This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new proof of the Bondal-Orlov reconstruction
using Matsui spectra

Daigo Ito and Hiroki Matsui 2020 Mathematics Subject Classification. 14A10, 14F08, 14K05,18G80Key words and phrases. abelian variety, Balmer spectrum, quasi-projective variety, perfect derived category, tensor triangulated category, triangular spectrum, triangulated categoryThe second author was partly supported by JSPS Grant-in-Aid for Early-Career Scientists 22K13894.
Abstract

In 2005, Balmer defined the ringed space Spec𝒯\operatorname{Spec}_{\otimes}\mathcal{T} for a given tensor triangulated category, while in 2023, the second author introduced the ringed space Spec\vartriangle𝒯\operatorname{Spec}_{\vartriangle}\mathcal{T} for a given triangulated category. In the algebro-geometric context, these spectra provided several reconstruction theorems using derived categories. In this paper, we prove that SpecX𝕃PerfX\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{Perf}X is an open ringed subspace of Spec\vartrianglePerfX\operatorname{Spec}_{\vartriangle}\operatorname{Perf}X for a quasi-projective variety XX. As an application, we provide a new proof of the Bondal-Orlov and Ballard reconstruction theorems in terms of these spectra.

Recently, the first author introduced the Fourier-Mukai locus Spec𝖥𝖬PerfX\operatorname{Spec}^{\mathsf{FM}}\operatorname{Perf}X for a smooth projective variety XX, which is constructed by gluing Fourier-Mukai partners of XX inside Spec\vartrianglePerfX\operatorname{Spec}_{\vartriangle}\operatorname{Perf}X. As another application of our main theorem, we demonstrate that Spec𝖥𝖬PerfX\operatorname{Spec}^{\mathsf{FM}}\operatorname{Perf}X can be viewed as an open ringed subspace of Spec\vartrianglePerfX\operatorname{Spec}_{\vartriangle}\operatorname{Perf}X. As a result, we show that all the Fourier-Mukai partners of an abelian variety XX can be reconstructed by topologically identifying the Fourier-Mukai locus within Spec\vartrianglePerfX\operatorname{Spec}_{\vartriangle}\operatorname{Perf}X.

1 Introduction

We provide a new proof to the following version of the reconstruction theorem of Bondal-Orlov ([bondal_orlov_2001]) shown by Ballard ([ballard2011derived]).

Theorem 1.1.

Let XX be a Gorenstein projective variety over an algebraically closed field with (anti-)ample canonical bundle. Then, the following assertions hold:

  1. (i)

    The variety XX can be reconstructed solely from the triangulated category structure of the derived category 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X of perfect complexes on XX.

  2. (ii)

    If there exists a Gorenstein projective variety YY with 𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y, then XYX\cong Y.

The basic idea of the proof is that using the Serre functor, we can reconstruct the Balmer spectrum. To provide a more detailed sketch, we recall the following constructions. In the sequel, let us assume XX is a noetherian scheme unless otherwise specified.

  • In [Balmer_2002], Balmer constructed a ringed space

    SpecX𝕃𝖯𝖾𝗋𝖿X=(SpcX𝕃𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,),\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X=(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\otimes}),

    called the Balmer spectrum, from the tensor triangulated category (𝖯𝖾𝗋𝖿X,X𝕃)(\operatorname{\mathsf{Perf}}X,\otimes_{X}^{\mathbb{L}}), where we set X𝕃:=𝒪X𝕃\otimes_{X}^{\mathbb{L}}:=\otimes_{\mathscr{O}_{X}}^{\mathbb{L}}. This construction provides the seminal reconstruction result:

    SpecX𝕃𝖯𝖾𝗋𝖿XX.\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X.
  • In [Matsui_2021, matsui2023triangular], one of the authors constructed a ringed space

    Spec\vartriangle𝖯𝖾𝗋𝖿X=(Spc\vartriangle𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle),\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X=(\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}),

    called the Matsui spectrum111In these papers, the author introduced the ringed space under the name ‘triangular spectrum’, and it is called the Matsui spectrum in [HO22, hirano2024FMlocusK3, ito2023gluing]., only using the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

Note that for each spectrum, the underlying topological space consists of thick subcategories of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X satisfying certain conditions. For comparisons of those two spectra, there are three key results from [Matsui_2021, matsui2023triangular, HO22], respectively:

  • The Balmer spectrum is a subspace of the Matsui spectrum, topologically:

    SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X;\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X;
  • If SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X is an open subspace, then there is an open immersion of ringed spaces

    (SpecX𝕃𝖯𝖾𝗋𝖿X)𝗋𝖾𝖽Spec\vartriangle𝖯𝖾𝗋𝖿X;(\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)_{\mathsf{red}}\hookrightarrow\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X;
  • Suppose XX is a Gorenstein projective variety with (anti-)ample canonical bundle. Then, we have

    SpcX𝕃𝖯𝖾𝗋𝖿X=Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X=\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X

    where we let 𝕊\mathbb{S} denote the Serre functor of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X and define the Serre invariant locus to be

    Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X:={𝒫Spc\vartriangle𝖯𝖾𝗋𝖿X𝕊(𝒫)=𝒫}Spc\vartriangle𝖯𝖾𝗋𝖿X.\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X:=\{\mathcal{P}\in\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X\mid\mathbb{S}(\mathcal{P})=\mathcal{P}\}\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X.

    Here, since each point in Spc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X is a certain thick subcategory of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X, we see that the notation indeed makes sense. Note in particular that the underlying topological space of the Balmer spectrum is determined solely by the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X in this case.

Therefore, the following result is enough to complete the proof of Theorem 1.1.

Theorem 1.2 (Theorem 3.2).

If XX is a quasi-projective scheme over an algebraically closed field, then the inclusion

SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X

is open. In particular, we have an isomorphism of ringed spaces:

(SpcX𝕃𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle|SpcX𝕃𝖯𝖾𝗋𝖿X)SpecX𝕃𝖯𝖾𝗋𝖿XX.(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X})\cong\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X.

Indeed, combining the theorem with aforementioned results, we see that if XX is a Gorenstein projective variety with (anti-)ample canonical bundle, then we can reconstruct XX by restricting the structure sheaf of the Matsui spectrum to the Serre invariant locus, i.e.,

X(Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle|Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X)X\cong(\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X})

where the right-hand side only depends on the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

Now, Theorem 1.2 has more consequences than just finishing up the new proof of the reconstruction theorem. In the rest of this paper, we will consider its implications in terms of the Fourier-Mukai locus introduced in [ito2023gluing]. In particular, we observe that the structure sheaf on the Fourier-Mukai locus constructed in [ito2023gluing] can be simply realized as the restriction of the structure sheaf of the Matsui spectrum (Theorem 4.5). In other words, there is an open immersion

Spec𝖥𝖬𝖯𝖾𝗋𝖿XSpec\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X\hookrightarrow\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X

of ringed spaces, where Spec𝖥𝖬𝖯𝖾𝗋𝖿X\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X can be viewed as a scheme constructed by gluing copies of Fourier-Mukai partners of XX realized as Balmer spectra inside the Matsui spectrum. Let us note that the Fourier-Mukai locus contains various (birational) geometric information about the Fourier-Mukai partners as observed in [ito2023gluing] (cf. Example 4.12) and hence the categorical construction of the structure sheaf gives more paths to applications to geometry.

Finally, we give an affirmative answer to the following conjecture [ito2023gluing]*Conjecture 5.9 on the Fourier-Mukai locus of an abelian variety.

Theorem 1.3 (Theorem 5.6).

Let XX be an abelian variety. Then, the Fourier-Mukai locus Spec𝖥𝖬𝖯𝖾𝗋𝖿X\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X is the disjoint union of copies of Fourier-Mukai partners of XX. In particular, connected components of Spec𝖥𝖬𝖯𝖾𝗋𝖿X\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X are precisely the Fourier-Mukai partners of XX.

In particular, this result together with Theorem 1.2 tells us that if we can identify the underlying topological space of the Fourier-Mukai locus inside the Matsui spectrum purely categorically, we can reconstruct all the Fourier-Mukai partners of abelian varieties as connected components of the Fourier-Mukai locus.

2 Preliminaries

Notation 2.1.

Let kk be a field. We assume kk is algebraically closed unless otherwise specified. Throughout this paper, a triangulated category is assumed to be kk-linear and essentially small (i.e., having a set of isomorphism classes of objects) and functors/structures are assumed to be kk-linear. A variety is an integral scheme of finite type over kk. For a variety, points refer to closed points. Moreover, any ring and scheme are assumed to be over kk and for a scheme XX, let 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X denote the derived category of perfect complexes on XX and let

X𝕃:=𝒪X𝕃\otimes_{X}^{\mathbb{L}}:=\otimes_{\mathscr{O}_{X}}^{\mathbb{L}}

denote the usual derived tensor product on 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

Definition 2.2.

