This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\DeclareDelimFormat

finalnamedelim, \DeclareDelimFormatnametitledelim,

A new view on risk measures associated with acceptance sets

Marcel Marohn111Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, 06099 Halle (Saale), Germany (E-mail: [email protected])    Christiane Tammer222Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, 06099 Halle (Saale), Germany (E-mail: [email protected] )

Keywords. Acceptance sets; Regulation; Financial positions; Financial Mathematics; Investments; Cost minimization; Scalarization Methods; Translation invariance; Nonlinear functionals; Monetary risk measures; Coherent Risk Measures; Ordering cones.


Abstract. In this paper, we study properties of certain risk measures associated with acceptance sets. These sets describe regulatory preconditions that have to be fulfilled by financial institutions to pass a given acceptance test. If the financial position of an institution is not acceptable, the decision maker has to raise new capital and invest it into a basket of so called eligible assets to change the current position such that the resulting one corresponds with an element of the acceptance set. Risk measures have been widely studied, see e.g. [17] for an overview. The risk measure that is considered here determines the minimal costs of making a financial position acceptable. In the literature, monetary risk measures are often defined as translation invariant functions and, thus, there is an equivalent formulation as Gerstewitz-Functional (see Artzner et al. [1] and Jaschke, Küchler [30]). The Gerstewitz-Functional is an useful tool for separation and scalarization in multiobjective optimization in the non-convex case. In our paper, we study properties of the sublevel sets, strict sublevel sets and level lines of a risk measure defined on a linear space. Furthermore, we discuss the finiteness of the risk measure and relax the closedness assumptions.

1 Introduction

Scalarization and separation of sets are important topics for many fields of research in mathematics and mathematical economics like multiobjective optimization, risk theory, optimization under uncertainty and financial mathematics. For a given real vector space 𝒳\mathcal{X} over \mathbb{R}, nonlinear translation invariant functionals φ𝒜,K:𝒳{}{+}\varphi_{\mathcal{A},K}:\mathcal{X}\rightarrow\mathbb{R}\cup\{-\infty\}\cup\{+\infty\} are considered with

φ𝒜,K(X):=inf{tXtK+𝒜}\varphi_{\mathcal{A},K}(X):=\inf\{t\in{\mathbb{R}}\mid X\in tK+\mathcal{A}\} (1.1)

where 𝒜𝒳\varnothing\neq\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\} such that 𝒜+K𝒜\mathcal{A}-\mathbb{R}_{+}K\subseteq\mathcal{A}. Functionals given by (1.1) are used by Gerstewitz in [23] for deriving separation theorems for not necessarily convex sets as separating functional and as scalarization functional of vector optimization problems. Formulations of φ𝒜,K\varphi_{\mathcal{A},K} convenient in risk theory are subject of this paper. Relationships between coherent risk measures and the functional (1.1) are studied by Artzner et al. [1] and Jaschke, Küchler [30] (see also [27], [26], [38], [22] and references therein). For a given acceptance set 𝒜\mathcal{A} in the space of financial positions 𝒳\mathcal{X}, we consider the functional

𝒳Xρ𝒜,,π(X):=inf{π(Z)Z,X+Z𝒜}\displaystyle\mathcal{X}\ni X\mapsto\rho_{\mathcal{A},\mathcal{M},\pi}(X):=\inf\{\pi(Z)\mid Z\in\mathcal{M},X+Z\in\mathcal{A}\} (1.2)

following Farkas et al. [15] and Baes et al. [3], where π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} is a pricing functional defined on a set of allowed movements 𝒳\mathcal{M}\subseteq\mathcal{X} by which an investor can change the current financial position XX. The functional (1.2) is a risk measure describing the costs for satisfying regulatory preconditions. It is a generalization of (1.1) through the simultaneous allowance of a set of directions instead of one fixed direction K𝒳K\in\mathcal{X} and the valuation of the movements by a general functional π\pi. However, in the so called Reduction Lemma in [15], Farkas et al. showed that ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} can be reduced to a functional from type (1.1). It is shown that this class of functionals from (1.1) coincides with the class of translation invariant functions and, thus, such functionals are employed as coherent risk measures in risk theory (see [1]), since translation invariance is a basic property of risk measures.


Considering risk measures with respect to acceptance sets is from special interest in financial mathematics. Since the financial crisis revealed many deficits in risk taking and management of financial institutions, regulation acquired intensively greater importance in recent years, leading to restrictions for business activities like minimum capital requirements for credit risk of banks, see e.g. Basel III preconditions in [6] and [7]. That leads to partly massive restrictions of possible investment stategies and to reduced gains by a risk-return trade-off, see e.g. [4]. Thus, finding optimal portfolios under given regulatory acceptance conditions is essential for the survive of an institution. In [34], we followed Baes et al. in [3] and considered a portfolio optimization problem with the aim of fulfill regulatory preconditions (we also say “reaching acceptability” because they are described by an acceptance set 𝒜\mathcal{A}) under minimal costs for closed acceptance sets.


The paper is organized as follows: After a short overview about the needed mathematical background, we describe the basic financial model, which we consider in Sections 3 and 4. This includes the vector space of financial positions 𝒳\mathcal{X}, the set of eligible payoffs 𝒳\mathcal{M}\subseteq\mathcal{X} and the linear pricing functional π:\pi\colon\mathcal{M}\rightarrow\mathbb{R}. Here, we give a definition for acceptance sets 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} by Baes et al. in [3], but we do not additionally assume closedness. Moreover, we state some very important examples from a practical point of view. Afterwards, we study properties of the risk measure ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} in Section 5.

2 Preliminaries

In this article, certain standard notions and terminology are used. Let 𝒳\mathcal{X} be a vector space over \mathbb{R}. The extended set of real numbers is denoted by ¯:={,+}\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}, the set of non-negative real numbers by +\mathbb{R}_{+} , the set of positive real numbers by >\mathbb{R}_{>} and the set of non-positive real numbers by \mathbb{R}_{-}. Consider subsets 𝒜,B𝒳\mathcal{A},B\subseteq\mathcal{X}. Then,

𝒜+:={X+YX𝒜,Y}\displaystyle\mathcal{A}+\mathcal{B}:=\{X+Y\mid X\in\mathcal{A},Y\in\mathcal{B}\}

is the Minkowksi sum of 𝒜\mathcal{A} and \mathcal{B}. For simplicity, we replace {X}+𝒜\{X\}+\mathcal{A} by X+𝒜X+\mathcal{A} for the sum of a set 𝒜\mathcal{A} and a single element X𝒳X\in\mathcal{X}. We set

λ𝒜={λXX𝒜} with λ,\displaystyle\lambda\mathcal{A}=\{\lambda X\mid X\in\mathcal{A}\}\text{ with }\lambda\in\mathbb{R},

which leads for the Minkowski sum of 𝒜\mathcal{A} and -\mathcal{B} to

𝒜={XYX𝒜,Y}.\displaystyle\mathcal{A}-\mathcal{B}=\{X-Y\mid X\in\mathcal{A},Y\in\mathcal{B}\}.

The cardinality of 𝒜\mathcal{A} is denoted by |𝒜|\left|\mathcal{A}\right|. 𝒜\mathcal{A} is star-shaped (around 0) if

X𝒜,λ[0,1]:λX𝒜.\displaystyle\forall X\in\mathcal{A},\forall\lambda\in[0,1]:\quad\lambda X\in\mathcal{A}.

and 𝒜\mathcal{A} is convex if

X,Y𝒜,λ[0,1]:λX+(1λ)Y𝒜.\displaystyle\forall X,Y\in\mathcal{A},\forall\lambda\in[0,1]:\quad\lambda X+(1-\lambda)Y\in\mathcal{A}.

It is obvious that 𝒜\mathcal{A} is star-shaped if it is convex and 0𝒜0\in\mathcal{A}. A nonempty set 𝒜\mathcal{A} is called a cone if

X𝒜,λ0:λX𝒜.\displaystyle\forall\ X\in\mathcal{A},\forall\lambda\geq 0:\ \lambda X\in\mathcal{A}.

Let 𝒞𝒳\mathcal{C}\subseteq\mathcal{X} be a cone. Then, 𝒞\mathcal{C} is star-shaped. Furthermore, 𝒞\mathcal{C} is said to be proper or nontrivial if {0}𝒞𝒳\{0\}\subsetneq\mathcal{C}\neq\mathcal{X}. We call 𝒞\mathcal{C} pointed if 𝒞(𝒞)={0}\mathcal{C}\cap(-\mathcal{C})=\{0\} and reproducing if 𝒞𝒞=𝒳\mathcal{C}-\mathcal{C}=\mathcal{X}. For each cone 𝒞\mathcal{C} holds

𝒞 convex 𝒞+𝒞𝒞.\displaystyle\mathcal{C}\text{ convex }\quad\Longleftrightarrow\quad\mathcal{C}+\mathcal{C}\subseteq\mathcal{C}.

A cone from special interest is the recession cone of a subset 𝒜𝒳\mathcal{A}\subset\mathcal{X}, i.e.,

rec𝒜:={X𝒳Y+λX𝒜 for all Y𝒜,λ+}.\displaystyle\mathrm{rec}\hskip 1.70709pt\mathcal{A}:=\{X\in\mathcal{X}\mid Y+\lambda X\in\mathcal{A}\ \text{ for all }Y\in\mathcal{A},\lambda\in\mathbb{R}_{+}\}.
Definition 2.1 (see Gutiérrez et al. [25]).

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}, 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\}. The KK-directional closure of 𝒜\mathcal{A} is given by

clK(𝒜):={X𝒳λ>t+ with t<λ and XtK𝒜}.\displaystyle\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}):=\{X\in\mathcal{X}\mid\forall\lambda\in\mathbb{R}_{>}\ \exists t\in\mathbb{R}_{+}\text{ with }t<\lambda\text{ and }X-tK\in\mathcal{A}\}.

𝒜\mathcal{A} is said to be KK-directionally closed if 𝒜=clK(𝒜)\mathcal{A}=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}). The KK-directional interior of 𝒜\mathcal{A} is given by

intK(𝒜):={X𝒳λ>t[0,λ]:X+tK𝒜}\displaystyle\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A}):=\{X\in\mathcal{X}\mid\exists\lambda\in\mathbb{R}_{>}\ \forall t\in[0,\lambda]:X+tK\in\mathcal{A}\}

and the KK-directional boundary of 𝒜\mathcal{A} is

bdK(𝒜):=clK(𝒜)\intK(𝒜).\displaystyle\mathrm{bd}\hskip 1.70709pt_{K}(\mathcal{A}):=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})\backslash\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A}).

The following properties will be useful and are collected from [41]:

Lemma 2.2 (see Tammer and Weidner [41, Lemma 2.3.24]).

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}, 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\}. Then,

clK(𝒜)={X𝒳(tn)n+:tn0n:XtnK𝒜}.\displaystyle\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})=\{X\in\mathcal{X}\mid\exists(t_{n})_{n\in\mathbb{N}}\subseteq\mathbb{R}_{+}:t_{n}\downarrow 0\ \forall n\in\mathbb{N}:X-t_{n}K\in\mathcal{A}\}.
Lemma 2.3 (see Tammer and Weidner [41, Lemma 2.3.26 and 2.3.42, Prop. 2.3.48 and 2.3.49]).

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}, 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\}. Then, the following holds:

  1. (i)

    𝒜clK(𝒜)𝒜++K\mathcal{A}\subseteq\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})\subseteq\mathcal{A}+\mathbb{R}_{+}K,

  2. (ii)

    clK(clK(𝒜))=clK(𝒜)\mathrm{cl}\hskip 1.70709pt_{K}(\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}))=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}),

  3. (iii)

    clK(𝒜)+K=clK(𝒜+K)=clK(𝒜>K)\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})-\mathbb{R}_{+}K=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}-\mathbb{R}_{+}K)=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A}-\mathbb{R}_{>}K),

  4. (iv)

    𝒜>K=clK(𝒜)>K=intK(𝒜>K)=intK(𝒜+K)\mathcal{A}-\mathbb{R}_{>}K=\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})-\mathbb{R}_{>}K=\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A}-\mathbb{R}_{>}K)=\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A}-\mathbb{R}_{+}K).

Lemma 2.4 (see Tammer and Weidner [41, Prop. 2.3.29 and 2.3.53]).

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}, 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\}. Suppose Krec(𝒜)K\in-\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). Then, the following holds:

  1. (i)

    clK(𝒜)={X𝒳X>K𝒜}\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})=\{X\in\mathcal{X}\mid X-\mathbb{R}_{>}K\subseteq\mathcal{A}\},

  2. (ii)

    intK(𝒜)={X𝒜t>:X+tK𝒜}=𝒜>K\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A})=\{X\in\mathcal{A}\mid\exists t\in\mathbb{R}_{>}:X+tK\in\mathcal{A}\}=\mathcal{A}-\mathbb{R}_{>}K,

  3. (iii)

    bdK(𝒜)={X𝒳t>:X+tK𝒜 and XtK𝒜}\mathrm{bd}\hskip 1.70709pt_{K}(\mathcal{A})=\{X\in\mathcal{X}\mid\forall t\in\mathbb{R}_{>}:X+tK\notin\mathcal{A}\text{ and }X-tK\in\mathcal{A}\}.


Now, we suppose that (𝒳,τ)(\mathcal{X},\tau) is a topological vector space over \mathbb{R}. Note that we just write 𝒳\mathcal{X} for (𝒳,τ)(\mathcal{X},\tau) if τ\tau is obvious or not from interest. Elements of τ\tau are called open sets and elements of 𝒳\τ\mathcal{X}\backslash\tau are called closed. If {0}\{0\} is closed, 𝒳\mathcal{X} is called Hausdorff. We say that 𝒳\mathcal{X} is locally convex if it exists {𝒰i}iIτ\{\mathcal{U}_{i}\}_{i\in I}\subseteq\tau of 0 such that the sets 𝒰i\mathcal{U}_{i} are convex. For 𝒜𝒳\mathcal{A}\subseteq\mathcal{X}, cl(𝒜)\mathrm{cl}\hskip 1.70709pt(\mathcal{A}) denotes the closure, bd(𝒜)\mathrm{bd}\hskip 1.70709pt(\mathcal{A}) the boundary and int(𝒜)\mathrm{int}\hskip 1.70709pt(\mathcal{A}) the interior of 𝒜\mathcal{A}. The following lemma gives a connection between topological and directional properties of 𝒜\mathcal{A}:

Lemma 2.5 (see Tammer and Weidner [41, Prop. 2.3.54 and 2.3.55]).

Let 𝒳\mathcal{X} be a topological vector space over \mathbb{R}, 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and K𝒳\{0}K\in\mathcal{X}\backslash\{0\}. Then, the following holds:

  1. (i)

    clK(𝒜)cl(𝒜)\mathrm{cl}\hskip 1.70709pt_{K}(\mathcal{A})\subseteq\mathrm{cl}\hskip 1.70709pt(\mathcal{A}),

  2. (ii)

    int(𝒜)intK(𝒜)𝒜\mathrm{int}\hskip 1.70709pt(\mathcal{A})\subseteq\mathrm{int}\hskip 1.70709pt_{K}(\mathcal{A})\subseteq\mathcal{A},

  3. (iii)

    bdK(𝒜)bd(𝒜)\mathrm{bd}\hskip 1.70709pt_{K}(\mathcal{A})\subseteq\mathrm{bd}\hskip 1.70709pt(\mathcal{A}).

