This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new X-ray census of rotation powered pulsars

Yu-Jing Xu (徐雨婧) Department of Astronomy, Xiamen University, Xiamen, 361005, Fujian, People’s Republic of China School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Han-Long Peng(彭寒龙) School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Shan-Shan Weng(翁山杉) School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Institute of Physics Frontiers and Interdisciplinary Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Xiao Zhang(张潇) School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Institute of Physics Frontiers and Interdisciplinary Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China Ming-Yu Ge(葛明玉) Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract

To date, over 4,000 pulsars have been detected. In this study, we identify 231 X-ray counterparts of ATNF pulsars by performing a spatial cross-match across the Chandra, XMM-Newton observational catalogs. This dataset represents the largest sample of X-ray counterparts ever compiled, including 98 normal pulsars (NPs) and 133 millisecond pulsars (MSPs). Based on this significantly expanded sample, we re-establish the correlation between X-ray luminosity and spin-down power, given by LXE˙0.85±0.05L_{\rm X}\propto\dot{E}^{0.85\pm 0.05} across the whole X-ray band. The strong correlation is also observed in hard X-ray band, while in soft X-ray band there is no significant correlation. Furthermore, LXL_{\rm X} shows a strong correlation with spin period and characteristic age for NPs. For the first time, we observe a strongly positive correlation between LXL_{\rm X} and the light cylinder magnetic field (BlcB_{\rm lc}) for MSPs, with both NPs and MSPs following the relationship LXBlc1.14L_{\rm X}\propto B_{\rm lc}^{1.14}, consistent with the outer-gap model of pulsars that explains the mechanism of X-ray emission. Additionally, we investigate potential X-ray counterparts for GPPS pulsars, finding a lower likelihood of detection compared to ATNF pulsars.

pulsars (1306) : general — star: neutron (1108) — X-rays: stars
facilities: Chandra, XMM-Newton, ATNF, FAST, Fermithanks: Yu-Jing Xu and Han-Long Peng contributed equally to this work.thanks: Yu-Jing Xu and Han-Long Peng contributed equally to this work.

1 Introduction

In the 1930s, stellar evolution theories predicted that neutron stars (NSs) could form when a massive star exhausts its fuel and undergoes gravitational collapse (Baade & Zwicky, 1934). Many years later, the existence of NSs was confirmed by the discovery of radio pulsars in August 1967 (Hewish et al., 1968). NSs can be powered either by rotational kinetic energy, magnetic energy, or accretion, and they manifest in various ways. Rotation-powered pulsars (RPPs) account for over 90% of the population, emitting beams of electromagnetic radiation due to high-energy processes occurring at the magnetic poles or in the surrounding region (Lyne & Graham-Smith, 2012).

As of now, there are 3,630\sim 3,630 RPPs in the Australia Telescope National Facility (ATNF) Pulsar Catalogue (version 2.3.0, Manchester et al., 2005)111https://www.atnf.csiro.au/people/pulsar/psrcat/. The Fermi/LAT mission has revealed that about 10% of the known RPPs are visible in the Gamma-ray band (Smith et al., 2023). Furthermore, over a hundred X-ray RPPs have been reported (Becker & Truemper, 1997; Becker & Trümper, 1999; Chang et al., 2023). In contrast, the optical and IR emissions have been poorly studied (Mignani, 2011, 2018), and the optical pulsations were revealed for less than 1% of NSs (Lyne & Graham-Smith, 2012; Ambrosino et al., 2017). The radiation mechanisms of broadband emissions from RPPs are not yet completely clarified, especially for photons energies lower than the gamma-ray band. In this context much effort has been devoted to statistical studies. A notable positive correlation between X-ray luminosity (LXL_{\rm X}) and pulsar spin-down power (E˙\dot{E}) has been documented (e.g. Becker & Truemper, 1997; Rea et al., 2012; Chang et al., 2023). However, for some pulsars, their distances still have large uncertainties, and X-ray emission may arise from a mix of components. As a result, the scatter in this relation is large (e.g. Possenti et al., 2002; Li et al., 2008), highlighting the need for more data to better understand X-ray emission from RPPs.

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the most sensitive radio telescope used for discovering pulsars (Nan et al., 2011; Jiang et al., 2019). FAST has discovered more than 1,000 pulsars (Li et al., 2018; Qian et al., 2019; Weng et al., 2022; Han et al., 2021, 2024), in particular with two key science projects: the Commensal Radio Astronomy FAST Survey (CRAFTS, Li et al., 2018) and the Galactic Plane Pulsar Snapshot (GPPS) survey (Han et al., 2021, 2024). Until November 2024, the GPPS program has discovered 751 pulsars222http://zmtt.bao.ac.cn/GPPS/GPPSnewPSR.html, including some very faint sources. Detailed studies on these sources are progressing steadily (Su et al., 2023; Zhou et al., 2023).

In this paper, we use all available archived X-ray observations from the Chandra and XMM-Newton missions to explore potential associations between X-ray point sources and pulsars identified in the ATNF and GPPS catalogs. In Section 2, we present a spatial matching analysis to construct the pulsar sample, and examine the correlation between X-ray luminosity and timing parameters for ATNF pulsars. In Section 3, we employ the results of the LXE˙L_{\rm X}-\dot{E} correlation to constrain possible counterparts for GPPS pulsars. Finally, the discussion and conclusions are presented in Section 4.

2 ATNF Pulsars

2.1 Sample construction

Various mechanisms have been proposed to explain the generation of X-ray emission from pulsars. For some young pulsars, surface thermal radiation (e.g. “Magnificent Seven”, “Central Compact Objects”) or magnetic field decay (e.g. “Rotating Radio Transient” and Magnetars) may contribute to the X-ray emission (Torii et al., 1998; Gotthelf et al., 2013; Chang et al., 2023). In certain cases, this results in X-ray luminosity that exceeds the pulsar’s spin-down luminosity. X-ray emission from Be/Gamma-ray Binaries is thought to arise from the shock between the stellar wind and the pulsar wind (Johnston et al., 1992; Miller et al., 2013; Weng et al., 2022). Alternatively, in this study, we focus exclusively on RPPs where rotational energy is the dominant source of X-ray emission. The non-thermal power-law component of their emission can be interpreted as magnetospheric radiation. The origin of the thermal emission, however, remains debated and is likely due to the bombardment of charged particles returning from the magnetosphere onto the polar cap region.

As a leading international facility in radio astronomy, the ATNF catalog offers a comprehensive sample of pulsars, encompassing all published RPPs while excluding accretion-powered pulsars. In this work, we search for X-ray counterparts of 3,630 pulsars listed in the ATNF pulsar catalog v2.3.0333https://www.atnf.csiro.au/people/pulsar/psrcat/ (Manchester et al., 2005) by using the XMM-Newton Serendipitous Source Catalog 444https://heasarc.gsfc.nasa.gov/W3Browse/xmm-newton/xmmssc.html (4XMM-DR13 Version, Webb et al., 2020), the Chandra Source Catalog Release 2.0 555https://cxc.cfa.harvard.edu/csc2.1/index.html (CSC 2.0, Evans et al., 2010, 2024). If the angular separation between a pulsar and an X-ray source, with a detection confidence level greater than 3-sigma, satisfies the condition δ=(RAXRAR)2cos2(DECX)+(DECXDECR)2<RXRR\delta=\sqrt{(RA_{\rm X}-RA_{\rm R})^{2}cos^{2}(DEC_{\rm X})+(DEC_{\rm X}-DEC_{\rm R})^{2}}<R_{\rm X}-R_{\rm R}, we consider the X-ray source to be the counterpart of the pulsar. RARA and DECDEC denote the right ascension and declination of a source, RXR_{\rm X} and RRR_{\rm R} represent the positional uncertainties at the 2-sigma confidence level for the X-ray source and the pulsar, respectively. For most radio-loud pulsars, timing procedure leads to achieve positional accuracy down to milliarcseconds, and we use the Third Fermi/LAT Catalog of Gamma-ray Pulsars Catalog (3PC)666https://fermi.gsfc.nasa.gov/ssc/data/access/lat/3rd_PSR_catalog/ (Smith et al., 2023) to obtain more precise positions for radio-quiet and radio-faint pulsars. The typical positional accuracy of XMM-Newton serendipitous point source detections is generally less than 1.57′′, and the on-axis spatial resolution of Chandra data is sub-arcsecond. However, the X-ray positional accuracy can sometimes be overestimated, leading to some counterparts being missed. We verified the results by cross-referencing with compiled literature tables, identifying 19 counterparts for 8 normal pulsars (NPs) and 11 millisecond pulsars (MSPs) (Li et al., 2008; Lee et al., 2018; Coti Zelati et al., 2020; Chang et al., 2023). In sum, by positional cross-matching, we identify 121 counterparts of pulsars, comprising 65 MSPs and 56 NPs.

In some cases, the positions of X-ray sources in the two X-ray catalogs are imprecise. For sources located in supernova remnants (SNRs) or pulsar-wind nebulae (PWNe), the extended X-ray emission complicates accurate positioning. Because MSPs in globular clusters (GCs) are relatively dense and faint, they are challenging to resolve using the pipelined processing methods applied in the Chandra CSC 2.0 catalog. However, some studies have conducted more detailed analyses of these sources, yielding additional X-ray counterparts (e.g. Hsiang & Chang, 2021; Zhao & Heinke, 2022). We collected data from the literature on 68 MSPs in 29 GCs and 42 NPs associated with SNRs or PWNe, incorporating these into our sample as a significant supplement. However, their luminosities are reported across the entire X-ray band, as detailed spectral analyses are lacking.

In total, we identify 231 X-ray counterparts of pulsars, including 98 NPs and 133 MSPs. Their properties, spanning radio, X-ray, and Gamma-ray bands, are listed in Table 2.

2.2 Probability of spatial coincidence

In principle, an association can be unambiguously confirmed as a real counterpart only when X-ray pulsations are detected. However, in most cases, the time resolution of imaging X-ray observations is insufficient for pulsation searches. The time resolution of Chandra data is \sim 3.2 s777https://cxc.harvard.edu/cdo/about_chandra/, and the time resolution of XMM-Newton EPIC-pn’s full frame mode observation data is 73.4 ms888https://heasarc.gsfc.nasa.gov/docs/xmm/uhb/epicmode.html. Nevertheless, X-ray pulsations have been reported for 51 NPs and 18 MSPs in the literature (see Table 2).

We also estimate the probability of positional coincidence using the logNN - logSS distribution at the Galactic center (Muno et al., 2003). According to the discussion in Section 4.1 of Muno et al. (2003) (see also Figure 10 in their paper), the surface density of sources is extremely high, \sim15,000 sources deg-2 above the flux limit of 3×10153\times 10^{-15} erg cm-2 s-1 in the 2.0–8.0 keV range. This corresponds to \sim0.009 contaminating sources within the 1.57′′ location error circle (the typical XMM-Newton positional resolution). However, we argue that the chance coincidence probability is likely much lower for the following reasons: 1. The fluxes of pulsars analyzed in this work are mostly greater than 3×10153\times 10^{-15} erg cm-2 s-1, with a median value of 7×1014/9×10157\times 10^{-14}/9\times 10^{-15} erg cm-2 s-1 for NPs and MSPs; 2. The surface density at the pulsar position should be much smaller than at the Galactic center; 3. Chandra sources exhibit even smaller positional uncertainties and a lower likelihood of coincidence. Moreover, more refined analyses have been performed on a large proportion of MSPs in GCs (e.g. Hsiang & Chang, 2021; Zhao & Heinke, 2022, Section 2.1), and sources detected within PWNe can also be considered secure associations. Therefore, we conclude that the probability of positional coincidence is very low, even if there is an absence of X-ray pulsations.

2.3 Pulsar parameters

According to the magnetic dipole radiation model for pulsars, rotation power is assumed to be transformed into dipole radiation loss energy. The energy loss rate E˙\dot{E} can be expressed as E˙=4π2IP˙P3\dot{E}=\frac{4\pi^{2}I\dot{P}}{P^{3}}, where a typical moment of I=1045I=10^{45} g cm2 is assumed. Other parameters can be derived from the observed rotational period PP and its derivative P˙\dot{P}, as described by the following relations: the characteristic age τ=P2P˙\tau=\frac{P}{2\dot{P}}, the surface magnetic field strength Bsurf=3.2×1019(PP˙)0.5B_{\rm surf}=3.2\times 10^{19}(P\dot{P})^{0.5} G, the magnetic field at light cylinder Blc=2.9×108P2.5P˙0.5B_{\rm lc}=2.9\times 10^{8}P^{-2.5}\dot{P}^{0.5} G.

In this work, distances are estimated using the Dispersion measure (DM) based on the YMW16 electron distribution model (Yao et al., 2017). For radio-quiet or radio-faint Gamma-ray pulsars, we adopt pseudo-distances inferred from the spin-down power E˙\dot{E} and the energy flux G100G_{\rm 100} above 100 MeV. As a result, upper limits on luminosities across all bands are provided for these sources, with relevant references listed in Table 2. The luminosities of radio-loud pulsars in the radio and Gamma-ray bands are taken from the ATNF catalog and Fermi Pulsar catalog. However, it is important to note that the uncertainty in luminosity is typically dominated by the uncertainty in the DM distance, and could deviate significantly from the actual value. For example, the distance of 93 pc for PSR J1057-5226 is derived using the YMW16 model (Yao et al., 2017), while NE2001 model places it at 720 pc (Cordes & Lazio, 2002), showing an order-of-magnitude difference (Kerr et al., 2018). Moreover, it has been cautioned that the DM distances for some pulsars are over-estimated and questionable, especially for the pulsars in the direction of the Local Arm or the tangential direction of spiral arms (Han et al., 2021). Following Chang et al. (2023), we adopt an uncertainty of 40% in distances in this work. The X-ray luminosity is derived from flux and distance, and its error is calculated based on the error transfer formula.

Refer to caption
Figure 1: E˙\dot{E} versus luminosities of pulsars. Panels a-e reveal correlation in X-ray band, Soft X-ray (SX) band (<<2 keV), Hard X-ray (HX) band (>>2 keV), Gamma-ray band and Radio band, respectively. Millisecond pulsars and normal pulsars are plotted by violet dots and orange squares, respectively. Blue, violet and orange lines are best fit of all, millisecond and normal pulsars, respectively. The inverted triangles are upper limits of luminosity. The correlation trend is revealed by Pearson correlation coefficient (rr), and Spearman tests (rsr_{\rm s} and psp_{\rm s}) , listed in Table 1. Grey dotted lines represent different values of LX/E˙L_{\rm X}/\dot{E}. The orchid dashed line and black dash-dotted line are fitting results of Becker & Truemper (1997) and Chang et al. (2023), respectively.

