This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new method for estimating the tail index using truncated sample sequence

Fuquan Tang       Dong Han
Department of Statistics, School of Mathematical Sciences,
Shanghai Jiao Tong University, Shanghai, 200240, China
ABSTRACT\\

This article proposes a new method of truncated estimation to estimate the tail index α\alpha of the extremely heavy-tailed distribution with infinite mean or variance. We not only present two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} for estimating α\alpha (0<α10<\alpha\leq 1) and α\alpha (1<α21<\alpha\leq 2) respectively, but also prove their asymptotic statistical properties. The numerical simulation results comparing the six known estimators in estimating error, the Type I Error and the power of estimator show that the performance of the two new truncated estimators is quite good on the whole.

footnotetext:
Supported by National Natural Science Foundation of China (11531001)
Corresponding author, E-mail: [email protected]

KEYWORDS: Heavy-tailed distributions, tail index, truncated sample mean, simulation.

1. Introduction

Heavy-tailed phenomena are widespread in many aspects of our lives, and exist in a variety of disciplines such as physics, meteorology, computer science, biology, and finance. The probabilistic and statistical methods and theories about the heavy-tailed phenomenon have been used to study the magnitude of earthquakes, the diameter of lunar craters on the surface of the moon, the size of interplanetary fragments, and the frequency of words in human languages, and so on [References, References, References, References].

Geography and hydrology are important scenarios for the study and application of thick-tailed distribution. In 1998, Anderson [References] discussed heavy tail time series models and provided a periodic ARMA model for Salt River. In 2022, Merz et al.[References] provided a detailed and coherent review on understanding heavy tails of flood peak distributions, they proposed nine hypotheses on the mechanisms generating heavy-tailed phenomena in flood system. In financial markets, Mandelbrot[References] presented seminal research on cotton price using the heavy tails distribution theory. In 2013, Marat et al.[References] found the emerging exchange markets would be more pronouncedly heavy-tailed and illustrated that heavy-tailed properties did not change obviously during the financial and economic crisis period.

There is a large literature proposing numerous ideas and methods on the estimation of the tail index α\alpha of heavy-tailed distribution. The size of α\alpha is mainly used to measure the degree of thinness of the tail. The smaller the α\alpha, the higher the probability of a heavy-tailed event. Since Hill put forward the famous Hill estimator in 1975 [References], researchers have provided multiple estimation methods for estimating α\alpha, such as DPR estimator[References, References], QQ estimator[References], the Moment estimator[References], LpL^{p} quantile estimator[References], the estimators of extreme value index in a censorship framework[References, References, References, References], t-Hill estimator[References, References], IPO estimator[References] and so on. There are more than 100 tail index estimators have been reviewed by two papers [References, References].

It can be seen that nearly all estimators based on the order statistics of observation samples. Moreover, the estimators based on the order statistics have three characteristics that are not very satisfactory: (1) The calculation of the estimators is relatively complex since the order statistics are not easy to calculate for large sample size; (2) The mathematical meaning of the estimators for the tail index is not obvious; (3) There is no explicit expression for the rate of strong consistency convergence of the estimators.

In order to make up for the shortcomings of existing estimation methods, we propose a new truncated estimation method to estimate the tail index α\alpha (0<α20<\alpha\leq 2) of heavy-tailed distribution with infinite mean or variance. The proposed two estimators α^\hat{\alpha} for 0<α10<\alpha\leq 1 and α^\hat{\alpha}^{\prime} for 1<α21<\alpha\leq 2, are based on the truncated sample mean and the truncated sample second order moment, respectively, and they are not only relatively easy to calculate, but also their strong consistency convergence rate and the asymptotic normal property can be obtained.

In Section 2, we will present two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime}, and obtain their asymptotic statistical properties. Section 3 compares the two truncated estimators with the six known estimators in estimating error, the type I error and the power of estimator by numerical simulations. Section 4 provides concluding remarks. The proofs of the three theorems are given in the Appendix.

2. Two truncated estimators

Due to a random variable XX can be written as the summation of positive and negative parts X=X+XX=X^{+}-X^{-}, we consider only the nonnegative random variables in the paper. Let Xk,k1,X_{k},k\geq 1, be independent and identical distribution (i.i.d.) with extremely heavy-tailed distribution function F(x)=11/xαF(x)=1-1/x^{\alpha} for x1x\geq 1, where the tail index, α(0, 2]\alpha\in(0,\,2], is unknown. We know that when α(0, 1]\alpha\in(0,\,1], the mean or variance is infinite, and when α(1, 2]\alpha\in(1,\,2], the mean is finite but the variance is infinite.

In this section, we will present two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} to estimate α\alpha (0<α10<\alpha\leq 1) and α\alpha (1<α21<\alpha\leq 2) respectively and prove their asymptotic statistical properties.

To this end, let {bn}\{b_{n}\} be a positive truncated sequence satisfying bnb_{n}\nearrow\infty as nn\to\infty. Define the truncated random variable Xk(bn):=XkI(Xkbn)X_{k}(b_{n}):=X_{k}I(X_{k}\leq b_{n}), where I()I(\cdot) is the indicator function. We can get the truncated mean μn\mu_{n}, the truncated sample mean μ^n\hat{\mu}_{n}, truncated second order moment νn2\nu^{2}_{n} and the truncated sample second order moment ν^n2\hat{\nu}^{2}_{n} in the following.

μn:=E(Xk(bn))=α1α(bn1α1),μ^n:=n1k=1nXk(bn)\displaystyle\mu_{n}:=\text{E}(X_{k}(b_{n}))=\frac{\alpha}{1-\alpha}\Big{(}b_{n}^{1-\alpha}-1\Big{)},\,\,\,\,\,\,\,\hat{\mu}_{n}:=n^{-1}\sum_{k=1}^{n}X_{k}(b_{n}) (1)

for 0<α<10<\alpha<1 and

νn2:=E(Xk2(bn))=α2α(bn2α1),ν^n2:=n1k=1nXk2(bn)\displaystyle\nu^{2}_{n}:=\text{E}(X^{2}_{k}(b_{n}))=\frac{\alpha}{2-\alpha}\Big{(}b_{n}^{2-\alpha}-1\Big{)},\,\,\,\,\,\,\,\hat{\nu}^{2}_{n}:=n^{-1}\sum_{k=1}^{n}X^{2}_{k}(b_{n}) (2)

for 1<α<21<\alpha<2. It follows from equation(1) and (2) that

α=1log[1ααμn+1]lnbn\displaystyle\alpha=1-\frac{\log[\frac{1-\alpha}{\alpha}\mu_{n}+1]}{\ln b_{n}} (3)

for 0<α<10<\alpha<1 and

α=2log[2αανn2+1]lnbn\displaystyle\alpha=2-\frac{\log[\frac{2-\alpha}{\alpha}\nu^{2}_{n}+1]}{\ln b_{n}} (4)

for 1<α<21<\alpha<2.

Hence, we can define two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} which satisfy the following two equations x=G1(x)x=G_{1}(x) for 0<x<10<x<1 and y=G2(y)y=G_{2}(y) for 1<y<21<y<2 respectively, by replacing α\alpha, μn\mu_{n} and νn2\nu^{2}_{n} in equation(3) and (4) with α^\hat{\alpha}, μ^n,\hat{\mu}_{n}, α^\hat{\alpha}^{\prime} and ν^n2\hat{\nu}^{2}_{n}, respectively, that is,

α^=G1(α^):=1ln[1α^α^μ^n+1]lnbn\displaystyle\hat{\alpha}=G_{1}(\hat{\alpha}):=1-\frac{\ln[\frac{1-\hat{\alpha}}{\hat{\alpha}}\hat{\mu}_{n}+1]}{\ln b_{n}} (5)

for 0<α^<10<\hat{\alpha}<1 and

α^=G2(α^):=2ln[2α^α^ν^n2+1]lnbn\displaystyle\hat{\alpha}^{\prime}=G_{2}(\hat{\alpha}^{\prime}):=2-\frac{\ln[\frac{2-\hat{\alpha}^{\prime}}{\hat{\alpha}^{\prime}}\hat{\nu}^{2}_{n}+1]}{\ln b_{n}} (6)

for 1<α^<21<\hat{\alpha}^{\prime}<2.

Take α^1\hat{\alpha}\nearrow 1 in equation(5) and α^2\hat{\alpha}^{\prime}\nearrow 2 in equation(6), respectively, it follows that α^μ^n/lnbn\hat{\alpha}\sim\hat{\mu}_{n}/\ln b_{n} and α^ν^n2/lnbn\hat{\alpha}^{\prime}\sim\hat{\nu}^{2}_{n}/\ln b_{n}. Hence, we can use the following two estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} to estimate α=1\alpha=1 and α=2\alpha=2, respectively.

α^:=μ^nlnbn,\displaystyle\hat{\alpha}:=\frac{\hat{\mu}_{n}}{\ln b_{n}}, (7)
α^:=ν^n2lnbn.\displaystyle\hat{\alpha}^{\prime}:=\frac{\hat{\nu}^{2}_{n}}{\ln b_{n}}. (8)

Since it is difficult to obtain the analytic solutions (estimators) α^\hat{\alpha} and α^\hat{\alpha}^{\prime} to the two equations α^G1(α^)=0\hat{\alpha}-G_{1}(\hat{\alpha})=0 and α^G2(α^)=0\hat{\alpha}^{\prime}-G_{2}(\hat{\alpha}^{\prime})=0 respectively, we present two recursive estimators for k1k\geq 1 in the following

α^k\displaystyle\hat{\alpha}_{k} =\displaystyle= G1(α^k1), if   0<α^0<1\displaystyle G_{1}(\hat{\alpha}_{k-1}),\,\,\,\,\,\,\,\,\text{ if }\,\,0<\hat{\alpha}_{0}<1 (9)

for 0<α10<\alpha\leq 1 and

α^k\displaystyle\hat{\alpha}^{\prime}_{k} =\displaystyle= G2(α^k1), if   1<α^0<2\displaystyle G_{2}(\hat{\alpha}^{\prime}_{k-1}),\,\,\,\,\,\,\,\,\text{ if }\,\,1<\hat{\alpha}^{\prime}_{0}<2 (10)

for 1<α21<\alpha\leq 2, where α^0\hat{\alpha}_{0} and α^0\hat{\alpha}^{\prime}_{0} are two constants.