Let 𝒯\mathcal{T} be a triangulated category.

  1. (i)

    Let Th𝒯\operatorname{Th}\mathcal{T} denote the poset of thick subcategories of 𝒯\mathcal{T} by inclusions. We define the Balmer topology on Th𝒯\operatorname{Th}\mathcal{T} by setting open sets to be

    U():={Th𝒯}U(\mathcal{E}):=\{\mathcal{I}\in\operatorname{Th}\mathcal{T}\mid\mathcal{I}\cap\mathcal{E}\neq\emptyset\}

    for each collection \mathcal{E} of objects in 𝒯\mathcal{T}.

  2. (ii)

    We say a thick subcategory 𝒫\mathcal{P} is a prime thick subcategory if the subposet

    {Th𝒯\supsetneq𝒫}Th𝒯\{\mathcal{I}\in\operatorname{Th}\mathcal{T}\mid\mathcal{I}\supsetneq\mathcal{P}\}\subset\operatorname{Th}\mathcal{T}

    has the smallest element. Define the Matsui spectrum

    Spc\vartriangle𝒯Th𝒯\operatorname{Spc}_{\vartriangle}\mathcal{T}\subset\operatorname{Th}\mathcal{T}

    to be the subspace consisting of prime thick subcategories. We can equip the Matsui spectrum with a ringed space structure and let Spec\vartriangle𝒯=(Spc\vartriangle𝒯,𝒪𝒯,\vartriangle)\operatorname{Spec}_{\vartriangle}\mathcal{T}=(\operatorname{Spc}_{\vartriangle}\mathcal{T},\mathscr{O}_{\mathcal{T},\vartriangle}) denote the ringed space. Here, the structure sheaf 𝒪𝒯,\vartriangle\mathscr{O}_{\mathcal{T},\vartriangle} is defined as the sheafification of the presheaf

    Spc\vartriangle𝒯UZ(𝒯/𝒫U𝒫),\operatorname{Spc}_{\vartriangle}\mathcal{T}\supseteq U\mapsto Z\left(\mathcal{T}/\bigcap_{\mathcal{P}\in U}\mathcal{P}\right),

    where

    Z(𝒮):={natural transformations η:id𝒮id𝒮 with η[1]=[1]η}Z(\mathcal{S}):=\{\text{natural transformations $\eta:{\rm id}_{\mathcal{S}}\to{\rm id}_{\mathcal{S}}$ with $\eta[1]=[1]\eta$}\}

    denotes the center of 𝒮\mathcal{S} for a triangulated category 𝒮\mathcal{S}. See [matsui2023triangular] for the detailed construction.

  3. (iii)

    We say a symmetric monoidal category (𝒯,,𝟏)(\mathcal{T},\otimes{,\mathbf{1}}) is a tensor triangulated category (tt-category in short) if the bifunctor :𝒯×𝒯𝒯\otimes:\mathcal{T}\times\mathcal{T}\to\mathcal{T} is triangulated in each variable, which is called a tt-structure on 𝒯\mathcal{T}. A thick subcategory 𝒯\mathcal{I}\subset\mathcal{T} is said to be a \otimes-ideal if, for any F𝒯F\in\mathcal{T} and GG\in\mathcal{I}, we have FGF\otimes G\in\mathcal{I}. A \otimes-ideal 𝒫\mathcal{P} is said to be a prime \otimes-ideal if FG𝒫F\otimes G\in\mathcal{P} implies F𝒫F\in\mathcal{P} or G𝒫G\in\mathcal{P}. Define the Balmer spectrum

    Spc𝒯Th𝒯\operatorname{Spc}_{\otimes}\mathcal{T}\subset\operatorname{Th}\mathcal{T}

    to be the subspace consisting of prime \otimes-ideals of (𝒯,)(\mathcal{T},\otimes). We can equip the Balmer spectrum with a ringed space structure and let Spec𝒯=(Spc𝒯,𝒪𝒯,)\operatorname{Spec}_{\otimes}\mathcal{T}=(\operatorname{Spc}_{\otimes}\mathcal{T},\mathscr{O}_{\mathcal{T},\otimes}) denote the ringed space. Here, the structure sheaf 𝒪𝒯,\mathscr{O}_{\mathcal{T},\otimes} is defined as the sheafification of the presheaf

    Spc𝒯UEnd𝒯/𝒫U𝒫(𝟏).\operatorname{Spc}_{\otimes}\mathcal{T}\supseteq U\mapsto\operatorname{End}_{\mathcal{T}/\bigcap_{\mathcal{P}\in U}\mathcal{P}}(\mathbf{1}).

    See [Balmer_2005] for the detailed construction.

In the algebro-geometric setting, we have the following results:

Theorem 2.3 ([Balmer_2005]*Theorem 6.3, [matsui2023triangular]*Theorem 2.12, Corollary 4.7).

Let XX be a noetherian scheme (over \mathbb{Z}). Then, we have the following assertions:

  1. (i)

    There is a canonical isomorphism XSpecX𝕃𝖯𝖾𝗋𝖿XX\cong\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X of ringed spaces whose underlying map is given by sending a (not necessarily closed) point xXx\in X to a thick subcategory

    𝒮X(x):={𝖯𝖾𝗋𝖿Xx0 in 𝖯𝖾𝗋𝖿𝒪X,x}𝖯𝖾𝗋𝖿X;\mathcal{S}_{X}(x):=\{\mathscr{F}\in\operatorname{\mathsf{Perf}}X\mid\mathscr{F}_{x}\cong 0\text{ in $\operatorname{\mathsf{Perf}}\mathscr{O}_{X,x}$}\}\subset\operatorname{\mathsf{Perf}}X;
  2. (ii)

    A X𝕃\otimes_{X}^{\mathbb{L}}-ideal of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X is a prime thick subcategory if and only if it is a prime X𝕃\otimes_{X}^{\mathbb{L}}-ideal.

  3. (iii)

    There is a morphism

    i:SpecX𝕃𝖯𝖾𝗋𝖿XSpec\vartriangle𝖯𝖾𝗋𝖿Xi:\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\to\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X

    of ringed spaces whose underlying continuous map is the inclusion;

  4. (iv)

    Suppose SpcX𝕃𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X is open in Spc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X. Then, the morphism

    i:(SpecX𝕃𝖯𝖾𝗋𝖿X)𝗋𝖾𝖽Spec\vartriangle𝖯𝖾𝗋𝖿Xi:(\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)_{\mathsf{red}}\to\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X

    is an open immersion of ringed spaces.

In [matsui2023triangular], it is shown that a quasi-affine scheme satisfies the supposition in part (iv). In the next section, we show that the supposition holds more generally if XX is a quasi-projective scheme over kk.

Remark 2.4.

Let XX be a noetherian scheme over kk. We observe that Theorem 2.3 extends to this relative setting in the following sense.

  1. (i)

    By definition, the structure sheaf 𝒪𝖯𝖾𝗋𝖿X,X𝕃\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\otimes_{X}^{\mathbb{L}}} of the Balmer spectrum is naturally a sheaf of kk-algebras and therefore the scheme SpecX𝕃𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X has a canonical kk-scheme structure. Now, since for a kk-algebra AA, the canonical ring isomorphism

    End𝖯𝖾𝗋𝖿A(A)Γ(SpecA,𝒪SpecA)A\operatorname{End}_{\operatorname{\mathsf{Perf}}A}(A)\cong\Gamma(\operatorname{Spec}A,\mathscr{O}_{\operatorname{Spec}A})\cong A

    respects kk-algebra structures, we see that the canonical isomorphism in Theorem 2.3 (i)

    SpecX𝕃𝖯𝖾𝗋𝖿XX\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X

    is an isomorphism of kk-schemes.

  2. (ii)

    Similarly, the center of a kk-linear triangulated category has the canonical structure of a kk-algebra so that Spec\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X is naturally a ringed space over Speck\operatorname{Spec}k. Now, for a kk-algebra AA, the canonical evaluation ring homomorphism

    Z(𝖯𝖾𝗋𝖿A)End𝖯𝖾𝗋𝖿A(A),ηηAZ(\operatorname{\mathsf{Perf}}A)\to\operatorname{End}_{\operatorname{\mathsf{Perf}}A}(A),\quad\eta\mapsto\eta_{A}

    respects kk-algebra structures. Since the open immersion

    i:(SpecX𝕃𝖯𝖾𝗋𝖿X)𝗋𝖾𝖽Spec\vartriangle𝖯𝖾𝗋𝖿Xi:(\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)_{\mathsf{red}}\hookrightarrow\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X

    in Theorem 2.3 (iv) is essentially coming from the evaluation maps above, we see that ii is an open immersion of ringed spaces over Speck\operatorname{Spec}k.