We call (X,)(X,\left\|\cdot\right\|) a normed vector space where 𝒳\mathcal{X} is a vector space (here assumed to be) over \mathbb{R} and \left\|\cdot\right\| denotes a norm on 𝒳\mathcal{X}, i.e., a map :𝒳+\left\|\cdot\right\|\colon\mathcal{X}\rightarrow\mathbb{R}_{+} such that for every X,Y𝒳X,Y\in\mathcal{X} and α\alpha\in\mathbb{R} the following holds: (i) X=0X=0\left\|X\right\|=0\Rightarrow X=0, (ii) αX=|α|X\left\|\alpha X\right\|=\left|\alpha\right|\left\|X\right\| and (iii) the triangle inequality X+YX+Y\left\|X+Y\right\|\leq\left\|X\right\|+\left\|Y\right\|. We write just 𝒳\mathcal{X} for (𝒳,)(\mathcal{X},\left\|\cdot\right\|) if the norm is obvious or not from interest. A sequence (Xk)k𝒳(X_{k})_{k\in\mathbb{N}}\subseteq\mathcal{X} is said to converge in 𝒳\mathcal{X} to the limit X𝒳X\in\mathcal{X} (and we write XkXX_{k}\rightarrow X for k+k\rightarrow+\infty) if limk+XkX=0\lim\limits_{k\rightarrow+\infty}\left\|X_{k}-X\right\|=0. We say (𝒳,)(\mathcal{X},\left\|\cdot\right\|) is complete if each Cauchy sequence has a limit in 𝒳\mathcal{X}. A complete normed vector space is called Banach space. The set

r(Z):={W𝒳WZr}\displaystyle\mathcal{B}_{r}(Z):=\left\{W\in\mathcal{X}\mid\left\|W-Z\right\|\leq r\right\}

denotes the closed ball with center Z𝒳Z\in\mathcal{X} and radius r>0r>0.

Example 2.6.

There are many possible choices for 𝒳\mathcal{X} in the modeling process. Since we will deal with random variables describing payoffs of assets or portfolios and financial risk measures, there are some widely used and suitable spaces, see e.g. Liebrich and Svindland [32]. For measure spaces 𝒳=(Ω,,μ)\mathcal{X}=(\Omega,\mathcal{F},\mu), we consider probability measures :[0,1]\mathbb{P}\colon\mathcal{F}\rightarrow[0,1] on a sigma-algebra 𝒫(Ω)\mathcal{F}\subseteq\mathcal{P}(\Omega) with state space Ω\Omega instead of general measures μ:¯\mu\colon\mathcal{F}\rightarrow\overline{\mathbb{R}}. One possibility for the choice of 𝒳\mathcal{X} is the space of bounded random variables

(Ω,,)={X:Ω|X(ω)|<+ for all ωΩ}.\displaystyle\mathcal{B}(\Omega,\mathcal{F},\mathbb{P})=\{X\colon\Omega\rightarrow\mathbb{R}\mid\left|X(\omega)\right|<+\infty\text{ for all }\omega\in\Omega\}.

If we consider the norm X=supωΩ|X(ω)|\left\|X\right\|_{\mathcal{B}}=\sup\limits_{\omega\in\Omega}\left|X(\omega)\right|, then ((Ω,,),\mathcal{B}(\Omega,\mathcal{F},\mathbb{P}),\left\|\cdot\right\|_{\mathcal{B}}) is a Banach space. Moreover, one can consider p\mathcal{L}^{p}-spaces: If we identify XYX\equiv Y if and only if (XY)=0\mathbb{P}(X\neq Y)=0, then the p\mathcal{L}^{p}-space consists for p[1,+)p\in[1,+\infty) of real-valued pp-integrable functions on a measure space (Ω,,μ)(\Omega,\mathcal{F},\mu). Hence, the space of pp-integrable random variables is denoted by p(Ω,,)\mathcal{L}^{p}(\Omega,\mathcal{F},\mathbb{P}) for 1p<+1\leq p<+\infty and is given by

p(Ω,,)={X:Ω|Xp<+}\displaystyle\mathcal{L}^{p}(\Omega,\mathcal{F},\mathbb{P})=\{X\colon\Omega\rightarrow\mathbb{R}|\left\|X\right\|_{\mathcal{L}^{p}}<+\infty\}

with Xp=(𝔼(|X|p))1p=(Ω|X|p𝑑)1p\left\|X\right\|_{\mathcal{L}^{p}}=(\mathbb{E}(\left|X\right|^{p}))^{\frac{1}{p}}=\left(\int_{\Omega}\left|X\right|^{p}\ d\mathbb{P}\right)^{\frac{1}{p}}. To extend the definition to the case p=+p=+\infty, we set

(Ω,,)={X:Ω|X<+}\displaystyle\mathcal{L}^{\infty}(\Omega,\mathcal{F},\mathbb{P})=\{X\colon\Omega\rightarrow\mathbb{R}|\left\|X\right\|_{\mathcal{L}^{\infty}}<+\infty\}

with X=inf{C0||X(ω)|C-a.s.}\left\|X\right\|_{\mathcal{L}^{\infty}}=\inf\{C\geq 0|\left|X(\omega)\right|\leq C\ \mathbb{P}\text{-a.s.}\} and call (Ω,,)\mathcal{L}^{\infty}(\Omega,\mathcal{F},\mathbb{P}) the space of essential bounded random variables. As before, if the parameters Ω\Omega, \mathcal{F} and \mathbb{P} do not matter or are clear, we just write p\mathcal{L}^{p}. The spaces (p,p)(\mathcal{L}^{p},\left\|\cdot\right\|_{\mathcal{L}^{p}}) and (,)(\mathcal{L}^{\infty},\left\|\cdot\right\|_{\mathcal{L}^{\infty}}) are Banach spaces, since almost-sure identical random variables are identified. Furthermore, qp\mathcal{L}^{q}\subseteq\mathcal{L}^{p} for 1pq+1\leq p\leq q\leq+\infty because of (Ω)<+\mathbb{P}(\Omega)<+\infty.


Consider a map f:𝒳¯f\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} where 𝒳\mathcal{X} is a vector space over \mathbb{R}. Then,

domf:={X𝒳f(X)<+}\displaystyle\mathrm{dom}f:=\{X\in\mathcal{X}\mid f(X)<+\infty\}

is the domain of ff and

epif:={(X,t)𝒳×f(X)t}\displaystyle\mathrm{epi}f:=\{(X,t)\in\mathcal{X}\times\mathbb{R}\mid f(X)\leq t\}

the epigraph of ff. We call f:𝒳¯f\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} proper if domf\mathrm{dom}f\neq\varnothing and f(X)>f(X)>-\infty for all X𝒳X\in\mathcal{X}. If epif\mathrm{epi}f is convex, then ff is said to be convex. ff is said to be linear if

X,Y𝒳,λ,μ:f(λX+μY)=λf(X)+μf(Y).\displaystyle\forall X,Y\in\mathcal{X},\forall\lambda,\mu\in\mathbb{R}:\quad f(\lambda X+\mu Y)=\lambda f(X)+\mu f(Y).

The kernel or null space of a linear map ff is the subspace

kerf:={X𝒳f(X)=0}.\displaystyle\ker f:=\{X\in\mathcal{X}\mid f(X)=0\}.

We call

levf,=(α):={X𝒳f(X)=α}\displaystyle\mathrm{lev}\hskip 1.70709pt_{f,=}(\alpha):=\{X\in\mathcal{X}\mid f(X)=\alpha\}

level line,

levf,(α):={X𝒳f(X)α}\displaystyle\mathrm{lev}\hskip 1.70709pt_{f,\leq}(\alpha):=\{X\in\mathcal{X}\mid f(X)\leq\alpha\}

sublevel set and

levf,<(α):={X𝒳f(X)<α}\displaystyle\quad\mathrm{lev}\hskip 1.70709pt_{f,<}(\alpha):=\{X\in\mathcal{X}\mid f(X)<\alpha\}

strict sublevel set of ff to the level α\alpha\in\mathbb{R}. For short, we denote each of the sets levf,=(α)\mathrm{lev}\hskip 1.70709pt_{f,=}(\alpha), levf,(α)\mathrm{lev}\hskip 1.70709pt_{f,\leq}(\alpha) and levf,<(α)\mathrm{lev}\hskip 1.70709pt_{f,<}(\alpha) level set.

Now, we suppose that 𝒳\mathcal{X} is a topological vector space over \mathbb{R}. ff is called lower semicontinuous if epif\mathrm{epi}f is closed. The set

𝒳:={φ:𝒳φ linear and continuous}\displaystyle\mathcal{X}^{*}:=\{\varphi\colon\mathcal{X}\rightarrow\mathbb{R}\mid\varphi\text{ linear and continuous}\}

denotes the topological dual space. If 𝒳\mathcal{X} is a locally convex Hausdorff space with 𝒳{0}\mathcal{X}\neq\{0\}, there is some non-trivial linear continuous functional, i.e., 𝒳{0}\mathcal{X}^{*}\neq\{0\}. Equivalently,

X𝒳\{0}φ𝒳:φ(X)>0.\displaystyle\forall X\in\mathcal{X}\backslash\{0\}\ \exists\varphi\in\mathcal{X}^{*}:\qquad\varphi(X)>0.

Consequently, for given X,Y𝒳X,Y\in\mathcal{X} with XYX\neq Y, there exists φ𝒳\varphi\in\mathcal{X}^{*} with φ(X)φ(Y)\varphi(X)\neq\varphi(Y).

In vector optimization and other applications it is necessary to compare elements X,Y𝒳X,Y\in\mathcal{X}. Hence, let 𝒳×𝒳\mathcal{R}\subseteq\mathcal{X}\times\mathcal{X} be a binary relation on 𝒳\mathcal{X} and we set XYX\mathcal{R}Y equivalently for (X,Y)(X,Y)\in\mathcal{R}, compare [24] for standard terminology and examples. For our purposes we remember that \mathcal{R} is a partial order if it is reflexive, antisymmetric and transitive. 𝒳\mathcal{X} is said to be partially ordered by \mathcal{R} if \mathcal{R} is a partial order on 𝒳\mathcal{X}. In the following, we write \leq for \mathcal{R}.

Cones in 𝒳\mathcal{X} are suitable for describing binary relations on 𝒳\mathcal{X} and, especially, partial orders. The following theorem specifies that:

Theorem 2.7 (see [24], Theorem 2.1.13).

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}, \leq a reflexive binary relation on 𝒳\mathcal{X} that is compatible with the linear structure of 𝒳\mathcal{X} and 𝒞𝒳\mathcal{C}\subseteq\mathcal{X} a cone.

  1. (i)

    Consider

    𝒞:={(X,Y)𝒳×𝒳YX𝒞}.\displaystyle\leq_{\mathcal{C}}:=\{(X,Y)\in\mathcal{X}\times\mathcal{X}\mid Y-X\in\mathcal{C}\}. (2.1)

    Then, 𝒞\leq_{\mathcal{C}} is a binary relation on 𝒳\mathcal{X}, too, and fulfills the following properties:

    1. (a)

      𝒞\leq_{\mathcal{C}} is reflexive and compatible with the linear structure of 𝒳\mathcal{X},

    2. (b)

      𝒞\leq_{\mathcal{C}} is transitive \Leftrightarrow 𝒞\mathcal{C} is convex,

    3. (c)

      𝒞\leq_{\mathcal{C}} is antisymmetric \Leftrightarrow 𝒞\mathcal{C} is pointed.

  2. (ii)

    Consider

    𝒞:={X𝒳0X}.\displaystyle\mathcal{C}_{\leq}:=\{X\in\mathcal{X}\mid 0\leq X\}.

    Then, 𝒞\mathcal{C}_{\leq} is a cone such that for all X,Y𝒳X,Y\in\mathcal{X}:

    XYX(𝒞)Y.\displaystyle X\leq Y\quad\Longleftrightarrow\quad X\leq_{(\mathcal{C}_{\leq})}Y.

By Theorem 2.7, 𝒞\leq_{\mathcal{C}} from (2.1) is a partial order if and only if 𝒞𝒳\mathcal{C}\subseteq\mathcal{X} is a convex, pointed cone. Thus, we call a convex, pointed cone 𝒞\mathcal{C} an ordering cone. The corresponding partial order 𝒞\leq_{\mathcal{C}} is given by

X,Y𝒳:X𝒞Y:YX𝒞.\displaystyle\forall X,Y\in\mathcal{X}:\ X\leq_{\mathcal{C}}Y:\Longleftrightarrow Y-X\in\mathcal{C}. (2.2)

For example, if 𝒳\mathcal{X} is partially ordered by \leq, the natural ordering cone in 𝒳\mathcal{X} is the positive cone

𝒳+={X𝒳0X}\displaystyle\mathcal{X}_{+}=\{X\in\mathcal{X}\mid 0\leq X\} (2.3)

and the corresponding partial order is simplified denoted \leq instead 𝒳+\leq_{\mathcal{X}_{+}}. Every element X𝒳X\in\mathcal{X} is called positive. One example for \leq is the component-wise ordering on 𝒳=n\mathcal{X}=\mathbb{R}^{n}.

3 The financial market

Our basic market model refers to Baes et al. [3] and Farkas, Koch-Medina, Munari [15]. We consider an one-period-model of a financial market, where an investor choices his or her portfolio at the time t=0t=0, which results in a capital position with some (in general) random payoff at the future time t=1t=1. In this section, we present this model in more detail.


Throughout this paper, we consider a real vector space 𝒳\mathcal{X} called the space of capital positions, usually a space of random variables. Furthermore, let Ω\Omega be the set of possible states in t=1t=1, \mathcal{F} be a σ\sigma-Algebra on Ω\Omega and :[0,1]\mathbb{P}\colon\mathcal{F}\rightarrow[0,1] a probability measure.


While Baes et al. [3] assume a locally convex Hausdorff topological vector space over \mathbb{R} fulfilling the first axiom of countability and Farkas et al. [15] assume a topological vector space over \mathbb{R}, we suppose a real vector space 𝒳\mathcal{X}, which we only extend to be equipped with a topology and further properties where necessary. Sometimes we speak of financial positions instead of capital positions X𝒳X\in\mathcal{X}. Nevertheless, XX is the capital of an investor in the future time t=1t=1 and is given by the residuum of assets and liabilities, i.e., positive outcomes are gains and negative outcomes are losses. 𝒳\mathcal{X} is typically chosen as a space like p\mathcal{L}^{p} with 1p<+1\leq p<+\infty, see Example 2.6. In some situations, we consider a finite set Ω=(ω1,,ωn)\Omega=(\omega_{1},\dots,\omega_{n}), i.e., vectors XnX\in\mathbb{R}^{n} with Xk=X(ωk)X_{k}=X(\omega_{k}) (k=1,,nk=1,\dots,n). For each event \mathcal{B}\in\mathcal{F}, we set

Xa.s.:=(X)=({ωΩX(ω)})=1,\displaystyle X\in\mathcal{B}\ \mathbb{P}-\text{a.s.}\quad:=\quad\mathbb{P}(X\in\mathcal{B})=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)\in\mathcal{B}\})=1,

where ”a.s.” means ”almost surely”. If X,Y𝒳X,Y\in\mathcal{X} are random variables, we write X=YX=Y and XYX\neq Y if and only if (X=Y)=1\mathbb{P}(X=Y)=1 and (X=Y)=0\mathbb{P}(X=Y)=0, respectively. Note that 𝒳\mathcal{X} could be any normed vector space. Furthermore, we suppose 𝒳\mathcal{X} to be partially ordered by the pointed convex cone 𝒳+\mathcal{X}_{+}. The cone is represented by the order relation \leq as given in (2.3). If we consider a space of random variables, e.g. 𝒳=p(Ω,,)\mathcal{X}=\mathcal{L}^{p}(\Omega,\mathcal{F},\mathbb{P}), we understand 0X0\leq X in the sense of \mathbb{P}-a.s.