The following theorem shows that the two estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} can be approximated by the two sequences of estimators {α^k}\{\hat{\alpha}_{k}\} and {α^k}\{\hat{\alpha}^{\prime}_{k}\}, respectively.

Theorem 1.

Let 0β<1/20\leq\beta<1/2 and bnb_{n} satisfy bnαlnbnαn12β/lnnb_{n}^{\alpha}\ln b_{n}\leq\alpha n^{1-2\beta}/\ln n for 0<α<2,α10<\alpha<2,\alpha\neq 1 and large n. Then, both the two equations xG1(x)=0,0<x<1x-G_{1}(x)=0,0<x<1, and yG2(y)=0y-G_{2}(y)=0, 1<y<21<y<2, have unique solutions α^\hat{\alpha} and α^\hat{\alpha}^{\prime}, respectively. If 0<α^0<α^0<\hat{\alpha}_{0}<\hat{\alpha} and 1<α^0<α^<21<\hat{\alpha}_{0}^{\prime}<\hat{\alpha}^{\prime}<2 (or 0<α^<α^0<10<\hat{\alpha}<\hat{\alpha}_{0}<1 and 1<α^<α^0<21<\hat{\alpha}^{\prime}<\hat{\alpha}_{0}^{\prime}<2 ), then α^kα^\hat{\alpha}_{k}\nearrow\hat{\alpha} and α^kα^\hat{\alpha}_{k}^{\prime}\nearrow\hat{\alpha}^{\prime} (or α^kα^\hat{\alpha}_{k}\searrow\hat{\alpha} and α^kα^\hat{\alpha}_{k}^{\prime}\searrow\hat{\alpha}^{\prime} ) and

|α^α^k|(1α^(1α^)lnbn)k|α^α^0|\displaystyle\left|\hat{\alpha}-\hat{\alpha}_{k}\right|\leq\left(\frac{1}{\hat{\alpha}^{\star}(1-\hat{\alpha})\ln b_{n}}\right)^{k}\left|\hat{\alpha}-\hat{\alpha}_{0}\right| (11)
|α^α^k|(2α^(2α^)lnbn)k|α^α^0|\displaystyle\left|\hat{\alpha}^{\prime}-\hat{\alpha}_{k}^{\prime}\right|\leq\left(\frac{2}{\hat{\alpha}^{\star\prime}\left(2-\hat{\alpha}^{\prime}\right)\ln b_{n}}\right)^{k}\left|\hat{\alpha}^{\prime}-\hat{\alpha}_{0}^{\prime}\right| (12)

where α^=min{α^,α^0}\hat{\alpha}^{\star}=\min\left\{\hat{\alpha},\hat{\alpha}_{0}\right\} and α^=min{α^,α^0}\hat{\alpha}^{\star\prime}=\min\left\{\hat{\alpha}^{\prime},\hat{\alpha}_{0}^{\prime}\right\}.

Remark 1.

Take large nn such that A:=α^(1α^)lnbn>1A:=\hat{\alpha}^{\star}(1-\hat{\alpha})\ln b_{n}>1 and B:=α^(2α^)lnbn/2>1B:=\hat{\alpha}^{\star\prime}\left(2-\hat{\alpha}^{\prime}\right)\ln b_{n}/2>1. Note that |α^α^0|1\left|\hat{\alpha}-\hat{\alpha}_{0}\right|\leq 1 and |α^α^0|1\left|\hat{\alpha}^{\prime}-\hat{\alpha}_{0}^{\prime}\right|\leq 1. It follows from the two inequalities (11) and (12) that

|α^α^k|eklnA,|α^α^k|eklnB.\left|\hat{\alpha}-\hat{\alpha}_{k}\right|\leq e^{-k\ln A},\quad\left|\hat{\alpha}^{\prime}-\hat{\alpha}_{k}^{\prime}\right|\leq e^{-k\ln B}.

The two inequalities above implies that {α^k}\left\{\hat{\alpha}_{k}\right\} and {α^k}\left\{\hat{\alpha}_{k}^{\prime}\right\} can converge (almost everywhere) at least exponentially to α^\hat{\alpha} and α^\hat{\alpha}^{\prime}, respectively.

Remark 2.

If we don’t know whether α\alpha is included in interval (0,1](0,1] or interval (1,2](1,2], we may take the initial values α^0\hat{\alpha}_{0} and α^0\hat{\alpha}^{\prime}_{0} in the following: Take n0n_{0} samples (for example, n0=50n_{0}=50) such that α^0=μ^n0lnbn0\hat{\alpha}_{0}=\frac{\hat{\mu}_{n_{0}}}{\ln b_{n_{0}}} for μ^n0lnbn01\frac{\hat{\mu}_{n_{0}}}{\ln b_{n_{0}}}\leq 1 and α^0=1.5\hat{\alpha}^{\prime}_{0}=1.5 for μ^n0lnbn0>1\frac{\hat{\mu}_{n_{0}}}{\ln b_{n_{0}}}>1.

In order to get the asymptotic statistical properties α^\hat{\alpha} and α^\hat{\alpha}^{\prime}, we give a theorem in the following, which describes the asymptotic statistical properties of the truncated sample mean μ^n\hat{\mu}_{n} and the truncated second order moment ν^n2\hat{\nu}_{n}^{2}.

Theorem 2.

Assume that the conditions of Theorem 1 hold. Then

P(|μ^nμn|μn2nβlnbn)2n2,n(μ^nμn)bn1α/2N(0,α2α)\displaystyle\textbf{P}\Big{(}\frac{|\hat{\mu}_{n}-\mu_{n}|}{\mu_{n}}\geq\frac{2}{n^{\beta}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\mu}_{n}-\mu_{n})}{b_{n}^{1-\alpha/2}}\Rightarrow N\Big{(}0,\,\,\frac{\alpha}{2-\alpha}\Big{)} (13)

for 0<α10<\alpha\leq 1 and

P(|ν^n2νn2|νn22nβlnbn)2n2,n(ν^n2νn2)bn2α/2N(0,α4α)\displaystyle\textbf{P}\Big{(}\frac{|\hat{\nu}^{2}_{n}-\nu^{2}_{n}|}{\nu^{2}_{n}}\geq\frac{2}{n^{\beta}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\nu}^{2}_{n}-\nu^{2}_{n})}{b_{n}^{2-\alpha/2}}\Rightarrow N\Big{(}0,\,\,\frac{\alpha}{4-\alpha}\Big{)} (14)

for 1<α21<\alpha\leq 2, where ”\Rightarrow” denotes the convergence in distribution and N(μ,σ2)N(\mu,\sigma^{2}) is the normal distribution.

The following theorem gives the asymptotic statistical properties of the two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime}.

Theorem 3.

Assume that the conditions of Theorem 1 hold. Then

P(|α^α|2nβlnbnlnbn)2n2,n(α^α)lnbnbnα/2N(0,(1α)2α(2α))\displaystyle\textbf{P}\Big{(}|\hat{\alpha}-\alpha|\geq\frac{2}{n^{\beta}\ln b_{n}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\alpha}-\alpha)\ln b_{n}}{b_{n}^{\alpha/2}}\Rightarrow N\Big{(}0,\,\,\frac{(1-\alpha)^{2}}{\alpha(2-\alpha)}\Big{)} (15)

for 0<α<10<\alpha<1 and

P(|α^α|2nβlnbnlnbn)2n2,n(α^α)lnbnbnα/2N(0,(2α)2α(4α))\displaystyle\textbf{P}\Big{(}|\hat{\alpha}^{\prime}-\alpha|\geq\frac{2}{n^{\beta}\ln b_{n}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\alpha}^{\prime}-\alpha)\ln b_{n}}{b_{n}^{\alpha/2}}\Rightarrow N\Big{(}0,\,\,\frac{(2-\alpha)^{2}}{\alpha(4-\alpha)}\Big{)} (16)

for 1<α<21<\alpha<2. Moreover,

P(|α^1|22nβlnbn)2n2,n(α^1)lnbnbnN(0, 1)\displaystyle\textbf{P}\Big{(}|\hat{\alpha}-1|\geq\frac{2\sqrt{2}}{n^{\beta}\ln b_{n}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\alpha}-1)\ln b_{n}}{\sqrt{b_{n}}}\Rightarrow N(0,\,1) (17)

for α=1\alpha=1 and bnn12β/lnnb_{n}\leq n^{1-2\beta}/\ln n, and

P(|α^2|22nβlnbn)2n2,n(α^2)lnbnbnN(0, 1)\displaystyle\textbf{P}\Big{(}|\hat{\alpha}^{\prime}-2|\geq\frac{2\sqrt{2}}{n^{\beta}\ln b_{n}}\Big{)}\leq\frac{2}{n^{2}},\,\,\,\,\,\,\,\,\,\,\frac{\sqrt{n}(\hat{\alpha}^{\prime}-2)\ln b_{n}}{b_{n}}\Rightarrow N(0,\,1) (18)

for α=2\alpha=2 and bn2n1β/lnnb^{2}_{n}\leq n^{1-\beta}/\ln n.