3 A new proof of Bondal-Orlov reconstruction

First of all, let us see the following observation essentially made in [HO22]*Proposition 5.3.

Lemma 3.1.

Let XX be a quasi-projective scheme of dimension nn over kk and take a line bundle \mathscr{L} on XX. Then, the following hold:

  1. (i)

    Take a thick subcategory 𝖯𝖾𝗋𝖿X\mathcal{I}\subset{\operatorname{\mathsf{Perf}}X} and an object \mathscr{F}\in\mathcal{I}. If \mathscr{L} is very ample and there exists dd\in\mathbb{Z} such that

    X𝕃d,X𝕃(d+1),,X𝕃(d+n),\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes d},\ \mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes(d+1)},\ \dots,\ \mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes(d+n)}\in\mathcal{I},

    then for any 𝒢𝖯𝖾𝗋𝖿X\mathscr{G}\in{\operatorname{\mathsf{Perf}}X}, we have

    X𝕃𝒢.\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{G}\in\mathcal{I}.
  2. (ii)

    Assume that \mathscr{L} or 1\mathscr{L}^{\otimes-1} is ample. A prime thick subcategory 𝒫Spc\vartriangle𝖯𝖾𝗋𝖿X\mathcal{P}\in\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X is a prime \otimes-ideal if and only if

    𝒫X𝕃=𝒫.\mathcal{P}\otimes_{X}^{\mathbb{L}}\mathscr{L}=\mathcal{P}.
Proof.

For part (i), take a thick subcategory 𝖯𝖾𝗋𝖿X\mathcal{I}\subset\operatorname{\mathsf{Perf}}X and an object \mathscr{F}\in\mathcal{I} and suppose that there exists dd\in\mathbb{Z} such that

X𝕃d,X𝕃(d+1),,X𝕃(d+n).\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes d},\ \mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes(d+1)},\ \dots,\ \mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes(d+n)}\in\mathcal{I}.

Then the subcategory 𝒳:={𝒢𝖯𝖾𝗋𝖿XX𝕃𝒢}\mathcal{X}:=\{\mathscr{G}\in\operatorname{\mathsf{Perf}}X\mid\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{G}\in\mathcal{I}\} is a thick subcategory of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X containing

d,(d+1),,(d+n).\mathscr{L}^{\otimes d},\ \mathscr{L}^{\otimes(d+1)},\ \dots,\ \mathscr{L}^{\otimes{(d+n)}}.

By [Orlov_dimension]*Theorem 4, a thick subcategory containing d,(d+1),,(d+n)\mathscr{L}^{\otimes d},\ \mathscr{L}^{\otimes(d+1)},\ \dots,\ \mathscr{L}^{\otimes{(d+n)}} needs to be 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X. Therefore, we see that 𝒳=𝖯𝖾𝗋𝖿X\mathcal{X}=\operatorname{\mathsf{Perf}}X; that is

X𝕃𝒢\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{G}\in\mathcal{I}

for any 𝒢𝖯𝖾𝗋𝖿X\mathscr{G}\in{\operatorname{\mathsf{Perf}}X}.

For part (ii), note that for any \otimes-ideal 𝒫\mathcal{P} in (𝖯𝖾𝗋𝖿X,X𝕃)(\operatorname{\mathsf{Perf}}X,\otimes_{X}^{\mathbb{L}}), we clearly have

𝒫X𝕃𝒫\mathcal{P}\otimes_{X}^{\mathbb{L}}\mathscr{L}\subset\mathcal{P}

and the inclusion is the equality since we also have 𝒫X𝕃1𝒫\mathcal{P}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes-1}\subset\mathcal{P}. If 𝒫X𝕃=𝒫\mathcal{P}\otimes_{X}^{\mathbb{L}}\mathscr{L}=\mathcal{P} holds, then 𝒫X𝕃d=𝒫\mathcal{P}\otimes_{X}^{\mathbb{L}}\mathscr{L}^{\otimes d}=\mathcal{P} for any dd\in\mathbb{Z}. Thus the converse follows from part (i) and Theorem 2.3 (ii). ∎

Now, we show our main theorem on the topology of the Matsui spectrum.

Theorem 3.2.

Let XX be a quasi-projective scheme of dimension nn over kk. Then the inclusion

SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X

is open. In particular, we have an isomorphism of ringed spaces:

(SpcX𝕃𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle|SpcX𝕃𝖯𝖾𝗋𝖿X)(SpecX𝕃𝖯𝖾𝗋𝖿X)𝗋𝖾𝖽X𝗋𝖾𝖽.(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X})\cong(\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)_{\mathsf{red}}\cong X_{\mathsf{red}}.
Proof.

Take a very ample line bundle \mathscr{L} on XX and fix a corresponding immersion XkNX\hookrightarrow\mathbb{P}^{N}_{k} for some NN. In this proof, we say an effective Cartier divisor HXH\subset X is a hyperplane section if there exists a hyperplane H~kN\tilde{H}\subset\mathbb{P}^{N}_{k} with XH~X\not\subseteq\tilde{H} such that H=XH~H=X\cap\tilde{H}. For each hyperplane section HXH\subset X, define

H:=𝒪H(𝒪HX𝕃𝒪X(H))(𝒪HX𝕃𝒪X(nH))\mathscr{F}_{H}:=\mathscr{O}_{H}\oplus(\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{O}_{X}(H))\oplus\cdots\oplus(\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{O}_{X}(nH))

and set

X:={HHX is a hyperplane section}.\mathcal{E}_{X}:=\{\mathscr{F}_{H}\mid\text{$H\subset X$ is a hyperplane section}\}.

Now, to see SpcX𝕃𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X is open in Spc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X, we are going to show

SpcX𝕃𝖯𝖾𝗋𝖿X=U(X)=𝖽𝖾𝖿{Spc\vartriangle𝖯𝖾𝗋𝖿XX}.\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X=U(\mathcal{E}_{X})\overset{\mathsf{def}}{=}\{\mathcal{I}\in\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X\mid\mathcal{I}\cap\mathcal{E}_{X}\neq\emptyset\}.

The containment SpcX𝕃𝖯𝖾𝗋𝖿XU(X)\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset U(\mathcal{E}_{X}) follows since for any (not necessarily closed) point xXx\in X, there exists a hyperplane section xHXx\not\in H\subset X (as kk is assumed to be algebraically closed and hence infinite) and therefore the prime X𝕃\otimes_{X}^{\mathbb{L}}-ideal 𝒮X(x)\mathcal{S}_{X}(x) contains H\mathscr{F}_{H}. Conversely, take a prime thick subcategory 𝒫U(X)\mathcal{P}\in U(\mathcal{E}_{X}) and take H𝒫\mathscr{F}_{H}\in\mathcal{P} for some hyperplane section HXH\subset X. Then, in particular, we have

𝒪H,𝒪HX𝕃𝒪X(H),,𝒪HX𝕃𝒪X(nH)𝒫.\mathscr{O}_{H},\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{O}_{X}(H),\dots,\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{O}_{X}(nH)\in\mathcal{P}.

As the line bundle 𝒪X(H)\mathscr{O}_{X}(H)\cong\mathscr{L} is very ample, we see from Lemma 3.1 (i) that

𝒪HX𝕃𝒫\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{F}\in\mathcal{P}

holds for any 𝒫\mathscr{F}\in\mathcal{P} and hence

𝒪X(H)X𝕃𝒫\mathscr{O}_{X}(-H)\otimes_{X}^{\mathbb{L}}\mathscr{F}\in\mathcal{P}

by considering a distinguished triangle

𝒪X(H)X𝕃𝒪XX𝕃𝒪HX𝕃𝒪X(H)X𝕃[1].\mathscr{O}_{X}(-H)\otimes_{X}^{\mathbb{L}}\mathscr{F}\to\mathscr{O}_{X}\otimes_{X}^{\mathbb{L}}\mathscr{F}\to\mathscr{O}_{H}\otimes_{X}^{\mathbb{L}}\mathscr{F}\to\mathscr{O}_{X}(-H)\otimes_{X}^{\mathbb{L}}\mathscr{F}[1].

