This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new stability and convergence proof
of the Fourier-Galerkin spectral method
for the spatially homogeneous Boltzmann equation

Jingwei Hu111Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA ([email protected]).,  Kunlun Qi222Department of Mathematics, City University of Hong Kong, Hong Kong, China ([email protected]).,  and  Tong Yang333Department of Mathematics, City University of Hong Kong, Hong Kong, China ([email protected]).
Abstract

Numerical approximation of the Boltzmann equation is a challenging problem due to its high-dimensional, nonlocal, and nonlinear collision integral. Over the past decade, the Fourier-Galerkin spectral method [19] has become a popular deterministic method for solving the Boltzmann equation, manifested by its high accuracy and potential of being further accelerated by the fast Fourier transform. Albeit its practical success, the stability of the method is only recently proved in [6] by utilizing the “spreading” property of the collision operator. In this work, we provide a new proof based on a careful L2L^{2} estimate of the negative part of the solution. We also discuss the applicability of the result to various initial data, including both continuous and discontinuous functions.

Key words. Boltzmann equation, Fourier-Galerkin spectral method, well-posedness, stability, convergence, discontinuous, filter.

AMS subject classifications. 35Q20, 65M12, 65M70, 45G10.

1 Introduction

The Boltzmann equation is one of the fundamental equations in kinetic theory and serves as a basic building block to connect microscopic Newtonian mechanics and macroscopic continuum mechanics [4, 22]. Albeit its wide applicability, numerical approximation of the Boltzmann equation is a challenging scientific problem due to the complicated structure of the equation (high-dimensional, nonlinear, and nonlocal). As such, the particle based direct simulation Monte Carlo method (DSMC) [2] has been widely used in various applications for its simplicity and low computational cost. Nevertheless, the stochastic method suffers from slow convergence and becomes extremely expensive when simulating non-steady and low-speed flows.

Since the pioneering work [18, 19], it has been realized that the Fourier-Galerkin spectral method offers a suitable framework to approximate the Boltzmann collision operator. First of all, it is a deterministic method and provides very accurate results compared with stochastic method. Secondly, the Boltzmann collision operator is translation-invariant and the Fourier basis exactly leverages this structure. Thirdly, after the Galerkin projection, the collision operator presents a convolution-like structure, which opens the possibility to further accelerate the method by the fast Fourier transform (FFT) [16, 9]. Because of the above reasons, over the past decade, the Fourier spectral method has become a very popular deterministic method for solving the Boltzmann equation and related collisional kinetic models, see for instance, [21, 8, 7, 14, 15], or the recent review article [5].

As opposed to its practical success, the theoretical study of the Fourier spectral method is quite limited, largely because the spectral approximation destroys the positivity of the solution, yet the positivity is one of the key properties to study the well-posedness of the equation. In [20], a positivity-preserving filter is applied to the equation to enforce the positivity of the solution. As a result, the stability of the method can be easily proved. However, the filter often comes with the price of significantly smearing the solution (hence destroying the spectral accuracy) and should be used only when the solution contains discontinuities (to suppress the oscillations caused by Gibbs phenomenon). Recently, a stability proof for the original Fourier spectral method is established in [6], where the authors provide a quite complete study of the method including both finite and long time behavior. The key strategy in [6] is to use the “spreading” or “mixing” property of the collision operator to show that the solution will become everywhere positive after a small time. Motivated by this work, we present in this paper a different well-posedness and stability proof. The main difference from [6] lies in that, instead of requiring the solution to be positive everywhere which is a stronger condition to achieve, we show that the L2L^{2} norm of the negative part of the solution can be controlled as long as it is small initially. In other words, the solution is allowed to be negative for the method to remain stable. Therefore, our strategy does not rely on any sophisticated property of the collision operator and provides a simpler proof. In addition, we quantify clearly the requirement on the initial condition for the method to be stable, which includes both continuous and discontinuous functions.

We mention another line of research which develops the conservative-spectral approximation for the Boltzmann equation [10]. Apart from apparent differences (the Fourier-Galerkin method considered in this paper is based on domain truncation and periodization, while the method [10] is based on Fourier transform and no periodization is performed), a conservation subroutine is added to restore the mass, momentum, and energy conservation. As a consequence, the method is able to preserve the Maxwellian distribution as time goes to infinity. The stability and convergence of the method is recently established in [1], where the Fourier projection is only applied to the gain part of the collision operator. In contrast, both gain and loss terms are projected in our method, hence the loss term does not possess a definite sign.

The paper is essentially self-contained. In Section 2, we briefly review the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. After that, we discuss the basic assumptions (e.g., the collision kernel and truncation parameters) used throughout the paper. The assumptions on the initial condition are addressed in Section 2.1, which will play an important role in proving the main result. In Section 3 (and Appendix), we provide some preliminary estimates on the truncated collision operator. These are known results in the whole space but some subtle differences appear in the torus. Section 4 presents our main result. We first conduct a L2L^{2} estimate of the negative part of the solution and then prove a local existence/uniqueness result. Finally, the well-posedness and stability of the method on an arbitrary bounded time interval is established in Section 4.3 (Theorem 4.4). Facilitated with the stability result, the paper is concluded in Section 5 with a straightforward convergence and spectral accuracy proof of the method.

2 Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation

In this section, we review the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. The presentation follows the formulation originally proposed in [19] which is the basis for many fast algorithms developed recently [9, 12, 13]. Here we limit the description to the extent that is sufficient for the following proof. At the end of the section, we discuss the basic assumptions used throughout the rest of the paper, in particular, the assumptions on the initial condition.

The spatially homogeneous Boltzmann equation reads

tf=Q(f,f),t>0,vd,d2,\partial_{t}f=Q(f,f),\quad t>0,\ v\in\mathbb{R}^{d},\ d\geq 2, (2.1)

where f=f(t,v)f=f(t,v) is the probability density function of time tt and velocity vv, QQ is the collision operator describing the binary collisions among particles, whose bilinear form is given by

Q(g,f)(v)=d𝕊d1B(|vv|,cosθ)[g(v)f(v)g(v)f(v)]dσdv.Q(g,f)(v)=\int_{\mathbb{R}^{d}}\int_{\mathbb{S}^{d-1}}B(|v-v_{*}|,\cos\theta)[g(v_{*}^{\prime})f(v^{\prime})-g(v_{*})f(v)]\,\mathrm{d}{\sigma}\,\mathrm{d}{v_{*}}. (2.2)

In (2.2), σ\sigma is a vector varying over the unit sphere 𝕊d1\mathbb{S}^{d-1}, vv^{\prime} and vv_{*}^{\prime} are defined as

v=v+v2+|vv|2σ,v=v+v2|vv|2σ,v^{\prime}=\frac{v+v_{*}}{2}+\frac{|v-v_{*}|}{2}\sigma,\quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{|v-v_{*}|}{2}\sigma, (2.3)

and B0B\geq 0 is the collision kernel. In this paper we will consider the kernel of the form

B(|vv|,cosθ)=Φ(|vv|)b(cosθ),cosθ=σ(vv)|vv|,B(|v-v_{*}|,\cos\theta)=\Phi(|v-v_{*}|)b(\cos\theta),\quad\cos\theta=\frac{\sigma\cdot(v-v_{*})}{|v-v_{*}|}, (2.4)

whose kinetic part Φ\Phi is a non-negative function and angular part bb satisfies the Grad’s cut-off assumption

𝕊d1b(cosθ)dσ<.\int_{\mathbb{S}^{d-1}}b(\cos\theta)\,\mathrm{d}{\sigma}<\infty. (2.5)

To apply the Fourier-Galerkin spectral method, we consider an approximated problem of (2.1) on a torus 𝒟L=[L,L]d\mathcal{D}_{L}=[-L,L]^{d}:

{tf=QR(f,f),t>0,v𝒟L,f(0,v)=f0(v),\left\{\begin{split}&\partial_{t}f=Q^{R}(f,f),\quad t>0,\ v\in\mathcal{D}_{L},\\ &f(0,v)=f^{0}(v),\end{split}\right. (2.6)

where the initial condition f0f^{0} is a non-negative periodic function, QRQ^{R} is the truncated collision operator defined by

QR(g,f)(v)=R𝕊d1Φ(|q|)b(σq^)[g(v)f(v)g(vq)f(v)]dσdq=d𝕊d1𝟏|q|RΦ(|q|)b(σq^)[g(v)f(v)g(vq)f(v)]dσdq,\begin{split}Q^{R}(g,f)(v)&=\int_{\mathcal{B}_{R}}\int_{\mathbb{S}^{d-1}}\Phi(|q|)b(\sigma\cdot\hat{q})\left[g(v_{*}^{\prime})f(v^{\prime})-g(v-q)f(v)\right]\,\mathrm{d}{\sigma}\,\mathrm{d}{q}\\ &=\int_{\mathbb{R}^{d}}\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|q|\leq R}\Phi(|q|)b(\sigma\cdot\hat{q})\left[g(v_{*}^{\prime})f(v^{\prime})-g(v-q)f(v)\right]\,\mathrm{d}{\sigma}\,\mathrm{d}{q},\end{split} (2.7)

where a change of variable vq=vvv_{*}\rightarrow q=v-v_{*} is applied and the new variable qq is truncated to a ball R\mathcal{B}_{R} with radius RR centered at the origin. We write q=|q|q^q=|q|\hat{q} with |q||q| being the magnitude and q^\hat{q} being the direction. Accordingly,

v=vq|q|σ2,v=vq+|q|σ2.v^{\prime}=v-\frac{q-|q|\sigma}{2},\quad v_{*}^{\prime}=v-\frac{q+|q|\sigma}{2}. (2.8)

In practice, the values of LL and RR are often chosen by an anti-aliasing argument [19]: assume that Supp(f0(v))S\text{Supp}(f^{0}(v))\subset\mathcal{B}_{S}, then one can take

R=2S,L3+22S.R=2S,\quad L\geq\frac{3+\sqrt{2}}{2}S. (2.9)

Given an integer N0N\geq 0, we then seek a truncated Fourier series expansion of ff as

f(t,v)fN(t,v)=k=N/2N/2fk(t)eiπLkvN,f(t,v)\approx f_{N}(t,v)=\sum\limits_{k=-N/2}^{N/2}f_{k}(t)\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\in\mathbb{P}_{N}, (2.10)

where

N=span{eiπLkv|N/2kN/2},\mathbb{P}_{N}=\text{span}\left\{\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\Big{|}-N/2\leq k\leq N/2\right\}, (2.11)

equipped with inner product

f,g=1(2L)d𝒟Lfg¯dv.\langle f,g\rangle=\frac{1}{(2L)^{d}}\int_{\mathcal{D}_{L}}f\bar{g}\,\mathrm{d}v. (2.12)

Substituting fNf_{N} into (2.6) and conducting the Galerkin projection onto the space N\mathbb{P}_{N} yields

{tfN=𝒫NQR(fN,fN),t>0,v𝒟L,fN(0,v)=fN0(v),\left\{\begin{split}&\partial_{t}f_{N}=\mathcal{P}_{N}Q^{R}(f_{N},f_{N}),\quad t>0,\ v\in\mathcal{D}_{L},\\ &f_{N}(0,v)=f_{N}^{0}(v),\end{split}\right. (2.13)

where 𝒫N\mathcal{P}_{N} is the projection operator: for any function gg,

𝒫Ng=k=N/2N/2g^keiπLkv,g^k=g,eiπLkv,\mathcal{P}_{N}g=\sum_{k=-N/2}^{N/2}\hat{g}_{k}\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v},\quad\hat{g}_{k}=\langle g,\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\rangle, (2.14)

fN0Nf_{N}^{0}\in\mathbb{P}_{N} is the initial condition to the numerical system and should be a reasonable approximation to f0f^{0}. More discussion on the initial condition will be given in Section 2.1, which in fact plays an important role in the following proof.

