This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new canonical affine BRACKET formulation of Hamiltonian Classical Field theories of first order

François Gay-Balmaz F. Gay-Balmaz: Laboratoire de Meteorologie Dynamique
Ecole Normale Superieure, CNRS, F-75231
Paris, France
[email protected]
Juan C. Marrero J. C.  Marrero: ULL-CSIC Geometría Diferencial y Mecánica Geométrica
Departamento de Matemáticas, Estadística e IO, Sección de Matemáticas, Universidad de La Laguna
La Laguna, Tenerife, Canary Islands, Spain
[email protected]
 and  Nicolás Martínez N. Martínez: Departamento de Matematicas, Universidad Nacional de Colombia
Bogotá, Colombia
[email protected]
Abstract.

It has been a long standing question how to extend, in the finite-dimensional setting, the canonical Poisson bracket formulation from classical mechanics to classical field theories, in a completely general, intrinsic, and canonical way. In this paper, we provide an answer to this question by presenting a new completely canonical bracket formulation of Hamiltonian Classical Field Theories of first order on an arbitrary configuration bundle. It is obtained via the construction of the appropriate field-theoretic analogues of the Hamiltonian vector field and of the space of observables, via the introduction of a suitable canonical Lie algebra structure on the space of currents (the observables in field theories). This Lie algebra structure is shown to have a representation on the affine space of Hamiltonian sections, which yields an affine analogue to the Jacobi identity for our bracket. The construction is analogous to the canonical Poisson formulation of Hamiltonian systems although the nature of our formulation is linear-affine and not bilinear as the standard Poisson bracket. This is consistent with the fact that the space of currents and Hamiltonian sections are respectively, linear and affine. Our setting is illustrated with some examples including Continuum Mechanics and Yang-Mills theory.

J.C.M. thanks H. Bursztyn, A. Cabrera, S. Capriotti and D. Iglesias for stimulating discussions on the topics of this paper. J.C.M. has been partially supported by Ministerio de Economía y Competitividad (MINECO, Spain) under grant PGC2018-098265-B-C32

1. Introduction

It is well-known that the Hamilton equations of classical mechanics are naturally formulated in terms of canonical geometric structures, namely, canonical symplectic forms and canonical Poisson brackets. Given the configuration manifold QQ of the mechanical system, its momentum phase space TQT^{*}Q carries a canonical symplectic form which induces a vector bundle isomorphism :T(TQ)T(TQ)\sharp:T^{*}(T^{*}Q)\to T(T^{*}Q). Given the Hamiltonian HC(TQ)H\in C^{\infty}(T^{*}Q) of the system, the associated Hamilton equations of motion are determined by the Hamiltonian vector field XHX_{H} intrinsically defined in terms of the canonical symplectic form as XH=dHX_{H}=\sharp dH, i.e., we have the commutative diagram

T(TQ)\textstyle{T^{*}(T^{*}Q)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sharp}T(TQ)\textstyle{T(T^{*}Q)}TQ\textstyle{T^{*}Q\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dH\scriptstyle{dH}XH\scriptstyle{X_{H}} (1.1)

The time evolution of an observable FC(TQ)F\in C^{\infty}(T^{*}Q) along a solution s:ITQs:I\subseteq\mathbb{R}\to T^{*}Q of Hamilton’s equations, is given by

ddt(Fs)={F,H}s,\frac{d}{dt}(F\circ s)=\{F,H\}\circ s, (1.2)

where {,}:C(TQ)×C(TQ)C(TQ)\{\cdot,\cdot\}:C^{\infty}(T^{*}Q)\times C^{\infty}(T^{*}Q)\to C^{\infty}(T^{*}Q) is the canonical Poisson bracket defined by

{F,G}=dF,XG=dF,dG=dF,dG.\{F,G\}=\left\langle dF,X_{G}\right\rangle=\left\langle dF,\sharp dG\right\rangle=-\left\langle\sharp dF,dG\right\rangle. (1.3)

Conversely, if a curve s:ITQs:I\subseteq\mathbb{R}\to T^{*}Q satisfies (1.2) for any observables FF, then ss is a solution of Hamilton’s equations (see, for instance, [1, 23, 43]). Recall that (1.3) defines a Lie algebra structure on C(M)C^{\infty}(M), thereby satisfying the Jacobi identity

{{F,G},H}={F,{G,H}}{G,{F,H}}.\{\{F,G\},H\}=\{F,\{G,H\}\}-\{G,\{F,H\}\}. (1.4)

The canonical Poisson formulation (1.2) of Hamilton’s equation has been at the origin of many developments in the understanding of the geometry and dynamics of Hamiltonian systems and their quantization, as well as of many generalizations. In particular, the Poisson formulation is very appropriate for developing the geometric description of the Poisson reduction of a Hamiltonian system which is invariant under the action of a symmetry Lie group (see, for instance, [49]).

When extending the geometric setting from classical mechanics to classical field theories, it is crucial to identify the geometric structures playing the role of these canonical structures. While the field-theoretic analogue of the canonical symplectic structure is well-known to be given by the canonical multisymplectic form on a space of finite dimension, the extended momentum phase space, it has been a long standing question how to extend the canonical Poisson bracket formulation from classical mechanics to classical field theories, in a completely general, intrinsic, and canonical way. Several contributions have been made in this direction as we will review below. In this paper will shall provide an answer to this question by constructing explicitly such a canonical bracket, giving its algebraic properties, and showing that it allows a canonical formulation of the Hamilton equations for field theories that naturally extends the formulation (1.2) of classical mechanics. Such canonical bracket structures could be used as a starting point of a covariant canonical quantization. One key difference between the canonical bracket that we propose and the canonical Poisson bracket of classical mechanics is its linear-affine nature. This is compatible with the fact that the set of currents and Hamiltonian sections are, respectively, linear and affine spaces for field theories. This linear-affine nature already arises in the case of time-dependent Hamiltonian Mechanics.

While in the present paper we focus on the extension to field theory of the canonical geometric setting (1.2)–(1.4) governing the evolution equations, which is of finite dimensional nature, one may also focus on the geometric structures related to the space of solutions of these equations. For a large class of field theories, this infinite dimensional space admits a Poisson (or a presymplectic) structure. This is not a new theory and we will quote an old paper by Peierls [50] (for a large list of contributions, see the recent papers [13, 14] and the references therein). In this setting, the boundary conditions of the theory play an important role [44]. In fact, in [44], Margalef-Bentabol and Villaseñor introduce the so-called “relative bicomplex framework” and develop a geometric formulation of the covariant phase space methods with boundaries, which is used to endow the space of solutions with (pre)symplectic structures. These ideas are used to discuss formulations of Palatini gravity, General Relativity and Holst theories in the presence of boundaries [4, 5, 6]. On the other hand, a classic research topic has been the relationship between finite and infinite dimensional approximation to Classical Field Theories (see Section 6).

Before explaining the main difficulties that emerge in the process of finding a canonical bracket formulation that extends (1.2)–(1.4) to classical field theories, we quickly review below the previous contributions to the geometric formulation of Hamiltonian Classical Field Theories.

1.1. Previous contributions on the geometric formulation of Hamiltonian classical field theories of first order.

The geometric description starts with the choice of the configuration bundle π:EM\pi:E\to M, whose sections are the fields of the theory. The case of time-dependent mechanics corresponds to the special situation E=Q×E=Q\times\mathbb{R}\rightarrow\mathbb{R}. For classical field theories, there are two useful generalisations of the notion of momentum phase space: the restricted multi-momentum bundle 0π{\mathcal{M}}^{0}\pi and the extended multi-momentum bundle π{\mathcal{M}}\pi. Both are vector bundles on EE with vector bundle projections denoted ν0:0πE\nu^{0}:{\mathcal{M}}^{0}\pi\to E and ν:πE\nu:{\mathcal{M}}\pi\to E, and there is a canonical line bundle projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi. The main property of the extended multi-momentum bundle is that it admits a canonical multisymplectic structure ωπ\omega_{{\mathcal{M}}\pi} of degree m+1m+1 (mm being the dimension of MM). The restricted multi-momentum bundle 0π{\mathcal{M}}^{0}\pi, however, does not admit a canonical multisymplectic structure.

An important difference with Hamiltonian Mechanics is that for Hamiltonian Classical Field Theories we don’t have a Hamiltonian function, but a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi of the canonical projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi, see [11]. The corresponding evolution equations are the Hamilton-deDonder-Weyl equations. They form a system of partial differential equations of first order on 0π{\mathcal{M}}^{0}\pi with space of parameters MM and whose solutions are sections of the projection πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M. More precisely, if we denote by

h(xi,uα,pαi)=(xi,uα,H(x,u,p),pαi),h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x,u,p),p_{\alpha}^{i}),

the local expression of the Hamiltonian section hh, then the Hamilton-deDonder-Weyl equations are locally

uαxi=Hpαi, for all i and α,\displaystyle\frac{\partial u^{\alpha}}{\partial x^{i}}=\frac{\partial H}{\partial p_{\alpha}^{i}},\;\;\mbox{ for all }i\mbox{ and }\alpha, (1.5)
ipαixi=Huα, for all α.\displaystyle\sum_{i}\frac{\partial p_{\alpha}^{i}}{\partial x^{i}}=-\frac{\partial H}{\partial u^{\alpha}},\;\;\mbox{ for all }\alpha.

These equations go back, at least, to work of Volterra [52, 53]. In the literature, we can find the following geometric descriptions of the Hamilton-deDonder-Weyl equations (1.5) associated to hh:

  • From hh and the canonical multisymplectic structure one can produce a non-canonical multisymplectic structure ωh=h(ωπ)\omega_{h}=h^{*}(\omega_{{\mathcal{M}}\pi}) on 0π{\mathcal{M}}^{0}\pi. Then, using ωh\omega_{h}, a special type of Ehresmann connections can be introduced on the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M (which, in the present paper, will be called Hamiltonian connections for hh) and the solutions of the evolution equations are the integral sections of these connections (see [19, 21]; see also [25, 26]). The multisymplectic structure ωh\omega_{h} can also be used to directly characterize the sections of the projection πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M which are solutions of the Hamilton-deDonder-Weyl equations for hh (see [11, 19, 21, 25, 26]). From ωh\omega_{h}, one can also define the ”multisymplectic pseudo-brackets” and ”multisymplectic brackets” of (m1)(m-1)-Hamiltonian forms which may be considered the field version of the Poisson bracket for functions in Classical Mechanics (see [28]).

  • Using an auxiliary Ehresmann connection \nabla on the configuration bundle π:EM\pi:E\to M and the Hamiltonian section hh, one may produce a Hamiltonian energy H:0πH^{\nabla}:{\mathcal{M}}^{0}\pi\to\mathbb{R} associated to hh and \nabla and a non-canonical multisymplectic structure on 0π{\mathcal{M}}^{0}\pi which allow us to describe the solutions of the evolution equations in a geometric form (see [11]; see also [25, 26]). In addition, it is possible to consider a suitable space of currents (a vector subspace of m1m-1-forms on 0π{\mathcal{M}}^{0}\pi which are horizontal with respect to the projection πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M) and one may introduce a “Poisson bracket” of a current and an Hamiltonian energy associated to \nabla. This bracket allows the description of the Hamilton-deDonder-Weyl equations as in Hamiltonian Mechanics (see [12]).

  • The Hamiltonian section hh induces a canonical extended Hamiltonian density h{\mathcal{F}}_{h}, which is a smooth π(ΛmTM)\pi^{*}(\Lambda^{m}T^{*}M)-valued function defined on π{\mathcal{M}}\pi see [10, 32]; see also [24] for the particular case when a volume form on MM is fixed. Then, using h{\mathcal{F}}_{h} and the canonical multisymplectic structure ωπ\omega_{{\mathcal{M}}\pi} one write intrinsically a system of partial differential equations on π{\mathcal{M}}\pi whose solutions are sections of the fibration πν:πM\pi\circ\nu:{\mathcal{M}}\pi\to M. The projection, via μ\mu, of these sections are the solutions of the Hamilton-deDonder-Weyl equations for hh (see [24]).

  • From the configuration bundle π:EM\pi:E\to M one can construct the phase bundle (π)\mathbb{P}(\pi), an affine bundle over 0π{\mathcal{M}}^{0}\pi, and the differential dh:0π(π)dh:{\mathcal{M}}^{0}\pi\to\mathbb{P}(\pi) of the Hamiltonian section hh, as a section of (π)\mathbb{P}(\pi). In addition, an affine bundle epimorphism A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) from the 11-jet bundle of the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M onto (π)\mathbb{P}(\pi) may be also introduced. Then, the solutions of the Hamilton-deDonder-Weyl equations are the sections s0:M0πs^{0}:M\to{\mathcal{M}}^{0}\pi whose first prolongation j1s0:MJ1(πν0)j^{1}s^{0}:M\to J^{1}(\pi\circ\nu^{0}) is contained in the submanifold A1(dh(0π))A^{-1}(dh({\mathcal{M}}^{0}\pi)) (see [32, 33]; see also [35, 47] for the particular case of time-dependent Hamiltonian Mechanics).

1.2. The problem

The previous comments lead naturally to the following question:

Does there exist a completely canonical geometric formulation of the Hamilton-deDonder-Weyl equations which is analogous to the standard Poisson bracket formulation of time-independent Hamiltonian Mechanics?

A possible answer to this question could be the geometric formulation developed in [12] (see Section 1.1). However, this formulation is not canonical since most of the constructions in [12] depend on the chosen auxiliary connection in the configuration bundle. In fact, in a previous paper [46] Marsden and Shkoller justify the use of this connection in the geometric formulation of the theory and one may find, in that paper (see [46], page 554), the following cite:

It is interesting that the structure of connection is not necessary to intrinsically define the Lagrangian formalism (as shown in the preceding references), while for the intrinsic definition of a covariant Hamiltonian the introduction of such a structure is essential. Of course, one can avoid a connection if one is willing to confine ones attention to local coordinates.

However, in our paper, we will construct a bracket that does not use any auxiliary objects such as a connection in the configuration bundle and which is completely canonical, thereby giving an affirmative answer to the question above.

1.3. Answer to the problem and contributions of the paper

In order to give an affirmative answer to the question in Section 1.2, we will use the following previous contributions and results:

  • The construction of the phase space (π)\mathbb{P}(\pi) associated with the configuration bundle π:EM\pi:E\to M and the differential of a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi as a section of (π)\mathbb{P}(\pi) (see [32]).

  • The affine bundle epimorphism A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) which was also introduced in [32].

  • The notion of a Hamiltonian connection associated with a Hamiltonian section hh. This type of objects were already considered in [19, 21] in order to characterize the solutions of the Hamilton-deDonder-Weyl equations for hh (although the authors of these papers did not use the terminology of a Hamiltonian connection).

We will combine the previous constructions as follows.

As a first step, we consider the affine bundle isomorphism

aff:(π)J1(πν0)/KerA\sharp^{\rm aff}:\mathbb{P}(\pi)\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A

where KerA\operatorname{Ker}A is the kernel of the affine bundle epimorphism A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) and aff=A^1\sharp^{\rm aff}=\hat{A}^{-1}, with A^:J1(πν0)/KerA(π)\hat{A}:J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to\mathbb{P}(\pi) the affine bundle isomorphism induced by AA. Then, we introduce the section

Γh:0πJ1(πν0)/KerA\Gamma_{h}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A

of J1(πν0)/KerAJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A, given by

Γh=affdh\Gamma_{h}=\sharp^{\rm aff}\circ dh

and we prove the following result: the section Γh\Gamma_{h} is canonically identified to the equivalence class of Ehresmann connections on the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M that are Hamiltonian connections for hh, see Theorem 3.8.