By iterating this process, we see that for any 𝒫\mathscr{F}\in\mathcal{P}, one has

𝒪X(H)X𝕃,𝒪X(2H)X𝕃,,𝒪X((n+1)H)X𝕃𝒫\mathscr{O}_{X}(-H)\otimes_{X}^{\mathbb{L}}\mathscr{F},\mathscr{O}_{X}(-2H)\otimes_{X}^{\mathbb{L}}\mathscr{F},\dots,\mathscr{O}_{X}(-(n+1)H)\otimes_{X}^{\mathbb{L}}\mathscr{F}\in\mathcal{P}

and therefore again by Lemma 3.1 (i), we see that for any 𝒢𝖯𝖾𝗋𝖿X\mathscr{G}\in\operatorname{\mathsf{Perf}}X, 𝒢X𝕃𝒫\mathscr{G}\otimes_{X}^{\mathbb{L}}\mathscr{F}\in\mathcal{P}. Thus, 𝒫\mathcal{P} is a \otimes-ideal and by Theorem 2.3 (ii), 𝒫\mathcal{P} is a prime \otimes-ideal, i.e., 𝒫SpcX𝕃𝖯𝖾𝗋𝖿X\mathcal{P}\in\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X. The later claim follows by Theorem 2.3 (iv). ∎

By Theorem 3.2, to reconstruct a reduced quasi-projective scheme over kk, it is sufficient to identify the underlying topological space of corresponding Balmer spectrum in the Matsui spectrum, which is indeed done in [HO22] in the case of Gorenstein projective varieties with (anti-)ample canonical bundle. Thus, we can give a new conceptually simple proof of the following version of the Bondal-Orlov reconstruction shown by Ballard ([ballard2011derived]*Theorem 6.1).

Theorem 3.3 (Bondal-Orlov, Ballard).

Let XX be a Gorenstein projective variety over kk with (anti-)ample canonical bundle. Then, the following assertions hold:

  1. (i)

    The scheme XX can be reconstructed solely from the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

  2. (ii)

    If there exists a Gorenstein projective variety YY with 𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y, then XYX\cong Y.

Proof.

For part (i), note from [HO22]*Corollary 5.4 that we have

Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X=SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X=\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X

where Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X denote the Serre invariant locus, i.e., the subspace of prime thick subcategories 𝒫\mathcal{P} satisfying 𝕊(𝒫)=𝒫\mathbb{S}(\mathcal{P})=\mathcal{P} for the Serre functor 𝕊\mathbb{S}. (The equality is indeed a direct consequence of Lemma 3.1 (ii).) Now, by Theorem 2.3 (i), (iv) and Theorem 3.2, we have

XSpecX𝕃𝖯𝖾𝗋𝖿X(Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle|Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X),X\cong{\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong}(\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X}),

where the right-most ringed space is determined by the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

For part (ii), take a Gorenstein projective variety YY with Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y. Then, we have an open embedding

Φ1(SpcY𝕃𝖯𝖾𝗋𝖿Y)Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X\Phi^{-1}(\operatorname{Spc}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y)\subset\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X

by [ito2023gluing]*Corollary 6.3 and Theorem 3.2. Now, by Theorem 2.3 the following composition ff of canonical morphisms

YSpecY𝕃𝖯𝖾𝗋𝖿Y\displaystyle Y\cong\operatorname{Spec}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y (SpcY𝕃𝖯𝖾𝗋𝖿Y,𝒪𝖯𝖾𝗋𝖿Y,\vartriangle|SpcY𝕃𝖯𝖾𝗋𝖿Y)\displaystyle\cong(\operatorname{Spc}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y,\mathscr{O}_{\operatorname{\mathsf{Perf}}Y,\vartriangle}|_{\operatorname{Spc}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y})
(Φ1(SpcY𝕃𝖯𝖾𝗋𝖿Y),𝒪𝖯𝖾𝗋𝖿X,\vartriangle|Φ1(SpcY𝕃𝖯𝖾𝗋𝖿Y))\displaystyle\cong(\Phi^{-1}(\operatorname{Spc}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y),\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\Phi^{-1}(\operatorname{Spc}_{\otimes_{Y}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y)})
(Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X,𝒪𝖯𝖾𝗋𝖿X,\vartriangle|Spc𝖲𝖾𝗋𝖯𝖾𝗋𝖿X)SpecX𝕃𝖯𝖾𝗋𝖿XX\displaystyle\hookrightarrow(\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X,\mathscr{O}_{\operatorname{\mathsf{Perf}}X,\vartriangle}|_{\operatorname{Spc}^{\mathsf{Ser}}\operatorname{\mathsf{Perf}}X})\cong\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X

is an open immersion of ringed spaces. Moreover, by Remark 2.4 and by the fact that kk-linear triangulated equivalence induces a kk-isomorphism of the Matsui spectra, we see that ff is an open immersion of kk-schemes. Now, since ff is moreover proper, we see that ff is a closed and open immersion, and therefore f:YXf:Y\to X is an isomorphism as XX is irreducible and hence connected. ∎

By using similar ideas, we can get the following results as well.

Corollary 3.4.

Let XX be a reduced quasi-affine scheme over kk. Then, the following assertions hold:

  1. (i)

    The scheme XX can be reconstructed solely from the triangulated category structure of 𝖯𝖾𝗋𝖿X\operatorname{\mathsf{Perf}}X.

  2. (ii)

    If there exists a noetherian reduced scheme YY over kk with 𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y, then XYX\cong Y.

Proof.

For part (i), since XX is quasi-affine (hence 𝒪X\mathscr{O}_{X} is ample), we get an isomorphism

Spec\vartriangle𝖯𝖾𝗋𝖿XSpecX𝕃𝖯𝖾𝗋𝖿XX\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X\cong\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X

by Theorem 2.3.

For part (ii), take a noetherian reduced scheme YY over kk with Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y. Then, we have an open immersion

YSpecX𝕃𝖯𝖾𝗋𝖿YSpecX𝕃𝖯𝖾𝗋𝖿XXY\hookrightarrow\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y\cong\operatorname{Spec}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\cong X

by Theorem 3.2 and part (i). In particular, YY is also quasi-affine. Thus, part (i) shows that XSpec\vartriangle𝖯𝖾𝗋𝖿XSpec\vartriangle𝖯𝖾𝗋𝖿YYX\cong\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X\cong\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}Y\cong Y. ∎

Remark 3.5.

Favero [FAVERO20121955]*Corollary 3.11 proved the same result under the assumptions that XX is a quasi-affine variety and YY is a divisorial variety.

Remark 3.6.

The arguments of the above two corollaries also prove the following more general statement:

Let XX and YY be quasi-projective schemes over kk. Let \mathscr{L} and \mathscr{M} be line bundles on XX and YY, respectively. Assume that the following two conditions:

  1. (a)

    \mathscr{L} is (anti-)ample.

  2. (b)

    There is a triangulated equivalence Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}Y such that Φ(X𝕃)Φ()Y𝕃\Phi(\mathscr{F}\otimes_{X}^{\mathbb{L}}\mathscr{L})\cong\Phi(\mathscr{F})\otimes_{Y}^{\mathbb{L}}\mathscr{M} for every 𝖯𝖾𝗋𝖿X\mathscr{F}\in\operatorname{\mathsf{Perf}}X.

Then there is an open immersion XYX\hookrightarrow Y of kk-schemes.

Further generalizations are discussed in a work in preparation ([ito2024polarization]).

4 Categorical construction of scheme structure on Fourier-Mukai locus

In [ito2023gluing], one of the authors studied the following locus in the Matsui spectrum.

Definition 4.1.

Let 𝒯\mathcal{T} be a triangulated category.

  1. (i)

    We say a smooth projective variety XX is a Fourier-Mukai partner of 𝒯\mathcal{T} if there exists a triangulated equivalence 𝒯𝖯𝖾𝗋𝖿X\mathcal{T}\simeq\operatorname{\mathsf{Perf}}X. Let FM𝒯\operatorname{FM}\mathcal{T} denote the set of isomorphism classes of Fourier-Mukai partners of 𝒯\mathcal{T}.

  2. (ii)

    We say a tt-structure \otimes on 𝒯\mathcal{T} is geometric in XFM𝒯X\in\operatorname{FM}\mathcal{T} if there exists an equivalence

    (𝒯,)(𝖯𝖾𝗋𝖿X,X𝕃)(\mathcal{T},\otimes)\simeq(\operatorname{\mathsf{Perf}}X,\otimes_{X}^{\mathbb{L}})

    of tt-categories. We say a tt-structure \otimes on 𝒯\mathcal{T} is geometric if there exists XFM𝒯X\in\operatorname{FM}\mathcal{T} such that \otimes is geometric in XX.

  3. (iii)

    Define the Fourier-Mukai locus of 𝒯\mathcal{T} to be the subspace

    Spc𝖥𝖬𝒯:=geom. tt-str.  on 𝒯Spc𝒯Spc\vartriangle𝒯.\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}:=\bigcup_{\text{geom. tt-str. $\otimes$ on $\mathcal{T}$}}\operatorname{Spc}_{\otimes}\mathcal{T}\subset\operatorname{Spc}_{\vartriangle}\mathcal{T}.