Writing out each Fourier mode of (2.13), we obtain

{tfk=QkR,N/2kN/2,fk(0)=fk0,\left\{\begin{split}&\partial_{t}f_{k}=Q^{R}_{k},\quad-N/2\leq k\leq N/2,\\ &f_{k}(0)=f^{0}_{k},\end{split}\right. (2.15)

with

QkR:=QR(fN,fN),eiπLkv,fk0:=fN0,eiπLkv.Q_{k}^{R}:=\langle Q^{R}(f_{N},f_{N}),\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\rangle,\quad f^{0}_{k}:=\langle f_{N}^{0},\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\rangle. (2.16)

Using the definition in (2.7) and orthogonality of the Fourier basis, we can derive that

QkR=l,m=N/2l+m=kN/2G(l,m)flfm,Q_{k}^{R}=\sum\limits_{\begin{subarray}{c}l,m=-N/2\\ l+m=k\end{subarray}}^{N/2}G(l,m)f_{l}f_{m}, (2.17)

where the weight GG is given by

G(l,m)=R𝕊d1Φ(|q|)b(σq^)[eiπ2L(l+m)q+iπ2L|q|(lm)σeiπLmq]dσdq=ReiπLmq[𝕊d1Φ(|q|)b(σq^)(eiπ2L(l+m)(q|q|σ)1)dσ]dq.\begin{split}G(l,m)&=\int_{\mathcal{B}_{R}}\int_{\mathbb{S}^{d-1}}\Phi(|q|)b(\sigma\cdot\hat{q})\left[\mathrm{e}^{-\mathrm{i}\frac{\pi}{2L}(l+m)\cdot q+\mathrm{i}\frac{\pi}{2L}|q|(l-m)\cdot\sigma}-\mathrm{e}^{-\mathrm{i}\frac{\pi}{L}m\cdot q}\right]\,\mathrm{d}\sigma\,\mathrm{d}q\\ &=\int_{\mathcal{B}_{R}}\mathrm{e}^{-\mathrm{i}\frac{\pi}{L}m\cdot q}\left[\int_{\mathbb{S}^{d-1}}\Phi(|q|)b(\sigma\cdot\hat{q})(\mathrm{e}^{\mathrm{i}\frac{\pi}{2L}(l+m)\cdot(q-|q|\sigma)}-1)\,\mathrm{d}\sigma\right]\,\mathrm{d}q.\end{split} (2.18)

The second equality above is obtained by switching two variables σq^\sigma\leftrightarrow\hat{q} in the gain part of G(l,m)G(l,m). In the direct Fourier spectral method, G(l,m)G(l,m) is precomputed since it is independent of the solution. Then in the online computation, the sum (2.17) is evaluated directly.

Note that the solution ff to the original problem (2.6) is always non-negative which is the key to many stability estimates. However, the solution fNf_{N} to the numerical system (2.13) is not necessarily non-negative due to the spectral projection which constitutes the main difficulty in the numerical analysis. Luckily, by virtue of the Fourier spectral method, mass is always conserved which provides some control of the solution. Precisely, we have

Lemma 2.1.

The numerical system (2.13) preserves mass, that is,

𝒟LfN(t,v)dv=𝒟LfN0(v)dv.\int_{\mathcal{D}_{L}}f_{N}(t,v)\,\mathrm{d}v=\int_{\mathcal{D}_{L}}f^{0}_{N}(v)\,\mathrm{d}v. (2.19)
Proof.

Note that

𝒟LfN(t,v)dv=k=N/2N/2fk(t)𝒟LeiπLkvdv=(2L)df0(t),\int_{\mathcal{D}_{L}}f_{N}(t,v)\,\mathrm{d}{v}=\sum_{k=-N/2}^{N/2}f_{k}(t)\int_{\mathcal{D}_{L}}\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\,\mathrm{d}{v}=(2L)^{d}f_{0}(t), (2.20)

where f0f_{0} is the zero-th mode of the numerical solution and is governed by

tf0=Q0R.\partial_{t}f_{0}=Q_{0}^{R}. (2.21)

From (2.17), it is clear that Q0R0Q^{R}_{0}\equiv 0 since G(l,m)0G(l,m)\equiv 0 when l+m=0l+m=0. This implies f0f_{0} remains constant in time, whose value is the zero-th Fourier mode of the initial condition fN0(v)f_{N}^{0}(v). ∎

We now introduce some assumptions and notations that will be used throughout the rest of this paper.

Basic assumptions on the truncation parameters and the collision kernel.

  • (1)

    The truncation parameters LL and RR in (2.6) satisfy

    LR>0.L\geq R>0. (2.22)

    Note that the choice (2.9) implies L(3+2)R/4L\geq(3+\sqrt{2})R/4 hence the above condition is satisfied.

  • (2)

    The kinetic part of the collision kernel (2.4) satisfies

    𝟏|v|RΦ(|v|)L(𝒟L)<.\left\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\right\|_{L^{\infty}(\mathcal{D}_{L})}<\infty. (2.23)

    Note that all power law hard potentials Φ(|v|)=|v|γ\Phi(|v|)=|v|^{\gamma} (0γ10\leq\gamma\leq 1) as well as the “modified” soft potentials Φ(|v|)=(1+|v|)γ\Phi(|v|)=(1+|v|)^{\gamma} (d<γ<0-d<\gamma<0) satisfy this condition.

  • (3)

    The angular part of the collision kernel (2.4) has been replaced by its symmetrized version555This symmetrization can readily reduce the computational cost by a half (integration over the whole sphere is reduced to half sphere) so it also has important implications for numerical purpose, see [9].:

    [b(cosθ)+b(cos(πθ))]𝟏0θπ/2,\left[b(\cos\theta)+b(\cos\left(\pi-\theta\right))\right]\mathbf{1}_{0\leq\theta\leq\pi/2}, (2.24)

    and satisfies the cut-off assumption (2.5).

Some notations.

For a periodic function f(v)f(v) in 𝒟L\mathcal{D}_{L}, we define its Lebesgue norm and Sobolev norm as follows:

fLperp(𝒟L)=(𝒟L|f(v)|pdv)1/p,fHperk(𝒟L)=(|ν|kvνfLper(𝒟L)22)1/2,\|f\|_{L^{p}_{\text{per}}(\mathcal{D}_{L})}=\left(\int_{\mathcal{D}_{L}}|f(v)|^{p}\,\mathrm{d}{v}\right)^{1/p},\quad\|f\|_{{H^{k}_{\text{per}}}(\mathcal{D}_{L})}=\left(\sum_{|\nu|\leq k}\|\partial_{v}^{\nu}f\|_{L^{2}_{\text{per}(\mathcal{D}_{L})}}^{2}\right)^{1/2}, (2.25)

where k0k\geq 0 is an integer and ν\nu is a multi-index. “per” indicates the function is periodic and will not be included in the following for simplicity.

Except in Section 3, we do not track explicitly the dependence of constants on the truncation parameters RR, LL, dimension dd, and the collision kernel BB.

For a function f(v)f(v) in 𝒟L\mathcal{D}_{L}, we define its positive and negative parts as

f+(v)=maxv𝒟L{f(v),0},f(v)=maxv𝒟L{f(v),0},f^{+}(v)=\max\limits_{v\in\mathcal{D}_{L}}\{f(v),0\},\quad f^{-}(v)=\max\limits_{v\in\mathcal{D}_{L}}\{-f(v),0\}, (2.26)

so that f=f+ff=f^{+}-f^{-} and |f|=f++f|f|=f^{+}+f^{-}.

2.1 Assumptions on the initial condition

To prove our main well-posedness and stability result, Theorem 4.4, we would assume that the initial condition f0(v)f^{0}(v) to the original problem (2.6) is periodic, non-negative, and belongs to L1H1(𝒟L)L^{1}\cap H^{1}(\mathcal{D}_{L}) (in fact L1L^{1} can be removed since L2(𝒟L)L1(𝒟L)L^{2}(\mathcal{D}_{L})\subset L^{1}(\mathcal{D}_{L}) due to boundedness of the domain). For the initial condition fN0(v)f_{N}^{0}(v) to the numerical system (2.13), we would require it to lie in the space N\mathbb{P}_{N} and satisfies the following:

  • (a)

    Mass conservation:

    𝒟LfN0(v)dv=𝒟Lf0(v)dv.\int_{\mathcal{D}_{L}}f^{0}_{N}(v)\,\mathrm{d}v=\int_{\mathcal{D}_{L}}f^{0}(v)\,\mathrm{d}v. (2.27)
  • (b)

    Control of L2L^{2} and H1H^{1} norms: for any integer N0N\geq 0,

    fN0L2(𝒟L)f0L2(𝒟L),fN0H1(𝒟L)f0H1(𝒟L).\|f^{0}_{N}\|_{L^{2}(\mathcal{D}_{L})}\leq\|f^{0}\|_{L^{2}(\mathcal{D}_{L})},\quad\|f^{0}_{N}\|_{H^{1}(\mathcal{D}_{L})}\leq\|f^{0}\|_{H^{1}(\mathcal{D}_{L})}. (2.28)
  • (c)

    Control of L1L^{1} norm: there exists an integer N0N_{0} such that for all N>N0N>N_{0},

    fN0L1(𝒟L)Cf0L1(𝒟L).\|f_{N}^{0}\|_{L^{1}(\mathcal{D}_{L})}\leq C\|f^{0}\|_{L^{1}(\mathcal{D}_{L})}. (2.29)

    where C>1C>1 is some constant whose value is of no essential importance. In the following proof, we will take C=2C=2 for simplicity.

  • (d)

    L2L^{2} norm of fN0,f_{N}^{0,-} can be made arbitrarily small: for any ε>0\varepsilon>0, there exists an integer N0N_{0} such that for all N>N0N>N_{0},

    fN0,L2(𝒟L)<ε.\|f_{N}^{0,-}\|_{L^{2}(\mathcal{D}_{L})}<\varepsilon. (2.30)
Remark 2.2.

An obvious choice is to take fN0=𝒫Nf0f_{N}^{0}=\mathcal{P}_{N}f^{0}. Condition (a) is satisfied since it is equivalent to preserving the zero-th Fourier mode of the function. Condition (b) is a direct consequence of the Parseval’s identity. Condition (c) can be obtained by the L2L^{2} convergence of the Fourier series and that L1L^{1} norm can be controlled by L2L^{2} norm. Condition (d) can be proved at least when the uniform convergence of the Fourier series is guaranteed, for which one may require additional continuity on f0f^{0}. For instance, f0f^{0} is Hölder continuous, or continuous plus bounded variation (in fact BVBV can be removed since H1(𝒟L)W1,1(𝒟L)BV(𝒟L)H^{1}(\mathcal{D}_{L})\subset W^{1,1}(\mathcal{D}_{L})\subset BV(\mathcal{D}_{L})).

Remark 2.3.

Sometimes the initial condition f0f^{0} may contain discontinuities, then simply taking the Fourier projection of f0f^{0} will generate undesirable oscillations (Gibbs phenomenon). Hence a reasonable choice is to take a filtered version fN0=𝒮Nf0f_{N}^{0}=\mathcal{S}_{N}f^{0}, where 𝒮N\mathcal{S}_{N} is defined as: for any function g,

𝒮Ng=k=N/2N/2σN(k)g^keiπLkv,g^k=g,eiπLkv,\mathcal{S}_{N}g=\sum_{k=-N/2}^{N/2}\sigma_{N}(k)\hat{g}_{k}\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v},\quad\hat{g}_{k}=\langle g,\mathrm{e}^{\mathrm{i}\frac{\pi}{L}k\cdot v}\rangle, (2.31)

with σN\sigma_{N} being the filter function, see for instance [11, Chapter 9]. Typically, the filter won’t change the zero-th Fourier mode of the function, and won’t amplify the remaining Fourier modes, hence conditions (a) and (b) would be satisfied automatically. For conditions (c) and (d) to hold, one needs some kind of convergence which depends on the property of the actual filter. Without going into details, let us just mention that there is a class of positive filters (e.g., the Fejér or Jackson filter [23]) which can preserve the positivity of the function so that the condition (d) is trivially satisfied. Condition (c) can be satisfied as well by using the Young’s inequality and the L1L^{1} norm of the filter is exactly 1. However, the positivity-preserving filters may come with the price of slower convergence (away from the discontinuity) compared with other high order filters (e.g., the exponential filter [11]). Therefore, one could take non-positive high order filters, as long as they satisfy the conditions (c) and (d). It is worth emphasizing that the purpose of applying the filter here is merely to fix the initial condition when f0f^{0} is discontinuous so that our well-posedness and stability proof still holds. This is in stark contrast to the filtering method used in [20] and [3], where the filter is applied to the equation to preserve the positivity of the solution.

3 Some preliminary estimates on the truncated collision operator QRQ^{R}

In this section, we prove some important estimates for the truncated collision operator (2.7). Since its gain term and loss term possess quite different properties, we consider

QR,+(g,f)(v):=d𝕊d1𝟏|q|RΦ(|q|)b(σq^)g(v)f(v)dσdq,QR,(g,f)(v):=d𝕊d1𝟏|q|RΦ(|q|)b(σq^)g(vq)f(v)dσdq,\begin{split}Q^{R,+}(g,f)(v)&:=\int_{\mathbb{R}^{d}}\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|q|\leq R}\Phi(|q|)b(\sigma\cdot\hat{q})g(v_{*}^{\prime})f(v^{\prime})\,\mathrm{d}{\sigma}\,\mathrm{d}{q},\\ Q^{R,-}(g,f)(v)&:=\int_{\mathbb{R}^{d}}\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|q|\leq R}\Phi(|q|)b(\sigma\cdot\hat{q})g(v-q)f(v)\,\mathrm{d}{\sigma}\,\mathrm{d}{q},\end{split} (3.1)

separately whenever appropriate.