So, the section Γh\Gamma_{h} associated to the Hamiltonian section hh is the field-theoretic analogue to the Hamiltonian vector field XHX_{H} associated to a Hamiltonian function HH in Classical Mechanics. The following commutative diagram illustrates the situation

(π)\textstyle{{\mathbb{P}(\pi)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}aff\scriptstyle{\sharp^{\rm aff}}J1(πν0)/KerA\textstyle{J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A}0π\textstyle{{\mathcal{M}}^{0}\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dh\scriptstyle{dh}Γh\scriptstyle{\Gamma_{h}}

The analogy with the corresponding diagram given in 1.1 for classical mechanics is evident.

The next step is to introduce a suitable space of currents 𝒪{\mathcal{O}} (a vector subspace of (m1)(m-1)-forms on 0π{\mathcal{M}}^{0}\pi which are horizontal with respect to the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M), in such a way that the restriction of the standard exterior differential to 𝒪{\mathcal{O}} takes values in the space of sections of the vector bundle (J1(πν0)/KerA)+=Aff(J1(πν0)/KerA,(πν0)(ΛmTM))(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}={\rm Aff}(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A,(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)), that is, we have the linear map

d:𝒪Γ(J1(πν0)/KerA)+.d:{\mathcal{O}}\to\Gamma(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}.

The dual vector bundle (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+} is chosen so that these differentials can be canonically paired with the Hamiltonian connections Γh\Gamma_{h}, thereby extending to the field-theoretic context the pairing dF,XH\left\langle dF,X_{H}\right\rangle between the differential dFdF of an observable and the Hamiltonian vector field XHX_{H}, see (1.3). This is our motivation for introducing the space of currents 𝒪{\mathcal{O}} and although it is different to the motivation in [12], 𝒪{\mathcal{O}} just coincides with the space of currents in [12] (see Remark 3.14).

Now, if Γ(μ)\Gamma(\mu) is the space of Hamiltonian sections, we can define the linear-affine canonical bracket

{,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM)),\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)), (1.6)

given by

{α0,h}=dα0,Γh=dα0,aff(dh), for α0𝒪.\{\alpha^{0},h\}=\langle d\alpha^{0},\Gamma_{h}\rangle=\langle d\alpha^{0},\sharp^{\rm aff}(dh)\rangle,\;\;\mbox{ for }\alpha^{0}\in{\mathcal{O}}.

Then, one may prove that the evolution of any current α0𝒪\alpha^{0}\in\mathcal{O} along a solution s0:M0πs^{0}:M\to{\mathcal{M}}^{0}\pi of the Hamilton-deDonder-Weyl equations for hh is given by

(s0)(dα0)={α0,h}s0.(s^{0})^{*}(d\alpha^{0})=\{\alpha^{0},h\}\circ s^{0}. (1.7)

Conversely, if s0:M0πs^{0}:M\to{\mathcal{M}}^{0}\pi is such that (1.7) holds for all α0𝒪\alpha^{0}\in\mathcal{O}, then s0s^{0} is a solution of Hamilton-deDonder-Weyl equations. The canonical bracket formulation (1.7) is the field-theoretic analogue to the canonical Poisson bracket formulation (1.2) of classical mechanics.

The previous tasks are performed in Section 3.4 (see Theorem 3.15). Here again, the analogy with the canonical Poisson formulation of classical mechanics (see (1.2) and (1.3)) is evident.

It is important to note the affine character of the canonical bracket {,}\{\cdot,\cdot\} in (1.6): the space Γ(μ)\Gamma(\mu) of Hamiltonian sections is an affine space modelled over the vector space Γ((πν0)(ΛmTM))\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)). Recalling that the canonical Poisson bracket on TQT^{*}Q induces a Lie algebra structure on C(TQ)C^{\infty}(T^{*}Q), a new question arises:

What are the algebraic properties of the bracket {,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))?

Related to this question, we will prove that 𝒪{\mathcal{O}} admits a canonical Lie algebra structure {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} (see Theorem 4.2) and that the linear map

:𝒪Aff(Γ(μ),Γ((πν0)(ΛmTM))){\mathcal{R}}:{\mathcal{O}}\to{\rm Aff}\left(\Gamma(\mu),\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))\right)

defined by

(α0)={α0,}{\mathcal{R}}(\alpha^{0})=\{\alpha^{0},\cdot\}

is a representation of the Lie algebra (𝒪,{,}𝒪)({\mathcal{O}},\{\cdot,\cdot\}_{\mathcal{O}}) on the affine space Γ(μ)\Gamma(\mu) (see Theorem 4.3 and the property (4.13)).

The previous results will be applied to the following examples: time-dependent Hamiltonian systems, Continuum Mechanics (including fluid dynamics and nonlinear elasticity) and Yang-Mills theories. Some of the constructions developed in the paper are illustrated in the Diagram in Appendix §C.

1.4. Structure of the paper

The paper is structured as follows. In Section 2, we review the geometric formulation of the Hamilton-deDonder-Weyl equations using the multisymplectic structure on the phase space induced by the Hamiltonian section. In Section 3, we introduce the canonical linear-affine bracket {,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) and we formulate the Hamilton-deDonder-Weyl equations using this bracket. In particular, we describe the evolution of a current along a solution of the Hamilton-deDonder-Weyl equations. In Section 4, we introduce a Lie algebra structure on 𝒪{\mathcal{O}} and we prove that {,}\{\cdot,\cdot\} induces a representation of the Lie algebra 𝒪{\mathcal{O}} on the affine space Γ(μ)\Gamma(\mu) of Hamiltonian sections. In Section 5, we apply the previous results to several examples. The paper closes with three appendices. In the first one, we review the definition of the 11-jet bundle associated with a fibration, in the second one, we discuss the vertical lift of a section of a vector bundle as a vertical vector field on the total space and, in the third one, we present a Diagram which illustrates most of the relevant constructions in the paper.

2. Hamiltonian Classical Field Theories of first order

In this section, we review some basic constructions and results on Hamiltonian Classical Field Theories of first order (for more details, see [11]).

2.1. The restricted and extended multimomentum bundle associated with a fibration

The configuration bundle of a classical field theory is a fibration π:EM\pi:E\to M, that is, a surjective submersion from EE to MM. We assume dimM=mdim\;M=m and dimE=m+ndim\;E=m+n.

The extended multimomentum bundle π{\mathcal{M}}\pi associated with the configuration bundle π:EM\pi:E\to M is the vector bundle over EE whose fiber at the point yEy\in E is

yπ={φ:Jy1πΛmTπ(y)Mφ is affine }.{\mathcal{M}}_{y}\pi=\{\varphi:J^{1}_{y}\pi\to\Lambda^{m}T^{*}_{\pi(y)}M\mid\varphi\mbox{ is affine }\}.

Here, J1π=yEJy1πJ^{1}\pi=\cup_{y\in E}J^{1}_{y}\pi is the 11-jet bundle of the fibration π:EM\pi:E\to M (see Appendix A).

It is well-known that π{\mathcal{M}}\pi may be identified with the vector bundle Λ2m(TE)\Lambda_{2}^{m}(T^{*}E) over EE, whose fiber at yEy\in E is

Λ2m(TyE)={γΛm(TyE)iuiuγ=0,u,uVyπ}.\Lambda^{m}_{2}(T_{y}^{*}E)=\{\gamma\in\Lambda^{m}(T_{y}^{*}E)\mid i_{u}i_{u^{\prime}}\gamma=0,\forall u,u^{\prime}\in V_{y}\pi\}.

In fact, if γΛ2m(TyE)\gamma\in\Lambda_{2}^{m}(T_{y}^{*}E) and z:Tπ(y)MTyEJy1πz:T_{\pi(y)}M\to T_{y}E\in J^{1}_{y}\pi then

γ,z=Λmz(γ).\langle\gamma,z\rangle=\Lambda^{m}z^{*}(\gamma). (2.1)

If (xi,uα)(x^{i},u^{\alpha}) are local coordinates on EE which are adapted with the fibration π\pi, then γΛ2m(TyE)\gamma\in\Lambda^{m}_{2}(T_{y}^{*}E) reads locally

γ=pdmx+pαiduαdm1xi,\gamma=p\,d^{m}x+p^{i}_{\alpha}du^{\alpha}\wedge d^{m-1}x_{i},

where

dmx=dx1dxm and dm1xj=i(xj)dmx.d^{m}x=dx^{1}\wedge\dots\wedge dx^{m}\;\;\mbox{ and }\;\;d^{m-1}x_{j}=i(\frac{\partial}{\partial x^{j}})d^{m}x.

So, (xi,uα,p,pαi)(x^{i},u^{\alpha},p,p_{\alpha}^{i}) are local coordinates on π{\mathcal{M}}\pi.

On πΛ2m(TE){\mathcal{M}}\pi\simeq\Lambda^{m}_{2}(T^{*}E) we can define a canonical mm-form λπ\lambda_{{\mathcal{M}}\pi} as follows

λπ(γ)(Y1,,Ym)=γ((Tγν)(Y1),,(Tγν)(Ym)),\lambda_{{\mathcal{M}}\pi}(\gamma)(Y_{1},\dots,Y_{m})=\gamma((T_{\gamma}\nu)(Y_{1}),\dots,(T_{\gamma}\nu)(Y_{m})), (2.2)

for γΛ2m(TE)\gamma\in\Lambda_{2}^{m}(T^{*}E) and Y1,,YmTγΛ2m(TE)Y_{1},\dots,Y_{m}\in T_{\gamma}\Lambda^{m}_{2}(T^{*}E), with ν:πE\nu:{\mathcal{M}}\pi\to E the vector bundle projection.

From (2.2), λπ\lambda_{{\mathcal{M}}\pi} has the local expression

λπ=pdmx+pαiduαdm1xi.\lambda_{{\mathcal{M}}\pi}=pd^{m}x+p_{\alpha}^{i}du^{\alpha}\wedge d^{m-1}x_{i}.

The canonical multisymplectic structure ωπ\omega_{{\mathcal{M}}\pi} on π{\mathcal{M}}\pi is the (m+1)(m+1)-form given by

ωπ=dλπ.\omega_{{\mathcal{M}}\pi}=-d\lambda_{{\mathcal{M}}\pi}.

Locally, we have

ωπ=dpdmx+duαdpαidm1xi.\omega_{{\mathcal{M}}\pi}=-dp\wedge d^{m}x+du^{\alpha}\wedge dp_{\alpha}^{i}\wedge d^{m-1}x_{i}. (2.3)

It is clear that ωπ\omega_{{\mathcal{M}}\pi} is closed and non-degenerate, that is, the vector bundle morphism

ωπ:T(π)Λm(T(π)),YTγ(π)iYωπ(γ)ΛmTγ(π),\flat_{\omega_{{\mathcal{M}}\pi}}:T({\mathcal{M}}\pi)\to\Lambda^{m}(T^{*}({\mathcal{M}}\pi)),\;\;Y\in T_{\gamma}({\mathcal{M}}\pi)\mapsto i_{Y}\omega_{{\mathcal{M}}\pi}(\gamma)\in\Lambda^{m}T^{*}_{\gamma}({\mathcal{M}}\pi),

is a linear monomorphism.

The restricted multimomentum bundle 0π{\mathcal{M}}^{0}\pi is the vector bundle

0π=(π(TM)Vπ)π(ΛmTM)π(Λm1TM)VπLin(π(TM)Vπ,π(ΛmTM)).{\mathcal{M}}^{0}\pi=(\pi^{*}(TM)\otimes V^{*}\pi)\otimes\pi^{*}(\Lambda^{m}T^{*}M)\simeq\pi^{*}(\Lambda^{m-1}T^{*}M)\otimes V^{*}\pi\simeq{\rm Lin}(\pi^{*}(T^{*}M)\otimes V\pi,\pi^{*}(\Lambda^{m}T^{*}M)).

Local coordinates on 0π{\mathcal{M}}^{0}\pi are (xi,uα,pαi)(x^{i},u^{\alpha},p_{\alpha}^{i}).

There is a canonical projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi given by

μ(γ)=γl,\mu(\gamma)=\gamma^{l},

for γ:Jy1πΛmTπ(y)Myπ\gamma:J^{1}_{y}\pi\to\Lambda^{m}T^{*}_{\pi(y)}M\in{\mathcal{M}}_{y}\pi, where γl:Tπ(y)MVyπΛmTπ(y)M\gamma^{l}:T^{*}_{\pi(y)}M\otimes V_{y}\pi\to\Lambda^{m}T^{*}_{\pi(y)}M is the linear map associated with γ\gamma. The local expression of μ\mu is

μ(xi,uα,p,pαi)=(xi,uα,pαi).\mu(x^{i},u^{\alpha},p,p_{\alpha}^{i})=(x^{i},u^{\alpha},p_{\alpha}^{i}).

Note that if γ,γπ=Λ2mTE\gamma,\gamma^{\prime}\in{\mathcal{M}}\pi=\Lambda_{2}^{m}T^{*}E then

μ(γ)=μ(γ)ν(γ)=ν(γ) and !ΩΛmTπ(ν(γ))M such that γ=γ+(ΛmTν(γ)π)(Ω).\mu(\gamma)=\mu(\gamma^{\prime})\Leftrightarrow\nu(\gamma)=\nu(\gamma^{\prime})\mbox{ and }\exists!\;\Omega\in\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M\mbox{ such that }\gamma^{\prime}=\gamma+(\Lambda^{m}T^{*}_{\nu(\gamma)}\pi)(\Omega). (2.4)
Remark 2.1.

Note that this last statement implies that 0ππ/\mathcal{M}^{0}\pi\simeq{\mathcal{M}}\pi/\sim. This situation recalls a particular case in the Poisson realm, the quotient of a symplectic manifold by a proper and free action of a symmetry Lie group inherits a Poisson structure. In this formalism, the quotient of the extended multimomentum bundle also has a new version of a multi-Poisson structure (see for example [8]) which is defined via a Lie algebroid structure on a subbundle of ΛmT0π\Lambda^{m}T^{*}\mathcal{M}^{0}\pi, when the base manifold MM is orientable. Note that, in such a case, if we fix a volume form on MM, we have an action of the real line \mathbb{R} on 0π\mathcal{M}^{0}\pi, which preserves the multisymplectic structure, and π\mathcal{M}\pi is the space of orbits of this action. For the definition and details on the construction of the multi-Poisson structure, we refer to [9]. \diamond

2.2. Hamilton-deDonder-Weyl equations

Given a configuration bundle π:EM\pi:E\to M, a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is a smooth section of the canonical projection

μ:π0π.\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi.

The local expression of hh is

h(xi,uα,pαi)=(xi,uα,H(x,u,p),pαi),h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x,u,p),p_{\alpha}^{i}),

where HH is a local real CC^{\infty}-function on 0π{\mathcal{M}}^{0}\pi.