3. Numerical Simulations

In this section, we will compare our two estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} with other five estimators in the estimating error, the Type I Error and the power, including the Hill estimator[References], QQ estimator[References], the Moment estimator[References], t-Hill estimator[References, References] and t-lgHill estimator[References]. Since the asymptotic distribution of IPO estimator[References] is unknown, we only give the estimating error of the IPO estimator in Section 3.1. Excepting the two truncated estimators, the other six estimators can be written as

α^H1=1mi=1mlog(X(ni+1)X(nm)),\displaystyle\begin{aligned} \hat{\alpha}_{H}^{-1}&=&\frac{1}{m}\sum_{i=1}^{m}\log\left(\frac{X_{(n-i+1)}}{X_{(n-m)}}\right),\end{aligned}
α^Q1=j=1mlog((m+1)/j)logX(nj+1)m1j=1mlog((m+1)/j)j=1mlogX(nj+1)j=1mlog2((m+1)/j)m1(j=1mlog((m+1)/j))2,\displaystyle\begin{aligned} \hat{\alpha}_{Q}^{-1}&=&\frac{\sum_{j=1}^{m}\log((m+1)/j)\log X_{(n-j+1)}-m^{-1}\sum_{j=1}^{m}\log((m+1)/j)\sum_{j=1}^{m}\log X_{(n-j+1)}}{\sum_{j=1}^{m}\log^{2}((m+1)/j)-m^{-1}\left(\sum_{j=1}^{m}\log((m+1)/j)\right)^{2}},\end{aligned}
α^M1=Mm,n(1)+112(1(Mm,n(1))2Mm,n(2))1,\displaystyle\hat{\alpha}_{M}^{-1}=M_{m,n}^{(1)}+1-\frac{1}{2}\left(1-\frac{\left(M_{m,n}^{(1)}\right)^{2}}{M_{m,n}^{(2)}}\right)^{-1},
α^tH1=(1mi=1m𝐗(m+1,n)𝐗(i,n))11,\displaystyle\hat{\alpha}_{tH}^{-1}=\left(\frac{1}{m}\sum_{i=1}^{m}\frac{\mathbf{X}_{(m+1,n)}}{\mathbf{X}_{(i,n)}}\right)^{-1}-1,
α^tlH1=Mn(2)(Mn(1))2Mn(1)\displaystyle\hat{\alpha}_{tlH}^{-1}=\frac{M_{n}^{(2)}-\left(M_{n}^{(1)}\right)^{2}}{M_{n}^{(1)}}

and

α^IPO1=log{Fn(34)+3[Fn(34)Fn(14)]}logp^R(0.25,n),\hat{\alpha}_{IPO}^{-1}=-\frac{\log\left\{F_{n}^{\leftarrow}\left(\frac{3}{4}\right)+3\left[F_{n}^{\leftarrow}\left(\frac{3}{4}\right)-F_{n}^{\leftarrow}\left(\frac{1}{4}\right)\right]\right\}}{\log\hat{p}_{R}(0.25,n)},

where X(1)X(2)X(n)X_{(1)}\leq X_{(2)}\leq\cdots\leq X_{(n)} are the order statistics of X1,X2,,XnX_{1},X_{2},\cdots,X_{n}. m=m(n)m=m(n), m(n)/n0m(n)/n\rightarrow 0 as nn\rightarrow\infty, m(n)=1,2,,n1m(n)=1,2,\ldots,n-1. Mm,n(l)M_{m,n}^{(l)} is defined as

Mm,n(l)=1mi=1m(logX(ni)X(nm))l,l=1,2M_{m,n}^{(l)}=\frac{1}{m}\sum_{i=1}^{m}\left(\log\frac{X_{(n-i)}}{X_{\left(n-m\right)}}\right)^{l},\quad l=1,2

and the definitions of Fn(p)F_{n}^{\leftarrow}(p) and p^R(p,n)\hat{p}_{R}(p,n) in detail are given in the paper[References].

3.1. The estimating error

In our next simulations, let n=10000n=10000 be the number of samples in each trial and set the truncated sequence be bn=nqb_{n}=n^{q} in the truncated estimator α^\hat{\alpha} or α^\hat{\alpha}^{\prime}, where qq is the index of bnb_{n} satisfying 0<0<α\alphaq<1q<1. In order to obtain the simulation searching accuracy for the two truncated estimators, we take kk as the number of iterations (see (11) and (12) in Theorem 1) such that |α^α^k|ϵ=0.001\left|\hat{\alpha}-\hat{\alpha}_{k}\right|\leq\epsilon=0.001 or |α^α^k|ϵ=0.001\left|\hat{\alpha}^{\prime}-\hat{\alpha}_{k}^{\prime}\right|\leq\epsilon=0.001. Remark 2 provides a method on how to determine the initial values α^0\hat{\alpha}_{0} and α^0\hat{\alpha}^{\prime}_{0}.

We first consider α(0,1]\alpha\in(0,1] and take the initial value α^0=0.5\hat{\alpha}_{0}=0.5. Let m=m(n)=n=100m=m(n)=\sqrt{n}=100 for the four estimators α^H\hat{\alpha}_{H}, α^Q\hat{\alpha}_{Q} ,α^M\hat{\alpha}_{M} and α^tH\hat{\alpha}_{tH} and set m=m(n)=0.5n=5000m=m(n)={0.5*n}=5000 for the α^tlH\hat{\alpha}_{tlH}. We set p=0.25p=0.25 for α^IPO\hat{\alpha}_{IPO}.

The following table 1 and figure 1 illustrate the numerical simulation results for the seven estimators. All the numerical simulation results in this section were obtained using N=103N=10^{3} repetitions.

Table 1: . The estimation for different α(0,1]\alpha\in(0,1].
Parameters Estimation
α\alpha q k α^\hat{\alpha} α^H\hat{\alpha}_{H} α^Q\hat{\alpha}_{Q} α^M\hat{\alpha}_{M} α^tH\hat{\alpha}_{tH} α^tlH\hat{\alpha}_{tlH} α^IPO\hat{\alpha}_{IPO}
0.10 2.00 11 0.101 0.101 0.097 0.101 0.091 0.100 0.157
0.20 2.00 6 0.200 0.201 0.194 0.202 0.190 0.201 0.216
0.30 2.00 5 0.301 0.299 0.289 0.303 0.287 0.304 0.304
0.40 1.80 4 0.402 0.404 0.386 0.408 0.391 0.410 0.403
0.50 1.70 4 0.502 0.496 0.481 0.510 0.488 0.517 0.503
0.60 1.50 5 0.603 0.595 0.583 0.620 0.586 0.624 0.606
0.70 1.30 7 0.704 0.705 0.677 0.725 0.686 0.727 0.710
0.80 1.20 9 0.803 0.793 0.771 0.831 0.784 0.827 0.816
0.90 1.10 12 0.904 0.895 0.868 0.943 0.884 0.923 0.925
AE 0.002 0.004 0.017 0.016 0.013 0.015 0.016

The AE in the last row of the table 1 denotes the average of estimating error, the smaller the mean error, the better the estimator. We define 𝐀𝐄=|α^Zα|/9\mathbf{AE}=\sum\left|\hat{\alpha}_{Z}-\alpha\right|/9, where α^Z\hat{\alpha}_{Z} denotes one of estimators α^\hat{\alpha}, α^H\hat{\alpha}_{H}, α^Q\hat{\alpha}_{Q}, α^M\hat{\alpha}_{M}, α^tH\hat{\alpha}_{tH}, α^tlH\hat{\alpha}_{tlH} and α^IPO\hat{\alpha}_{IPO} for α\alpha=0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90.

Refer to caption
Figure 1: . The estimation for different α(0,1)\alpha\in(0,1).

It can be seen from the table 1 and the figure 1 that the estimating errors |α^α|\left|\hat{\alpha}-\alpha\right| of α^\hat{\alpha} are smaller than that of other six estimators for α=0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90\alpha=0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90. Only for α=0.10\alpha=0.10, the estimating error |α^0.01|=0.001\left|\hat{\alpha}-0.01\right|=0.001 of α^\hat{\alpha} is larger than that of α^tlH\hat{\alpha}_{tlH} since |α^tlH0.10|=0\left|\hat{\alpha}_{tlH}-0.10\right|=0. When α=0.10\alpha=0.10 or α=0.20\alpha=0.20, the estimating error of α^IPO\hat{\alpha}_{IPO} is large than that of other six estimators. Obviously, the average of estimating error AE (0.02) of α^\hat{\alpha} is smallest among the seven estimators. That is, we can say that the estimator α^\hat{\alpha} has the best performance in estimating α(0,1]\alpha\in(0,1] among the seven estimators.

Next, we consider α(1,2]\alpha\in(1,2]. Take the initial value α^0=1.5\hat{\alpha}^{\prime}_{0}=1.5. Similar to α(0,1]\alpha\in(0,1], let n=10000n=10000 be the number of samples. Let the truncated sequence be bn=nqb_{n}=n^{q} in the truncated estimator α^\hat{\alpha}, where qq is the index of bnb_{n} satisfying 0<α0<\alphaq<1q<1.

Table 2: . The estimation for different α(1,2)\alpha\in(1,2).
Parameters Estimation
α\alpha q k α^\hat{\alpha}^{\prime} α^H\hat{\alpha}_{H} α^Q\hat{\alpha}_{Q} α^M\hat{\alpha}_{M} α^tH\hat{\alpha}_{tH} α^tlH\hat{\alpha}_{tlH} α^IPO\hat{\alpha}_{IPO}
1.10 0.80 3 1.108 1.089 1.055 1.116 1.075 1.098 0.613
1.20 0.70 3 1.212 1.187 1.156 1.283 1.169 1.181 0.686
1.30 0.65 5 1.317 1.274 1.245 1.399 1.254 1.257 0.766
1.40 0.63 8 1.425 1.365 1.334 1.513 1.344 1.327 0.851
1.50 0.61 7 1.537 1.448 1.413 1.611 1.426 1.392 0.946
1.60 0.60 9 1.652 1.543 1.508 1.736 1.521 1.454 1.049
1.70 0.60 15 1.765 1.620 1.580 1.846 1.597 1.513 1.164
1.80 0.58 19 1.890 1.714 1.692 1.985 1.683 1.566 1.292
1.90 0.45 24 1.995 1.790 1.764 2.166 1.759 1.618 1.437
AE 0.095 0.110 0.136 0.116 0.141 0.282 0.463
Refer to caption
Figure 2: . The estimation for different α(1,2)\alpha\in(1,2).

Similarly, from the table 2 and the figure 2 we can see that the estimating errors |α^α|\left|\hat{\alpha}^{\prime}-\alpha\right| of α^\hat{\alpha}^{\prime} are smaller than that of other six estimators for α=1.20,1.30,1.40,1.50,1.60,1.70,1.90\alpha=1.20,1.30,1.40,1.50,1.60,1.70,1.90. Only for α=1.10\alpha=1.10 and α=1.80\alpha=1.80, the estimating errors |α^1.01|=0.008\left|\hat{\alpha}^{\prime}-1.01\right|=0.008 and |α^1.80|=0.090\left|\hat{\alpha}^{\prime}-1.80\right|=0.090 of α^\hat{\alpha}^{\prime} are larger than that of α^tlH\hat{\alpha}_{tlH} and α^H\hat{\alpha}_{H} respectively since |α^tlH1.10|=0.002\left|\hat{\alpha}_{tlH}-1.10\right|=0.002 and |α^H1.80|=0.086\left|\hat{\alpha}_{H}-1.80\right|=0.086. The estimating error of α^IPO\hat{\alpha}_{IPO} is large than that of other six estimators for all α\alpha. Obviously, the average of estimating error AE (0.095) of α^\hat{\alpha}^{\prime} is smallest among the seven estimators. That is, the estimator α^\hat{\alpha} has the best performance in estimating α(1,2]\alpha\in(1,2] among the seven estimators.