Now, we have the following consequences of Theorem 3.2.

Proposition 4.2.

Let 𝒯\mathcal{T} be a triangulated category with FM𝒯\operatorname{FM}\mathcal{T}\neq\emptyset. Then, the following hold:

  1. (i)

    For a geometric tt-structure \otimes on 𝒯\mathcal{T}, the inclusion Spc𝒯Spc\vartriangle𝒯\operatorname{Spc}_{\otimes}\mathcal{T}\subset\operatorname{Spc}_{\vartriangle}\mathcal{T} is open.

  2. (ii)

    The Fourier-Mukai locus of 𝒯\mathcal{T} is open in the Matsui spectrum of 𝒯\mathcal{T}.

  3. (iii)

    In [ito2023gluing], the topology on the Fourier-Mukai locus is defined to be the one generated by open subsets of the Balmer spectrum for each geometric tt-structure. This topology on Spc𝖥𝖬𝒯\operatorname{Spc}^{\mathsf{FM}}\mathcal{T} agrees with the subspace topology on Spc𝖥𝖬𝒯\operatorname{Spc}^{\mathsf{FM}}\mathcal{T} in Spc\vartriangle𝒯\operatorname{Spc}_{\vartriangle}\mathcal{T}.

Proof.

For a fixed XFM𝒯X\in\operatorname{FM}\mathcal{T} and a tt-equivalence Φ:𝒯𝖯𝖾𝗋𝖿X\Phi:\mathcal{T}\xrightarrow{\sim}\operatorname{\mathsf{Perf}}X, we have a commutative diagram

Spc𝒯\displaystyle{\operatorname{Spc}_{\otimes}\mathcal{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Φ\scriptstyle{\Phi}\scriptstyle{\cong}Spc𝖥𝖬𝒯\displaystyle{\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Φ\scriptstyle{\Phi}\scriptstyle{\cong}Spc\vartriangle𝒯\displaystyle{\operatorname{Spc}_{\vartriangle}\mathcal{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi}\scriptstyle{\cong}Spc𝖯𝖾𝗋𝖿X\displaystyle{\operatorname{Spc}_{\otimes}\mathcal{\operatorname{\mathsf{Perf}}}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Spc𝖥𝖬𝖯𝖾𝗋𝖿X\displaystyle{\operatorname{Spc}^{\mathsf{FM}}\mathcal{\operatorname{\mathsf{Perf}}}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}Spc\vartriangle𝖯𝖾𝗋𝖿X\displaystyle{\operatorname{Spc}_{\vartriangle}\mathcal{\operatorname{\mathsf{Perf}}}X}

where the vertical maps induced from Φ\Phi are homeomorphisms. By Theorem 3.2, we have that the inclusion SpcX𝕃𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X is an open embedding. Therefore, we have part (i). Part (ii) and (iii) immediately follow from part (i). ∎

Note by [ito2023gluing]*Theorem 4.7, we can glue the Balmer spectra corresponding to geometric tt-structures to equip Spc𝖥𝖬𝒯\operatorname{Spc}^{\mathsf{FM}}\mathcal{T} with a scheme structure, where the corresponding scheme is denoted by Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}. Recall by construction the scheme structure on the Fourier-Mukai locus satisfies the following properties.

Theorem 4.3 ([ito2023gluing]*Theorem 4.7).

Let 𝒯\mathcal{T} be a triangulated category with FM𝒯\operatorname{FM}\mathcal{T}\neq\emptyset. Then, the scheme Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} is a smooth scheme locally of finite type and for any geometric tt-structure \otimes, and we have a canonical open immersion

Spec𝒯Spec𝖥𝖬𝒯\operatorname{Spec}_{\otimes}\mathcal{T}\hookrightarrow\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}

of schemes whose underlying continuous map is the inclusion.

Now, we show that we can obtain the same scheme structure on the Fourier-Mukai locus by simply restricting the structure sheaf on the Matsui spectrum to the Fourier-Mukai locus. To see this, let us recall the following classical result (e.g. [EGAIV]*Proposition 10.9.6 and [Har77]*Proposition I.3.5):

Lemma 4.4.

Let XX and YY be reduced schemes locally of finite type over an algebraically closed field kk and let f,g:XYf,g:X\to Y be morphisms of schemes over kk. If ff and gg agree on the set of closed points, then they agree as a morphism of schemes over kk.

Now, we are ready to show the following.

Theorem 4.5.

Let 𝒯\mathcal{T} be a triangulated category with FM𝒯\operatorname{FM}\mathcal{T}\neq\emptyset. Then, there is an isomorphism

Spec𝖥𝖬𝒯(Spc𝖥𝖬𝒯,𝒪𝒯,\vartriangle|Spc𝖥𝖬𝒯)\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}\overset{\sim}{\to}(\operatorname{Spc}^{\mathsf{FM}}\mathcal{T},\mathscr{O}_{\mathcal{T},\vartriangle}|_{\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}})

of ringed spaces whose underlying continuous map is the identity.

Proof.

First, note that by Theorem 3.2, (Spc𝖥𝖬𝒯,𝒪𝒯,\vartriangle|Spc𝖥𝖬𝒯)(\operatorname{Spc}^{\mathsf{FM}}\mathcal{T},\mathscr{O}_{\mathcal{T},\vartriangle}|_{\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}}) is a smooth scheme locally of finite type. Take an open covering {Spcα𝒯}αA\{\operatorname{Spc}_{\otimes_{\alpha}}\mathcal{T}\}_{\alpha\in A} of Spc𝖥𝖬𝒯\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}, where each α\otimes_{\alpha} is a geometric tt-structure on 𝒯\mathcal{T}. Then, for each αA\alpha\in A, there exists a canonical open immersion

ια:Specα𝒯Spec𝖥𝖬𝒯\iota_{\alpha}:\operatorname{Spec}_{\otimes_{\alpha}}\mathcal{T}\hookrightarrow\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}

whose underlying continuous map is the inclusion by Theorem 4.3 and therefore there is an open immersion

iα:ια(Specα𝒯)(Spc𝖥𝖬𝒯,𝒪𝒯,\vartriangle|Spc𝖥𝖬𝒯)i_{\alpha}:\iota_{\alpha}(\operatorname{Spec}_{\otimes_{\alpha}}\mathcal{T})\hookrightarrow(\operatorname{Spc}^{\mathsf{FM}}\mathcal{T},\mathscr{O}_{\mathcal{T},\vartriangle}|_{\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}})

whose underlying continuous map is the inclusion by Theorem 3.2. Now, by Lemma 4.4, we see that {iα}αA\{i_{\alpha}\}_{\alpha\in A} glues to a morphism

ϕ:Spec𝖥𝖬𝒯(Spc𝖥𝖬𝒯,𝒪𝒯,\vartriangle|Spc𝖥𝖬𝒯)\phi:\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}\to(\operatorname{Spc}^{\mathsf{FM}}\mathcal{T},\mathscr{O}_{\mathcal{T},\vartriangle}|_{\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}})

whose underlying continuous map is the identity. Since ϕ\phi is a homeomorphism and locally an isomorphism, it is an isomorphism. ∎

Remark 4.6.

Note that Theorem 4.5 makes the construction of the structure sheaf on the Fourier-Mukai locus purely triangulated categorical. Therefore, if we can determine the underlying topological space of the Fourier-Mukai locus categorically, then we can reconstruct information coming from the gluings of structure sheaves of Fourier-Mukai partners performed in [ito2023gluing]. In particular, we have more hope to have backward applications of the Fourier-Mukai locus to birational geometry.

Keeping this remark in mind, let us recall some geometric results on the Fourier-Mukai locus from [ito2023gluing]. First, we recall basic notations and terminologies.

Definition 4.7.

Let 𝒯\mathcal{T} be a triangulated category with XFM𝒯X\in\operatorname{FM}\mathcal{T}.

  1. (i)

    Let Spec,X𝒯Spec𝖥𝖬𝒯\operatorname{Spec}_{\otimes,X}\mathcal{T}\subset\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} denote the open subscheme whose underlying topological space Spc,X𝒯\operatorname{Spc}_{\otimes,X}\mathcal{T} is the union of the Balmer spectra corresponding to geometric tt-structures in XX. In other words, set

    Spec,X𝒯:=geom. tt-str.  in XSpec𝒯Spec𝖥𝖬𝒯.\operatorname{Spec}_{\otimes,X}\mathcal{T}:=\bigcup_{\text{geom. tt-str. $\otimes$ in $X$}}\operatorname{Spec}_{\otimes}\mathcal{T}\subset\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}.

