This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new discrete energy technique for multi-step backward difference formulas

Hong-lin Liao   Tao Tang   Tao Zhou ORCID 0000-0003-0777-6832; Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China. E-mails: [email protected] and [email protected]. This author’s work is supported by NSF of China under grant number 12071216.Division of Science and Technology, BNU-HKBU United International College, Zhuhai, Guangdong, China, and International Center for Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong, China. Email: [email protected]. This author’s work is partially supported by NSF of China (under grant numbers 11731006 and K20911001) and the NNW2018-ZT4A06 project.LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China. Email: [email protected]. The work of T. Zhou is supported by NSF of China (under grant numbers 11822111, 11688101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25000404), the Science Challenge Project (No. TZ2018001), and Youth Innovation Promotion Association of CAS.
Abstract

The backward differentiation formula (BDF) is a useful family of implicit methods for the numerical integration of stiff differential equations. It is well noticed that the stability and convergence of the AA-stable BDF1 and BDF2 schemes for parabolic equations can be directly established by using the standard discrete energy analysis. However, such classical analysis technique seems not directly applicable to the BDF-𝚔\mathtt{k} schemes for 3𝚔53\leq\mathtt{k}\leq 5. To overcome the difficulty, a powerful analysis tool based on the Nevanlinna-Odeh multiplier technique [Numer. Funct. Anal. Optim., 3:377-423, 1981] was developed by Lubich et al. [IMA J. Numer. Anal., 33:1365-1385, 2013]. In this work, by using the so-called discrete orthogonal convolution kernels technique, we will recover the classical energy analysis so that the stability and convergence of the BDF-𝚔\mathtt{k} schemes for 3𝚔53\leq\mathtt{k}\leq 5 can be established. One of the theoretical advantages of our analysis technique is that less spacial regularity requirement is needed on the initial data.
Keywords: linear diffusion equations, backward differentiation formulas, discrete orthogonal convolution kernels, positive definiteness, stability and convergence.
AMS subject classifications: 65M06, 65M12

1 Introduction

The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of stiff differential equations. They are linear multistep methods that approximate the derivative of the unknown function using information from already computed time points, thereby increasing the accuracy of the approximation. These methods are especially used for the solution of stiff differential equations whose numerical stability is indicated by the region of absolute stability. More precisely, if the region of stability contains the left half of the complex plane, then the method is said to be AA-stable. It is known that backward differentiation methods with an order greater than 2 cannot be AA-stable, i.e., only the first-order and second-order backward differentiation formulas (i.e., BDF1 and BDF2) are AA-stable. For parabolic equations, it is also well-known that the energy stability and convergence of AA-stable BDF1 and BDF2 methods can be established by using the standard discrete energy analysis, see, e.g., [14].

However, this standard analysis technique is not directly applicable to higher order BDF schemes. This results in several remedies to recover the L2L^{2}-norm stability and convergence for the non-AA-stable 𝚔\mathtt{k}-step backward difference formulas with 3𝚔53\leq\mathtt{k}\leq 5. It is particularly noted that due to the seminal work of Lubich et al. [12], the Nevanlinna-Odeh multiplier technique [13] has been successfully used for this purpose, see e.g. [1, 3, 2, 4] and references therein. The key idea of such a multiplier technique relies on the equivalence between AA-stability and GG-stability of Dahlquist [5]. Another useful tool for the numerical analysis of BDF-𝚔\mathtt{k} schemes is the telescope formulas by Liu [11], which is also based on the Dahlquist’s GG-stability theory [5].

We have a natural question: is there a straightforward discrete energy analysis for the BDF-𝚔\mathtt{k} schemes with 3𝚔53\leq\mathtt{k}\leq 5? The aim of this work is to provide a definite answer by introducing a novel yet straightforward discrete energy method based on the so-called discrete orthogonal convolution (DOC) kernel technique [10]. To this end, we consider the linear reaction-diffusion problem in a bounded convex domain Ω\Omega,

tuεΔu\displaystyle\partial_{t}u-\varepsilon\Delta u =β(x,t)u+f(t,x),xΩ,0<t<T,\displaystyle=\beta(x,t)u+f(t,x),\quad x\in\Omega,\quad 0<t<T, (1.1)

subject to the Dirichlet boundary condition u=0u=0 on a smooth boundary Ω.\partial\Omega. The initial data is set to be u(0,x)=u0(x).u(0,x)=u_{0}(x). We assume that the diffusive coefficient ε>0\varepsilon>0 is a constant and the reaction coefficient β(x,t)\beta(x,t) is smooth and bounded by β>0\beta^{*}>0.

Let tk=kτt_{k}=k\tau be an uniform discrete time-step with τ:=T/N\tau:=T/N. For any discrete time sequence {vn}n=0N\{v^{n}\}_{n=0}^{N}, we denote

τvn:=vnvn1,τvn:=τvn/τ.\triangledown_{\tau}v^{n}:=v^{n}-v^{n-1},\quad\partial_{\tau}v^{n}:=\triangledown_{\tau}v^{n}/\tau.

For a fixed index 3𝚔53\leq\mathtt{k}\leq 5, we shall view the BDF-𝚔\mathtt{k} formula D𝚔vnD_{\mathtt{k}}v^{n} as a discrete convolution summation as follows

D𝚔vn:=1τk=1nbnk(𝚔)τvk,n𝚔,\displaystyle D_{\mathtt{k}}v^{n}:=\frac{1}{\tau}\sum_{k=1}^{n}b_{n-k}^{(\mathtt{k})}\triangledown_{\tau}v^{k},\quad n\geq\mathtt{k}, (1.2)

where the associated BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} (vanish if j𝚔j\geq\mathtt{k}, see Table 1) are generated by

=1𝚔1(1ζ)1==0𝚔1b(𝚔)ζ,3𝚔5.\displaystyle\sum_{\ell=1}^{\mathtt{k}}\frac{1}{\ell}(1-\zeta)^{\ell-1}=\sum_{\ell=0}^{\mathtt{k}-1}b_{\ell}^{(\mathtt{k})}\zeta^{\ell},\quad 3\leq\mathtt{k}\leq 5. (1.3)
Table 1: The BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} generated by (1.3)

  BDF-𝚔\mathtt{k} b0(𝚔)b_{0}^{(\mathtt{k})} b1(𝚔)b_{1}^{(\mathtt{k})} b2(𝚔)b_{2}^{(\mathtt{k})} b3(𝚔)b_{3}^{(\mathtt{k})} b4(𝚔)b_{4}^{(\mathtt{k})} 𝚔=2\mathtt{k}=2 32\frac{3}{2} 12-\frac{1}{2} 𝚔=3\mathtt{k}=3 116\frac{11}{6} 76-\frac{7}{6} 13\frac{1}{3} 𝚔=4\mathtt{k}=4 2512\frac{25}{12} 2312-\frac{23}{12} 1312\frac{13}{12} 14-\frac{1}{4} 𝚔=5\mathtt{k}=5 13760\frac{137}{60} 16360-\frac{163}{60} 13760\frac{137}{60} 2120-\frac{21}{20} 15\frac{1}{5}  

To make our idea clear, the initial data u1u^{1}, u2u^{2}, \cdots, u𝚔1u^{\mathtt{k}-1} for the multi-step BDF-𝚔\mathtt{k} schemes (3𝚔53\leq\mathtt{k}\leq 5) are assumed to be available. Without loss of generality, we consider the time-discrete solution, uk(x)u(tk,x)u^{k}(x)\approx u(t_{k},x) for xΩx\in\Omega, defined by the following implicit multi-step BDF scheme

D𝚔uj=εΔuj+βjuj+fj,𝚔jN,\displaystyle D_{\mathtt{k}}u^{j}=\varepsilon\Delta u^{j}+\beta^{j}u^{j}+f^{j},\quad\mathtt{k}\leq j\leq N, (1.4)

where fj(x)=f(tj,x)f^{j}(x)=f(t_{j},x). The weak form of (1.4) reads

D𝚔uj,w+εuj,w=βjuj,w+fj,wfor wH01(Ω) and 𝚔jN.\displaystyle\big{\langle}D_{\mathtt{k}}u^{j},w\big{\rangle}+\varepsilon\big{\langle}\nabla u^{j},\nabla w\big{\rangle}=\big{\langle}\beta^{j}u^{j},w\big{\rangle}+\big{\langle}f^{j},w\big{\rangle}\quad\text{for $\forall\;w\in H^{1}_{0}(\Omega)$ and $\mathtt{k}\leq j\leq N.$} (1.5)

Here ,\left\langle\cdot,\cdot\right\rangle and \left\|\cdot\right\| are the L2L^{2} inner product and the L2L^{2}-norm, respectively.