2.4 Correlation of parameters

It has been reported that, the X-ray luminosity of RPPs is strongly correlated with E˙\dot{E}, but is orders of magnitude lower than E˙\dot{E} (LX/E˙106101L_{\rm X}/\dot{E}\sim 10^{-6}-10^{-1}, Arzoumanian et al., 2011; Rea et al., 2012; Vahdat et al., 2022; Chang et al., 2023). The correlation was first explored in the soft X-ray band (0.1–2.4 keV) by Becker & Truemper (1997) using ROSAT data, leading to the relation LX103E˙L_{\rm X}\propto 10^{-3}\dot{E}. Possenti et al. (2002) later extended this analysis to the 2-10 keV band, obtaining LXE˙1.34L_{\rm X}\propto\dot{E}^{1.34}. Li et al. (2008) made a significant advancement by separating the X-ray luminosity contributions from pulsars and their associated PWNe, reporting LX,psrE˙0.92±0.04L_{\rm X,psr}\propto\dot{E}^{0.92\pm 0.04} and LX,pwnE˙1.45±0.08L_{\rm X,pwn}\propto\dot{E}^{1.45\pm 0.08} in 2-10 keV. Recently, Chang et al. (2023) used the non-thermal X-ray luminosity in 0.5–8 keV band for 68 RPPs, finding LXE˙0.88±0.06L_{\rm X}\propto\dot{E}^{0.88\pm 0.06}.

In this work, we use X-ray luminosities in 0.3–10.0 keV range for XMM-Newton and in 0.5–7.0 keV range for Chandra, further categorizing the data into Soft X-ray (SX) band (<< 2 keV), Hard X-ray (HX) band (>> 2 keV). To avoid unscientific results, we exclude pulsars with unavailable or negative values for P˙\dot{P} from the analysis. The upper limits of luminosities for radio-quite or radio faint Gamma-ray pulsars are shown in Figures 1-3, but are not included in the correlation analysis. We plot E˙\dot{E} versus luminosities in the X-ray, Gamma-ray and radio bands in Figure 1, employing Pearson and Spearman correlation tests to assess the strength of linear and monotonic correlations, respectively. The results, summarized in Table 1, show that the X-ray and gamma-ray bands exhibit a strong correlation between E˙\dot{E} and luminosity, approximating LX2×104E˙L_{\rm X}\propto 2\times 10^{-4}~{}\dot{E}. The explicit linear fit across the entire band yields LXE˙0.85±0.05L_{\rm X}\propto\dot{E}^{0.85\pm 0.05}, consistent with the findings of Chang et al. (2023). The data align with the broken power-law fitting results in their study.

In general, the thermal component primarily contributes to the soft X-rays, while the non-thermal component dominates hard X-rays and could also contribute significantly to the soft X-rays. Consequently, the correlation in the soft X-ray band becomes noticeably weaker (the Pearson correlation coefficient r=0.51r=0.51) compared to that of Becker & Truemper (1997) due to the mixture of thermal and non-thermal emissions (Figure 1 and Table 1). The correlation in the hard X-ray band remains strong (r=0.73r=0.73), suggesting that harder X-ray emission may provide valuable insights into the process of rotational energy loss being converted into X-rays (Possenti et al., 2002).

Because additional unpulsed X-ray emission may originate from young PWNe or from intrabinary shocks in MSPs (Becker & Truemper, 1997; Becker & Trümper, 1999; Zhang & Cheng, 2003; Chang et al., 2023), the correlation coefficient for MSPs (r=0.62r=0.62) is generally smaller than that of NPs (r=0.83r=0.83), as shown in Table 1. In our sample, 110 sources (MSPs in GCs or NPs associated with PWNe) are adopted from the literature, which only provided the luminosities in the whole X-ray band (Hsiang & Chang, 2021; Zhao & Heinke, 2022). Fitting across the entire X-ray band yields a best-fit slope (α=0.85±0.05\alpha=0.85\pm 0.05) higher than those in the soft (α=0.39±0.08\alpha=0.39\pm 0.08) and hard (α=0.79±0.08\alpha=0.79\pm 0.08) X-ray bands (Figure 1 and Table 1), indicating a discrepancy between the sources from literature and those derived from spatial matching. However, we cannot determine whether this small discrepancy is intrinsic or due to systematic differences in flux calculations. The number of pulsars involved in each fitting is listed in Table 1 as well.

The linear correlation between X-ray luminosity and spin-down power strongly supports the magnetic dipole model, in which magnetic dipole radiation extracts rotational kinetic energy and causes the spin-down. We further investigate the correlation between X-ray luminosity and five timing parameters, as shown in Figures 2, 3, and Table 1. For correlations where the Pearson correlation coefficients r>0.6r>0.6, we use curve_fit module in Scipy package to plot fitting lines showing the trend, and provide fitting errors at 1-sigma confidence level. In Figure 2 panels a and b, the best fits for PP and P˙\dot{P} of NPs are LXL_{\rm X} P2.95±0.27\propto{P}^{-2.95\pm 0.27} and LXL_{\rm X} P˙1.08±0.12\propto\dot{P}^{1.08\pm 0.12}, respectively. Since pulsar timing parameters are functions of PP and P˙\dot{P}, the best fit in two-dimension is found to be LXL_{\rm X} P2.55±0.16P˙0.85±0.04\propto P^{-2.55\pm 0.16}\dot{P}^{0.85\pm 0.04}. In panel c, the surface magnetic strength (BsurfB_{\rm surf}) shows no significant correlation with LXL_{\rm X}, consistent with the result from Chang et al. (2023). In panel d, the grey regions represent theoretical lines for logBsurf=6,7,8,,14logB_{\rm surf}=6,7,8,...,14 G under the assumption that LXE˙0.85L_{\rm X}\propto\dot{E}^{0.85}. The distribution ranges for MSPs and NPs fall between 6-10 and 10-14, consistent with the values calculated from detected PP and P˙\dot{P}. It is worth noting that MSPs are old neutron stars “recycled” by the accretion of mass and angular momentum from a companion star in a mass-transfer binary (Bhattacharya & van den Heuvel, 1991), so the characteristic age τ\tau might deviate from the real age for MSPs.

Refer to caption
Figure 2: X-ray luminosity versus timing parameters. Panels a-c reveal correlation between LXL_{\rm X} with PP, P˙\dot{P} and BsurfB_{\rm surf}. Panel d is correlation between X-ray luminosity and τ\tau. The grey regions are theoretical lines for logBsurf=6,7,8,,14logB_{\rm surf}=6,7,8,...,14 G under the precondition that LXE˙0.85L_{\rm X}\propto\dot{E}^{0.85}. Dots and legends are the same as Figure 1. Linear fitting lines are plotted for Pearson correlation coefficient r>0.6r>0.6.
Refer to caption
Figure 3: X-ray luminosity versus BlcB_{\rm lc} and τ\tau. Dots and legends are the same as Figure 1. Panel a is correlation between X-ray luminosity and BlcB_{\rm lc}. Panel b is correlation with best fit of BlcB_{\rm lc} and τ\tau in two-dimensional.

In Figure 3 panel a, we report for the first time a strong correlation between BlcB_{\rm lc} and LXL_{\rm X} for MSPs. The fitting line reveals a consistent relationship for both NPs and MSPs, approximately LXBlc1.14L_{\rm X}\propto B_{\rm lc}^{1.14}. This strong correlation is also found in the Gamma-ray band, with Pearson correlation coefficients r=0.71r=0.71 for MSPs and r=0.79r=0.79 for NPs (Table 1.c). This result provides valuable constraints for high-energy emission models of pulsars. The outer-gap model offers an explanation for these emissions, suggesting that Gamma-rays are produced in the outer-gap by electron-positron pairs (e±e^{\pm}) through inverse Compton scattering or curvature radiation processes (Cheng et al., 1986). As these gamma-rays travel back toward the neutron star surface, they convert into secondary electron-positron pairs via photon-photon pair creation. These secondary pairs then emit non-thermal X-rays through synchrotron radiation near the light cylinder (Cheng et al., 1998; Takata et al., 2012).

We also note that with the same BlcB_{\rm lc}, X-ray luminosity of NPs tends to exceed that of MSPs. Therefore, two-dimensional fitting is also performed, as shown in panel b of Figure 3. The best fitting between LXL_{\rm X} and BlcB_{\rm lc}, τ\tau is LXL_{\rm X} Blc0.86±0.06τ0.42±0.03\propto B_{\rm lc}^{0.86\pm 0.06}\tau^{-0.42\pm 0.03}. This result is consistent with the LXE˙L_{\rm X}-\dot{E} correalation, as LXBlcτ0.5P3P˙E˙L_{\rm X}\propto B_{\rm lc}~{}\tau^{-0.5}\propto P^{-3}\dot{P}\propto\dot{E}.

Table 1: Results of linear fitting and Spearman tests

a. Correlation between E˙\dot{E} and luminosities in different bands
LXL_{\rm X} ALL MSP NP α\alpha rr rsr_{\rm s} psp_{\rm s} α\alpha rr rsr_{\rm s} psp_{\rm s} α\alpha rr rsr_{\rm s} psp_{\rm s} LXL_{\rm X} 0.85±0.050.85\pm 0.05 0.83 0.83 1.18×10461.18\times 10^{-46} 0.87±0.170.87\pm 0.17 0.62 0.64 7.8×10117.8\times 10^{-11} 0.83±0.060.83\pm 0.06 0.83 0.86 6.2×10296.2\times 10^{-29} (176 sources) (83 sources) (93 sources) LSXL_{\rm SX} 0.39±0.080.39\pm 0.08 0.51 0.55 1.8×10101.8\times 10^{-10} 0.78±0.240.78\pm 0.24 0.56 0.57 2.7×10062.7\times 10^{-06} 0.34±0.090.34\pm 0.09 0.54 0.47 4.4×10044.4\times 10^{-04} (110 sources) (58 sources) (52 sources) LHXL_{\rm HX} 0.79±0.080.79\pm 0.08 0.73 0.75 1.6×10211.6\times 10^{-21} 1.48±0.251.48\pm 0.25 0.65 0.61 1.4×10061.4\times 10^{-06} 0.68±0.090.68\pm 0.09 0.83 0.85 1.5×10151.5\times 10^{-15} (114 sources) (53 sources) (51 sources) LGL_{\rm G} 0.64±0.080.64\pm 0.08 0.77 0.76 2.7×10222.7\times 10^{-22} 0.77±0.240.77\pm 0.24 0.72 0.75 3.8×10103.8\times 10^{-10} 0.62±0.110.62\pm 0.11 0.79 0.76 7.0×10127.0\times 10^{-12} (106 sources) (50 sources) (56 sources) LRL_{\rm R} 0.30±0.050.30\pm 0.05 0.49 0.46 4.9×10074.9\times 10^{-07} 0.38±0.140.38\pm 0.14 0.37 0.15 3.0×10013.0\times 10^{-01} 0.22±0.070.22\pm 0.07 0.40 0.33 1.2×10021.2\times 10^{-02} (110 sources) (52 sources) (58 sources)

b. Correlation between X-ray luminosity and timing parameters
LXL_{\rm X} MSP NP α\alpha rr rsr_{\rm s} psp_{\rm s} α\alpha rr rsr_{\rm s} psp_{\rm s} PP 1.26±0.39-1.26\pm 0.39 -0.33 -0.36 1.8×10051.8\times 10^{-05} 2.95±0.27-2.95\pm 0.27 -0.72 -0.73 1.2×10161.2\times 10^{-16} (132 sources) (93 sources) P˙\dot{P} 0.13±0.160.13\pm 0.16 0.10 0.09 4.0×10014.0\times 10^{-01} 1.08±0.121.08\pm 0.12 0.58 0.60 2.0×10102.0\times 10^{-10} (83 sources) (93 sources) BsurfB_{\rm surf} 0.10±0.26-0.10\pm 0.26 -0.05 -0.05 6.7×10016.7\times 10^{-01} 0.96±0.240.96\pm 0.24 0.26 0.27 8.8×10038.8\times 10^{-03} (83 sources) (93 sources) τ\tau 0.47±0.19-0.47\pm 0.19 -0.30 -0.31 4.0×10034.0\times 10^{-03} 1.18±0.10-1.18\pm 0.10 -0.76 -0.78 2.2×10202.2\times 10^{-20} (83 sources) (93 sources) BlcB_{\rm lc} 1.20±0.231.20\pm 0.23 0.64 0.69 5.0×10135.0\times 10^{-13} 1.14±0.091.14\pm 0.09 0.82 0.85 1.8×10271.8\times 10^{-27} (83 sources) (93 sources)

c. Correlation between Gamma-ray luminosity and timing parameters
LGL_{\rm G} MSP NP α\alpha rr rsr_{\rm s} psp_{\rm s} α\alpha rr rsr_{\rm s} psp_{\rm s} PP 2.12±0.53-2.12\pm 0.53 -0.53 -0.57 5.0×10055.0\times 10^{-05} 2.22±0.30-2.22\pm 0.30 -0.71 -0.70 2.0×10092.0\times 10^{-09} (52 sources) (56 sources) P˙\dot{P} 0.56±0.200.56\pm 0.20 0.41 0.24 1.2×10011.2\times 10^{-01} 0.61±0.170.61\pm 0.17 0.44 0.46 3.8×10043.8\times 10^{-04} (50 sources) (56 sources) BsurfB_{\rm surf} 0.50±0.380.50\pm 0.38 0.20 0.06 6.8×10016.8\times 10^{-01} 0.32±0.360.32\pm 0.36 0.12 0.17 2.0×10012.0\times 10^{-01} (50 sources) (56 sources) τ\tau 0.81±0.17-0.81\pm 0.17 -0.58 -0.55 1.5×10041.5\times 10^{-04} 0.80±0.12-0.80\pm 0.12 -0.66 -0.68 6.5×10096.5\times 10^{-09} (50 sources) (56 sources) BlcB_{\rm lc} 1.06±0.161.06\pm 0.16 0.71 0.75 7.1×10097.1\times 10^{-09} 0.87±0.090.87\pm 0.09 0.79 0.79 5.6×10135.6\times 10^{-13} (50 sources) (56 sources)

Note: α\alpha is the index of a power function by a linear fitting and the error is given at 1-sigma confidence level, such as LXE˙α±σL_{\rm X}\propto\dot{E}^{\alpha\pm\sigma}. rr is the Pearson correlation coefficient measuring the linear correlation. rsr_{\rm s} and psp_{\rm s} is the Spearman correlation coefficient and significance level measuring monotone correlation.