Using the Hamiltonian section, we can define the (m+1)(m+1)-form ωh\omega_{h} on 0π{\mathcal{M}}^{0}\pi given by

ωh=h(ωπ).\omega_{h}=h^{*}(\omega_{{\mathcal{M}}\pi}). (2.5)

The local expression of ωh\omega_{h} is

ωh=duαdpαidm1xi+dHdmx=duαdpαidm1xi+Huαduαdmx+Hpαidpαidmx.\omega_{h}=du^{\alpha}\wedge dp_{\alpha}^{i}\wedge d^{m-1}x_{i}+dH\wedge d^{m}x=du^{\alpha}\wedge dp_{\alpha}^{i}\wedge d^{m-1}x_{i}+\frac{\partial H}{\partial u^{\alpha}}du^{\alpha}\wedge d^{m}x+\frac{\partial H}{\partial p_{\alpha}^{i}}dp_{\alpha}^{i}\wedge d^{m}x. (2.6)

Note that if m=1m=1, ωh\omega_{h} is degenerate and the rank of its kernel is 11. On the other hand, if m2m\geq 2, ωh\omega_{h} is non-degenerate which implies that it is multisymplectic.

Proposition 2.2.

A (local) section s0:UM0πs^{0}:U\subseteq M\to{\mathcal{M}}^{0}\pi of the projection πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M is a solution of the Hamilton-deDonder-Weyl equations iff

(s0)(iUωh)=0,UΓ(V(πν0)),(s^{0})^{*}(i_{U}\omega_{h})=0,\;\;\;\forall\;U\in\Gamma(V(\pi\circ\nu^{0})),

where Γ(V(πν0))\Gamma(V(\pi\circ\nu^{0})) is the space of sections of the vertical bundle to πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M.

Proof.

Using the local expression s0(xi)=(xi,uα(x),pαi(x))s^{0}(x^{i})=(x^{i},u^{\alpha}(x),p_{\alpha}^{i}(x)), it is routine to verify that (s0)(iUωh)=0(s^{0})^{*}(i_{U}\omega_{h})=0 if and only if

uαxi=Hpαi, for all i and α,\frac{\partial u^{\alpha}}{\partial x^{i}}=\frac{\partial H}{\partial p_{\alpha}^{i}},\;\;\mbox{ for all }i\mbox{ and }\alpha,
ipαixi=Huα, for all α.\sum_{i}\frac{\partial p_{\alpha}^{i}}{\partial x^{i}}=-\frac{\partial H}{\partial u^{\alpha}},\;\;\mbox{ for all }\alpha.

3. A new canonical bracket formulation of Hamiltonian Classical Field Theories of first order

As we reviewed in the Introduction, the phase space of momenta for classical mechanics is the cotangent bundle TQT^{*}Q of the configuration space QQ, a smooth manifold of dimension nn. The cotangent bundle TQT^{*}Q carries a canonical symplectic structure which induces a vector bundle isomorphism :T(TQ)T(TQ)\flat:T(T^{*}Q)\to T^{*}(T^{*}Q) over the identity with inverse denoted :T(TQ)T(TQ)\sharp:T^{*}(T^{*}Q)\to T(T^{*}Q). The Hamiltonian is a real CC^{\infty}-function on TQT^{*}Q and the Hamiltonian vector field is given in terms of the differential dHdH and the vector bundle isomorphism \sharp as XH=dHX_{H}=\sharp dH, see Diagram (1.1). For field theories, we don’t have a Hamiltonian function, but a Hamiltonian section

h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi

of the canonical projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi. So, the following questions arise when extending the previous construction to field theories:

Question 1: What is the differential of hh?

Question 2: Where does the differential of hh take values?

We will answer these questions in §3.1 by showing that the differential dhdh of hh is a section of the phase bundle (π)\mathbb{P}(\pi) associated with the fibration μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi. The bundle (π)\mathbb{P}(\pi) was introduced in [32] and was used there to discuss a Tulczyjew triple for Classical Field Theories of first order. This will allow us to define the field-theoretic analogue to the vector bundle isomorphism \sharp in §3.2 and the field-theoretic analogue Γh\Gamma_{h} to the Hamiltonian vector field XHX_{H} in §3.3. In particular, we will show that Γh\Gamma_{h} can be identified with the equivalence class of Hamiltonian Ehresmann connections associated to hh.

Going back to Classical Hamiltonian Mechanics, we recall that the set of observables is the space C(TQ)C^{\infty}(T^{*}Q) and that the Hamilton equations can be equivalently formulated in the Poisson bracket form (1.2) with respect to the canonical Poisson bracket giving by the formulas (1.3). In view of this formulation, we need to find a suitable space of currents for field theories (the observables in field theories) such that their differentials take values in a bundle dual to the target bundle of Γh\Gamma_{h}, this is the goal of §3.4. From this a canonical bracket can be obtained between currents and Hamiltonian sections. This construction is carried out in §3.5.

3.1. The phase bundle associated with a fibration and the differential of a Hamiltonian section

Let π:EM\pi:E\to M be the configuration bundle of the field theory and h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be the Hamiltonian section. Then, although

dimπ=dim0π+1,dim\;{\mathcal{M}}\pi=dim\;{\mathcal{M}}^{0}\pi+1,

hh cannot be identified, in general, with a real CC^{\infty}-function on 0π{\mathcal{M}}^{0}\pi. However, to hh we can associate an extended Hamiltonian density

h:ππ(ΛmTM),{\mathcal{F}}_{h}:{\mathcal{M}}\pi\to\pi^{*}(\Lambda^{m}T^{*}M),

defined as follows. If γπ\gamma\in{\mathcal{M}}\pi we have μ(γ)=μ(h(μ(γ)))\mu(\gamma)=\mu(h(\mu(\gamma))) and hence using (2.4), we conclude that there exists a unique ΩΛmTπ(ν(γ))M\Omega\in\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M such that γ=h(μ(γ))+(ΛmTν(γ)π)(Ω)\gamma=h(\mu(\gamma))+(\Lambda^{m}T^{*}_{\nu(\gamma)}\pi)(\Omega). We thus define

h(γ)=Ω.{\mathcal{F}}_{h}(\gamma)=\Omega.

3.1.1. The differential of h\mathcal{F}_{h} and the extended phase bundle

Note that h{\mathcal{F}}_{h} may be considered, in a natural way, as a mm-form on π{\mathcal{M}}\pi. Thus, we can take its exterior differential and we obtain a (m+1)(m+1)-form on π{\mathcal{M}}\pi which is a section of the vector bundle

Λ2m+1(T(π))π.\Lambda^{m+1}_{2}(T^{*}({\mathcal{M}}\pi))\to{\mathcal{M}}\pi.

Now, it is easy to prove that the vector bundles Λ2m+1(T(π))\Lambda^{m+1}_{2}(T^{*}({\mathcal{M}}\pi)) and V(πν)(πν)(ΛmTM)V^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) are isomorphic. In fact, an isomorphism

Ψ:Λ2m+1(T(π))V(πν)(πν)(ΛmTM)\Psi:\Lambda^{m+1}_{2}(T^{*}({\mathcal{M}}\pi))\to V^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)

is given by

Ψ(θ~):Vγ(πν)Λm(Tπ(ν(γ))M),U~Vγ(πν)iU~θ~Λm(Tπ(ν(γ))M),\Psi(\tilde{\theta}):V_{\gamma}(\pi\circ\nu)\to\Lambda^{m}(T^{*}_{\pi(\nu(\gamma))}M),\;\;\tilde{U}\in V_{\gamma}(\pi\circ\nu)\to i_{\tilde{U}}\tilde{\theta}\in\Lambda^{m}(T^{*}_{\pi(\nu(\gamma))}M),

for θ~Λ2m+1(Tγ(π))\tilde{\theta}\in\Lambda^{m+1}_{2}(T^{*}_{\gamma}({\mathcal{M}}\pi)) and γπ\gamma\in{\mathcal{M}}\pi. Note that iU~θ~Λ1m(Tγ(π))i_{\tilde{U}}\tilde{\theta}\in\Lambda^{m}_{1}(T^{*}_{\gamma}({\mathcal{M}}\pi)), therefore, it induces an element of Λm(Tπ(ν(γ))M)\Lambda^{m}(T^{*}_{\pi(\nu(\gamma))}M).

We denote by dvhd^{v}{\mathcal{F}}_{h} the section of the vector bundle V(πν)(πν)(ΛmTM)πV^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}\pi induced by the differential of h{\mathcal{F}}_{h}. In local coordinates, if

h(xi,uα,pαi)=(xi,uα,H(x,u,p),pαi)h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x,u,p),p_{\alpha}^{i})

then

h(xi,uα,p,pαi)=(p+H(xi,uα,pαi))dmx{\mathcal{F}}_{h}(x^{i},u^{\alpha},p,p_{\alpha}^{i})=(p+H(x^{i},u^{\alpha},p_{\alpha}^{i}))d^{m}x (3.1)

and

dvh(xi,uα,p,pαi)=(dp+Huαduα+Hpαidpαi)dmx.d^{v}{\mathcal{F}}_{h}(x^{i},u^{\alpha},p,p_{\alpha}^{i})=\Big{(}dp+\frac{\partial H}{\partial u^{\alpha}}du^{\alpha}+\frac{\partial H}{\partial p_{\alpha}^{i}}dp_{\alpha}^{i}\Big{)}\otimes d^{m}x. (3.2)

Note that if μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi is the canonical projection, Φ\Phi is a mm-form on MM and Φ𝐯Γ(Vμ)\Phi^{\bf v}\in\Gamma(V\mu) is the vertical lift to π{\mathcal{M}}\pi (see Appendix B) then, using (3.2) and (B.1), we deduce that

(dvh)(Φ𝐯)=(πν)(Φ).(d^{v}{\mathcal{F}}_{h})(\Phi^{\bf v})=(\pi\circ\nu)^{*}(\Phi). (3.3)

This property of dvhd^{v}{\mathcal{F}}_{h} motivates the definition of the following affine subbundle of V(πν)(πν)(ΛmTM)V^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M).

Definition 3.1.

The extended phase bundle of the configuration bundle π:EM\pi:E\to M is the affine subbundle (π)~\widetilde{\mathbb{P}(\pi)} of V(πν)(πν)(ΛmTM)V^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) whose fiber at the point γπ\gamma\in{\mathcal{M}}\pi is

(π)~(γ)={𝒜~Lin(Vγ(πν),ΛmTπ(ν(γ))M)𝒜~(Ω𝐯(γ))=Ω,ΩΛmTπ(ν(γ))M}.\widetilde{\mathbb{P}(\pi)}(\gamma)=\big{\{}\tilde{\mathcal{A}}\in\operatorname{Lin}(V_{\gamma}(\pi\circ\nu),\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M)\mid\tilde{\mathcal{A}}(\Omega^{\bf v}(\gamma))=\Omega,\forall\;\Omega\in\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M\big{\}}. (3.4)

From (3.3) we have

dvhΓ((π)~).d^{v}{\mathcal{F}}_{h}\in\Gamma(\widetilde{\mathbb{P}(\pi)}).

Note that (π)~\widetilde{\mathbb{P}(\pi)} is modelled over the vector bundle V((π)~)V(\widetilde{\mathbb{P}(\pi)}) whose fiber at the point γπ\gamma\in{\mathcal{M}}\pi is

V((π)~)(γ)={ν~Lin(Vγ(πν),ΛmTπ(ν(γ))M)ν~(Ω𝐯(γ))=0,ΩΛmTπ(ν(γ))M}.V(\widetilde{\mathbb{P}(\pi)})(\gamma)=\{\tilde{\nu}\in\operatorname{Lin}(V_{\gamma}(\pi\circ\nu),\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M)\mid\tilde{\nu}(\Omega^{\bf v}(\gamma))=0,\forall\;\Omega\in\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M\}.

We remark that an element 𝒜~\tilde{\mathcal{A}} of (π)~\widetilde{\mathbb{P}(\pi)} has the following local form

𝒜~=(dp+𝒜~αduα+𝒜~iαdpαi)dmx\tilde{\mathcal{A}}=(dp+\tilde{\mathcal{A}}_{\alpha}du^{\alpha}+\tilde{\mathcal{A}}_{i}^{\alpha}dp_{\alpha}^{i})\otimes d^{m}x

and a generic element ν~\tilde{\nu} of V((π)~)V(\widetilde{\mathbb{P}(\pi)}) has the local form

ν~=(𝒜~αduα+𝒜~iαdpαi)dmx.\tilde{\nu}=(\tilde{\mathcal{A}}_{\alpha}du^{\alpha}+\tilde{\mathcal{A}}_{i}^{\alpha}dp_{\alpha}^{i})\otimes d^{m}x.

Therefore, the local coordinates on (π)~\widetilde{\mathbb{P}(\pi)} and V((π)~)V(\widetilde{\mathbb{P}(\pi)}) are (xi,uα,p,pαi;𝒜~α,𝒜~iα)(x^{i},u^{\alpha},p,p_{\alpha}^{i};\tilde{\mathcal{A}}_{\alpha},\tilde{\mathcal{A}}_{i}^{\alpha}). In addition,

(dvh)(xi,uα,p,pαi)=(xi,uα,p,pαi;Huα,Hpαi).(d^{v}{\mathcal{F}}_{h})(x^{i},u^{\alpha},p,p_{\alpha}^{i})=\Big{(}x^{i},u^{\alpha},p,p_{\alpha}^{i};\frac{\partial H}{\partial u^{\alpha}},\frac{\partial H}{\partial p_{\alpha}^{i}}\Big{)}. (3.5)

3.1.2. The differential of a Hamiltonian section and the phase bundle

Now, given a point xMx\in M, we can consider an action of the abelian group ΛmTxM\Lambda^{m}T^{*}_{x}M on the fiber (πν)1(x)(\pi\circ\nu)^{-1}(x) defined as follows. If ΦΛm(TxM)\Phi\in\Lambda^{m}(T^{*}_{x}M) then we define Φ:(πν)1(x)(πν)1(x)\Phi\;\cdot:(\pi\circ\nu)^{-1}(x)\to(\pi\circ\nu)^{-1}(x) by

Φγ=γ+(ΛmTν(γ)π)(Φ), for γ(πν)1(x).\Phi\cdot\gamma=\gamma+(\Lambda^{m}T^{*}_{\nu(\gamma)}\pi)(\Phi),\;\;\mbox{ for }\gamma\in(\pi\circ\nu)^{-1}(x). (3.6)

In local coordinates, we get

(λdmx)(xi,uα,p,pαi)=(xi,uα,p+λ,pαi)(\lambda d^{m}x)\cdot(x^{i},u^{\alpha},p,p_{\alpha}^{i})=(x^{i},u^{\alpha},p+\lambda,p_{\alpha}^{i})

and thus the quotient space π/π(ΛmTM){\mathcal{M}}\pi/\pi^{*}(\Lambda^{m}T^{*}M) may be identified with the reduced multimomentum bundle 0π{\mathcal{M}}^{0}\pi.