Our new energy analysis for BDF-𝚔\mathtt{k} schemes with 3𝚔53\leq\mathtt{k}\leq 5 relies on the discrete orthogonal convolution (DOC) kernels technique developed in [10], where the BDF2 scheme (with variable steps) was investigated. More precisely, our analysis will be based on an equivalent convolution form of (1.5) using the DOC kernels technique. Below we will derive the equivalent convolution form. For the discrete BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} generated by (1.3), the corresponding DOC-𝚔\mathtt{k} kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} are defined recursively as:

θ0(𝚔):=1b0(𝚔)andθnj(𝚔):=1b0(𝚔)=j+1nθn(𝚔)bj(𝚔)for j=n1,n2,,𝚔.\displaystyle\theta_{0}^{(\mathtt{k})}:=\frac{1}{b_{0}^{(\mathtt{k})}}\quad\mathrm{and}\quad\theta_{n-j}^{(\mathtt{k})}:=-\frac{1}{b_{0}^{(\mathtt{k})}}\sum_{\ell=j+1}^{n}\theta_{n-\ell}^{(\mathtt{k})}b_{\ell-j}^{(\mathtt{k})}\quad\text{for $j=n-1,n-2,\cdots,\mathtt{k}$.} (1.6)

Here and hereafter, we set k=ij=0\sum_{k=i}^{j}\cdot=0 whenever i>ji>j. It is easy to check that the following discrete orthogonal convolution identity holds [10, 9]:

=jnθn(𝚔)bk(𝚔)δnjfor 𝚔jn,\displaystyle\sum_{\ell=j}^{n}\theta_{n-\ell}^{(\mathtt{k})}b^{(\mathtt{k})}_{\ell-k}\equiv\delta_{nj}\quad\text{for $\forall\;\mathtt{k}\leq j\leq n$,} (1.7)

where δnk\delta_{nk} is the Kronecker delta. Thus, by exchanging the summation index, one gets

j=𝚔nθnj(𝚔)=𝚔jbj(𝚔)τu=\displaystyle\sum_{j=\mathtt{k}}^{n}\theta_{n-j}^{(\mathtt{k})}\sum_{\ell=\mathtt{k}}^{j}b_{j-\ell}^{(\mathtt{k})}\triangledown_{\tau}u^{\ell}= =𝚔nτuj=nθnj(𝚔)bj(𝚔)=τun,𝚔nN.\displaystyle\,\sum_{\ell=\mathtt{k}}^{n}\triangledown_{\tau}u^{\ell}\sum_{j=\ell}^{n}\theta_{n-j}^{(\mathtt{k})}b_{j-\ell}^{(\mathtt{k})}=\triangledown_{\tau}u^{n},\quad\mathtt{k}\leq n\leq N.

Then by acting the associated DOC kernels θnj(𝚔)\theta_{n-j}^{(\mathtt{k})} on the BDF-k formula D𝚔D_{\mathtt{k}}, we obtain

j=𝚔nθnj(𝚔)D𝚔uj=\displaystyle\sum_{j=\mathtt{k}}^{n}\theta_{n-j}^{(\mathtt{k})}D_{\mathtt{k}}u^{j}= 1τj=𝚔nθnj(𝚔)=1𝚔1bj(𝚔)τu+1τj=𝚔nθnj(𝚔)=𝚔jbj(𝚔)τu\displaystyle\,\frac{1}{\tau}\sum_{j=\mathtt{k}}^{n}\theta_{n-j}^{(\mathtt{k})}\sum_{\ell=1}^{\mathtt{k}-1}b_{j-\ell}^{(\mathtt{k})}\triangledown_{\tau}u^{\ell}+\frac{1}{\tau}\sum_{j=\mathtt{k}}^{n}\theta_{n-j}^{(\mathtt{k})}\sum_{\ell=\mathtt{k}}^{j}b_{j-\ell}^{(\mathtt{k})}\triangledown_{\tau}u^{\ell}
\displaystyle\triangleq 1τuI(𝚔,n)+τunfor 𝚔nN,\displaystyle\,\frac{1}{\tau}u_{\mathrm{I}}^{(\mathtt{k},n)}+\partial_{\tau}u^{n}\qquad\text{for $\mathtt{k}\leq n\leq N$,} (1.8)

where uI(𝚔,n)u_{\mathrm{I}}^{(\mathtt{k},n)} represents the starting effects on the numerical solution at tn,t_{n}, i.e.,

uI(𝚔,n):==1𝚔1τuj=𝚔nθnj(𝚔)bj(𝚔)for n𝚔.\displaystyle u_{\mathrm{I}}^{(\mathtt{k},n)}:=\sum_{\ell=1}^{\mathtt{k}-1}\triangledown_{\tau}u^{\ell}\sum_{j=\mathtt{k}}^{n}\theta_{n-j}^{(\mathtt{k})}b_{j-\ell}^{(\mathtt{k})}\qquad\text{for $n\geq\mathtt{k}$.} (1.9)

Now, by acting the associated DOC-k kernels θnj(𝚔)\theta_{n-j}^{(\mathtt{k})} on the time-discrete problem (1.5), we use (1) and (1.9) to obtain

τuj,w+ε=𝚔jθj(𝚔)u,w=\displaystyle\big{\langle}\partial_{\tau}u^{j},w\big{\rangle}+\varepsilon\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\nabla u^{\ell},\nabla w\big{\rangle}= 1τuI(𝚔,j),w+=𝚔jθj(𝚔)βu,w+=𝚔jθj(𝚔)f,w\displaystyle\,-{1\over\tau}\big{\langle}u_{\mathrm{I}}^{(\mathtt{k},j)},w\big{\rangle}\,+\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\beta^{\ell}u^{\ell},w\big{\rangle}+\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}f^{\ell},w\big{\rangle}
for wH01(Ω)\forall\;w\in H^{1}_{0}(\Omega) and 𝚔jN.\mathtt{k}\leq j\leq N. (1.10)

This convolution formulation will be the starting point of our energy technique, and will lead to much more concise L2L^{2}-norm estimates than those in previous works.

Note that, the DOC-𝚔\mathtt{k} kernels define a reversible discrete transform between the original form (1.5) and the convolution form (1). By following the proof of [9, Lemma 2.1], it is easy to check

=jnbn(𝚔)θj(𝚔)δmkfor 𝚔jn.\displaystyle\sum_{\ell=j}^{n}b_{n-\ell}^{(\mathtt{k})}\theta_{\ell-j}^{(\mathtt{k})}\equiv\delta_{mk}\quad\text{for $\mathtt{k}\leq j\leq n$.} (1.11)

Similar as the classical discrete L2L^{2}-norm analysis, we can now take w=2τujw=2\tau u^{j} in (1) and sum up from j=𝚔j=\mathtt{k} to nn to obtain

un2u𝚔12\displaystyle\big{\|}u^{n}\big{\|}^{2}-\big{\|}u^{\mathtt{k}-1}\big{\|}^{2}\leq 2j=𝚔nuI(𝚔,j),uj2ετj=𝚔n=𝚔jθj(𝚔)u,uj\displaystyle\,-2\sum_{j=\mathtt{k}}^{n}\big{\langle}u_{\mathrm{I}}^{(\mathtt{k},j)},u^{j}\big{\rangle}-2\varepsilon\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\nabla u^{\ell},\nabla u^{j}\big{\rangle}
+2τj=𝚔n=𝚔jθj(𝚔)βu,uj+2τj=𝚔n=𝚔jθj(𝚔)f,uj,\displaystyle\,+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\beta^{\ell}u^{\ell},u^{j}\big{\rangle}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}f^{\ell},u^{j}\big{\rangle}, (1.12)

where the term j=𝚔nujuj12\sum_{j=\mathtt{k}}^{n}\|u^{j}-u^{j-1}\|^{2} has been dropped in the left hand side. Consequently, we need to carefully handle the right hand side of (1), which consists the following issues:

  • Positive definiteness of the DOC kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} (see Section 2.1);

  • Decay estimates of the DOC kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} (see Section 2.2);

  • Decay estimates of the initial term uI(𝚔,j)u_{\mathrm{I}}^{(\mathtt{k},j)} (see Section 2.3).

By doing this, we can finally present concise stability and error estimates of (1.4) for the linear reaction-diffusion (1.1). More precisely, we show in Theorem 3.2 that, if the time-step size τ(7𝚔)/(7ρ𝚔β)\tau\leq(7-\mathtt{k})/(7\rho_{\mathtt{k}}\beta^{*}), the time-discrete solution unu^{n} is unconditionally stable in L2L^{2}-norm:

un\displaystyle\big{\|}u^{n}\big{\|}\leq 7ρ𝚔7𝚔exp(7ρ𝚔7𝚔βtn𝚔)(cI,𝚔=0𝚔1u+=𝚔nτf)for 𝚔nN,\displaystyle\,\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\exp\Big{(}\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\beta^{*}t_{n-\mathtt{k}}\Big{)}\Big{(}c_{\mathrm{I},\mathtt{k}}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u^{\ell}\big{\|}+\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\Big{)}\quad\text{for $\mathtt{k}\leq n\leq N$},

where the constants ρ𝚔\rho_{\mathtt{k}} and cI,𝚔c_{\mathrm{I},\mathtt{k}} are defined in Lemmas 2.5 and 2.6, respectively. This is followed by Theorem 3.3 which presents a concise L2L^{2}-norm error estimate for the BDF-𝚔\mathtt{k} schemes:

u(tn)un\displaystyle\big{\|}u(t_{n})-u^{n}\big{\|}\leq 7ρ𝚔cI,𝚔7𝚔exp(7ρ𝚔βtn𝚔7𝚔)(=0𝚔1u(t)u+Cutn𝚔τ𝚔).\displaystyle\,\frac{7\rho_{\mathtt{k}}c_{\mathrm{I},\mathtt{k}}}{7-\mathtt{k}}\exp\Big{(}\frac{7\rho_{\mathtt{k}}\beta^{*}t_{n-\mathtt{k}}}{7-\mathtt{k}}\Big{)}\bigg{(}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u(t_{\ell})-u^{\ell}\big{\|}+C_{u}t_{n-\mathtt{k}}\tau^{\mathtt{k}}\bigg{)}.

The paper is organized as follows. Section 2 contains several properties for the DOC-𝚔\mathtt{k} kernels which will be useful for the stability and convergence analysis. The main results outlined above will be proved in Section 3. Some concluding remarks will be given in the last section.

2 Preliminary results

In this section, we present several preliminary results which will be used for proving our main results in Section 3.

2.1 Positive definiteness of DOC-𝚔\mathtt{k} kernels

By using the mutual orthogonal identities (1.7) and (1.11), we have the following result on the positive definiteness, see [9, Lemma 2.1].

Lemma 2.1

The discrete kernels bj(𝚔)b^{(\mathtt{k})}_{j} in (1.3) are positive (semi-)definite if and only if the associated DOC kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} in (1.6) are positive (semi-)definite.