In the following the superscript T always denotes transposed vectors. As mentioned in the beginning, an investor can invest into a finite set 𝒮\mathcal{S} of eligible assets

Si=(S0i,S1i)T,i{0,1,,N}\displaystyle S^{i}=(S_{0}^{i},S_{1}^{i})^{T},\quad i\in\{0,1,\dots,N\} (3.1)

with NN\in\mathbb{N} in time t=0t=0. Here, S0iS_{0}^{i}\in\mathbb{R} denotes the price in t=0t=0 for one unit of the liquid asset and S1i𝒳S_{1}^{i}\in\mathcal{X} denotes the (in general random) payoff in t=1t=1 for each unit. We set

S0:=(1,(1+r)𝟙Ω)T=(1,1+r)T.\displaystyle S^{0}:=(1,(1+r)\mathds{1}_{\Omega})^{T}=(1,1+r)^{T}. (3.2)

S0S^{0} describes a secure investment opportunity with interest rate r+r\in\mathbb{R}_{+}. Secure means that the payoff is a constant. For every constant random variable X=c𝟙ΩX=c\cdot\mathds{1}_{\Omega}, i.e., (X=c)=1\mathbb{P}(X=c)=1, with cc\in\mathbb{R} arbitrary, we just write X=cX=c. For a collection of all prices or payoffs, respectively, we set

Sj:=(Sj0,Sj1,,SjN)T,j{0,1}.\displaystyle S_{j}:=(S_{j}^{0},S_{j}^{1},\dots,S_{j}^{N})^{T},\qquad j\in\{0,1\}. (3.3)
Remark 3.1.

The secure asset S0S^{0} is not directly assumed by Baes et al. in [3] or Farkas et al. in [15], but makes sense for economical reasons. The existence of such an asset is typical for the most common models in modern financial economics like the Capital Asset Pricing Model (CAPM), which is one of the most known and used equilibrium asset pricing models in theory and practice, see Sharpe [40], Lintner [33] and Mossin [36]. The CAPM outlines the relationship between risk and expected return of an asset. Like originally shown by Sharpe in [39], the firm-specific risks can be diversified, but not the systematic risk (market risk), which is an assumption that seems to be verified regarding the recent Corona-crisis, as seen for example in March 2020 when all global stock markets fell around 30 % - 40 % in regard to the beginning of the year due to the pandemic. Consequently, only the systemic risk is rewarded with a risk premium, which the CAPM and generalizations of it also retain, see e.g. [9].

The secure investment opportunity could be a central bank account or a U.S. treasury bond. We suppose for convenience no interest payments, i.e., r=0r=0, which, of course, is a major simplification as well as that there is only one secure alternative which is especially independent from the time horizon. Moreover, it is well known that r0r\geq 0 is not always true in practice. For instance, European banks are penalized by r=0.4%r=-0.4\%, called deposit facility, since March 2016 if they park money at the European Central Bank (ECB) instead of invest or lend it [12]. Thus, the bank pays money for lending it the ECB. This phenomen does not only concern banks: it is also challenging for assurances. These have to invest money into theoretical secure assets like government bonds by law, but that bonds partly have negative effective interest rates, too, see for example the yields of German government bonds on the 2nd August 2019, which were negative for every maturity.

There has been many research concerning the case of one eligible asset (also, how to choose it), see e.g. Farkas et al. for a defaultable bond 𝒳=(Ω)\mathcal{X}=\mathcal{B}(\Omega) in [13] and [14]. Other spaces have been studied, too, see e.g. Kaina and Rüschendorf in [31] for 𝒳=p\mathcal{X}=\mathcal{L}^{p} or Cheridito and Li in [10] for Orlicz spaces. The actions a decision maker can take into account are described by suitable portfolios of the assets SiS^{i}. The subspace

:=span(1,S11,,S1N)\mathcal{M}:=\mathrm{span}\hskip 1.70709pt(1,S_{1}^{1},\dots,S_{1}^{N}) (3.4)

of 𝒳\mathcal{X} spanned by the secure payoff and S1iS_{1}^{i} with i=1,,Ni=1,\dots,N is called space of the eligible payoffs. We assume linear independent eligible payoffs. Consequently,

1<dim()<+.\displaystyle 1<\dim(\mathcal{M})<+\infty. (3.5)

Every ZZ\in\mathcal{M} describes the random payoff related to a portfolio of those eligible assets. To ensure S10=1𝒳S_{1}^{0}=1\in\mathcal{M}\subseteq\mathcal{X} for cases like 𝒳=p(Ω,,μ)\mathcal{X}=\mathcal{L}^{p}(\Omega,\mathcal{F},\mu), we have to assume a finite measure space, i.e., μ(Ω)<+\mu(\Omega)<+\infty, which is guaranteed here by a probability measure μ=\mu=\mathbb{P}, i.e., (Ω)=1\mathbb{P}(\Omega)=1 for arbitrary Ω\Omega. If 𝒳\mathcal{X} is a topological vector space, then \mathcal{M} is equipped with the relative topology induced by 𝒳\mathcal{X} which is normable through dim<+\dim\mathcal{M}<+\infty. In the following, the fixed norm in \mathcal{M} for topological vector spaces 𝒳\mathcal{X} is given by \left\|\cdot\right\|.

As we consider a financial market, we make the following typical assumptions:

Assumption 1.

For \mathcal{M} being the subspace of 𝒳\mathcal{X} given by (3.4), the Law of One Price holds, i.e., for all ZZ\in\mathcal{M} there exists cc\in\mathbb{R} such that

xN+1 with Z=S1Tx:S0Tx=c\displaystyle\forall x\in\mathbb{R}^{N+1}\text{ with }Z=S_{1}^{T}x:\quad S_{0}^{T}x=c (3.6)

with SjS_{j} given by (3.3) for j{0,1}j\in\{0,1\}. Furthermore, the no-arbitrage principle is fulfilled, i.e., there is no arbitrage opportunity (in the sense of Irle [29, Def. 1.10], see Remark 3.2). Especially, for all xN+1x\in\mathbb{R}^{N+1} with payoff Z=S1TxZ=S_{1}^{T}x, it holds that

(S0Tx0Z0a.s.)S0Tx=0=(Z>0).\displaystyle(S_{0}^{T}x\leq 0\ \land\ Z\geq 0\ \mathbb{P}-a.s.)\quad\Longrightarrow\quad S_{0}^{T}x=0=\mathbb{P}(Z>0). (3.7)
Remark 3.2.

The no-arbitrage principle in Assumption 1 uses the arbitrage terminology from Irle [29, Def. 1.10], where an arbitrage opportunity is defined as xN+1x\in\mathbb{R}^{N+1} with

S0Tx0(S1Tx0)=1 and it holds S0Tx<0(S1Tx>0)>0.\displaystyle S^{T}_{0}x\leq 0\ \land\ \mathbb{P}(S_{1}^{T}x\geq 0)=1\quad\text{ and it holds }\quad S_{0}^{T}x<0\ \lor\ \mathbb{P}(S_{1}^{T}x>0)>0.

Irle notes in [29, Anmerkung 1.11] that an one-period-model is arbitrage-free if there is no arbitrage opportunity with S0Tx=0S_{0}^{T}x=0. In the definition of arbitrage by Föllmer and Schied in [20, Def. 1.2], the case S0Tx<0S_{0}^{T}x<0 is not included.

Nevertheless, we consider two types of arbitrage here, namely free lunch, i.e., S0Tx<0S_{0}^{T}x<0, and free lottery (or money machine), i.e., (S1Tx>0)>0\mathbb{P}(S_{1}^{T}x>0)>0 (see Bamberg [5]). An illustrative introduction to the arbitrage principle and mathematical studies for especially derivative assets can be found in [42] and a bride more general mathematical introduction in [11]. In [28] and [9], the economical background is presented, especially the distinction between arbitrage, hedging and speculation, and its role in capital market theory. The arbitrage in the explicit example of Japan is studied in [35].

Portfolios x=(x0,x1,,xN)TN+1x=(x_{0},x_{1},\dots,x_{N})^{T}\in\mathbb{R}^{N+1} with the same payoff have the same initial price by Law of One Price, which, especially, leads to a unique price for every eligible payoff ZZ\in\mathcal{M}. Following Baes et al. [3], we define a pricing functional π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} (with \mathcal{M} given by (3.4)) as

π(Z):=S0Tx for all xN+1:Z=S1Tx.\displaystyle\pi(Z):=S_{0}^{T}x\ \text{ for all }x\in\mathbb{R}^{N+1}:\ Z=S_{1}^{T}x. (3.8)

Of course, π\pi is a linear operator. If 𝒳\mathcal{X} is a topological vector space, then π\pi is also continuous, since dim<+\dim\mathcal{M}<+\infty. An important property is the monotonicity of π\pi. In contrast to [34], where the absence of good deals was required, we show that π\pi is always monotonically increasing, i.e.,

Z1,Z2:Z2Z1𝒳+π(Z1)π(Z2).\displaystyle\forall Z_{1},Z_{2}\in\mathcal{M}:\quad Z_{2}-Z_{1}\in\mathcal{X}_{+}\quad\Longrightarrow\quad\pi(Z_{1})\leq\pi(Z_{2}). (3.9)
Lemma 3.3.

Let Assumption 1 be fulfilled. Then, the pricing functional π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} from (3.8) is monotonically increasing on \mathcal{M} (see (3.9)).

Proof.

Let Z1,Z2Z_{1},Z_{2}\in\mathcal{M} with Z2Z1𝒳+Z_{2}-Z_{1}\in\mathcal{X}_{+} and Z1Z2Z_{1}\neq Z_{2} \mathbb{P}-a.s., i.e.,

(Z2Z1>0)=1.\displaystyle\mathbb{P}(Z_{2}-Z_{1}>0)=1.

If π(Z2)<π(Z1)\pi(Z_{2})<\pi(Z_{1}), i.e., π(Z2Z1)<0\pi(Z_{2}-Z_{1})<0 holds, then Z2Z1Z_{2}-Z_{1}\in\mathcal{M} is a free lunch - arbitrage as mentioned in Remark 3.2, which contradicts the no-arbitrage-principle in Assumption 1. Thus, π(Z2)π(Z1)\pi(Z_{2})\geq\pi(Z_{1}) must hold. ∎

Remark 3.4.

The Law of One Price in Assumption 1 secures that π\pi is well-defined while the no-arbitrage principle implies monotonicity of π\pi, as seen in the proof of Lemma 3.3. Especially, if there exist no arbitrage opportunities, then kerπ𝒳+={0}\ker\pi\cap\mathcal{X}_{+}=\{0\} and, thus, we have π(Z)>0\pi(Z)>0 for all Z(𝒳+)\{0}Z\in(\mathcal{M}\cap\mathcal{X}_{+})\backslash\{0\} by monotonicity of π\pi. Conversely, monotonicity of π\pi does not imply that the no-arbitrage-principle is fulfilled, e.g. if 𝒳=2=\mathcal{X}=\mathbb{R}^{2}=\mathcal{M} and π(Z)=Z2\pi(Z)=Z_{2}, since kerπ𝒳+=+×{0}\ker\pi\cap\mathcal{X}_{+}=\mathbb{R}_{+}\times\{0\}.

All eligible assets with the same price mm\in\mathbb{R} are summarized by

πm:={Zπ(Z)=m}.\displaystyle\pi_{m}:=\{Z\in\mathcal{M}\mid\pi(Z)=m\}. (3.10)

If there are Z1,Z2Z_{1},Z_{2}\in\mathcal{M} with Z2Z1𝒳+Z_{2}-Z_{1}\in\mathcal{X}_{+} and Z1Z2Z_{1}\neq Z_{2}, then 𝒳+{0}\mathcal{M}\cap\mathcal{X}_{+}\neq\{0\}. Especially, we can consider Z1=0Z_{1}=0. As in [3], we assume the existence of U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} with strict positive price, i.e.,

𝒳+m>0πm.\displaystyle\mathcal{X}_{+}\cap\bigcup_{m>0}\pi_{m}\neq\varnothing.

Since π\pi is a linear functional, we can simplified assume π(U)=1\pi(U)=1.

Assumption 2.

For \mathcal{M} being the subspace of 𝒳\mathcal{X} given by (3.4) and π\pi defined by (3.8), there exists some positive payoff U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} with π(U)=1\pi(U)=1.

Note that the Law of One Price from Assumption 1 is automatically fulfilled by Assumption 2 because the existence of π\pi is required in Assumption 2.

Remark 3.5.

Since 11\in\mathcal{M}, we can set U=S10=1U=S_{1}^{0}=1. In general, m=mS10m=m\cdot S^{0}_{1}\in\mathcal{M} for constant mm\in\mathbb{R} because spanS10=\mathrm{span}\hskip 1.70709ptS_{1}^{0}=\mathbb{R}\subseteq\mathcal{M}. Indeed, since S0=(1,1)S^{0}=(1,1), we have

π(m)=mπ(S10)=mS00=m1=m.\displaystyle\pi(m)=m\cdot\pi(S_{1}^{0})=m\cdot S_{0}^{0}=m\cdot 1=m.

Note that we will work with arbitrary U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} in the following instead of fixing U=1U=1 for application of our results to models in other research where 11\in\mathcal{M} is not assumed.

As observed in [15] for a topological vector space 𝒳\mathcal{X} and proved in [34], we can rewrite (3.10) by Assumption 2 for 𝒳\mathcal{X} being a vector space, since no topological properties are required in the proof:

Lemma 3.6 (see [15]).

Let Assumption 2 be fulfilled. Accordingly to Assumption 2, we consider an arbitrarily chosen element U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} with π(U)=1\pi(U)=1 and mm\in\mathbb{R}. Then,

πm=mU+kerπ\displaystyle\pi_{m}=m\cdot U+\ker\pi

for πm\pi_{m} given by (3.10).

Remark 3.7.

It can be shown for π(U)\{0}\pi(U)\in\mathbb{R}\backslash\{0\} arbitrary that πm\pi_{m} coincides with mπ(U)U+kerπ\frac{m}{\pi(U)}\cdot U+\ker\pi for every mm\in\mathbb{R}, see [15].

Remark 3.8.

The kernel of π\pi will be very important for our results. By Rank-Nullity Theorem,

dim()=dim(kerπ)+dim(Im(π))\displaystyle\dim(\mathcal{M})=\dim(\ker\pi)+\dim(\mathrm{Im}(\pi))

holds and, thus, dim(kerπ)=dim()1\dim(\ker\pi)=\dim(\mathcal{M})-1, since Im(π)=\mathrm{Im}(\pi)=\mathbb{R} for π0\pi\not\equiv 0 (this is excluded by existence of UU in Assumption 2). Consequently, kerπ{0}\ker\pi\neq\{0\} because dim()>1\dim(\mathcal{M})>1 is supposed by (3.5).

4 Risk associated with regulatory constraints

Let 𝒳\mathcal{X} be a vector space above \mathbb{R}, 𝒳\mathcal{M}\subseteq\mathcal{X} the space of eligible payoffs SiS^{i} from (3.4) fulfilling (3.5) and π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} a pricing functional given by (3.8). The so called acceptance set specifies those positions which are allowed to be occupied. The decision maker has to decide which actions can be undertaken to modify the current financial position such that the new one is acceptable if the current one is not. On the other hand, if the current position is already acceptable, the decision maker could set money free while the position is remaining acceptable and the money could be used otherwise. A suitable set for describing all capital positions X𝒳X\in\mathcal{X} being acceptable capitalized with respect to regulatory constraints can be defined in the following way (see Baes et al. [3] and Artzner et al. [1]):

Definition 4.1.

Let 𝒳\mathcal{X} be a vector space over \mathbb{R}. A set 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} is called acceptance set if the following conditions hold:

  1. (i)

    0𝒜0\in\mathcal{A},

  2. (ii)

    𝒜𝒳\mathcal{A}\subsetneq\mathcal{X} (proper),

  3. (iii)

    𝒜+𝒳+𝒜\mathcal{A}+\mathcal{X}_{+}\subseteq\mathcal{A}, i.e., for all X𝒜X\in\mathcal{A}, YX+𝒳+Y\in X+\mathcal{X}_{+} implies Y𝒜Y\in\mathcal{A} (monotonicity).