    Note that for a fixed geometric tt-structure 0\otimes_{0} in XX, we can write

    Spc,X𝒯=τAuteq𝒯τ(Spc0𝒯),\operatorname{Spc}_{\otimes,X}\mathcal{T}=\bigcup_{\tau\in\operatorname{Auteq}\mathcal{T}}\tau(\operatorname{Spc}_{\otimes_{0}}\mathcal{T}),

    where Auteq𝒯\operatorname{Auteq}\mathcal{T} denote the group of natural isomorphism classes of triangulated autoequivalences of 𝒯\mathcal{T} and τ(Spc0𝒯)\tau(\operatorname{Spc}_{\otimes_{0}}\mathcal{T}) is the image of Spc0𝒯\operatorname{Spc}_{\otimes_{0}}\mathcal{T} under the following action of Auteq𝒯\operatorname{Auteq}\mathcal{T} on Spec\vartriangle𝒯\operatorname{Spec}_{\vartriangle}\mathcal{T}:

    Auteq𝒯×Spec\vartriangle𝒯(τ,𝒫)τ(𝒫)Spec\vartriangle𝒯.\operatorname{Auteq}\mathcal{T}\times\operatorname{Spec}_{\vartriangle}\mathcal{T}\ni(\tau,\mathcal{P})\mapsto\tau(\mathcal{P})\in\operatorname{Spec}_{\vartriangle}\mathcal{T}.
  2. (ii)

    We say XX is tt-separated (resp. tt-irreducible) if Spec,X𝒯\operatorname{Spec}_{\otimes,X}\mathcal{T} is separated (resp. irreducible).

It is natural to ask how those copies of Fourier-Mukai partners interact with each other in the Matsui spectrum. Indeed, the following results and examples in [ito2023gluing] show that the topology of the Fourier-Mukai locus is closely related to types of possible equivalences between Fourier-Mukai partners, which are then related to (birational) geometric properties of varieties.

Definition 4.8.

Let XX and YY be smooth projective varieties. We say a triangulated equivalence

Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿Y\Phi:\operatorname{\mathsf{Perf}}X\to\operatorname{\mathsf{Perf}}Y

is birational if there exists a closed point xXx\in X such that Φ(k(x))\Phi(k(x)) is isomorphic to k(y)k(y) for some closed point yYy\in Y, which implies that

Φ(SpcX𝕃𝖯𝖾𝗋𝖿X)Spc𝒪Y𝕃𝖯𝖾𝗋𝖿Y\Phi(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)\cap\operatorname{Spc}_{\otimes_{\mathscr{O}_{Y}}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}Y\neq\emptyset

and in particular that XX and YY are birationally equivalent (and indeed KK-equivalent) (cf. [ito2023gluing]*Lemma 4.11).

We can characterize the topology of the Fourier-Mukai locus by using birational autoequivalences as follows.

Lemma 4.9 ([ito2023gluing]*Corollary 4.21).

Let XX be a smooth projective variety. The following are equivalent:

  1. (i)

    XX is tt-separated;

  2. (ii)

    Spec,X𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\otimes,X}\operatorname{\mathsf{Perf}}X is a disjoint union of copies of XX as schemes;

  3. (iii)

    If Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\to\operatorname{\mathsf{Perf}}X is a birational triangulated equivalence, then for any closed point xXx\in X, there exists a closed point xXx^{\prime}\in X such that Φ(k(x))k(x)\Phi(k(x))\cong k(x^{\prime}).

In light of Remark 4.6, a tt-separated smooth projective variety XX can be reconstructed as a connected component of Spec,X𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\otimes,X}\operatorname{\mathsf{Perf}}X if we can categorically determine Spc,X𝖯𝖾𝗋𝖿X\operatorname{Spc}_{\otimes,X}\operatorname{\mathsf{Perf}}X.

Proof.

Since the claims here are phrased in a little different ways from [ito2023gluing], let us comment on how to show this version of the claims although the arguments are essentially same as the proof of [ito2023gluing]*Lemma 4.20. First, note that part (ii) clearly implies part (i). To see part (i) implies part (iii), recall that [ito2023gluing]*Lemma 4.11 (ii) claims for a birational autoequivalence Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}X,

Φ1(SpcX𝕃𝖯𝖾𝗋𝖿X)SpcX𝕃𝖯𝖾𝗋𝖿X\Phi^{-1}(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)\cap\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X

agrees with the maximal domain of definition of Φ\Phi (cf. [ito2023gluing]*Construction 4.6). In particular, if XX is tt-separated and Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\to\operatorname{\mathsf{Perf}}X is a birational autoequivalence, then by [ito2023gluing]*Corollary 4.21, the maximal domain of definition of Φ\Phi is the whole XX and hence any skyscraper sheaf gets sent to a skyscraper sheaf. Finally, part (iii) clearly implies part (ii) by [ito2023gluing]*Lemma 4.11. ∎

We can say more about condition (ii) in Lemma 4.9.

Construction 4.10.

Let XX be a tt-separated smooth projective variety. Then the condition (iii) in Lemma 4.9 and [HuyBook]*Corollary 5.23 show that there is the equality of subgroups

{ΦAuteq𝖯𝖾𝗋𝖿XΦ is birational up to shift}=Pic(X)\ltimesAut(X)×[1]Auteq𝖯𝖾𝗋𝖿X.\{\Phi\in\operatorname{Auteq}\mathcal{\operatorname{\mathsf{Perf}}}X\mid\Phi\mbox{ is birational up to shift}\}=\operatorname{Pic}(X)\ltimes\operatorname{Aut}(X)\times\mathbb{Z}[1]\subset\operatorname{Auteq}\operatorname{\mathsf{Perf}}X.

Now, consider the set of left cosets

IX:=Auteq𝖯𝖾𝗋𝖿X/{ΦAuteq𝖯𝖾𝗋𝖿XΦ is birational up to shift}.{I_{X}}:=\operatorname{Auteq}\operatorname{\mathsf{Perf}}X/\{\Phi\in\operatorname{Auteq}\mathcal{\operatorname{\mathsf{Perf}}}X\mid\Phi\mbox{ is birational up to shift}\}.

By [ito2023gluing]*Corollary 4.21, Theorem 4.27, we obtain an isomorphism

Spec,X𝖯𝖾𝗋𝖿XIXX\operatorname{Spec}_{\otimes,X}\operatorname{\mathsf{Perf}}X\cong\bigsqcup_{{I_{X}}}X

of schemes.

Lemma 4.11 ([ito2023gluing]*Lemma 4.30).

Let XX be a smooth projective variety. The following are equivalent:

  1. (i)

    XX is tt-irreducible;

  2. (ii)

    For any triangulated equivalence Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}X, we have

    Φ(SpcX𝕃𝖯𝖾𝗋𝖿X)SpcX𝕃𝖯𝖾𝗋𝖿X.\Phi(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)\cap\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X\neq\emptyset.

    In particular, any copy of XX in Spec,X𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\otimes,X}\operatorname{\mathsf{Perf}}X intersects with each other.

  3. (iii)

    Any triangulated equivalence Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\simeq\operatorname{\mathsf{Perf}}X is birational up to shift.

Proof.

Since the wordings are a little different from [ito2023gluing], let us comment on a proof. First of all, condition (ii) and condition (iii) are equivalent by [ito2023gluing]*Lemma 4.11 (i). Now, condition (i) and condition (ii) are also equivalent since by [ito2023gluing]*Theorem 4.27, Spec,X𝖯𝖾𝗋𝖿X\operatorname{Spec}_{\otimes,X}\operatorname{\mathsf{Perf}}X is connected if and only if any Balmer spectra corresponding to tt-structures that are geometric in XX intersect with each other, where the former is equivalent to condition (i) by [ito2023gluing]*Lemma 4.30 and the latter is equivalent to condition (ii), noting that such Balmer spectra can be mapped to each other by the action of Auteq𝖯𝖾𝗋𝖿X\operatorname{Auteq}\operatorname{\mathsf{Perf}}X. ∎

Finally, let us list some examples of computations of the Fourier-Mukai locus to advertise what kind of geometry of varieties is reflected in the geometry of the Fourier-Mukai locus.

Example 4.12 ([ito2023gluing]*Example 1.1, Example 1.4).

Let 𝒯\mathcal{T} be a triangulated category with a smooth projective variety XFM𝒯X\in\operatorname{FM}\mathcal{T}.

  1. (i)

    If XX is a smooth projective variety with (anti-)ample canonical bundle, then Spec𝖥𝖬𝒯X\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}\cong X. In particular, XX is tt-irreducible and tt-separated.

  2. (ii)

    If XX is an elliptic curve, then Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} is a disjoint union of infinitely many copies of XX. In particular, XX is tt-separated, but not tt-irreducible.

  3. (iii)

    If XX is a simple abelian variety, then all of its copies in Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} are disjoint. In particular, XX is tt-separated, but not tt-irreducible in general.

