044-5737 | 2CXO J104432.8-573719 | 0.139029 | 1.895 | T | |||||
J1048-5832b | 4XMM J104812.7-583204 | 0.123725 | 2.9 | — | — | 3 | |||
J1057-5226 | 4XMM J105758.9-522656p | 0.197115 | 0.093 | T, 4 | |||||
J1101-6101b | 2CXO J110144.8-610138p | 0.0628 | 7 | — | — | — | 3, 2 | ||
J1112-6103 | 2CXO J111214.8-610330 | 0.064962 | 4.464 | T | |||||
J1124-5916b | 2CXO J112439.1-591619p | 0.135477 | 5 | — | — | 3, 4 | |||
J1136+1551 | 4XMM J113603.1+155115p | 1.187913 | 0.37 | — | T, 9 | ||||
J1154-6250 | 4XMM J115420.2-625002 | 0.282012 | 1.358 | — | T | ||||
J1301-6305 | 4XMM J130145.7-630536 | 0.184528 | 10.717 | — | T | ||||
J1301-6310 | 4XMM J130128.5-631040 | 0.66383 | 1.458 | — | T | ||||
J1357-6429b | 4XMM J135702.6-642929p | 0.166108 | 3.1 | — | — | 2, 4 | |||
J1400-6325b | 2CXO J140045.7-632542Xp | 0.031182 | 7 | — | — | — | 14 | ||
J1412+7922c | 4XMM J141255.8+792203p | 0.058199 | — | 15, 2 | |||||
J1413-6205 | 4XMM J141330.0-620535 | 0.109741 | 2.15 | T | |||||
J1418-6058 | 4XMM J141842.7-605803p | 0.110573 | 1.885 | T, 16 | |||||
J1420-6048b | 4XMM J142008.3-604815p | 0.06818 | 5.632 | — | — | 3, 4 | |||
J1429-5911 | 2CXO J142958.5-591136 | 0.115843 | 1.955 | T | |||||
J1437-5959 | 4XMM J143701.9-595901 | 0.061696 | 8.543 | — | T | ||||
J1456-6843 | 2CXO J145600.0-684339 | 0.263377 | 0.43 | — | T | ||||
J1459-6053 | 4XMM J145930.1-605322p | 0.103151 | 1.84 | T, 4 | |||||
J1509-5850b | 2CXO J150927.1-585056 | 0.088925 | 3.371 | — | — | 3 | |||
J1513-5908b | 4XMM J151355.5-590809p | 0.151582 | 4.4 | — | — | 3, 4 | |||
J1531-5610 | 2CXO J153127.8-561055 | 0.084206 | 2.841 | T | |||||
J1617-5055b | 2CXO J161729.3-505512p | 0.069357 | 4.743 | — | — | — | 3, 17 | ||
J1640-4631b | 2CXO J164043.5-463135p | 0.206443 | 12.75 | — | — | — | 18 | ||
J1709-4429b | 4XMM J170942.5-442906p | 0.102459 | 2.6 | — | — | 3, 4 | |||
J1718-3825b | 2CXO J171813.6-382517 | 0.0746749 | 3.488 | — | — | 3 | |||
J1722-3712 | 4XMM J172259.2-371206 | 0.23618 | 2.477 | — | T | ||||
J1731-4744 | 4XMM J173142.3-474438 | 0.829894 | 5.54 | T | |||||
J1732-3131 | 2CXO J173233.5-313123 | 0.196543 | 0.641 | 19 | |||||
J1734-3333 | 4XMM J173427.0-333321 | 1.169341 | 4.461 | — | T | ||||
J1740+1000 | 4XMM J174025.9+100006p | 0.154096 | 1.227 | T, 20 | |||||
J1741-2054 | 2CXO J174157.2-205412p | 0.4137 | 0.3 | 19, 4 | |||||
J1747-2809b | 2CXO J174722.7-280914 | 0.052153 | 8.141 | — | — | — | 21 | ||
J1747-2958b | 4XMM J174715.6-295801p | 0.098814 | 2.52 | — | — | 3, 4 | |||
J1801-2451b | 4XMM J180059.9-245127 | 0.124924 | 3.803 | — | — | 3 | |||
J1803-2137b | 4XMM J180351.4-213707 | 0.133667 | 4.4 | — | — | — | 3 | ||