Now, after we completed our financial setting, we consider the financial model (FM) in the space of capital positions 𝒳\mathcal{X} with the probability space (Ω,,\Omega,\mathcal{F},\mathbb{P}) (see Section 3) throughout the paper:

(FM):\displaystyle(\mathrm{FM}):\quad Si×𝒳(i=0,1,,N) is the i-th eligible asset from (3.1)\displaystyle S^{i}\in\mathbb{R}\times\mathcal{X}\ (i=0,1,\dots,N)\text{ is the }i\text{-th eligible asset from }\eqref{def:eligible_assets} with S0 being the secure investment opportunity from (3.2),\displaystyle\text{with }S^{0}\text{ being the secure investment opportunity from \eqref{def:eligible_assets_secure}},  is the subspace of 𝒳 given by (3.4) fulfilling (3.5),\displaystyle\mathcal{M}\text{ is the subspace of }\mathcal{X}\text{ given by }\eqref{calM}\text{ fulfilling }\eqref{eq:dim_M}, π: is the pricing functional given by (3.8),\displaystyle\pi\colon\mathcal{M}\rightarrow\mathbb{R}\text{ is the pricing functional given by }\eqref{def:pi_Z}, 𝒜𝒳 is an acceptance set according to Definition 4.1\displaystyle\mathcal{A}\subseteq\mathcal{X}\text{ is an acceptance set according to Definition \ref{def:acceptanceset}} and Assumption 1 is fulfilled.

Remark 4.2.

Acceptance sets are nonempty by (i). Note that (i) and (iii) in Definition 4.1 provide 𝒳+𝒜\mathcal{X}_{+}\subseteq\mathcal{A} and, especially, m𝟙Ω𝒜m\cdot\mathds{1}_{\Omega}\in\mathcal{A} for all m+m\in\mathbb{R}_{+}. For U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} as in Assumption 2, we obtain by (iii)

𝒜++U𝒜,\displaystyle\mathcal{A}+\mathbb{R}_{+}U\subseteq\mathcal{A},

i.e., Urec𝒜U\in\mathrm{rec}\hskip 1.70709pt\mathcal{A}. More precisely, we have

𝒜++U=𝒜.\displaystyle\mathcal{A}+\mathbb{R}_{+}U=\mathcal{A}. (4.1)

Furthermore, we get U𝒜U\in\mathcal{A} by (i) and (4.1).

The definition is motivated by Baes et al. [3], but we do not assume 𝒜\mathcal{A} to be closed, in general.

Remark 4.3.

All properties of the risk measure that we are studying in Section 5 can be shown without any assumption with respect to the closedness of 𝒜\mathcal{A}. In [15], only 𝒜𝒳\varnothing\neq\mathcal{A}\subsetneq\mathcal{X} and 𝒜+𝒳+𝒜\mathcal{A}+\mathcal{X}_{+}\subseteq\mathcal{A} are required by an acceptance set (which is called a capital adequacy test there) and (𝒜,,π)(\mathcal{A},\mathcal{M},\pi) is called risk measurement regime. Farkas et al. argue that their stated properties can be united with expectations from nontrivial capital adequacy tests. That means, especially, that positions are automatically acceptable if they dominate any acceptable position. Baes et al. observe in [3] that their requirements with additionally assumption 0𝒜0\in\mathcal{A} and closedness of 𝒜\mathcal{A} are widely assumed in practice. By 0𝒜0\in\mathcal{A}, it is acceptable if a financial position is constant zero. This property can be easily reached for other acceptance sets by translation. Note that convexity of 𝒜\mathcal{A} is often required in other frameworks, but some essential acceptance sets do not fulfill this, see the following example. Further terminology was introduced by several authors, like convex acceptance sets by Föllmer and Schied in [18] and Frittelli and Rosazza Gianin in [21] for 𝒜\mathcal{A} being convex, conic acceptance set by Farkas et al. in [15] for 𝒜\mathcal{A} being a cone and coherent acceptance sets by Artzner et al. in [1] for 𝒜\mathcal{A} being a convex cone.

Acceptance sets are mostly given by risk measures in practice. An axiomatic approach to define (coherent) risk measures is introduced by Artzner et al. in [1] and generalized to convex risk measures by Föllmer and Schied in [18] and Frittelli and Rosazza Gianin in [21]:

Definition 4.4 (see [1],[18], [21]).

Let 𝒳\mathcal{X} be a real vector space. A functional ρ:𝒳¯\rho\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} is called (monetary) risk measure if the following conditions hold:

  1. (i)

    X,Y𝒳:YX𝒳+ρ(Y)ρ(X)\forall X,Y\in\mathcal{X}:\ Y-X\in\mathcal{X}_{+}\Rightarrow\rho(Y)\leq\rho(X) (monotonicity),

  2. (ii)

    m,X𝒳:ρ(X+m)=ρ(X)m\forall m\in\mathbb{R},\forall X\in\mathcal{X}:\ \rho(X+m)=\rho(X)-m (translation invariance).

A (monetary) risk measure ρ\rho is called convex risk measure if it fulfills additionally

X,Y𝒳,λ[0,1]:ρ(λX+(1λ)Y)λρ(X)+(1λ)ρ(Y).\displaystyle\forall X,Y\in\mathcal{X},\forall\lambda\in[0,1]:\ \rho(\lambda X+(1-\lambda)Y)\leq\lambda\rho(X)+(1-\lambda)\rho(Y). (4.2)

ρ\rho is called coherent risk measure if it is a convex risk measure fulfilling the following property of positive homogeneity:

X𝒳,λ+:ρ(λX)=λρ(X).\displaystyle\forall X\in\mathcal{X},\forall\lambda\in\mathbb{R}_{+}:\quad\rho(\lambda X)=\lambda\rho(X). (4.3)
Remark 4.5.

In Definition 4.4, the property translation invariance is also known as cash invariance. It is important to mention that we consider functionals from 𝒳\mathcal{X} into the space of extended real values ¯={+}{}\overline{\mathbb{R}}=\mathbb{R}\cup\{+\infty\}\cup\{-\infty\} with the properties (i) and (ii) in Definition 4.4. Furthermore, there are different definitions of risk measures in the literature. While some authors define a risk measure as any map ρ:𝒳\rho\colon\mathcal{X}\rightarrow\mathbb{R} (see Artzner et al. [1, Def. 2.1]), i.e., an arbitrary map with overall finiteness, other authors define risk measures as a map ρ:𝒳\rho\colon\mathcal{X}\rightarrow\mathbb{R} with the properties in Definition 4.4 (see Föllmer, Schied [20, Def. 4.1]) or as a map ρ:𝒳{+}\rho\colon\mathcal{X}\rightarrow\mathbb{R}\cup\{+\infty\} with the properties in Definition 4.4, but assume ρ(0)\rho(0)\in\mathbb{R} (see Föllmer, Schied [19, Def. 2.1]) additionally to the required properties in our more general definition. Note that ρ(0)=0\rho(0)=0 for positive homogeneous risk measures (see (4.3)), since

λ+:ρ(0)=ρ(λ0)=λρ(0)\displaystyle\forall\lambda\in\mathbb{R}_{+}:\quad\rho(0)=\rho(\lambda\cdot 0)=\lambda\rho(0)

holds.

Convex risk measures are important because only these take diversification into account. More exactly, diversification means that the decision maker invests a portion λ[0,1]\lambda\in[0,1] into a possible strategy or investment opportunity with output X𝒳X\in\mathcal{X} and the remaining part into another one with output Y𝒳Y\in\mathcal{X}. The convexity of the risk measure (see (4.2)) implies that diversification should not increase the risk, which can be expressed by the (for monetary risk measures as given by Definition 4.4) equivalent condition of quasi-convexity (see [16]), i.e.,

X,Y𝒳,λ[0,1]:ρ(λX+(1λ)Y)max{ρ(X),ρ(Y)}.\displaystyle\forall X,Y\in\mathcal{X},\forall\lambda\in[0,1]:\quad\rho(\lambda X+(1-\lambda)Y)\leq\max\{\rho(X),\rho(Y)\}.

As mentioned in Example 2.6, typical spaces of capital positions are p\mathcal{L}^{p}-space, especially with 1p+1\leq p\leq+\infty, see e.g. [21] and [18]. Biagini and Frittelli showed in [8] that there are no finite convex risk measures for 𝒳=p\mathcal{X}=\mathcal{L}^{p} with 0p<10\leq p<1 which are not constant.

Example 4.6 (see Föllmer, Schied [20] and Baes et al. [3]).

Let (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) be a probability space. Consider some confidence level α(0,1)\alpha\in(0,1). Furthermore, let ρ:𝒳¯\rho\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} be a (monetary) risk measure with ρ(0)0\rho(0)\leq 0. Then,

𝒜ρ:={X𝒳ρ(X)0}\displaystyle\mathcal{A}_{\rho}:=\{X\in\mathcal{X}\mid\rho(X)\leq 0\}

is an acceptance set. 𝒜ρ\mathcal{A}_{\rho} is closed if ρ\rho is a coherent risk measure because in that case ρ\rho is continuous and 𝒜ρ\mathcal{A}_{\rho} is the pre-image of \mathbb{R}_{-}, see Artzner et al. [1], Prop. 2.2. Furthermore, ρ\rho is also continuous and, thus, 𝒜ρ\mathcal{A}_{\rho} closed if (𝒳,)(\mathcal{X},\left\|\cdot\right\|) is a Banach lattice, e.g. p\mathcal{L}^{p} with p\left\|\cdot\right\|_{\mathcal{L}^{p}} or \mathcal{L}^{\infty} with \left\|\cdot\right\|_{\mathcal{L}^{\infty}}, and ρ\rho is finite, i.e., ρ:𝒳\rho\colon\mathcal{X}\rightarrow\mathbb{R}, see [32]. 𝒜ρ\mathcal{A}_{\rho} is convex (a cone) if and only if ρ\rho is convex (positively homogeneous), see [20], Prop. 4.6. Thus, ρ\rho is a coherent risk measure if and only if 𝒜ρ\mathcal{A}_{\rho} is a convex cone.

In the following, X𝒳X\in\mathcal{X} describes a random payoff with a return distribution. An example for a risk measure is the Value-at-Risk of X𝒳X\in\mathcal{X} at the level α\alpha, which is given by

VaRα(X):=inf{m(X+m<0)α},\displaystyle\mathrm{VaR}\hskip 1.70709pt_{\alpha}(X):=\inf\{m\in\mathbb{R}\mid\mathbb{P}(X+m<0)\leq\alpha\},

see [20, Def. 4.45]. It can be interpreted as the smallest amount of capital that has to be added to the financial position XX to reach a probability of a loss that is not higher than α\alpha. The corresponding acceptance set 𝒜VaRα\mathcal{A}_{\mathrm{VaR}\hskip 1.70709pt_{\alpha}} is a cone, since VaRα\mathrm{VaR}\hskip 1.70709pt_{\alpha} is a positively homogeneous (monetary) risk measure. Therefore, 𝒜VaRα\mathcal{A}_{\mathrm{VaR}\hskip 1.70709pt_{\alpha}} is a conic acceptance set (see [20]), which does not have to be convex, since VaRα\mathrm{VaR}\hskip 1.70709pt_{\alpha} is not convex.

Another example for ρ\rho is the Average-Value-at-Risk of X𝒳X\in\mathcal{X} at the level α\alpha (also known as Conditional-Value-at-Risk or Expected Shortfall, see [20]), which is given by

AVaRα(X):=1α0αVaRs(X)𝑑s,\displaystyle\mathrm{AVaR}\hskip 1.70709pt_{\alpha}(X):=\frac{1}{\alpha}\int_{0}^{\alpha}\mathrm{VaR}\hskip 1.70709pt_{s}(X)\ ds, (4.4)

see [20, Def. 4.48] and [37]. The corresponding acceptance set 𝒜AVaRα\mathcal{A}_{\mathrm{AVaR}\hskip 1.70709pt_{\alpha}} is a closed, convex cone and, therefore, a coherent acceptance set, since AVaRα\mathrm{AVaR}\hskip 1.70709pt_{\alpha} is a positively homogeneous, quasi-convex (monetary) risk measure (see [20, Theorem 4.52]). Note that, as mentioned before Example 4.6, quasi-convex risk measures are also convex. Consequently, quasi-convex risk measures are coherent risk measures if they are positive homogeneous.

In general, institution do not have to fulfill just one regulatory precondition. If the single preconditions are described by acceptance sets 𝒜j\mathcal{A}_{j}, j=1,,mj=1,\dots,m, then, obviously,

𝒜reg:=j=1m𝒜j\displaystyle\mathcal{A}_{reg}:=\bigcap_{j=1}^{m}\mathcal{A}_{j}

is an acceptance set, too.

A typical assumption in financial mathematics is that it can not be found a good deal:

Assumption 3 (absence of good deals).

Consider (FM). It holds π(Z)>0\pi(Z)>0 for all payoffs Z(𝒜)\{0}{Z\in(\mathcal{A}\cap\mathcal{M})\backslash\{0\}}.

The following lemma gives a characterization for the absence of good deals. Baes et al. derived the following result in [3, Prop. 2.6 (iii)] for closed acceptance sets in a locally convex Hausdorff topological vector space above \mathbb{R} fulfilling the first axiom of countability. However, it is possible to show a corresponding result for our setting, as well.

Lemma 4.7.

Consider (FM). Let Assumption 2 be fulfilled and

𝒜(>U)=\displaystyle\mathcal{A}\cap(-\mathbb{R}_{>}U)=\varnothing (4.5)

with U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} being the payoff according to Assumption 2. Then, the following conditions are equivalent:

  1. (i)

    Z(𝒜)\{0}:π(Z)0\nexists Z\in(\mathcal{A}\cap\mathcal{M})\backslash\{0\}:\ \pi(Z)\leq 0,

  2. (ii)

    𝒜kerπ={0}\mathcal{A}\cap\ker\pi=\{0\}.

An example that the equivalence in Lemma 4.7 does not hold if (4.5) is not fulfilled can be found in [3, Example 2.9].

Remark 4.8.

In Lemma 4.7, (i) \Rightarrow (ii) holds even if (4.5) is not fulfilled. Sufficient conditions for (4.5)\eqref{eq:span_U_no_good_deals} are also observed by Baes et al. in [3], Prop. 2.6, namely 𝒜(𝒜)={0}\mathcal{A}\cap(-\mathcal{A})=\{0\} and 𝒜(𝒳+)={0}\mathcal{A}\cap(-\mathcal{X}_{+})=\{0\}. Note that, although 𝒜\mathcal{A} is assumed to be closed in [3], the closedness is not used in the proof there. Consequently, the result holds in our setting, as well.