3 GPPS Pulsars

3.1 Sample construction and data collection

To discover pulsars within the Galactic latitude of ±10\pm 10^{\circ} from the Galactic plane, the GPPS survey team designed the snapshot observation mode. In this mode, a sky patch of approximately 0.1575 square degrees is surveyed by four pointings using three-beam switching of the 19 beams from the L-band 19-beam receiver on FAST (see Han et al., 2021, for more details). The L-band resolution is about 2.92.9^{\prime} (Jiang et al., 2019), so the initial position of a pulsar detected from one beam has an accuracy of \leq 1.5. This accuracy can be significantly improved (0.1′′\leq 0.1^{\prime\prime}) with a long-term timing campaign (Su et al., 2023). We search for candidate X-ray counterparts within a circle centered on the position of GPPS pulsars with a radius of 1.5. Only point-like X-ray sources are selected by setting the extent flag EP_Extent=0EP\_Extent=0 for XMM-Newton sources and extent_flag=FALSEextent\_flag=FALSE for Chandra sources. The spatial match between the GPPS pulsars and the XMM-Newton and Chandra catalogs yields 48 associations (Table 3).

3.2 Parameters analysis

We convert the fluxes listed in the catalogs to the isotropic X-ray luminosities in the 0.3–10 keV, 0.5–7 keV bands for XMM-Newton and Chandra catalogs, respectively. The X-ray point sources exhibit X-ray luminosities ranging from 3.6×10293.6\times 10^{29} erg s-1 to 6.8×10336.8\times 10^{33} erg s-1. Assuming that the GPPS pulars share the same LXE˙0.85L_{\rm X}\propto\dot{E}^{0.85} (Figure 1) correlation with the ATNF pulsars, the spin-down power can be calculated with the observed X-ray luminosity. The period PP of GPPS pulsars is provided in the catalog, and the period derivative P˙\dot{P} can be derived using the formula P˙=E˙P34π2I\dot{P}=\frac{\dot{E}P^{3}}{4\pi^{2}I}. For most sources, the E˙\dot{E} and P˙\dot{P} derived from the LXE˙L_{\rm X}-\dot{E} relation appear excessively high. It is illogical for many sources to have τ\tau values smaller than 1 kyr or magnetic fields greater than the critical value of 4.4×10134.4\times 10^{13} G (Figure 4). Excluding these suspicious sources, there remain 27 X-ray point sources located within 16 pulsar’s positional error circles. However, it is important to note that a large proportion of these X-ray point sources are not actual X-ray counterparts of the GPPS pulsars. Due to FAST’s angular resolution of 2.9, the probability to find an unrelated X-ray source within a positional error circle is 10310410^{3}-10^{4} times higher than that for the ATNF pulsars. Hence, there may be multiple X-ray sources surrounding the GPPS pulsars within 1.5 (e.g. J1855+0139g and J2021+4024g).

As discussed above, X-ray luminosity of RPPs is positively correlated with their rotational energy loss (Becker & Truemper, 1997; Li et al., 2008; Arzoumanian et al., 2011; Vink et al., 2011; Rea et al., 2012; Vahdat et al., 2022; Chang et al., 2023). Assuming LX2×104E˙L_{\rm X}\sim 2\times 10^{-4}~{}\dot{E} (Figure 1), the derived values of E˙\dot{E} are larger than 1034ergs110^{34}~{}{\rm erg~{}s^{-1}} when LX>2×1030ergs1L_{\rm X}>2\times 10^{30}~{}{\rm erg~{}s^{-1}}. In contrast, more than 60 newly discovered pulsars by FAST have timing solutions, and their spin-down powers are mostly less than 1034ergs110^{34}~{}{\rm erg~{}s^{-1}} (Li et al., 2018; Su et al., 2023; Wu et al., 2023). We estimate the fluxes of these pulsars using the detected PP and P˙\dot{P}, finding that almost 87% are lower than 1015ergcm2s110^{-15}~{}{\rm erg~{}cm^{-2}~{}s^{-1}}. However, most sources detected by XMM-Newton and Chandra have fluxes over 1014ergcm2s110^{-14}~{}{\rm erg~{}cm^{-2}~{}s^{-1}} and 1015ergcm2s110^{-15}~{}{\rm erg~{}cm^{-2}~{}s^{-1}}, respectively (Webb et al., 2020; Primini et al., 2011). Only the MSP, PSR J1953+1844, is found to be associated with a faint X-ray point source, 2CXO J195337.9+184454 (R.A. = 19:53:38.0, Dec. = +18:44:54.4) with a separation of less than 0.2′′ (Pan et al., 2023). Thus we conclude that the X-ray counterparts of FAST newly discovered pulsars are less likely to be found in the mentioned XMM-Newton and Chandra catalogs compared to ATNF pulsars, and the point sources with high X-ray luminosity are likely to be coincidences with GPPS pulsars.

Refer to caption
Figure 4: PP˙P-\dot{P} diagrams. The values of P˙\dot{P} are derived by the relationship that LXE˙0.85L_{\rm X}\propto\dot{E}^{0.85}.

4 Discussion and Summary

In this work, we search for the X-ray counterparts of ATNF pulsars by cross-correlating their positions with the XMM-Newton, Chandra catalogs. A total of 231 X-ray counterparts are identified, including 98 NPs and 133 MSPs, making this the largest and most comprehensive catalog to date.

(1) X-ray luminosity of pulsars shows a strong correlation with spin-down power across the entire X-ray band for both NPs and MSPs, following the relation LXE˙0.85±0.05L_{\rm X}\propto\dot{E}^{0.85\pm 0.05}, which is consistent with the findings of Chang et al. (2023) within the error margins. The positive correlation is particularly strong in the hard X-ray band, while in the soft band, the correlation weakens compared to Becker & Truemper (1997), likely due to the presence of mixed thermal and non-thermal components.

(2) In traditional RPP theories, magnetic dipole radiation extracts rotational kinetic energy from neutron star, and translates it into electromagnetic radiation, including X-ray emissions. This suggests an expected positive correlation between the magnetic field and electromagnetic radiation. However, no significant correlation is observed between LXL_{\rm X} and BsurfB_{\rm surf}. On the other hand, we observe strong correlations between X-ray luminosity and the pulsar parameters PP, τ\tau, and BlcB_{\rm lc} for NPs. Notably, this study is the first to report a strong correlation between BlcB_{\rm lc} and luminosities in the X-ray and Gamma-ray bands of both NPs and MSPs. These findings suggest that the high energy emission from RPPs can be more effectively explained by the outer-gap model. The best fit for LXL_{\rm X} as a function of BlcB_{\rm lc} and τ\tau in two dimension is LXL_{\rm X} Blc0.86±0.06τ0.42±0.03\propto B_{\rm lc}^{0.86\pm 0.06}\tau^{-0.42\pm 0.03}.

(3) For all detected pulsars,luminosities in the radio and Gamma-ray bands do not show significant correlations with timing parameters. However, when examining the correlation for pulsars with X-ray counterparts listed in Table 2 and calculating the Pearson and Spearman correlation coefficients (see Table 1), we find that Gamma-ray luminosity shows a strong correlation with PP, τ\tau, and BlcB_{\rm lc}, similar to the correlations seen in the X-ray band. In contrast, we still find no significant correlations in the radio band.

(4) We identify 27 putative associations around the 16 GPPS pulsars. However, by examining the properties of GPPS pulsars with available timing solutions, we find that their E˙\dot{E} tend to be below 103410^{34} erg s-1, and most estimated fluxes are below the detection thresholds of current X-ray telescopes, unless long-term exposure is available. Consequently, we conclude that the likelihood of discovering actual the X-ray counterparts is lower compared to the ATNF pulsars. A portion of the X-ray point sources selected in this work are likely coincidental and unrelated to the GPPS pulsars.

Acknowledgements – We would like to thank the referee for valuable suggestions and comments that improved the clarity of the paper. This research has made use of data collected by ATNF, FAST and two X-ray missions, Chandra, and XMM-Newton. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. S.S.W. thank Profs. Jin-Lin Han, Hao Tong, and Ren-Xin Xu for many valuable discussions.The authors thank supports from the National Natural Science Foundation of China under Grants 12473041, 12033006, 12373051, and 12393852.

Data Availability – The XMM-Newton, and Chandra point source catalogs used in this work are available from https://heasarc.gsfc.nasa.gov/W3Browse/xmm-newton/xmmssc.html, and https://cxc.cfa.harvard.edu/csc2.1/index.html, respectively. The information of ATNF and FAST GPPS pulsars are available on the webpage of https://www.atnf.csiro.au/people/pulsar/psrcat/ and the GPPS survey http://zmtt.bao.ac.cn/GPPS/GPPSnewPSR.html, respectively.

Table 2 will be updated regularly online: https://xray-pulsar.github.io/counterparts/.