The tangent and cotangent lift of the previous action induces a fibred action of the vector bundle (πν)(ΛmTM)(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) on the vector bundles V(πν)V(\pi\circ\nu) and V(πν)(πν)(ΛmTM)V^{*}(\pi\circ\nu)\otimes(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M). In fact, if γΛ2m(TyE)\gamma\in\Lambda^{m}_{2}(T^{*}_{y}E), U~Vγ(πν)\tilde{U}\in V_{\gamma}(\pi\circ\nu) and ΦΛmTπ(y)M\Phi\in\Lambda^{m}T^{*}_{\pi(y)}M then the tangent lift is

ΦU~=(Tγ(Φ))(U~)VΦγ(πν).\Phi\;\cdot\tilde{U}=(T_{\gamma}(\Phi\cdot))(\tilde{U})\in V_{\Phi\cdot\gamma}(\pi\circ\nu). (3.7)

Note that, using (3.6), (3.7) and (B.1), it follows that

ΦΩγ𝐯=ΩΦγ𝐯,\Phi\cdot\Omega^{\bf v}_{\gamma}=\Omega^{\bf v}_{\Phi\cdot\gamma}, (3.8)

for ΩΛmTπ(y)M\Omega\in\Lambda^{m}T^{*}_{\pi(y)}M. If (xi,uα,p,pαi;u˙α,p˙,p˙αi)(x^{i},u^{\alpha},p,p_{\alpha}^{i};\dot{u}^{\alpha},\dot{p},\dot{p}_{\alpha}^{i}) are local coordinates on V(πν)V(\pi\circ\nu), we have

(λdmx)(xi,uα,p,pαi;u˙α,p˙,p˙αi)=(xi,uα,p+λ,pαi;u˙α,p˙,p˙αi).(\lambda d^{m}x)\cdot(x^{i},u^{\alpha},p,p_{\alpha}^{i};\dot{u}^{\alpha},\dot{p},\dot{p}_{\alpha}^{i})=(x^{i},u^{\alpha},p+\lambda,p_{\alpha}^{i};\dot{u}^{\alpha},\dot{p},\dot{p}_{\alpha}^{i}). (3.9)

In a similar way, if θ~Vγ(πν)ΛmTπ(ν(γ))M\tilde{\theta}\in V^{*}_{\gamma}(\pi\circ\nu)\otimes\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M then the cotangent lift is

(Φθ~)(U~)=θ~(ΦU~),(\Phi\cdot\tilde{\theta})(\tilde{U}^{\prime})=\tilde{\theta}(-\Phi\cdot\tilde{U}^{\prime}), (3.10)

for U~VΦγ(πν)\tilde{U}^{\prime}\in V_{\Phi\cdot\gamma}(\pi\circ\nu). From (3.4) and (3.8), we deduce that this action restricts to the extended phase bundle (π)~\widetilde{\mathbb{P}(\pi)}, and to the vector bundle V((π)~)V(\widetilde{\mathbb{P}(\pi)}). In local coordinates, we have

(λdmx)(xi,uα,p,pαi;𝒜~α,𝒜~iα)=(xi,uα,p+λ,pαi;𝒜~α,𝒜~iα).(\lambda d^{m}x)\cdot(x^{i},u^{\alpha},p,p_{\alpha}^{i};\tilde{\mathcal{A}}_{\alpha},\tilde{\mathcal{A}}^{\alpha}_{i})=(x^{i},u^{\alpha},p+\lambda,p_{\alpha}^{i};\tilde{\mathcal{A}}_{\alpha},\tilde{\mathcal{A}}^{\alpha}_{i}).

Taking the quotient with respect to the action, we can introduce the following definition.

Definition 3.2.

The phase bundle of the configuration bundle π:EM\pi:E\to M is defined by

(π)=(π)~(πν)(ΛmTM).\displaystyle\mathbb{P}(\pi)=\frac{\widetilde{\mathbb{P}(\pi)}}{(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)}.

We note that (π)\mathbb{P}(\pi) is an affine bundle over 0π=π/π(ΛmTM){\mathcal{M}}^{0}\pi={\mathcal{M}}\pi/\pi^{*}(\Lambda^{m}T^{*}M) modelled over the vector bundle V((π))=V((π))~(πν)(ΛmTM)\displaystyle V(\mathbb{P}(\pi))=\frac{V(\widetilde{\mathbb{P}(\pi))}}{(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)}. This bundle is isomorphic to the vector bundle

V(πν0)(πν0)(ΛmTM)=γ00πLin(Vγ0(πν0),ΛmTπ(ν0(γ0))M),V^{*}(\pi\circ\nu^{0})\otimes(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)=\cup_{\gamma^{0}\in{\mathcal{M}}^{0}\pi}\operatorname{Lin}(V_{\gamma^{0}}(\pi\circ\nu^{0}),\Lambda^{m}T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M),

an isomorphism being given by

𝒜Lin(Vγ0(πν0),ΛmTπ(ν0(γ0))M)[𝒜~]V((π))γ0,{\mathcal{A}}\in\operatorname{Lin}(V_{\gamma^{0}}(\pi\circ\nu^{0}),\Lambda^{m}T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M)\to[\tilde{\mathcal{A}}]\in V(\mathbb{P}(\pi))_{\gamma^{0}},

where 𝒜~:Vγ(πν)ΛmTπ(ν(γ))M\tilde{\mathcal{A}}:V_{\gamma}(\pi\circ\nu)\to\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M is defined by

𝒜~(U~)=𝒜((Tγμ)(U~)), for U~Vγ(πν)\tilde{\mathcal{A}}(\tilde{U})={\mathcal{A}}((T_{\gamma}\mu)(\tilde{U})),\;\;\;\mbox{ for }\tilde{U}\in V_{\gamma}(\pi\circ\nu)

with γπ\gamma\in{\mathcal{M}}\pi and μ(γ)=γ0\mu(\gamma)=\gamma^{0}. Local coordinates on (π)\mathbb{P}(\pi) and V((π))V({\mathbb{P}(\pi))} are

(xi,uα,pαi;𝒜α,𝒜iα).(x^{i},u^{\alpha},p_{\alpha}^{i};{\mathcal{A}}_{\alpha},{\mathcal{A}}_{i}^{\alpha}). (3.11)

It is clear that there exists a one-to-one correspondence between the space of sections of the affine bundle (π)0π\mathbb{P}(\pi)\to{\mathcal{M}}^{0}\pi and the set of sections of the extended phase bundle (π)~\widetilde{\mathbb{P}(\pi)} associated with π\pi, which are (πν)(ΛmTM)(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)-equivariant. So, if h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is a Hamiltonian section then, using (3.5), it is easy to see that the vertical differential dvhd^{v}{\mathcal{F}}_{h} is (πν)(ΛmTM)(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)-equivariant and, therefore, it induces a section

dh:0π(π)dh:{\mathcal{M}}^{0}\pi\to\mathbb{P}(\pi)

of the phase bundle (π)\mathbb{P}(\pi). We can thus write the following definition.

Definition 3.3.

The differential of a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is the section

dh:0π(π)dh:{\mathcal{M}}^{0}\pi\to\mathbb{P}(\pi)

defined by the following commutative diagram

π\textstyle{{\mathcal{M}}\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ\scriptstyle{\mu}dvh\scriptstyle{d^{v}{\mathcal{F}}_{h}}(π)~\textstyle{\widetilde{\mathbb{P}(\pi)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ~\scriptstyle{\tilde{\mu}}0π\textstyle{{\mathcal{M}}^{0}\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dh\scriptstyle{dh}(π)\textstyle{\mathbb{P}(\pi)}

where μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi and μ~:(π)~(π)\tilde{\mu}:\widetilde{\mathbb{P}(\pi)}\to\mathbb{P}(\pi) are the canonical projections.

The local expression of dhdh is

dh(xi,uα,pαi)=(xi,uα,pαi;Huα,Hpαi).dh(x^{i},u^{\alpha},p_{\alpha}^{i})=\Big{(}x^{i},u^{\alpha},p_{\alpha}^{i};\frac{\partial H}{\partial u^{\alpha}},\frac{\partial H}{\partial p_{\alpha}^{i}}\Big{)}. (3.12)

So, we have given an answer to Questions 1 and 2 stated above.

From the previous definition, we get the map

d:Γ(μ)Γ((π)),hΓ(μ)dhΓ((π)).d:\Gamma(\mu)\to\Gamma(\mathbb{P}(\pi)),\quad h\in\Gamma(\mu)\to dh\in\Gamma(\mathbb{P}(\pi)).

Note that Γ(μ)\Gamma(\mu) and Γ((π))\Gamma(\mathbb{P}(\pi)) are affine spaces modelled over the vector spaces Γ((πν0)(ΛmTM))\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) and Γ(V((π)))\Gamma(V(\mathbb{P}(\pi))), respectively, and dd is an affine map. Later in the paper, we shall use the corresponding linear map dl:Γ((πν0)(ΛmTM))Γ(V((π)))d^{l}:\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))\to\Gamma(V(\mathbb{P}(\pi))) defined as follows. If 0Γ((πν0)(ΛmTM)){\mathcal{F}}^{0}\in\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) is a (πν0)(ΛmTM)(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)-valued function on 0π{\mathcal{M}}^{0}\pi then it may be considered as a section of the vector bundle

Λ1m(T(0π))0π.\Lambda^{m}_{1}(T^{*}({\mathcal{M}}^{0}\pi))\to{\mathcal{M}}^{0}\pi.

So, we can take the standard differential d0d{\mathcal{F}}^{0} and we obtain a section of the vector bundle

Λ2m+1(T(0π))0π.\Lambda^{m+1}_{2}(T^{*}({\mathcal{M}}^{0}\pi))\to{\mathcal{M}}^{0}\pi.

This vector bundle is isomorphic to V(πν0)(πν0)(ΛmTM)0πV^{*}(\pi\circ\nu^{0})\otimes(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi, an isomorphism

Ψ0:Λ2m+1(T(0π))V(πν0)(πν0)(ΛmTM)\Psi^{0}:\Lambda^{m+1}_{2}(T^{*}({\mathcal{M}}^{0}\pi))\to V^{*}(\pi\circ\nu^{0})\otimes(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)

is given by

Ψ0(θ):Vγ0(πν0)Λm(Tπ(ν0(γ0))M),UiUθ,\Psi^{0}(\theta):V_{{\gamma}^{0}}(\pi\circ\nu^{0})\to\Lambda^{m}(T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M),\;\;U\to i_{U}\theta,

for θΛ2m+1(Tγ0(0π))\theta\in\Lambda^{m+1}_{2}(T^{*}_{\gamma^{0}}({\mathcal{M}}^{0}\pi)) and γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi. Note that iUθΛ1m(Tγ0(0π))i_{U}\theta\in\Lambda^{m}_{1}(T^{*}_{\gamma^{0}}({\mathcal{M}}^{0}\pi)) and, therefore, it induces an element of Λm(Tπ(ν0(γ0))M)\Lambda^{m}(T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M). We denote by dl0d^{l}{\mathcal{F}}^{0} the section of the vector bundle V(πν0)(πν0)(ΛmTM)0πV^{*}(\pi\circ\nu^{0})\otimes(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi induced by the differential d0d{\mathcal{F}}^{0} via the isomorphism Ψ0\Psi^{0}. If locally

0(xi,uα,pαi)=F0(xi,uα,pαi)dmx,{\mathcal{F}}^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=F^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})\otimes d^{m}x,

the local expression of dl0d^{l}{\mathcal{F}}^{0} is

dl0(xi,uα,pαi)=(xi,uα,pαi;F0uα,F0pαi).d^{l}{\mathcal{F}}^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\Big{(}x^{i},u^{\alpha},p_{\alpha}^{i};\frac{\partial F^{0}}{\partial u^{\alpha}},\frac{\partial F^{0}}{\partial p_{\alpha}^{i}}\Big{)}. (3.13)

3.1.3. Comments on the next steps

The differential dh:0π(π)dh:{\mathcal{M}}^{0}\pi\to\mathbb{P}(\pi) of a Hamiltonian section is the field theoretic analogue to the differential dH:TQT(TQ)dH:T^{*}Q\rightarrow T^{*}(T^{*}Q) of a Hamiltonian function in classical mechanics. In the next section, we will introduce a quotient affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{KerA}\to{\mathcal{M}}^{0}\pi which is the field theoretic analogue to the tangent bundle T(TQ)T(T^{*}Q) of the phase space in classical mechanics. Recall that using the canonical symplectic structure of TQT^{*}Q, one can define a canonical vector bundle isomorphism

:T(TQ)T(TQ)\sharp:T^{*}(T^{*}Q)\to T(T^{*}Q)

and the Hamiltonian vector field XHX_{H} on TQT^{*}Q associated with a Hamiltonian function HC(TQ)H\in C^{\infty}(T^{*}Q) is given by XH=dHX_{H}=\sharp\circ dH. So, a natural question arises:

Question 3: Does there exist an affine bundle isomorphism aff:(π)J1(πν0)/KerA\sharp^{\rm aff}:\mathbb{P}(\pi)\rightarrow J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A which, in the presence of a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi, allows us to introduce a distinguished section Γh\Gamma_{h} of the affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi?

In the next Section 3.2, we will give an affirmative answer to Question 3 and we will discuss the relation between Γh\Gamma_{h} and the solutions of the Hamilton-deDonder-Weyl equations for hh. The section Γh\Gamma_{h} will play the role of XHX_{H} in Hamiltonian Mechanics.

3.2. The field-theoretic analogue to the canonical isomorphism :T(TQ)T(TQ)\sharp:T^{*}(T^{*}Q)\to T(T^{*}Q)

We will show that it is given by an affine bundle isomorphism aff:(π)J1(πν0)/KerA\sharp^{\rm aff}:\mathbb{P}(\pi)\rightarrow J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A.

Let J1(πν0)J^{1}(\pi\circ\nu^{0}) be the 11-jet bundle associated with the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M (see Appendix A). To define the quotient affine bundle, we shall use a construction in [32]. In this paper, the author introduced an affine bundle epimorphism

A:J1(πν0)(π)=(π)~(πν)(ΛmTM)A:J^{1}(\pi\circ\nu^{0})\to\displaystyle\mathbb{P}(\pi)=\frac{\widetilde{\mathbb{P}(\pi)}}{(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)}

over the identity of 0π{\mathcal{M}}^{0}\pi. This epimorphism is constructed in several steps.