J1809-1917b | 4XMM J180943.1-191737 | 0.082755 | 3.268 | — | — | — | 3 | ||
J1809-2332b | 2CXO J180950.2-233222 | 0.146789 | 0.88 | — | — | 22 | |||
J1811-1925b | 4XMM J181129.2-192528p | 0.064667 | 5 | — | — | — | 3, 23 | ||
J1813-1246 | 4XMM J181323.7-124600p | 0.048073 | 2.635 | T, 24 | |||||
J1813-1749b | 4XMM J181335.0-174957p | 0.044741 | 6.147 | — | — | — | 3, 2 | ||
J1825-1446 | 2CXO J182502.9-144653p | 0.279198 | 4.441 | — | T, 25 | ||||
J1826-1256 | 2CXO J182608.5-125634p | 0.110239 | 1.55 | 26, 4 | |||||
J1826-1334b | 4XMM J182612.9-133447 | 0.101487 | 3.606 | — | — | — | 3 | ||
J1833-1034b | 2CXO J183333.6-103405X | 0.061884 | 4.1 | — | — | 3 | |||
J1836+5925 | 4XMM J183613.6+592529p | 0.173264 | 0.3 | T, 27 | |||||
J1838-0537 | 4XMM J183856.1-053702 | 0.145754 | 1.3 | 19 | |||||
J1838-0655b | 4XMM J183803.1-065534p | 0.070498 | 6.6 | — | — | — | 3, 28 | ||
J1846+0919 | 2CXO J184625.8+091949 | 0.225552 | 1.53 | T | |||||
J1849-0001c | 4XMM J184901.6-000117p | 0.038523 | — | 15, 2 | |||||
J1856+0113b | 4XMM J185610.6+011324 | 0.26744 | 3.3 | — | — | — | 3 | ||
J1856+0245 | 2CXO J185650.9+024547 | 0.080907 | 6.318 | — | T | ||||
J1907+0602 | 4XMM J190754.8+060214 | 0.106643 | 2.576 | 29 | |||||
J1930+1852b | 4XMM J193030.0+185214p | 0.136855 | 7 | — | — | — | 3, 30 | ||
J1932+1059b | 4XMM J193214.0+105933p | 0.226519 | 0.31 | — | — | — | 3, 31 | ||
J1952+3252b | 2CXO J195258.2+325240p | 0.039531 | 3 | — | — | 3, 4 | |||
J1957+5033 | 4XMM J195738.1+503321p | 0.374807 | 1.365 | T, 32 | |||||
J1958+2846 | 2CXO J195840.0+284554 | 0.290389 | 1.95 | — | T | ||||
J2017+3625c | 2CXO J201755.8+362507 | 0.166749 | 33 | ||||||
J2021+3651b | 4XMM J202105.3+365103p | 0.103741 | 1.8 | — | — | 3, 34 | |||
J2021+4026 | 4XMM J202130.7+402645p | 0.265328 | 2.15 | 35 | |||||
J2022+3842 | 2CXO J202221.6+384214p | 0.048579 | 10 | 19, 4 | |||||
J2030+4415 | 2CXO J203051.3+441539 | 0.227071 | 0.72 | T | |||||
J2043+2740 | 4XMM J204343.4+274056 | 0.096131 | 1.48 | T | |||||
J2055+2539 | 4XMM J205548.9+253958p | 0.319561 | 0.62 | T, 36 | |||||
J2139+4716c | 2CXO J213955.9+471613 | 0.282849 | 37 | ||||||
J2225+6535b | 2CXO J222552.8+653536 | 0.682542 | 0.9 | — | — | — | 3 | ||
J2229+6114b | 2CXO J222905.2+611409p | 0.051648 | 3 | — | — | 3, 4 | |||
MSP | |||||||||
J0023+0923 | 2CXO J002316.8+092323 | 0.00305 | 1.818 | T | |||||
J0024-7204Cad | — | 0.005757 | 4.52 | — | — | — | 38 | ||
J0024-7204Dad | — | 0.005358 | 4.52 | — | — | — | 38 | ||
J0024-7204Ea | — | 0.003536 | 4.52 | — | — | — | 38 | ||
J0024-7204Fa | — | 0.002624 | 4.52 | — | — | — | 38 | ||
J0024-7204Had | — | 0.00321 | 4.52 | — | — | — | 38 | ||