To pass an acceptability test given by 𝒜\mathcal{A}, the decision maker is obviously interested in the minimal capital amount that has to be raised and invested into the assets SiS^{i}, i=0,1,,Ni=0,1,\dots,N from (3.1) to reach a new capital position X0𝒜X^{0}\in\mathcal{A}. Hence, following [15] and [3], we consider the nonlinear functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} with arbitrary subset 𝒜𝒳\mathcal{A}\subseteq\mathcal{X} and subspace 𝒳\mathcal{M}\subseteq\mathcal{X} given by

ρ𝒜,,π(X):=inf{π(Z)Z,X+Z𝒜}.\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X):=\inf\{\pi(Z)\mid Z\in\mathcal{M},X+Z\in\mathcal{A}\}. (4.6)

Functionals from type (4.6) were studied and called capital requirement in [38] and [22]. In a similiar financial setting as here with 𝒜\mathcal{A} being an acceptance set and \mathcal{M} defined as in (3.4), the functional (4.6) was studied by Farkas et al. in [15] and by Baes et al. in [3], where ρ𝒜,,π(X)\rho_{\mathcal{A},\mathcal{M},\pi}(X) describes the capital requirement for the situation we mentioned at the beginning. We call ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} the risk measure on 𝒳\mathcal{X} associated to 𝒜\mathcal{A} and \mathcal{M}. Note that there is no probability measure necessary for defining ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}. In the case of ρ𝒜,,π(X)<0\rho_{\mathcal{A},\mathcal{M},\pi}(X)<0, the current capital position XX can be changed under setting money free to reach acceptability which does not mean that XX is already acceptable (even if ρ𝒜,,π(X)=0\rho_{\mathcal{A},\mathcal{M},\pi}(X)=0), i.e.,

ρ𝒜,,π(X)0\centernotX𝒜,\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq 0\quad\centernot\Longrightarrow\quad X\in\mathcal{A},

see [34, Remark 4.4]. On the other hand,

X𝒜ρ𝒜,,π(X)0\displaystyle X\in\mathcal{A}\quad\Longrightarrow\quad\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq 0

because 00\in\mathcal{M} and π(0)=0\pi(0)=0.

5 Properties of the risk measure ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}

In this section, we study ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} given by (4.6) with respect to (FM) in more detail. First, we recall a result by Farkas et al. [15] (a proof can be found in [34]) that ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is monotone and translation invariant, i.e., a risk measure, indeed (see Definition 4.4). Although Farkas et al. [15] worked in a topological vector space, the result also works for vector spaces, since no topological properties are used in the proof.

Lemma 5.1 (see Farkas et al. [15, Lemma 2.8]).

Consider (FM). Let Assumption 2 be fulfilled and ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} be the functional given by (4.6). Then, the following holds:

  1. (i)

    ρ𝒜,,π(X)ρ𝒜,,π(Y)\rho_{\mathcal{A},\mathcal{M},\pi}(X)\geq\rho_{\mathcal{A},\mathcal{M},\pi}(Y) for all X,Y𝒳X,Y\in\mathcal{X} with YX+𝒳+Y\in X+\mathcal{X}_{+},

  2. (ii)

    ρ𝒜,,π(X+Z)=ρ𝒜,,π(X)π(Z)\rho_{\mathcal{A},\mathcal{M},\pi}(X+Z)=\rho_{\mathcal{A},\mathcal{M},\pi}(X)-\pi(Z) for all X𝒳,ZX\in\mathcal{X},Z\in\mathcal{M},

Remark 5.2.

Property (i) means that ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is monotone while (ii) is also known as cash invariance or translation invariance and has important consequences. Let X𝒳X\in\mathcal{X} arbitrary and U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} given as in Assumption 2. By (ii), we have especially

ρ𝒜,,π(X+mU)=ρ𝒜,,π(X)m\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X+mU)=\rho_{\mathcal{A},\mathcal{M},\pi}(X)-m

for all mm\in\mathbb{R} and, thus,

ρ𝒜,,π(X+ρ𝒜,,π(X)U)=0.\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X+\rho_{\mathcal{A},\mathcal{M},\pi}(X)U)=0.

If 𝒜\mathcal{A} fulfills (4.5), see Lemma 4.7, and Assumption 3 is fulfilled, then ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is normalized, i.e., ρ𝒜,,π(0)=0\rho_{\mathcal{A},\mathcal{M},\pi}(0)=0, which implies 0bdU(𝒜)0\in\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}) and, thus, 0bd(𝒜)0\in\mathrm{bd}\hskip 1.70709pt(\mathcal{A}) for topological vector spaces 𝒳\mathcal{X}. Consequently,

Z:ρ𝒜,,π(Z)=ρ𝒜,,π(0)π(Z)=π(Z).\displaystyle\forall Z\in\mathcal{M}:\ \rho_{\mathcal{A},\mathcal{M},\pi}(Z)=\rho_{\mathcal{A},\mathcal{M},\pi}(0)-\pi(Z)=-\pi(Z).

Thus, (ii) is equivalent to cash additivity, i.e.,

X𝒳Z:ρ𝒜,,π(X+Z)=ρ𝒜,,π(X)+ρ𝒜,,π(Z).\displaystyle\forall X\in\mathcal{X}\ \forall Z\in\mathcal{M}:\quad\rho_{\mathcal{A},\mathcal{M},\pi}(X+Z)=\rho_{\mathcal{A},\mathcal{M},\pi}(X)+\rho_{\mathcal{A},\mathcal{M},\pi}(Z). (5.1)

By Lemma 5.1, the functional ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} from (4.6) is a (monetary) risk measure, see Definition 4.4. Note that we do not assume ρ(0)\rho(0)\in\mathbb{R} in contrast to some other definitions for risk measures in the literature, see Remark 4.5. Especially, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is no coherent risk measure (see Definition 4.4) in general, since ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is not always normalized, i.e., ρ𝒜,,π(0)0\rho_{\mathcal{A},\mathcal{M},\pi}(0)\neq 0, and, thus, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is not positive homogeneous (see Remark 4.5). Moreover, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is not always convex. Nevertheless, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is a coherent risk measure if 𝒜\mathcal{A} is a convex cone (see Lemma 5.27).

ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is a translation invariant functional by Lemma 5.1(ii). As mentioned in the introduction, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} can be seen as a generalization of the scalarizing functional (1.1), which has monotonicity and translation invariance properties, too. More exactly, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} can be reduced to a functional of that type, which is given by the following important relation between ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} and the payoff U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} according to Assumption 2, the so called Reduction Lemma:

Lemma 5.3 (see Farkas et al. [15], Reduction Lemma 2.10).

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} and ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} be the functional given by (4.6). Then,

X𝒳:ρ𝒜,,π(X)=inf{mX+mU𝒜+kerπ}.\displaystyle\forall X\in\mathcal{X}:\quad\rho_{\mathcal{A},\mathcal{M},\pi}(X)=\inf\{m\in\mathbb{R}\mid X+mU\in\mathcal{A}+\ker\pi\}.

The proof of Lemma 5.3 in [15] does not require any topological properties: it only uses the representation

ρ𝒜,,π(X)=inf{m(X+πm)𝒜}\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X)=\inf\{m\in\mathbb{R}\mid(X+\pi_{m})\cap\mathcal{A}\neq\varnothing\}

and Lemma 3.6. Hence, we formulated Lemma 5.3 for vector spaces instead of topological vector spaces as in [15].

Remark 5.4.

Note that ρ𝒜,,π(X)\rho_{\mathcal{A},\mathcal{M},\pi}(X)\in\mathbb{R} does not necessary lead to the existence of a movement ZZ\in\mathcal{M} such that X+Z𝒜X+Z\in\mathcal{A} with π(Z)=ρ𝒜,,π(X)\pi(Z)=\rho_{\mathcal{A},\mathcal{M},\pi}(X), see e.g. [34], Example 4.15. By Lemma 5.3, minimal costs for reaching acceptability can be determined by just considering movements mUmU\in\mathcal{M} with mm\in\mathbb{R} and U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} the payoff according to Assumption 2 instead of all movements ZZ\in\mathcal{M}. Therefore, ρ𝒜,,π(X)\rho_{\mathcal{A},\mathcal{M},\pi}(X) is given by the minimal mm\in\mathbb{R} such that the movement through mUmU results in a position in 𝒜+kerπ\mathcal{A}+\ker\pi. Consequently, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} can be reduced to a functional from the type (1.1) through

ρ𝒜,,π(X)=inf{mX𝒜+kerπmU}=φ𝒜+kerπ,U(X).\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X)=\inf\{m\in\mathbb{R}\mid X\in\mathcal{A}+\ker\pi-mU\}=\varphi_{\mathcal{A}+\ker\pi,-U}(X).

The set 𝒜+kerπ\mathcal{A}+\ker\pi will be important for our studies and can be naturally interpreted as the set of those capital positions that can be made acceptable by zero costs. 𝒜+kerπ\mathcal{A}+\ker\pi is nonempty, since 0𝒜+kerπ0\in\mathcal{A}+\ker\pi. Properties of 𝒜+kerπ\mathcal{A}+\ker\pi with respect to the direction UU will be from special interest. The following lemma states that 𝒜+kerπ\mathcal{A}+\ker\pi fulfilles the monotonicity property for acceptance sets:

Lemma 5.5.

Consider (FM). Let X𝒜+kerπX\in\mathcal{A}+\ker\pi. Then, Y𝒜+kerπY\in\mathcal{A}+\ker\pi for every Y𝒳Y\in\mathcal{X} with YX𝒳+Y-X\in\mathcal{X}_{+}.

Proof.

Let X,Y𝒳X,Y\in\mathcal{X} with X𝒜+kerπX\in\mathcal{A}+\ker\pi and YX𝒳+Y-X\in\mathcal{X}_{+}. Then, there exist X0𝒜X^{0}\in\mathcal{A} and Z0kerπZ^{0}\in\ker\pi with X0=XZ0X^{0}=X-Z^{0}. Consequently, YZ0𝒜Y-Z^{0}\in\mathcal{A} by monotonicity of 𝒜\mathcal{A}, see Definition 4.1(iii), since

(YZ0)X0=(YZ0)(XZ0)=YX𝒳+.\displaystyle(Y-Z^{0})-X^{0}=(Y-Z^{0})-(X-Z^{0})=Y-X\in\mathcal{X}_{+}.

Thus, Y=(YZ0)+Z0𝒜+kerπY=(Y-Z^{0})+Z^{0}\in\mathcal{A}+\ker\pi holds. ∎

Remark 5.6.

Note that the proof of Lemma 5.5 does not trivially follow by monotonicity of 𝒜\mathcal{A} in Definition 4.1(iii), since the given position X𝒜+kerπX\in\mathcal{A}+\ker\pi does not have to be an element of the acceptance set 𝒜\mathcal{A}.

For later proofs, the following corollary applies Lemma 5.5 for elements that can be reached from a given position in 𝒜+kerπ\mathcal{A}+\ker\pi in direction of an element U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}.

Corollary 5.7.

Consider (FM). Let X𝒜+kerπX\in\mathcal{A}+\ker\pi. Then,

m+,U𝒳+:X+mU𝒜+kerπ.\displaystyle\forall m\in\mathbb{R}_{+},\forall U\in\mathcal{M}\cap\mathcal{X}_{+}:\quad X+mU\in\mathcal{A}+\ker\pi.

More precisely,

𝒜+kerπ++U=𝒜+kerπ.\displaystyle\mathcal{A}+\ker\pi+\mathbb{R}_{+}U=\mathcal{A}+\ker\pi.
Proof.

Let U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} and m+m\in\mathbb{R}_{+}. Then, the assertions follow directly from Lemma 5.5 by (X+mU)X=mU𝒳+(X+mU)-X=mU\in\mathcal{X}_{+} and 𝒜++U=𝒜\mathcal{A}+\mathbb{R}_{+}U=\mathcal{A} by (4.1). ∎

Remark 5.8.

Since 0𝒜+kerπ0\in\mathcal{A}+\ker\pi and Corollary 5.7, 𝒜+kerπ\mathcal{A}+\ker\pi is an acceptance set itself if it is proper.

In the following, it will be crucial to consider the recession cone of 𝒜\mathcal{A} or 𝒜+kerπ\mathcal{A}+\ker\pi, respectively.

Lemma 5.9.

Consider (FM). Then, for every V𝒳V\in\mathcal{X}, it holds:

Vrec(𝒜)Vrec(𝒜+kerπ).\displaystyle V\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A})\qquad\Longrightarrow\qquad V\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi).
Proof.

Let Vrec(𝒜)V\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). Take X𝒜X\in\mathcal{A} arbitrary. Then, X=X0+Z0X=X^{0}+Z^{0} for some X0𝒜X^{0}\in\mathcal{A} and Z0kerπZ^{0}\in\ker\pi. As a result,

X+λV=(X0+λV𝒜)+Z0𝒜+kerπ\displaystyle X+\lambda V=(\underbrace{X^{0}+\lambda V}_{\in\mathcal{A}})+Z^{0}\in\mathcal{A}+\ker\pi

for all λ+\lambda\in\mathbb{R}_{+} because of Vrec(𝒜)V\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). Thus, Vrec(𝒜+kerπ)V\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi). ∎

As noted in Remark 4.2, U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} fulfilling Assumption 2 satisfies Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). Some properties will depend on whether U-U belongs to the corresponding recession cone of 𝒜\mathcal{A} or 𝒜+kerπ\mathcal{A}+\ker\pi, respectively. We collect the previous results that are important for the proof of our main results in Theorem 5.12 in the following corollary:

Corollary 5.10.

Consider (FM). Then, for every U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}, it holds

Urec(𝒜) and Urec(𝒜+kerπ).\displaystyle U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A})\quad\text{ and }\quad U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi).

Furthermore,

Urec(𝒜)Urec(𝒜+kerπ).\displaystyle-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A})\qquad\Longrightarrow\qquad-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi).
Proof.

Let U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Take X𝒜X\in\mathcal{A} arbitrary. Then, X+λU𝒜X+\lambda U\in\mathcal{A} for all λ+\lambda\in\mathbb{R}_{+}, since λU𝒳+\lambda U\in\mathcal{X}_{+} and 𝒜+𝒳+𝒜\mathcal{A}+\mathcal{X}_{+}\subseteq\mathcal{A} by Definition 4.1(iii). Consequently, Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). The rest follows from Lemma 5.9. ∎

In Corollary 5.10, the converse direction does not hold in general, although UU and U-U do not belong to kerπ\ker\pi, see the following example.

Example 5.11.

Let 𝒳==2\mathcal{X}=\mathcal{M}=\mathbb{R}^{2}, π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} with

π(Z)=π(Z1,Z2)=12(Z1+Z2),\displaystyle\pi(Z)=\pi(Z_{1},Z_{2})=\frac{1}{2}(Z_{1}+Z_{2}),

i.e., kerπ={Z2Z2=Z1}\ker\pi=\{Z\in\mathbb{R}^{2}\mid Z_{2}=-Z_{1}\}. Furthermore, let U=(1,1)TU=(1,1)^{T} and 𝒜2\mathcal{A}\subseteq\mathbb{R}^{2} be an acceptance set with

𝒜={X2X10}.\displaystyle\mathcal{A}=\{X\in\mathbb{R}^{2}\mid X_{1}\geq 0\}.

Then, 𝒜+kerπ=2\mathcal{A}+\ker\pi=\mathbb{R}^{2} and, thus, Urec(𝒜+kerπ)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi). Obviously, we have Urec(𝒜)-U\notin\mathrm{rec}\hskip 1.70709pt(\mathcal{A}), since U=0U𝒜-U=0-U\notin\mathcal{A} although 0𝒜0\in\mathcal{A}.

Next, we give some information about the domain and level sets of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}, which generalize results by Baes et al. in [3], Lemma 2.12 (compare also Farkas et al. [15]) where 𝒜\mathcal{A} is supposed to be closed.

Theorem 5.12.

Consider (FM). Let Assumption 2 be fulfilled by the payoff U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} introduced in (4.6) and let mm\in\mathbb{R} be arbitrary. Then, the following conditions hold:

(i)\displaystyle\mathrm{(i)} levρ𝒜,,π,<(m)=intU(𝒜+kerπ)mU=𝒜+kerπ+>UmU\displaystyle\ \mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)=\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU=\mathcal{A}+\ker\pi+\mathbb{R}_{>}U-mU
𝒜+kerπmU,\displaystyle\hskip 75.39963pt\subseteq\mathcal{A}+\ker\pi-mU,
(ii)\displaystyle\mathrm{(ii)} levρ𝒜,,π,(m)=clU(𝒜+kerπ)mU\displaystyle\ \mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU
=clU(𝒜+kerπ)++UmU,\displaystyle\hskip 75.39963pt=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U-mU,
(iii)\displaystyle\mathrm{(iii)} levρ𝒜,,π,=(m)=bdU(𝒜+kerπ)mU.\displaystyle\ \mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},=}(m)=\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU.