It remains to study the positive definiteness of discrete BDF-𝚔\mathtt{k} kernels. To this end, we introduce the Toeplitz form Tm=(tij)m×m\mathrm{T}_{m}=(\mathrm{t}_{ij})_{m\times m}, where the entries tij=tij\mathrm{t}_{ij}=\mathrm{t}_{i-j} (i,j=1,2,,mi,j=1,2,\cdots,m) are constants along the diagonal of Tm\mathrm{T}_{m}. Let tk\mathrm{t}_{k} be the Fourier coefficients of the trigonometric polynomial f\mathrm{f}, i.e.,

tk=12πππf(x)eıkxdx,k=1m,2m,,m1,\mathrm{t}_{k}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\mathrm{f}(x)e^{-\imath kx}\,\mathrm{d}x,\quad k=1-m,2-m,\cdots,m-1,

where ı:=1\imath:=\sqrt{-1} is the complex unit. Then

f(x)=k=1mm1tkeıkxis called the generating function of Tm.\displaystyle\mathrm{f}(x)=\sum_{k=1-m}^{m-1}\mathrm{t}_{k}e^{\imath kx}\quad\text{is called the generating function of $\mathrm{T}_{m}$}. (2.1)

The following Grenander-Szegö theorem [6, pp. 64–65] shows the relationship between the eigenvalues of Tm\mathrm{T}_{m} and the generating function f\mathrm{f}.

Lemma 2.2

Let Tm=(tij)m×m\mathrm{T}_{m}=(\mathrm{t}_{i-j})_{m\times m} be the Toeplitz matrix generated by the function f\mathrm{f} defined in (2.1). Then the smallest eigenvalue λmin(Tm)\lambda_{\min}\big{(}\mathrm{T}_{m}\big{)} of Tm\mathrm{T}_{m} and the largest one λmax(Tm)\lambda_{\max}\big{(}\mathrm{T}_{m}\big{)} can be bounded by

fminλmin(Tm)λmax(Tm)fmax,\mathrm{f}_{\min}\leq\lambda_{\min}\big{(}\mathrm{T}_{m}\big{)}\leq\lambda_{\max}\big{(}\mathrm{T}_{m}\big{)}\leq\mathrm{f}_{\max},

where fmin\mathrm{f}_{\min} and fmax\mathrm{f}_{\max} denote the minimum and maximum values of f(x)\mathrm{f}(x), respectively. Specially, the Toeplitz matrix Tm\mathrm{T}_{m} is positive definite if fmin>0\mathrm{f}_{\min}>0.

Now, for the BDF-𝚔\mathtt{k} formula, we consider the following matrices of order m:=n𝚔+1:m:=n-\mathtt{k}+1:

B𝚔,l:=(b0(𝚔)b1(𝚔)b0(𝚔)b𝚔1(𝚔)b1(𝚔)b0(𝚔)b1(𝚔)b0(𝚔)b𝚔1(𝚔)b1(𝚔)b0(𝚔))m×mandB𝚔:=B𝚔,l+B𝚔,lT,\displaystyle B_{\mathtt{k},l}:=\left(\begin{array}[]{cccccc}b_{0}^{(\mathtt{k})}&&&&&\\ b_{1}^{(\mathtt{k})}&b_{0}^{(\mathtt{k})}&&&&\\ \vdots&\ddots&\ddots&&&\\ b_{\mathtt{k}-1}^{(\mathtt{k})}&\cdots&b_{1}^{(\mathtt{k})}&b_{0}^{(\mathtt{k})}&&\\ &\ddots&\cdots&b_{1}^{(\mathtt{k})}&b_{0}^{(\mathtt{k})}&\\ &&b_{\mathtt{k}-1}^{(\mathtt{k})}&\cdots&b_{1}^{(\mathtt{k})}&b_{0}^{(\mathtt{k})}\\ \end{array}\right)_{m\times m}\quad\text{and}\quad B_{\mathtt{k}}:=B_{\mathtt{k},l}+B_{\mathtt{k},l}^{T}, (2.8)

where 3𝚔53\leq\mathtt{k}\leq 5 and the index n𝚔n\geq\mathtt{k}. According to definition (2.1), we define the generating function of B𝚔B_{\mathtt{k}} as follows,

g(𝚔)(φ)=2j=0𝚔1bj(𝚔)cos(jφ).\displaystyle\mathrm{g}^{(\mathtt{k})}(\varphi)=2\sum_{j=0}^{\mathtt{k}-1}b_{j}^{(\mathtt{k})}\cos(j\varphi). (2.9)

Consequently, Lemma 2.2 implies the following result.

Lemma 2.3

Let B𝚔B_{\mathtt{k}} be the real symmetric matrix generated by the function g(𝚔)\mathrm{g}^{(\mathtt{k})} defined in (2.9). Then the smallest eigenvalue λmin(B𝚔)\lambda_{\min}\big{(}B_{\mathtt{k}}\big{)} and the largest one λmax(B𝚔)\lambda_{\max}\big{(}B_{\mathtt{k}}\big{)} can be bounded by

gmin(𝚔)λmin(B𝚔)λmax(B𝚔)gmax(𝚔),\mathrm{g}^{(\mathtt{k})}_{\min}\leq\lambda_{\min}\big{(}B_{\mathtt{k}}\big{)}\leq\lambda_{\max}\big{(}B_{\mathtt{k}}\big{)}\leq\mathrm{g}^{(\mathtt{k})}_{\max},

where gmin(𝚔)\mathrm{g}^{(\mathtt{k})}_{\min} and gmax(𝚔)\mathrm{g}^{(\mathtt{k})}_{\max} denote the minimum and maximum values of g(𝚔)(φ)\mathrm{g}^{(\mathtt{k})}(\varphi), respectively. Specially, the real symmetric matrix B𝚔B_{\mathtt{k}} is positive definite if gmin(𝚔)>0\mathrm{g}^{(\mathtt{k})}_{\min}>0.

Now we apply Lemma 2.3 to establish the positive definiteness of the discrete BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} for 3𝚔53\leq\mathtt{k}\leq 5, by investigating the associated generating functions g(𝚔)(φ)\mathrm{g}^{(\mathtt{k})}(\varphi).

Lemma 2.4

For the discrete BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} (3𝚔5)(3\leq\mathtt{k}\leq 5) defined in (1.3) and any real sequence {wk}k=1n\{w_{k}\}_{k=1}^{n} with n entries, it holds that

2m=𝚔nwmj=𝚔mbmj(𝚔)wjσ𝚔k=𝚔nwk2for n𝚔,2\sum_{m=\mathtt{k}}^{n}w_{m}\sum_{j=\mathtt{k}}^{m}b_{m-j}^{(\mathtt{k})}w_{j}\geq\sigma_{\mathtt{k}}\sum_{k=\mathtt{k}}^{n}w_{k}^{2}\quad\text{for $n\geq\mathtt{k}$},

where σ3=95/481.979\sigma_{3}=95/48\approx 1.979, σ4=1.628\sigma_{4}=1.628 and σ5=0.4776\sigma_{5}=0.4776. Thus the discrete BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} for 3𝚔53\leq\mathtt{k}\leq 5 are positive definite.

Proof  Consider the real symmetric matrix B𝚔B_{\mathtt{k}} in (2.8) of order m:=n𝚔+1m:=n-\mathtt{k}+1. By setting 𝒘:=(w𝚔,w𝚔+1,,wn)T\boldsymbol{w}:=(w_{\mathtt{k}},w_{\mathtt{k}+1},\cdots,w_{n})^{T} one obtains

2m=𝚔nwmj=𝚔mbmj(𝚔)wj=𝒘TB𝚔𝒘λmin(B𝚔)𝒘T𝒘for n𝚔.2\sum_{m=\mathtt{k}}^{n}w_{m}\sum_{j=\mathtt{k}}^{m}b_{m-j}^{(\mathtt{k})}w_{j}=\boldsymbol{w}^{T}B_{\mathtt{k}}\boldsymbol{w}\geq\lambda_{\min}\big{(}B_{\mathtt{k}}\big{)}\boldsymbol{w}^{T}\boldsymbol{w}\quad\text{for $n\geq\mathtt{k}$}.

Thanks to Lemma 2.3, it remains to prove gmin(𝚔)σ𝚔.\mathrm{g}^{(\mathtt{k})}_{\min}\geq\sigma_{\mathtt{k}}. The associated generating functions (see Figure 1 for the function curves) are listed below:

  • g(3)(φ)=13(117cosφ+2cos2φ),\mathrm{g}^{(3)}(\varphi)=\frac{1}{3}\big{(}11-7\cos\varphi+2\cos 2\varphi\big{)},

  • g(4)(φ)=16(2523cosφ+13cos2φ3cos3φ),\mathrm{g}^{(4)}(\varphi)=\frac{1}{6}\big{(}25-23\cos\varphi+13\cos 2\varphi-3\cos 3\varphi\big{)},

  • g(5)(φ)=130(137163cosφ+137cos2φ63cos3φ+12cos4φ).\mathrm{g}^{(5)}(\varphi)=\frac{1}{30}\big{(}137-163\cos\varphi+137\cos 2\varphi-63\cos 3\varphi+12\cos 4\varphi\big{)}.

Refer to caption
Figure 1: Curves of generating functions g(𝚔)(φ)\mathrm{g}^{(\mathtt{k})}(\varphi) over φ[π,π]\varphi\in[-\pi,\pi] for 3𝚔53\leq\mathtt{k}\leq 5.