Proposition 3.1.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5), then the truncated collision operators QR,±(g,f)Q^{R,\pm}(g,f) satisfy the following estimates: for 1p1\leq p\leq\infty,

QR,+(g,f)Lp(𝒟L)CR,L,d,p+(B)gL1(𝒟L)fLp(𝒟L),\left\|Q^{R,+}(g,f)\right\|_{L^{p}(\mathcal{D}_{L})}\leq C^{+}_{R,L,d,p}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}, (3.2)

where the constant CR,L,d,p+(B)=C1/pbL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)C^{+}_{R,L,d,p}(B)=C^{1/p}\|b\|_{L^{1}(\mathbb{S}^{d-1})}\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}.

QR,(g,f)Lp(𝒟L)CR,L,d(B)gL1(𝒟L)fLp(𝒟L),\left\|Q^{R,-}(g,f)\right\|_{L^{p}(\mathcal{D}_{L})}\leq C_{R,L,d}^{-}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}, (3.3)

where the constant CR,L,d(B)=CbL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)C^{-}_{R,L,d}(B)=C\|b\|_{L^{1}(\mathbb{S}^{d-1})}\left\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\right\|_{L^{\infty}(\mathcal{D}_{L})}.

In particular, for the whole collision operator QR(g,f)Q^{R}(g,f), we have

QR(g,f)Lp(𝒟L)CR,L,d,p(B)gL1(𝒟L)fLp(𝒟L).\left\|Q^{R}(g,f)\right\|_{L^{p}(\mathcal{D}_{L})}\leq C_{R,L,d,p}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}. (3.4)
Proof.

The proof of the truncated gain term 𝒬R,+(g,f)\mathcal{Q}^{R,+}(g,f) is similar to the usual Boltzmann operator 𝒬+(g,f)\mathcal{Q}^{+}(g,f) on d\mathbb{R}^{d}. However, the right hand side is not entirely obvious as we need to restrict back to a bounded domain. Therefore, we follow [17, Theorem 2.1] to give a complete proof of (3.2) (see Appendix). In fact, by carrying out this carefully, one can see that the condition (2.22) is needed.

For the loss term, we write it as

QR,(g,f)(v)=LR(g)(v)f(v),Q^{R,-}(g,f)(v)=L^{R}(g)(v)f(v), (3.5)

where LRL^{R} is a convolution given by

LR(g)(v)=bL1(𝕊d1)d𝟏|q|RΦ(|q|)g(vq)dq=bL1(𝕊d1)(𝟏|v|RΦ(|v|))g(v).L^{R}(g)(v)=\|b\|_{L^{1}(\mathbb{S}^{d-1})}\int_{\mathbb{R}^{d}}\mathbf{1}_{|q|\leq R}\Phi(|q|)g(v-q)\,\mathrm{d}{q}=\|b\|_{L^{1}(\mathbb{S}^{d-1})}\left(\mathbf{1}_{|v|\leq R}\Phi(|v|)\right)*g(v). (3.6)

Then

QR,(g,f)Lp(𝒟L)LR(g)L(𝒟L)fLp(𝒟L)=bL1(𝕊d1)(𝟏|v|RΦ(|v|))g(v)L(𝒟L)fLp(𝒟L)bL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)gL1(2L+R)fLp(𝒟L)CbL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)gL1(𝒟L)fLp(𝒟L)=CR,L,d(B)gL1(𝒟L)fLp(𝒟L),\begin{split}\|Q^{R,-}(g,f)\|_{L^{p}(\mathcal{D}_{L})}&\leq\left\|L^{R}(g)\right\|_{L^{\infty}(\mathcal{D}_{L})}\|f\|_{L^{p}(\mathcal{D}_{L})}\\ &=\|b\|_{L^{1}(\mathbb{S}^{d-1})}\left\|\left(\mathbf{1}_{|v|\leq R}\Phi(|v|)\right)*g(v)\right\|_{L^{\infty}(\mathcal{D}_{L})}\|f\|_{L^{p}(\mathcal{D}_{L})}\\ &\leq\|b\|_{L^{1}(\mathbb{S}^{d-1})}\left\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\right\|_{L^{\infty}(\mathcal{D}_{L})}\left\|g\right\|_{L^{1}(\mathcal{B}_{\sqrt{2}L+R})}\|f\|_{L^{p}(\mathcal{D}_{L})}\\ &\leq C\|b\|_{L^{1}(\mathbb{S}^{d-1})}\left\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\right\|_{L^{\infty}(\mathcal{D}_{L})}\|g\|_{L^{1}(\mathcal{D}_{L})}\|f\|_{L^{p}(\mathcal{D}_{L})}\\ &=C_{R,L,d}^{-}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})},\end{split} (3.7)

where we used RLR\leq L in the third line and gg is a periodic function on 𝒟L\mathcal{D}_{L} in the fourth line. ∎

Proposition 3.2.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5), then the truncated collision operator QR(g,f)Q^{R}(g,f) satisfies the following estimate: for integer k0k\geq 0,

QR(g,f)Hk(𝒟L)CR,L,d,k(B)gHk(𝒟L)fHk(𝒟L).\left\|Q^{R}(g,f)\right\|_{H^{k}(\mathcal{D}_{L})}\leq C^{\prime}_{R,L,d,k}(B)\left\|g\right\|_{H^{k}(\mathcal{D}_{L})}\left\|f\right\|_{H^{k}(\mathcal{D}_{L})}. (3.8)
Proof.

First of all, (3.8) when k=0k=0 is a direct consequence of (3.4) by taking p=2p=2 and noting that gL1(𝒟L)(2L)d/2gL2(𝒟L)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\leq(2L)^{d/2}\left\|g\right\|_{L^{2}(\mathcal{D}_{L})}.

To prove (3.8) for k>0k>0, note that the collision operator satisfies the Leibniz rule:

vνQR(g,f)=μν(νμ)QR(vμg,vνμf),\partial_{v}^{\nu}Q^{R}(g,f)=\sum_{\mu\leq\nu}\binom{\nu}{\mu}Q^{R}(\partial_{v}^{\mu}g,\partial_{v}^{\nu-\mu}f), (3.9)

which is a consequence of the bilinearity and the Galilean invariance of the truncated collision operator QR(g,f)(vh)=QR(g(vh),f(vh))Q^{R}(g,f)(v-h)=Q^{R}(g(v-h),f(v-h)). Then we have

QR(g,f)Hk(𝒟L)2=|ν|kvνQR(g,f)L2(𝒟L)2=|ν|kμν(νμ)QR(vμg,vνμf)L2(𝒟L)2|ν|kμν(νμ)2μνQR(vμg,vνμf)L2(𝒟L)2CR,L,d,02(B)|ν|kμν(νμ)2μνvμgL2(𝒟L)2vνμfL2(𝒟L)2CR,L,d,k2(B)gHk(𝒟L)2fHk(𝒟L)2,\begin{split}\|Q^{R}(g,f)\|_{H^{k}(\mathcal{D}_{L})}^{2}&=\sum_{|\nu|\leq k}\left\|\partial^{\nu}_{v}Q^{R}(g,f)\right\|_{L^{2}(\mathcal{D}_{L})}^{2}=\sum_{|\nu|\leq k}\left\|\sum_{\mu\leq\nu}\binom{\nu}{\mu}Q^{R}(\partial_{v}^{\mu}g,\partial_{v}^{\nu-\mu}f)\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ &\leq\sum_{|\nu|\leq k}\sum_{\mu\leq\nu}\binom{\nu}{\mu}^{2}\sum_{\mu\leq\nu}\left\|Q^{R}(\partial_{v}^{\mu}g,\partial_{v}^{\nu-\mu}f)\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ &\leq C^{\prime 2}_{R,L,d,0}(B)\sum_{|\nu|\leq k}\sum_{\mu\leq\nu}\binom{\nu}{\mu}^{2}\sum_{\mu\leq\nu}\left\|\partial_{v}^{\mu}g\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\left\|\partial_{v}^{\nu-\mu}f\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ &\leq C^{\prime 2}_{R,L,d,k}(B)\left\|g\right\|^{2}_{H^{k}(\mathcal{D}_{L})}\left\|f\right\|^{2}_{H^{k}(\mathcal{D}_{L})},\end{split} (3.10)

where we used the Cauchy-Schwarz inequality in the second line. ∎

4 Main result: well-posedness and stability of the method

In this section, we establish the well-posedness and stability of the Fourier-Galerkin spectral method (2.13) on an arbitrary bounded time interval [0,T][0,T]. The main strategy of the proof is as follows: In Section 4.1 we prove some L2L^{2} and HkH^{k} estimates of the solution under a priori L1L^{1} bound of fNf_{N}, among which the key result is the L2L^{2} estimate of the negative part of the solution (Proposition 4.2). Proposition 4.3 is a local existence and uniqueness result over a small time interval [t0,t0+τ][t_{0},t_{0}+\tau]. Finally the main result is presented in Theorem 4.4, where we show that when NN is large enough the negative part of the solution can be controlled over time [0,τ][0,\tau]. Due to mass conservation, this consequently implies the initial L1L^{1} bound of the solution can be restored at time τ\tau. Therefore, we can repeat the procedure iteratively to build the solution up to final time TT (the estimates on NN and τ\tau are done carefully at the beginning so that the same values can be used in the following iteration).

4.1 Propagation of the L2L^{2} estimate of fNf_{N}^{-} under a priori L1L^{1} bound of fNf_{N}

We first establish the L2L^{2} and HkH^{k} estimates of fNf_{N} under a priori L1L^{1} bound of fNf_{N}. This result is not new and the proof is similar to [6, Lemma 4.2]. The main difference is that we closely track the dependence in the case of H1H^{1} which will be useful in the following estimate.

Proposition 4.1.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). For the numerical system (2.13), assume that the initial condition fN0Hk(𝒟L)f_{N}^{0}\in H^{k}(\mathcal{D}_{L}) for some integer k0k\geq 0 and that the solution fNf_{N} has a L1L^{1} bound up to some time t0t_{0}:

t[0,t0],fN(t)L1(𝒟L)M,\forall t\in[0,t_{0}],\quad\left\|f_{N}(t)\right\|_{L^{1}(\mathcal{D}_{L})}\leq M, (4.1)

then there exists a constant KkK_{k} depending on t0t_{0}, MM, and fN0Hk(𝒟L)\|f_{N}^{0}\|_{H^{k}(\mathcal{D}_{L})} such that

t[0,t0],fN(t)Hk(𝒟L)Kk(t0,M,fN0Hk(𝒟L)).\forall t\in[0,t_{0}],\quad\left\|f_{N}(t)\right\|_{H^{k}(\mathcal{D}_{L})}\leq K_{k}\left(t_{0},M,\|f_{N}^{0}\|_{H^{k}(\mathcal{D}_{L})}\right). (4.2)

In particular, for k=0k=0 and k=1k=1, we have

K0=et0D0MfN0L2(𝒟L),K1=et0D1(M+K0)(fN0H1(𝒟L)+D2),K_{0}=\mathrm{e}^{t_{0}D_{0}M}\left\|f_{N}^{0}\right\|_{L^{2}(\mathcal{D}_{L})},\quad K_{1}=\mathrm{e}^{t_{0}D_{1}\left(M+K_{0}\right)}\left(\left\|f^{0}_{N}\right\|_{H^{1}(\mathcal{D}_{L})}+D_{2}\right), (4.3)

where D0D_{0}, D1D_{1}, D2D_{2} are constants depending only on the truncation parameters RR, LL, dimension dd, and the collision kernel BB.

Proof.

The proof is based on mathematical induction.