First, we consider the vector bundle monomorphism

~:V(πν)(πν)Λ2m(Tπ)Λm(Tπ)\tilde{\flat}:V(\pi\circ\nu)\to{\mathcal{M}}(\pi\circ\nu)\simeq\Lambda^{m}_{2}(T^{*}{\mathcal{M}}\pi)\subseteq\Lambda^{m}(T^{*}{\mathcal{M}}\pi)

induced by the canonical multisymplectic structure ωπ\omega_{{\mathcal{M}}\pi} as follows

~(U~)=iU~ωπ(γ), for U~Vγ(πν).\tilde{\flat}(\tilde{U})=i_{\tilde{U}}\omega_{{\mathcal{M}}\pi}(\gamma),\;\;\mbox{ for }\tilde{U}\in V_{\gamma}(\pi\circ\nu). (3.14)

Note that, from (2.3), there exists a unique mm-form at μ(γ)\mu(\gamma) on 0π{\mathcal{M}}^{0}\pi, which we denote by ¯(U~)\bar{\flat}(\tilde{U}), such that

iU~ωπ(γ)=(ΛmTγμ)(¯(U~)).i_{\tilde{U}}\omega_{{\mathcal{M}}\pi}(\gamma)=(\Lambda^{m}T^{*}_{\gamma}\mu)(\bar{\flat}(\tilde{U})). (3.15)

This defines a vector bundle morphism

¯:V(πν)(πν0)Λ2m(T0π)Λm(T0π)\bar{\flat}:V(\pi\circ\nu)\to{\mathcal{M}}(\pi\circ\nu^{0})\simeq\Lambda^{m}_{2}(T^{*}{\mathcal{M}}^{0}\pi)\subseteq\Lambda^{m}(T^{*}{\mathcal{M}}^{0}\pi)

over the canonical projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi. Using local coordinates (xi,uα,p,pαi;uα˙,p˙,p˙αi)(x^{i},u^{\alpha},p,p_{\alpha}^{i};\dot{u^{\alpha}},\dot{p},\dot{p}_{\alpha}^{i}) and (xi,uα,pαi;p¯,p¯αi,p¯iαj)(x^{i},u^{\alpha},p_{\alpha}^{i};\bar{p},\bar{p}_{\alpha}^{i},\bar{p}_{i}^{\alpha j}) on V(πν)V(\pi\circ\nu) and (πν0){\mathcal{M}}(\pi\circ\nu^{0}), respectively, the local expression of ¯\bar{\flat} is

¯(xi,uα,p,pαi;uα˙,p˙,p˙αi)=(xi,uα,pαi;p˙,p˙αi,p¯iαj=u˙αδij).\bar{\flat}(x^{i},u^{\alpha},p,p_{\alpha}^{i};\dot{u^{\alpha}},\dot{p},\dot{p}_{\alpha}^{i})=(x^{i},u^{\alpha},p_{\alpha}^{i};-\dot{p},-\dot{p}_{\alpha}^{i},\bar{p}_{i}^{\alpha j}=\dot{u}^{\alpha}\delta^{j}_{i}). (3.16)

If γπ\gamma\in{\mathcal{M}}\pi, the following commutative diagram

Vγ(πν)\textstyle{V_{\gamma}(\pi\circ\nu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}~γ\scriptstyle{\tilde{\flat}_{\gamma}}¯γ\scriptstyle{\bar{\flat}_{\gamma}}γ(πν)=Λ2mTγ(π)\textstyle{{\mathcal{M}}_{\gamma}(\pi\circ\nu)=\Lambda_{2}^{m}T_{\gamma}^{*}({\mathcal{M}}\pi)}μ(γ)(πν0)=Λ2mTμ(γ)(0π)\textstyle{{\mathcal{M}}_{\mu(\gamma)}(\pi\circ\nu^{0})=\Lambda_{2}^{m}T_{\mu(\gamma)}^{*}({\mathcal{M}}^{0}\pi)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΛmTγμ\scriptstyle{\Lambda^{m}T^{*}_{\gamma}\mu} (3.17)

illustrates the relation between ~\tilde{\flat} and ¯\bar{\flat}.

We shall now use the vector bundle morphism ¯\bar{\flat} to construct AA. For γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi and Z0Jγ01(πν0)Z^{0}\in J^{1}_{\gamma^{0}}(\pi\circ\nu^{0}) one first defines

A(Z0)~(π)~(γ)Vγ(πν)ΛmTπ(ν(γ))M,\widetilde{A(Z^{0})}\in\widetilde{\mathbb{P}(\pi)}(\gamma)\subseteq V_{\gamma}^{*}(\pi\circ\nu)\otimes\Lambda^{m}T^{*}_{\pi(\nu(\gamma))}M,

with γπ\gamma\in{\mathcal{M}}\pi such that μ(γ)=γ0\mu(\gamma)=\gamma^{0}, as follows:

A(Z0)~,U~=Λm((Z0))(¯(U~)),\big{\langle}\widetilde{A(Z^{0})},\tilde{U}\big{\rangle}=-\Lambda^{m}((Z^{0})^{*})(\bar{\flat}(\tilde{U})), (3.18)

for U~Vγ(πν)\tilde{U}\in V_{\gamma}(\pi\circ\nu). Then, if μ~:(π)~(π)\tilde{\mu}:\widetilde{\mathbb{P}(\pi)}\to\mathbb{P}(\pi) is the canonical projection, we set

A(Z0)=μ~(A(Z0)~).A(Z^{0})=\tilde{\mu}(\widetilde{A(Z^{0})}). (3.19)

Note that AA is well-defined and its local expression is

A(xi,uα,pαi;ujα,pαji)=(xi,uα,pαi;ipαii,ujα).A(x^{i},u^{\alpha},p_{\alpha}^{i};u^{\alpha}_{j},p_{\alpha j}^{i})=\Big{(}x^{i},u^{\alpha},p_{\alpha}^{i};-\sum_{i}p^{i}_{\alpha i},u^{\alpha}_{j}\Big{)}. (3.20)

This proves that AA is an affine bundle epimorphism over the identity of 0π{\mathcal{M}}^{0}\pi (for more details, see [32]).

Recall that the affine bundle J1(πν0)0πJ^{1}(\pi\circ\nu^{0})\to{\mathcal{M}}^{0}\pi is modelled over the vector bundle V(J1(πν0))=(πν0)(TM)V(πν0)0πV(J^{1}(\pi\circ\nu^{0}))=(\pi\circ\nu^{0})^{*}(T^{*}M)\otimes V(\pi\circ\nu^{0})\to{\mathcal{M}}^{0}\pi. We denote by (xi,uα,pαi;ujα,pαji)(x^{i},u^{\alpha},p_{\alpha}^{i};u^{\alpha}_{j},p^{i}_{\alpha j}) the standard coordinates on J1(πν0)J^{1}(\pi\circ\nu^{0}) and V(J1(πν0))V(J^{1}(\pi\circ\nu^{0})) (see Appendix A). From the local expression (3.20), it follows that the kernel of AA is a vector subbundle of V(J1(πν0))V(J^{1}(\pi\circ\nu^{0})) which is locally characterized by

KerA={(xi,uα,pαi;ujα,pαji)V(J1(πν0))ujα=0,ipαii=0,α,i}.\operatorname{Ker}A=\big{\{}(x^{i},u^{\alpha},p_{\alpha}^{i};u^{\alpha}_{j},p^{i}_{\alpha j})\in V(J^{1}(\pi\circ\nu^{0}))\mid u^{\alpha}_{j}=0,\sum_{i}p_{\alpha i}^{i}=0,\forall\alpha,i\big{\}}. (3.21)

We can thus consider the quotient affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi which is modelled over the quotient vector bundle (πν0)(TM)V(πν0)/KerA0π(\pi\circ\nu^{0})^{*}(T^{*}M)\otimes V(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi. From (3.21), we have that a local basis of sections for this vector bundle is

{ναi=[dxiuα],να=1/m[dx1pα1++dxmpαm]}\big{\{}\nu_{\alpha}^{i}=\big{[}dx^{i}\otimes\frac{\partial}{\partial u^{\alpha}}\big{]},\nu^{\alpha}=1/m\big{[}dx^{1}\otimes\frac{\partial}{\partial p_{\alpha}^{1}}+\dots+dx^{m}\otimes\frac{\partial}{\partial p_{\alpha}^{m}}\big{]}\big{\}}

for i{1,,m}i\in\{1,\dots,m\} and α{1,,n}\alpha\in\{1,\dots,n\}. Note that in the quotient vector bundle

[dxipαi]=[dxjpαj],i,j and α.\big{[}dx^{i}\otimes\frac{\partial}{\partial p_{\alpha}^{i}}\big{]}=\big{[}dx^{j}\otimes\frac{\partial}{\partial p_{\alpha}^{j}}\big{]},\;\;\forall\;i,j\mbox{ and }\alpha.

Local coordinates associated to this basis of sections on the quotient vector bundle (πν0)(TM)V(πν0)/KerA0π(\pi\circ\nu^{0})^{*}(T^{*}M)\otimes V(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi (and also on the quotient affine bundle J1(πν0)/KerAJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A) are denoted (xi,uα,pαi;u^jα,p^α)(x^{i},u^{\alpha},p_{\alpha}^{i};\hat{u}^{\alpha}_{j},\hat{p}_{\alpha})

The affine bundle epimorphism A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) induces an affine bundle isomorphism

A^:J1(πν0)/KerA(π)\hat{A}:J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to\mathbb{P}(\pi)

and, from (3.20), we deduce that the local expression of A^\hat{A} is

A^(xi,uα,pαi;u^iα,p^α)=(xi,uα,pαi;p^α,u^iα).\hat{A}(x^{i},u^{\alpha},p_{\alpha}^{i};\hat{u}^{\alpha}_{i},\hat{p}_{\alpha})=(x^{i},u^{\alpha},p_{\alpha}^{i};-\hat{p}_{\alpha},\hat{u}^{\alpha}_{i}). (3.22)

By definition, the affine bundle isomorphism

aff:(π)J1(πν0)/KerA\sharp^{\rm aff}:\mathbb{P}(\pi)\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A

is the inverse isomorphism to A^:J1(πν0)/KerA(π)\hat{A}:J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to\mathbb{P}(\pi). If we consider the local coordinates (xi,uα,pαi;𝒜α,𝒜iα)(x^{i},u^{\alpha},p_{\alpha}^{i};{\mathcal{A}}_{\alpha},{\mathcal{A}}^{\alpha}_{i}) on the phase bundle (π)\mathbb{P}(\pi) then, using (3.22), it follows that

aff(xi,uα,pαi;𝒜α,𝒜iα)=(xi,uα,pαi;𝒜iα,𝒜α).\sharp^{\rm aff}(x^{i},u^{\alpha},p_{\alpha}^{i};{\mathcal{A}}_{\alpha},{\mathcal{A}}^{\alpha}_{i})=(x^{i},u^{\alpha},p_{\alpha}^{i};{\mathcal{A}}^{\alpha}_{i},-{\mathcal{A}}_{\alpha}). (3.23)

3.3. The field-theoretic analogue to the Hamiltonian vector field XH:TQT(TQ)X_{H}:TQ\rightarrow T(T^{*}Q)

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section. We have seen that the differential of hh

dh:0π(π)dh:{\mathcal{M}}^{0}\pi\to\mathbb{P}(\pi)

is a section of the phase bundle (π)\mathbb{P}(\pi). So, we can define the section

Γh:0πJ1(πν0)/KerA\Gamma_{h}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A

of the quotient affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi by

Γh=affdh.\Gamma_{h}=\sharp^{\rm aff}\circ dh. (3.24)

Using (3.12), (3.23) and the local basis of sections {ναi,να}\{\nu_{\alpha}^{i},\nu^{\alpha}\} introduced above, we obtain that the local expression of Γh\Gamma_{h} is

Γh[dxixi]=HpαiναiHuανα.\Gamma_{h}-[dx^{i}\otimes\frac{\partial}{\partial x^{i}}]=\frac{\partial H}{\partial p_{\alpha}^{i}}\nu^{i}_{\alpha}-\frac{\partial H}{\partial u^{\alpha}}\nu^{\alpha}. (3.25)

Now, we will show that Γh\Gamma_{h} plays the same role, in Hamiltonian Classical Field Theories of first order, that the Hamiltonian vector field associated with a Hamiltonian function in Classical Mechanics. This will give an affirmative answer to Question 3 in Section 3.1.

For this purpose, we will discuss the relation between Γh\Gamma_{h} and the solutions of the Hamilton-deDonder-Weyl equations for hh. This uses the notion of a Hamiltonian connection (see [19, 21]).

Let τ:NB\tau:N\to B be an arbitrary fibration and HH an Ehresmann connection on τ:NB\tau:N\to B. Denote by :HN×BTBHTN{}^{H}:N\times_{B}TB\to H\subseteq TN the horizontal lift induced by HH (see Appendix A). It is clear that if 1rb=dimB1\leq r\leq b=\operatorname{dim}B the previous map induces a vector bundle isomorphism between N×BΛr(TB)N\times_{B}\Lambda^{r}(TB) and ΛrH\Lambda^{r}H which we also denote by

:HN×BΛr(TB)ΛrHΛr(TN).{}^{H}:N\times_{B}\Lambda^{r}(TB)\to\Lambda^{r}H\subseteq\Lambda^{r}(TN).

So, if χΓ(N×BΛr(TB))\chi\in\Gamma(N\times_{B}\Lambda^{r}(TB)), the image χH\chi^{H} of χ\chi by the previous map is called the horizontal lift of χ\chi. If (bi,nα)(b^{i},n^{\alpha}) are local coordinates on NN which are adapted to the fibration τ\tau, then the horizontal lift reads locally

(bi)H=bi+Hiαnα,i{1,,b}\left(\frac{\partial}{\partial b^{i}}\right)^{H}=\frac{\partial}{\partial b^{i}}+H^{\alpha}_{i}\frac{\partial}{\partial n^{\alpha}},\;\;\forall i\in\{1,\dots,b\}

and if

χ=χi1irbi1birΓ(ΛrTB)\chi=\chi_{i_{1}\dots i_{r}}\frac{\partial}{\partial b^{i_{1}}}\wedge\dots\wedge\frac{\partial}{\partial b^{i_{r}}}\in\Gamma(\Lambda^{r}TB)

then its horizontal lift is

χH=χi1ir(bi1)H(bir)H=χi1ir(bi1+Hi1α1nα1)(bir+Hirαrnαr).\chi^{H}=\chi_{i_{1}\dots i_{r}}\left(\frac{\partial}{\partial b^{i_{1}}}\right)^{H}\wedge\dots\wedge\left(\frac{\partial}{\partial b^{i_{r}}}\right)^{H}=\chi_{i_{1}\dots i_{r}}\left(\frac{\partial}{\partial b^{i_{1}}}+H_{i_{1}}^{\alpha_{1}}\frac{\partial}{\partial n^{\alpha_{1}}}\right)\wedge\dots\wedge\left(\frac{\partial}{\partial b^{i_{r}}}+H_{i_{r}}^{\alpha_{r}}\frac{\partial}{\partial n^{\alpha_{r}}}\right).

Now, suppose that π:EM\pi:E\to M is the configuration bundle of a Hamiltonian Classical Field Theory of first order, with m=dimMm=\operatorname{dim}M, and consider the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M. For a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi, we denote by ωh\omega_{h} the (m+1)(m+1)-form on 0π{\mathcal{M}}^{0}\pi given by (2.5).

Then, we may prove the following result.

Lemma 3.4.

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section, let HH be an Ehresmann connection on the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M, and let s0:UM0πs^{0}:U\subseteq M\to{\mathcal{M}}^{0}\pi be a section horizontal with respect to HH. Then, s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations for hh if and only if

(s0)(iχHωh)=0,χΓ(Λm(TM)).(s^{0})^{*}\left(i_{\chi^{H}}\omega_{h}\right)=0,\;\;\forall\;\chi\in\Gamma(\Lambda^{m}(TM)). (3.26)
Proof.

Using that s0s^{0} is horizontal with respect to HH we deduce that

(s0)(iUωh)=0,UΓ(V(πν0))(s^{0})^{*}(i_{U}\omega_{h})=0,\;\;\forall\;U\in\Gamma(V(\pi\circ\nu^{0}))

if and only if

(s0)(iχHiUωh)=0,χΓ(Λm(TM)).(s^{0})^{*}\left(i_{\chi^{H}}i_{U}\omega_{h}\right)=0,\;\;\forall\;\chi\in\Gamma(\Lambda^{m}(TM)). (3.27)

So, it is clear that if (3.26) holds then s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations for hh by Proposition 2.2.

Conversely, assume that s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations for hh. Then (3.27) holds. Thus, using that

Ts0(x)0π=(s0(x)×TxM)HVs0(x)(πν0),xUM,T_{s_{0}(x)}{\mathcal{M}}^{0}\pi=\kern-3.0pt({s_{0}(x)}\times T_{x}M)^{H}\oplus V_{s_{0}(x)}(\pi\circ\nu^{0}),\;\;\forall x\in U\subseteq M,

we deduce that

(s0)(iχHωh)(x)=0,χΓ(ΛmTM),xUM.(s^{0})^{*}\left(i_{\chi^{H}}\omega_{h}\right)(x)=0,\;\;\forall\chi\in\Gamma(\Lambda^{m}TM),\;\;\forall x\in U\subseteq M.