J0024-7204Jad | — | 0.002101 | 4.52 | — | — | — | 38 | ||
J0024-7204Lad | — | 0.004346 | 4.52 | — | — | — | 38 | ||
J0024-7204Mad | — | 0.003677 | 4.52 | — | — | — | 38 | ||
J0024-7204Nad | — | 0.003054 | 4.52 | — | — | — | 38 | ||
J0024-7204Oa | — | 0.002643 | 4.52 | — | — | — | 38 | ||
J0024-7204Qa | — | 0.004033 | 4.52 | — | — | — | 38 | ||
J0024-7204Ra | — | 0.00348 | 4.52 | — | — | — | 38 | ||
J0024-7204Sad | — | 0.00283 | 4.52 | — | — | — | 38 | ||
J0024-7204Ta | — | 0.007588 | 4.52 | — | — | — | 38 | ||
J0024-7204Ua | — | 0.004343 | 4.52 | — | — | — | 38 | ||
J0024-7204Wad | — | 0.002352 | 4.52 | — | — | — | 38 | ||
J0024-7204Xa | — | 0.004772 | 4.52 | — | — | — | 38 | ||
J0024-7204Yad | — | 0.002197 | 4.52 | — | — | — | 38 | ||
J0024-7204Zad | — | 0.004554 | 4.52 | — | — | — | 38 | ||
J0024-7204aaad | — | 0.00184 | — | 4.52 | — | — | — | 38 | |
J0024-7204aba | — | 0.003705 | 4.52 | — | — | — | 38 | ||
J0030+0451 | 4XMM J003027.4+045139p | 0.004865 | 0.329 | T, 4 | |||||
J0034-0534 | 4XMM J003421.8-053437 | 0.001877 | 1.348 | T | |||||
J0101-6422 | 2CXO J010111.0-642230 | 0.002573 | 1.001 | T | |||||
J0218+4232 | 4XMM J021806.2+423217p | 0.002323 | 3.15 | T, 4 | |||||
J0307+7443 | 4XMM J030756.1+744313 | 0.003156 | 0.386 | T | |||||
J0337+1715 | 4XMM J033743.8+171514 | 0.002733 | 1.3 | — | T | ||||
J0437-4715 | 2CXO J043715.8-471508p | 0.005757 | 0.157 | T, 4 | |||||
J0613-0200 | 4XMM J061343.9-020046 | 0.003062 | 0.78 | T | |||||
J0614-3329 | 4XMM J061410.3-332954p | 0.003149 | 0.63 | T, 4 | |||||
J0636+5128 | 4XMM J063604.9+512900p | 0.002869 | 0.714 | — | T, 4 | ||||
J0737-3039A | 4XMM J073751.2-303940 | 0.022699 | 1.1 | — | T | ||||
J0740+6620 | 4XMM J074045.7+662033p | 0.002886 | 1.15 | T, 4 | |||||
J0751+1807 | 4XMM J075109.2+180735p | 0.003479 | 1.1 | T, 4 | |||||
J0952-0607 | 4XMM J095208.3-060724 | 0.001414 | 7.6 | T | |||||
J1012+5307 | 4XMM J101233.3+530701p | 0.005256 | 0.7 | — | T, 39 | ||||
J1023+0038 | 4XMM J102347.6+003841p | 0.001688 | 1.19 | T, 40 | |||||
J1024-0719 | 4XMM J102438.7-071918p | 0.005162 | 1.22 | T, 4 | |||||
J1035-6720 | 4XMM J103527.5-672013 | 0.002872 | 1.461 | T | |||||
J1124-3653 | 2CXO J112401.1-365319 | 0.00241 | 0.987 | T | |||||
J1227-4853 | 4XMM J122758.7-485342p | 0.001686 | 1.613 | T, 41 | |||||
J1231-1411 | 4XMM J123111.3-141143p | 0.003684 | 0.42 | T, 4 | |||||
J1300+1240 | 2CXO J130003.2+124053 | 0.006219 | 0.709 | — | — | T | |||
J1306-4035d | 4XMM J130656.2-403523 | 0.002205 | — | 4.7 | — | T | |||
J1311-3430 | 4XMM J131145.7-343030 | 0.00256 | 2.43 | T | |||||
J1326-4728Aa | — | 0.004109 | 5.43 | — | — | — | 38 | ||