Furthermore,

epiρ𝒜,,π={(X,m)𝒳×XclU(𝒜+kerπ)mU}.\displaystyle\mathrm{epi}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}=\{(X,m)\in\mathcal{X}\times\mathbb{R}\mid X\in\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU\}.
Proof.

Let mm\in\mathbb{R} be arbitrary.

  1. (i)

    By Lemma 2.4 (ii) and Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) by Corollary 5.10, we have

    intU(𝒜+kerπ)=𝒜+kerπ+>U,\displaystyle\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathcal{A}+\ker\pi+\mathbb{R}_{>}U,

    showing

    intU(𝒜+kerπ)mU=𝒜+kerπ+>UmU.\displaystyle\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU=\mathcal{A}+\ker\pi+\mathbb{R}_{>}U-mU. (5.2)

    By the Reduction Lemma 5.3, we obtain

    levρ𝒜,,π,<(m)\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m) ={X𝒳ρ𝒜,,π(X)<m}\displaystyle=\{X\in\mathcal{X}\mid\rho_{\mathcal{A},\mathcal{M},\pi}(X)<m\}
    ={X𝒳t>:X+(mt)U𝒜+kerπ}\displaystyle=\{X\in\mathcal{X}\mid\exists t\in\mathbb{R}_{>}:X+(m-t)U\in\mathcal{A}+\ker\pi\}
    ={X𝒳t>:X𝒜+kerπmU+tU}\displaystyle=\{X\in\mathcal{X}\mid\exists t\in\mathbb{R}_{>}:X\in\mathcal{A}+\ker\pi-mU+tU\}
    =𝒜+kerπ+>UmU\displaystyle=\mathcal{A}+\ker\pi+\mathbb{R}_{>}U-mU
    𝒜+kerπmU\displaystyle\subseteq\mathcal{A}+\ker\pi-mU

    because 𝒜+>U𝒜\mathcal{A}+\mathbb{R}_{>}U\subseteq\mathcal{A} by Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}). By (5.2), we have also

    levρ𝒜,,π,<(m)=intU(𝒜+kerπ)mU.\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)=\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU.
  2. (ii)

    First, we show the second equation: By Lemma 2.3(iii), we have

    clU(𝒜+kerπ)++U=clU(𝒜+kerπ++U).\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi+\mathbb{R}_{+}U).

    Since 𝒜+kerπ++U=𝒜+kerπ\mathcal{A}+\ker\pi+\mathbb{R}_{+}U=\mathcal{A}+\ker\pi by Corollary 5.7, we obtain

    clU(𝒜+kerπ)++U=clU(𝒜+kerπ).\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi).

    Consequently, the second equation in (ii) holds, i.e.,

    clU(𝒜+kerπ)++UmU=clU(𝒜+kerπ)mU.\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U-mU=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU. (5.3)

    It remains to show

    levρ𝒜,,π,(m)=clU(𝒜+kerπ)mU.\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU. (5.4)

    We proof (\subseteq) in (5.4): Take X𝒳X\in\mathcal{X} with ρ𝒜,,π(X)=m\rho_{\mathcal{A},\mathcal{M},\pi}(X)=m. By the Definition of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} as an infimum and Reduction Lemma 5.3, it exists (mn)(m_{n})\subseteq\mathbb{R} with mnmm_{n}\downarrow m for n+n\rightarrow+\infty such that

    X𝒜+kerπmnU=𝒜+kerπ(mnm)UmU,\displaystyle X\in\mathcal{A}+\ker\pi-m_{n}U=\mathcal{A}+\ker\pi-(m_{n}-m)U-mU,

    i.e.,

    X+mU(mnm)(U)𝒜+kerπ.\displaystyle X+mU-(m_{n}-m)(-U)\in\mathcal{A}+\ker\pi.

    Since (mnm)0(m_{n}-m)\downarrow 0, we get X+mUclU(𝒜+kerπ)X+mU\in\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) by Lemma 2.2. Thus, we have shown

    levρ𝒜,,π,=(m)clU(𝒜+kerπ)mU.\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},=}(m)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU. (5.5)

    On the other hand, we obtain by (i)

    levρ𝒜,,π,<(m)=𝒜+kerπ+>UmU\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)=\mathcal{A}+\ker\pi+\mathbb{R}_{>}U-mU

    and, thus,

    levρ𝒜,,π,<(m)clU(𝒜+kerπ)++UmU\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U-mU (5.6)

    because of Lemma 2.3(i). Consequently, (5.5) and (5.6) imply together

    levρ𝒜,,π,(m)clU(𝒜+kerπ)++UmU\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U-mU

    because 0+U0\in\mathbb{R}_{+}U which leads by (5.3) to

    levρ𝒜,,π,(m)clU(𝒜+kerπ)mU,\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU,

    showing (\subseteq) in (5.4).

    Now, we proof (\supseteq) in (5.4): By Lemma 2.3(iv), we have

    clU(𝒜+kerπ)+>U\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{>}U =intU(𝒜+kerπ++U)\displaystyle=\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi+\mathbb{R}_{+}U)

    and, thus,

    clU(𝒜+kerπ)+>U\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{>}U =intU(𝒜+kerπ)\displaystyle=\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)

    by (4.1). Therefore,

    clU(𝒜+kerπ)+>UmU=levρ𝒜,,π,<(m)levρ𝒜,,π,(m)\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{>}U-mU=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)\subseteq\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)

    by (i). This shows (\supseteq) in (5.4).

  3. (iii)

    The assertion follows by (i) and (ii) through

    levρ𝒜,,π,=(m)\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},=}(m) =levρ𝒜,,π,(m)\levρ𝒜,,π,<(m)\displaystyle=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)\backslash\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m)
    =(clU(𝒜+kerπ)mU)\(intU(𝒜+kerπ)mU)\displaystyle=(\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU)\backslash(\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU)
    =(clU(𝒜+kerπ)\intU(𝒜+kerπ))mU\displaystyle=(\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)\backslash\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi))-mU
    =bdU(𝒜+kerπ)mU.\displaystyle=\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU.

The description of epiρ𝒜,,π\mathrm{epi}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi} follows from Theorem 5.12(ii). ∎

Corollary 5.13.

Consider (FM). Let Assumption 2 be fulfilled by the payoff U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6) and let mm\in\mathbb{R} be arbitrary. Then, the following holds:

  1. (i)

    levρ𝒜,,π,(m)𝒜+kerπmU\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)\supseteq\mathcal{A}+\ker\pi-mU,

  2. (ii)

    levρ𝒜,,π,(m)=𝒜+kerπmU\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)=\mathcal{A}+\ker\pi-mU holds if and only if 𝒜+kerπ\mathcal{A}+\ker\pi is (U)(-U)-directionally closed.

Proof.

  1. (i)

    Since

    𝒜+kerπmUclU(𝒜+kerπ)mU\displaystyle\mathcal{A}+\ker\pi-mU\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU

    by Lemma 2.3(i), the assertion follows from Theorem 5.12(ii).

  2. (ii)

    follows by Tammer and Weidner [41, Prop. 4.2.1(b)].

Under the assumption of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} being continuous and finite on 𝒳\mathcal{X}, Baes et al. studied the sets levρ𝒜,,π,<(m)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(m), levρ𝒜,,π,(m)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m) and levρ𝒜,,π,=(m)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},=}(m) for the special case m=0m=0 and 𝒜\mathcal{A} being a closed acceptance set in [3, Lemma 2.12] (compare also Farkas et al. [15]). They observed the following:

Lemma 5.14 (see Baes et al. [3], Lemma 2.12).

Consider (FM). Let 𝒳\mathcal{X} be a locally convex Hausdorff topological vector space over \mathbb{R} fulfilling the first axiom of countability. Furthermore, let 𝒜\mathcal{A} be a closed acceptance set and Assumption 2 be fulfilled. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Suppose that ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is continuous and finite on 𝒳\mathcal{X}. Then, the following conditions hold:

  1. (i)

    levρ𝒜,,π,<(0)=int(𝒜+kerπ)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},<}(0)=\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi),

  2. (ii)

    levρ𝒜,,π,(0)=cl(𝒜+kerπ)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(0)=\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi),

  3. (iii)

    levρ𝒜,,π,=(0)=bd(𝒜+kerπ)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},=}(0)=\mathrm{bd}\hskip 1.70709pt(\mathcal{A}+\ker\pi).


These properties look similar to our results for m=0m=0, but we derived intU(𝒜+kerπ)\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi), clU(𝒜+kerπ)\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) and bdU(𝒜+kerπ)\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) in Theorem 5.12. This can be united with our results by the following theorem that is formulated for normed vector spaces in order to use sequences:

Theorem 5.15.

Consider (FM). Let (𝒳,)(\mathcal{X},\left\|\cdot\right\|) be a normed vector space over \mathbb{R} and Assumption 2 be fulfilled by the payoff U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Suppose that one of the following conditions is satisfied:

  1. (a)

    ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is continuous on 𝒳\mathcal{X},

  2. (b)

    𝒜+kerπ\mathcal{A}+\ker\pi fulfills

    𝒜+kerπ+>Uint(𝒜+kerπ)\displaystyle\mathcal{A}+\ker\pi+\mathbb{R}_{>}U\subseteq\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi) (5.7)

    and

    cl(𝒜+kerπ)+>U𝒜+kerπ.\displaystyle\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi)+\mathbb{R}_{>}U\subseteq\mathcal{A}+\ker\pi. (5.8)

Then, the following conditions hold:

  1. (i)

    intU(𝒜+kerπ)=int(𝒜+kerπ),\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi),

  2. (ii)

    clU(𝒜+kerπ)=cl(𝒜+kerπ),\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi),

  3. (iii)

    bdU(𝒜+kerπ)=bd(𝒜+kerπ)\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{bd}\hskip 1.70709pt(\mathcal{A}+\ker\pi).

Proof.

Suppose that (a) is fulfilled.

  1. (i)

    The relation (\supseteq) follows by Lemma 2.5(ii). Thus, we need to show (\subseteq): Consider XintU(𝒜+kerπ)X\in\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi). Then,

    (X>U)(𝒜+kerπ)\displaystyle(X-\mathbb{R}_{>}U)\cap(\mathcal{A}+\ker\pi)\neq\varnothing

    and, thus, ρ𝒜,,π(X)<0\rho_{\mathcal{A},\mathcal{M},\pi}(X)<0. Suppose, for every nn\in\mathbb{N} exists Xn𝒳X_{n}\in\mathcal{X} with

    Xn1n(X) and Xn𝒜+kerπ.\displaystyle X_{n}\in\mathcal{B}_{\frac{1}{n}}(X)\text{ and }X_{n}\notin\mathcal{A}+\ker\pi.

    Then, (Xn)n𝒳(X_{n})_{n\in\mathbb{N}}\subseteq\mathcal{X} is a sequence with XnXX_{n}\rightarrow X for n+n\rightarrow+\infty \mathbb{P}-a.s. and

    ρ𝒜,,π(Xn)ρ𝒜,,π(X)<0 for n+\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X_{n})\rightarrow\rho_{\mathcal{A},\mathcal{M},\pi}(X)<0\text{ for }n\rightarrow+\infty

    because of the continuity of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}. By convergence, for every δ>0\delta>0 there is some N(δ)N(\delta)\in\mathbb{N} with

    |ρ𝒜,,π(Xk)ρ𝒜,,π(X)|<δ for all k>N(δ).\displaystyle\left|\rho_{\mathcal{A},\mathcal{M},\pi}(X_{k})-\rho_{\mathcal{A},\mathcal{M},\pi}(X)\right|<\delta\text{ for all }k>N(\delta).

    By choice of δ=|ρ𝒜,,π(X)2|\delta=\left|\frac{\rho_{\mathcal{A},\mathcal{M},\pi}(X)}{2}\right|, we get ρ𝒜,,π(Xk)<0\rho_{\mathcal{A},\mathcal{M},\pi}(X_{k})<0 and, thus,

    XkintU(𝒜+kerπ)𝒜+kerπ for k>N(δ)\displaystyle\qquad X_{k}\in\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)\subseteq\mathcal{A}+\ker\pi\text{ for }k>N\left(\delta\right)

    by Theorem 5.12(i) and Lemma 2.5(ii). Consequently, such an sequence (Xn)n(X_{n})_{n\in\mathbb{N}} cannot exist and there is some n0n_{0}\in\mathbb{N} with 1n0(X)𝒜+kerπ\mathcal{B}_{\frac{1}{n_{0}}}(X)\subseteq\mathcal{A}+\ker\pi. Thus, we obtain Xint(𝒜+kerπ)X\in\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi), which shows ()(\subseteq) and, therefore, (i).

  2. (ii)

    The relation (\subseteq) follows by Lemma 2.5(i). We just need to show (\supseteq) in (ii): Consider now Xcl(𝒜+kerπ)X\in\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi). Then,

    (Xn)n𝒜+kerπ:XnX for n+a.s.\displaystyle\exists(X_{n})_{n\in\mathbb{N}}\subseteq\mathcal{A}+\ker\pi:\quad X_{n}\rightarrow X\text{ for }n\rightarrow+\infty\ \mathbb{P}-a.s.

    Thus, ρ𝒜,,π(Xn)0\rho_{\mathcal{A},\mathcal{M},\pi}(X_{n})\leq 0 by the Reduction Lemma 5.3, which implies ρ𝒜,,π(X)0\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq 0 by continuity of ρ𝒜,,π(X)\rho_{\mathcal{A},\mathcal{M},\pi}(X). Consequently, we have XclU(𝒜+kerπ)X\in\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) by Theorem 5.12(ii).

  3. (iii)

    The assertion follows with (i) and (ii) by

    bdU(𝒜+kerπ)\displaystyle\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) =clU(𝒜+kerπ)\intU(𝒜+kerπ)\displaystyle=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)\backslash\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)
    =cl(𝒜+kerπ)\int(𝒜+kerπ)\displaystyle=\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi)\backslash\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi)
    =bd(𝒜+kerπ).\displaystyle=\mathrm{bd}\hskip 1.70709pt(\mathcal{A}+\ker\pi).

Suppose now that (b) holds.

  1. (i)

    As in (a), we have to show (\subseteq) in (i): Let XintU(𝒜+kerπ)X\in\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi). Then, it exists m>m\in\mathbb{R}_{>} with XmU𝒜+kerπX-mU\in\mathcal{A}+\ker\pi. Thus,

    X𝒜+kerπ+>Uint(𝒜+kerπ)\displaystyle X\in\mathcal{A}+\ker\pi+\mathbb{R}_{>}U\subseteq\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi)

    by (5.7), showing (i).

  2. (ii)

    Again, (\subseteq) follows by Lemma 2.5(i). The relation (\supseteq) is a direct consequence of (5.8) by Lemma 2.4(i).

  3. (iii)

    The assertion follows like in (a) by (i) and (ii).

Remark 5.16.

In more detail, since Urec(𝒜+kerπ)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}+\ker\pi) for U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} (see Corollary 5.10), it can be shown that the following holds:

(5.7)intU(𝒜+kerπ)=int(𝒜+kerπ),\displaystyle\eqref{eq:directional_prop_Int_A}\quad\Longleftrightarrow\quad\mathrm{int}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{int}\hskip 1.70709pt(\mathcal{A}+\ker\pi),
(5.8)clU(𝒜+kerπ)=cl(𝒜+kerπ),\displaystyle\eqref{eq:directional_prop_cl_A}\quad\Longleftrightarrow\quad\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{cl}\hskip 1.70709pt(\mathcal{A}+\ker\pi),

see also [41], Prop. 2.3.54 and Prop. 2.3.55. The subspace kerπ\ker\pi is closed even if dim𝒳=+\dim\mathcal{X}=+\infty, since π\pi is linear and continuous, but, even if 𝒜\mathcal{A} is closed and we have a sum of two closed sets, the augmented set 𝒜+kerπ\mathcal{A}+\ker\pi does not have to be closed or (U-U)-directionally closed.