In short, the two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} have the best performance in estimating α\alpha (0<α20<\alpha\leq 2) among the seven estimators.

Remark 3.

The disadvantage of the two truncated estimators is that they need to know the value range of the unknown parameter α\alpha. If we don’t know whether α\alpha is included in interval (0,1](0,1] or interval (1,2](1,2], we may take the initial values α^0\hat{\alpha}_{0} and α^0\hat{\alpha}^{\prime}_{0} according to the method in Remark 2

3.2. The rejection regions and the Type I Error

In order to get the Type I Error, we consider the rejected regions of these estimators except the IPO estimator since we do not know the asymptotic distribution of α^IPO\hat{\alpha}_{IPO}. Let H0H_{0} and H1H_{1} denote the original hypothesis and the alternative hypothesis, respectively, that is,

Original hypothesisH0:α=α0, alternative hypothesisH1:αα0,\displaystyle\text{Original hypothesis}\,\,H_{0}:\,\,\alpha=\alpha_{0},\,\,\,\,\,\,\,\,\,\,\,\text{ alternative hypothesis}\,\,H_{1}:\,\,\alpha\neq\alpha_{0},

where 0<α0<10<\alpha_{0}<1 or 1<α0<21<\alpha_{0}<2. Let the confidence level be 0.950.95 and β=0\beta=0 in the Theorem 3. By using the inequalities (15) and (16) of the Theorem 3, we have

P(nα0(2α0)|α^α0|lnbn(1α0)bnα0/21.96)2Φ(1.96)1=0.95\displaystyle\textbf{P}\Big{(}\frac{\sqrt{n}\sqrt{\alpha_{0}(2-\alpha_{0})}|\hat{\alpha}-\alpha_{0}|\ln b_{n}}{(1-\alpha_{0})b_{n}^{\alpha_{0}/2}}\leq 1.96\Big{)}\approx 2\Phi(1.96)-1=0.95

for 0<α0<10<\alpha_{0}<1 and

P(nα0(4α0)|α^α0|lnbn(2α0)bnα0/21.96)2Φ(1.96)1=0.95\displaystyle\textbf{P}\Big{(}\frac{\sqrt{n}\sqrt{\alpha_{0}(4-\alpha_{0})}|\hat{\alpha}^{\prime}-\alpha_{0}|\ln b_{n}}{(2-\alpha_{0})b_{n}^{\alpha_{0}/2}}\leq 1.96\Big{)}\approx 2\Phi(1.96)-1=0.95

for 1<α0<21<\alpha_{0}<2. Therefore, we can get two rejection regions RTR_{T} and RTR_{T}^{\prime} in the following

RT={x:nα0(2α0)|xα0|lnbn(1α0)bnα0/2>1.96}\displaystyle R_{T}=\{x:\frac{\sqrt{n}\sqrt{\alpha_{0}(2-\alpha_{0})}|x-\alpha_{0}|\ln b_{n}}{(1-\alpha_{0})b_{n}^{\alpha_{0}/2}}>1.96\}

for 0<α0<10<\alpha_{0}<1 and

RT={x:nα0(4α0)|xα0|lnbn(2α0)bnα0/2>1.96}\displaystyle R_{T}=\{x:\frac{\sqrt{n}\sqrt{\alpha_{0}(4-\alpha_{0})}|x-\alpha_{0}|\ln b_{n}}{(2-\alpha_{0})b_{n}^{\alpha_{0}/2}}>1.96\}

for 1<α0<21<\alpha_{0}<2.

Since the five estimators, α^H\hat{\alpha}_{H}, α^Q\hat{\alpha}_{Q}, α^M\hat{\alpha}_{M}, α^tH\hat{\alpha}_{tH} and α^tlH\hat{\alpha}_{tlH} satisfy

α0m(α^H1α01)dN(0,1),\alpha_{0}\sqrt{m}\left(\hat{\alpha}_{H}^{-1}-\alpha_{0}^{-1}\right)\stackrel{{\scriptstyle d}}{{\longrightarrow}}N(0,1),
α0m/2(α^Q1α01)dN(0,1),\alpha_{0}\sqrt{m/2}\left(\hat{\alpha}_{Q}^{-1}-\alpha_{0}^{-1}\right)\stackrel{{\scriptstyle d}}{{\longrightarrow}}N(0,1),
α0m1+α02(α^M1α01)dN(0,1),\frac{\alpha_{0}\sqrt{m}}{\sqrt{1+\alpha_{0}^{2}}}\left(\hat{\alpha}_{M}^{-1}-\alpha_{0}^{-1}\right)\stackrel{{\scriptstyle d}}{{\longrightarrow}}N(0,1),
α0α0(α0+2)m1+α0(α^tH1α01)dN(0,1),\frac{\alpha_{0}\sqrt{\alpha_{0}(\alpha_{0}+2)}{\sqrt{m}}}{1+\alpha_{0}}\left(\hat{\alpha}_{tH}^{-1}-\alpha_{0}^{-1}\right)\stackrel{{\scriptstyle d}}{{\longrightarrow}}N(0,1),

and

α0m22(α^tlH1α01)dN(0,1),\frac{\alpha_{0}{\sqrt{m}}}{2\sqrt{2}}\left(\hat{\alpha}_{tlH}^{-1}-\alpha_{0}^{-1}\right)\stackrel{{\scriptstyle d}}{{\longrightarrow}}N(0,1),

we can similarly get the five rejection regions RHR_{H}, RQR_{Q}, RMR_{M}, RtHR_{tH} and RtlHR_{tlH} in the following with the confidence level 0.950.95 respectively

RH={x:α0m|x1α01|>1.96},R_{H}=\left\{x:\alpha_{0}\sqrt{m}\left|x^{-1}-\alpha_{0}^{-1}\right|>1.96\right\},
RQ={x:α0m/2|x1α01|>1.96},R_{Q}=\left\{x:\alpha_{0}\sqrt{m/2}\left|x^{-1}-\alpha_{0}^{-1}\right|>1.96\right\},
RM={x:α0m1+α02|x1α01|>1.96},R_{M}=\left\{x:\frac{\alpha_{0}\sqrt{m}}{\sqrt{1+\alpha_{0}^{2}}}\left|x^{-1}-\alpha_{0}^{-1}\right|>1.96\right\},
RtH={x:α0α0(α0+2)m1+α0|x1α01|>1.96},R_{tH}=\left\{x:\frac{\alpha_{0}\sqrt{\alpha_{0}(\alpha_{0}+2)}{\sqrt{m}}}{1+\alpha_{0}}\left|x^{-1}-\alpha_{0}^{-1}\right|>1.96\right\},

and

RtlH={x:α0m22|x1α01|>1.96}.R_{tlH}=\left\{x:\frac{\alpha_{0}{\sqrt{m}}}{2\sqrt{2}}\left|x^{-1}-\alpha_{0}^{-1}\right|>1.96\right\}.

Similar to the Section 3.1, we first consider α0(0,1)\alpha_{0}\in(0,1) and set the initial value α^0=0.5\hat{\alpha}_{0}=0.5. Let m=m(n)=n=100m=m(n)=\sqrt{n}=100 for the four estimators α^H\hat{\alpha}_{H}, α^Q\hat{\alpha}_{Q}, α^M\hat{\alpha}_{M} and α^tH\hat{\alpha}_{tH} and set m=m(n)=0.5n=5000m=m(n)={0.5*n}=5000 for α^tlH\hat{\alpha}_{tlH}.

Table 3: . The Type I Error for different α0(0,1)\alpha_{0}\in(0,1).
Parameters Type I Error
α0\alpha_{0} q k α^\hat{\alpha} α^H\hat{\alpha}_{H} α^Q\hat{\alpha}_{Q} α^M\hat{\alpha}_{M} α^tH\hat{\alpha}_{tH} α^tlH\hat{\alpha}_{tlH}
0.10 2.00 11 0.038 0.058 0.074 0.053 0.171 0.009
0.20 2.00 6 0.052 0.061 0.073 0.050 0.106 0.006
0.30 2.00 5 0.046 0.062 0.071 0.052 0.107 0.017
0.40 1.80 4 0.050 0.055 0.065 0.057 0.069 0.041
0.50 1.70 4 0.055 0.050 0.074 0.042 0.076 0.068
0.60 1.50 5 0.055 0.061 0.068 0.059 0.088 0.095
0.70 1.30 7 0.046 0.050 0.067 0.054 0.069 0.053
0.80 1.20 9 0.026 0.053 0.072 0.047 0.071 0.051
0.90 1.10 12 0.098 0.053 0.082 0.070 0.074 0.020
AT 0.052 0.056 0.072 0.054 0.092 0.040

Like the definition of the average of estimating error AE we can similarly define the average of Type I Error, 𝐀𝐓=TypeIError/9\mathbf{AT}=\sum{TypeIError}/9 under the confidence level 0.95\mathbf{0.95}. The closer the average (0.050\mathbf{0.050}) of the Type I Error, the better the estimator.

Refer to caption
Figure 3: . The Type I Error for different α0(0,1).\alpha_{0}\in(0,1).

From the table 3 and the figure 3 we can see that the value AT of α^\hat{\alpha} is closer to 0.0500.050 than that of the other five estimators. Thus, it could be said that the truncated estimator α^\hat{\alpha} is better than other five estimators for estimating α0(0,1)\alpha_{0}\in(0,1).

Next, we consider α0(1,2)\alpha_{0}\in(1,2) and set the initial value α^0=1.5\hat{\alpha}^{\prime}_{0}=1.5. Similar to α0(0,1)\alpha_{0}\in(0,1), let n=10000n=10000 be the number of samples and the truncated sequence be bn=nqb_{n}=n^{q} in the truncated estimator α^\hat{\alpha}^{\prime}, where qq is the index of bnb_{n} satisfying 0<α0q<10<\alpha_{0}q<1.