References

  • Ambrosino et al. (2017) Ambrosino, F., Papitto, A., Stella, L., et al. 2017, Nature Astronomy, 1, 854, doi: 10.1038/s41550-017-0266-2
  • Archibald et al. (2010) Archibald, A. M., Kaspi, V. M., Bogdanov, S., et al. 2010, ApJ, 722, 88, doi: 10.1088/0004-637X/722/1/88
  • Arzoumanian et al. (2011) Arzoumanian, Z., Gotthelf, E. V., Ransom, S. M., et al. 2011, ApJ, 739, 39, doi: 10.1088/0004-637X/739/1/39
  • Baade & Zwicky (1934) Baade, W., & Zwicky, F. 1934, Proceedings of the National Academy of Science, 20, 259, doi: 10.1073/pnas.20.5.259
  • Becker & Truemper (1997) Becker, W., & Truemper, J. 1997, A&A, 326, 682, doi: 10.48550/arXiv.astro-ph/9708169
  • Becker & Trümper (1999) Becker, W., & Trümper, J. 1999, A&A, 341, 803, doi: 10.48550/arXiv.astro-ph/9806381
  • Becker et al. (2004) Becker, W., Weisskopf, M. C., Tennant, A. F., et al. 2004, ApJ, 615, 908, doi: 10.1086/424498
  • Bhattacharya & van den Heuvel (1991) Bhattacharya, D., & van den Heuvel, E. P. J. 1991, Phys. Rep., 203, 1, doi: 10.1016/0370-1573(91)90064-S
  • Camilo et al. (2009) Camilo, F., Ray, P. S., Ransom, S. M., et al. 2009, ApJ, 705, 1, doi: 10.1088/0004-637X/705/1/1
  • Chang et al. (2023) Chang, H.-K., Hsiang, J.-Y., Chu, C.-Y., et al. 2023, MNRAS, 520, 4068, doi: 10.1093/mnras/stad400
  • Cheng et al. (1998) Cheng, K. S., Gil, J., & Zhang, L. 1998, ApJ, 493, L35, doi: 10.1086/311117
  • Cheng et al. (1986) Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500, doi: 10.1086/163829
  • Cordes & Lazio (2002) Cordes, J. M., & Lazio, T. J. W. 2002, arXiv e-prints, astro, doi: 10.48550/arXiv.astro-ph/0207156
  • Coti Zelati et al. (2020) Coti Zelati, F., Torres, D. F., Li, J., & Viganò, D. 2020, MNRAS, 492, 1025, doi: 10.1093/mnras/stz3485
  • Danilenko et al. (2020) Danilenko, A., Karpova, A., Ofengeim, D., Shibanov, Y., & Zyuzin, D. 2020, MNRAS, 493, 1874, doi: 10.1093/mnras/staa287
  • Ding et al. (2024) Ding, R., Cao, S., Wang, S., et al. 2024, The Astronomer’s Telegram, 16875, 1
  • Duvidovich et al. (2019) Duvidovich, L., Giacani, E., Castelletti, G., Petriella, A., & Supán, L. 2019, A&A, 623, A115, doi: 10.1051/0004-6361/201834590
  • Evans et al. (2010) Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 37, doi: 10.1088/0067-0049/189/1/37
  • Evans et al. (2024) Evans, I. N., Evans, J. D., Martínez-Galarza, J. R., et al. 2024, ApJS, 274, 22, doi: 10.3847/1538-4365/ad6319
  • Gotthelf & NuSTAR Observatory Team (2014) Gotthelf, E., & NuSTAR Observatory Team. 2014, in The X-ray Universe 2014, ed. J.-U. Ness, 85
  • Gotthelf et al. (2013) Gotthelf, E. V., Halpern, J. P., & Alford, J. 2013, ApJ, 765, 58, doi: 10.1088/0004-637X/765/1/58
  • Guillot et al. (2019) Guillot, S., Kerr, M., Ray, P. S., et al. 2019, ApJ, 887, L27, doi: 10.3847/2041-8213/ab511b
  • Han et al. (2021) Han, J. L., Wang, C., Wang, P. F., et al. 2021, Research in Astronomy and Astrophysics, 21, 107, doi: 10.1088/1674-4527/21/5/107
  • Han et al. (2024) Han, J. L., Zhou, D. J., Wang, C., et al. 2024, arXiv e-prints, arXiv:2411.15961, doi: 10.48550/arXiv.2411.15961
  • Hare et al. (2021) Hare, J., Volkov, I., Pavlov, G. G., Kargaltsev, O., & Johnston, S. 2021, ApJ, 923, 249, doi: 10.3847/1538-4357/ac30e2
  • Hermsen et al. (2018) Hermsen, W., Kuiper, L., Basu, R., et al. 2018, MNRAS, 480, 3655, doi: 10.1093/mnras/sty2075
  • Hessels et al. (2004) Hessels, J. W. T., Roberts, M. S. E., Ransom, S. M., et al. 2004, ApJ, 612, 389, doi: 10.1086/422408
  • Hewish et al. (1968) Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709, doi: 10.1038/217709a0
  • Ho et al. (2022) Ho, W. C. G., Kuiper, L., Espinoza, C. M., et al. 2022, ApJ, 939, 7, doi: 10.3847/1538-4357/ac8743
  • Hsiang & Chang (2021) Hsiang, J.-Y., & Chang, H.-K. 2021, MNRAS, 502, 390, doi: 10.1093/mnras/stab025
  • Jiang et al. (2019) Jiang, P., Yue, Y., Gan, H., et al. 2019, Science China Physics, Mechanics, and Astronomy, 62, 959502, doi: 10.1007/s11433-018-9376-1
  • Johnston et al. (1992) Johnston, S., Manchester, R. N., Lyne, A. G., et al. 1992, ApJ, 387, L37, doi: 10.1086/186300
  • Kerr et al. (2018) Kerr, M., Coles, W. A., Ward, C. A., et al. 2018, MNRAS, 474, 4637, doi: 10.1093/mnras/stx3101
  • Kim et al. (2020) Kim, S. I., Hui, C. Y., Lee, J., et al. 2020, A&A, 637, L7, doi: 10.1051/0004-6361/202037873
  • Lee et al. (2018) Lee, J., Hui, C. Y., Takata, J., et al. 2018, ApJ, 864, 23, doi: 10.3847/1538-4357/aad284
  • Li et al. (2018) Li, D., Wang, P., Qian, L., et al. 2018, IEEE Microwave Magazine, 19, 112, doi: 10.1109/MMM.2018.2802178
  • Li et al. (2008) Li, X.-H., Lu, F.-J., & Li, Z. 2008, ApJ, 682, 1166, doi: 10.1086/589495
  • Lin et al. (2014) Lin, L. C. C., Hui, C. Y., Li, K. T., et al. 2014, ApJ, 793, L8, doi: 10.1088/2041-8205/793/1/L8
  • Lin et al. (2009) Lin, L. C.-C., Takata, J., Hwang, C.-Y., & Liang, J.-S. 2009, MNRAS, 400, 168, doi: 10.1111/j.1365-2966.2009.15468.x
  • Lu et al. (2007) Lu, F., Wang, Q. D., Gotthelf, E. V., & Qu, J. 2007, ApJ, 663, 315, doi: 10.1086/518713
  • Lyne & Graham-Smith (2012) Lyne, A., & Graham-Smith, F. 2012, Pulsar Astronomy
  • Manchester et al. (2005) Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993, doi: 10.1086/428488
  • Marelli (2012) Marelli, M. 2012, arXiv e-prints, arXiv:1205.1748, doi: 10.48550/arXiv.1205.1748
  • Marelli et al. (2016) Marelli, M., Pizzocaro, D., De Luca, A., et al. 2016, ApJ, 819, 40, doi: 10.3847/0004-637X/819/1/40
  • Marelli et al. (2014) Marelli, M., Harding, A., Pizzocaro, D., et al. 2014, ApJ, 795, 168, doi: 10.1088/0004-637X/795/2/168
  • McGowan et al. (2006) McGowan, K. E., Zane, S., Cropper, M., Vestrand, W. T., & Ho, C. 2006, ApJ, 639, 377, doi: 10.1086/497327
  • Mignani (2011) Mignani, R. P. 2011, Advances in Space Research, 47, 1281, doi: 10.1016/j.asr.2009.12.011
  • Mignani (2018) —. 2018, Galaxies, 6, 36, doi: 10.3390/galaxies6010036
  • Miller et al. (2013) Miller, J. J., McLaughlin, M. A., Rea, N., et al. 2013, ApJ, 776, 104, doi: 10.1088/0004-637X/776/2/104
  • Muno et al. (2003) Muno, M. P., Baganoff, F. K., Bautz, M. W., et al. 2003, ApJ, 589, 225, doi: 10.1086/374639
  • Nan et al. (2011) Nan, R., Li, D., Jin, C., et al. 2011, International Journal of Modern Physics D, 20, 989, doi: 10.1142/S0218271811019335
  • Ng et al. (2007) Ng, C. Y., Romani, R. W., Brisken, W. F., Chatterjee, S., & Kramer, M. 2007, ApJ, 654, 487, doi: 10.1086/510576
  • Pan et al. (2023) Pan, Z., Lu, J. G., Jiang, P., et al. 2023, Nature, 620, 961, doi: 10.1038/s41586-023-06308-w
  • Pandel & Scott (2012) Pandel, D., & Scott, R. 2012, in American Institute of Physics Conference Series, Vol. 1505, High Energy Gamma-Ray Astronomy: 5th International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A. Aharonian, W. Hofmann, & F. M. Rieger (AIP), 329–332, doi: 10.1063/1.4772264
  • Papitto et al. (2015) Papitto, A., de Martino, D., Belloni, T. M., et al. 2015, MNRAS, 449, L26, doi: 10.1093/mnrasl/slv013
  • Park et al. (2023) Park, J., Kim, C., Woo, J., et al. 2023, ApJ, 945, 66, doi: 10.3847/1538-4357/acba0e
  • Pletsch et al. (2012) Pletsch, H. J., Guillemot, L., Allen, B., et al. 2012, ApJ, 744, 105, doi: 10.1088/0004-637X/744/2/105
  • Possenti et al. (2002) Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993, doi: 10.1051/0004-6361:20020472
  • Primini et al. (2011) Primini, F. A., Houck, J. C., Davis, J. E., et al. 2011, ApJS, 194, 37, doi: 10.1088/0067-0049/194/2/37
  • Qian et al. (2019) Qian, L., Pan, Z., Li, D., et al. 2019, Science China Physics, Mechanics, and Astronomy, 62, 959508, doi: 10.1007/s11433-018-9354-y
  • Razzano et al. (2023) Razzano, M., Fiori, A., Saz Parkinson, P. M., et al. 2023, A&A, 676, A91, doi: 10.1051/0004-6361/202345873
  • Rea et al. (2012) Rea, N., Pons, J. A., Torres, D. F., & Turolla, R. 2012, ApJ, 748, L12, doi: 10.1088/2041-8205/748/1/L12
  • Renaud et al. (2010) Renaud, M., Marandon, V., Gotthelf, E. V., et al. 2010, ApJ, 716, 663, doi: 10.1088/0004-637X/716/1/663
  • Rigoselli & Mereghetti (2018) Rigoselli, M., & Mereghetti, S. 2018, A&A, 615, A73, doi: 10.1051/0004-6361/201732408
  • Rigoselli et al. (2022) Rigoselli, M., Mereghetti, S., Anzuinelli, S., et al. 2022, MNRAS, 513, 3113, doi: 10.1093/mnras/stac1130
  • Rigoselli et al. (2019) Rigoselli, M., Mereghetti, S., Suleimanov, V., et al. 2019, A&A, 627, A69, doi: 10.1051/0004-6361/201935485
  • Smith et al. (2023) Smith, D. A., Bruel, P., Clark, C. J., et al. 2023, arXiv e-prints, arXiv:2307.11132, doi: 10.48550/arXiv.2307.11132
  • Su et al. (2023) Su, W. Q., Han, J. L., Wang, P. F., et al. 2023, MNRAS, 526, 2645, doi: 10.1093/mnras/stad2159
  • Takata et al. (2012) Takata, J., Cheng, K. S., & Taam, R. E. 2012, ApJ, 745, 100, doi: 10.1088/0004-637X/745/1/100
  • Tanashkin et al. (2022) Tanashkin, A. S., Karpova, A. V., Potekhin, A. Y., Shibanov, Y. A., & Zyuzin, D. A. 2022, MNRAS, 516, 13, doi: 10.1093/mnras/stac2164
  • Torii et al. (1998) Torii, K., Kinugasa, K., Katayama, K., Tsunemi, H., & Yamauchi, S. 1998, ApJ, 503, 843, doi: 10.1086/306038
  • Vahdat et al. (2022) Vahdat, A., Posselt, B., Santangelo, A., & Pavlov, G. G. 2022, A&A, 658, A95, doi: 10.1051/0004-6361/202141795
  • Van Etten et al. (2012) Van Etten, A., Romani, R. W., & Ng, C. Y. 2012, ApJ, 755, 151, doi: 10.1088/0004-637X/755/2/151
  • Vink et al. (2011) Vink, J., Bamba, A., & Yamazaki, R. 2011, ApJ, 727, 131, doi: 10.1088/0004-637X/727/2/131
  • Webb et al. (2020) Webb, N. A., Coriat, M., Traulsen, I., et al. 2020, A&A, 641, A136, doi: 10.1051/0004-6361/201937353
  • Weng et al. (2022) Weng, S.-S., Qian, L., Wang, B.-J., et al. 2022, Nature Astronomy, 6, 698, doi: 10.1038/s41550-022-01630-1
  • Wu et al. (2023) Wu, Q. D., Yuan, J. P., Wang, N., et al. 2023, MNRAS, 522, 5152, doi: 10.1093/mnras/stad1323
  • Yao et al. (2017) Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29, doi: 10.3847/1538-4357/835/1/29
  • Zhang & Cheng (2003) Zhang, L., & Cheng, K. S. 2003, A&A, 398, 639, doi: 10.1051/0004-6361:20021570
  • Zhao & Heinke (2022) Zhao, J., & Heinke, C. O. 2022, MNRAS, 511, 5964, doi: 10.1093/mnras/stac442
  • Zheng et al. (2023) Zheng, D., Wang, Z., Zhang, X., Chen, Y., & Xing, Y. 2023, ApJ, 952, 158, doi: 10.3847/1538-4357/ace10b
  • Zhou et al. (2023) Zhou, D. J., Han, J. L., Xu, J., et al. 2023, Research in Astronomy and Astrophysics, 23, 104001, doi: 10.1088/1674-4527/accc76
  • Zyuzin et al. (2018) Zyuzin, D. A., Karpova, A. V., & Shibanov, Y. A. 2018, MNRAS, 476, 2177, doi: 10.1093/mnras/sty359
  • Zyuzin et al. (2021) Zyuzin, D. A., Karpova, A. V., Shibanov, Y. A., Potekhin, A. Y., & Suleimanov, V. F. 2021, MNRAS, 501, 4998, doi: 10.1093/mnras/staa3991
\startlongtable
Table 2: X-ray counterpart of rotation-powered pulsars
Name X-ray source PP P˙\dot{P} DD LXL_{\rm X} LSXL_{\rm SX} LHXL_{\rm HX} LGL_{\rm G} Ref
s s/s kpc ergs1\rm erg~{}s^{-1} ergs1\rm erg~{}s^{-1} ergs1\rm erg~{}s^{-1} ergs1\rm erg~{}s^{-1}