J1326-4728Bad | — | 0.004792 | 5.43 | — | — | — | 38 | ||
J1400-1431 | 4XMM J140037.0-143146 | 0.003084 | 0.278 | T | |||||
J1417-4402d | 2CXO J141730.5-440257 | 0.002664 | — | 4.4 | — | T | |||
J1431-4715 | 4XMM J143144.4-471524 | 0.002012 | 1.562 | T | |||||
J1446-4701 | 4XMM J144635.8-470126 | 0.002195 | 1.569 | T | |||||
J1514-4946 | 2CXO J151419.0-494615 | 0.003589 | 0.908 | T | |||||
J1518+0204Ca | — | 0.002484 | 7.48 | — | — | — | 38 | ||
J1537+1155 | 4XMM J153709.9+115555 | 0.037904 | 0.935 | — | T | ||||
J1614-2230 | 4XMM J161436.5-223031p | 0.003151 | 0.7 | T, 4 | |||||
J1622-0315 | 4XMM J162259.6-031538 | 0.003845 | 1.142 | T | |||||
J1623-2631a | — | 0.011076 | 1.851 | — | — | — | 38 | ||
J1625-0021 | 4XMM J162510.3-002127 | 0.002834 | 0.951 | T | |||||
J1628-3205 | 2CXO J162806.9-320548 | 0.003212 | 1.227 | T | |||||
J1640+2224 | 2CXO J164016.7+222408 | 0.003163 | 1.37 | — | T | ||||
J1641+3627Bad | — | 0.003528 | 7.42 | — | — | — | 38 | ||
J1641+3627Ca | — | 0.003722 | 7.42 | — | — | — | 38 | ||
J1641+3627Dad | — | 0.003118 | 7.42 | — | — | — | 38 | ||
J1641+3627Ea | — | 0.002487 | 7.42 | — | — | — | 38 | ||
J1641+3627Fa | — | 0.003004 | 7.42 | — | — | — | 38 | ||
J1643-1224 | 4XMM J164338.0-122458 | 0.004622 | 0.74 | — | T | ||||
J1653-0158 | 4XMM J165338.0-015837 | 0.001968 | 0.84 | T | |||||
J1658-5324 | 2CXO J165839.3-532406 | 0.002439 | 0.88 | — | T | ||||
J1701-3006Bad | — | 0.003594 | 6.41 | — | — | — | 38 | ||
J1701-3006Cad | — | 0.007613 | 6.41 | — | — | — | 38 | ||
J1709+2313 | 2CXO J170905.7+231328 | 0.004631 | 2.179 | — | T | ||||
J1717+4308Aa | — | 0.00316 | 8.5 | — | — | — | 38 | ||
J1723-2837 | 2CXO J172323.1-283757 | 0.001856 | 0.926 | — | T | ||||
J1730-2304 | 4XMM J173021.6-230431 | 0.008123 | 0.62 | T | |||||
J1731-1847 | 4XMM J173117.6-184733 | 0.002345 | 4.782 | — | T | ||||
J1737-0314Aa | — | 0.00198 | 9.1 | — | — | — | 38 | ||
J1740-5340Aa | — | 0.00365 | 2.482 | — | — | — | 38 | ||
J1740-5340Bad | — | 0.005787 | 2.482 | — | — | — | 38 | ||
J1744-1134 | 2CXO J174429.4-113454 | 0.004075 | 0.395 | T | |||||
J1744-7619c | 4XMM J174400.6-761915 | 0.004688 | 4 | ||||||
J1748-2446Aad | — | 0.011563 | 6.62 | — | — | — | 38 | ||
J1748-2446Ead | — | 0.002198 | — | 6.62 | — | — | — | 38 | |
J1748-2446Fad | — | 0.00554 | — | 6.62 | — | — | — | 38 | |
J1748-2446Had | — | 0.004926 | — | 6.62 | — | — | — | 38 | |
J1748-2446Kad | — | 0.00297 | — | 6.62 | — | — | — | 38 | |
J1748-2446Lad | — | 0.002245 | — | 6.62 | — | — | — | 38 | |
J1748-2446Nad | — | 0.008667 | — | 6.62 | — | — | — | 38 | |
J1748-2446Oad | — | 0.001677 | — | 6.62 | — | — | — | 38 | |