Table 4: . The Type I Error for different α0(1,2)\alpha_{0}\in(1,2).
Parameters Type I Error
α0\alpha_{0} q k α^\hat{\alpha}^{\prime} α^H\hat{\alpha}_{H} α^Q\hat{\alpha}_{Q} α^M\hat{\alpha}_{M} α^TH\hat{\alpha}_{TH} α^tlH\hat{\alpha}_{tlH}
1.10 0.80 3 0.043 0.063 0.089 0.060 0.078 0.004
1.20 0.70 3 0.041 0.052 0.064 0.068 0.072 0.007
1.30 0.65 5 0.049 0.054 0.071 0.057 0.090 0.048
1.40 0.63 8 0.053 0.079 0.081 0.068 0.095 0.190
1.50 0.61 7 0.067 0.101 0.101 0.049 0.119 0.489
1.60 0.60 9 0.090 0.079 0.090 0.062 0.094 0.803
1.70 0.60 15 0.094 0.104 0.096 0.056 0.135 0.964
1.80 0.58 19 0.093 0.097 0.084 0.059 0.128 0.999
1.90 0.45 24 0.199 0.125 0.112 0.069 0.151 1.000
AT 0.081 0.084 0.088 0.061 0.107 0.500
Refer to caption
Figure 4: . The Type I Error for different α0(1,2)\alpha_{0}\in(1,2).

From the table 4 and the figure 4 we can see that the value 𝐀𝐓=0.081\mathbf{AT}=0.081 of α^\hat{\alpha}^{\prime} is closer to 0.0500.050 than that of other four estimators except the Moment estimator α^M\hat{\alpha}_{M} since the average Type I Error of α^M\hat{\alpha}_{M} is 0.061.

3.3. Power of estimator

In this section we consider the power of estimator, that is, the probability of correctly rejecting the original hypothesis under the confidence level 0.950.95. Consider two original hypothesises α0=0.6\alpha_{0}=0.6 and α0=1.40\alpha_{0}=1.40 respectively. Take bn=n1.5b_{n}=n^{1.5}, n=10000n=10000 and consider several different tail indices α=0.60,0.64,0.68,0.72,0.76,0.80,0.84,0.88,0.92\alpha^{*}=0.60,0.64,0.68,0.72,0.76,0.80,0.84,0.88,0.92, we can get the corresponding estimators α^\hat{\alpha}^{*}, α^H,α^Q,α^M\hat{\alpha}_{H}^{*},\hat{\alpha}_{Q}^{*},\hat{\alpha}_{M}^{*}, α^tH\hat{\alpha}_{tH}^{*} and α^tlH\hat{\alpha}_{tlH}^{*}. We can similarly define the average power as 𝐀𝐏=α^P/9\mathbf{AP}=\sum{\hat{\alpha}_{P}^{*}}/9, where α^P\hat{\alpha}_{P}^{*} denotes the power of α^\hat{\alpha}^{*}, α^H,α^Q,α^M\hat{\alpha}_{H}^{*},\hat{\alpha}_{Q}^{*},\hat{\alpha}_{M}^{*}, α^tH\hat{\alpha}_{tH}^{*} and α^tlH\hat{\alpha}_{tlH}^{*}.

Table 5: . The power for α0=0.60\alpha_{0}=0.60 with different α\alpha^{*}.
     Parameters      Power
     α\alpha^{*}      k      α^\hat{\alpha}^{*}      α^H\hat{\alpha}_{H}^{*}      α^Q\hat{\alpha}_{Q}^{*}      α^M\hat{\alpha}_{M}^{*}      α^tH\hat{\alpha}_{tH}^{*}      α^tlH\hat{\alpha}_{tlH}^{*}
     0.600.60      5      0.055      0.056      0.062      0.049      0.064      0.076
     0.640.64      5      0.137      0.067      0.029      0.086      0.049      0.777
     0.680.68      6      0.552      0.194      0.037      0.215      0.083      0.999
     0.720.72      7      0.841      0.330      0.108      0.342      0.147      1.000
     0.760.76      8      0.967      0.536      0.179      0.509      0.269      1.000
     0.800.80      5      0.990      0.760      0.295      0.657      0.440      1.000
     0.840.84      9      0.995      0.875      0.407      0.772      0.604      1.000
     0.880.88      7      1.000      0.945      0.558      0.893      0.709      1.000
     0.920.92      9      1.000      0.985      0.628      0.925      0.835      1.000
     AP      0.726      0.528      0.256      0.494      0.356      0.872

The table 5 above and the following figure 5 illustrate the power and average power AP of six estimators, α^\hat{\alpha}^{*}, α^H\hat{\alpha}_{H}^{*}, α^Q\hat{\alpha}_{Q}^{*}, α^M\hat{\alpha}_{M}^{*}, α^tH\hat{\alpha}_{tH}^{*} and α^tlH\hat{\alpha}_{tlH}^{*}. It can be seen that the average power AP of the truncated estimator α^\hat{\alpha}^{*} is 0.726 which is larger than that of other four estimators except the t-lgHill estimator since the average power of α^tlH\hat{\alpha}_{tlH}^{*} is 0.872.

Refer to caption
Figure 5: . The power for α0=0.60\alpha_{0}=0.60 with different α\alpha^{*}.

Next we consider α0=1.40\alpha_{0}=1.40. It can be seen from the following table 6 and figure 6 that the power of α^\hat{\alpha}^{*\prime} is larger than that of other five estimators respectively for α=1.48,1.56,1.64,1.72\alpha^{*\prime}=1.48,1.56,1.64,1.72, 1.80,1.88,1.961.80,1.88,1.96, and the average power AP (0.781) of α^\hat{\alpha}^{*\prime} is the largest among all six estimators.

Table 6: . The power for α0=1.40\alpha_{0}=1.40 with different α\alpha^{*\prime}.
     α\alpha^{*\prime}      k      α^\hat{\alpha}^{*\prime}      α^H\hat{\alpha}_{H}^{*\prime}      α^Q\hat{\alpha}_{Q}^{*\prime}      α^M\hat{\alpha}_{M}^{*\prime}      α^tH\hat{\alpha}_{tH}^{*\prime}      α^tlH\hat{\alpha}_{tlH}^{*\prime}
     1.401.40      8      0.068      0.066      0.084      0.067      0.096      0.170
     1.481.48      8      0.383      0.038      0.040      0.088      0.044      0.006
     1.561.56      7      0.820      0.076      0.036      0.120      0.055      0.008
     1.641.64      8      0.978      0.164      0.058      0.181      0.107      0.125
     1.721.72      11      0.999      0.256      0.080      0.207      0.176      0.578
     1.801.80      12      1.000      0.414      0.142      0.331      0.264      0.925
     1.881.88      18      1.000      0.562      0.196      0.375      0.389      0.995
     1.961.96      26      1.000      0.678      0.254      0.423      0.518      1.000
     AP      0.781      0.282      0.111      0.224      0.206      0.476
Refer to caption
Figure 6: . The Power of α0=1.40\alpha_{0}^{\prime}=1.40 for different α\alpha^{*\prime}.

The second largest average powers of α^\hat{\alpha}^{*} and the largest average powers of α^\hat{\alpha}^{*\prime} respectively in table 5 and table 6 mean that the two truncated estimators have a more robust performance than that of other five estimators on the whole.

4. Conclusion

In order to make up for the shortcomings of existing estimation methods, we present a new method of truncated estimation to estimate the tail index of the extremely heavy-tailed distributions with infinite mean or variance. By using the truncated sample mean μ^n\hat{\mu}_{n}, the truncated sample second order moment ν^n2\hat{\nu}_{n}^{2} and the two recursive estimators in equation (9) and (10), we can obtain the two truncated estimators α^\hat{\alpha} and α^\hat{\alpha}^{\prime} respectively for α(0,1]\alpha\in(0,1] and α(1,2]\alpha\in(1,2]. We not only give the rate of strong consistency convergence of the two truncated estimators, but also prove that their asymptotic distributions are normal. Moreover, among all six estimators, the numerical simulation results show that the two truncated estimators have the smallest average estimating error, the truncated estimator α^\hat{\alpha} has the closest average (0.05) of Type I Error and the truncated estimator α^\hat{\alpha}^{\prime} has the largest average power. In short, the performance of the two new truncated estimators is quite good on the whole.

Acknowledgments

The authors are grateful to the referees for their careful reading of this paper and valuable comments.