(I) The case 𝚔=3.\mathtt{k}=3. By the formula cos2φ=2cos2φ1\cos 2\varphi=2\cos^{2}\varphi-1, we get

g(3)(φ)=13(97cosφ+4cos2φ)=43(cosφ7/8)2+9548.\displaystyle\mathrm{g}^{(3)}(\varphi)=\frac{1}{3}\big{(}9-7\cos\varphi+4\cos^{2}\varphi\big{)}=\frac{4}{3}(\cos\varphi-7/8)^{2}+\frac{95}{48}.

As desired, gmin(3)=σ3=95/481.97919\mathrm{g}^{(3)}_{\min}=\sigma_{3}=95/48\approx 1.97919.

(II) The case 𝚔=4.\mathtt{k}=4. By the formula cos3φ=4cos3φ3cosφ\cos 3\varphi=4\cos^{3}\varphi-3\cos\varphi, we get

g(4)(φ)=16(1214cosφ+26cos2φ12cos3φ).\displaystyle\mathrm{g}^{(4)}(\varphi)=\frac{1}{6}\big{(}12-14\cos\varphi+26\cos^{2}\varphi-12\cos^{3}\varphi\big{)}.

Consider a function Z4(x)=1214x+26x212x3Z_{4}(x)=12-14x+26x^{2}-12x^{3}. The first derivative Z4=14+52x36x2Z_{4}^{\prime}=-14+52x-36x^{2} has a unique zero-point x=(1343)/18x_{*}=(13-\sqrt{43})/18 for x[1,1]x\in[-1,1]. Then

(Z4)min=min{Z4(1),Z4(x),Z4(1)}=Z4(x)=(26564343)/243.(Z_{4})_{\min}=\min\{Z_{4}(-1),Z_{4}(x_{*}),Z_{4}(1)\}=Z_{4}(x_{*})=(2656-43\sqrt{43})/243.

Thus, we have

g(4)(φ)16Z4(x)=2656434314581.62828.\mathrm{g}^{(4)}(\varphi)\geq\frac{1}{6}Z_{4}(x_{*})=\frac{2656-43\sqrt{43}}{1458}\approx 1.62828.

(III) The case 𝚔=5.\mathtt{k}=5. By the formula cos4φ=8cos4φ8cos2φ+1\cos 4\varphi=8\cos^{4}\varphi-8\cos^{2}\varphi+1, we get

g(5)(φ)=130(12+26cosφ+178cos2φ252cos3φ+96cos4φ).\displaystyle\mathrm{g}^{(5)}(\varphi)=\frac{1}{30}\big{(}12+26\cos\varphi+178\cos^{2}\varphi-252\cos^{3}\varphi+96\cos^{4}\varphi\big{)}.

Consider the following function Z5(x)=12+26x+178x2252x3+96x4Z_{5}(x)=12+26x+178x^{2}-252x^{3}+96x^{4}. The first derivative Z5=26+356x756x2+384x3Z_{5}^{\prime}=26+356x-756x^{2}+384x^{3} has a unique real zero-point xx^{*} over the interval [1,1][-1,1],

x=196(634904116389189531121490411638918953)0.064041.x^{*}=\frac{1}{96}\left(63-\sqrt[3]{49041-16\sqrt{3891895}}-\frac{1121}{\sqrt[3]{49041-16\sqrt{3891895}}}\right)\approx-0.064041.

Then

(Z5)min=min{Z5(1),Z5(x),Z5(1)}=Z5(x)14.3305.(Z_{5})_{\min}=\min\{Z_{5}(-1),Z_{5}(x^{*}),Z_{5}(1)\}=Z_{5}(x^{*})\approx 14.3305.

Thus, we have

g(5)(φ)130Z5(x)0.477683.\mathrm{g}^{(5)}(\varphi)\geq\frac{1}{30}Z_{5}(x^{*})\approx 0.477683.

The proof is completed.   

2.2 Decay estimates of DOC-𝚔\mathtt{k} kernels

We now present the decay estimates of DOC-𝚔\mathtt{k} kernels. Notice that although the BDF-𝚔\mathtt{k} kernels bj(𝚔)b_{j}^{(\mathtt{k})} vanish for j𝚔j\geq\mathtt{k}, the associated DOC-𝚔\mathtt{k} kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} are always nonzero for any j0j\geq 0. The following lemma presents the decay property of the DOC-𝚔\mathtt{k} kernels (we plot in Figure 2 the decay properties of those kernels).

Refer to caption
Refer to caption
Refer to caption
Figure 2: The DOC-𝚔\mathtt{k} kernels and the bound ρ𝚔(x)=ρ𝚔4(𝚔7)x\rho_{\mathtt{k}}(x)=\frac{\rho_{\mathtt{k}}}{4}\left(\frac{\mathtt{k}}{7}\right)^{x} for 3𝚔53\leq\mathtt{k}\leq 5.
Lemma 2.5

The associated DOC-𝚔\mathtt{k} kernels θj(𝚔)\theta_{j}^{(\mathtt{k})} defined in (1.6) satisfy

|θj(𝚔)|ρ𝚔4(𝚔7)jfor 3𝚔5 and j0,\displaystyle\big{|}\theta_{j}^{(\mathtt{k})}\big{|}\leq\frac{\rho_{\mathtt{k}}}{4}\Big{(}\frac{\mathtt{k}}{7}\Big{)}^{j}\quad\text{for $3\leq\mathtt{k}\leq 5$ and $j\geq 0$,}

where ρ3=10/3\rho_{3}=10/3, ρ4=6\rho_{4}=6 and ρ5=96/5\rho_{5}=96/5.

Proof  By the definition (1.6), we have θ0(𝚔)=1/b0(𝚔)\theta_{0}^{(\mathtt{k})}=1/b_{0}^{(\mathtt{k})} and =jnθn(𝚔)bj(𝚔)=0(𝚔jn1),\sum_{\ell=j}^{n}\theta_{n-\ell}^{(\mathtt{k})}b_{\ell-j}^{(\mathtt{k})}=0\,\,(\mathtt{k}\leq j\leq n-1), or,

m=0jθjm(𝚔)bm(𝚔)=0for 3𝚔5 and j0.\displaystyle\sum_{m=0}^{j}\theta_{j-m}^{(\mathtt{k})}b_{m}^{(\mathtt{k})}=0\quad\text{for $3\leq\mathtt{k}\leq 5$ and $j\geq 0$.} (2.1)

We will solve the difference equation (2.1) to find the solution θj(𝚔)\theta_{j}^{(\mathtt{k})} for any j0j\geq 0.

(I) The case 𝚔=3.\mathtt{k}=3. Taking j=0j=0 and j=1j=1 in (2.1) yield the two initial values

θ0(3)=611andθ1(3)=θ0(3)b1(3)/b0(3)=42112.\theta_{0}^{(3)}=\frac{6}{11}\quad\text{and}\quad\theta_{1}^{(3)}=-\theta_{0}^{(3)}b_{1}^{(3)}/b_{0}^{(3)}=\frac{42}{11^{2}}.

One takes j2j\geq 2 in (2.1) and finds the equation

θj(3)b0(3)+θj1(3)b1(3)+θj2(3)b2(3)=0for j2,\displaystyle\theta_{j}^{(3)}b_{0}^{(3)}+\theta_{j-1}^{(3)}b_{1}^{(3)}+\theta_{j-2}^{(3)}b_{2}^{(3)}=0\quad\text{for $j\geq 2$,}

or

11θj(3)7θj1(3)+2θj2(3)=0for j2.\displaystyle 11\theta_{j}^{(3)}-7\theta_{j-1}^{(3)}+2\theta_{j-2}^{(3)}=0\quad\text{for $j\geq 2$.} (2.2)

The characteristic equation 11λ327λ3+2=011\lambda_{3}^{2}-7\lambda_{3}+2=0 has two roots

λ3,1=λ¯3,2=7+ı3922.\lambda_{3,1}=\bar{\lambda}_{3,2}=\frac{7+\imath\sqrt{39}}{22}.

Then it is easy to obtain the solution

θj(3)=397ı39143(7+ı3922)j+39+7ı39143(7ı3922)jfor j0,\displaystyle\theta_{j}^{(3)}=\frac{39-7\imath\sqrt{39}}{143}\big{(}\frac{7+\imath\sqrt{39}}{22}\big{)}^{j}+\frac{39+7\imath\sqrt{39}}{143}\big{(}\frac{7-\imath\sqrt{39}}{22}\big{)}^{j}\quad\text{for $j\geq 0$,} (2.3)

and the following decaying estimate

|θj(3)|46143(211)j56(37)jfor j0.\displaystyle\big{|}\theta_{j}^{(3)}\big{|}\leq 4\sqrt{\frac{6}{143}}\Big{(}\sqrt{\frac{2}{11}}\Big{)}^{j}\leq\frac{5}{6}\Big{(}\frac{3}{7}\Big{)}^{j}\quad\text{for $j\geq 0$.} (2.4)

(II) The case 𝚔=4\mathtt{k}=4 Taking j=0,1j=0,1 and j=2j=2 in (2.1) yield the initial values

θ0(4)=1225,θ1(4)=12252325andθ2(4)=2325θ1(4)1325θ0(4)=4851253.\theta_{0}^{(4)}=\frac{12}{25},\quad\theta_{1}^{(4)}=\frac{12}{25}\frac{23}{25}\quad\text{and}\quad\theta_{2}^{(4)}=\frac{23}{25}\theta_{1}^{(4)}-\frac{13}{25}\theta_{0}^{(4)}=\frac{48\cdot 51}{25^{3}}.