Consider ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} introduced in (4.6). Remember that the set

𝒜ρ𝒜,,π:=levρ𝒜,,π,(0)={X𝒳ρ𝒜,,π(X)0}\displaystyle\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}:=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(0)=\{X\in\mathcal{X}\mid\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq 0\}

in Lemma 5.14 (ii) is an acceptance set itself by Example 4.6 because ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is a monetary risk measure with ρ𝒜,,π(0)0\rho_{\mathcal{A},\mathcal{M},\pi}(0)\leq 0. Indeed, it holds

ρ𝒜,,π normalized ρ𝒜,,π(0)=0,\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}\text{ normalized }\quad\Longrightarrow\quad\rho_{\mathcal{A},\mathcal{M},\pi}(0)=0,

which is given if 𝒜\mathcal{A} fulfills (4.5) and Assumption 3 holds (see Remark 5.2). Moreover, U𝒳+{U\in\mathcal{M}\cap\mathcal{X}_{+}} from Assumption 2 fulfills U𝒜ρ𝒜,,πU\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}} and Urec(𝒜ρ𝒜,,π)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}), as well, see Remark 4.2.


The relationship between the acceptance set 𝒜ρ𝒜,,π\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}} and the translation invariant functional ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} introduced in (4.6) can be described as followed:

Theorem 5.17.

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Furthermore, let 𝒜ρ𝒜,,π:=levρ𝒜,,π,(0)\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}:=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(0). Then, 𝒜ρ𝒜,,π\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}} fulfills

levρ𝒜,,π,(m)=𝒜ρ𝒜,,πmU for all m.\displaystyle\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)=\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}-mU\text{ for all }m\in\mathbb{R}. (5.9)

Moreover, 𝒜ρ𝒜,,π\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}} has the following properties:

  1. (i)

    𝒜ρ𝒜,,π\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}} is (U-U)-directionally closed,

  2. (ii)

    ρ𝒜,,πρ𝒜ρ𝒜,,π,,π\rho_{\mathcal{A},\mathcal{M},\pi}\equiv\rho_{\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}},\mathcal{M},\pi} on 𝒳\mathcal{X}.

Proof.

From Theorem 5.12(ii), we obtain for m=0m=0

𝒜ρ𝒜,,π=clU(𝒜+kerπ)++U.\displaystyle\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U.

This yields

𝒜ρ𝒜,,πmU=clU(𝒜+kerπ)++UmU=levρ𝒜,,π,(m)\displaystyle\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}-mU=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}_{+}U-mU=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)

for all mm\in\mathbb{R} , showing (5.9). As a result, we obtain by Theorem 5.12(ii) for m=0m=0

𝒜ρ𝒜,,π=levρ𝒜,,π,(0)=clU(𝒜+kerπ)\displaystyle\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(0)=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)

which is obviously a (U)(-U)-directionally closed set, i.e., (i) holds.

In order to proof (ii), we show

𝒜ρ𝒜,,π+kerπ\displaystyle\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}+\ker\pi =𝒜ρ𝒜,,π.\displaystyle=\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}. (5.10)

Since 0kerπ0\in\ker\pi, (\supseteq) in (5.10) is clear. For (\subseteq), consider X𝒜ρ𝒜,,π+kerπX\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}+\ker\pi arbitrary. Then, there is some Z0kerπZ^{0}\in\ker\pi with

X0:=X+Z0𝒜ρ𝒜,,π=clU(𝒜+kerπ).\displaystyle X^{0}:=X+Z^{0}\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi).

Consequently,

λ>:X0+λU𝒜+kerπ.\displaystyle\forall\lambda\in\mathbb{R}_{>}:\quad X^{0}+\lambda U\in\mathcal{A}+\ker\pi.

Since Z0kerπ-Z^{0}\in\ker\pi, we have X0+λUZ0𝒜+kerπX^{0}+\lambda U-Z^{0}\in\mathcal{A}+\ker\pi for every λ>\lambda\in\mathbb{R}_{>}. Hence, we obtain

n:X0+1nUZ0=X+1nU𝒜+kerπ\displaystyle\forall n\in\mathbb{N}:\quad X^{0}+\frac{1}{n}U-Z^{0}=X+\frac{1}{n}U\in\mathcal{A}+\ker\pi

and, thus, XclU(𝒜+kerπ)X\in\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi) by Lemma 2.2, showing (\subseteq) in (5.10). That completes the proof of (5.10).

Formula (5.9) and (5.10) imply

ρ𝒜,,π(X)\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X) =inf{mXlevρ𝒜,,π,(m)}\displaystyle=\inf\{m\in\mathbb{R}\mid X\in\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)\}
=inf{mX𝒜ρ𝒜,,πmU}\displaystyle=\inf\{m\in\mathbb{R}\mid X\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}-mU\}
=inf{mX+mU𝒜ρ𝒜,,π}\displaystyle=\inf\{m\in\mathbb{R}\mid X+mU\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}\}
=inf{mX+mU𝒜ρ𝒜,,π+kerπ}\displaystyle=\inf\{m\in\mathbb{R}\mid X+mU\in\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}}+\ker\pi\}
=ρ𝒜ρ𝒜,,π,,π(X)\displaystyle=\rho_{\mathcal{A}_{\rho_{\mathcal{A},\mathcal{M},\pi}},\mathcal{M},\pi}(X)

for all X𝒳X\in\mathcal{X}. Here, the last equation follows by the Reduction Lemma 5.3. Hence, (ii) holds.

We can vary the acceptance set 𝒜\mathcal{A} in some range without changing the values of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}, which is stated in the following lemma:

Lemma 5.18.

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Then, ρ𝒜,,π=ρ𝒟,,π\rho_{\mathcal{A},\mathcal{M},\pi}=\rho_{\mathcal{D},\mathcal{M},\pi} for every set 𝒟𝒳\mathcal{D}\subseteq\mathcal{X} with

𝒜+kerπ𝒟+kerπclU(𝒜+kerπ).\displaystyle\mathcal{A}+\ker\pi\subseteq\mathcal{D}+\ker\pi\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi). (5.11)
Proof.

Consider 𝒟𝒳\mathcal{D}\subseteq\mathcal{X} fulfilling (5.11). Then,

clU(𝒜+kerπ)clU(𝒟+kerπ).\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{D}+\ker\pi).

Furthermore, we get

clU(𝒟+kerπ)clU(clU(𝒜+kerπ))=clU(𝒜+kerπ)\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{D}+\ker\pi)\subseteq\mathrm{cl}\hskip 1.70709pt_{-U}(\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi))=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)

by (5.11) and Lemma 2.3(ii). Thus,

clU(𝒜+kerπ)=clU(𝒟+kerπ).\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{D}+\ker\pi).

This yields

clU(𝒜+kerπ)mU=clU(𝒟+kerπ)mU\displaystyle\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)-mU=\mathrm{cl}\hskip 1.70709pt_{-U}(\mathcal{D}+\ker\pi)-mU

for all mm\in\mathbb{R}, i.e., levρ𝒜,,π,(m)=levρ𝒟,,π,(m)\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{A},\mathcal{M},\pi},\leq}(m)=\mathrm{lev}\hskip 1.70709pt_{\rho_{\mathcal{D},\mathcal{M},\pi},\leq}(m) by Theorem 5.12(ii). As a result, we obtain ρ𝒜,,π=ρ𝒟,,π\rho_{\mathcal{A},\mathcal{M},\pi}=\rho_{\mathcal{D},\mathcal{M},\pi}. ∎

As for every risk measure we are interested in finiteness of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}.

Theorem 5.19.

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Then,

domρ𝒜,,π=𝒜+kerπ+U=𝒜+.\displaystyle\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}=\mathcal{A}+\ker\pi+\mathbb{R}U=\mathcal{A}+\mathcal{M}. (5.12)

Moreover, take X𝒳X\in\mathcal{X} arbitrary. Then,

ρ𝒜,,π(X)XbdU(𝒜+kerπ)+U.\displaystyle\rho_{\mathcal{A},\mathcal{M},\pi}(X)\in\mathbb{R}\qquad\Longleftrightarrow\qquad X\in\mathrm{bd}\hskip 1.70709pt_{-U}(\mathcal{A}+\ker\pi)+\mathbb{R}U. (5.13)
Proof.

The equivalence (5.13) follows directly from Theorem 5.12(iii).

So, we only have to show (5.12). We start with the first equation: Let Xdomρ𝒜,,πX\in\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}. By Reduction Lemma 5.3, there exists mm\in\mathbb{R} with X+mU𝒜+kerπX+mU\in\mathcal{A}+\ker\pi or, equivalently, X𝒜+kerπmU{X\in\mathcal{A}+\ker\pi-mU}. Thus, X𝒜+kerπ+UX\in\mathcal{A}+\ker\pi+\mathbb{R}U, showing

domρ𝒜,,π𝒜+kerπ+U\displaystyle\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}\subseteq\mathcal{A}+\ker\pi+\mathbb{R}U

in (5.12). Conversely, let X𝒜+kerπ+UX\in\mathcal{A}+\ker\pi+\mathbb{R}U. Then, it exists mm\in\mathbb{R} with

X+mU𝒜+kerπ,\displaystyle X+mU\in\mathcal{A}+\ker\pi,

which yields ρ𝒜,,π(X)m<+\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq m<+\infty by Reduction Lemma 5.3 and, thus, Xdomρ𝒜,,πX\in\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}. That completes the proof of the first equation in (5.12).

In the second equation,

kerπ+U\displaystyle\mathcal{M}\supseteq\ker\pi+\mathbb{R}U

holds obviously, since UU\in\mathcal{M} and \mathcal{M} being a subspace of 𝒳\mathcal{X}. Now, let ZZ\in\mathcal{M} arbitrary. Then, π(Z)U\pi(Z)U\in\mathcal{M} and Zπ(Z)UZ-\pi(Z)U\in\mathcal{M}. By linearity of π\pi,

π(Zπ(Z)U)=π(Z)π(π(Z)U)=π(Z)π(Z)1=0,\displaystyle\pi(Z-\pi(Z)U)=\pi(Z)-\pi(\pi(Z)U)=\pi(Z)-\pi(Z)\cdot 1=0,

since π(U)=1\pi(U)=1 by Assumption 2. Consequently,

Z=(Zπ(Z)U)+π(Z)Ukerπ+U,\displaystyle Z=(Z-\pi(Z)U)+\pi(Z)U\in\ker\pi+\mathbb{R}U,

showing kerπ+U\mathcal{M}\subseteq\ker\pi+\mathbb{R}U, which complets the proof of (5.12) by

𝒜+kerπ+U=𝒜+.\displaystyle\mathcal{A}+\ker\pi+\mathbb{R}U=\mathcal{A}+\mathcal{M}.

Farkas et al. [15] observed the following lemma for topological vector spaces 𝒳\mathcal{X}, which is proved in our paper [34, Lemma 3.16] without using any topological properties:

Lemma 5.20 (see [15]).

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Furthermore, let 𝒜+kerπ=𝒳\mathcal{A}+\ker\pi=\mathcal{X}. Then, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}\equiv-\infty.

We can also give a condition as in Lemma 5.20 restricted to capital positions in the domain of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}, which is related to the payoff UU:

Lemma 5.21.

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Furthermore, let Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) hold. Then, ρ𝒜,,π(X)=\rho_{\mathcal{A},\mathcal{M},\pi}(X)=-\infty for all Xdomρ𝒜,,πX\in\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}.

Proof.

Let Xdomρ𝒜,,πX\in\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi} arbitrary. By the Reduction Lemma 5.3, it exists mm\in\mathbb{R} with X+mU𝒜+kerπX+mU\in\mathcal{A}+\ker\pi or, equivalently, X𝒜+kerπmUX\in\mathcal{A}+\ker\pi-mU. Since Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}), we have

X𝒜+kerπtU for every tm\displaystyle X\in\mathcal{A}+\ker\pi-tU\text{ for every }t\leq m

and, thus, ρ𝒜,,π(X)t\rho_{\mathcal{A},\mathcal{M},\pi}(X)\leq t for all tmt\leq m, which shows ρ𝒜,,π(X)=\rho_{\mathcal{A},\mathcal{M},\pi}(X)=-\infty. ∎

Remark 5.22.

Under our assumptions, Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) holds, see Remark 4.2. So, we suppose in Lemma 5.21 Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) and Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}).

Remark 5.23.

Note that Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) is not necessary for 𝒜+kerπ=𝒳\mathcal{A}+\ker\pi=\mathcal{X}, although it holds Urec(𝒜)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) for U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} arbitrary. For example, let 𝒳==2\mathcal{X}=\mathcal{M}=\mathbb{R}^{2}, π(Z1,Z2)=Z1+Z22\pi(Z_{1},Z_{2})=\frac{Z_{1}+Z_{2}}{2} and

𝒜1\displaystyle\mathcal{A}_{1} ={(X1,X2)T𝒳X10,X2X1}{(X1,X2)T𝒳X1>0,X2=0}.\displaystyle=\left\{(X_{1},X_{2})^{T}\in\mathcal{X}\mid X_{1}\leq 0,X_{2}\geq\sqrt{-X_{1}}\right\}\cup\left\{(X_{1},X_{2})^{T}\in\mathcal{X}\mid X_{1}>0,X_{2}=0\right\}.

Then, Urec(𝒜1)-U\notin\mathrm{rec}\hskip 1.70709pt(\mathcal{A}_{1}) for every U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}, but 𝒜1+kerπ=𝒳\mathcal{A}_{1}+\ker\pi=\mathcal{X}.

In general, Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) is not sufficient for 𝒜+kerπ=𝒳\mathcal{A}+\ker\pi=\mathcal{X}, as well. Consider 𝒳=3\mathcal{X}=\mathbb{R}^{3} and ={0}××\mathcal{M}=\{0\}\times\mathbb{R}\times\mathbb{R}. Let U=(0,0,1)TU=(0,0,1)^{T} and

𝒜2=U++3.\displaystyle\mathcal{A}_{2}=\mathbb{R}U+\mathbb{R}^{3}_{+}.

Then, Urec(𝒜2)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}_{2}) and Urec(𝒜2)U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}_{2}). Consider π:\pi\colon\mathcal{M}\rightarrow\mathbb{R} with π(Z)=π(Z1,Z2,Z3):=Z3\pi(Z)=\pi(Z_{1},Z_{2},Z_{3}):=Z_{3}. Then,

𝒜2+kerπ=𝒜2+(0,1,0)T={(X1,X2,X3)T3X10},\displaystyle\mathcal{A}_{2}+\ker\pi=\mathcal{A}_{2}+\mathbb{R}(0,1,0)^{T}=\{(X_{1},X_{2},X_{3})^{T}\in\mathbb{R}^{3}\mid X_{1}\geq 0\},

i.e., 𝒜2+kerπ3=𝒳\mathcal{A}_{2}+\ker\pi\neq\mathbb{R}^{3}=\mathcal{X}. However, Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) is sufficient for 𝒜+kerπ=𝒳\mathcal{A}+\ker\pi=\mathcal{X} if we require n:=dim(𝒳)<+n:=\dim(\mathcal{X})<+\infty and dim(kerπ)=n1\dim(\ker\pi)=n-1. The reason is that the subspaces kerπ\ker\pi and U\mathbb{R}U of 𝒳\mathcal{M}\subseteq\mathcal{X} fulfill kerπU={0}\ker\pi\cap\mathbb{R}U=\{0\} and, thus, for their direct sum dim(kerπ+U)=n\dim(\ker\pi+\mathbb{R}U)=n holds.