Declaration of interest statement

The authors declare that they have no conflict of interest.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • [1] A. L. M. Dekkers, J. H. J. Einmahl, L. De Haan. (1989). A Moment Estimator for the Index of an Extreme-Value Distribution. Ann. Statist. 17(4):1833-1855. doi:10.1214/aos/1176347397.
  • [2] Anderson, P. L., Meerschaert, M. M.(1998). Modeling river flows with heavy tails. Water Resources Research 34(9):2271-2280. doi:10.1029/98WR01449.
  • [3] Beirlant, Jan , Worms, J. , Worms, Rym. (2018). Estimation of the extreme value index in a censorship framework: Asymptotic and finite sample behavior. Journal of Statistical Planning and Inference 202:31-56. doi:10.1016/j.jspi.2019.01.004.
  • [4] Bladt, Martin, Albrecher, Hansjoerg, Beirlant, Jan.(2021). Trimmed extreme value estimators for censored heavy-tailed data. Electronic Journal of Statistics 15(1):3112-3136. doi:10.1214/21-EJS1857.
  • [5] Bowers, M. C., Tung, W. W., Gao, J. B. (2012). On the distributions of seasonal river flows: Lognormal or power law ?? Water Resources Research 48(5):0043-1397. 10.1029/2011WR011308.
  • [6] Cooke, Roger , Nieboer, Daan , Misiewicz, Jolanta. (2014). Fat-Tailed Distributions: Data, Diagnostics and Dependence. ISTE Ltd and John Wiley &\& Sons,Inc. 10.1002/9781119054207.
  • [7] Fedotenkov, Igor, (2018). A review of more than one hundred Pareto-tail index estimators.Research Papers in Economics. University Library of Munich, Germany.
  • [8] Girard, S., Stupfler, G. and Carleve, A. U. (2020). An LpL^{p} quantile methodology for tail index estimation. HAL Id: hal-02311609.
  • [9] Goegebeur, Y., Guillou, A., Qin, J. (2019). Bias-corrected estimation for conditional pareto-type distributions with random censoring. Extremes 22:459-C498. doi:10.1007/s10687-019-00341-7.
  • [10] Gomes, MI,, Guillou, A (2015). Extreme Value Theory and Statistics of Univariate Extremes: A Review.International Statistical Review 83:263– 292. doi:10.1111/insr.12058.
  • [11] Hill, B. M. . (1975). A simple approach to inference about the tail of a distribution. Ann. Statist. 3(5):1163-1174. doi: 10.1214/aos/1176343247.
  • [12] Jordanova,P.,Fabian,Z.,Hermann, P.,Strelec, L.,Rivera, A.,Girard, S.,Torres,S.,Stehlik, M.(2016). Weak properties and robustness of t-Hill estimators. Extremes 19:591-626. doi:10.1007/s10687-016-0256-2.
  • [13] Jordanova,P. K., Pancheva, E. I. . (2012). Weak asymptotic results for t-hill estimator. Comptes rendus de I’Académie bulgare des sciences: sciences mathématiques et naturelles, 65(12):1649-1656.
  • [14] Jordanova,P.,Stehlik, M. (2020). IPO estimation of heaviness of the distribution beyond regularly varying tails. Stochastic Analysis and Applications.38(1):76-96. doi:10.1080/07362994.2019.1647786.
  • [15] Kratz, M. and Resnick, S. I. (1996). The qq-estimator and heavy tails. Communications in Statistics, Stochastic Models. 12(4):699-724. doi:10.1080/15326349608807407.
  • [16] Mandelbrot, B.B. (1963). The Variation of Certain Speculative Prices. The Journal of Business 36:371-418. doi:10.1007/978-1-4757-2763-0_14.
  • [17] Marat Ibragimov, Rustam Ibragimov, Paul Kattuman. (2013). Emerging markets and heavy tails. Journal of Banking &\& Finance, 37(7):2546-2559. doi:10.1016/j.jbankfin.2013.02.019.
  • [18] Merz, B., Basso, S., Fischer, S., Lun, D., Blöschl, G., Merz, R., et al. (2022). Understanding heavy tails of flood peak distributions. Water Resources Research, 58(6):0043-1397. doi:10.1029/2021WR030506.
  • [19] Paulauskas, V. (2003). A new estimator for a tail index. Acta Applicandae Mathematicae. 79:55-67. doi:10.1023/A:1025818424104.
  • [20] Paulauskas, V., VaiIulis, M. (2011). Several modifications of dpr estimator of the tail index. Lithuanian Mathematical Journal. 51:36-50. doi:10.1007/s10986-011-9106-8.
  • [21] Resnick, S. I. (1989). Extreme values, regular variation, and point processes. Journal of the American Statistical Association. 84(407):845. doi:10.2307/2289692.
  • [22] Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Verlag. Springer Series in Operations Research and Financial Engineering.
  • [23] Worms, J. and Worms, R. (2018). Extreme value statistics for censored data with heavy tails under competing risks. Metrika 81:849-889. doi:10.1007/s00184-018-0662-3

Appendix: Proofs Theorems
   
   

Proof of Theorem 1. Let H1(x)=xG1(x)H_{1}(x)=x-G_{1}(x) for 0<x10<x\leq 1 and H2(y)=yG2(y)H_{2}(y)=y-G_{2}(y) for 0<y20<y\leq 2. Let

0=H1(x)=1G1(x)=1μ^(bn)lnbn[x(1x)μ^(bn)+x2],    0<x1,\displaystyle 0=H^{\prime}_{1}(x)=1-G^{\prime}_{1}(x)=1-\frac{\hat{\mu}(b_{n})}{\ln b_{n}[x(1-x)\hat{\mu}(b_{n})+x^{2}]},\,\,\,\,0<x\leq 1,
0=H2(y)=1G2(y)=12ν^2(bn)lnbn[y(2y)ν^2(bn)+y2],    0<y2.\displaystyle 0=H^{\prime}_{2}(y)=1-G^{\prime}_{2}(y)=1-\frac{2\hat{\nu}^{2}(b_{n})}{\ln b_{n}[y(2-y)\hat{\nu}^{2}(b_{n})+y^{2}]},\,\,\,\,0<y\leq 2.

It follows that both H1(x)=0H^{\prime}_{1}(x)=0 and H2(y)=0H^{\prime}_{2}(y)=0 have two real roots, x1,2x_{1,2} and y1,2y_{1,2}, respectively, i.e.

x1,2=1±14(11/μ^(bn))/lnbn2(11/μ^(bn)),y1,2=1±12(11/ν^2(bn))/lnbn(11/ν^2(bn)).\displaystyle x_{1,2}=\frac{1\pm\sqrt{1-4(1-1/\hat{\mu}(b_{n}))/\ln b_{n}}}{2(1-1/\hat{\mu}(b_{n}))},\,\,\,\,y_{1,2}=\frac{1\pm\sqrt{1-2(1-1/\hat{\nu}^{2}(b_{n}))/\ln b_{n}}}{(1-1/\hat{\nu}^{2}(b_{n}))}.

for large nn such that lnbn4\ln b_{n}\geq 4, μ^(bn)>1\hat{\mu}(b_{n})>1 and ν^2(bn)>1\hat{\nu}^{2}(b_{n})>1. Since

G1′′(x)=μ^(bn)[2x+(12x)μ^(bn)]logbn[x(1x)μ^(bn)+x2]2,\displaystyle G^{\prime\prime}_{1}(x)=-\frac{\hat{\mu}(b_{n})[2x+(1-2x)\hat{\mu}(b_{n})]}{\log b_{n}[x(1-x)\hat{\mu}(b_{n})+x^{2}]^{2}},

it follows that G1′′(x)<0G^{\prime\prime}_{1}(x)<0 for 0<x1/20<x\leq 1/2 and G1′′(x)>0G^{\prime\prime}_{1}(x)>0 for μ^(bn)>2x/(2x1)\hat{\mu}(b_{n})>2x/(2x-1) and 1/2<x<11/2\,<x<1. Hence, H1(x)=xG1(x)H_{1}(x)=x-G_{1}(x) is monotonically increasing for x1<x<x2x_{1}<x<x_{2} since G1(x)>0G^{\prime}_{1}(x)>0 for 0<x<10<x<1.

Let μn(x1)=x1(1x1)1(bn1x11)\mu_{n}(x_{1})=x_{1}(1-x_{1})^{-1}(b_{n}^{1-x_{1}}-1). Note that x1=(1+o(1))lnbn(1+ln1bn)x_{1}=(1+o(1))\ln b_{n}(1+\ln^{-1}b_{n}) for large nn. By using 1=G1(x1)1=G^{\prime}_{1}(x_{1}), (5) and the probability of (μ^(bn)μn(x1))/μn(x1)(\hat{\mu}(b_{n})-\mu_{n}(x_{1}))/\mu_{n}(x_{1}) in (13) of the theorem 2, we can get that

H1(x1)\displaystyle H_{1}(x_{1}) =\displaystyle= x11+ln[μ^(bn)/lnbn]2lnx1lnbn\displaystyle x_{1}-1+\frac{\ln[\hat{\mu}(b_{n})/\ln b_{n}]-2\ln x_{1}}{\ln b_{n}}
=\displaystyle= x11+ln[μn(x1)/lnbn]2lnx1+ln[(μ^(bn)μn(x1))/μn(x1)+1]lnbn\displaystyle x_{1}-1+\frac{\ln[\mu_{n}(x_{1})/\ln b_{n}]-2\ln x_{1}+\ln[(\hat{\mu}(b_{n})-\mu_{n}(x_{1}))/\mu_{n}(x_{1})+1]}{\ln b_{n}}
\displaystyle\leq ln(1x1)lnlnbnlnx12/lnbnlnbn\displaystyle\frac{-\ln(1-x_{1})-\ln\ln b_{n}-\ln x_{1}-2/\sqrt{\ln b_{n}}}{\ln b_{n}}
=\displaystyle= (1+o(1))2(x1x1)lnbn<0\displaystyle(1+o(1))\frac{2(x_{1}-\sqrt{x_{1}})}{\ln b_{n}}<0

with high probability 1n21-n^{-2} for large nn. On the other hand, H1(x2)=0H_{1}^{\prime}(x_{2})=0, H1(1)=1G1(1)=0H_{1}(1)=1-G_{1}(1)=0 and H1(1)=1G1(1)<0H_{1}^{\prime}(1)=1-G^{\prime}_{1}(1)<0 since μ^(bn)(lnbn)1>1\hat{\mu}(b_{n})(\ln b_{n})^{-1}>1 for large nn, it follows that H1(x2)>0H_{1}(x_{2})>0 for large nn. Thus, H1(x)=0H_{1}(x)=0 has an unique root α^(x1,x2)\hat{\alpha}\in(x_{1},\,x_{2}) such that H(α^)=0H(\hat{\alpha})=0, i.e. α^=G1(α^)\hat{\alpha}=G_{1}(\hat{\alpha}) for large nn. Note that (x1,x2)(0,  1)(x_{1},\,\ x_{2})\to(0,\,\,1) as nn\to\infty, therefore, H1(x)=0H_{1}(x)=0 has an unique root α^(0, 1)\hat{\alpha}\in(0,\,1) for large nn.

Similarly, from

G2′′(y)=4ν^2(bn)[y+(1y)ν^2(bn)]logbn[y(2y)ν^2(bn)+y2]2,\displaystyle G^{\prime\prime}_{2}(y)=-\frac{4\hat{\nu}^{2}(b_{n})[y+(1-y)\hat{\nu}^{2}(b_{n})]}{\log b_{n}[y(2-y)\hat{\nu}^{2}(b_{n})+y^{2}]^{2}},

it follows that G2′′(y)<0G^{\prime\prime}_{2}(y)<0 for 0<y10<y\leq 1 and G2′′(y)>0G^{\prime\prime}_{2}(y)>0 for ν^2(bn)>y/(y1)\hat{\nu}^{2}(b_{n})>y/(y-1) and 1<y<21<y<2. Hence, H2(y)=yG2(y)H_{2}(y)=y-G_{2}(y) is monotonically increasing for y1<y<y2y_{1}<y<y_{2} since G2(y)>0G^{\prime}_{2}(y)>0 for 0<y<20<y<2.