NP
J0002+6216 2CXO J000258.1+621609 0.115364 5.97×10155.97\times 10^{-15} 6.357 1.50×10321.50\times 10^{32} 1.08×10321.08\times 10^{32} 3.58×10313.58\times 10^{31} 9.01×10339.01\times 10^{33} T
J0007+7303 2CXO J000701.5+730308p 0.315873 3.60×10133.60\times 10^{-13} 1.4 1.75×10311.75\times 10^{31} 5.63×10305.63\times 10^{30} 9.74×10309.74\times 10^{30} 1.01×10351.01\times 10^{35} T, 1
J0058-7218 2CXO J005816.8-721805p 0.021766 2.89×10142.89\times 10^{-14} 59.7 6.54×10346.54\times 10^{34} 1.76×10341.76\times 10^{34} 4.90×10344.90\times 10^{34} T, 2
J0108-1431 4XMM J010808.3-143150 0.807565 7.70×10177.70\times 10^{-17} 0.21 6.99×10286.99\times 10^{28} 4.03×10284.03\times 10^{28} 2.79×10282.79\times 10^{28} T
J0117+5914 4XMM J011738.6+591438 0.101439 5.85×10155.85\times 10^{-15} 1.768 9.21×10309.21\times 10^{30} 5.07×10305.07\times 10^{30} 3.46×10303.46\times 10^{30} T
J0205+6449b 2CXO J020537.9+644941p 0.065716 1.94×10131.94\times 10^{-13} 3.2 1.25×10341.25\times 10^{34} 7.88×10347.88\times 10^{34} 3, 4
J0357+3205 4XMM J035752.1+320519 0.444104 1.30×10141.30\times 10^{-14} 0.835 5.00×10305.00\times 10^{30} 2.66×10302.66\times 10^{30} 2.29×10302.29\times 10^{30} 5.00×10335.00\times 10^{33} T
J0358+5413b 2CXO J035853.7+541313p 0.156384 4.39×10154.39\times 10^{-15} 1 7.38×10307.38\times 10^{30} 3, 5
J0359+5414c 2CXO J035926.0+541455 0.079427 1.67×10141.67\times 10^{-14} 1.887 2.45×10302.45\times 10^{30} 1.08×1030{1.08\times 10^{30}} 1.11×1030{1.11\times 10^{30}} 6.04×1034{6.04\times 10^{34}} 6
J0534+2200b 4XMM J053431.1+220101p 0.033392 4.21×10134.21\times 10^{-13} 2 1.32×10361.32\times 10^{36} 6.85×10356.85\times 10^{35} 3, 4
J0537-6910b 2CXO J053747.4-691019p 0.016122 5.18×10145.18\times 10^{-14} 49.7 7.43×10357.43\times 10^{35} 3, 2
J0538+2817b 4XMM J053825.1+281709p 0.143158 3.67×10153.67\times 10^{-15} 1.3 1.50×10321.50\times 10^{32} 7
J0540-6919b 4XMM J054011.0-691954p 0.05057 4.79×10134.79\times 10^{-13} 49.7 3.02×10363.02\times 10^{36} 7.89×10367.89\times 10^{36} 3, 4
J0554+3107b 4XMM J055405.0+310741 0.464961 1.43×10131.43\times 10^{-13} 2 2.00×10322.00\times 10^{32} 8.92×10338.92\times 10^{33} 8
J0614+2229 4XMM J061416.8+222953 0.33496 5.94×10145.94\times 10^{-14} 3.5 9.18×10309.18\times 10^{30} 4.92×10304.92\times 10^{30} 3.09×10303.09\times 10^{30} T
J0630-2834 4XMM J063049.3-283443p 1.244419 7.12×10157.12\times 10^{-15} 0.32 4.98×10294.98\times 10^{29} 3.49×10293.49\times 10^{29} 1.48×10291.48\times 10^{29} T, 9
J0633+0632 4XMM J063344.1+063230p 0.297395 7.96×10147.96\times 10^{-14} 1.355 2.83×10312.83\times 10^{31} 1.89×10311.89\times 10^{31} 8.87×10308.87\times 10^{30} 2.09×10342.09\times 10^{34} T, 10
J0633+1746b 4XMM J063354.2+174614p 0.237099 1.10×10141.10\times 10^{-14} 0.19 1.48×10301.48\times 10^{30} 1.82×10341.82\times 10^{34} 3, 4
J0659+1414b 4XMM J065948.1+141421p 0.384921 5.50×10145.50\times 10^{-14} 0.159 1.51×10301.51\times 10^{30} 2.64×10322.64\times 10^{32} 3, 4
J0742-2822 2CXO J074249.0-282243 0.166762 1.68×10141.68\times 10^{-14} 2 2.60×10302.60\times 10^{30} 1.49×10301.49\times 10^{30} 1.65×10301.65\times 10^{30} 7.28×10337.28\times 10^{33} T
J0826+2637 4XMM J082651.4+263721p 0.530661 1.71×10151.71\times 10^{-15} 0.5 5.94×10295.94\times 10^{29} 4.21×10294.21\times 10^{29} 1.96×10291.96\times 10^{29} T, 11
J0835-4510b 4XMM J083520.4-451032p 0.089328 1.25×10131.25\times 10^{-13} 0.28 2.20×10322.20\times 10^{32} 3, 4
J0908-4913 2CXO J090835.4-491305 0.106769 1.51×10141.51\times 10^{-14} 1 7.70×10297.70\times 10^{29} 9.47×10289.47\times 10^{28} 6.93×10296.93\times 10^{29} 2.62×10332.62\times 10^{33} T
J0922+0638 4XMM J092214.0+063822 0.430627 1.37×10141.37\times 10^{-14} 1.1 2.00×10302.00\times 10^{30} 1.19×10301.19\times 10^{30} 2.97×10292.97\times 10^{29} 3.12×10323.12\times 10^{32} T
J0946+0951 4XMM J094607.7+095159p 1.097706 3.49×10153.49\times 10^{-15} 0.892 1.23×10301.23\times 10^{30} 8.68×10298.68\times 10^{29} 5.00×10295.00\times 10^{29} T, 12
J0953+0755 4XMM J095309.2+075536p 0.253065 2.30×10162.30\times 10^{-16} 0.261 7.62×10297.62\times 10^{29} 3.27×10293.27\times 10^{29} 4.36×10294.36\times 10^{29} T, 13
J1016-5857b 2CXO J101621.2-585711 0.107386 8.08×10148.08\times 10^{-14} 3.162 5.00×10315.00\times 10^{31} 8.38×10348.38\times 10^{34} 3
J1023-5746 2CXO J102302.8-574606 0.111472 3.84×10133.84\times 10^{-13} 2.08 3.52×10313.52\times 10^{31} 4.19×10304.19\times 10^{30} 4.80×10314.80\times 10^{31} 7.54×10347.54\times 10^{34} T
J1028-5819 2CXO J102827.8-581906 0.091403 1.61×10141.61\times 10^{-14} 1.423 1.54×10311.54\times 10^{31} 7.40×10307.40\times 10^{30} 8.63×10308.63\times 10^{30} 5.94×10345.94\times 10^{34} T
J1044-5737 2CXO J104432.8-573719 0.139029 5.46×10145.46\times 10^{-14} 1.895 1.38×10311.38\times 10^{31} 9.93×10309.93\times 10^{30} 4.53×10304.53\times 10^{30} 4.89×10344.89\times 10^{34} T
J1048-5832b 4XMM J104812.7-583204 0.123725 9.61×10149.61\times 10^{-14} 2.9 2.60×10312.60\times 10^{31} 1.86×10351.86\times 10^{35} 3
J1057-5226 4XMM J105758.9-522656p 0.197115 5.84×10155.84\times 10^{-15} 0.093 1.44×10301.44\times 10^{30} 1.38×10301.38\times 10^{30} 6.92×10286.92\times 10^{28} 4.34×10334.34\times 10^{33} T, 4
J1101-6101b 2CXO J110144.8-610138p 0.0628 8.56×10158.56\times 10^{-15} 7 3.53×10333.53\times 10^{33} 3, 2
J1112-6103 2CXO J111214.8-610330 0.064962 3.15×10143.15\times 10^{-14} 4.464 1.06×10321.06\times 10^{32} 1.16×10311.16\times 10^{31} 9.61×10319.61\times 10^{31} 5.33×10345.33\times 10^{34} T
J1124-5916b 2CXO J112439.1-591619p 0.135477 7.53×10137.53\times 10^{-13} 5 2.66×10332.66\times 10^{33} 1.68×10351.68\times 10^{35} 3, 4
J1136+1551 4XMM J113603.1+155115p 1.187913 3.73×10153.73\times 10^{-15} 0.37 1.54×10291.54\times 10^{29} 1.28×10291.28\times 10^{29} 1.89×10281.89\times 10^{28} T, 9
J1154-6250 4XMM J115420.2-625002 0.282012 5.59×10165.59\times 10^{-16} 1.358 8.54×10298.54\times 10^{29} 5.88×10295.88\times 10^{29} 2.14×10292.14\times 10^{29} T
J1301-6305 4XMM J130145.7-630536 0.184528 2.67×10132.67\times 10^{-13} 10.717 7.15×10327.15\times 10^{32} 3.64×10313.64\times 10^{31} 6.88×10326.88\times 10^{32} T
J1301-6310 4XMM J130128.5-631040 0.66383 5.64×10145.64\times 10^{-14} 1.458 1.15×10301.15\times 10^{30} 1.01×10301.01\times 10^{30} 6.60×10286.60\times 10^{28} T
J1357-6429b 4XMM J135702.6-642929p 0.166108 3.60×10133.60\times 10^{-13} 3.1 7.27×10317.27\times 10^{31} 3.39×10343.39\times 10^{34} 2, 4
J1400-6325b 2CXO J140045.7-632542Xp 0.031182 3.89×10143.89\times 10^{-14} 7 1.60×10341.60\times 10^{34} 14
J1412+7922c 4XMM J141255.8+792203p 0.058199 3.29×10153.29\times 10^{-15} <2<2 <4.10×1032<4.10\times 10^{32} <3.91×1032<3.91\times 10^{32} <1.98×1031<1.98\times 10^{31} 15, 2
J1413-6205 4XMM J141330.0-620535 0.109741 2.77×10142.77\times 10^{-14} 2.15 3.78×10313.78\times 10^{31} 4.90×10304.90\times 10^{30} 3.23×10313.23\times 10^{31} 9.80×10349.80\times 10^{34} T
J1418-6058 4XMM J141842.7-605803p 0.110573 1.69×10131.69\times 10^{-13} 1.885 3.95×10313.95\times 10^{31} 1.03×10301.03\times 10^{30} 3.83×10313.83\times 10^{31} 9.10×10349.10\times 10^{34} T, 16
J1420-6048b 4XMM J142008.3-604815p 0.06818 8.32×10148.32\times 10^{-14} 5.632 4.63×10324.63\times 10^{32} 4.90×10354.90\times 10^{35} 3, 4
J1429-5911 2CXO J142958.5-591136 0.115843 3.05×10143.05\times 10^{-14} 1.955 8.27×10308.27\times 10^{30} 5.61×10295.61\times 10^{29} 8.04×10308.04\times 10^{30} 5.14×10345.14\times 10^{34} T
J1437-5959 4XMM J143701.9-595901 0.061696 8.59×10158.59\times 10^{-15} 8.543 2.19×10322.19\times 10^{32} 2.07×10302.07\times 10^{30} 2.17×10322.17\times 10^{32} T
J1456-6843 2CXO J145600.0-684339 0.263377 9.89×10179.89\times 10^{-17} 0.43 7.18×10297.18\times 10^{29} 4.05×10294.05\times 10^{29} 3.09×10293.09\times 10^{29} T
J1459-6053 4XMM J145930.1-605322p 0.103151 2.53×10142.53\times 10^{-14} 1.84 2.73×10312.73\times 10^{31} 4.75×10304.75\times 10^{30} 2.16×10312.16\times 10^{31} 4.96×10344.96\times 10^{34} T, 4
J1509-5850b 2CXO J150927.1-585056 0.088925 9.17×10159.17\times 10^{-15} 3.371 7.14×10317.14\times 10^{31} 1.66×10351.66\times 10^{35} 3
J1513-5908b 4XMM J151355.5-590809p 0.151582 1.53×10121.53\times 10^{-12} 4.4 9.86×10349.86\times 10^{34} 2.78×10342.78\times 10^{34} 3, 4
J1531-5610 2CXO J153127.8-561055 0.084206 1.38×10141.38\times 10^{-14} 2.841 1.81×10311.81\times 10^{31} 3.31×10303.31\times 10^{30} 1.48×10311.48\times 10^{31} 1.76×10341.76\times 10^{34} T
J1617-5055b 2CXO J161729.3-505512p 0.069357 1.35×10131.35\times 10^{-13} 4.743 9.52×10339.52\times 10^{33} 3, 17
J1640-4631b 2CXO J164043.5-463135p 0.206443 9.76×10139.76\times 10^{-13} 12.75 1.90×10331.90\times 10^{33} 18
J1709-4429b 4XMM J170942.5-442906p 0.102459 9.30×10149.30\times 10^{-14} 2.6 1.82×10321.82\times 10^{32} 1.11×10361.11\times 10^{36} 3, 4
J1718-3825b 2CXO J171813.6-382517 0.0746749 1.32×10141.32\times 10^{-14} 3.488 2.43×10322.43\times 10^{32} 1.51×10351.51\times 10^{35} 3
J1722-3712 4XMM J172259.2-371206 0.23618 1.09×10141.09\times 10^{-14} 2.477 2.10×10312.10\times 10^{31} 1.68×10311.68\times 10^{31} 2.89×10302.89\times 10^{30} T
J1731-4744 4XMM J173142.3-474438 0.829894 1.64×10131.64\times 10^{-13} 5.54 4.78×10314.78\times 10^{31} 2.50×10312.50\times 10^{31} 2.08×10312.08\times 10^{31} 2.30×10322.30\times 10^{32} T
J1732-3131 2CXO J173233.5-313123 0.196543 2.80×10142.80\times 10^{-14} 0.641 1.11×10301.11\times 10^{30} 6.14×10296.14\times 10^{29} 5.30×10295.30\times 10^{29} 8.79×10338.79\times 10^{33} 19
J1734-3333 4XMM J173427.0-333321 1.169341 2.28×10122.28\times 10^{-12} 4.461 3.38×10313.38\times 10^{31} 2.16×10312.16\times 10^{31} 1.16×10311.16\times 10^{31} T
J1740+1000 4XMM J174025.9+100006p 0.154096 2.13×10142.13\times 10^{-14} 1.227 2.68×10312.68\times 10^{31} 2.32×10312.32\times 10^{31} 3.83×10303.83\times 10^{30} 6.49×10326.49\times 10^{32} T, 20
J1741-2054 2CXO J174157.2-205412p 0.4137 1.70×10141.70\times 10^{-14} 0.3 3.65×10303.65\times 10^{30} 2.61×10302.61\times 10^{30} 1.04×10301.04\times 10^{30} 1.28×10331.28\times 10^{33} 19, 4
J1747-2809b 2CXO J174722.7-280914 0.052153 1.56×10131.56\times 10^{-13} 8.141 5.30×10325.30\times 10^{32} 21
J1747-2958b 4XMM J174715.6-295801p 0.098814 6.13×10146.13\times 10^{-14} 2.52 1.48×10331.48\times 10^{33} 4.30×10354.30\times 10^{35} 3, 4
J1801-2451b 4XMM J180059.9-245127 0.124924 1.28×10131.28\times 10^{-13} 3.803 1.54×10331.54\times 10^{33} 5.52×10345.52\times 10^{34} 3
J1803-2137b 4XMM J180351.4-213707 0.133667 1.34×10131.34\times 10^{-13} 4.4 6.76×10316.76\times 10^{31} 3
J1809-1917b 4XMM J180943.1-191737 0.082755 2.55×10142.55\times 10^{-14} 3.268 3.23×10313.23\times 10^{31} 3
J1809-2332b 2CXO J180950.2-233222 0.146789 3.44×10143.44\times 10^{-14} 0.88 6.60×10306.60\times 10^{30} 1.47×10351.47\times 10^{35} 22
J1811-1925b 4XMM J181129.2-192528p 0.064667 4.40×10144.40\times 10^{-14} 5 6.97×10336.97\times 10^{33} 3, 23