One takes j3j\geq 3 in (2.1) and finds

θj(4)b0(4)+θj1(4)b1(4)+θj2(4)b2(4)+θj3(4)b3(4)=0for j3.\displaystyle\theta_{j}^{(4)}b_{0}^{(4)}+\theta_{j-1}^{(4)}b_{1}^{(4)}+\theta_{j-2}^{(4)}b_{2}^{(4)}+\theta_{j-3}^{(4)}b_{3}^{(4)}=0\quad\text{for $j\geq 3$.} (2.5)

The characteristic equation 25λ4323λ42+13λ43=025\lambda_{4}^{3}-23\lambda_{4}^{2}+13\lambda_{4}-3=0 has three roots

λ4,1=\displaystyle\lambda_{4,1}= λ¯4,2=2375(1+ı3)ν7543+223(1ı3)7523ν0.2692610.492ı,\displaystyle\,\bar{\lambda}_{4,2}=\frac{23}{75}-\frac{(1+\imath\sqrt{3})\nu}{75\sqrt[3]{4}}+\frac{223(1-\imath\sqrt{3})}{75\sqrt[3]{2}\nu}\approx 0.269261-0.492\imath,
λ4,3=\displaystyle\lambda_{4,3}= 2375+23ν754375223ν0.381478,\displaystyle\,\frac{23}{75}+\frac{\sqrt[3]{2}\nu}{75}-\frac{\sqrt[3]{4}}{75}\frac{223}{\nu}\approx 0.381478,

where ν:=1921+2255113\nu:=\sqrt[3]{1921+225\sqrt{511}} and

|λ4,1|=|λ4,2|0.560862.\big{|}\lambda_{4,1}\big{|}=\big{|}\lambda_{4,2}\big{|}\approx 0.560862.

We have the solution

θj(4)=d4,1λ4,1j+d4,2λ4,2j+d4,3λ4,3jfor j0,\displaystyle\theta_{j}^{(4)}=d_{4,1}\lambda_{4,1}^{j}+d_{4,2}\lambda_{4,2}^{j}+d_{4,3}\lambda_{4,3}^{j}\quad\text{for $j\geq 0$,} (2.6)

where d4,id_{4,i} for i=1,2,3i=1,2,3 are constant determined by the following equations

d4,1λ4,1j+d4,2λ4,2j+d4,3λ4,3j=θj(4)for j=0,1,2.\displaystyle d_{4,1}\lambda_{4,1}^{j}+d_{4,2}\lambda_{4,2}^{j}+d_{4,3}\lambda_{4,3}^{j}=\theta_{j}^{(4)}\quad\text{for $j=0,1,2$.}

Numerical computations yield

d4,1=d¯4,20.359522+0.405803ıandd4,30.719044.\displaystyle d_{4,1}=\bar{d}_{4,2}\approx-0.359522+0.405803\imath\quad\text{and}\quad d_{4,3}\approx 0.719044.

Then we can obtain the following estimate

|θj(4)|32(47)jfor j0.\displaystyle\big{|}\theta_{j}^{(4)}\big{|}\leq\frac{3}{2}\Big{(}\frac{4}{7}\Big{)}^{j}\quad\text{for $j\geq 0$.} (2.7)

(III) The case 𝚔=5\mathtt{k}=5 Taking j=0,1,2j=0,1,2 and j=3j=3 in (2.1) yield the initial values

θ0(5)=\displaystyle\theta_{0}^{(5)}= 60137,θ1(5)=163137θ0(5)=601631372,\displaystyle\,\frac{60}{137},\qquad\theta_{1}^{(5)}=\frac{163}{137}\theta_{0}^{(5)}=\frac{60\cdot 163}{137^{2}},
θ2(5)=\displaystyle\theta_{2}^{(5)}= 163137θ1(5)θ0(5)=60(16321)1373,\displaystyle\,\frac{163}{137}\theta_{1}^{(5)}-\theta_{0}^{(5)}=\frac{60(163^{2}-1)}{137^{3}},
θ3(5)=\displaystyle\theta_{3}^{(5)}= 163137θ2(5)θ1(5)+63137θ0(5)=9780(16321)600013721374.\displaystyle\,\frac{163}{137}\theta_{2}^{(5)}-\theta_{1}^{(5)}+\frac{63}{137}\theta_{0}^{(5)}=\frac{9780(163^{2}-1)-6000\cdot 137^{2}}{137^{4}}.

One takes j4j\geq 4 in (2.1) and finds

θj(5)b0(5)+θj1(5)b1(5)+θj2(5)b2(5)+θj3(5)b3(5)+θj4(5)b4(5)=0for j4.\displaystyle\theta_{j}^{(5)}b_{0}^{(5)}+\theta_{j-1}^{(5)}b_{1}^{(5)}+\theta_{j-2}^{(5)}b_{2}^{(5)}+\theta_{j-3}^{(5)}b_{3}^{(5)}+\theta_{j-4}^{(5)}b_{4}^{(5)}=0\quad\text{for $j\geq 4$.} (2.8)

The characteristic equation 137λ54163λ53+137λ5263λ5+12=0137\lambda_{5}^{4}-163\lambda_{5}^{3}+137\lambda_{5}^{2}-63\lambda_{5}+12=0 has four roots

λ5,1=λ¯5,20.2100440.67687ı,λ5,3=λ¯5,40.3848470.162121ı.\displaystyle\lambda_{5,1}=\bar{\lambda}_{5,2}\approx 0.210044-0.67687\imath,\quad\lambda_{5,3}=\bar{\lambda}_{5,4}\approx 0.384847-0.162121\imath.

Also,

|λ5,1|=|λ5,2|0.708711and|λ5,3|=|λ5,4|0.417601\displaystyle\big{|}\lambda_{5,1}\big{|}=\big{|}\lambda_{5,2}\big{|}\approx 0.708711\quad\text{and}\quad\big{|}\lambda_{5,3}\big{|}=\big{|}\lambda_{5,4}\big{|}\approx 0.417601

We have the solution

θj(5)=i=14d5,iλ5,ijfor j0.\displaystyle\theta_{j}^{(5)}=\sum_{i=1}^{4}d_{5,i}\lambda_{5,i}^{j}\quad\text{for $j\geq 0$.} (2.9)

The constants d5,id_{5,i} for i=1,2,3,4i=1,2,3,4 are determined by the following equations

i=14d5,iλ5,ij=θj(5)for j=0,1,2,3,\displaystyle\sum_{i=1}^{4}d_{5,i}\lambda_{5,i}^{j}=\theta_{j}^{(5)}\quad\text{for $j=0,1,2,3$,}

which yield

d5,1=d¯5,20.03657410.450763ı,d5,3=d¯5,40.0365741+3.27211ı.\displaystyle d_{5,1}=\bar{d}_{5,2}\approx 0.0365741-0.450763\imath,\quad d_{5,3}=\bar{d}_{5,4}\approx-0.0365741+3.27211\imath.

By using the fact

|d5,1|=|d5,2|0.452244and|d5,3|=|d5,4|3.27232,\displaystyle\left|d_{5,1}\right|=\left|d_{5,2}\right|\approx 0.452244\quad\text{and}\quad\left|d_{5,3}\right|=\left|d_{5,4}\right|\approx 3.27232,

it is not difficult to obtain the following estimate

|θj(5)|\displaystyle\big{|}\theta_{j}^{(5)}\big{|}\leq 245(57)jfor j0.\displaystyle\,\frac{24}{5}\Big{(}\frac{5}{7}\Big{)}^{j}\quad\text{for $j\geq 0$.} (2.10)

This completes the proof.   

We close this section by noticing that the techniques in this section can also be used to handle the case 𝚔=2\mathtt{k}=2 for which standard energy analysis is also applicable, see also in [10] for the analysis of variable time stepping.

2.3 Decay Estimates of the starting values

Noticing that the starting values uI(𝚔,j)u_{\mathrm{I}}^{(\mathtt{k},j)} have different expressions (1.9) for different step indexes 𝚔.\mathtt{k}. We shall present the decay Estimates of the starting values by using Lemma 2.5.

Lemma 2.6

There exist positive constants cI,𝚔>1c_{\mathrm{I},\mathtt{k}}>1 such that the starting values uI(𝚔,j)u_{\mathrm{I}}^{(\mathtt{k},j)} satisfy

|uI(𝚔,j)|cI,𝚔ρ𝚔8(𝚔7)j𝚔=1𝚔1|τu|for 3𝚔5 and j𝚔,\displaystyle\big{|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{|}\leq\frac{c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{8}\Big{(}\frac{\mathtt{k}}{7}\Big{)}^{j-\mathtt{k}}\sum_{\ell=1}^{\mathtt{k}-1}\big{|}\triangledown_{\tau}u^{\ell}\big{|}\quad\text{for $3\leq\mathtt{k}\leq 5$ and $j\geq\mathtt{k}$,}

such that

j=𝚔n|uI(𝚔,j)|7cI,𝚔ρ𝚔8(7𝚔)=1𝚔1|τu|for 3𝚔5 and n𝚔,\displaystyle\sum_{j=\mathtt{k}}^{n}\big{|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{|}\leq\frac{7c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{8(7-\mathtt{k})}\sum_{\ell=1}^{\mathtt{k}-1}\big{|}\triangledown_{\tau}u^{\ell}\big{|}\quad\text{for $3\leq\mathtt{k}\leq 5$ and $n\geq\mathtt{k}$,}

where the constants ρ𝚔\rho_{\mathtt{k}} are defined in Lemma 2.5.