Step (i): We first prove (4.2) holds for k=0k=0. Multiplying both sides of (2.13) by fNf_{N} and integrating over 𝒟L\mathcal{D}_{L} yields

12ddtfNL2(𝒟L)2=𝒟L𝒫NQR(fN,fN)fNdv𝒫NQR(fN,fN)L2(𝒟L)fNL2(𝒟L)QR(fN,fN)L2(𝒟L)fNL2(𝒟L)D0fNL1(𝒟L)fNL2(𝒟L)2D0MfNL2(𝒟L)2,\begin{split}\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|f_{N}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}=&\int_{\mathcal{D}_{L}}\mathcal{P}_{N}Q^{R}(f_{N},f_{N})f_{N}\,\mathrm{d}v\leq\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\left\|Q^{R}(f_{N},f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\leq D_{0}\left\|f_{N}\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\leq D_{0}M\left\|f_{N}\right\|^{2}_{L^{2}(\mathcal{D}_{L})},\end{split} (4.4)

where we used (3.4) and the assumption (4.1). Thus we have

ddtfNL2(𝒟L)D0MfNL2(𝒟L).\frac{\mathrm{d}}{\mathrm{d}t}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\leq D_{0}M\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}. (4.5)

By the Grönwall’s inequality, we further conclude that

fN(t)L2(𝒟L)eD0Mt0fN0L2(𝒟L),t[0,t0].\left\|f_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{D_{0}Mt_{0}}\left\|f_{N}^{0}\right\|_{L^{2}(\mathcal{D}_{L})},\quad\forall t\in[0,t_{0}]. (4.6)

Step (ii): We then assume that (4.2) holds for some k0k\geq 0, and proceed to prove that it holds also for k+1k+1. First of all, taking the ν\nu-th derivative w.r.t. vv on both sides of (2.13) gives

t(vνfN)=vν𝒫NQR(fN,fN)=𝒫NvνQR(fN,fN).\partial_{t}(\partial^{\nu}_{v}f_{N})=\partial^{\nu}_{v}\mathcal{P}_{N}Q^{R}(f_{N},f_{N})=\mathcal{P}_{N}\partial^{\nu}_{v}Q^{R}(f_{N},f_{N}). (4.7)

Multiplying (4.7) by vνfN\partial^{\nu}_{v}f_{N} and integrating over 𝒟L\mathcal{D}_{L} then yields

12ddtvνfNL2(𝒟L)2=𝒟L𝒫NvνQR(fN,fN)vνfNdvvνQR(fN,fN)L2(𝒟L)vνfNL2(𝒟L).\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|\partial^{\nu}_{v}f_{N}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}=\int_{\mathcal{D}_{L}}\mathcal{P}_{N}\partial^{\nu}_{v}Q^{R}(f_{N},f_{N})\partial^{\nu}_{v}f_{N}\,\mathrm{d}v\leq\left\|\partial^{\nu}_{v}Q^{R}(f_{N},f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\left\|\partial^{\nu}_{v}f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}. (4.8)

By adding (4.8) with |ν|k+1|\nu|\leq k+1 altogether and using the Cauchy-Schwarz inequality, we find that

12ddtfNHk+1(𝒟L)2QR(fN,fN)Hk+1(𝒟L)fNHk+1(𝒟L),\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|f_{N}\right\|^{2}_{H^{k+1}(\mathcal{D}_{L})}\leq\left\|Q^{R}(f_{N},f_{N})\right\|_{H^{k+1}(\mathcal{D}_{L})}\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}, (4.9)

i.e.,

ddtfNHk+1(𝒟L)QR(fN,fN)Hk+1(𝒟L).\frac{\mathrm{d}}{\mathrm{d}t}\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}\leq\left\|Q^{R}(f_{N},f_{N})\right\|_{H^{k+1}(\mathcal{D}_{L})}. (4.10)

On the other hand,

QR(fN,fN)Hk+1(𝒟L)2=QR(fN,fN)Hk(𝒟L)2+|ν|=k+1vνQR(fN,fN)L2(𝒟L)2=QR(fN,fN)Hk(𝒟L)2+|ν|=k+1μν(νμ)QR(vμfN,vνμfN)L2(𝒟L)2QR(fN,fN)Hk(𝒟L)2+|ν|=k+1C02μνQR(vμfN,vνμfN)L2(𝒟L)2=QR(fN,fN)Hk(𝒟L)2+|ν|=k+1C02(0<μ<νQR(vμfN,vνμfN)L2(𝒟L)2+QR(fN,vνfN)L2(𝒟L)2+QR(vνfN,fN)L2(𝒟L)2)C12fNHk(𝒟L)2+|ν|=k+1C02(0<μ<νC22vμfNL2(𝒟L)2vνμfNL2(𝒟L)2+C32fNL1(𝒟L)2vνfNL2(𝒟L)2+C42vνfNL1(𝒟L)2fNL2(𝒟L)2)C52fNHk(𝒟L)2+C62(fNL1(𝒟L)2+fNL2(𝒟L)2)fNHk+1(𝒟L)2C52Kk2+C62(M2+K02)fNHk+1(𝒟L)2,\begin{split}&\left\|Q^{R}(f_{N},f_{N})\right\|^{2}_{H^{k+1}(\mathcal{D}_{L})}=\left\|Q^{R}(f_{N},f_{N})\right\|^{2}_{H^{k}(\mathcal{D}_{L})}+\sum_{|\nu|=k+1}\left\|\partial_{v}^{\nu}Q^{R}(f_{N},f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ =&\left\|Q^{R}(f_{N},f_{N})\right\|^{2}_{H^{k}(\mathcal{D}_{L})}+\sum_{|\nu|=k+1}\left\|\sum_{\mu\leq\nu}\binom{\nu}{\mu}Q^{R}(\partial_{v}^{\mu}f_{N},\partial_{v}^{\nu-\mu}f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ \leq&\left\|Q^{R}(f_{N},f_{N})\right\|^{2}_{H^{k}(\mathcal{D}_{L})}+\sum_{|\nu|=k+1}C_{0}^{2}\sum_{\mu\leq\nu}\left\|Q^{R}(\partial^{\mu}_{v}f_{N},\partial^{\nu-\mu}_{v}f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\\ =&\left\|Q^{R}(f_{N},f_{N})\right\|^{2}_{H^{k}(\mathcal{D}_{L})}+\sum_{|\nu|=k+1}C_{0}^{2}\left(\sum_{0<\mu<\nu}\left\|Q^{R}(\partial^{\mu}_{v}f_{N},\partial^{\nu-\mu}_{v}f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\right.\\ &\left.+\left\|Q^{R}(f_{N},\partial^{\nu}_{v}f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}+\left\|Q^{R}(\partial^{\nu}_{v}f_{N},f_{N})\right\|^{2}_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&C_{1}^{2}\left\|f_{N}\right\|_{H^{k}(\mathcal{D}_{L})}^{2}+\sum_{|\nu|=k+1}C_{0}^{2}\left(\sum_{0<\mu<\nu}C_{2}^{2}\|\partial^{\mu}_{v}f_{N}\|_{L^{2}(\mathcal{D}_{L})}^{2}\|\partial^{\nu-\mu}_{v}f_{N}\|_{L^{2}(\mathcal{D}_{L})}^{2}\right.\\ &\left.+C_{3}^{2}\|f_{N}\|_{L^{1}(\mathcal{D}_{L})}^{2}\left\|\partial_{v}^{\nu}f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}^{2}+C_{4}^{2}\|\partial_{v}^{\nu}f_{N}\|_{L^{1}(\mathcal{D}_{L})}^{2}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}^{2}\right)\\ \leq&C_{5}^{2}\left\|f_{N}\right\|_{H^{k}(\mathcal{D}_{L})}^{2}+C_{6}^{2}(\|f_{N}\|_{L^{1}(\mathcal{D}_{L})}^{2}+\|f_{N}\|_{L^{2}(\mathcal{D}_{L})}^{2})\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}^{2}\\ \leq&C_{5}^{2}K_{k}^{2}+C_{6}^{2}(M^{2}+K_{0}^{2})\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}^{2},\end{split} (4.11)

where in the third last inequality, we used (3.8) in the first line and (3.4) in the second line. In the last inequality, we used the induction hypothesis.

Then (4.10) becomes

ddtfNHk+1(𝒟L)C6(M+K0)fNHk+1(𝒟L)+C5Kk.\frac{\mathrm{d}}{\mathrm{d}t}\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}\leq C_{6}(M+K_{0})\left\|f_{N}\right\|_{H^{k+1}(\mathcal{D}_{L})}+C_{5}K_{k}. (4.12)

By the Grönwall’s inequality, we have

fN(t)Hk+1(𝒟L)eC6(M+K0)t0(fN0Hk+1(𝒟L)+C5KkC6(M+K0)):=Kk+1,t[0,t0].\begin{split}\left\|f_{N}(t)\right\|_{H^{k+1}(\mathcal{D}_{L})}\leq&\mathrm{e}^{C_{6}(M+K_{0})t_{0}}\left(\left\|f_{N}^{0}\right\|_{H^{k+1}(\mathcal{D}_{L})}+\frac{C_{5}K_{k}}{C_{6}(M+K_{0})}\right):=K_{k+1},\quad\forall t\in[0,t_{0}].\end{split} (4.13)

This completes the induction argument for k+1k+1.

In particular, the explicit formula of K0K_{0} is given in (4.6) and the formula of K1K_{1} is implied by (4.13) when k=0k=0. ∎

We now proceed to estimate the negative part of the solution, which relies on a careful estimate of both gain and loss terms of the collision operator. This estimate will play a key role in the main theorem.

Proposition 4.2.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). For the numerical system (2.13), assume that the initial condition fN0H1(𝒟L)f_{N}^{0}\in H^{1}(\mathcal{D}_{L}) and that the solution fNf_{N} has a L1L^{1} bound up to some time t0t_{0}:

t[0,t0],fN(t)L1(𝒟L)M,\forall t\in[0,t_{0}],\quad\left\|f_{N}(t)\right\|_{L^{1}(\mathcal{D}_{L})}\leq M, (4.14)

then

t[0,t0],fN(t)L2(𝒟L)K0,fN(t)H1(𝒟L)K1,\forall t\in[0,t_{0}],\quad\left\|f_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq K_{0},\quad\left\|f_{N}(t)\right\|_{H^{1}(\mathcal{D}_{L})}\leq K_{1}, (4.15)

and fNf^{-}_{N}, the negative part of fNf_{N}, satisfies

t[0,t0],fN(t)L2(𝒟L)et0D3(M+K0)(fN0,L2(𝒟L)+D4K12MN),\forall t\in[0,t_{0}],\quad\left\|f_{N}^{-}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{t_{0}D_{3}(M+K_{0})}\left(\left\|f_{N}^{0,-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{D_{4}K_{1}^{2}}{MN}\right), (4.16)

where K0K_{0}, K1K_{1} are given in (4.3), and D3D_{3} and D4D_{4} are constants depending only on the truncation parameters RR, LL, dimension dd, and the collision kernel BB.

Proof.

First of all, since fN0H1(𝒟L)f_{N}^{0}\in H^{1}(\mathcal{D}_{L}), Proposition 4.1 (when k=1k=1) directly yields (4.15).

Equipped with this regularity, we now estimate the negative part of fNf_{N}. Note that fN=fN+fNf_{N}=f_{N}^{+}-f^{-}_{N}, |fN|=fN++fN|f_{N}|=f^{+}_{N}+f^{-}_{N}. We first rewrite (2.13) as

tfN=QR,+(fN,fN)QR,(fN,fN)+EN(fN),\partial_{t}f_{N}=Q^{R,+}(f_{N},f_{N})-Q^{R,-}(f_{N},f_{N})+E_{N}(f_{N}), (4.17)

with

EN(fN):=𝒫NQR(fN,fN)QR(fN,fN).E_{N}(f_{N}):=\mathcal{P}_{N}Q^{R}(f_{N},f_{N})-Q^{R}(f_{N},f_{N}). (4.18)

For the gain term, we have

QR,+(fN,fN)fN𝟏{fN0}=QR,+(fN+fN,fN+fN)fN𝟏{fN0}=[QR,+(fN+,fN+)QR,+(fN+,fN)QR,+(fN,fN+)+QR,+(fN,fN)]fN𝟏{fN0}=[QR,+(fN+,fN+)+QR,+(fN+,fN)+QR,+(fN,fN+)QR,+(fN,fN)]fN[QR,+(fN+,fN)+QR,+(fN,fN+)]fN.\begin{split}Q^{R,+}(f_{N},f_{N})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}=&Q^{R,+}(f_{N}^{+}-f_{N}^{-},f_{N}^{+}-f_{N}^{-})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\\ =&\left[Q^{R,+}(f_{N}^{+},f_{N}^{+})-Q^{R,+}(f_{N}^{+},f_{N}^{-})-Q^{R,+}(f_{N}^{-},f_{N}^{+})+Q^{R,+}(f_{N}^{-},f_{N}^{-})\right]f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\\ =&\left[-Q^{R,+}(f_{N}^{+},f_{N}^{+})+Q^{R,+}(f_{N}^{+},f_{N}^{-})+Q^{R,+}(f_{N}^{-},f_{N}^{+})-Q^{R,+}(f_{N}^{-},f_{N}^{-})\right]f_{N}^{-}\\ \leq&\left[Q^{R,+}(f_{N}^{+},f_{N}^{-})+Q^{R,+}(f_{N}^{-},f_{N}^{+})\right]f_{N}^{-}.\end{split} (4.19)

Hence

𝒟LQR,+(fN,fN)fN𝟏{fN0}dv𝒟L[QR,+(fN+,fN)+QR,+(fN,fN+)]fNdvQR,+(fN+,fN)+QR,+(fN,fN+)L2(𝒟L)fNL2(𝒟L)C0fN+L1(𝒟L)fNL2(𝒟L)2+C0fNL1(𝒟L)fN+L2(𝒟L)fNL2(𝒟L)C0fNL1(𝒟L)fNL2(𝒟L)2+C0fNL2(𝒟L)fNL2(𝒟L)2,\begin{split}\int_{\mathcal{D}_{L}}Q^{R,+}(f_{N},f_{N})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\,\mathrm{d}v&\leq\int_{\mathcal{D}_{L}}\left[Q^{R,+}(f_{N}^{+},f_{N}^{-})+Q^{R,+}(f_{N}^{-},f_{N}^{+})\right]f_{N}^{-}\,\mathrm{d}v\\ &\leq\left\|Q^{R,+}(f_{N}^{+},f_{N}^{-})+Q^{R,+}(f_{N}^{-},f_{N}^{+})\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}\\ &\leq C_{0}\left\|f_{N}^{+}\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}+C_{0}\left\|f_{N}^{-}\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}^{+}\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}\\ &\leq C_{0}\left\|f_{N}\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}+C_{0}^{\prime}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|^{2}_{L^{2}(\mathcal{D}_{L})},\end{split} (4.20)

where we used the estimate (3.2) for the gain term.