J1813-1246 4XMM J181323.7-124600p 0.048073 1.76×10141.76\times 10^{-14} 2.635 8.19×10328.19\times 10^{32} 2.29×10312.29\times 10^{31} 7.96×10327.96\times 10^{32} 2.05×10352.05\times 10^{35} T, 24
J1813-1749b 4XMM J181335.0-174957p 0.044741 1.27×10131.27\times 10^{-13} 6.147 5.92×10335.92\times 10^{33} 3, 2
J1825-1446 2CXO J182502.9-144653p 0.279198 2.27×10142.27\times 10^{-14} 4.441 1.40×10311.40\times 10^{31} 5.56×10305.56\times 10^{30} 6.50×10306.50\times 10^{30} T, 25
J1826-1256 2CXO J182608.5-125634p 0.110239 1.21×10131.21\times 10^{-13} 1.55 4.28×10314.28\times 10^{31} 1.65×10301.65\times 10^{30} 4.11×10314.11\times 10^{31} 1.19×10351.19\times 10^{35} 26, 4
J1826-1334b 4XMM J182612.9-133447 0.101487 7.53×10147.53\times 10^{-14} 3.606 1.78×10321.78\times 10^{32} 3
J1833-1034b 2CXO J183333.6-103405X 0.061884 2.02×10132.02\times 10^{-13} 4.1 9.05×10339.05\times 10^{33} 1.79×10351.79\times 10^{35} 3
J1836+5925 4XMM J183613.6+592529p 0.173264 1.50×10151.50\times 10^{-15} 0.3 5.48×10295.48\times 10^{29} 3.05×10293.05\times 10^{29} 2.45×10292.45\times 10^{29} 2.08×10342.08\times 10^{34} T, 27
J1838-0537 4XMM J183856.1-053702 0.145754 4.51×10134.51\times 10^{-13} 1.3 7.10×10307.10\times 10^{30} 2.11×10282.11\times 10^{28} 7.07×10307.07\times 10^{30} 2.41×10342.41\times 10^{34} 19
J1838-0655b 4XMM J183803.1-065534p 0.070498 4.92×10144.92\times 10^{-14} 6.6 3.55×10343.55\times 10^{34} 3, 28
J1846+0919 2CXO J184625.8+091949 0.225552 9.93×10159.93\times 10^{-15} 1.53 1.83×10301.83\times 10^{30} 7.38×10297.38\times 10^{29} 1.15×10301.15\times 10^{30} 9.98×10339.98\times 10^{33} T
J1849-0001c 4XMM J184901.6-000117p 0.038523 1.42×10141.42\times 10^{-14} <7<7 <2.53×1034<2.53\times 10^{34} <2.02×1032<2.02\times 10^{32} <2.51×1034<2.51\times 10^{34} 15, 2
J1856+0113b 4XMM J185610.6+011324 0.26744 2.08×10132.08\times 10^{-13} 3.3 1.08×10321.08\times 10^{32} 3
J1856+0245 2CXO J185650.9+024547 0.080907 6.21×10146.21\times 10^{-14} 6.318 1.46×10321.46\times 10^{32} 2.69×10302.69\times 10^{30} 1.46×10321.46\times 10^{32} T
J1907+0602 4XMM J190754.8+060214 0.106643 8.65×10148.65\times 10^{-14} 2.576 4.43×10314.43\times 10^{31} 2.70×10302.70\times 10^{30} 4.13×10314.13\times 10^{31} 2.36×10352.36\times 10^{35} 29
J1930+1852b 4XMM J193030.0+185214p 0.136855 7.51×10137.51\times 10^{-13} 7 1.55×10341.55\times 10^{34} 3, 30
J1932+1059b 4XMM J193214.0+105933p 0.226519 1.16×10151.16\times 10^{-15} 0.31 2.97×10302.97\times 10^{30} 3, 31
J1952+3252b 2CXO J195258.2+325240p 0.039531 5.84×10155.84\times 10^{-15} 3 2.91×10332.91\times 10^{33} 1.59×10351.59\times 10^{35} 3, 4
J1957+5033 4XMM J195738.1+503321p 0.374807 7.08×10157.08\times 10^{-15} 1.365 1.53×10311.53\times 10^{31} 7.03×10307.03\times 10^{30} 7.41×10307.41\times 10^{30} 5.83×10335.83\times 10^{33} T, 32
J1958+2846 2CXO J195840.0+284554 0.290389 2.12×10132.12\times 10^{-13} 1.95 3.56×10303.56\times 10^{30} 3.66×10303.66\times 10^{30} 4.82×10344.82\times 10^{34} T
J2017+3625c 2CXO J201755.8+362507 0.166749 1.36×10151.36\times 10^{-15} <0.656<0.656 <1.03×1030<1.03\times 10^{30} <2.06×1029<2.06\times 10^{29} <8.56×1029<8.56\times 10^{29} <2.01×1036<2.01\times 10^{36} 33
J2021+3651b 4XMM J202105.3+365103p 0.103741 9.57×10149.57\times 10^{-14} 1.8 6.34×10326.34\times 10^{32} 1.91×10351.91\times 10^{35} 3, 34
J2021+4026 4XMM J202130.7+402645p 0.265328 5.48×10145.48\times 10^{-14} 2.15 2.50×10312.50\times 10^{31} 1.01×10311.01\times 10^{31} 1.46×10311.46\times 10^{31} 2.16×10352.16\times 10^{35} 35
J2022+3842 2CXO J202221.6+384214p 0.048579 8.61×10148.61\times 10^{-14} 10 4.76×10334.76\times 10^{33} 3.04×10323.04\times 10^{32} 4.49×10334.49\times 10^{33} 3.17×10353.17\times 10^{35} 19, 4
J2030+4415 2CXO J203051.3+441539 0.227071 5.05×10155.05\times 10^{-15} 0.72 9.08×10299.08\times 10^{29} 3.89×10293.89\times 10^{29} 5.03×10295.03\times 10^{29} 1.32×10331.32\times 10^{33} T
J2043+2740 4XMM J204343.4+274056 0.096131 1.27×10151.27\times 10^{-15} 1.48 7.69×10307.69\times 10^{30} 3.86×10303.86\times 10^{30} 3.30×10303.30\times 10^{30} 2.37×10332.37\times 10^{33} T
J2055+2539 4XMM J205548.9+253958p 0.319561 4.10×10154.10\times 10^{-15} 0.62 9.89×10299.89\times 10^{29} 4.06×10294.06\times 10^{29} 5.82×10295.82\times 10^{29} 2.44×10332.44\times 10^{33} T, 36
J2139+4716c 2CXO J213955.9+471613 0.282849 1.79×10151.79\times 10^{-15} <0.8<0.8 <5.7×1029<5.7\times 10^{29} <1.1×1029<1.1\times 10^{29} <4.88×1029<4.88\times 10^{29} <4.65×1035<4.65\times 10^{35} 37
J2225+6535b 2CXO J222552.8+653536 0.682542 9.66×10159.66\times 10^{-15} 0.9 1.45×10301.45\times 10^{30} 3
J2229+6114b 2CXO J222905.2+611409p 0.051648 7.74×10147.74\times 10^{-14} 3 3.82×10323.82\times 10^{32} 2.59×10352.59\times 10^{35} 3, 4
MSP
J0023+0923 2CXO J002316.8+092323 0.00305 1.14×10201.14\times 10^{-20} 1.818 6.87×10306.87\times 10^{30} 6.09×10306.09\times 10^{30} 7.71×10297.71\times 10^{29} 3.03×10333.03\times 10^{33} T
J0024-7204Cad 0.005757 4.99×1020-4.99\times 10^{-20} 4.52 1.70×10301.70\times 10^{30} 38
J0024-7204Dad 0.005358 3.42×1021-3.42\times 10^{-21} 4.52 3.30×10303.30\times 10^{30} 38
J0024-7204Ea 0.003536 9.85×10209.85\times 10^{-20} 4.52 5.00×10305.00\times 10^{30} 38
J0024-7204Fa 0.002624 6.45×10206.45\times 10^{-20} 4.52 2.30×10302.30\times 10^{30} 38
J0024-7204Had 0.00321 1.83×1021-1.83\times 10^{-21} 4.52 3.20×10303.20\times 10^{30} 38
J0024-7204Jad 0.002101 9.79×1021-9.79\times 10^{-21} 4.52 1.16×10311.16\times 10^{31} 38
J0024-7204Lad 0.004346 1.22×1019-1.22\times 10^{-19} 4.52 8.60×10308.60\times 10^{30} 38
J0024-7204Mad 0.003677 3.84×1020-3.84\times 10^{-20} 4.52 2.40×10302.40\times 10^{30} 38
J0024-7204Nad 0.003054 2.19×1020-2.19\times 10^{-20} 4.52 2.40×10302.40\times 10^{30} 38
J0024-7204Oa 0.002643 3.03×10203.03\times 10^{-20} 4.52 1.08×10311.08\times 10^{31} 38
J0024-7204Qa 0.004033 3.4×10203.4\times 10^{-20} 4.52 2.40×10302.40\times 10^{30} 38
J0024-7204Ra 0.00348 1.48×10191.48\times 10^{-19} 4.52 7.00×10307.00\times 10^{30} 38
J0024-7204Sad 0.00283 1.21×1019-1.21\times 10^{-19} 4.52 4.20×10304.20\times 10^{30} 38
J0024-7204Ta 0.007588 2.94×10192.94\times 10^{-19} 4.52 1.50×10301.50\times 10^{30} 38
J0024-7204Ua 0.004343 9.52×10209.52\times 10^{-20} 4.52 3.20×10303.20\times 10^{30} 38
J0024-7204Wad 0.002352 8.66×1020-8.66\times 10^{-20} 4.52 2.64×10312.64\times 10^{31} 38
J0024-7204Xa 0.004772 1.84×10201.84\times 10^{-20} 4.52 2.20×10302.20\times 10^{30} 38
J0024-7204Yad 0.002197 3.52×1020-3.52\times 10^{-20} 4.52 2.50×10302.50\times 10^{30} 38
J0024-7204Zad 0.004554 4.54×1021-4.54\times 10^{-21} 4.52 3.50×10303.50\times 10^{30} 38
J0024-7204aaad 0.00184 4.52 9.00×10299.00\times 10^{29} 38
J0024-7204aba 0.003705 9.82×10219.82\times 10^{-21} 4.52 2.00×10302.00\times 10^{30} 38
J0030+0451 4XMM J003027.4+045139p 0.004865 1.02×10201.02\times 10^{-20} 0.329 3.52×10303.52\times 10^{30} 3.22×10303.22\times 10^{30} 2.92×10292.92\times 10^{29} 7.43×10327.43\times 10^{32} T, 4
J0034-0534 4XMM J003421.8-053437 0.001877 4.97×10214.97\times 10^{-21} 1.348 2.07×10302.07\times 10^{30} 1.31×10301.31\times 10^{30} 4.72×10294.72\times 10^{29} 4.38×10334.38\times 10^{33} T
J0101-6422 2CXO J010111.0-642230 0.002573 5.16×10215.16\times 10^{-21} 1.001 4.28×10304.28\times 10^{30} 3.80×10303.80\times 10^{30} 6.52×10296.52\times 10^{29} 1.56×10331.56\times 10^{33} T
J0218+4232 4XMM J021806.2+423217p 0.002323 7.74×10207.74\times 10^{-20} 3.15 6.16×10326.16\times 10^{32} 1.08×10321.08\times 10^{32} 5.07×10325.07\times 10^{32} 5.74×10345.74\times 10^{34} T, 4
J0307+7443 4XMM J030756.1+744313 0.003156 1.73×10201.73\times 10^{-20} 0.386 1.34×10291.34\times 10^{29} 1.16×10291.16\times 10^{29} 4.48×10274.48\times 10^{27} 2.93×10322.93\times 10^{32} T
J0337+1715 4XMM J033743.8+171514 0.002733 1.77×10201.77\times 10^{-20} 1.3 4.99×10304.99\times 10^{30} 3.77×10303.77\times 10^{30} 6.30×10296.30\times 10^{29} T
J0437-4715 2CXO J043715.8-471508p 0.005757 5.73×10205.73\times 10^{-20} 0.157 1.87×10301.87\times 10^{30} 1.45×10301.45\times 10^{30} 5.25×10295.25\times 10^{29} 5.17×10315.17\times 10^{31} T, 4
J0613-0200 4XMM J061343.9-020046 0.003062 9.59×10219.59\times 10^{-21} 0.78 9.38×10299.38\times 10^{29} 7.42×10297.42\times 10^{29} 1.98×10291.98\times 10^{29} 2.78×10332.78\times 10^{33} T
J0614-3329 4XMM J061410.3-332954p 0.003149 1.74×10201.74\times 10^{-20} 0.63 3.80×10303.80\times 10^{30} 3.39×10303.39\times 10^{30} 2.39×10292.39\times 10^{29} 5.44×10335.44\times 10^{33} T, 4
J0636+5128 4XMM J063604.9+512900p 0.002869 3.51×10213.51\times 10^{-21} 0.714 1.68×10301.68\times 10^{30} 9.84×10299.84\times 10^{29} 6.70×10296.70\times 10^{29} T, 4
J0737-3039A 4XMM J073751.2-303940 0.022699 1.76×10181.76\times 10^{-18} 1.1 5.87×10305.87\times 10^{30} 5.04×10305.04\times 10^{30} 5.36×10295.36\times 10^{29} T
J0740+6620 4XMM J074045.7+662033p 0.002886 1.22×10201.22\times 10^{-20} 1.15 3.41×10303.41\times 10^{30} 2.91×10302.91\times 10^{30} 3.10×10293.10\times 10^{29} 4.48×10324.48\times 10^{32} T, 4
J0751+1807 4XMM J075109.2+180735p 0.003479 7.79×10217.79\times 10^{-21} 1.1 5.50×10305.50\times 10^{30} 3.67×10303.67\times 10^{30} 1.81×10301.81\times 10^{30} 1.48×10331.48\times 10^{33} T, 4
J0952-0607 4XMM J095208.3-060724 0.001414 4.77×10214.77\times 10^{-21} 7.6 6.29×10316.29\times 10^{31} 2.94×10312.94\times 10^{31} 3.45×10313.45\times 10^{31} 1.10×10341.10\times 10^{34} T
J1012+5307 4XMM J101233.3+530701p 0.005256 1.71×10201.71\times 10^{-20} 0.7 3.10×10303.10\times 10^{30} 2.16×10302.16\times 10^{30} 8.10×10298.10\times 10^{29} T, 39
J1023+0038 4XMM J102347.6+003841p 0.001688 6.93×10216.93\times 10^{-21} 1.19 2.47×10332.47\times 10^{33} 8.85×10328.85\times 10^{32} 1.58×10331.58\times 10^{33} 7.25×10337.25\times 10^{33} T, 40
J1024-0719 4XMM J102438.7-071918p 0.005162 1.86×10201.86\times 10^{-20} 1.22 2.41×10302.41\times 10^{30} 2.10×10302.10\times 10^{30} 2.70×10292.70\times 10^{29} 7.67×10327.67\times 10^{32} T, 4
J1035-6720 4XMM J103527.5-672013 0.002872 4.65×10204.65\times 10^{-20} 1.461 4.99×10304.99\times 10^{30} 2.04×10302.04\times 10^{30} 2.72×10302.72\times 10^{30} 4.81×10334.81\times 10^{33} T
J1124-3653 2CXO J112401.1-365319 0.00241 6.01×10216.01\times 10^{-21} 0.987 7.00×10307.00\times 10^{30} 2.80×10302.80\times 10^{30} 4.34×10304.34\times 10^{30} 1.46×10331.46\times 10^{33} T
J1227-4853 4XMM J122758.7-485342p 0.001686 1.11×10201.11\times 10^{-20} 1.613 4.62×10334.62\times 10^{33} 1.14×10331.14\times 10^{33} 3.47×10333.47\times 10^{33} 6.98×10336.98\times 10^{33} T, 41
J1231-1411 4XMM J123111.3-141143p 0.003684 2.26×10202.26\times 10^{-20} 0.42 4.04×10304.04\times 10^{30} 3.48×10303.48\times 10^{30} 5.19×10295.19\times 10^{29} 2.13×10332.13\times 10^{33} T, 4
J1300+1240 2CXO J130003.2+124053 0.006219 1.14×10191.14\times 10^{-19} 0.709 1.25×10291.25\times 10^{29} 9.80×10289.80\times 10^{28} T
J1306-4035d 4XMM J130656.2-403523 0.002205 4.7 1.99×10331.99\times 10^{33} 3.07×10323.07\times 10^{32} 1.68×10331.68\times 10^{33} T