J1748-2446Pad | — | 0.001729 | — | 6.62 | — | — | — | 38 | |
J1748-2446Qad | — | 0.002812 | — | 6.62 | — | — | — | 38 | |
J1748-2446Vad | — | 0.002073 | — | 6.62 | — | — | — | 38 | |
J1748-2446Xad | — | 0.002999 | — | 6.62 | — | — | — | 38 | |
J1748-2446Zad | — | 0.002463 | — | 6.62 | — | — | — | 38 | |
J1748-2446adad | — | 0.001396 | — | 6.62 | — | — | — | 38 | |
J1807-2459Aad | — | 0.003059 | 2.58 | — | — | — | 38 | ||
J1810+1744 | 2CXO J181037.3+174437 | 0.00166 | 4. | 2.361 | T | ||||
J1816+4510 | 2CXO J181635.9+451033 | 0.003193 | 4.356 | — | T | ||||
J1824-2452Aad | 2CXO J182431.9-245211p | 0.003054 | 5.37 | — | — | 38, 4 | |||
J1824-2452Cad | — | 0.004159 | — | 5.37 | — | — | — | 38 | |
J1824-2452Ead | — | 0.00542 | — | 5.37 | — | — | — | 38 | |
J1824-2452Fad | — | 0.002451 | — | 5.37 | — | — | — | 38 | |
J1824-2452Had | — | 0.004629 | — | 5.37 | — | — | — | 38 | |
J1824-2452Iad | — | 0.003932 | — | 5.37 | — | — | — | 38 | |
J1824-2452Jad | — | 0.004039 | — | 5.37 | — | — | — | 38 | |
J1824-2452Kad | — | 0.004461 | — | 5.37 | — | — | — | 38 | |
J1836-2354Aa | — | 0.003354 | 3.3 | — | — | — | 38 | ||
J1902-5105 | 4XMM J190202.9-510556 | 0.001742 | 1.645 | T | |||||
J1909-3744 | 4XMM J190947.4-374413 | 0.002947 | 1.14 | — | T | ||||
J1910-5959Aad | — | 0.003266 | 4.12 | — | — | — | 38 | ||
J1910-5959Bad | — | 0.008358 | 4.12 | — | — | — | 38 | ||
J1910-5959Ca | — | 0.005277 | 4.12 | — | — | — | 38 | ||
J1910-5959Da | — | 0.009035 | 4.12 | — | — | — | 38 | ||
J1910-5959Ead | — | 0.004572 | 4.12 | — | — | — | 38 | ||
J1910-5959Fa | — | 0.008485 | 4.12 | — | — | — | 38 | ||
J1939+2134 | 4XMM J193938.5+213459p | 0.001558 | 3.5 | T, 4 | |||||
J1946-5403d | 4XMM J194634.4-540343 | 0.00271 | — | 1.15 | T | ||||
J1953+1846Aad | — | 0.004888 | — | 4 | — | — | — | 38 | |
J2017+0603 | 2CXO J201722.6+060305 | 0.002896 | 1.399 | — | T | ||||
J2017-1614 | 4XMM J201746.0-161416 | 0.002314 | 1.444 | T | |||||
J2043+1711 | 2CXO J204320.8+171129 | 0.00238 | 1.389 | — | T | ||||
J2047+1053 | 2CXO J204710.2+105307 | 0.004286 | 2.794 | T | |||||
J2051-0827 | 2CXO J205107.5-082737 | 0.004509 | 1.469 | — | T | ||||
J2115+5448 | 4XMM J211511.7+544844 | 0.002603 | 3.106 | T | |||||
J2124-3358b | 2CXO J212443.8-335844p | 0.004931 | 0.41 | — | — | 3, 4 | |||
J2129-0429d | 4XMM J212945.0-042906 | 0.00762 | — | 1.83 | T | ||||
J2140-2310Aad | — | 0.011019 | 8.46 | — | — | — | 38 | ||
J2214+3000 | 4XMM J221438.8+300038p | 0.003119 | 0.6 | T, 4 | |||||
J2215+5135 | 4XMM J221532.6+513536 | 0.00261 | 2.773 | T | |||||
J2241-5236 | 4XMM J224142.0-523635p | 0.002187 | 1.042 | T, 4 | |||||
J2256-1024 | 2CXO J225656.3-102434 | 0.002295 | 2.083 | T | |||||