For the loss term, we have

QR,(fN,fN)fN𝟏{fN0}=LR(fN)fNfN𝟏{fN0}=LR(fN)fNfN=QR,(fN,fN)fN,-Q^{R,-}(f_{N},f_{N})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}=-L^{R}(f_{N})f_{N}f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}=-L^{R}(f_{N})f_{N}^{-}f_{N}^{-}=-Q^{R,-}(f_{N},f_{N}^{-})f_{N}^{-}, (4.21)

where we used the structure of the loss term, see (3.5). Hence

𝒟LQR,(fN,fN)fN𝟏{fN0}dv=𝒟LQR,(fN,fN)fNdvQR,(fN,fN)L2(𝒟L)fNL2(𝒟L)C1fNL1(𝒟L)fNL2(𝒟L)2,\begin{split}-\int_{\mathcal{D}_{L}}Q^{R,-}(f_{N},f_{N})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\,\mathrm{d}v&=-\int_{\mathcal{D}_{L}}Q^{R,-}(f_{N},f_{N}^{-})f_{N}^{-}\,\mathrm{d}v\\ &\leq\|Q^{R,-}(f_{N},f_{N}^{-})\|_{L^{2}(\mathcal{D}_{L})}\|f_{N}^{-}\|_{L^{2}(\mathcal{D}_{L})}\\ &\leq C_{1}\|f_{N}\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|^{2}_{L^{2}(\mathcal{D}_{L})},\end{split} (4.22)

where we used the estimate (3.3) for the loss term.

For the remainder ENE_{N}, we have

EN(fN)L2(𝒟L)=𝒫NQR(fN,fN)QR(fN,fN)L2(𝒟L)C2NQR(fN,fN)H1(𝒟L)C2NfNH1(𝒟L)2,\begin{split}\left\|E_{N}(f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}&=\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})-Q^{R}(f_{N},f_{N})\|_{L^{2}(\mathcal{D}_{L})}\\ &\leq\frac{C_{2}}{N}\|Q^{R}(f_{N},f_{N})\|_{H^{1}(\mathcal{D}_{L})}\\ &\leq\frac{C_{2}}{N}\|f_{N}\|_{H^{1}(\mathcal{D}_{L})}^{2},\end{split} (4.23)

where we used the well-known property of the projection operator and estimate (3.8). Hence

𝒟LEN(fN)fN𝟏{fN0}dv=𝒟LEN(fN)fNdvEN(fN)L2(𝒟L)fNL2(𝒟L)C2NfNH1(𝒟L)2fNL2(𝒟L).\begin{split}\int_{\mathcal{D}_{L}}E_{N}(f_{N})f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\,\mathrm{d}v&=-\int_{\mathcal{D}_{L}}E_{N}(f_{N})f_{N}^{-}\,\mathrm{d}v\\ &\leq\left\|E_{N}(f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}\\ &\leq\frac{C_{2}}{N}\|f_{N}\|_{H^{1}(\mathcal{D}_{L})}^{2}\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}.\end{split} (4.24)

For the left hand side, we have

fN𝟏{fN0}tfN=fNt(fN+fN)=fN(𝟏{fN0}tfNtfN)=fNtfN.f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}}\partial_{t}f_{N}=-f_{N}^{-}\partial_{t}(f_{N}^{+}-f_{N}^{-})=-f_{N}^{-}(\mathbf{1}_{\left\{f_{N}\geq 0\right\}}\partial_{t}f_{N}-\partial_{t}f_{N}^{-})=f_{N}^{-}\partial_{t}f_{N}^{-}. (4.25)

Therefore, multiplying fN𝟏{fN0}f_{N}\mathbf{1}_{\left\{f_{N}\leq 0\right\}} to both hand sides of (4.17) and integrating over 𝒟L\mathcal{D}_{L}, together with (4.20), (4.22) and (4.24), yields

12ddtfNL2(𝒟L)2[(C0+C1)fNL1(𝒟L)+C0fNL2(𝒟L)]fNL2(𝒟L)2+C2NfNH1(𝒟L)2fNL2(𝒟L),\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|f_{N}^{-}\|^{2}_{L^{2}(\mathcal{D}_{L})}\leq\left[(C_{0}+C_{1})\left\|f_{N}\right\|_{L^{1}(\mathcal{D}_{L})}+C_{0}^{\prime}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\right]\left\|f_{N}^{-}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}+\frac{C_{2}}{N}\|f_{N}\|_{H^{1}(\mathcal{D}_{L})}^{2}\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}, (4.26)

i.e.,

ddtfNL2(𝒟L)[(C0+C1)fNL1(𝒟L)+C0fNL2(𝒟L)]fNL2(𝒟L)+C2NfNH1(𝒟L)2[(C0+C1)M+C0K0]fNL2(𝒟L)+C2K12N,\begin{split}\frac{\mathrm{d}}{\mathrm{d}t}\|f_{N}^{-}\|_{L^{2}(\mathcal{D}_{L})}&\leq\left[(C_{0}+C_{1})\left\|f_{N}\right\|_{L^{1}(\mathcal{D}_{L})}+C_{0}^{\prime}\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\right]\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{C_{2}}{N}\|f_{N}\|_{H^{1}(\mathcal{D}_{L})}^{2}\\ &\leq\left[(C_{0}+C_{1})M+C_{0}^{\prime}K_{0}\right]\left\|f_{N}^{-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{C_{2}K_{1}^{2}}{N},\end{split} (4.27)

where we have taken into account the L1L^{1} bound and L2L^{2}, H1H^{1} bounds of fNf_{N} obtained earlier. By the Grönwall’s inequality, we finally obtain the desired estimate (4.16). ∎

4.2 Local well-posedness of the solution fNf_{N} on a small time interval [t0,t0+τ][t_{0},t_{0}+\tau]

To prepare for the main theorem, we establish a local existence and uniqueness result and some stability bounds of the solution.

Proposition 4.3.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Assume that the initial condition f0(v)f^{0}(v) to the original problem (2.6) belongs to L1L2(𝒟L)L^{1}\cap L^{2}(\mathcal{D}_{L}) and define

Mf0,1=f0L1(𝒟L),Mf0,2=f0L2(𝒟L).M_{f^{0},1}=\|f^{0}\|_{L^{1}(\mathcal{D}_{L})},\quad M_{f^{0},2}=\left\|f^{0}\right\|_{L^{2}(\mathcal{D}_{L})}. (4.28)

For the numerical system (2.13), assume that we evolve it starting at a certain time t0t_{0} and the initial condition satisfies

fN(t0)L1(𝒟L)2Mf0,1,fN(t0)L2(𝒟L)e2D0Mf0,1TMf0,2,\|f_{N}(t_{0})\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1},\quad\|f_{N}(t_{0})\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{2D_{0}M_{f^{0},1}T}M_{f^{0},2}, (4.29)

then there exists a local time τ\tau such that (2.13) admits a unique solution fN=fN(t,)L1L2(𝒟L)f_{N}=f_{N}(t,\cdot)\in L^{1}\cap L^{2}(\mathcal{D}_{L}) on [t0,t0+τ][t_{0},t_{0}+\tau]. In particular, one can choose

τ=12(D5M2+D6M1),withM1=4Mf0,1,M2=2e2D0Mf0,1TMf0,2,\tau=\frac{1}{2(D_{5}M_{2}+D_{6}M_{1})},\quad\text{with}\quad M_{1}=4M_{f^{0},1},\quad M_{2}=2\mathrm{e}^{2D_{0}M_{f^{0},1}T}M_{f^{0},2}, (4.30)

such that

t[t0,t0+τ],fN(t)L1(𝒟L)M1,fN(t)L2(𝒟L)M2,\forall t\in[t_{0},t_{0}+\tau],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq M_{1},\quad\|f_{N}(t)\|_{L^{2}(\mathcal{D}_{L})}\leq M_{2}, (4.31)

where TT is the final prescribed time, D0D_{0} is the constant appearing in (4.3), and D5D_{5}, D6D_{6} are constants depending only on the truncation parameters RR, LL, dimension dd, and the collision kernel BB.

Proof.

We construct the solution by a fixed point argument.

Given M1,M2>0M_{1},M_{2}>0 and small enough time τ>0\tau>0 to be specified later, we define the space χ\chi by

χ={fL([t0,t0+τ];L1L2(𝒟L)):supt[t0,t0+τ]f(t,)L1(𝒟L)M1,supt[t0,t0+τ]f(t,)L2(𝒟L)M2},\chi=\left\{f\in L^{\infty}([t_{0},t_{0}+\tau];L^{1}\cap L^{2}(\mathcal{D}_{L})):\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|f(t,\cdot)\right\|_{L^{1}(\mathcal{D}_{L})}\leq M_{1},\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|f(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\leq M_{2}\right\}, (4.32)

which is a complete metric space with respect to the induced distance

d(f,f~):=ff~χ=supt[t0,t0+τ]f(t,)f~(t,)L2(𝒟L).d(f,\tilde{f}):=\left\|f-\tilde{f}\right\|_{\chi}=\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|f(t,\cdot)-\tilde{f}(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}. (4.33)

For any fNχf_{N}\in\chi, we define the operator Φ\Phi as

Φ(fN)(t,v)=fN(t0,v)+t0t𝒫NQR(fN,fN)(s,v)ds,t[t0,t0+τ].\Phi(f_{N})(t,v)=f_{N}(t_{0},v)+\int_{t_{0}}^{t}\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(s,v)\,\mathrm{d}s,\quad\forall t\in[t_{0},t_{0}+\tau]. (4.34)

We proceed to show that the mapping Φ\Phi has a unique fixed point in χ\chi.