J1311-3430 4XMM J131145.7-343030 0.00256 2.10×10202.10\times 10^{-20} 2.43 1.35×10321.35\times 10^{32} 4.04×10314.04\times 10^{31} 9.43×10319.43\times 10^{31} 1.81×10341.81\times 10^{34} T
J1326-4728Aa 0.004109 2.74×10202.74\times 10^{-20} 5.43 1.90×10301.90\times 10^{30} 38
J1326-4728Bad 0.004792 5.43×1020-5.43\times 10^{-20} 5.43 1.07×10311.07\times 10^{31} 38
J1400-1431 4XMM J140037.0-143146 0.003084 7.23×10217.23\times 10^{-21} 0.278 1.05×10291.05\times 10^{29} 9.13×10289.13\times 10^{28} 1.31×10281.31\times 10^{28} 5.93×10315.93\times 10^{31} T
J1417-4402d 2CXO J141730.5-440257 0.002664 4.4 1.62×10331.62\times 10^{33} 4.76×10324.76\times 10^{32} 1.14×10331.14\times 10^{33} T
J1431-4715 4XMM J143144.4-471524 0.002012 1.41×10201.41\times 10^{-20} 1.562 7.11×10307.11\times 10^{30} 2.46×10302.46\times 10^{30} 4.52×10304.52\times 10^{30} 1.74×10331.74\times 10^{33} T
J1446-4701 4XMM J144635.8-470126 0.002195 9.81×10219.81\times 10^{-21} 1.569 5.02×10305.02\times 10^{30} 3.00×10303.00\times 10^{30} 1.89×10301.89\times 10^{30} 2.26×10332.26\times 10^{33} T
J1514-4946 2CXO J151419.0-494615 0.003589 1.86×10201.86\times 10^{-20} 0.908 4.86×10294.86\times 10^{29} 2.99×10292.99\times 10^{29} 2.52×10292.52\times 10^{29} 4.13×10334.13\times 10^{33} T
J1518+0204Ca 0.002484 2.61×10202.61\times 10^{-20} 7.48 1.08×10311.08\times 10^{31} 38
J1537+1155 4XMM J153709.9+115555 0.037904 2.42×10182.42\times 10^{-18} 0.935 4.98×10294.98\times 10^{29} 3.62×10293.62\times 10^{29} 1.09×10291.09\times 10^{29} T
J1614-2230 4XMM J161436.5-223031p 0.003151 9.62×10219.62\times 10^{-21} 0.7 1.95×10301.95\times 10^{30} 1.61×10301.61\times 10^{30} 3.03×10293.03\times 10^{29} 1.52×10331.52\times 10^{33} T, 4
J1622-0315 4XMM J162259.6-031538 0.003845 1.14×10201.14\times 10^{-20} 1.142 3.14×10303.14\times 10^{30} 9.92×10299.92\times 10^{29} 1.12×10301.12\times 10^{30} 1.31×10331.31\times 10^{33} T
J1623-2631a 0.011076 6.71×10196.71\times 10^{-19} 1.851 3.00×10303.00\times 10^{30} 38
J1625-0021 4XMM J162510.3-002127 0.002834 2.13×10202.13\times 10^{-20} 0.951 1.34×10301.34\times 10^{30} 1.11×10301.11\times 10^{30} 2.14×10292.14\times 10^{29} 2.24×10332.24\times 10^{33} T
J1628-3205 2CXO J162806.9-320548 0.003212 1.20×10201.20\times 10^{-20} 1.227 1.63×10311.63\times 10^{31} 4.48×10304.48\times 10^{30} 1.17×10311.17\times 10^{31} 1.92×10331.92\times 10^{33} T
J1640+2224 2CXO J164016.7+222408 0.003163 2.82×10212.82\times 10^{-21} 1.37 1.06×10301.06\times 10^{30} 1.09×10301.09\times 10^{30} 6.21×10326.21\times 10^{32} T
J1641+3627Bad 0.003528 1.49×1022-1.49\times 10^{-22} 7.42 9.20×10309.20\times 10^{30} 38
J1641+3627Ca 0.003722 1.23×10211.23\times 10^{-21} 7.42 3.90×10303.90\times 10^{30} 38
J1641+3627Dad 0.003118 2.35×1020-2.35\times 10^{-20} 7.42 5.90×10305.90\times 10^{30} 38
J1641+3627Ea 0.002487 1.74×10201.74\times 10^{-20} 7.42 1.25×10311.25\times 10^{31} 38
J1641+3627Fa 0.003004 1.4×10201.4\times 10^{-20} 7.42 7.90×10307.90\times 10^{30} 38
J1643-1224 4XMM J164338.0-122458 0.004622 1.85×10201.85\times 10^{-20} 0.74 1.19×10301.19\times 10^{30} 7.38×10297.38\times 10^{29} 2.60×10292.60\times 10^{29} T
J1653-0158 4XMM J165338.0-015837 0.001968 2.40×10212.40\times 10^{-21} 0.84 1.47×10311.47\times 10^{31} 4.50×10304.50\times 10^{30} 1.01×10311.01\times 10^{31} 2.25×10332.25\times 10^{33} T
J1658-5324 2CXO J165839.3-532406 0.002439 1.12×10201.12\times 10^{-20} 0.88 1.05×10301.05\times 10^{30} 9.73×10299.73\times 10^{29} 1.92×10331.92\times 10^{33} T
J1701-3006Bad 0.003594 3.48×1019-3.48\times 10^{-19} 6.41 1.01×10321.01\times 10^{32} 38
J1701-3006Cad 0.007613 6.41×1020-6.41\times 10^{-20} 6.41 5.90×10315.90\times 10^{31} 38
J1709+2313 2CXO J170905.7+231328 0.004631 3.63×10213.63\times 10^{-21} 2.179 1.28×10301.28\times 10^{30} 8.56×10298.56\times 10^{29} 3.38×10293.38\times 10^{29} T
J1717+4308Aa 0.00316 6.11×10206.11\times 10^{-20} 8.5 8.33×10318.33\times 10^{31} 38
J1723-2837 2CXO J172323.1-283757 0.001856 7.54×10217.54\times 10^{-21} 0.926 1.05×10321.05\times 10^{32} 2.03×10312.03\times 10^{31} 8.64×10318.64\times 10^{31} T
J1730-2304 4XMM J173021.6-230431 0.008123 2.02×10202.02\times 10^{-20} 0.62 9.21×10299.21\times 10^{29} 6.86×10296.86\times 10^{29} 2.55×10292.55\times 10^{29} 3.95×10323.95\times 10^{32} T
J1731-1847 4XMM J173117.6-184733 0.002345 2.54×10202.54\times 10^{-20} 4.782 4.51×10314.51\times 10^{31} 1.74×10301.74\times 10^{30} 3.99×10313.99\times 10^{31} T
J1737-0314Aa 0.00198 9.56×10209.56\times 10^{-20} 9.1 6.62×10316.62\times 10^{31} 38
J1740-5340Aa 0.00365 1.68×10191.68\times 10^{-19} 2.482 2.22×10312.22\times 10^{31} 38
J1740-5340Bad 0.005787 6.03×1021-6.03\times 10^{-21} 2.482 6.70×10316.70\times 10^{31} 38
J1744-1134 2CXO J174429.4-113454 0.004075 8.93×10218.93\times 10^{-21} 0.395 3.63×10293.63\times 10^{29} 3.22×10293.22\times 10^{29} 3.97×10283.97\times 10^{28} 6.92×10326.92\times 10^{32} T
J1744-7619c 4XMM J174400.6-761915 0.004688 9.68×10219.68\times 10^{-21} <1<1 <1.10×1030<1.10\times 10^{30} <8.32×1029<8.32\times 10^{29} <5.67×1028<5.67\times 10^{28} <5.31×1033<5.31\times 10^{33} 4
J1748-2446Aad 0.011563 3.4×1020-3.4\times 10^{-20} 6.62 8.99×10318.99\times 10^{31} 38
J1748-2446Ead 0.002198 6.62 1.90×10301.90\times 10^{30} 38
J1748-2446Fad 0.00554 6.62 5.30×10305.30\times 10^{30} 38
J1748-2446Had 0.004926 6.62 4.40×10304.40\times 10^{30} 38
J1748-2446Kad 0.00297 6.62 1.30×10301.30\times 10^{30} 38
J1748-2446Lad 0.002245 6.62 8.30×10308.30\times 10^{30} 38
J1748-2446Nad 0.008667 6.62 1.40×10301.40\times 10^{30} 38
J1748-2446Oad 0.001677 6.62 2.03×10312.03\times 10^{31} 38
J1748-2446Pad 0.001729 6.62 3.36×10323.36\times 10^{32} 38
J1748-2446Qad 0.002812 6.62 6.00×10296.00\times 10^{29} 38
J1748-2446Vad 0.002073 6.62 2.10×10312.10\times 10^{31} 38
J1748-2446Xad 0.002999 6.62 3.10×10303.10\times 10^{30} 38
J1748-2446Zad 0.002463 6.62 6.80×10306.80\times 10^{30} 38
J1748-2446adad 0.001396 6.62 1.39×10321.39\times 10^{32} 38
J1807-2459Aad 0.003059 4.33×1021-4.33\times 10^{-21} 2.58 9.90×10309.90\times 10^{30} 38
J1810+1744 2CXO J181037.3+174437 0.00166 4.60×102160\times 10^{-21} 2.361 1.22×10311.22\times 10^{31} 6.22×10306.22\times 10^{30} 6.68×10306.68\times 10^{30} 9.73×10339.73\times 10^{33} T
J1816+4510 2CXO J181635.9+451033 0.003193 4.31×10204.31\times 10^{-20} 4.356 5.46×10305.46\times 10^{30} 4.50×10304.50\times 10^{30} 1.49×10341.49\times 10^{34} T
J1824-2452Aad 2CXO J182431.9-245211p 0.003054 1.62×10181.62\times 10^{-18} 5.37 1.38×10331.38\times 10^{33} 7.73×10347.73\times 10^{34} 38, 4
J1824-2452Cad 0.004159 5.37 2.00×10302.00\times 10^{30} 38
J1824-2452Ead 0.00542 5.37 2.30×10302.30\times 10^{30} 38
J1824-2452Fad 0.002451 5.37 1.40×10301.40\times 10^{30} 38
J1824-2452Had 0.004629 5.37 1.74×10311.74\times 10^{31} 38
J1824-2452Iad 0.003932 5.37 2.20×10322.20\times 10^{32} 38
J1824-2452Jad 0.004039 5.37 1.50×10301.50\times 10^{30} 38
J1824-2452Kad 0.004461 5.37 6.20×10306.20\times 10^{30} 38
J1836-2354Aa 0.003354 2.32×10212.32\times 10^{-21} 3.3 3.00×10303.00\times 10^{30} 38
J1902-5105 4XMM J190202.9-510556 0.001742 9.20×10219.20\times 10^{-21} 1.645 1.29×10311.29\times 10^{31} 3.95×10303.95\times 10^{30} 8.64×10308.64\times 10^{30} 7.62×10337.62\times 10^{33} T
J1909-3744 4XMM J190947.4-374413 0.002947 1.40×10201.40\times 10^{-20} 1.14 2.05×10302.05\times 10^{30} 1.87×10301.87\times 10^{30} 7.87×10287.87\times 10^{28} T
J1910-5959Aad 0.003266 2.92×1021-2.92\times 10^{-21} 4.12 2.90×10302.90\times 10^{30} 38
J1910-5959Bad 0.008358 7.9×1019-7.9\times 10^{-19} 4.12 1.30×10301.30\times 10^{30} 38
J1910-5959Ca 0.005277 2.16×10212.16\times 10^{-21} 4.12 3.20×10303.20\times 10^{30} 38
J1910-5959Da 0.009035 9.64×10199.64\times 10^{-19} 4.12 3.80×10303.80\times 10^{30} 38
J1910-5959Ead 0.004572 4.34×1019-4.34\times 10^{-19} 4.12 1.00×10301.00\times 10^{30} 38
J1910-5959Fa 0.008485 7.41×10197.41\times 10^{-19} 4.12 4.00×10304.00\times 10^{30} 38
J1939+2134 4XMM J193938.5+213459p 0.001558 1.05×10191.05\times 10^{-19} 3.5 4.85×10324.85\times 10^{32} 2.27×10312.27\times 10^{31} 4.61×10324.61\times 10^{32} 2.33×10342.33\times 10^{34} T, 4
J1946-5403d 4XMM J194634.4-540343 0.00271 1.15 1.51×10301.51\times 10^{30} 9.10×10299.10\times 10^{29} 2.23×10292.23\times 10^{29} 1.56×10331.56\times 10^{33} T
J1953+1846Aad 0.004888 4 1.20×10311.20\times 10^{31} 38
J2017+0603 2CXO J201722.6+060305 0.002896 7.99×10217.99\times 10^{-21} 1.399 2.37×10302.37\times 10^{30} 2.16×10302.16\times 10^{30} 8.34×10338.34\times 10^{33} T
J2017-1614 4XMM J201746.0-161416 0.002314 2.45×10212.45\times 10^{-21} 1.444 4.44×10304.44\times 10^{30} 2.69×10302.69\times 10^{30} 6.95×10296.95\times 10^{29} 1.61×10331.61\times 10^{33} T
J2043+1711 2CXO J204320.8+171129 0.00238 5.24×10215.24\times 10^{-21} 1.389 1.84×10301.84\times 10^{30} 1.87×10301.87\times 10^{30} 6.57×10336.57\times 10^{33} T
J2047+1053 2CXO J204710.2+105307 0.004286 2.08×10202.08\times 10^{-20} 2.794 6.08×10306.08\times 10^{30} 2.25×10302.25\times 10^{30} 5.53×10305.53\times 10^{30} 3.98×10333.98\times 10^{33} T
J2051-0827 2CXO J205107.5-082737 0.004509 1.27×10201.27\times 10^{-20} 1.469 7.21×10297.21\times 10^{29} 7.80×10297.80\times 10^{29} 6.46×10326.46\times 10^{32} T
J2115+5448 4XMM J211511.7+544844 0.002603 7.49×10207.49\times 10^{-20} 3.106 1.50×10311.50\times 10^{31} 3.60×10303.60\times 10^{30} 1.06×10311.06\times 10^{31} 8.10×10338.10\times 10^{33} T
J2124-3358b 2CXO J212443.8-335844p 0.004931 2.06×10202.06\times 10^{-20} 0.41 2.80×10292.80\times 10^{29} 7.80×10327.80\times 10^{32} 3, 4
J2129-0429d 4XMM J212945.0-042906 0.00762 1.83 9.29×10319.29\times 10^{31} 1.98×10311.98\times 10^{31} 7.31×10317.31\times 10^{31} 2.73×10332.73\times 10^{33} T
J2140-2310Aad 0.011019 5.18×1020-5.18\times 10^{-20} 8.46 1.09×10311.09\times 10^{31} 38
J2214+3000 4XMM J221438.8+300038p 0.003119 1.47×10201.47\times 10^{-20} 0.6 1.79×10301.79\times 10^{30} 1.57×10301.57\times 10^{30} 2.26×10292.26\times 10^{29} 1.41×10331.41\times 10^{33} T, 4
J2215+5135 4XMM J221532.6+513536 0.00261 3.34×10203.34\times 10^{-20} 2.773 1.33×10321.33\times 10^{32} 2.13×10312.13\times 10^{31} 1.10×10321.10\times 10^{32} 1.53×10341.53\times 10^{34} T
J2241-5236 4XMM J224142.0-523635p 0.002187 6.90×10216.90\times 10^{-21} 1.042 6.30×10306.30\times 10^{30} 5.00×10305.00\times 10^{30} 1.23×10301.23\times 10^{30} 3.25×10333.25\times 10^{33} T, 4
J2256-1024 2CXO J225656.3-102434 0.002295 1.14×10201.14\times 10^{-20} 2.083 2.09×10312.09\times 10^{31} 1.40×10311.40\times 10^{31} 6.98×10306.98\times 10^{30} 4.25×10334.25\times 10^{33} T
J2302+4442 4XMM J230246.9+444222 0.005192 1.39×10201.39\times 10^{-20} 0.863 2.75×10302.75\times 10^{30} 2.10×10302.10\times 10^{30} 4.85×10294.85\times 10^{29} 3.47×10333.47\times 10^{33} T
J2339-0533 4XMM J233938.7-053305 0.002884 1.41×10201.41\times 10^{-20} 1.1 3.77×10313.77\times 10^{31} 1.00×10311.00\times 10^{31} 2.77×10312.77\times 10^{31} 5.90×10335.90\times 10^{33} T