In general, Lemma 5.21 secures finiteness only for Xdomρ𝒜,,πX\in\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi} instead of the whole space 𝒳\mathcal{X}.

Remark 5.24.

Under 𝒜+kerπ𝒳\mathcal{A}+\ker\pi\neq\mathcal{X}, it is impossible to make every capital position acceptable by zero costs, which is also called absense of acceptability arbitrage, see Artzner et al. in [2]. In topological vector spaces 𝒳\mathcal{X} Baes et al. [3, Prop. 2.10] and Farkas et al. [15] observe different sufficient conditions for ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} being finite and continuous if 𝒜+kerπ𝒳\mathcal{A}+\ker\pi\neq\mathcal{X} is fulfilled, e.g. int𝒳+\mathrm{int}\hskip 1.70709pt\mathcal{X}_{+}\cap\mathcal{M}\neq\varnothing. Also, we refer to [15, Section 3] for specific conditions for finiteness of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} under certain properties of the acceptance set like being convex or coherent.

The observations for ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}\equiv-\infty lead to the following equivalence, which gives more details:

Theorem 5.25.

Consider (FM). Let Assumption 2 be fulfilled by U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+}. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Then, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is proper if and only if 𝒜+kerπ\mathcal{A}+\ker\pi does not contain lines parallel to UU, i.e.,

X+U𝒜+kerπ for all X𝒜+kerπ.\displaystyle X+\mathbb{R}U\not\subseteq\mathcal{A}+\ker\pi\qquad\text{ for all }X\in\mathcal{A}+\ker\pi. (5.14)
Proof.

First, we note that (5.14) is equivalent to

X𝒜+kerπm:X+mU𝒜+kerπ.\displaystyle\forall X\in\mathcal{A}+\ker\pi\ \exists m\in\mathbb{R}:\ X+mU\notin\mathcal{A}+\ker\pi.

Let ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} be proper. Then, ρ𝒜,,π(X)>\rho_{\mathcal{A},\mathcal{M},\pi}(X)>-\infty for all X𝒳X\in\mathcal{X}, i.e., it exists mm\in\mathbb{R} with

X+tU𝒜+kerπ for all t<m\displaystyle X+tU\notin\mathcal{A}+\ker\pi\text{ for all }t<m

by the Reduction Lemma 5.3. Hence, (5.14) holds.

Conversely, let (5.14) be fulfilled. Thus, if X+mU𝒜+kerπX+mU\in\mathcal{A}+\ker\pi, there is some t>t\in\mathbb{R}_{>} with

X+(mt)U𝒜+kerπ,\displaystyle X+(m-t)U\notin\mathcal{A}+\ker\pi,

i.e., ρ𝒜,,π(X)>\rho_{\mathcal{A},\mathcal{M},\pi}(X)>-\infty. Furthermore, since 0𝒜0\in\mathcal{A} by Definition 4.1(i) and, thus, 0𝒜+kerπ0\in\mathcal{A}+\ker\pi holds, it is ρ𝒜,,π(0)<+\rho_{\mathcal{A},\mathcal{M},\pi}(0)<+\infty. Hence, domρ𝒜,,π\mathrm{dom}\hskip 1.70709pt\rho_{\mathcal{A},\mathcal{M},\pi}\neq\varnothing, i.e., ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is proper. ∎

Remark 5.26.

In (5.14), X𝒜+kerπX\in\mathcal{A}+\ker\pi can be replaced by X𝒳X\in\mathcal{X}. Note that Urec(𝒜)-U\notin\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) is necessary for (5.14) because if Urec(𝒜)-U\in\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) holds for U𝒳+U\in\mathcal{M}\cap\mathcal{X}_{+} fulfilling Assumption 2, we have

XmU𝒜𝒜+kerπ\displaystyle X-mU\in\mathcal{A}\subseteq\mathcal{A}+\ker\pi

for every X𝒜X\in\mathcal{A} and m+m\in\mathbb{R}_{+}, which contradicts (5.14), since X+mU𝒜+kerπX+mU\in\mathcal{A}+\ker\pi for every mm\in\mathbb{R}, too, see Corollary 5.10. On the other hand, Example 5.11 shows that Urec(𝒜)-U\notin\mathrm{rec}\hskip 1.70709pt(\mathcal{A}) is not sufficient for (5.14).


The following lemma from [15, Lemma 2.8] summarizes some more properties of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} that imply conditions under which ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is a convex or coherent risk measure (see Remark 5.2). The proof can be found in [34, Lemma 3.20], which does not require any topological properties (compare [24, Theorem 2.3.1]).

Lemma 5.27 (see [15], Lemma 2.8).

Consider (FM). Let Assumption 2 be fulfilled. Consider the functional ρ𝒜,,π:𝒳¯\rho_{\mathcal{A},\mathcal{M},\pi}\colon\mathcal{X}\rightarrow\overline{\mathbb{R}} given by (4.6). Then, ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} satisfies the following properties:

  1. (i)

    ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is convex if 𝒜\mathcal{A} is convex,

  2. (ii)

    ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is subadditive if 𝒜\mathcal{A} is closed under addition, i.e., X+Y𝒜X+Y\in\mathcal{A} for all X,Y𝒜X,Y\in\mathcal{A},

  3. (iii)

    ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is positively homogeneous if 𝒜\mathcal{A} is a cone.

6 Conclusion

In our paper, we studied properties of a risk measure ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} associated with a not necessary closed acceptance set 𝒜𝒳\mathcal{A}\subseteq\mathcal{X}, a space of eligible payoffs 𝒳\mathcal{M}\subseteq\mathcal{X} and a pricing functional π:\pi\colon\mathcal{M}\rightarrow\mathbb{R}. The study of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} was motivated by Baes et al. in [3] where solutions of an optimization problem referring to ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} were subject to the investigation. ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} is a monetary risk measure and, therefore, translation invariant. As seen in the paper, it is suitable for scalarization in the frame of multiobjective optimization because it is directly connected with the functional given in (1.1), which plays an important role in optimization. We have shown important properties of the translation invariant functional ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}. Especially, we studied the properties of the sublevel sets, strict sublevel sets and level lines of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}. Furthermore, we discussed the finiteness of the functional and relaxed closedness assumptions concerning 𝒜+kerπ\mathcal{A}+\ker\pi.

For further research, it would be interesting to consider general acceptance sets and use the properties of ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi} derived in this paper for studying the optimization problem of making the initial capital position acceptable with minimal costs for general acceptance sets using a scalarization approach by means of our functional ρ𝒜,,π\rho_{\mathcal{A},\mathcal{M},\pi}.


References

  • [1] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber and David Heath “Coherent Measures of Risk” In Mathematical Finance 9.3, 1999, pp. 203–228 DOI: “url–10.1111/1467-9965.00068
  • [2] Philippe Artzner, Freddy Delbaen and Pablo Koch-Medina “Risk Measures and Efficient use of Capital” In ASTIN Bulletin 39.1, 2009, pp. 101–116 DOI: “url–10.2143/AST.39.1.2038058
  • [3] Michel Baes, Pablo Koch-Medina and Cosimo Munari “Existence, uniqueness, and stability of optimal payoffs of eligible assets” In Mathematical Finance 30.1, 2020, pp. 128–166 DOI: “url–10.1111/mafi.12205
  • [4] Turan G. Bali and Lin Peng “Is there a risk–return trade-off? Evidence from high-frequency data” In Journal of Applied Econometrics 21.8, 2006, pp. 1169–1198 DOI: “url–10.1002/jae.911
  • [5] Günther Bamberg and Michael Krapp “Starke und schwache Arbitragefreiheit von Finanzmärkten mit Geld-Brief-Spannen” In Informationswirtschaft: Ein Sektor mit Zukunft, GI–Edition, Lecture Notes in Informatics, 2003, pp. 261–276 URL: \url{https://www.semanticscholar.org/paper/Starke-und-schwache-Arbitragefreiheit-von-mit-Bamberg-Krapp/0d43067c3e43fe524d2ad0dd38af7ca7ff117fc4}
  • [6] Basel Commitee on Banking Supervision, Bank for InternationalΩSettlements “Basel III: International framework for liquidity risk measurement, standards and monitoring”, 2010
  • [7] Basel Commitee on Banking Supervision, Bank for InternationalΩSettlements “Basel III: A global regulatory framework for more resilient banks and banking systems”, 2011
  • [8] Sara Biagini and Marco Frittelli “On the Extension of the Namioka-Klee Theorem and on the Fatou Property for Risk Measures” In Optimality and Risk - Modern Trends in Mathematical Finance: The Kabanov Festschrift BerlinHeidelberg: Springer, 2009, pp. 1–28 DOI: “url–10.1007/978-3-642-02608-9$“backslash$textunderscore
  • [9] Zvi Bodie, Alex Kane and Alan J. Marcus “Investments” New York, NY: McGraw-Hill Education, 2018
  • [10] Patrick Cheridito and Tianhui Li “Risk Measures on Orlicz Hearts” In Mathematical Finance 19.2, 2009, pp. 189–214 DOI: “url–10.1111/j.1467-9965.2009.00364.x
  • [11] Freddy Delbaen and Walter Schachermayer “The mathematics of arbitrage”, Springer finance Berlin: Springer, 2008
  • [12] European Central Bank “Key ECB interest rates”, 2019
  • [13] Walter Farkas, Pablo Koch-Medina and Cosimo Munari “Beyond cash-additive risk measures: when changing the numéraire fails” In Finance and Stochastics 18.1, 2014, pp. 145–173 DOI: “url–10.1007/s00780-013-0220-9
  • [14] Walter Farkas, Pablo Koch-Medina and Cosimo Munari “Capital requirements with defaultable securities” In Insurance: Mathematics and Economics 55, 2014, pp. 58–67 DOI: “url–10.1016/j.insmatheco.2013.11.009
  • [15] Walter Farkas, Pablo Koch-Medina and Cosimo Munari “Measuring risk with multiple eligible assets” In Mathematics and Financial Economics 9.1, 2015, pp. 3–27 DOI: “url–10.1007/s11579-014-0118-0
  • [16] Walter Farkas and Alexander Smirnow “Intrinsic Risk Measures” In Innovations in insurance, risk- and asset management Singapore: World Scientific, 2018, pp. 163–184 DOI: “url–10.1142/9789813272569–“textunderscore ˝0007
  • [17] Matthias Fischer, Thorsten Moser and Marius Pfeuffer “A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations” In Risks 6.4, 2018, pp. 142 DOI: “url–10.3390/risks6040142
  • [18] Hans Föllmer and Alexander Schied “Convex measures of risk and trading constraints” In Finance and Stochastics 6.4, 2002, pp. 429–447 DOI: “url–10.1007/s007800200072
  • [19] Hans Föllmer and Alexander Schied “Convex and coherent risk measures” Encyclopedia of Quantitative Finance, 2010 URL: \url{https://www.researchgate.net/publication/268261458_Convex_and_coherent_risk_measures}
  • [20] Hans Föllmer and Alexander Schied “Stochastic finance: An introduction in discrete time”, De Gruyter graduate BerlinBoston: de Gruyter, 2016 URL: \url{http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110463446&searchTitles=true}
  • [21] Marco Frittelli and Emanuela Rosazza Gianin “Putting order in risk measures” In Journal of Banking & Finance 26.7, 2002, pp. 1473–1486 DOI: “url–10.1016/S0378-4266(02)00270-4
  • [22] Marco Frittelli and Giacomo Scandolo “Risk measures and capital requirements for processes” In Mathematical Finance 16.4, 2006, pp. 589–612 DOI: “url–10.1111/j.1467-9965.2006.00285.x
  • [23] Christiane Gerstewitz “Beiträge zur Dualitätstheorie der nichtlinearen Vektoroptimierung [Contributions to duality theory in nonlinear vector optimization]: PhD Thesis”, 1984
  • [24] Alfred Göpfert, Hassan Riahi, Christiane Tammer and Constantin Zălinescu “Variational Methods in Partially Ordered Spaces”, CMS Books in Mathematics New York, NY: Springer-Verlag New York Inc, 2003 DOI: “url–10.1007/b97568
  • [25] César Gutiérrez, Vicente Novo, Juan Luis Ródenas-Pedregosa and Tamaki Tanaka “Nonconvex Separation Functional in Linear Spaces with Applications to Vector Equilibria” In SIAM Journal on Optimization 26.4, 2016, pp. 2677–2695 DOI: “url–10.1137/16M1063575
  • [26] A. H. Hamel, F. Heyde, A. Löhne, B. Rudloff and C. Schrage “Set optimization - a rather short introduction” In Set optimization and applications—the state of the art Berlin: Springer, 2015, pp. 65–141
  • [27] Frank Heyde “Coherent risk measures and vector optimization” In Multicriteria Decision Making and Fuzzy Systems Shaker, Aachen, 2006, pp. 3–12
  • [28] John Hull “Options, futures, and other derivatives”, Always learning BostonColumbusIndianapolis: Pearson, 2015
  • [29] Albrecht Irle “Finanzmathematik: Die Bewertung von Derivaten”, SpringerLink Bücher Wiesbaden: Vieweg+Teubner Verlag, 2012 DOI: “url–10.1007/978-3-8348-8314-8
  • [30] Stefan Jaschke and Uwe Küchler “Coherent risk measures and good-deal bounds” In Finance and Stochastics 5.2, 2001, pp. 181–200 DOI: “url–10.1007/PL00013530
  • [31] M. Kaina and L. Rüschendorf “On convex risk measures on L p -spaces” In Mathematical Methods of Operations Research 69.3, 2009, pp. 475–495 DOI: “url–10.1007/s00186-008-0248-3
  • [32] Felix-Benedikt Liebrich and Gregor Svindland “Model Spaces for Risk Measures” In Insurance: Mathematics and Economics, 2017 URL: \url{http://arxiv.org/pdf/1703.01137v3}
  • [33] John Lintner “The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets” In The Review of Economics and Statistics 47.1, 1965, pp. 13–37 URL: \url{http://www.jstor.org/stable/1924119}
  • [34] M. Marohn and C. Tammer “Characterization of efficient points of acceptance sets” In Applied Analysis and Optimization 4.1, 2020, pp. 79–114
  • [35] Hirokazu Miyazaki “Between arbitrage and speculation: an economy of belief and doubt” In Economy and Society 36.3, 2007, pp. 396–415 DOI: “url–10.1080/03085140701428365
  • [36] Jan Mossin “Equilibrium in a Capital Asset Market” In Econometrica 34.4, 1966, pp. 768 DOI: “url–10.2307/1910098
  • [37] Georg Ch. Pflug “Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk” In Probabilistic Constrained Optimization: Methodology and Applications 49, Nonconvex Optimization and Its Applications Boston, MA: Springer, 2000, pp. 272–281 DOI: “url–10.1007/978-1-4757-3150-7$“backslash$textunderscore
  • [38] Giacomo Scandolo “Models of Capital Requirements in Static and Dynamic Settings” In Economic Notes 33.3, 2004, pp. 415–435 DOI: “url–10.1111/j.0391-5026.2004.00139.x
  • [39] William Sharpe “A Simplified Model for Portfolio Analysis” In Management Science 9.2, 1963, pp. 277–293 URL: \url{https://EconPapers.repec.org/RePEc:inm:ormnsc:v:9:y:1963:i:2:p:277-293}
  • [40] William F. Sharpe “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk” In The Journal of Finance 19.3, 1964, pp. 425–442 DOI: “url–10.1111/j.1540-6261.1964.tb02865.x
  • [41] Christiane Tammer and Petra Weidner “Scalarization and Separation by Translation Invariant Functions” Cham: Springer International Publishing, 2020 DOI: “url–10.1007/978-3-030-44723-6
  • [42] Hal R. Varian “The Arbitrage Principle in Financial Economics” In Journal of Economic Perspectives 1.2, 1987, pp. 55–72 DOI: “url–10.1257/jep.1.2.55