Proof  (I) The case 𝚔=3\mathtt{k}=3. Recalling the fact bj(3)=0b_{j}^{(3)}=0 for j3j\geq 3, one can derive that

uI(3,n)=\displaystyle u_{\mathrm{I}}^{(3,n)}= {θ0(3)b2(3)τu1+θ0(3)b1(3)τu2, for n=3,θn3(3)b2(3)τu1+(θn3(3)b1(3)+θn4(3)b2(3))τu2, for n4\displaystyle\,\left\{\begin{array}[]{ll}\theta_{0}^{(3)}b_{2}^{(3)}\triangledown_{\tau}u^{1}+\theta_{0}^{(3)}b_{1}^{(3)}\triangledown_{\tau}u^{2},&\hbox{ for $n=3$,}\\[8.61108pt] \theta_{n-3}^{(3)}b_{2}^{(3)}\triangledown_{\tau}u^{1}+\big{(}\theta_{n-3}^{(3)}b_{1}^{(3)}+\theta_{n-4}^{(3)}b_{2}^{(3)}\big{)}\triangledown_{\tau}u^{2},&\hbox{ for $n\geq 4$}\end{array}\right.
=\displaystyle= {111τu1711τu2, for n=3,13θn3(3)τu1116θn2(3)τu2, for n4\displaystyle\,\left\{\begin{array}[]{ll}\frac{1}{11}\triangledown_{\tau}u^{1}-\frac{7}{11}\triangledown_{\tau}u^{2},&\hbox{ for $n=3$,}\\[8.61108pt] \frac{1}{3}\theta_{n-3}^{(3)}\triangledown_{\tau}u^{1}-\frac{11}{6}\theta_{n-2}^{(3)}\triangledown_{\tau}u^{2},&\hbox{ for $n\geq 4$}\end{array}\right.

where the difference equation (2.2) was used in the case of n4n\geq 4. So Lemma 2.5 yields

|uI(3,3)|\displaystyle\big{|}u_{\mathrm{I}}^{(3,3)}\big{|}\leq 111|τu1|+711|τu2|,\displaystyle\,\frac{1}{11}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{7}{11}\big{|}\triangledown_{\tau}u^{2}\big{|},
|uI(3,n)|\displaystyle\big{|}u_{\mathrm{I}}^{(3,n)}\big{|}\leq 13|θn3(𝚔)||τu1|+116|θn2(𝚔)||τu2|\displaystyle\,\frac{1}{3}\big{|}\theta_{n-3}^{(\mathtt{k})}\big{|}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{11}{6}\big{|}\theta_{n-2}^{(\mathtt{k})}\big{|}\big{|}\triangledown_{\tau}u^{2}\big{|}
\displaystyle\leq ρ34(37)n3(13|τu1|+1114|τu2|)for n4.\displaystyle\,\frac{\rho_{3}}{4}\Big{(}\frac{3}{7}\Big{)}^{n-3}\Big{(}\frac{1}{3}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{11}{14}\big{|}\triangledown_{\tau}u^{2}\big{|}\Big{)}\quad\text{for $n\geq 4$.}

The case 𝚔=3\mathtt{k}=3 is verified by taking cI,3=11/7c_{\mathrm{I},3}=11/7 since

|uI(3,j)|\displaystyle\big{|}u_{\mathrm{I}}^{(3,j)}\big{|}\leq ρ34(37)j3(13|τu1|+1114|τu2|)for j3.\displaystyle\,\frac{\rho_{3}}{4}\Big{(}\frac{3}{7}\Big{)}^{j-3}\Big{(}\frac{1}{3}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{11}{14}\big{|}\triangledown_{\tau}u^{2}\big{|}\Big{)}\quad\text{for $j\geq 3$.}

(II) The case 𝚔=4\mathtt{k}=4. It only needs to consider the general case n6n\geq 6. Since bj(4)=0b_{j}^{(4)}=0 for j4j\geq 4, one has

uI(4,n)\displaystyle u_{\mathrm{I}}^{(4,n)} =θn4(4)b3(4)τu1+τu2j=4nθnj(4)bj2(4)+τu3j=4nθnj(4)bj3(4)\displaystyle\,=\theta_{n-4}^{(4)}b_{3}^{(4)}\triangledown_{\tau}u^{1}+\triangledown_{\tau}u^{2}\sum_{j=4}^{n}\theta_{n-j}^{(4)}b_{j-2}^{(4)}+\triangledown_{\tau}u^{3}\sum_{j=4}^{n}\theta_{n-j}^{(4)}b_{j-3}^{(4)}
=\displaystyle= θn4(4)b3(4)τu1+(θn4(4)b2(4)+θn5(4)b3(4))τu2θn3(4)b0(4)τu3for n6,\displaystyle\,\theta_{n-4}^{(4)}b_{3}^{(4)}\triangledown_{\tau}u^{1}+\big{(}\theta_{n-4}^{(4)}b_{2}^{(4)}+\theta_{n-5}^{(4)}b_{3}^{(4)}\big{)}\triangledown_{\tau}u^{2}-\theta_{n-3}^{(4)}b_{0}^{(4)}\triangledown_{\tau}u^{3}\quad\text{for $n\geq 6$,}

where the difference equation (2.5) was used. So Lemma 2.5 yields

|uI(4,n)|\displaystyle\big{|}u_{\mathrm{I}}^{(4,n)}\big{|}\leq ρ44(47)n4(14|τu1|+32|τu2|+2521|τu3|)for n6.\displaystyle\,\frac{\rho_{4}}{4}\Big{(}\frac{4}{7}\Big{)}^{n-4}\Big{(}\frac{1}{4}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{3}{2}\big{|}\triangledown_{\tau}u^{2}\big{|}+\frac{25}{21}\big{|}\triangledown_{\tau}u^{3}\big{|}\Big{)}\quad\text{for $n\geq 6$.}

Then the estimate for 𝚔=4\mathtt{k}=4 is verified by taking the fixed cases n=4n=4 and 5 into account.

(III) The case 𝚔=5\mathtt{k}=5. We only consider the general case n8n\geq 8. Since bj(5)=0b_{j}^{(5)}=0 for j5j\geq 5, one has

uI(5,n)==14τuj=5nθnj(5)bj(5)=θn5(5)b4(5)τu1+(θn5(5)b3(5)+θn6(5)b4(5))τu2\displaystyle u_{\mathrm{I}}^{(5,n)}=\sum_{\ell=1}^{4}\triangledown_{\tau}u^{\ell}\sum_{j=5}^{n}\theta_{n-j}^{(5)}b_{j-\ell}^{(5)}=\theta_{n-5}^{(5)}b_{4}^{(5)}\triangledown_{\tau}u^{1}+\big{(}\theta_{n-5}^{(5)}b_{3}^{(5)}+\theta_{n-6}^{(5)}b_{4}^{(5)}\big{)}\triangledown_{\tau}u^{2}
+(θn5(5)b2(5)+θn6(5)b3(5)+θn7(5)b4(5))τu3θn4(5)b0(5)τu4for n8,\displaystyle+\big{(}\theta_{n-5}^{(5)}b_{2}^{(5)}+\theta_{n-6}^{(5)}b_{3}^{(5)}+\theta_{n-7}^{(5)}b_{4}^{(5)}\big{)}\triangledown_{\tau}u^{3}-\theta_{n-4}^{(5)}b_{0}^{(5)}\triangledown_{\tau}u^{4}\quad\text{for $n\geq 8$,}

where the difference equation (2.8) was used in the last term. By using Lemma 2.5, one gets

|uI(5,n)|\displaystyle\big{|}u_{\mathrm{I}}^{(5,n)}\big{|}\leq ρ54(57)n5(15|τu1|+43|τu2|+256|τu3|+2314|τu4|)for n8.\displaystyle\,\frac{\rho_{5}}{4}\Big{(}\frac{5}{7}\Big{)}^{n-5}\Big{(}\frac{1}{5}\big{|}\triangledown_{\tau}u^{1}\big{|}+\frac{4}{3}\big{|}\triangledown_{\tau}u^{2}\big{|}+\frac{25}{6}\big{|}\triangledown_{\tau}u^{3}\big{|}+\frac{23}{14}\big{|}\triangledown_{\tau}u^{4}\big{|}\Big{)}\quad\text{for $n\geq 8$.}

The estimate for 𝚔=5\mathtt{k}=5 can be verified with a finite cI,5c_{\mathrm{I},5} by taking the fixed cases n=5,6n=5,6 and 7 into account. The proof is completed.   

3 Discrete energy analysis for linear reaction-diffusion

We are now ready to present the main results of this work.

3.1 Stability analysis

We first consider the dissipative case with β=β(x)0.\beta=\beta(x)\leq 0. In this case, we have the following stability result.

Theorem 3.1

The time-discrete solution unu^{n} of the BDF-𝚔\mathtt{k} (3𝚔5)(3\leq\mathtt{k}\leq 5) scheme (1.4) for the dissipative case β=β(x)0\beta=\beta(x)\leq 0 satisfies

un\displaystyle\big{\|}u^{n}\big{\|}\leq u𝚔1+7cI,𝚔ρ𝚔4(7𝚔)=1𝚔1τu+7ρ𝚔2(7𝚔)=𝚔nτf\displaystyle\,\big{\|}u^{\mathtt{k}-1}\big{\|}+\frac{7c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{4(7-\mathtt{k})}\sum_{\ell=1}^{\mathtt{k}-1}\big{\|}\triangledown_{\tau}u^{\ell}\big{\|}+\frac{7\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}
\displaystyle\leq 7ρ𝚔2(7𝚔)(cI,𝚔=0𝚔1u+=𝚔nτf)for n𝚔,\displaystyle\,\frac{7\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\Big{(}c_{\mathrm{I},\mathtt{k}}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u^{\ell}\big{\|}+\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\Big{)}\qquad\text{for $n\geq\mathtt{k}$,}

where the constants ρ𝚔\rho_{\mathtt{k}} and cI,𝚔c_{\mathrm{I},\mathtt{k}} are defined in Lemmas 2.5 and 2.6, respectively.

Proof  Lemmas 2.1 and 2.4 in Appendix 2.1 imply that the DOC-𝚔\mathtt{k} kernels are positive definite for 3𝚔53\leq\mathtt{k}\leq 5. Under the setting β=β(x),\beta=\beta(x), one has

2εj=𝚔n=𝚔jθj(𝚔)u,uj0and2j=𝚔n=𝚔jθj(𝚔)βu,uj0.\displaystyle-2\varepsilon\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\nabla u^{\ell},\nabla u^{j}\big{\rangle}\leq 0\quad\text{and}\quad 2\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\beta u^{\ell},u^{j}\big{\rangle}\leq 0.