J2302+4442 | 4XMM J230246.9+444222 | 0.005192 | 0.863 | T | |||||
J2339-0533 | 4XMM J233938.7-053305 | 0.002884 | 1.1 | T |
Note. —
: X-ray luminosity in 0.3–10.0 keV for XMM-Newton, and in 0.5-7.0 keV for Chandra.
: Soft X-ray luminosity in 0.3–2.0 keV for XMM-Newton, and in 0.5-2.0 keV for Chandra.
: Hard X-ray luminosity in 2.0–10.0 keV for XMM-Newton, and in 2.0-7.0 keV for Chandra.
: G-ray luminosity in 100 MeV.
: The luminosity error is derived from the flux error in the catalogs, which ranges between and . However, the error introduced by the DM is dominant but not included in the table.
a: The pulsars are MSP in GCs, and their X-ray luminosities are taken from Zhao & Heinke (2022).
b: The pulsars are associated with PWNe or SNRs, and their X-ray luminosities are obtained from the references listed in the ”Ref” column.
c: The upper limits of these distance are inferred from the spin-down power and the energy flux above 100 MeV, with references listed in column ”Ref”. The distances of other pulsars are acquired from he ATNF catalog, using the YMW16 electron distribution model (Yao et al., 2017).
d: The is either unavailable or negative, according to the ATNF catalog. These pulsars are excluded from the following correlation analysis.
p: These pulsars have been reported to exhibit X-ray pulsations.
Reference: The data source for the distance or luminosity of the pulsar. If two references are provided, the second one refers to the study reporting the X-ray pulsations. (T) This work; (1) Marelli (2012); (2) Ho et al. (2022); (3) Hsiang & Chang (2021); (4) Smith et al. (2023); (5) McGowan et al. (2006); (6) Ding et al. (2024); (7) Ng et al. (2007); (8) Tanashkin et al. (2022); (9) Rigoselli & Mereghetti (2018); (10) Danilenko et al. (2020); (11) Hermsen et al. (2018); (12) Rigoselli et al. (2019); (13) Becker et al. (2004); (14) Renaud et al. (2010); (15) Ho et al. (2022); (16) Park et al. (2023); (17) Hare et al. (2021); (18) Gotthelf & NuSTAR Observatory Team (2014); (19) Chang et al. (2023);
(20) Rigoselli et al. (2022); (21) Camilo et al. (2009); (22) Van Etten et al. (2012); (23) Zheng et al. (2023); (24) Marelli et al. (2014); (25) ; (26) Duvidovich et al. (2019); (27) Lin et al. (2014); (28) Lin et al. (2009); (29) Pandel & Scott (2012); (30) Lu et al. (2007); (31) Kim et al. (2020); (32) Zyuzin et al. (2021); (33) Zyuzin et al. (2018); (34) Hessels et al. (2004); (35) Razzano et al. (2023); (36) Marelli et al. (2016); (37) Pletsch et al. (2012); (38) Zhao & Heinke (2022); (39) Guillot et al. (2019); (40) Archibald et al. (2010); (41) Papitto et al. (2015).