This proves the result. ∎

The previous result suggests the introduction of the following definition.

Definition 3.5.

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section. An Ehresmann connection :H0π×MTMHT(0π){}^{H}:{\mathcal{M}}^{0}\pi\times_{M}TM\to H\subseteq T({\mathcal{M}}^{0}\pi) on the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M is said to be a Hamiltonian connection for hh if

iχHωh=0,χΓ(ΛmTM).i_{\chi^{H}}\omega_{h}=0,\;\;\forall\chi\in\Gamma(\Lambda^{m}TM).

As a direct consequence of the definition, if locally the Hamiltonian section hh is

h(xi,uα,pαi)=(xi,uα,H(x,u,p),pαi)h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x,u,p),p_{\alpha}^{i})

and the Ehresmann connection is

(xi)H=xi+Hiαuα+Hαijpαj,\left(\frac{\partial}{\partial x^{i}}\right)^{H}=\frac{\partial}{\partial x^{i}}+H_{i}^{\alpha}\frac{\partial}{\partial u^{\alpha}}+H_{\alpha i}^{j}\frac{\partial}{\partial p_{\alpha}^{j}},

then from (2.6), we have the equivalence

H:0π×MTMT(0π) Hamiltonian connection for h Hiα=Hpαi,Hαii=Huα.^{H}:{\mathcal{M}}^{0}\pi\times_{M}TM\to T({\mathcal{M}}^{0}\pi)\mbox{ Hamiltonian connection for $h$ }\Leftrightarrow H^{\alpha}_{i}=\frac{\partial H}{\partial p_{\alpha}^{i}},\;\;H^{i}_{\alpha i}=-\frac{\partial H}{\partial u^{\alpha}}. (3.28)

So, our definition of a Hamiltonian connection is equivalent to that introduced in [19, 21]. Note that a Hamiltonian connection HH for hh may be identified with a section sH:0πJ1(πν0)s^{H}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0}) of the affine bundle J1(πν0)0πJ^{1}(\pi\circ\nu^{0})\to{\mathcal{M}}^{0}\pi (see Appendix A). Moreover, if Γh\Gamma_{h} is the section of the quotient affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi defined in (3.24) then, using (3.25) and (3.28), we obtain the following result.

Proposition 3.6.

Let sH:0πJ1(πν0)s^{H}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0}) be the section of the affine bundle J1(πν0)0πJ^{1}(\pi\circ\nu^{0})\to{\mathcal{M}}^{0}\pi induced by a Hamiltonian connection HH for hh and p:J1(πν0)J1(πν0)/KerAp:J^{1}(\pi\circ\nu^{0})\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A be the canonical projection. Then

Γh=psH.\Gamma_{h}=p\circ s^{H}.

From (3.21) and (3.28), we also get the following result.

Proposition 3.7.

If H,H¯:0πJ1(πν0)H,\bar{H}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0}) are Hamiltonian connections for the same Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi, then they satisfy

H¯HΓ(KerA).\bar{H}-H\in\Gamma(\operatorname{Ker}A).

Finally, from Propositions 3.6 and 3.7, it follows the following characterization of Hamiltonian connections for hh.

Theorem 3.8.

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section and let HH be an Ehresmann connection for the fibration πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M. Then, HH is a Hamiltonian connection for hh if and only if

Γh=psH.\Gamma_{h}=p\circ s^{H}.

Theorem 3.8 suggests the introduction of the following definition.

Definition 3.9.

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section. Then, the section Γh:0πJ1(πν0)/KerA\Gamma_{h}:{\mathcal{M}}^{0}\pi\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A is called the equivalence class of the Hamiltonian connections for hh.

The following commutative diagram illustrates the results obtained in Sections 3.1, 3.2, 3.3

(π)\textstyle{{\mathbb{P}(\pi)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}aff\scriptstyle{\sharp^{\rm aff}}J1(πν0)/KerA\textstyle{J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A}0π\textstyle{{\mathcal{M}}^{0}\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dh\scriptstyle{dh}Γh\scriptstyle{\Gamma_{h}}

It is the field-theoretic analogue to Diagram 1.1 for Hamiltonian Mechanics.

The last step is to introduce a suitable space of currents for Hamiltonian Classical Field Theories of first order and a suitable canonical bracket formulation for the evolution of such currents along the solution of the Hamilton-deDonder-Weyl equations. This is the aim of the next two subsections.

3.4. A suitable space of currents for Hamiltonian Classical Field Theories

We shall define a space of currents for Hamiltonian Classical Field Theories of first order, which plays the same role that the space of observables in Hamiltonian Mechanics.

Recall that in Hamiltonian Mechanics, the Hamiltonian vector field XHX_{H} is a section of the vector bundle T(TQ)TQT(T^{*}Q)\to T^{*}Q and the space of observables is the set C(TQ)C^{\infty}(T^{*}Q) of real CC^{\infty}-functions on TQT^{*}Q. Given an observable FC(TQ)F\in C^{\infty}(T^{*}Q), we can consider a section dFdF (the differential of FF) of the dual bundle T(TQ)TQT^{*}(T^{*}Q)\to T^{*}Q to T(TQ)TQT(T^{*}Q)\to T^{*}Q and the evolution of the observable FF along a solution s:ITQs:I\subseteq\mathbb{R}\to T^{*}Q of Hamilton’s equation is given as

ddt(Fs)=dF,XHs.\frac{d}{dt}(F\circ s)=\langle dF,X_{H}\rangle\circ s.

When written for all observables FF, the previous equations are equivalent to the Hamilton equations.

Our goal is to carry out these construction for Hamiltonian Classical Field theories. As we have seen, given a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi, the object corresponding to the Hamiltonian vector field XHX_{H} is the section Γh\Gamma_{h} of the quotient affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to{\mathcal{M}}^{0}\pi. So, we need to overcome the following two steps:

First step: Describe the dual vector bundle (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+} to the affine bundle J1(πν0)/KerA0πJ^{1}(\pi\circ\nu^{0})/\operatorname{KerA}\to{\mathcal{M}}^{0}\pi.

Second step: Introduce a space 𝒪{\mathcal{O}} of currents and a differential operator

d:𝒪Γ((J1(πν0)/KerA)+)d:{\mathcal{O}}\to\Gamma\big{(}(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}\big{)} (3.29)

on this space, such that the evolution of a current α0𝒪\alpha^{0}\in{\mathcal{O}} along a solution s0:UM0πs^{0}:U\subseteq M\to{\mathcal{M}}^{0}\pi is given by

(s0)(dα0)=dα0,Γhs0.(s^{0})^{*}(d\alpha^{0})=\langle d\alpha^{0},\Gamma_{h}\rangle\circ s^{0}.

We will show that s0s^{0} satisfies these equations for any α𝒪\alpha\in\mathcal{O} if and only if s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations.

First step: Let A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) (respectively, A^:J1(πν0)/KerA(π)\hat{A}:J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to\mathbb{P}(\pi)) be the affine bundle epimorphism (respectively, isomorphism) considered in Section 3.2. Denote by (π)+\mathbb{P}(\pi)^{+} and J1(πν0)+J^{1}(\pi\circ\nu^{0})^{+} the vector bundles over 0π{\mathcal{M}}^{0}\pi defined by

(π)+\displaystyle\mathbb{P}(\pi)^{+} =Aff((π),(πν0)(ΛmTM))\displaystyle={\rm Aff}(\mathbb{P}(\pi),(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))
J1(πν0)+\displaystyle J^{1}(\pi\circ\nu^{0})^{+} =Aff(J1(πν0),(πν0)(ΛmTM)).\displaystyle={\rm Aff}(J^{1}(\pi\circ\nu^{0}),(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)).

It is clear that AA induces the vector bundle morphism

A+:(π)+J1(πν0)+=(πν0),A+(U0),Z0=U0,A(Z0)A^{+}:\mathbb{P}(\pi)^{+}\to J^{1}(\pi\circ\nu^{0})^{+}={\mathcal{M}}(\pi\circ\nu^{0}),\qquad\langle A^{+}(U^{0}),Z^{0}\rangle=\langle U^{0},A(Z^{0})\rangle

for U0(π)γ0+U^{0}\in\mathbb{P}(\pi)^{+}_{\gamma^{0}} and Z0Jγ01(πν0)Z^{0}\in J^{1}_{\gamma^{0}}(\pi\circ\nu^{0}), with γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi. Since AA is an epimorphism, we deduce that A+A^{+} is a vector bundle monomorphism. In addition, the image of A+A^{+} is the vector subbundle of J1(πν0)+J^{1}(\pi\circ\nu^{0})^{+} whose fiber at the point γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi is

A+((π)+)γ0={θ0Aff(Jγ01(πν0),ΛmTπ(ν0(γ0))M)(θ0)l,KerAVγ0(J1(πν0))=0}.A^{+}(\mathbb{P}(\pi)^{+})_{\gamma^{0}}=\big{\{}\theta^{0}\in{\rm Aff}(J^{1}_{\gamma^{0}}(\pi\circ\nu^{0}),\Lambda^{m}T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M)\mid\big{\langle}(\theta^{0})^{l},\operatorname{Ker}A\cap V_{\gamma^{0}}(J^{1}(\pi\circ\nu^{0}))\big{\rangle}=0\big{\}}.

Here, (θ0)l:Vγ0(J1(πν0))ΛmTπ(ν0(γ0))M(\theta^{0})^{l}:V_{\gamma^{0}}(J^{1}(\pi\circ\nu^{0}))\to\Lambda^{m}T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M denotes the linear map associated with the affine map θ0:Jγ01(πν0)ΛmTπ(ν0(γ0))M\theta^{0}:J^{1}_{\gamma^{0}}(\pi\circ\nu^{0})\to\Lambda^{m}T^{*}_{\pi(\nu^{0}(\gamma^{0}))}M. So, we have a vector bundle isomorphism

A+:(π)+A+((π)+)(πν0)A^{+}:\mathbb{P}(\pi)^{+}\to A^{+}(\mathbb{P}(\pi)^{+})\subseteq{\mathcal{M}}(\pi\circ\nu^{0})

over the identity of 0π{\mathcal{M}}^{0}\pi.

Now, denote by A^+:(π)+(J1(πν0)/KerA)+\hat{A}^{+}:\mathbb{P}(\pi)^{+}\to(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+} the vector bundle isomorphism induced by A^:J1(πν0)/KerA(π)\hat{A}:J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A\to\mathbb{P}(\pi). Then, it is clear that the vector bundles A+((π)+)A^{+}(\mathbb{P}(\pi)^{+}) and (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+} can be identified and, under this identification, A^+\hat{A}^{+} is just the vector bundle isomorphism A+:(π)+A+((π)+)(πν0)A^{+}:\mathbb{P}(\pi)^{+}\to A^{+}(\mathbb{P}(\pi)^{+})\subseteq{\mathcal{M}}(\pi\circ\nu^{0}).

The following commutative diagram

(π)+\textstyle{{\mathbb{P}(\pi)^{+}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A^+\scriptstyle{\hat{A}^{+}}A+\scriptstyle{A^{+}}(J1(πν0)/KerA)+\textstyle{(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}A+((π)+)\textstyle{A^{+}(\mathbb{P}(\pi)^{+})}

illustrates the situation.

It is desirable to have an explicit realisation of dual vector bundle (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}. As we know

J1(πν0)+=(πν0)Λ2m(T(0π))J^{1}(\pi\circ\nu^{0})^{+}={\mathcal{M}}(\pi\circ\nu^{0})\simeq\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi))

(see Section 2.1). So it is possible to describe A+((π)+)A^{+}(\mathbb{P}(\pi)^{+}) and, therefore, (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+}, as a certain vector subbundle LL of Λ2m(T(0π))\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi)). We shall now give such a description.

First of all, using (3.4), it follows that the vector bundle

(π)~+=Aff((π)~,(πν)(ΛmTM))\widetilde{\mathbb{P}(\pi)}^{+}={\rm Aff}\big{(}\widetilde{\mathbb{P}(\pi)},(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\big{)}

is isomorphic to the vertical bundle V(πν)V(\pi\circ\nu) of the fibration πν:πM\pi\circ\nu:{\mathcal{M}}\pi\to M. An isomorphism

~:V(πν)(π)~+\tilde{\mathcal{I}}:V(\pi\circ\nu)\to\widetilde{\mathbb{P}(\pi)}^{+}

is given by

~(U~),𝒜~=𝒜~(U~), for U~Vγ(πν) and 𝒜~(π)~γ,\langle\tilde{\mathcal{I}}(\tilde{U}),\tilde{\mathcal{A}}\rangle=\tilde{\mathcal{A}}(\tilde{U}),\;\;\mbox{ for }\tilde{U}\in V_{\gamma}(\pi\circ\nu)\mbox{ and }\tilde{\mathcal{A}}\in\widetilde{\mathbb{P}(\pi)}_{\gamma}, (3.30)

with γπ\gamma\in{\mathcal{M}}\pi.

Now, if we consider the standard fibred actions of (πν)(ΛmTM)(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) on V(πν)V(\pi\circ\nu) and (π)~+\widetilde{\mathbb{P}(\pi)}^{+} then, it is clear that ~\tilde{\mathcal{I}} is (πν)(ΛmTM)(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)-equivariant and, thus, it induces a vector bundle isomorphism

:V(πν)/(πν)(ΛmTM)(π)~+/(πν)(ΛmTM){\mathcal{I}}:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to\widetilde{\mathbb{P}(\pi)}^{+}/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)

over the identity of 0π{\mathcal{M}}^{0}\pi. Then, from Definition 3.2, we deduce that the quotient vector bundle (π)~+/(πν)(ΛmTM)\widetilde{\mathbb{P}(\pi)}^{+}/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) is isomorphic to (π)+\mathbb{P}(\pi)^{+}. So, we have a vector bundle isomorphism

:V(πν)/(πν)(ΛmTM)(π)+{\mathcal{I}}:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to\mathbb{P}(\pi)^{+}

which is characterized by the following condition

[U~],μ~(𝒜~)=~(U~),𝒜~\langle{\mathcal{I}}[\tilde{U}],\tilde{\mu}(\tilde{\mathcal{A}})\rangle=\langle\tilde{\mathcal{I}}(\tilde{U}),\tilde{\mathcal{A}}\rangle (3.31)

for U~Vγ(πν)\tilde{U}\in V_{\gamma}(\pi\circ\nu) and 𝒜~(π)~γ\tilde{\mathcal{A}}\in\widetilde{\mathbb{P}(\pi)}_{\gamma}, with γπ\gamma\in{\mathcal{M}}\pi and μ~:(π)~(π)\tilde{\mu}:\widetilde{\mathbb{P}(\pi)}\to\mathbb{P}(\pi) the canonical projection.

We now consider the composition

A+:V(πν)/(πν)(ΛmTM)A+((π)+)(πν0)=Λ2m(T0π)A^{+}\circ{\mathcal{I}}:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to A^{+}(\mathbb{P}(\pi)^{+})\subseteq{\mathcal{M}}(\pi\circ\nu^{0})=\Lambda^{m}_{2}(T^{*}{\mathcal{M}}^{0}\pi)

of the two vector bundles isomorphisms A+A^{+} and \mathcal{I} defined above and show that A+A^{+}\circ{\mathcal{I}} can be expressed in a simple way, which allows to describe its image LL explicitly.