Note. —

LXL_{\rm X}: X-ray luminosity in 0.3–10.0 keV for XMM-Newton, and in 0.5-7.0 keV for Chandra.

LSXL_{\rm SX}: Soft X-ray luminosity in 0.3–2.0 keV for XMM-Newton, and in 0.5-2.0 keV for Chandra.

LHXL_{\rm HX}: Hard X-ray luminosity in 2.0–10.0 keV for XMM-Newton, and in 2.0-7.0 keV for Chandra.

LGL_{\rm G}: G-ray luminosity in 100 MeV.

LL: The luminosity error is derived from the flux error in the catalogs, which ranges between 10%10\% and 30%30\%. However, the error introduced by the DM is dominant but not included in the table.

a: The pulsars are MSP in GCs, and their X-ray luminosities are taken from Zhao & Heinke (2022).
b: The pulsars are associated with PWNe or SNRs, and their X-ray luminosities are obtained from the references listed in the ”Ref” column.
c: The upper limits of these distance are inferred from the spin-down power E˙\dot{E} and the energy flux G100G_{\rm 100} above 100 MeV, with references listed in column ”Ref”. The distances of other pulsars are acquired from he ATNF catalog, using the YMW16 electron distribution model (Yao et al., 2017).
d: The P˙\dot{P} is either unavailable or negative, according to the ATNF catalog. These pulsars are excluded from the following correlation analysis.
p: These pulsars have been reported to exhibit X-ray pulsations.
Reference: The data source for the distance or luminosity of the pulsar. If two references are provided, the second one refers to the study reporting the X-ray pulsations. (T) This work; (1) Marelli (2012); (2) Ho et al. (2022); (3) Hsiang & Chang (2021); (4) Smith et al. (2023); (5) McGowan et al. (2006); (6) Ding et al. (2024); (7) Ng et al. (2007); (8) Tanashkin et al. (2022); (9) Rigoselli & Mereghetti (2018); (10) Danilenko et al. (2020); (11) Hermsen et al. (2018); (12) Rigoselli et al. (2019); (13) Becker et al. (2004); (14) Renaud et al. (2010); (15) Ho et al. (2022); (16) Park et al. (2023); (17) Hare et al. (2021); (18) Gotthelf & NuSTAR Observatory Team (2014); (19) Chang et al. (2023); (20) Rigoselli et al. (2022); (21) Camilo et al. (2009); (22) Van Etten et al. (2012); (23) Zheng et al. (2023); (24) Marelli et al. (2014); (25) ; (26) Duvidovich et al. (2019); (27) Lin et al. (2014); (28) Lin et al. (2009); (29) Pandel & Scott (2012); (30) Lu et al. (2007); (31) Kim et al. (2020); (32) Zyuzin et al. (2021); (33) Zyuzin et al. (2018); (34) Hessels et al. (2004); (35) Razzano et al. (2023); (36) Marelli et al. (2016); (37) Pletsch et al. (2012); (38) Zhao & Heinke (2022); (39) Guillot et al. (2019); (40) Archibald et al. (2010); (41) Papitto et al. (2015).

Table 3: Possible X-ray counterparts of GPPS pulsars
Pulsar gpps No. Period (s) DYMW16D_{\rm YMW16} (kpc) X-ray sources RA Dec LXL_{\rm X} (ergs1\rm erg~{}s^{-1}) VarFlagVar_{Flag}
4XMM
J2022+3845g gpps0076 1.0089 17.2 J202205.4+384518 20:22:05.46 +38:45:18.83 9.07×10329.07\times 10^{32} FALSE
J202211.1+384423 20:22:11.19 +38:44:23.53 6.30×10326.30\times 10^{32} FALSE
J2021+4024g gpps0087 0.37054 25.0 J202112.9+402403 20:21:12.94 +40:24:03.61 6.22×10326.22\times 10^{32} FALSE
J202114.3+402319 20:21:14.35 +40:23:19.57 1.27×10331.27\times 10^{33} FALSE
J202118.8+402431 20:21:18.83 +40:24:31.82 4.93×10324.93\times 10^{32} FALSE
J1852-0002g gpps0098 0.2451 5.6 J185204.5-000155 18:52:04.48 -00:01:57.00 1.90×10321.90\times 10^{32} FALSE
J1907+0709g gpps0120 0.3441 5.4 J190756.2+070832 19:07:56.29 +07:08:32.14 9.58×10319.58\times 10^{31} FALSE
J1913+0458g gpps0222 0.44479 4.1 J191337.0+045826 19:13:37.05 +04:58:26.06 4.86×10324.86\times 10^{32} FALSE
J2024+3751g gpps0256 0.21164 15.4 J202429.1+374953 20:24:29.19 +37:49:53.82 3.41×10323.41\times 10^{32} FALSE
J1911+0906g gpps0285 16.9259 1.1 J191135.8+090724 19:11:35.86 +09:07:24.25 3.60×10293.60\times 10^{29} FALSE
J1912+1000g gpps0321 3.0528 4.1 J191244.9+095954 19:12:44.90 +09:59:54.67 2.17×10312.17\times 10^{31} FALSE
J1843-0127g gpps0363 2.16489 7.2 J184332.7-012851 18:43:32.75 -01:28:51.35 3.48×10323.48\times 10^{32} FALSE
J1852-0834g gpps0378 0.249315 6.7 J185218.9-083500 18:52:19.00 -08:35:00.21 5.84×10325.84\times 10^{32} TRUE
J1913+0453g gpps0400 0.006086 15.0 J191346.7+045151 19:13:46.78 +04:51:52.09 5.05×10325.05\times 10^{32} FALSE
J191346.7+045151 19:13:46.71 +04:51:51.63 7.84×10327.84\times 10^{32} FALSE
J1846-0252g gpps0563 2.209439 6.4 J184627.1-025230 18:46:27.12 -02:52:30.17 3.10×10323.10\times 10^{32} FALSE
J1819-0050g gpps0581 0.006602 4.5 J181933.9-005006 18:19:33.96 -00:50:05.91 2.76×10322.76\times 10^{32} FALSE
J1845-0254g gpps0582 0.492655 5.8 J184532.8-025411 18:45:32.89 -02:54:12.14 1.94×10321.94\times 10^{32} FALSE
J2032+4055g gpps0623 0.048739 10.1 J203237.2+405556 20:32:36.99 +40:55:56.62 6.85×10336.85\times 10^{33} FALSE
J1818-0051g gpps0666 2.20669 2.7 J181836.3-005225 18:18:36.37 -0:52:25.74 5.65×10315.65\times 10^{31} FALSE
J1847-0308g gpps0735 29.76927 3.4 J184701.6-030753 18:47:01.65 18:47:01.65 6.57×10316.57\times 10^{31} FALSE
J1851+0037g gpps0744 2.52373 5.2 J185146.7+003533 18:51:46.39 18:51:46.39 2.09×10332.09\times 10^{33} FALSE
2CXO
J1852+0056g gpps0014 1.177793 7.2 J185215.4+005743 18:52:15.40 +00:57:43.30 6.29×10316.29\times 10^{31} FALSE
J1855+0139g gpps0026 0.44414 5.2 J185512.5+013807 18:55:12.57 +01:38:07.90 4.31×10314.31\times 10^{31} TRUE
J185518.9+013844 18:55:18.94 +01:38:44.38 7.63×10317.63\times 10^{31} FALSE
J1904+0519g gpps0037 1.68053 2.5 J190403.8+052014 19:04:03.81 +05:20:14.02 1.71×10311.71\times 10^{31} FALSE
J190404.8+052006 19:04:04.83 +05:20:06.68 6.35×10306.35\times 10^{30} FALSE
J2022+3845g gpps0076 1.0089 17.2 J202205.4+384519 20:22:05.46 +38:45:19.55 3.57×10323.57\times 10^{32} FALSE
J202209.5+384413 20:22:09.53 +38:44:13.95 9.90×10309.90\times 10^{30} TRUE
J202209.9+384348 20:22:09.90 +38:43:48.03 8.58×10318.58\times 10^{31} FALSE
J202210.8+384341 20:22:10.82 +38:43:41.97 9.08×10309.08\times 10^{30} FALSE
J202211.2+384423 20:22:11.27 +38:44:23.58 2.35×10312.35\times 10^{31} FALSE
J2021+4024g gpps0087 0.37054 25.0 J202106.0+402319 20:21:06.04 +40:23:19.68 4.14×10324.14\times 10^{32} FALSE
J202111.7+402335 20:21:11.71 +40:23:35.29 4.65×10324.65\times 10^{32} FALSE
J202112.8+402405 20:21:12.91 +40:24:05.48 6.84×10316.84\times 10^{31} TRUE
J202114.3+402520 20:21:14.35 +40:25:20.41 8.58×10318.58\times 10^{31} FALSE
J1907+0658g gpps0127 0.21834 7.7 J190737.8+065841 19:07:37.84 +06:58:41.02 4.78×10314.78\times 10^{31} FALSE
J1909+0905g gpps0178 1.49488 5.4 J190935.9+090600 19:09:35.92 +09:06:00.44 5.88×10315.88\times 10^{31} FALSE
J1953+1844 gpps0190 0.004441 4.3 J195337.9+184454 19:53:37.96 +18:44:54.40 1.25×10301.25\times 10^{30} FALSE
J1931+1841g gpps0233 2.59411 5.4 J193111.2+183934 19:31:11.22 +18:39:34.27 3.53×10313.53\times 10^{31} FALSE
J2030+3833g gpps0295 15.2 J203024.9+383322 20:30:25.00 +38:33:22.98 9.17×10329.17\times 10^{32} FALSE
J1844-0223g gpps0493 0.65772 6.3 J184516.7-022929 18:45:16.78 -02:29:29.63 3.63×10323.63\times 10^{32} FALSE
J1929+1337g gpps0495 0.203318 7.8 J192924.8+133637 19:29:24.83 +13:36:37.19 3.73×10323.73\times 10^{32} FALSE
J1915+1045g gpps0518 1.54588 3.7 J191531.5+104333 19:15:31.54 +10:43:33.80 1.03×10301.03\times 10^{30} FALSE
J2032+4055g gpps0623 0.048739 10.1 J203234.8+405617 20:32:34.87 +40:56:17.23 1.76×10321.76\times 10^{32} TRUE
J203236.3+405529 20:32:36.33 +40:55:29.62 2.23×10322.23\times 10^{32} FALSE
J203240.2+405348 20:32:40.21 +40:53:48.85 2.56×10312.56\times 10^{31} FALSE
J1843-0310g gpps0672 0.285151 8.5 J184305.3-030954 18:43:05.31 -03:09:54.86 2.92×10322.92\times 10^{32} FALSE
: The pulsar name with a suffix ‘g’ indicates the temporary nature, due to position uncertainty of about 1.5.
: Several pulsars are discovered due to the single pulses, and their spin periods are currently unavailable (Zhou et al., 2023).
DYMW16D_{\rm YMW16}: Distance estimated based on the YMW16 electron distribution model (Yao et al., 2017).
VarFlagVar_{Flag}: The flag is set to ‘True’ if the source displayed flux variability within one or between observations,
or to ‘Flase’ if the source was tested for variability but did not qualify.