Pulsar∗ | gpps No. | Period† (s) | (kpc) | X-ray sources | RA | Dec | () | |
4XMM | ||||||||
J2022+3845g | gpps0076 | 1.0089 | 17.2 | J202205.4+384518 | 20:22:05.46 | +38:45:18.83 | FALSE | |
J202211.1+384423 | 20:22:11.19 | +38:44:23.53 | FALSE | |||||
J2021+4024g | gpps0087 | 0.37054 | 25.0 | J202112.9+402403 | 20:21:12.94 | +40:24:03.61 | FALSE | |
J202114.3+402319 | 20:21:14.35 | +40:23:19.57 | FALSE | |||||
J202118.8+402431 | 20:21:18.83 | +40:24:31.82 | FALSE | |||||
J1852-0002g | gpps0098 | 0.2451 | 5.6 | J185204.5-000155 | 18:52:04.48 | -00:01:57.00 | FALSE | |
J1907+0709g | gpps0120 | 0.3441 | 5.4 | J190756.2+070832 | 19:07:56.29 | +07:08:32.14 | FALSE | |
J1913+0458g | gpps0222 | 0.44479 | 4.1 | J191337.0+045826 | 19:13:37.05 | +04:58:26.06 | FALSE | |
J2024+3751g | gpps0256 | 0.21164 | 15.4 | J202429.1+374953 | 20:24:29.19 | +37:49:53.82 | FALSE | |
J1911+0906g | gpps0285 | 16.9259 | 1.1 | J191135.8+090724 | 19:11:35.86 | +09:07:24.25 | FALSE | |
J1912+1000g | gpps0321 | 3.0528 | 4.1 | J191244.9+095954 | 19:12:44.90 | +09:59:54.67 | FALSE | |
J1843-0127g | gpps0363 | 2.16489 | 7.2 | J184332.7-012851 | 18:43:32.75 | -01:28:51.35 | FALSE | |
J1852-0834g | gpps0378 | 0.249315 | 6.7 | J185218.9-083500 | 18:52:19.00 | -08:35:00.21 | TRUE | |
J1913+0453g | gpps0400 | 0.006086 | 15.0 | J191346.7+045151 | 19:13:46.78 | +04:51:52.09 | FALSE | |
J191346.7+045151 | 19:13:46.71 | +04:51:51.63 | FALSE | |||||
J1846-0252g | gpps0563 | 2.209439 | 6.4 | J184627.1-025230 | 18:46:27.12 | -02:52:30.17 | FALSE | |
J1819-0050g | gpps0581 | 0.006602 | 4.5 | J181933.9-005006 | 18:19:33.96 | -00:50:05.91 | FALSE | |
J1845-0254g | gpps0582 | 0.492655 | 5.8 | J184532.8-025411 | 18:45:32.89 | -02:54:12.14 | FALSE | |
J2032+4055g | gpps0623 | 0.048739 | 10.1 | J203237.2+405556 | 20:32:36.99 | +40:55:56.62 | FALSE | |
J1818-0051g | gpps0666 | 2.20669 | 2.7 | J181836.3-005225 | 18:18:36.37 | -0:52:25.74 | FALSE | |
J1847-0308g | gpps0735 | 29.76927 | 3.4 | J184701.6-030753 | 18:47:01.65 | 18:47:01.65 | FALSE | |
J1851+0037g | gpps0744 | 2.52373 | 5.2 | J185146.7+003533 | 18:51:46.39 | 18:51:46.39 | FALSE | |
2CXO | ||||||||
J1852+0056g | gpps0014 | 1.177793 | 7.2 | J185215.4+005743 | 18:52:15.40 | +00:57:43.30 | FALSE | |
J1855+0139g | gpps0026 | 0.44414 | 5.2 | J185512.5+013807 | 18:55:12.57 | +01:38:07.90 | TRUE | |
J185518.9+013844 | 18:55:18.94 | +01:38:44.38 | FALSE | |||||