Let εn=ln1bn\varepsilon_{n}=\ln^{-1}b_{n}. By equation(6) and the probability of (ν^2(bn)νn2)/νn2(\hat{\nu}^{2}(b_{n})-\nu^{2}_{n})/\nu^{2}_{n} in (14) of the theorem 2, we can get that

H2(1+εn)\displaystyle H_{2}(1+\varepsilon_{n}) =\displaystyle= νn21+ln[1εn1+εnν^n2+1]lnbn\displaystyle\nu^{-2}_{n}-1+\frac{\ln[\frac{1-\varepsilon_{n}}{1+\varepsilon_{n}}\hat{\nu}^{2}_{n}+1]}{\ln b_{n}}
=\displaystyle= νn21+lnνn2+ln[1εn1+εn]+ln[1+ν^2(bn)νn2νn2+1+εnνn2(1εn)]lnbn\displaystyle\nu^{-2}_{n}-1+\frac{\ln\nu^{2}_{n}+\ln[\frac{1-\varepsilon_{n}}{1+\varepsilon_{n}}]+\ln[1+\frac{\hat{\nu}^{2}(b_{n})-\nu^{2}_{n}}{\nu^{2}_{n}}+\frac{1+\varepsilon_{n}}{\nu^{2}_{n}(1-\varepsilon_{n})}]}{\ln b_{n}}
\displaystyle\leq 2lnbn+1+εnνn2(1εn)lnbn<0\displaystyle\frac{-\frac{2}{\sqrt{\ln b_{n}}}+\frac{1+\varepsilon_{n}}{\nu^{2}_{n}(1-\varepsilon_{n})}}{\ln b_{n}}<0

with high probability 1n21-n^{-2} for large nn since νn2=(1+εn)(1εn)1(bn1εn1)\nu^{2}_{n}=(1+\varepsilon_{n})(1-\varepsilon_{n})^{-1}(b_{n}^{1-\varepsilon_{n}}-1). On the other hand, since H2(y2)=0H_{2}^{\prime}(y_{2})=0, H2(2)=0H_{2}(2)=0 and H2(2)<0H_{2}^{\prime}(2)<0, it follows that H2(y2)>0H_{2}(y_{2})>0. Thus, H2(y)=0H_{2}(y)=0 has an unique root α^(1+εn,y2)\hat{\alpha}^{\prime}\in(1+\varepsilon_{n},\,y_{2}) such that H(α^)=0H(\hat{\alpha}^{\prime})=0, i.e. α^=G2(α^)\hat{\alpha}^{\prime}=G_{2}(\hat{\alpha}^{\prime}) for large nn. Note that (1+εn,y2)(1,  2)(1+\varepsilon_{n},\,\ y_{2})\to(1,\,\,2) as nn\to\infty, therefore, H2(y)=0H_{2}(y)=0 has an unique root α^(1, 2)\hat{\alpha}\in(1,\,2) for large nn.

Note that the functions H1(x)H_{1}(x) (0<x<10<x<1) is monotonically increasing for large nn. Let 0<α^0<α^<10<\hat{\alpha}_{0}<\hat{\alpha}<1. Since H1(α^)=0H_{1}(\hat{\alpha})=0, it follows H1(α^0)<H1(α^)=0H_{1}(\hat{\alpha}_{0})<H_{1}(\hat{\alpha})=0 and therefore, α^0<G1(α^0)=α^1\hat{\alpha}_{0}<G_{1}(\hat{\alpha}_{0})=\hat{\alpha}_{1}. Through step-by-step iteration, we can get α^kα^\hat{\alpha}_{k}\nearrow\hat{\alpha}. Furthermore, by (3), (5) and (9) we have

α^α^k\displaystyle\hat{\alpha}-\hat{\alpha}_{k} =\displaystyle= 1lnbnln(1+μ^(bn)(α^α^k1)α^k1(α^+μ^(bn))(1α^))\displaystyle\frac{1}{\ln b_{n}}\ln\Big{(}1+\frac{\hat{\mu}(b_{n})(\hat{\alpha}-\hat{\alpha}_{k-1})}{\hat{\alpha}_{k-1}(\hat{\alpha}+\hat{\mu}(b_{n}))(1-\hat{\alpha})}\Big{)}
\displaystyle\leq μ^(bn)(α^α^k1)α^k1[α^+μ^(bn)(1α^)]lnbn\displaystyle\frac{\hat{\mu}(b_{n})(\hat{\alpha}-\hat{\alpha}_{k-1})}{\hat{\alpha}_{k-1}[\hat{\alpha}+\hat{\mu}(b_{n})(1-\hat{\alpha})]\ln b_{n}}
\displaystyle\leq α^α^k1α^k1(1α^)lnbn\displaystyle\frac{\hat{\alpha}-\hat{\alpha}_{k-1}}{\hat{\alpha}_{k-1}(1-\hat{\alpha})\ln b_{n}}
\displaystyle\leq α^α^0[α^0(1α^)lnbn]k\displaystyle\frac{\hat{\alpha}-\hat{\alpha}_{0}}{[\hat{\alpha}_{0}(1-\hat{\alpha})\ln b_{n}]^{k}}

since ln(1+x)|x\ln(1+x)|\leq x for x0x\geq 0. For 0<α^<α^0<10<\hat{\alpha}<\hat{\alpha}_{0}<1, we can similarly get that α^kα^\hat{\alpha}_{k}\searrow\hat{\alpha} and

α^kα^α^0α^[α^(1α^)lnbn]k.\displaystyle\hat{\alpha}_{k}-\hat{\alpha}\leq\frac{\hat{\alpha}_{0}-\hat{\alpha}}{[\hat{\alpha}(1-\hat{\alpha})\ln b_{n}]^{k}}.

Hence, (11) holds.

By the same method above we can get that α^kα^\hat{\alpha}^{\prime}_{k}\nearrow\hat{\alpha}^{\prime} for 1<α^0<α^<21<\hat{\alpha}^{\prime}_{0}<\hat{\alpha}^{\prime}<2, α^kα^\hat{\alpha}^{\prime}_{k}\searrow\hat{\alpha}^{\prime} for 1<α^<α^0<21<\hat{\alpha}^{\prime}<\hat{\alpha}^{\prime}_{0}<2 and the inequality (12) holds since H2(y)H_{2}(y) (1<y<21<y<2) is monotonically increasing for large nn and

α^α^k\displaystyle\hat{\alpha}^{\prime}-\hat{\alpha}^{\prime}_{k} =\displaystyle= 1lnbnln(1+2ν^2(bn)(α^α^k1)α^k1[α^+ν^2(bn)(2α^)]),α^0<α^\displaystyle\frac{1}{\ln b_{n}}\ln\Big{(}1+\frac{2\hat{\nu}^{2}(b_{n})(\hat{\alpha}^{\prime}-\hat{\alpha}^{\prime}_{k-1})}{\hat{\alpha}^{\prime}_{k-1}[\hat{\alpha}^{\prime}+\hat{\nu}^{2}(b_{n})(2-\hat{\alpha}^{\prime})]}\Big{)},\,\,\,\,\hat{\alpha}^{\prime}_{0}<\hat{\alpha}^{\prime}
α^kα^\displaystyle\hat{\alpha}^{\prime}_{k}-\hat{\alpha}^{\prime} =\displaystyle= 1lnbnln(1+2ν^2(bn)(α^k1α^)α^[α^k1+ν^2(bn)(2α^k1)]),α^<α^0.\displaystyle\frac{1}{\ln b_{n}}\ln\Big{(}1+\frac{2\hat{\nu}^{2}(b_{n})(\hat{\alpha}^{\prime}_{k-1}-\hat{\alpha}^{\prime})}{\hat{\alpha}^{\prime}[\hat{\alpha}^{\prime}_{k-1}+\hat{\nu}^{2}(b_{n})(2-\hat{\alpha}^{\prime}_{k-1})]}\Big{)},\,\,\,\,\hat{\alpha}^{\prime}<\hat{\alpha}^{\prime}_{0}.

This completes the proof.

Proof of Theorem 2. Let ε=2μn/(nβlnbn)\varepsilon=2\mu_{n}/(n^{\beta}\sqrt{\ln b_{n}}). Note that P(|Xk(bn)μn|>bn)=0,\textbf{P}(|X_{k}(b_{n})-\mu_{n}|>b_{n})=0, bnαlnbnαn12β/lnnb^{\alpha}_{n}\ln b_{n}\leq\alpha n^{1-2\beta}/\ln n, 2α2(1α)22-\alpha\geq 2(1-\alpha)^{2}, μn=α(1α)1(bn1α1)\mu_{n}=\alpha(1-\alpha)^{-1}(b_{n}^{1-\alpha}-1) and Var(X1(bn))νn2=α(2α)1(bn2α1)Var(X_{1}(b_{n}))\leq\nu^{2}_{n}=\alpha(2-\alpha)^{-1}(b_{n}^{2-\alpha}-1). By the Bernstein inequality, we can get that

P(|k=1n(Xk(bn)μn)|nε)\displaystyle\textbf{P}\Big{(}|\sum_{k=1}^{n}(X_{k}(b_{n})-\mu_{n})|\geq n\varepsilon\Big{)} \displaystyle\leq 2exp{nε22Var(X1(bn))+2bnε/3}\displaystyle 2\exp\{-\frac{n\varepsilon^{2}}{2Var(X_{1}(b_{n}))+2b_{n}\varepsilon/3}\}
\displaystyle\leq 2exp{2n12βμn2νn2lnbn+2bnμnlnbn/3nβ}\displaystyle 2\exp\{-\frac{2n^{1-2\beta}\mu^{2}_{n}}{\nu^{2}_{n}\ln b_{n}+2b_{n}\mu_{n}\sqrt{\ln b_{n}}/3n^{\beta}}\}
\displaystyle\leq 2exp{αn12β(2α)bn22α(1α)2bn2αlnbn}\displaystyle 2\exp\{-\frac{\alpha n^{1-2\beta}(2-\alpha)b_{n}^{2-2\alpha}}{(1-\alpha)^{2}b_{n}^{2-\alpha}\ln b_{n}}\}
\displaystyle\leq 2exp{2αn12βbnαlnbn}2n2\displaystyle 2\exp\{-\frac{2\alpha n^{1-2\beta}}{b_{n}^{\alpha}\ln b_{n}}\}\leq\frac{2}{n^{2}}

for 0<α<10<\alpha<1 and large nn. The inequality above holds also for α=1\alpha=1 since μn=lnbn\mu_{n}=\ln b_{n} and νn2=bn1\nu^{2}_{n}=b_{n}-1 in this case. Hence, the inequality in (13) holds for 0<α10<\alpha\leq 1. Note that

k=1nE(|Xk(bn)μn|3)[nVar(X1(bn))]3/2=O(bnαn)1/20.\displaystyle\frac{\sum_{k=1}^{n}\textbf{E}(|X_{k}(b_{n})-\mu_{n}|^{3})}{[nVar(X_{1}(b_{n}))]^{3/2}}=O\Big{(}\frac{b_{n}^{\alpha}}{n}\Big{)}^{1/2}\rightarrow 0.