It follows from (1) that

un2\displaystyle\big{\|}u^{n}\big{\|}^{2}\leq u𝚔122j=𝚔nuI(𝚔,j),uj+2τj=𝚔n=𝚔jθj(𝚔)f,uj\displaystyle\,\big{\|}u^{\mathtt{k}-1}\big{\|}^{2}-2\sum_{j=\mathtt{k}}^{n}\big{\langle}u_{\mathrm{I}}^{(\mathtt{k},j)},u^{j}\big{\rangle}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{\langle}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell},u^{j}\big{\rangle}
\displaystyle\leq u𝚔12+2j=𝚔nuI(𝚔,j)uj+2τj=𝚔n=𝚔jθj(𝚔)fujfor n𝚔.\displaystyle\,\big{\|}u^{\mathtt{k}-1}\big{\|}^{2}+2\sum_{j=\mathtt{k}}^{n}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}\big{\|}u^{j}\big{\|}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|}\big{\|}u^{j}\big{\|}\quad\text{for $n\geq\mathtt{k}$}. (3.1)

Taking some integer n1n_{1} (𝚔1n1n\mathtt{k}-1\leq n_{1}\leq n) such that un1=max𝚔1jnuj\big{\|}u^{n_{1}}\big{\|}=\max_{\mathtt{k}-1\leq j\leq n}\big{\|}u^{j}\big{\|}. Taking n:=n1n:=n_{1} in the above inequality, one gets

un12u𝚔1un1+2un1j=𝚔n1uI(𝚔,j)+2τun1j=𝚔n1=𝚔jθj(𝚔)f,\displaystyle\big{\|}u^{n_{1}}\big{\|}^{2}\leq\big{\|}u^{\mathtt{k}-1}\big{\|}\big{\|}u^{n_{1}}\big{\|}+2\big{\|}u^{n_{1}}\big{\|}\sum_{j=\mathtt{k}}^{n_{1}}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}+2\tau\big{\|}u^{n_{1}}\big{\|}\sum_{j=\mathtt{k}}^{n_{1}}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|},

and thus

un\displaystyle\big{\|}u^{n}\big{\|}\leq un1u𝚔1+2j=𝚔n1uI(𝚔,j)+2τj=𝚔n1=𝚔jθj(𝚔)f\displaystyle\,\big{\|}u^{n_{1}}\big{\|}\leq\big{\|}u^{\mathtt{k}-1}\big{\|}+2\sum_{j=\mathtt{k}}^{n_{1}}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}+2\tau\sum_{j=\mathtt{k}}^{n_{1}}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|}
\displaystyle\leq u𝚔1+2j=𝚔nuI(𝚔,j)+2τj=𝚔n=𝚔jθj(𝚔)ffor n𝚔.\displaystyle\,\big{\|}u^{\mathtt{k}-1}\big{\|}+2\sum_{j=\mathtt{k}}^{n}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|}\quad\text{for $n\geq\mathtt{k}$.} (3.2)

Applying Lemma 2.5, we have |θj(𝚔)|ρ𝚔4(𝚔7)j\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}\leq\frac{\rho_{\mathtt{k}}}{4}(\frac{\mathtt{k}}{7})^{j-\ell} for 3𝚔53\leq\mathtt{k}\leq 5 and then

2τj=𝚔n=𝚔jθj(𝚔)f\displaystyle 2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|}\leq  2τj=𝚔n=𝚔j|θj(𝚔)|f=2τ=𝚔nfj=n|θj(𝚔)|\displaystyle\,2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}\big{\|}f^{\ell}\big{\|}=2\tau\sum_{\ell=\mathtt{k}}^{n}\big{\|}f^{\ell}\big{\|}\sum_{j=\ell}^{n}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}
\displaystyle\leq ρ𝚔2=𝚔nτfj=n(𝚔/7)j7ρ𝚔2(7𝚔)=𝚔nτffor n𝚔.\displaystyle\,\frac{\rho_{\mathtt{k}}}{2}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\sum_{j=\ell}^{n}(\mathtt{k}/7)^{j-\ell}\leq\frac{7\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\quad\text{for $n\geq\mathtt{k}$.} (3.3)

Then the claimed estimate follows by using together (3.1) and Lemma 2.6.   

Next we consider the general case |β(x,t)|β\left|\beta(x,t)\right|\leq\beta^{*}. In this case, we have following stability result.

Theorem 3.2

Consider 3𝚔53\leq\mathtt{k}\leq 5 and the bounded coefficient β(x,t)β\beta(x,t)\leq\beta^{*}. If the time-step size τ(7𝚔)/(7ρ𝚔β)\tau\leq(7-\mathtt{k})/(7\rho_{\mathtt{k}}\beta^{*}), the time-discrete solution unu^{n} of the BDF-𝚔\mathtt{k} scheme (1.4) satisfies

un\displaystyle\big{\|}u^{n}\big{\|}\leq 7ρ𝚔7𝚔exp(7ρ𝚔7𝚔βtn𝚔)(cI,𝚔=0𝚔1u+=𝚔nτf)for 𝚔nN.\displaystyle\,\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\exp\Big{(}\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\beta^{*}t_{n-\mathtt{k}}\Big{)}\Big{(}c_{\mathrm{I},\mathtt{k}}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u^{\ell}\big{\|}+\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\Big{)}\quad\text{for $\mathtt{k}\leq n\leq N$}.

where the constants ρ𝚔\rho_{\mathtt{k}} and cI,𝚔c_{\mathrm{I},\mathtt{k}} are defined by Lemmas 2.5 and 2.6, respectively.

Proof  By the inequality (1) and Theorem 3.1, we aim at bounding the third term of the right hand side of (1),

2τj=𝚔n=𝚔jθj(𝚔)βu,uj\displaystyle 2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\theta_{j-\ell}^{(\mathtt{k})}\big{\langle}\beta^{\ell}u^{\ell},u^{j}\big{\rangle}\leq  2βτj=𝚔n=𝚔j|θj(𝚔)|uuj.\displaystyle\,2\beta^{*}\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}\big{\|}u^{\ell}\big{\|}\big{\|}u^{j}\big{\|}. (3.4)

Then it is not difficult to derive from (1) that, for 𝚔nN\mathtt{k}\leq n\leq N,

un2u𝚔12\displaystyle\big{\|}u^{n}\big{\|}^{2}\leq\big{\|}u^{\mathtt{k}-1}\big{\|}^{2} +2j=𝚔nuI(𝚔,j)uj+2τj=𝚔n=𝚔j(β|θj(𝚔)|u+θj(𝚔)f)uj.\displaystyle\,+2\sum_{j=\mathtt{k}}^{n}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}\big{\|}u^{j}\big{\|}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\Big{(}\beta^{*}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}\big{\|}u^{\ell}\big{\|}+\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|}\Big{)}\big{\|}u^{j}\big{\|}. (3.5)

Taking some integer n2n_{2} (𝚔1n2n\mathtt{k}-1\leq n_{2}\leq n) such that un2=max𝚔1jnuj,\big{\|}u^{n_{2}}\big{\|}=\max_{\mathtt{k}-1\leq j\leq n}\big{\|}u^{j}\big{\|}, and setting n:=n2n:=n_{2} in the above inequality (3.5), one obtains

un2u𝚔1+2j=𝚔n2uI(𝚔,j)+2βτj=𝚔n2uj=𝚔j|θj(𝚔)|+2τj=𝚔n2=𝚔jθj(𝚔)f,\displaystyle\big{\|}u^{n_{2}}\big{\|}\leq\big{\|}u^{\mathtt{k}-1}\big{\|}+2\sum_{j=\mathtt{k}}^{n_{2}}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}+2\beta^{*}\tau\sum_{j=\mathtt{k}}^{n_{2}}\big{\|}u^{j}\big{\|}\sum_{\ell=\mathtt{k}}^{j}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}+2\tau\sum_{j=\mathtt{k}}^{n_{2}}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|},

and thus

unu𝚔1+2j=𝚔nuI(𝚔,j)+2βτj=𝚔nuj=𝚔j|θj(𝚔)|+2τj=𝚔n=𝚔jθj(𝚔)f,\displaystyle\big{\|}u^{n}\big{\|}\leq\big{\|}u^{\mathtt{k}-1}\big{\|}+2\sum_{j=\mathtt{k}}^{n}\big{\|}u_{\mathrm{I}}^{(\mathtt{k},j)}\big{\|}+2\beta^{*}\tau\sum_{j=\mathtt{k}}^{n}\big{\|}u^{j}\big{\|}\sum_{\ell=\mathtt{k}}^{j}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}+2\tau\sum_{j=\mathtt{k}}^{n}\sum_{\ell=\mathtt{k}}^{j}\big{\|}\theta_{j-\ell}^{(\mathtt{k})}f^{\ell}\big{\|},

By applying Lemma 2.5 we have

=𝚔j|θj(𝚔)|ρ𝚔4=𝚔j(𝚔/7)j7ρ𝚔4(7𝚔)for 3𝚔5.\sum_{\ell=\mathtt{k}}^{j}\big{|}\theta_{j-\ell}^{(\mathtt{k})}\big{|}\leq\frac{\rho_{\mathtt{k}}}{4}\sum_{\ell=\mathtt{k}}^{j}(\mathtt{k}/7)^{j-\ell}\leq\frac{7\rho_{\mathtt{k}}}{4(7-\mathtt{k})}\quad\text{for $3\leq\mathtt{k}\leq 5$.}