J1904+0519g | gpps0037 | 1.68053 | 2.5 | J190403.8+052014 | 19:04:03.81 | +05:20:14.02 | FALSE | |
J190404.8+052006 | 19:04:04.83 | +05:20:06.68 | FALSE | |||||
J2022+3845g | gpps0076 | 1.0089 | 17.2 | J202205.4+384519 | 20:22:05.46 | +38:45:19.55 | FALSE | |
J202209.5+384413 | 20:22:09.53 | +38:44:13.95 | TRUE | |||||
J202209.9+384348 | 20:22:09.90 | +38:43:48.03 | FALSE | |||||
J202210.8+384341 | 20:22:10.82 | +38:43:41.97 | FALSE | |||||
J202211.2+384423 | 20:22:11.27 | +38:44:23.58 | FALSE | |||||
J2021+4024g | gpps0087 | 0.37054 | 25.0 | J202106.0+402319 | 20:21:06.04 | +40:23:19.68 | FALSE | |
J202111.7+402335 | 20:21:11.71 | +40:23:35.29 | FALSE | |||||
J202112.8+402405 | 20:21:12.91 | +40:24:05.48 | TRUE | |||||
J202114.3+402520 | 20:21:14.35 | +40:25:20.41 | FALSE | |||||
J1907+0658g | gpps0127 | 0.21834 | 7.7 | J190737.8+065841 | 19:07:37.84 | +06:58:41.02 | FALSE | |
J1909+0905g | gpps0178 | 1.49488 | 5.4 | J190935.9+090600 | 19:09:35.92 | +09:06:00.44 | FALSE | |
J1953+1844 | gpps0190 | 0.004441 | 4.3 | J195337.9+184454 | 19:53:37.96 | +18:44:54.40 | FALSE | |
J1931+1841g | gpps0233 | 2.59411 | 5.4 | J193111.2+183934 | 19:31:11.22 | +18:39:34.27 | FALSE | |
J2030+3833g | gpps0295 | — | 15.2 | J203024.9+383322 | 20:30:25.00 | +38:33:22.98 | FALSE | |
J1844-0223g | gpps0493 | 0.65772 | 6.3 | J184516.7-022929 | 18:45:16.78 | -02:29:29.63 | FALSE | |
J1929+1337g | gpps0495 | 0.203318 | 7.8 | J192924.8+133637 | 19:29:24.83 | +13:36:37.19 | FALSE | |
J1915+1045g | gpps0518 | 1.54588 | 3.7 | J191531.5+104333 | 19:15:31.54 | +10:43:33.80 | FALSE | |
J2032+4055g | gpps0623 | 0.048739 | 10.1 | J203234.8+405617 | 20:32:34.87 | +40:56:17.23 | TRUE | |
J203236.3+405529 | 20:32:36.33 | +40:55:29.62 | FALSE | |||||
J203240.2+405348 | 20:32:40.21 | +40:53:48.85 | FALSE | |||||
J1843-0310g | gpps0672 | 0.285151 | 8.5 | J184305.3-030954 | 18:43:05.31 | -03:09:54.86 | FALSE | |
∗: The pulsar name with a suffix ‘g’ indicates the temporary nature, due to position uncertainty of about 1.5′. | ||||||||
†: Several pulsars are discovered due to the single pulses, and their spin periods are currently unavailable (Zhou et al., 2023). | ||||||||
: Distance estimated based on the YMW16 electron distribution model (Yao et al., 2017). | ||||||||
: The flag is set to ‘True’ if the source displayed flux variability within one or between observations, | ||||||||
or to ‘Flase’ if the source was tested for variability but did not qualify. |