Step (i): We first show that Φ\Phi maps χ\chi into itself: Φ(χ)χ\Phi(\chi)\subset\chi. For any fNχf_{N}\in\chi and t[t0,t0+τ]t\in[t_{0},t_{0}+\tau],

Φ(fN)(t,)L1(𝒟L)fN(t0)L1(𝒟L)+t0t𝒫NQR(fN,fN)(s,)L1(𝒟L)dsfN(t0)L1(𝒟L)+τ(2L)d/2supt[t0,t0+τ]𝒫NQR(fN,fN)(t,)L2(𝒟L)fN(t0)L1(𝒟L)+τCR,L,d,2(B)(2L)d/2supt[t0,t0+τ](fN(t,)L1(𝒟L)fN(t,)L2(𝒟L))fN(t0)L1(𝒟L)+τCR,L,d,2(B)(2L)d/2M1M2,\begin{split}\left\|\Phi(f_{N})(t,\cdot)\right\|_{L^{1}(\mathcal{D}_{L})}\leq&\left\|f_{N}(t_{0})\right\|_{L^{1}(\mathcal{D}_{L})}+\int_{t_{0}}^{t}\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(s,\cdot)\right\|_{L^{1}(\mathcal{D}_{L})}\mathrm{d}s\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{1}(\mathcal{D}_{L})}+\tau(2L)^{d/2}\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{1}(\mathcal{D}_{L})}+\tau C_{R,L,d,2}(B)(2L)^{d/2}\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left(\left\|f_{N}(t,\cdot)\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{1}(\mathcal{D}_{L})}+\tau C_{R,L,d,2}(B)(2L)^{d/2}M_{1}M_{2},\end{split} (4.35)

where we used (3.4). Similarly,

Φ(fN)(t,)L2(𝒟L)fN(t0)L2(𝒟L)+t0t𝒫NQR(fN,fN)(s,)L2(𝒟L)dsfN(t0)L2(𝒟L)+τsupt[t0,t0+τ]𝒫NQR(fN,fN)(t,)L2(𝒟L)fN(t0)L2(𝒟L)+τCR,L,d,2(B)supt[t0,t0+τ](fN(t,)L1(𝒟L)fN(t,)L2(𝒟L))fN(t0)L2(𝒟L)+τCR,L,d,2(B)M1M2.\begin{split}\left\|\Phi(f_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\leq&\left\|f_{N}(t_{0})\right\|_{L^{2}(\mathcal{D}_{L})}+\int_{t_{0}}^{t}\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(s,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\mathrm{d}s\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{2}(\mathcal{D}_{L})}+\tau\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{2}(\mathcal{D}_{L})}+\tau C_{R,L,d,2}(B)\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left(\left\|f_{N}(t,\cdot)\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f_{N}(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&\left\|f_{N}(t_{0})\right\|_{L^{2}(\mathcal{D}_{L})}+\tau C_{R,L,d,2}(B)M_{1}M_{2}.\end{split} (4.36)

Step (ii): We next show that Φ\Phi is a contraction mapping on χ\chi. For any fN,f~Nχf_{N},\tilde{f}_{N}\in\chi with the same initial datum fN(t0)f_{N}(t_{0}), we have

Φ(fN)Φ(f~N)χ=supt[t0,t0+τ]Φ(fN)(t,)Φ(f~N)(t,)L2(𝒟L)supt[t0,t0+τ]t0t𝒫NQR(fN,fN)(s,)𝒫NQR(f~N,f~N)(s,)L2(𝒟L)dsτsupt[t0,t0+τ]QR(fN,fN)(t,)QR(f~N,f~N)(t,)L2(𝒟L)τsupt[t0,t0+τ](QR(fNf~N,fN)(t,)L2(𝒟L)+QR(f~N,fNf~N)(t,)L2(𝒟L))τCR,L,d,2(B)supt[t0,t0+τ](fNf~NL1(𝒟L)fNL2(𝒟L)+fNf~NL2(𝒟L)f~NL1(𝒟L))τCR,L,d,2(B)((2L)d/2M2+M1)(supt[t0,t0+τ]fN(t,)f~N(t,)L2(𝒟L))τ(CR,L,d,2(B)(2L)d/2M2+CR,L,d,2(B)M1)fNf~Nχ.\begin{split}\left\|\Phi(f_{N})-\Phi(\tilde{f}_{N})\right\|_{\chi}=&\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|\Phi(f_{N})(t,\cdot)-\Phi(\tilde{f}_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\sup\limits_{t\in[t_{0},t_{0}+\tau]}\int_{t_{0}}^{t}\left\|\mathcal{P}_{N}Q^{R}(f_{N},f_{N})(s,\cdot)-\mathcal{P}_{N}Q^{R}(\tilde{f}_{N},\tilde{f}_{N})(s,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\,\mathrm{d}s\\ \leq&\tau\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|Q^{R}(f_{N},f_{N})(t,\cdot)-Q^{R}(\tilde{f}_{N},\tilde{f}_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\tau\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left(\left\|Q^{R}(f_{N}-\tilde{f}_{N},f_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}+\left\|Q^{R}(\tilde{f}_{N},f_{N}-\tilde{f}_{N})(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&\tau C_{R,L,d,2}(B)\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left(\left\|f_{N}-\tilde{f}_{N}\right\|_{L^{1}(\mathcal{D}_{L})}\|f_{N}\|_{L^{2}(\mathcal{D}_{L})}+\left\|f_{N}-\tilde{f}_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\|\tilde{f}_{N}\|_{L^{1}(\mathcal{D}_{L})}\right)\\ \leq&\tau C_{R,L,d,2}(B)((2L)^{d/2}M_{2}+M_{1})\left(\sup\limits_{t\in[t_{0},t_{0}+\tau]}\left\|f_{N}(t,\cdot)-\tilde{f}_{N}(t,\cdot)\right\|_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&\tau(C_{R,L,d,2}(B)(2L)^{d/2}M_{2}+C_{R,L,d,2}(B)M_{1})\left\|f_{N}-\tilde{f}_{N}\right\|_{\chi}.\end{split} (4.37)

Therefore, if we define D5=CR,L,d,2(B)(2L)d/2D_{5}=C_{R,L,d,2}(B)(2L)^{d/2}, D6=CR,L,d,2(B)D_{6}=C_{R,L,d,2}(B), and choose M1M_{1}, M2M_{2} and τ\tau as given in (4.30), we would have

fN(t0)L1+τD5M1M2M1,fN(t0)L2+τD6M1M2M2,τ(D5M2+D6M1)<1.\left\|f_{N}(t_{0})\right\|_{L^{1}}+\tau D_{5}M_{1}M_{2}\leq M_{1},\quad\left\|f_{N}(t_{0})\right\|_{L^{2}}+\tau D_{6}M_{1}M_{2}\leq M_{2},\quad\tau(D_{5}M_{2}+D_{6}M_{1})<1. (4.38)

So Φ:χχ\Phi:\chi\rightarrow\chi is a contraction mapping. According to the Banach fixed point theorem, (2.13) admits a unique solution on [t0,t0+τ][t_{0},t_{0}+\tau]. ∎

4.3 Well-posedness and stability of the solution fNf_{N} on an arbitrary bounded time interval [0,T][0,T]

We are ready to present our main result.

Theorem 4.4.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Let the initial condition f0(v)f^{0}(v) to the original problem (2.6) and the numerical solution fN0(v)f_{N}^{0}(v) to the numerical system (2.13) satisfy the assumptions specified in Section 2.1, i.e., f0(v)f^{0}(v) is periodic, non-negative, and belongs to L1H1(𝒟L)L^{1}\cap H^{1}(\mathcal{D}_{L}), fN0f_{N}^{0} satisfies (2.27)–(2.30). Define

Mf0,1=f0L1(𝒟L),Mf0,2=f0L2(𝒟L).M_{f^{0},1}=\|f^{0}\|_{L^{1}(\mathcal{D}_{L})},\quad M_{f^{0},2}=\left\|f^{0}\right\|_{L^{2}(\mathcal{D}_{L})}. (4.39)

Then there exists an integer N0N_{0} depending on the final time TT and initial condition f0f^{0}, such that for all N>N0N>N_{0}, the numerical system (2.13) admits a unique solution fN=fN(t,)L1H1(𝒟L)f_{N}=f_{N}(t,\cdot)\in L^{1}\cap H^{1}(\mathcal{D}_{L}) on the time interval [0,T][0,T]. Furthermore, for all N>N0N>N_{0}, fNf_{N} satisfies the following stability estimates

t[0,T],fN(t)L1(𝒟L)2Mf0,1,fN(t)L2(𝒟L)e2D0Mf0,1TMf0,2,\forall t\in[0,T],\quad\left\|f_{N}(t)\right\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1},\quad\left\|f_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{2D_{0}M_{f^{0},1}T}M_{f^{0},2}, (4.40)

where D0D_{0} is the constant appearing in (4.3).

Proof.

The proof is based on iteration. Given TT, Mf0,1M_{f^{0},1}, and Mf0,2M_{f^{0},2}, we first choose τ\tau according to (4.30). Then we define t=0,τ,2τ,,nτ,t=0,\tau,2\tau,\dots,n\tau,\dots until we cover the final time TT. WLOG, we assume TT is some integral multiple of τ\tau.

Step (i): At initial time t=0t=0, we first choose NN such that

fN0L1(𝒟L)2Mf0,1,\|f^{0}_{N}\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1}, (4.41)

which is possible due to the condition (2.29). Also we have fN0L2(𝒟L)f0L2(𝒟L)e2D0Mf0,1TMf0,2\|f^{0}_{N}\|_{L^{2}(\mathcal{D}_{L})}\leq\|f^{0}\|_{L^{2}(\mathcal{D}_{L})}\leq e^{2D_{0}M_{f^{0},1}T}M_{f^{0},2} due to the condition (2.28). Then by Proposition 4.3, there exists a unique solution fN(t,)L1L2(𝒟L)f_{N}(t,\cdot)\in L^{1}\cap L^{2}(\mathcal{D}_{L}) over the time interval [0,τ][0,\tau] and

t[0,τ],fN(t)L1(𝒟L)4Mf0,1.\forall t\in[0,\tau],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 4M_{f^{0},1}. (4.42)

Using this L1L^{1} bound and that fN0H1(𝒟L)f_{N}^{0}\in{H^{1}(\mathcal{D}_{L})} (due to (2.28)), we can invoke the Proposition 4.2 to derive that

t[0,τ],fN(t)L2(𝒟L)K0(τ),fN(t)H1(𝒟L)K1(τ),\forall t\in[0,\tau],\quad\|f_{N}(t)\|_{L^{2}(\mathcal{D}_{L})}\leq K_{0}(\tau),\quad\|f_{N}(t)\|_{H^{1}(\mathcal{D}_{L})}\leq K_{1}(\tau), (4.43)

and

t[0,τ],fN(t)L2(𝒟L)eτD3(4Mf0,1+K0(τ))(fN0,L2(𝒟L)+D4K12(τ)4Mf0,1N),\forall t\in[0,\tau],\quad\left\|f_{N}^{-}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{\tau D_{3}(4M_{f^{0},1}+K_{0}(\tau))}\left(\left\|f_{N}^{0,-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{D_{4}K_{1}^{2}(\tau)}{4M_{f^{0},1}N}\right), (4.44)

with

K0(τ):=eτD04Mf0,1Mf0,2,K1(τ):=eτD1(4Mf0,1+K0(τ))(f0H1(𝒟L)+D2).K_{0}(\tau):=\mathrm{e}^{\tau D_{0}4M_{f^{0},1}}M_{f^{0},2},\quad K_{1}(\tau):=\mathrm{e}^{\tau D_{1}\left(4M_{f^{0},1}+K_{0}(\tau)\right)}\left(\left\|f^{0}\right\|_{H^{1}(\mathcal{D}_{L})}+D_{2}\right). (4.45)

Note that we relaxed the bounds K0K_{0}, K1K_{1} a bit (so that they depend only on f0f^{0} but not fN0f_{N}^{0}) using the condition (2.28) again.

On the other hand, noticing that |fN|=2fN+fN|f_{N}|=2f_{N}^{-}+f_{N}, we have

fN(t)L1(𝒟L)=𝒟L|fN(t,v)|dv=2𝒟LfN(t,v)dv+𝒟LfN(t,v)dv=2fN(t)L1(𝒟L)+𝒟Lf0(v)dv2(2L)d/2fN(t)L2(𝒟L)+Mf0,1,\begin{split}\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}&=\int_{\mathcal{D}_{L}}|f_{N}(t,v)|\,\mathrm{d}{v}=2\int_{\mathcal{D}_{L}}f_{N}^{-}(t,v)\,\mathrm{d}{v}+\int_{\mathcal{D}_{L}}f_{N}(t,v)\,\mathrm{d}{v}\\ &=2\|f_{N}^{-}(t)\|_{L^{1}(\mathcal{D}_{L})}+\int_{\mathcal{D}_{L}}f^{0}(v)\,\mathrm{d}{v}\\ &\leq 2(2L)^{d/2}\|f_{N}^{-}(t)\|_{L^{2}(\mathcal{D}_{L})}+M_{f^{0},1},\end{split} (4.46)

where we used the important mass conservation property in Lemma 2.1 and (2.27) in the second line.

Therefore, if we can control fN(t)L2(𝒟L)\|f_{N}^{-}(t)\|_{L^{2}(\mathcal{D}_{L})}, then fN(t)L1(𝒟L)\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})} will be controlled. Thanks to the estimate (4.44), we can simply choose NN large enough such that the following is satisfied:

𝒦:=eTD3(4Mf0,1+K0(T))(fN0,L2(𝒟L)+D4K12(T)4Mf0,1N)Mf0,12(2L)d/2,\mathcal{K}:=\mathrm{e}^{TD_{3}(4M_{f^{0},1}+K_{0}(T))}\left(\left\|f_{N}^{0,-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{D_{4}K_{1}^{2}(T)}{4M_{f^{0},1}N}\right)\leq\frac{M_{f^{0},1}}{2(2L)^{d/2}}, (4.47)

then we have

t[0,τ],fN(t)L1(𝒟L)2Mf0,1.\forall t\in[0,\tau],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1}. (4.48)

Note that (4.47) is possible due to the condition (2.30). Also, it is easy to see that the quantity 𝒦\mathcal{K} is an increasing function in time. Hence if TT in (4.47) is replaced by some t0Tt_{0}\leq T, (4.47) still holds.