Then we apply Lemma 2.6 and the estimate (3.1) to find that

un\displaystyle\big{\|}u^{n}\big{\|}\leq u𝚔1+7cI,𝚔ρ𝚔4(7𝚔)=1𝚔1τu+7ρ𝚔β2(7𝚔)j=𝚔nτuj+7ρ𝚔2(7𝚔)=𝚔nτf\displaystyle\,\big{\|}u^{\mathtt{k}-1}\big{\|}+\frac{7c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{4(7-\mathtt{k})}\sum_{\ell=1}^{\mathtt{k}-1}\big{\|}\triangledown_{\tau}u^{\ell}\big{\|}+\frac{7\rho_{\mathtt{k}}\beta^{*}}{2(7-\mathtt{k})}\sum_{j=\mathtt{k}}^{n}\tau\big{\|}u^{j}\big{\|}+\frac{7\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}
\displaystyle\leq 7cI,𝚔ρ𝚔2(7𝚔)=0𝚔1u+7ρ𝚔β2(7𝚔)j=𝚔nτuj+7ρ𝚔2(7𝚔)=𝚔nτf.\displaystyle\,\frac{7c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u^{\ell}\big{\|}+\frac{7\rho_{\mathtt{k}}\beta^{*}}{2(7-\mathtt{k})}\sum_{j=\mathtt{k}}^{n}\tau\big{\|}u^{j}\big{\|}+\frac{7\rho_{\mathtt{k}}}{2(7-\mathtt{k})}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}. (3.6)

If the time-step size τ7𝚔7ρ𝚔β\tau\leq\frac{7-\mathtt{k}}{7\rho_{\mathtt{k}}\beta^{*}}, it follows from (3.1) that

un\displaystyle\big{\|}u^{n}\big{\|}\leq 7cI,𝚔ρ𝚔7𝚔=0𝚔1u+7ρ𝚔β7𝚔j=𝚔n1τuj+7ρ𝚔7𝚔=𝚔nτffor 𝚔nN.\displaystyle\,\frac{7c_{\mathrm{I},\mathtt{k}}\rho_{\mathtt{k}}}{7-\mathtt{k}}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u^{\ell}\big{\|}+\frac{7\rho_{\mathtt{k}}\beta^{*}}{7-\mathtt{k}}\sum_{j=\mathtt{k}}^{n-1}\tau\big{\|}u^{j}\big{\|}+\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}f^{\ell}\big{\|}\quad\text{for $\mathtt{k}\leq n\leq N$}.

Then the claimed estimate follows by using the standard Grönwall inequality.   

3.2 Convergence analysis

Let u~n:=u(tn,x)un(x)\tilde{u}^{n}:=u(t_{n},x)-u^{n}(x) for n0n\geq 0. Then the error equation of (1.4) reads

D𝚔u~n=εΔu~n+βnu~n+ηn,for 𝚔nN,\displaystyle D_{\mathtt{k}}\tilde{u}^{n}=\varepsilon\Delta\tilde{u}^{n}+\beta^{n}\tilde{u}^{n}+\eta^{n},\quad\text{for $\mathtt{k}\leq n\leq N$,} (3.7)

where the local consistency error ηj=D𝚔u(tj)tu(tj)\eta^{j}=D_{\mathtt{k}}u(t_{j})-\partial_{t}u(t_{j}) for j𝚔j\geq\mathtt{k}. Assume that the solution is regular in time for tt𝚔t\geq t_{\mathtt{k}} such that

|ηj|Cuτ𝚔maxt𝚔tT|t(𝚔+1)u(t)|Cuτ𝚔for j𝚔.\big{|}\eta^{j}\big{|}\leq C_{u}\tau^{\mathtt{k}}\max_{t_{\mathtt{k}}\leq t\leq T}\big{|}\partial_{t}^{(\mathtt{k}+1)}u(t)\big{|}\leq C_{u}\tau^{\mathtt{k}}\quad\text{for $j\geq\mathtt{k}$}.

The stability estimate in Theorem 3.2 yields

u~n\displaystyle\big{\|}\tilde{u}^{n}\big{\|}\leq 7ρ𝚔7𝚔exp(7ρ𝚔7𝚔βtn𝚔)(cI,𝚔=0𝚔1u~+=𝚔nτη)for 𝚔nN.\displaystyle\,\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\exp\Big{(}\frac{7\rho_{\mathtt{k}}}{7-\mathtt{k}}\beta^{*}t_{n-\mathtt{k}}\Big{)}\Big{(}c_{\mathrm{I},\mathtt{k}}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}\tilde{u}^{\ell}\big{\|}+\sum_{\ell=\mathtt{k}}^{n}\tau\big{\|}\eta^{\ell}\big{\|}\Big{)}\quad\text{for $\mathtt{k}\leq n\leq N$}.

This implies at the following theorem.

Theorem 3.3

Let u(tn,x)u(t_{n},x) and un(x)u^{n}(x) be the solutions of the diffusion problem (1.1) and the BDF-𝚔\mathtt{k} scheme (1.4), respectively. If the time-step size τ(7𝚔)/(7ρ𝚔β)\tau\leq(7-\mathtt{k})/(7\rho_{\mathtt{k}}\beta^{*}), then the time-discrete solution unu^{n} is convergent in the L2L^{2} norm,

u(tn)un\displaystyle\big{\|}u(t_{n})-u^{n}\big{\|}\leq 7ρ𝚔cI,𝚔7𝚔exp(7ρ𝚔βtn𝚔7𝚔)(=0𝚔1u(t)u+Cutn𝚔τ𝚔)\displaystyle\,\frac{7\rho_{\mathtt{k}}c_{\mathrm{I},\mathtt{k}}}{7-\mathtt{k}}\exp\Big{(}\frac{7\rho_{\mathtt{k}}\beta^{*}t_{n-\mathtt{k}}}{7-\mathtt{k}}\Big{)}\bigg{(}\sum_{\ell=0}^{\mathtt{k}-1}\big{\|}u(t_{\ell})-u^{\ell}\big{\|}+C_{u}t_{n-\mathtt{k}}\tau^{\mathtt{k}}\bigg{)}

for 𝚔nN\mathtt{k}\leq n\leq N, where ρ𝚔\rho_{\mathtt{k}} and cI,𝚔c_{\mathrm{I},\mathtt{k}} are defined by Lemmas 2.5 and 2.6, respectively.

4 Concluding remarks

In this work, we presented a novel discrete energy analysis for the BDF-𝚔\mathtt{k} schemes with 3𝚔53\leq\mathtt{k}\leq 5 by using the discrete orthogonal convolution kernels technique. Our analysis is straightforward in the sense that the standard inner product with uju^{j} is adopted, which coincides with the classical energy approach. With this straightforward approach, less spacial regularity requirement is required for the initial data by comparing with the multiplier technique which requires stronger norm for the initial data, see the stability estimates in [3, Proposition 5.1 and Theorem 5.1].

There are several remaining issues to be handled in future works:

  • The present work opens up the possibility for handling the BDF-𝚔\mathtt{k} time-stepping methods for nonlinear diffusion problems, such as phase filed models [8].

  • Note that a very recent work by Akrivis et al. [2] successfully applied the multiplier technique to deal with the BDF-6 scheme. It is known that a linear multistep method is zero-stable if a perturbation in the starting values of size ϵ\epsilon causes the numerical solution over any time interval to change by no more than O(ϵ)O(\epsilon). This is called zero-stability because it is enough to check the condition for the differential equation y=0y^{\prime}=0. It is known that the BDF-𝚔\mathtt{k} formulas for 𝚔>6\mathtt{k}>6 are not zero-stable so they cannot be used. Note that the current analysis can only cover 𝚔\mathtt{k} up to 5, and finer analysis is needed to extend the DOC kernels technique for the BDF-6 scheme.

  • Another interesting topic is to investigate the discrete energy technique for the stability and convergence of the BDF-𝚔\mathtt{k} formula (3𝚔53\leq\mathtt{k}\leq 5) with variable time-steps.

References

  • [1] G. Akrivis, Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations, SIAM J. Numer. Anal., 53 (2015), pp. 464-484.
  • [2] G. Akrivis, M.H. Chen, F. Yu, Z. Zhou, The energy technique for the six-step BDF method, Math. Comp., 2021, Revised, arXiv:2007.08924.
  • [3] G. Akrivis, E. Katsoprinakis, Backward difference formulae: new multipliers and stability properties for parabolic equations, Math. Comp., 85 (2016), pp. 2195-2216.
  • [4] G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math., 131 (2015), pp. 713-735.
  • [5] G. Dahlquist, G-stability is equivalent to A-stability, BIT, 18 (1978), pp. 384-401.
  • [6] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, 2nd edition, AMS Chelsea, Providence, RI, 2001.
  • [7] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics Volume 14, Second Edition, Springer-Verlag, 2002.
  • [8] H.-L. Liao, T. Tang and T. Zhou, On energy stable, maximum-bound preserving, second-order BDF scheme with variable steps for the Allen-Cahn equation, SIAM J. Numer. Anal., 58(4) (2020), pp. 2294-2314.
  • [9] H.-L. Liao, T. Tang and T. Zhou, Positive definiteness of real quadratic forms resulting from variable-step approximations of convolution operators, arXiv:2011.13383v1, 2020.
  • [10] H.-L. Liao and Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp., 2020, DOI: 10.1090/mcom/3585.
  • [11] J. Liu, Simple and efficient ALE methods with provable temporal accuracy up to fifth order for the stokes equations on time varying domains. SIAM J. Numer. Anal., 51 (2013), pp. 743-772.
  • [12] C. Lubich, D. Mansour, and C. Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal., 33 (2013), pp. 1365-1385.
  • [13] O. Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981), pp. 377-423.
  • [14] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Second Edition, Springer-Verlag, 2006.