Consider the vector bundle morphism ¯:V(πν)(πν0)Λ2m(T0π)\bar{\flat}:V(\pi\circ\nu)\to{\mathcal{M}}(\pi\circ\nu^{0})\simeq\Lambda^{m}_{2}(T^{*}{\mathcal{M}}^{0}\pi) defined in Section 3.2 which is characterized by Eq. (3.15) and has the local expression (3.16). Using (3.9), we deduce that ¯\bar{\flat} induces the vector bundle morphism

:V(πν)/(πν)(ΛmTM)(πν0)Λ2m(T(0π))\flat:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}(\pi\circ\nu^{0})\simeq\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi))

over the identity of 0π{\mathcal{M}}^{0}\pi given by

[U~]=¯(U~), for U~V(πν).\flat[\tilde{U}]=\bar{\flat}(\tilde{U}),\;\;\mbox{ for }\tilde{U}\in V(\pi\circ\nu). (3.32)

So, if γπ\gamma\in{\mathcal{M}}\pi and 𝒥γ:Vγ(πν)(V(πν)/(πν)(ΛmTM))μ(γ){\mathcal{J}}_{\gamma}:V_{\gamma}(\pi\circ\nu)\to(V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M))_{\mu(\gamma)} is the canonical isomorphism between the fibers by γ\gamma and μ(γ)\mu(\gamma) of the vector bundles V(πν)πV(\pi\circ\nu)\to{\mathcal{M}}\pi and V(πν)/(πν)(ΛmTM)0πV(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi, then the following diagram

Vγ(πν)\textstyle{V_{\gamma}(\pi\circ\nu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}¯γ\scriptstyle{\bar{\flat}_{\gamma}}𝒥γ\scriptstyle{{\mathcal{J}}_{\gamma}}μ(γ)(πν0)=Λ2mTμ(γ)(0π)\textstyle{{\mathcal{M}}_{\mu(\gamma)}(\pi\circ\nu^{0})=\Lambda_{2}^{m}T_{\mu(\gamma)}^{*}({\mathcal{M}}^{0}\pi)}(V(πν)/(πν)(ΛmTM))μ(γ)\textstyle{(V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M))_{\mu(\gamma)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\flat_{\gamma}} (3.33)

is commutative

Proposition 3.10.

We have the equality

A+=.-A^{+}\circ{\mathcal{I}}=\flat. (3.34)

This implies that the vector bundle (J1(πν0)/KerA)+(J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A)^{+} is isomorphic to the vector subbundle LL of (πν0)Λ2m(T(0π)){\mathcal{M}}(\pi\circ\nu^{0})\simeq\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi)) given by

L=¯(V(πν)).L=\bar{\flat}(V(\pi\circ\nu)). (3.35)

In particular, a local basis of sections of the vector subbundle LL is

{dmx,duαdm1xi,idpαidm1xi}.\big{\{}d^{m}x,du^{\alpha}\wedge d^{m-1}x_{i},\sum_{i}dp_{\alpha}^{i}\wedge d^{m-1}x_{i}\big{\}}. (3.36)
Proof.

If γπ\gamma\in{\mathcal{M}}\pi, U~Vγ(πν)\tilde{U}\in V_{\gamma}(\pi\circ\nu) and Z0Jμ(γ)1(πν0)Z^{0}\in J^{1}_{\mu(\gamma)}(\pi\circ\nu^{0}) then, from (3.19), we obtain

A+([U~]),Z0=[U~],A(Z0)=[U~],μ~(A(Z0)~).\langle A^{+}({\mathcal{I}}[\tilde{U}]),Z^{0}\rangle=\langle{\mathcal{I}}[\tilde{U}],A(Z^{0})\rangle=\langle{\mathcal{I}}[\tilde{U}],\tilde{\mu}(\widetilde{A(Z^{0})})\rangle.

Therefore, using (3.30) and (3.31), it follows that

A+([U~]),Z0=~(U~),A(Z0)~=A(Z0)~,U~.\langle A^{+}({\mathcal{I}}[\tilde{U}]),Z^{0}\rangle=\langle\tilde{\mathcal{I}}(\tilde{U}),\widetilde{A(Z^{0})}\rangle=\langle\widetilde{A(Z^{0})},\tilde{U}\rangle.

So, from (2.1), (3.18) and (3.32), we conclude that

A+([U~]),Z0=(Λm(Z0))(¯(U~))=(Λm(Z0))([U~])=[U~],Z0.\langle A^{+}({\mathcal{I}}[\tilde{U}]),Z^{0}\rangle=-(\Lambda^{m}(Z^{0})^{*})(\bar{\flat}(\tilde{U}))=-(\Lambda^{m}(Z^{0})^{*})(\flat[\tilde{U}])=-\langle\flat[\tilde{U}],Z^{0}\rangle.

This proves (3.34).

From this, (3.35) follows using (3.32) and (3.34).

Finally, the local expression is obtained by using (3.16) and (3.35). ∎

Second step: The previous result together with (3.29) suggests the introduction of the following definition.

Definition 3.11.

The space of currents of a Hamiltonian Field Theory with configuration bundle π:EM\pi:E\to M is

𝒪={α0Γ(Λ1m1(T(0π)))dα0Γ(L)}.{\mathcal{O}}=\big{\{}\alpha^{0}\in\Gamma(\Lambda^{m-1}_{1}(T^{*}({\mathcal{M}}^{0}\pi)))\mid d\alpha^{0}\in\Gamma(L)\big{\}}.
Example 3.12.

i) Let α\alpha be a (m1)(m-1)-form on EE which is semi-basic with respect to the projection π:EM\pi:E\to M. Then,

α0=(ν0)(α)𝒪.\alpha^{0}=(\nu^{0})^{*}(\alpha)\in{\mathcal{O}}.

Indeed, for α=αi(x,u)dm1xi\alpha=\alpha^{i}(x,u)d^{m-1}x_{i}, we have

dα=(αixi)dmx+(αiuα)duαdm1xid\alpha=\left(\frac{\partial\alpha^{i}}{\partial x^{i}}\right)d^{m}x+\left(\frac{\partial\alpha^{i}}{\partial u^{\alpha}}\right)du^{\alpha}\wedge d^{m-1}x_{i}

which implies that dαΓ(L)d\alpha\in\Gamma(L), see (3.36).

ii) Let YY be a section of the vector bundle VπEV\pi\to E, that is, YY is a vector field on EE and

(Tyπ)(Y(y))=0,yE.(T_{y}\pi)(Y(y))=0,\;\;\forall y\in E.

Define the (m1)(m-1)-form Y^\hat{Y} on 0π=Lin(Vπ,π(Λm1TM)){\mathcal{M}}^{0}\pi=\operatorname{Lin}(V\pi,\pi^{*}(\Lambda^{m-1}T^{*}M)) as follows

Y^(γ0)(Z1,,Zm1)=γ0(Y(ν0(γ0)))(Tγ0(πν0)(Z1),,Tγ0(πν0)(Zm1)),\hat{Y}(\gamma^{0})(Z_{1},\dots,Z_{m-1})=\gamma^{0}(Y(\nu^{0}(\gamma^{0})))\left(T_{\gamma^{0}}(\pi\circ\nu^{0})(Z_{1}),\dots,T_{\gamma^{0}}(\pi\circ\nu^{0})(Z_{m-1})\right),

for γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi and Z1,,Zm1Tγ00πZ_{1},\dots,Z_{m-1}\in T_{\gamma^{0}}{\mathcal{M}}^{0}\pi. If the local expression of YY is

Y=Yα(x,u)uαY=Y^{\alpha}(x,u)\frac{\partial}{\partial u^{\alpha}}

it follows that Y^=(Yα(x,u)pαi)dm1xi\hat{Y}=\left(Y^{\alpha}(x,u)p_{\alpha}^{i}\right)d^{m-1}x_{i}. Thus,

dY^=(Yαxipαi)dmx+(Yαuβpαi)duβdm1xi+Yαdpαidm1xi,d\hat{Y}=\left(\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}\right)d^{m}x+\left(\frac{\partial Y^{\alpha}}{\partial u^{\beta}}p_{\alpha}^{i}\right)du^{\beta}\wedge d^{m-1}x_{i}+Y^{\alpha}dp_{\alpha}^{i}\wedge d^{m-1}x_{i},

which implies that dY^Γ(L)d\hat{Y}\in\Gamma(L) and Y^𝒪\hat{Y}\in{\mathcal{O}}.

In the following theorem, we give the explicit description of the currents for the case when m2m\geq 2. Note that if m=1m=1 then 𝒪=C(0π){\mathcal{O}}=C^{\infty}({\mathcal{M}}^{0}\pi).

Theorem 3.13.

If m2m\geq 2 then a section α0\alpha^{0} of the vector bundle Λ1m1(T(0π))0π\Lambda^{m-1}_{1}(T^{*}({\mathcal{M}}^{0}\pi))\to{\mathcal{M}}^{0}\pi is a current if and only if there exists a unique π\pi-semibasic (m1)(m-1)-form α\alpha on EE and a unique π\pi-vertical vector field YY on EE such that

α0=Y^+(ν0)(α).\alpha^{0}=\hat{Y}+(\nu^{0})^{*}(\alpha).
Proof.

It is clear that if YY is a π\pi-vertical vector field and α\alpha is a π\pi-semibasic (m1)(m-1)-form on EE then α0=Y^+(ν0)(α)\alpha^{0}=\hat{Y}+(\nu^{0})^{*}(\alpha) is a current (see Examples 3.12).

Conversely, suppose that α0\alpha^{0} is a current. The local expression of α0\alpha^{0} is α0=α0i(xj,uβ,pβj)dm1xi\alpha^{0}=\alpha^{0i}(x^{j},u^{\beta},p_{\beta}^{j})d^{m-1}x_{i} and

dα0=(α0ixi)dmx+(α0iuβ)duβdm1xi+(α0ipβj)dpβjdm1xi.d\alpha^{0}=\left(\frac{\partial\alpha^{0i}}{\partial x^{i}}\right)d^{m}x+\left(\frac{\partial\alpha^{0i}}{\partial u^{\beta}}\right)du^{\beta}\wedge d^{m-1}x_{i}+\left(\frac{\partial\alpha^{0i}}{\partial p_{\beta}^{j}}\right)dp_{\beta}^{j}\wedge d^{m-1}x_{i}.

Thus, using (3.36), we deduce that

α0ipβj=0 and α0ipβi=α0jpβj if ij.\displaystyle\frac{\partial\alpha^{0i}}{\partial p_{\beta}^{j}}=0\mbox{ and }\frac{\partial\alpha^{0i}}{\partial p_{\beta}^{i}}=\frac{\partial\alpha^{0j}}{\partial p_{\beta}^{j}}\mbox{ if }i\neq j. (3.37)

This implies that

2α0i(pαi)2=2α0jpαipαj=0, with ij\displaystyle\frac{\partial^{2}\alpha^{0i}}{\partial(p_{\alpha}^{i})^{2}}=\frac{\partial^{2}\alpha^{0j}}{\partial p_{\alpha}^{i}\partial p_{\alpha}^{j}}=0,\mbox{ with }i\neq j

so if m2m\geq 2 we conclude that

2α0i(pαi)2=0, for all i.\displaystyle\frac{\partial^{2}\alpha^{0i}}{\partial(p_{\alpha}^{i})^{2}}=0,\mbox{ for all }i. (3.38)

Therefore, from (3.37) and (3.38), it follows that

α0i(xj,uβ,pβj)=Yα(x,u)pαi+αi(x,u), for all i.\alpha^{0i}(x^{j},u^{\beta},p_{\beta}^{j})=Y^{\alpha}(x,u)p_{\alpha}^{i}+\alpha^{i}(x,u),\mbox{ for all }i.

Consequently, we have proved that there exists a local π\pi-vertical vector field Y=Yα(x,u)uαY=Y^{\alpha}(x,u)\displaystyle\frac{\partial}{\partial u^{\alpha}} and a local π\pi-semibasic (m1)(m-1)-form α=αi(x,u)dm1xi\alpha=\alpha^{i}(x,u)d^{m-1}x_{i} on EE such that

α0=Y^+(ν0)(α).\alpha^{0}=\hat{Y}+(\nu^{0})^{*}(\alpha).

Note that YY and α\alpha are unique. Then, this last fact also proves the global result. ∎

Remark 3.14.

(i) Note that 𝒪{\mathcal{O}} is a C(E)C^{\infty}(E)-module.
(ii) In [12], the authors consider as a space of currents the set of horizontal Poisson (m1)(m-1)-forms on 0π{\mathcal{M}}^{0}\pi. Moreover, they prove that a (m1)(m-1)-form FF of this type may be described as

F=Y^+(ν0)(α)+β,F=\hat{Y}+(\nu^{0})^{*}(\alpha^{\prime})+\beta^{\prime},

where XX is a vertical vector field on EE, α\alpha^{\prime} is a π\pi-semibasic (m1)(m-1)-form on EE and β\beta^{\prime} is a closed (πν0)(\pi\circ\nu^{0})-semibasic (m1)(m-1)-form on 0π{\mathcal{M}}^{0}\pi. Now, it is easy to prove that, under the previous conditions, there exists a unique closed (m1)(m-1)-form β\beta on MM such that β=(πν0)(β)=(ν0)(π(β))\beta^{\prime}=(\pi\circ\nu^{0})^{*}(\beta)=(\nu^{0})^{*}(\pi^{*}(\beta)). So, if we take α=α+πβ\alpha=\alpha^{\prime}+\pi^{*}\beta, we conclude that

F=Y^+(ν0)(α).F=\hat{Y}+(\nu^{0})^{*}(\alpha).

The previous discussion shows that 𝒪{\mathcal{O}} is just the space of currents which was considered in [12]. \diamond

3.5. A suitable linear-affine bracket and the Hamilton-deDonder-Weyl equations

We consider the linear-affine bracket

{,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))

defined by

{α0,h}=dα0,Γh=dα0,aff(dh).\{\alpha^{0},h\}=\langle d\alpha^{0},\Gamma_{h}\rangle=\langle d\alpha^{0},\sharp^{\rm aff}(dh)\rangle. (3.39)

Assume that m2m\geq 2, that the local expression of the Hamiltonian section hΓ(μ)h\in\Gamma(\mu) is

h(xi,uα,pαi)=(xi,uα,H(x,u,p),pαi)h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x,u,p),p_{\alpha}^{i})

and that the local expression of the current α0𝒪\alpha^{0}\in{\mathcal{O}} is

α0(xi,uα,pαi)=(Yα(x,u)pαi+βi(x,u))dm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=(Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u))d^{m-1}x_{i}

with YαY^{\alpha} and βi\beta^{i} local real CC^{\infty}-functions on EE. Then, using (3.25) and (3.39), we obtain the local expression of the linear-affine bracket (3.39) as

{(Yα(x,u)pαi+βi(x,u))dm1xi,h}=(βixi+Yαxipαi+(βiuα+Yβuαpβi)HpαiHuαYα)dmx.\begin{array}[]{l}\{\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)\right)d^{m-1}x_{i},h\}\\[5.0pt] \;=\left(\displaystyle\frac{\partial\beta^{i}}{\partial x^{i}}+\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}+\left(\frac{\partial\beta^{i}}{\partial u^{\alpha}}+\frac{\partial Y^{\beta}}{\partial u^{\alpha}}p_{\beta}^{i}\right)\frac{\partial H}{\partial p_{\alpha}^{i}}-\frac{\partial H}{\partial u^{\alpha}}Y^{\alpha}\right)\otimes d^{m}x.\end{array} (3.40)

Note that if we write the current as α0(xi,uα,pαi)=αidm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\alpha^{i}d^{m-1}x_{i}, with αi(x,u,p)=Yα(x,u)pαi+βi(x,u)\alpha^{i}(x,u,p)=Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u), the bracket takes the elegant form

{αidm1xi,h}=(αixi+αiuαHpαi1mHuααipαi)dmx.\{\alpha^{i}d^{m-1}x_{i},h\}=\left(\frac{\partial\alpha^{i}}{\partial x^{i}}+\frac{\partial\alpha^{i}}{\partial u^{\alpha}}\frac{\partial H}{\partial p_{\alpha}^{i}}-\frac{1}{m}\frac{\partial H}{\partial u^{\alpha}}\frac{\partial\alpha^{i}}{\partial p^{i}_{\alpha}}\right)\otimes d^{m}x.