Combining the above choice of NN with the one at the beginning to satisfy (4.41), we have found an integer N0N_{0}, depending only on the final time TT and initial condition f0f^{0}, such that for all N>N0N>N_{0}, (2.13) admits a unique solution fN(t,)L1H1(𝒟L)f_{N}(t,\cdot)\in L^{1}\cap H^{1}(\mathcal{D}_{L}) on [0,τ][0,\tau] which satisfies (4.48).

Step (ii): Generally at time t=nτt=n\tau (n1n\geq 1), we have

t[0,nτ],fN(t,)L1H1(𝒟L),fN(t)L1(𝒟L)2Mf0,1.\forall t\in[0,n\tau],\quad f_{N}(t,\cdot)\in L^{1}\cap H^{1}(\mathcal{D}_{L}),\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1}. (4.49)

Then by Proposition 4.1 (with k=0k=0), we have

t[0,nτ],fN(t)L2(𝒟L)e2D0Mf0,1nτfN0L2(𝒟L)e2D0Mf0,1TMf0,2.\forall t\in[0,n\tau],\quad\|f_{N}(t)\|_{L^{2}(\mathcal{D}_{L})}\leq e^{2D_{0}M_{f^{0},1}n\tau}\|f_{N}^{0}\|_{L^{2}(\mathcal{D}_{L})}\leq e^{2D_{0}M_{f^{0},1}T}M_{f^{0},2}. (4.50)

Then by Proposition 4.3, there exists a unique solution fN(t,)L1L2(𝒟L)f_{N}(t,\cdot)\in L^{1}\cap L^{2}(\mathcal{D}_{L}) on [nτ,(n+1)τ][n\tau,(n+1)\tau] and

t[nτ,(n+1)τ],fN(t)L1(𝒟L)4Mf0,1.\forall t\in[n\tau,(n+1)\tau],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 4M_{f^{0},1}. (4.51)

Using this L1L^{1} bound and that fN0H1(𝒟L)f_{N}^{0}\in{H^{1}(\mathcal{D}_{L})}, we can invoke the Proposition 4.2 over the interval [0,(n+1)τ][0,(n+1)\tau] to derive that

t[0,(n+1)τ],fN(t)L2(𝒟L)K0((n+1)τ),fN(t)H1(𝒟L)K1((n+1)τ),\forall t\in[0,(n+1)\tau],\quad\|f_{N}(t)\|_{L^{2}(\mathcal{D}_{L})}\leq K_{0}((n+1)\tau),\quad\|f_{N}(t)\|_{H^{1}(\mathcal{D}_{L})}\leq K_{1}((n+1)\tau), (4.52)

and

t[0,(n+1)τ],fN(t)L2(𝒟L)e(n+1)τD3(4Mf0,1+K0((n+1)τ))(fN0,L2(𝒟L)+D4K12((n+1)τ)4Mf0,1N)𝒦,\forall t\in[0,(n+1)\tau],\quad\left\|f_{N}^{-}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\mathrm{e}^{(n+1)\tau D_{3}(4M_{f^{0},1}+K_{0}((n+1)\tau))}\left(\left\|f_{N}^{0,-}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{D_{4}K_{1}^{2}((n+1)\tau)}{4M_{f^{0},1}N}\right)\leq\mathcal{K}, (4.53)

i.e., the same choice of NN chosen above would still make

t[0,(n+1)τ],fN(t)L1(𝒟L)2Mf0,1.\forall t\in[0,(n+1)\tau],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1}. (4.54)

That is, at time t=(n+1)τt=(n+1)\tau, we are back to the situation (4.49) at t=nτt=n\tau.

Repeating Step (ii) until t=Tt=T, we can show that there exists a unique solution fN(t,)L1H1(𝒟L)f_{N}(t,\cdot)\in L^{1}\cap H^{1}(\mathcal{D}_{L}) on [0,T][0,T], and

t[0,T],fN(t)L1(𝒟L)2Mf0,1.\forall t\in[0,T],\quad\|f_{N}(t)\|_{L^{1}(\mathcal{D}_{L})}\leq 2M_{f^{0},1}. (4.55)

Finally, by Proposition 4.1 (with k=0k=0) again, we obtain

t[0,T],fN(t)L2(𝒟L)e2D0Mf0,1TMf0,2.\forall t\in[0,T],\quad\left\|f_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq e^{2D_{0}M_{f^{0},1}T}M_{f^{0},2}. (4.56)

5 Convergence and spectral accuracy of the method

With the well-posedness and stability of the numerical solution established in the previous section, the convergence of the method is straightforward.

In this section, we assume that the initial condition f0(v)f^{0}(v) to the original problem (2.6) is periodic, non-negative, and belongs to L1Hk(𝒟L)L^{1}\cap H^{k}(\mathcal{D}_{L}) for some integer k1k\geq 1. In fact, it has been proved in [6, Proposition 5.1] that there exists a unique global non-negative solution f(t,)Hk(𝒟L)f(t,\cdot)\in H^{k}(\mathcal{D}_{L}). Furthermore, f(t)Hk(𝒟L)Ck(f0),t0\|f(t)\|_{H^{k}(\mathcal{D}_{L})}\leq C_{k}(f^{0}),\ \forall t\geq 0, where CkC_{k} is a constant depending only on the initial condition.

For the numerical system (2.13), we consider the initial condition fN0=𝒫Nf0f^{0}_{N}=\mathcal{P}_{N}f^{0} for simplicity. According to the discussion in Remark 2.2, we further assume that f0f^{0} is, say, Hölder continuous, so that the four conditions (2.27)–(2.30) are satisfied. Then by Theorem 4.4, there exists a unique solution fN(t,)L1H1(𝒟L)f_{N}(t,\cdot)\in L^{1}\cap H^{1}(\mathcal{D}_{L}) over the time interval [0,T][0,T]. Furthermore, fN(t)L2(𝒟L)C0(T,f0),t[0,T]\|f_{N}(t)\|_{L^{2}(\mathcal{D}_{L})}\leq C_{0}(T,f^{0}),\ \forall t\in[0,T], where C0C_{0} is a constant depending only on the final time TT and initial condition f0f^{0}.

Define the error function

eN(t,v)=𝒫Nf(t,v)fN(t,v).e_{N}(t,v)=\mathcal{P}_{N}f(t,v)-f_{N}(t,v). (5.1)

We can show the following:

Theorem 5.1.

Let the collision kernel BB and truncation parameters RR and LL satisfy the assumptions (2.22), (2.23), (2.24), and (2.5). Choose N0N_{0} such that it satisfies the condition in Theorem 4.4, then the Fourier spectral method is convergent for all N>N0N>N_{0} and exhibits spectral accuracy. In particular, we have

t[0,T],eN(t)L2(𝒟L)C(T,f0)Nk,for all N>N0,\forall t\in[0,T],\quad\left\|e_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq\frac{C(T,f^{0})}{N^{k}},\quad\text{for all }N>N_{0}, (5.2)

where CC is a constant depending only on the final time TT and initial condition f0f^{0}.

Proof.

We first project the original problem (2.6) to obtain

{t𝒫Nf=𝒫NQR(f,f),𝒫Nf(0,v)=𝒫Nf0,\left\{\begin{array}[]{lr}\partial_{t}\mathcal{P}_{N}f=\mathcal{P}_{N}Q^{R}(f,f),\\ \mathcal{P}_{N}f(0,v)=\mathcal{P}_{N}f^{0},\end{array}\right. (5.3)

Subtracting (2.13) from (5.3) and noting fN0=𝒫Nf0f^{0}_{N}=\mathcal{P}_{N}f^{0}, we have

{teN=𝒫N(QR(f,f)QR(fN,fN)),eN(0,v)=0.\left\{\begin{split}&\partial_{t}e_{N}=\mathcal{P}_{N}\left(Q^{R}(f,f)-Q^{R}(f_{N},f_{N})\right),\\ &e_{N}(0,v)=0.\end{split}\right. (5.4)

Multiplying (5.4) by eNe_{N} and integrating over 𝒟L\mathcal{D}_{L}, we have

12ddteNL2(𝒟L)2=𝒟L𝒫N(QR(f,f)QR(fN,fN))eNdv𝒫N(QR(f,f)QR(fN,fN))L2(𝒟L)eNL2(𝒟L),ddteNL2(𝒟L)QR(f,f)QR(fN,fN)L2(𝒟L).\begin{split}\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|e_{N}\right\|^{2}_{L^{2}(\mathcal{D}_{L})}=&\int_{\mathcal{D}_{L}}\mathcal{P}_{N}\left(Q^{R}(f,f)-Q^{R}(f_{N},f_{N})\right)e_{N}\,\mathrm{d}v\\ \leq&\left\|\mathcal{P}_{N}\left(Q^{R}(f,f)-Q^{R}(f_{N},f_{N})\right)\right\|_{L^{2}(\mathcal{D}_{L})}\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})},\\ \Rightarrow\frac{\mathrm{d}}{\mathrm{d}t}\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\leq&\left\|Q^{R}(f,f)-Q^{R}(f_{N},f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}.\end{split} (5.5)

Note that

QR(f,f)QR(fN,fN)L2(𝒟L)QR(ffN,f)L2(𝒟L)+QR(fN,ffN)L2(𝒟L)C1ffNL2(𝒟L)(fL2(𝒟L)+fNL2(𝒟L))C1(T,f0)ffNL2(𝒟L).\begin{split}&\left\|Q^{R}(f,f)-Q^{R}(f_{N},f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\left\|Q^{R}(f-f_{N},f)\right\|_{L^{2}(\mathcal{D}_{L})}+\left\|Q^{R}(f_{N},f-f_{N})\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&C_{1}\left\|f-f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\left(\left\|f\right\|_{L^{2}(\mathcal{D}_{L})}+\left\|f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\right)\\ \leq&C_{1}(T,f^{0})\left\|f-f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}.\end{split} (5.6)

Also

ffNL2(𝒟L)f𝒫NfL2(𝒟L)+𝒫NffNL2(𝒟L)C2fHk(𝒟L)Nk+eNL2(𝒟L)C2(f0)Nk+eNL2(𝒟L).\begin{split}\left\|f-f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\leq&\left\|f-\mathcal{P}_{N}f\right\|_{L^{2}(\mathcal{D}_{L})}+\left\|\mathcal{P}_{N}f-f_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\frac{C_{2}\|f\|_{H^{k}(\mathcal{D}_{L})}}{N^{k}}+\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\\ \leq&\frac{C_{2}(f^{0})}{N^{k}}+\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})}.\end{split} (5.7)

Therefore, we have

ddteNL2(𝒟L)C1(T,f0)eNL2(𝒟L)+C3(T,f0)Nk,\frac{\mathrm{d}}{\mathrm{d}t}\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})}\leq C_{1}(T,f^{0})\left\|e_{N}\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{C_{3}(T,f^{0})}{N^{k}}, (5.8)

which implies

t[0,T],eN(t)L2(𝒟L)eC1(T,f0)T(eN(0)L2(𝒟L)+C3(T,f0)C1(T,f0)Nk).\forall t\in[0,T],\quad\left\|e_{N}(t)\right\|_{L^{2}(\mathcal{D}_{L})}\leq e^{C_{1}(T,f^{0})T}\left(\left\|e_{N}(0)\right\|_{L^{2}(\mathcal{D}_{L})}+\frac{C_{3}(T,f^{0})}{C_{1}(T,f^{0})N^{k}}\right). (5.9)

Since eN(0,v)0e_{N}(0,v)\equiv 0, we finally obtain the desired result in (5.2). ∎

Acknowledgement

JH is grateful to F. Filbet and R. Alonso for the helpful discussion. JH’s research was supported in part by NSF grant DMS-1620250 and NSF CAREER grant DMS-1654152. TY’s research was partially supported by General Research Fund of Hong Kong, #11304419.