  4. (iv)

    If XX is a toric variety, then any copies of X,YFM𝒯X,Y\in\operatorname{FM}\mathcal{T} in Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} intersect with each other along open sets containing tori. In particular, XX is tt-irreducible and not tt-separated in general.

  5. (v)

    If XX is a surface containing a (2)(-2)-curve, then the corresponding spherical twist is birational and XX is not tt-separated. Moreover, XX is in general not tt-irreducible either. In particular, this shows any del Pezzo surface cannot contain a (2)(-2)-curve.

  6. (vi)

    If XX is connected with XFM𝒯X^{\prime}\in\operatorname{FM}\mathcal{T} via a standard flop, then at least one pair of their copies in Spec\vartriangle𝒯\operatorname{Spec}_{\vartriangle}\mathcal{T} intersect with each other along the complement of the flopped subvarieties.

  7. (vii)

    If XX is a Calabi-Yau threefold, then each irreducible component of Spec𝖥𝖬𝒯\operatorname{Spec}^{\mathsf{FM}}\mathcal{T} containing a copy of XX contains all the copies of smooth projective Calabi-Yau threefolds that are birationally equivalent to XX. Moreover, XX is neither tt-separated nor tt-irreducible in general.

In the next section, we will generalize parts (ii) and (iii) to all abelian varieties.

5 Fourier-Mukai locus of abelian varieties

In this section, we determine the Fourier-Mukai locus associated to an abelian variety. First, let us recall some basics of the derived category of coherent sheaves on an abelian variety. For the rest of this paper, kk is an algebraically closed field of characteristic 0.

Notation 5.1.

Let XX be an abelian variety and let X^\hat{X} denote its dual. For a closed point xXx\in X, let tx:XX;yy+xt_{x}:X\overset{\sim}{\to}X;y\mapsto y+x denote the translation. Moreover, for a closed point αX^\alpha\in\hat{X}, let αPic0(X)\mathscr{L}_{\alpha}\in\operatorname{Pic}^{0}(X) denote the corresponding line bundle of degree 0.

In [Orlov_2002], Orlov gave several important results on the derived category of coherent sheaves on an abelian variety.

Definition 5.2.

Let XX be an abelian variety. Then, define the group of symplectic automorphisms of X×X^X\times\hat{X} (with respect to the natural symplectic form) to be

Sp(X×X^):={(f1f2f3f4)Aut(X×X^)|(f1f2f3f4)(f^4f^2f^3f^1)=idX×X^},\operatorname{Sp}(X\times\hat{X}):=\left\{\begin{pmatrix}f_{1}&f_{2}\\ f_{3}&f_{4}\end{pmatrix}\in\operatorname{Aut}(X\times\hat{X})\middle|\begin{pmatrix}f_{1}&f_{2}\\ f_{3}&f_{4}\end{pmatrix}\begin{pmatrix}\hat{f}_{4}&-\hat{f}_{2}\\ -\hat{f}_{3}&\hat{f}_{1}\end{pmatrix}={\rm id}_{X\times\hat{X}}\right\},

where Aut(X×X^)\operatorname{Aut}(X\times\hat{X}) denotes the group of automorphisms of abelian varieties and f^i\hat{f}_{i} denotes the transpose of fif_{i}. Here, we are writing an automorphism f:X×X^X×X^f:X\times\hat{X}\to X\times\hat{X} with matrix form, where f1:XXf_{1}:X\to X, f2:X^Xf_{2}:\hat{X}\to X, etc. We say a symplectic automorphism ff is elementary if f2f_{2} is an isogeny.

Theorem 5.3 ([Orlov_2002]*Theorem 2.10, Corollary 2.13, Proposition 3.2, Construction 4.10, Proposition 4.12).

Let XX be an abelian variety. Then, there is a group homomorphism

γ:Auteq𝖯𝖾𝗋𝖿XSp(X×X^)\gamma:\operatorname{Auteq}\operatorname{\mathsf{Perf}}X\to\operatorname{Sp}(X\times\hat{X})

such that for any ΦAuteq𝖯𝖾𝗋𝖿X\Phi_{\mathscr{E}}\in\operatorname{Auteq}\operatorname{\mathsf{Perf}}X with Fourier-Mukai kernel 𝖯𝖾𝗋𝖿(X×X)\mathscr{E}\in\operatorname{\mathsf{Perf}}(X\times X) (which is necessarily isomorphic to a sheaf on X×XX\times X up to shift) and for any (a,α),(b,β)X×X^(a,\alpha),(b,\beta)\in X\times\hat{X}, we have that γ(Φ)(a,α)=(b,β)\gamma(\Phi_{\mathscr{E}})(a,\alpha)=(b,\beta) if and only if

t(0,b)𝒪X×Xπ2βt(a,0)𝒪X×Xπ1α{t_{(0,b)}}_{*}\mathscr{E}\otimes_{\mathscr{O}_{X\times X}}\pi_{2}^{*}{\mathscr{L}}_{\beta}\cong t^{*}_{(a,0)}\mathscr{E}\otimes_{\mathscr{O}_{X\times X}}\pi_{1}^{*}\mathscr{L}_{\alpha}

where πi\pi_{i} denotes projections πi:X×XX\pi_{i}:X\times X\to X so that Φ()=π2(π1()𝒪X×X𝕃)\Phi_{\mathscr{E}}(-)={\mathbb{R}\pi_{2}}_{*}(\pi_{1}^{*}(-)\otimes_{\mathscr{O}_{X\times X}}^{\mathbb{L}}\mathscr{E}). Moreover, we have

Kerγ=(X×X^)k×[1]Auteq𝖯𝖾𝗋𝖿X,\operatorname{Ker}\gamma=(X\times\hat{X})_{k}\times\mathbb{Z}[1]\subset\operatorname{Auteq}\operatorname{\mathsf{Perf}}X,

where each component corresponds to translations, tensor products with lines bundles of degree 0, and shifts, respectively. Furthermore, for any elementary symplectic automorphism fSp(X×X^)f\in\operatorname{Sp}(X\times\hat{X}), there exists a (semihomogeneous) vector bundle \mathscr{E} on X×XX\times X such that γ(Φ)=f\gamma(\Phi_{\mathscr{E}})=f.

We have the following “global” understanding of the Fourier-Mukai locus of an abelian variety:

Lemma 5.4 ([ito2023gluing]*Lemma 5.1).

Let 𝒯\mathcal{T} be a triangulated category with an abelian variety XFM𝒯X\in\operatorname{FM}\mathcal{T}. Then, any YFM𝒯Y\in\operatorname{FM}\mathcal{T} is also an abelian variety and we have

Spec𝖥𝖬𝒯=YFM𝒯Spec,Y𝒯.\operatorname{Spec}^{\mathsf{FM}}\mathcal{T}=\bigsqcup_{Y\in\operatorname{FM}\mathcal{T}}\operatorname{Spec}_{\otimes,Y}\mathcal{T}.

as a scheme.

In particular, in order to understand the Fourier-Mukai locus, we can focus on the locus Spec,X𝒯\operatorname{Spec}_{\otimes,X}\mathcal{T} for a single abelian variety XFM𝒯X\in\operatorname{FM}\mathcal{T}. In [ito2023gluing]*Lemma 5.2, the following claim was only shown for an abelian variety with isomorphic dual, but it is also straightforward to show the result in general:

Proposition 5.5.

An abelian variety XX is not tt-irreducible.

Proof.

By Lemma 4.11, it suffices to show there is a triangulated equivalence Φ:𝖯𝖾𝗋𝖿X𝖯𝖾𝗋𝖿X\Phi:\operatorname{\mathsf{Perf}}X\to\operatorname{\mathsf{Perf}}X such that

Φ(SpcX𝕃𝖯𝖾𝗋𝖿X)SpcX𝕃𝖯𝖾𝗋𝖿X=.\Phi(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)\cap\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X=\emptyset.

Take an ample line bundle \mathscr{L} on X^\hat{X} with isogeny ϕ:X^X^^X,xtx1\phi_{\mathscr{L}}:\hat{X}\to\hat{\hat{X}}\cong X,x\mapsto t_{x}^{*}\mathscr{L}\otimes\mathscr{L}^{-1}. First, note that by [Ploog_2005]*Example 4.5, we have

γ(𝒪X^)=(idX^0ϕidX)Sp(X^×X)\gamma(-\otimes_{\mathscr{O}_{\hat{X}}}\mathscr{L})=\begin{pmatrix}{\rm id}_{\hat{X}}&0\\ \phi_{\mathscr{L}}&{\rm id}_{X}\end{pmatrix}\in\operatorname{Sp}(\hat{X}\times X)

and in particular ϕ=ϕ^\phi_{\mathscr{L}}=\hat{\phi_{\mathscr{L}}}. Thus, we have

f:=(idXϕ0idX^)Sp(X×X^).f:=\begin{pmatrix}{\rm id}_{X}&\phi_{\mathscr{L}}\\ 0&{\rm id}_{\hat{X}}\end{pmatrix}\in\operatorname{Sp}(X\times\hat{X}).