It follows from the Lyapunov central limit theorem that

(2α)n(μ^nμn)αbn1α/2=(1+o(1))n(μ^nμn)nVar(X1(bn))N(0,1)\frac{\sqrt{(2-\alpha)}\sqrt{n}\left(\hat{\mu}_{n}-\mu_{n}\right)}{\alpha b_{n}^{1-\alpha/2}}=(1+o(1))\frac{n\left(\hat{\mu}_{n}-\mu_{n}\right)}{\sqrt{n\operatorname{Var}\left(X_{1}\left(b_{n}\right)\right)}}\Rightarrow N(0,1)

for 0<α10<\alpha\leq 1 since Var(X1(bn))=(1+o(1))α(2α)1bn2αVar(X_{1}(b_{n}))=(1+o(1))\alpha(2-\alpha)^{-1}b_{n}^{2-\alpha} for large nn, i.e., (13) holds.

By the same method we can get (14) for 1<α21<\alpha\leq 2 since Var(X12(bn))=(1+o(1))α(4α)1bn4αVar(X^{2}_{1}(b_{n}))=(1+o(1))\alpha(4-\alpha)^{-1}b_{n}^{4-\alpha} for large nn. It completes the proof.

Proof of Theorem 3. It follows from (3) and (5) that

αα^\displaystyle\alpha-\hat{\alpha} =\displaystyle= 1lnbnln(1+(1+o(1))αα^α^(1α)+(1+o(1))α(1α^)α^(1α)(μ^nμn)μn)\displaystyle\frac{1}{\ln b_{n}}\ln\Big{(}1+(1+o(1))\frac{\alpha-\hat{\alpha}}{\hat{\alpha}(1-\alpha)}+(1+o(1))\frac{\alpha(1-\hat{\alpha})}{\hat{\alpha}(1-\alpha)}\frac{(\hat{\mu}_{n}-\mu_{n})}{\mu_{n}}\Big{)}
=\displaystyle= (1+o(1))1lnbn(μ^nμn)μn\displaystyle(1+o(1))\frac{1}{\ln b_{n}}\frac{(\hat{\mu}_{n}-\mu_{n})}{\mu_{n}}

for 0<α<10<\alpha<1 and large nn. Hence, by (13) of the theorem 2, we have

P(|α^α|2nβlnbnlnbn)=P(|μ^nμnμn|2(1+o(1))nβlnbn)2n2\displaystyle\textbf{P}\Big{(}|\hat{\alpha}-\alpha|\geq\frac{2}{n^{\beta}\ln b_{n}\sqrt{\ln b_{n}}}\Big{)}=\textbf{P}\Big{(}|\frac{\hat{\mu}_{n}-\mu_{n}}{\mu_{n}}|\geq\frac{2(1+o(1))}{n^{\beta}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}}

for 0<α<10<\alpha<1 and large nn. Furthermore, by (αα^)μnlnbn=(1+o(1))(μ^nμn)(\alpha-\hat{\alpha})\mu_{n}\ln b_{n}=(1+o(1))(\hat{\mu}_{n}-\mu_{n}) and (13), we can get that

α(2α)1αn(α^α)lnbnbnα/2(1+o(1))\displaystyle\frac{\sqrt{\alpha(2-\alpha)}}{1-\alpha}\frac{\sqrt{n}(\hat{\alpha}-\alpha)\ln b_{n}}{b_{n}^{\alpha/2}}(1+o(1)) =\displaystyle= n(αα^)μnlnbnVar(X1(bn))\displaystyle\frac{\sqrt{n}(\alpha-\hat{\alpha})\mu_{n}\ln b_{n}}{\sqrt{Var(X_{1}(b_{n}))}}
=\displaystyle= n(1+o(1))(μ^nμn)Var(X1(bn))N(0, 1)\displaystyle\frac{\sqrt{n}(1+o(1))(\hat{\mu}_{n}-\mu_{n})}{\sqrt{Var(X_{1}(b_{n}))}}\Rightarrow N(0,\,1)

for 0<α<10<\alpha<1. That is, (15) is true.

Similarly, by (4) and (6) we have

αα^\displaystyle\alpha-\hat{\alpha}^{\prime} =\displaystyle= 1lnbnln(1+(1+o(1))2(αα^)α^(2α)+(1+o(1))α(2α^)α^(2α)(ν^n2νn2)νn2)\displaystyle\frac{1}{\ln b_{n}}\ln\Big{(}1+(1+o(1))\frac{2(\alpha-\hat{\alpha}^{\prime})}{\hat{\alpha}^{\prime}(2-\alpha)}+(1+o(1))\frac{\alpha(2-\hat{\alpha}^{\prime})}{\hat{\alpha}^{\prime}(2-\alpha)}\frac{(\hat{\nu}^{2}_{n}-\nu^{2}_{n})}{\nu^{2}_{n}}\Big{)}
=\displaystyle= (1+o(1))1lnbn(ν^n2νn2)νn2\displaystyle(1+o(1))\frac{1}{\ln b_{n}}\frac{(\hat{\nu}^{2}_{n}-\nu^{2}_{n})}{\nu^{2}_{n}}

for 1<α<21<\alpha<2 and large nn. Thus, from (14) of the theorem 2 it follows that

P(|α^α|2nβlnbnlnbn)=P(|ν^n2νn2νn2|2(1+o(1))nβlnbn)2n2\displaystyle\textbf{P}\Big{(}|\hat{\alpha}^{\prime}-\alpha|\geq\frac{2}{n^{\beta}\ln b_{n}\sqrt{\ln b_{n}}}\Big{)}=\textbf{P}\Big{(}|\frac{\hat{\nu}^{2}_{n}-\nu^{2}_{n}}{\nu^{2}_{n}}|\geq\frac{2(1+o(1))}{n^{\beta}\sqrt{\ln b_{n}}}\Big{)}\leq\frac{2}{n^{2}}

for 1<α<21<\alpha<2. By (αα^)νn2lnbn=(1+o(1))(ν^n2νn2)(\alpha-\hat{\alpha}^{\prime})\nu^{2}_{n}\ln b_{n}=(1+o(1))(\hat{\nu}^{2}_{n}-\nu^{2}_{n}) and (14), we can similarly obtain that

α(4α)2αn(α^α)lnbnbnα/2(1+o(1))\displaystyle\frac{\sqrt{\alpha(4-\alpha)}}{2-\alpha}\frac{\sqrt{n}(\hat{\alpha}^{\prime}-\alpha)\ln b_{n}}{b_{n}^{\alpha/2}}(1+o(1)) =\displaystyle= n(αα^)νn2lnbnVar(X12(bn))\displaystyle\frac{\sqrt{n}(\alpha-\hat{\alpha}^{\prime})\nu^{2}_{n}\ln b_{n}}{\sqrt{Var(X^{2}_{1}(b_{n}))}}
=\displaystyle= n(1+o(1))(ν^n2νn2)Var(X12(bn))N(0, 1)\displaystyle\frac{\sqrt{n}(1+o(1))(\hat{\nu}^{2}_{n}-\nu^{2}_{n})}{\sqrt{Var(X^{2}_{1}(b_{n}))}}\Rightarrow N(0,\,1)

for 1<α<21<\alpha<2. This proves (16).

Let α=1\alpha=1 and bnn12β/lnnb_{n}\leq n^{1-2\beta}/\ln n. Note that Var(X1(bn)=bn1(lnbn)2Var(X_{1}(b_{n})=b_{n}-1-(\ln b_{n})^{2}. By (7) and the Bernstein inequality, we can get that

P(|α^1|22nβlnbn)\displaystyle\textbf{P}\Big{(}|\hat{\alpha}-1|\geq\frac{2\sqrt{2}}{n^{\beta}\ln b_{n}}\Big{)} =\displaystyle= P(|n(μ^nμn)|22n)\displaystyle\textbf{P}\Big{(}|n(\hat{\mu}_{n}-\mu_{n})|\geq 2\sqrt{2}n\Big{)}
\displaystyle\leq 2exp{4nVar(X1(bn))+2bn2/3}2n2\displaystyle 2\exp\{-\frac{4n}{Var(X_{1}(b_{n}))+2b_{n}\sqrt{2}/3}\}\leq\frac{2}{n^{2}}

for large nn. It follows from the Lyapunov central limit theorem that

n(α^1)lnbnbn=(1+o(1))n(μ^nlnbn)Var(X1(bn))N(0, 1).\displaystyle\frac{\sqrt{n}(\hat{\alpha}-1)\ln b_{n}}{\sqrt{b_{n}}}=(1+o(1))\frac{\sqrt{n}(\hat{\mu}_{n}-\ln b_{n})}{\sqrt{Var(X_{1}(b_{n}))}}\Rightarrow N(0,\,1).

This proves (17).

Let α=2\alpha=2 and bn2n1β/lnnb^{2}_{n}\leq n^{1-\beta}/\ln n. By (8), the Bernstein inequality and the Lyapunov central limit theorem, we can similarly prove (18) since Var(X12(bn))=(1+o(1))bn2Var(X^{2}_{1}(b_{n}))=(1+o(1))b_{n}^{2} for large nn. It completes the proof.