Appendix: proof of estimate (3.2) for the truncated collision operator QR,+Q^{R,+} on a bounded domain

By duality,

QR,+(g,f)Lp(𝒟L)=sup{𝒟LQR,+(g,f)(v)Ψ(v)dv;ΨLp(𝒟L)1}.\left\|Q^{R,+}(g,f)\right\|_{L^{p}(\mathcal{D}_{L})}=\sup\left\{\int_{\mathcal{D}_{L}}Q^{R,+}(g,f)(v)\Psi(v)\,\mathrm{d}v;\ \left\|\Psi\right\|_{L^{p^{\prime}}(\mathcal{D}_{L})}\leq 1\right\}. (.10)

With the pre-post collisional change of variables, namely (v,v,σ)(v,v,vv|vv|)(v,v_{*},\sigma)\rightarrow(v^{\prime},v_{*}^{\prime},\frac{v-v_{*}}{|v-v_{*}|}), which has a unit Jacobian, we can obtain

𝒟LQR,+(g,f)(v)Ψ(v)dv=𝒟Ld(𝕊d1𝟏|vv|RΦ(|vv|)b(σ(vv)^)Ψ(v)dσ)g(v)f(v)dvdv=𝒟L2L+R(𝕊d1𝟏|vv|RΦ(|vv|)b(σ(vv)^)Ψ(v)dσ)g(v)f(v)dvdv,\begin{split}\int_{\mathcal{D}_{L}}Q^{R,+}(g,f)(v)\Psi(v)\,\mathrm{d}v=&\int_{\mathcal{D}_{L}}\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|v-v_{*}|\leq R}\Phi(|v-v_{*}|)b(\sigma\cdot\widehat{(v-v_{*})})\Psi(v^{\prime})\,\mathrm{d}\sigma\right)g(v_{*})f(v)\,\mathrm{d}v_{*}\,\mathrm{d}v\\ =&\int_{\mathcal{D}_{L}}\int_{\mathcal{B}_{\sqrt{2}L+R}}\left(\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|v-v_{*}|\leq R}\Phi(|v-v_{*}|)b(\sigma\cdot\widehat{(v-v_{*})})\Psi(v^{\prime})\,\mathrm{d}\sigma\right)g(v_{*})f(v)\,\mathrm{d}v_{*}\,\mathrm{d}v,\end{split} (.11)

where the second equality is obtained by noting that |v||v|+|vv||v_{*}|\leq|v|+|v-v_{*}| and that v𝒟Lv\in\mathcal{D}_{L} and |vv|R|v-v_{*}|\leq R.

Then, we define the linear operator SS by

SΨ(v)=𝕊d1𝟏|v|RΦ(|v|)b(σv^)Ψ(v+|v|σ2)dσ,\begin{split}S\Psi(v)&=\int_{\mathbb{S}^{d-1}}\mathbf{1}_{|v|\leq R}\Phi(|v|)b(\sigma\cdot\hat{v})\Psi\left(\frac{v+|v|\sigma}{2}\right)\mathrm{d}\sigma,\end{split} (.12)

such that (.11) can be written as

𝒟LQR,+(g,f)(v)Ψ(v)dv=2L+Rg(v)(𝒟Lf(v)(τvS(τvΨ))(v)dv)dv,\int_{\mathcal{D}_{L}}Q^{R,+}(g,f)(v)\Psi(v)\,\mathrm{d}v=\int_{{\mathcal{B}_{\sqrt{2}L+R}}}g(v_{*})\left(\int_{\mathcal{D}_{L}}f(v)(\tau_{v_{*}}S(\tau_{-v_{*}}\Psi))(v)\,\mathrm{d}v\right)\mathrm{d}v_{*}, (.13)

where τhf(v):=f(vh)\tau_{h}f(v):=f(v-h).

We shall study the operator SS in L1L^{1} and LL^{\infty} norms. Denote v+=v+|v|σ2v^{+}=\frac{v+|v|\sigma}{2}, then we have

|v+||v|.\left|v^{+}\right|\leq|v|. (.14)

Then

SΨL(𝒟L)bL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)ΨL(2L).\|S\Psi\|_{L^{\infty}(\mathcal{D}_{L})}\leq\|b\|_{L^{1}(\mathbb{S}^{d-1})}\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}\|\Psi\|_{L^{\infty}{(\mathcal{B}_{\sqrt{2}L})}}. (.15)

Also

SΨL1(𝒟L)𝟏|v|RΦ(|v|)L(𝒟L)𝒟L𝕊d1b(σv^)|Ψ(v+)|dσdv𝟏|v|RΦ(|v|)L(𝒟L)2L𝕊d1b(cosθ)|Ψ(v+)|2d1cos2θ/2dσdv+CbL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)ΨL1(2L),\begin{split}\|S\Psi\|_{L^{1}(\mathcal{D}_{L})}&\leq\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}\int_{\mathcal{D}_{L}}\int_{\mathbb{S}^{d-1}}b(\sigma\cdot\hat{v})\left|\Psi(v^{+})\right|\mathrm{d}\sigma\,\mathrm{d}{v}\\ &\leq\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}\int_{\mathcal{B}_{\sqrt{2}L}}\int_{\mathbb{S}^{d-1}}b(\cos\theta)\left|\Psi\left(v^{+}\right)\right|\frac{2^{d-1}}{\cos^{2}\theta/2}\,\mathrm{d}\sigma\,\mathrm{d}{v^{+}}\\ &\leq C\|b\|_{L^{1}(\mathbb{S}^{d-1})}\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}\|\Psi\|_{L^{1}(\mathcal{B}_{\sqrt{2}L})},\end{split} (.16)

By the Riesz-Thorin interpolation, we deduce

SΨLp(𝒟L)CR,L,d,p+(B)ΨLp(2L),1p,\|S\Psi\|_{L^{p}(\mathcal{D}_{L})}\leq C_{R,L,d,p^{\prime}}^{+}(B)\|\Psi\|_{L^{p}(\mathcal{B}_{\sqrt{2}L})},\quad 1\leq p\leq\infty, (.17)

where CR,L,d,p+(B)=C1/pbL1(𝕊d1)𝟏|v|RΦ(|v|)L(𝒟L)C_{R,L,d,p^{\prime}}^{+}(B)=C^{1/p^{\prime}}\|b\|_{L^{1}(\mathbb{S}^{d-1})}\|\mathbf{1}_{|v|\leq R}\Phi(|v|)\|_{L^{\infty}{(\mathcal{D}_{L})}}. Using this inequality in (.13), we have

|𝒟LQR,+(g,f)(v)Ψ(v)dv|2L+R|g(v)|(𝒟L|f(v)||(τvS(τvΨ))(v)|dv)dv2L+R|g(v)|fLp(𝒟L)τvS(τvΨ)Lp(𝒟L)dv2L+R|g(v)|fLp(𝒟L)τvS(τvΨ)Lp(d)dv=2L+R|g(v)|fLp(𝒟L)S(τvΨ)Lp(d)dv=2L+R|g(v)|fLp(𝒟L)S(τvΨ)Lp(𝒟L)dvCR,L,d,p+(B)2L+R|g(v)|fLp(𝒟L)τvΨLp(2L)dvCR,L,d,p+(B)2L+R|g(v)|fLp(𝒟L)ΨLp(22L+R)dv=CR,L,d,p+(B)gL1(2L+R)fLp(𝒟L)ΨLp(22L+R)CR,L,d,p+(B)gL1(𝒟L)fLp(𝒟L)ΨLp(𝒟L)CR,L,d,p+(B)gL1(𝒟L)fLp(𝒟L),\begin{split}\left|\int_{\mathcal{D}_{L}}Q^{R,+}(g,f)(v)\Psi(v)\,\mathrm{d}v\right|\leq&\int_{\mathcal{B}_{\sqrt{2}L+R}}|g(v_{*})|\left(\int_{\mathcal{D}_{L}}\left|f(v)\right|\left|(\tau_{v_{*}}S(\tau_{-v_{*}}\Psi))(v)\right|\mathrm{d}v\right)\mathrm{d}v_{*}\\ \leq&\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\tau_{v_{*}}S(\tau_{-v_{*}}\Psi)\right\|_{L^{p^{\prime}}(\mathcal{D}_{L})}\mathrm{d}v_{*}\\ \leq&\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\tau_{v_{*}}S(\tau_{-v_{*}}\Psi)\right\|_{L^{p^{\prime}}(\mathbb{R}^{d})}\mathrm{d}v_{*}\\ =&\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|S(\tau_{-v_{*}}\Psi)\right\|_{L^{p^{\prime}}(\mathbb{R}^{d})}\mathrm{d}v_{*}\\ =&\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|S(\tau_{-v_{*}}\Psi)\right\|_{L^{p^{\prime}}(\mathcal{D}_{L})}\mathrm{d}v_{*}\\ \leq&C_{R,L,d,p}^{+}(B)\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\tau_{-v_{*}}\Psi\right\|_{L^{p^{\prime}}(\mathcal{B}_{\sqrt{2}L})}\mathrm{d}v_{*}\\ \leq&C_{R,L,d,p}^{+}(B)\int_{\mathcal{B}_{\sqrt{2}L+R}}\left|g(v_{*})\right|\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\Psi\right\|_{L^{p^{\prime}}(\mathcal{B}_{2\sqrt{2}L+R})}\mathrm{d}v_{*}\\ =&C_{R,L,d,p}^{+}(B)\left\|g\right\|_{L^{1}(\mathcal{B}_{\sqrt{2}L+R})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\Psi\right\|_{L^{p^{\prime}}(\mathcal{B}_{2\sqrt{2}L+R})}\\ \leq&C_{R,L,d,p}^{+}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})}\left\|\Psi\right\|_{L^{p^{\prime}}(\mathcal{D}_{L})}\\ \leq&C_{R,L,d,p}^{+}(B)\left\|g\right\|_{L^{1}(\mathcal{D}_{L})}\left\|f\right\|_{L^{p}(\mathcal{D}_{L})},\end{split} (.18)

where the second equality is obtained by noting Supp(SΨ)R𝒟L\text{Supp}(S\Psi)\subset\mathcal{B}_{R}\subset\mathcal{D}_{L} since RLR\leq L, and the second last line is obtained by noting that both gg and Ψ\Psi are periodic functions on 𝒟L\mathcal{D}_{L}.

Hence we proved the estimate (3.2).

References

  • [1] R. Alonso, I. Gamba, and S. Tharkabhushanam. Convergence and error estimates for the Lagrangian-based conservative spectral method for Boltzmann equations. SIAM J. Numer. Anal., 56:3534–3579, 2018.
  • [2] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.
  • [3] Z. Cai, Y. Fan, and L. Ying. An entropic Fourier method for the Boltzmann equation. SIAM J. Sci. Comput., 40:A2858–A2882, 2018.
  • [4] C. Cercignani. The Boltzmann Equation and Its Applications. Springer-Verlag, New York, 1988.
  • [5] G. Dimarco and L. Pareschi. Numerical methods for kinetic equations. Acta Numer., 23:369–520, 2014.
  • [6] F. Filbet and C. Mouhot. Analysis of spectral methods for the homogeneous Boltzmann equation. Trans. Amer. Math. Soc., 363:1947–1980, 2011.
  • [7] F. Filbet, C. Mouhot, and L. Pareschi. Solving the Boltzmann equation in NlogN. SIAM J. Sci. Comput., 28:1029–1053, 2006.
  • [8] F. Filbet and G. Russo. High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys., 186:457–480, 2003.
  • [9] I. Gamba, J. Haack, C. Hauck, and J. Hu. A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput., 39:B658–B674, 2017.
  • [10] I. Gamba and S. Tharkabhushanam. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J. Comput. Phys., 228:2012–2036, 2009.
  • [11] J. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2007.
  • [12] J. Hu and Z. Ma. A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases. J. Comput. Phys., 385:119–134, 2019.
  • [13] J. Hu and K. Qi. A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels. preprint, 2020.
  • [14] J. Hu and L. Ying. A fast spectral algorithm for the quantum Boltzmann collision operator. Commun. Math. Sci., 10:989–999, 2012.
  • [15] S. Jaiswal, A. Alexeenko, and J. Hu. A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels. J. Comput. Phys., 378:178–208, 2019.
  • [16] C. Mouhot and L. Pareschi. Fast algorithms for computing the Boltzmann collision operator. Math. Comp., 75:1833–1852, 2006.
  • [17] C. Mouhot and C. Villani. Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rational Mech. Anal., 173:169–212, 2004.
  • [18] L. Pareschi and B. Perthame. A Fourier spectral method for homogeneous Boltzmann equations. Transport Theory Statist. Phys., 25:369–382, 1996.
  • [19] L. Pareschi and G. Russo. Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal., 37:1217–1245, 2000.
  • [20] L. Pareschi and G. Russo. On the stability of spectral methods for the homogeneous Boltzmann equation. Transport Theory Statist. Phys., 29:431–447, 2000.
  • [21] L. Pareschi, G. Russo, and G. Toscani. Fast spectral methods for the Fokker-Planck-Landau collision operator. J. Comput. Phys., 165:216–236, 2000.
  • [22] C. Villani. A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Mechanics, volume I, pages 71–305. North-Holland, 2002.
  • [23] A. Weibe, G. Wellein, A. Alvermann, and H. Fehske. The kernel polynomial method. Reviews of Modern Physics, 78:275–306, 2006.