Now, since ff is, in particular, an elementary symplectic isomorphism, we have a vector bundle \mathscr{E} on X×XX\times X such that ΦAuteq𝖯𝖾𝗋𝖿X\Phi_{\mathscr{E}}\in\operatorname{Auteq}\operatorname{\mathsf{Perf}}X (with γ(Φ)=f\gamma(\Phi_{\mathscr{E}})=f) by Theorem 5.3. Therefore, we see that

Φ(SpcX𝕃𝖯𝖾𝗋𝖿X)SpcX𝕃𝖯𝖾𝗋𝖿X=.\Phi_{\mathscr{E}}(\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X)\cap\operatorname{Spc}_{\otimes_{X}^{\mathbb{L}}}\operatorname{\mathsf{Perf}}X=\emptyset.

by [ito2023gluing]*Corollary 4.10 as desired. ∎

Now, the following result gives an affirmative answer to [ito2023gluing]*Conjecture 5.9:

Theorem 5.6.

An abelian variety XX is tt-separated.

Proof.

Take a birational autoequivalence ΦAuteq𝖯𝖾𝗋𝖿X\Phi\in\operatorname{Auteq}\operatorname{\mathsf{Perf}}X, i.e., suppose there exist x0,y0Xx_{0},y_{0}\in X such that Φ(k(x0))k(y0)\Phi(k(x_{0}))\cong k(y_{0}). By Lemma 4.9, it suffices to show that for any xXx\in X, there exists yXy\in X such that Φ(k(x))k(y)\Phi(k(x))\cong k(y). Now, by [martin2013relative]*Proposition 3.2, we have Φ=Φ𝒦\Phi=\Phi_{\mathscr{K}} for a sheaf 𝒦\mathscr{K} on X×XX\times X that is flat along each projection and therefore by [HuyBook]*Example 5.4 we have 𝒦|{x0}×XΦ(k(x0)k(y0)\mathscr{K}|_{\{x_{0}\}\times X}\cong\Phi(k(x_{0})\cong k(y_{0}) under the canonical identification {x0}×XX\{x_{0}\}\times X\cong X. Moreover, by Theorem 5.3, there is a corresponding isomorphism f𝒦:X×X^X×X^f_{\mathscr{K}}:X\times\hat{X}\to X\times\hat{X} satisfying f𝒦(a,α)=(b,β)f_{\mathscr{K}}(a,\alpha)=(b,\beta) if and only if

t(a,0)𝒦𝒪X×Xπ1αt(0,b)𝒦𝒪X×Xπ2β,t^{*}_{(a,0)}\mathscr{K}\otimes_{\mathscr{O}_{X\times X}}\pi_{1}^{*}\mathscr{L}_{\alpha}\cong{t_{(0,b)}}_{*}\mathscr{K}\otimes_{\mathscr{O}_{X\times X}}\pi_{2}^{*}\mathscr{L}_{\beta},

which is equivalent to

t(a,0)𝒦t(0,b)𝒦𝒪X×Xπ2β𝒪X×X(π1α)1.t^{*}_{(a,0)}\mathscr{K}\cong t^{*}_{(0,-b)}\mathscr{K}\otimes_{\mathscr{O}_{X\times X}}\pi_{2}^{*}\mathscr{L}_{\beta}\otimes_{\mathscr{O}_{X\times X}}(\pi_{1}^{*}\mathscr{L}_{\alpha})^{-1}.

Under canonical identifications {x}×XXX×{y}\{x\}\times X\cong X\cong X\times\{y\} for closed points x,yXx,y\in X, we therefore see that for any aXa\in X, we can take α,b,β\alpha,b,\beta such that

Φ(k(x0+a))\displaystyle\Phi(k(x_{0}+a)) 𝒦|{x0+a}×X(t(a,0)𝒦)|{x0}×X\displaystyle\cong\mathscr{K}|_{\{x_{0}+a\}\times X}\cong(t^{*}_{(a,0)}\mathscr{K})|_{\{x_{0}\}\times X}
(t(0,b)𝒦𝒪X×Xπ2β𝒪X×X(π1α)1)|{x0}×X\displaystyle\cong\left(t^{*}_{(0,-b)}\mathscr{K}\otimes_{\mathscr{O}_{X\times X}}\pi_{2}^{*}\mathscr{L}_{\beta}\otimes_{\mathscr{O}_{X\times X}}(\pi_{1}^{*}\mathscr{L}_{\alpha})^{-1}\right)|_{\{x_{0}\}\times X}
tb(𝒦|{x0}×X)X(π2β𝒪X×X(π1α)1)|{x0}×X\displaystyle\cong t^{*}_{-b}(\mathscr{K}|_{\{x_{0}\}\times X})\otimes_{X}\left(\pi_{2}^{*}\mathscr{L}_{\beta}\otimes_{\mathscr{O}_{X\times X}}(\pi_{1}^{*}\mathscr{L}_{\alpha})^{-1}\right)|_{\{x_{0}\}\times X}
k(y0+b)𝒪X(π2β𝒪X×X(π1α)1)|{x0}×Xk(y0+b)\displaystyle\cong k(y_{0}+b)\otimes_{\mathscr{O}_{X}}\left(\pi_{2}^{*}\mathscr{L}_{\beta}\otimes_{\mathscr{O}_{X\times X}}(\pi_{1}^{*}\mathscr{L}_{\alpha})^{-1}\right)|_{\{x_{0}\}\times X}\cong k(y_{0}+b)

as desired. ∎

As a combination of Construction 4.10, Lemma 5.4, and Theorem 5.6, we obtain some kind of a generalization of [matsui2023triangular]*Corollary 4.10 (see also [HO22]*Theorem 4.11 and [hirano2024FMlocusK3]*Theorem 5.3). Here we note that Spec𝖥𝖬𝖯𝖾𝗋𝖿X=Spec\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X=\operatorname{Spec}_{\vartriangle}\operatorname{\mathsf{Perf}}X holds for an elliptic curve XX by [HO22]*Proposition 4.10 and the subsequent argument.

Corollary 5.7.

Let XX be an abelian variety. Then there is an isomorphism

Spec𝖥𝖬𝖯𝖾𝗋𝖿XYFM𝖯𝖾𝗋𝖿XIYY\operatorname{Spec}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X\cong\bigsqcup_{Y\in\operatorname{FM}{\operatorname{\mathsf{Perf}}X}}\bigsqcup_{{I_{Y}}}Y

of schemes.

By Theorem 4.5 and Corollary 5.7, we can reconstruct all the Fourier-Mukai partners of an abelian variety XX if we can identify the Fourier-Mukai locus

Spc𝖥𝖬𝖯𝖾𝗋𝖿XSpc\vartriangle𝖯𝖾𝗋𝖿X\operatorname{Spc}^{\mathsf{FM}}\operatorname{\mathsf{Perf}}X\subset\operatorname{Spc}_{\vartriangle}\operatorname{\mathsf{Perf}}X

purely categorically. Along this line, the following conjecture was made in [ito2023gluing]:

Conjecture 5.8 ([ito2023gluing]*Conjecture 6.14).

Let 𝒯\mathcal{T} be a triangulated category with FM𝒯\operatorname{FM}\mathcal{T}\neq\emptyset. Then, we have

Spc𝖥𝖬𝒯=Spc𝖲𝖾𝗋𝒯.\operatorname{Spc}^{\mathsf{FM}}\mathcal{T}=\operatorname{Spc}^{\mathsf{Ser}}\mathcal{T}.

The conjecture holds for curves (in particular, elliptic curves) and smooth projective varieties with (anti-) ample canonical bundle, but in [hirano2024FMlocusK3], it was shown that when we have a certain K3 surface XFM𝒯X\in\operatorname{FM}\mathcal{T}, the conjecture fails ([hirano2024FMlocusK3]*Theorem 5.8). Their proof relies on the existence of spherical objects in 𝒯\mathcal{T} so the result does not directly generalize to abelian surfaces and we are interested if there are certain classes of abelian varieties of dimension >1>1 for which the conjecture holds.

References

Daigo Ito
Department of Mathematics, University of California, Berkeley, Evans Hall, CA 94720-3840, USA
E-mail address: [email protected]
Website: https://daigoi.github.io/
Hiroki Matsui
Department of Mathematical Sciences, Tokushima University, Tokushima 770-8506, Japan
E-mail address: [email protected]
Website: https://mthiroki.github.io/