As we know, Γ(μ)\Gamma(\mu) is an affine space which is modelled over the vector space Γ((πν0)(ΛmTM))\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)). Therefore, using (3.39), it follows that the bilinear bracket

{,}l:𝒪×Γ((πν0)(ΛmTM))Γ((πν0)(ΛmTM))\{\cdot,\cdot\}_{l}:{\mathcal{O}}\times\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))

associated with the linear-affine bracket {,}\{\cdot,\cdot\} is given by

{α0,0}l=μ0(dα0),lin(dl0).\{\alpha^{0},{\mathcal{F}}^{0}\}_{l}=\langle\mu^{0}(d\alpha^{0}),\sharp^{\rm lin}(d^{l}{\mathcal{F}}^{0})\rangle.

Here, dl0d^{l}{\mathcal{F}}^{0} is the vertical differential of 0{\mathcal{F}}^{0} (see (3.13)),

lin:V((π))(πν0)(ΛmTM)V(πν0)KerA\sharp^{\rm lin}:V(\mathbb{P}(\pi))\to\displaystyle\frac{(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\otimes V(\pi\circ\nu^{0})}{\operatorname{Ker}A}

is the vector bundle isomorphism associated with the affine bundle isomorphism aff:(π)J1(πν0)/KerA\sharp^{\rm aff}:\mathbb{P}(\pi)\to J^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A, and

μ0:Aff(J1(πν0)KerA,(πν0)(ΛmTM))Lin((πν0)(TM)V(πν0)KerA,(πν0)(ΛmTM))\mu^{0}:{\rm Aff}\Big{(}\frac{J^{1}(\pi\circ\nu^{0})}{\operatorname{Ker}A},(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\Big{)}\to{\rm Lin}\Big{(}\displaystyle\frac{(\pi\circ\nu^{0})^{*}(T^{*}M)\otimes V(\pi\circ\nu^{0})}{\operatorname{Ker}A},(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\Big{)}

is the canonical projection. In local coordinates, we have

{(Yα(x,u)pαi+βi(x,u))dm1xi,0(xi,uα,pαi)dmx}l=((βiuα+Yβuαpβi)0pαi0uαYα)dmx.\begin{array}[]{l}\{\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)\right)d^{m-1}x_{i},{\mathcal{F}}^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})\otimes d^{m}x\}_{l}\\[5.0pt] \;=\left(\left(\displaystyle\frac{\partial\beta^{i}}{\partial u^{\alpha}}+\frac{\partial Y^{\beta}}{\partial u^{\alpha}}p_{\beta}^{i}\right)\displaystyle\frac{\partial{\mathcal{F}}^{0}}{\partial p_{\alpha}^{i}}-\frac{\partial{\mathcal{F}}^{0}}{\partial u^{\alpha}}Y^{\alpha}\right)\otimes d^{m}x.\end{array} (3.41)

Again, if we write the current as α0(xi,uα,pαi)=αidm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\alpha^{i}d^{m-1}x_{i}, with αi(x,u,p)=(Yα(x,u)pαi+βi(x,u))\alpha^{i}(x,u,p)=(Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)), the bilinear bracket takes the form

{αidm1xi,0(xi,uα,pαi)dmx}l=(αiuα0pαi1m0uααipαi)dmx.\{\alpha^{i}d^{m-1}x_{i},{\mathcal{F}}^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})\otimes d^{m}x\}_{l}=\left(\frac{\partial\alpha^{i}}{\partial u^{\alpha}}\frac{\partial{\mathcal{F}}^{0}}{\partial p_{\alpha}^{i}}-\frac{1}{m}\frac{\partial{\mathcal{F}}^{0}}{\partial u^{\alpha}}\frac{\partial\alpha^{i}}{\partial p^{i}_{\alpha}}\right)\otimes d^{m}x.

On the other hand, if m=1m=1 then the space of currents is

𝒪=Γ((πν0)(TM))=C(0π){\mathcal{O}}=\Gamma((\pi\circ\nu^{0})^{*}(T^{*}M))=C^{\infty}({\mathcal{M}}^{0}\pi)

and, using (3.25) and (3.39), we deduce that the linear-affine bracket

{,}:C(0π)×Γ(μ)C(0π)\{\cdot,\cdot\}:C^{\infty}({\mathcal{M}}^{0}\pi)\times\Gamma(\mu)\to C^{\infty}({\mathcal{M}}^{0}\pi)

and the bilinear bracket

{,}l:C(0π)×C(0π)C(0π)\{\cdot,\cdot\}_{l}:C^{\infty}({\mathcal{M}}^{0}\pi)\times C^{\infty}({\mathcal{M}}^{0}\pi)\to C^{\infty}({\mathcal{M}}^{0}\pi)

are locally given by

{f0,h}=f0x+f0uαHpαf0pαHuα\{f^{0},h\}=\displaystyle\frac{\partial f^{0}}{\partial x}+\frac{\partial f^{0}}{\partial u^{\alpha}}\frac{\partial H}{\partial p_{\alpha}}-\frac{\partial f^{0}}{\partial p_{\alpha}}\frac{\partial H}{\partial u^{\alpha}} (3.42)

and

{f0,g0}l=f0uαg0pαf0pαg0uα\{f^{0},g^{0}\}_{l}=\displaystyle\frac{\partial f^{0}}{\partial u^{\alpha}}\frac{\partial g^{0}}{\partial p_{\alpha}}-\frac{\partial f^{0}}{\partial p_{\alpha}}\frac{\partial g^{0}}{\partial u^{\alpha}} (3.43)

for f0,g0C(0π)f^{0},g^{0}\in C^{\infty}({\mathcal{M}}^{0}\pi) and hΓ(μ)h\in\Gamma(\mu).

The following result extends to the field-theoretic context the canonical Poisson bracket formulation of Hamilton’s equations.

Theorem 3.15.

Let h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi be a Hamiltonian section and s0:M0πs^{0}:M\to{\mathcal{M}}^{0}\pi a (local) section of the projection πν0:0πM\pi\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M. Then, s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations for hh if and only if

(s0)(dα0)={α0,h}s0,α0𝒪.(s^{0})^{*}(d\alpha^{0})=\{\alpha^{0},h\}\circ s^{0},\;\;\;\forall\;\alpha^{0}\in{\mathcal{O}}. (3.44)
Proof.

Suppose that m2m\geq 2 and that

s0(xi)=(xi,uα(x),pαi(x)),α0(xi,uα,pαi)=(Yα(x,u)pαi+βi(x,u))dm1xi,s^{0}(x^{i})=(x^{i},u^{\alpha}(x),p_{\alpha}^{i}(x)),\quad\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)\right)d^{m-1}x_{i},

with YαY^{\alpha}, βi\beta^{i} local real CC^{\infty}-functions on EE. Then,

(s0)(dα0)=(βixi+Yαxipαi+(βiuα+Yβuαpβi)uαxi+pαixiYα)dmx.(s^{0})^{*}(d\alpha^{0})=\left(\frac{\partial\beta^{i}}{\partial x^{i}}+\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}+\left(\frac{\partial\beta^{i}}{\partial u^{\alpha}}+\frac{\partial Y^{\beta}}{\partial u^{\alpha}}p_{\beta}^{i}\right)\frac{\partial u^{\alpha}}{\partial x^{i}}+\frac{\partial p_{\alpha}^{i}}{\partial x^{i}}Y^{\alpha}\right)\otimes d^{m}x.

Thus, using (3.40), we conclude that (3.44) hold if and only if

uαxi=Hpαi,pαixi=Huα,\displaystyle\frac{\partial u^{\alpha}}{\partial x^{i}}=\frac{\partial H}{\partial p_{\alpha}^{i}},\;\;\;\;\frac{\partial p_{\alpha}^{i}}{\partial x^{i}}=-\frac{\partial H}{\partial u^{\alpha}},

or, equivalently, s0s^{0} is a solution of the Hamilton-deDonder-Weyl equations for hh.

If m=1m=1 the result is proved in a similar way using (3.42). ∎

3.6. A remark on boundary conditions

If the boundary M\partial M of the base space MM of the configuration bundle π:EM\pi:E\to M is not empty, then the Hamilton-deDonder-Weyl equations for a Hamiltonian section can be supplemented by boundary conditions.

The boundary of the configuration space EE is just

E=π1(M)\partial E=\pi^{-1}(\partial M)

in such a way that

π|E:EM\pi_{|\partial E}:\partial E\to\partial M

is again a fibration.

In a similar way, the restricted multimomentum bundle 0π{\mathcal{M}}^{0}\pi is a manifold with boundary,

(0π)=(ν0)1(E)=(πν0)1(M),\partial({\mathcal{M}}^{0}\pi)=(\nu^{0})^{-1}(\partial E)=(\pi\circ\nu^{0})^{-1}(\partial M),

and we have fibrations

(ν0)|(0π):(0π)E,(πν0)|(0π):(0π)M.(\nu^{0})_{|\partial({\mathcal{M}}^{0}\pi)}:\partial({\mathcal{M}}^{0}\pi)\to\partial E,\;\;\;(\pi\circ\nu^{0})_{|\partial({\mathcal{M}}^{0}\pi)}:\partial({\mathcal{M}}^{0}\pi)\to\partial M.

A boundary condition for the Hamiltonian Classical Field theory is given by specifying a subbundle B0MB^{0}\rightarrow\partial M of (πν0)|(0π):(0π)M(\pi\circ\nu^{0})_{|\partial({\mathcal{M}}^{0}\pi)}:\partial({\mathcal{M}}^{0}\pi)\to\partial M, such that B0BE0:=(ν0)|(0π)(B0)B^{0}\rightarrow B_{E}^{0}:=(\nu^{0})_{|\partial({\mathcal{M}}^{0}\pi)}(B^{0}) is a subbundle of (ν0)|(0π):(0π)E(\nu^{0})_{|\partial({\mathcal{M}}^{0}\pi)}:\partial({\mathcal{M}}^{0}\pi)\to\partial E. In such a case, we will consider only sections s0:M0πs^{0}:M\to{\mathcal{M}}^{0}\pi such that

s0(M)B0.s^{0}(\partial M)\subseteq B^{0}. (3.45)

A standard assumption in the literature for the subbundle B0B^{0} is

iB0ωh=0,i_{B^{0}}^{*}\omega_{h}=0,

where iB0:B00πi_{B^{0}}:B^{0}\to{\mathcal{M}}^{0}\pi is the canonical inclusion and h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is the Hamiltonian section (see, for instance, [2, 22, 39, 40]; see also [7] for boundary conditions in the Lagrangian formalism).

From (3.45), we deduce that among all the Hamiltonian connections

:H0π×MTMT(0π){}^{H}:{\mathcal{M}}^{0}\pi\times_{M}TM\to T({\mathcal{M}}^{0}\pi)

we should only consider those whose restriction to (0π)×MT(M)\partial({\mathcal{M}}^{0}\pi)\times_{\partial M}T(\partial M) takes values in the tangent bundle TB0TB^{0}, that is, H should induce a monomorphism of vector bundles

:H(0π)×MT(M)TB0.{}^{H}:\partial({\mathcal{M}}^{0}\pi)\times_{\partial M}T(\partial M)\to TB^{0}.

This remark is sufficient for the purposes in this paper.

A more detailed discussion of boundary conditions for a Hamiltonian Classical Field theory of first order and its relation with the section Γh\Gamma_{h} of the quotient affine bundle J1(πν0)/KerAJ^{1}(\pi\circ\nu^{0})/\operatorname{Ker}A and with the theory of covariant Peierls brackets [50] in the space of the solutions will be postponed to a future publication (see the next Section 6).

4. The affine representation of the Lie algebra of currents on the affine space of Hamiltonian sections

In this section, we prove that the space of currents 𝒪{\mathcal{O}} of a Hamiltonian Field theory of first order admits a Lie algebra structure and we show that the linear affine bracket {,}\{\cdot,\cdot\} introduced in Section 3.5 (see (3.39)) induces an affine representation of 𝒪{\mathcal{O}} on the affine space of Hamiltonian sections.

We first review the notion of an affine representation of a Lie algebra on an affine space (for more details, see [38]).

Let AA be an affine space modelled over the vector space VV. The vector space of affine maps of AA on VV, Aff(A,V){\rm Aff}(A,V), is a Lie algebra and the Lie bracket on Aff(A,V){\rm Aff}(A,V) is given by

[φ,ψ]=φlψψlφ,[\varphi,\psi]=\varphi^{l}\circ\psi-\psi^{l}\circ\varphi,

for φ,ψAff(A,V)\varphi,\psi\in{\rm Aff}(A,V), where φl,ψl:VV\varphi^{l},\psi^{l}:V\to V are the linear maps associated with φ,ψ\varphi,\psi, respectively.

An affine representation of a real Lie algebra 𝔤\mathfrak{g} on AA is a Lie algebra morphism

:𝔤Aff(A,V).\mathcal{R}:\mathfrak{g}\to{\rm Aff(A,V)}.

We first note that if π:EM\pi:E\to M is a configuration bundle with dimM=1{\rm dim}M=1 then it is easy to prove the following facts (see Section 5.1 for the particular case when MM is the real line \mathbb{R} and E=×QE=\mathbb{R}\times Q):

  • J1πJ^{1}\pi is an affine subbundle of corank 11 of the tangent bundle TEETE\to E which is modelled over the vertical bundle VπEV\pi\to E to the fibration π:EM\pi:E\to M.

  • The restricted multimomentum bundle is just the dual bundle VπEV^{*}\pi\to E to VπEV\pi\to E.

  • The extended multimomentum bundle is the cotangent bundle TEET^{*}E\to E of EE.

  • Γ(μ)\Gamma(\mu) is an affine space which is modelled over the vector space 𝒪=C(Vπ){\mathcal{O}}=C^{\infty}(V^{*}\pi) of the currents.

So, in this case, we have a Lie algebra structure on 𝒪=C(Vπ){\mathcal{O}}=C^{\infty}(V^{*}\pi). In fact, the Lie bracket on 𝒪{\mathcal{O}} is just the Poisson bracket {,}l\{\cdot,\cdot\}_{l} on VπV^{*}\pi given by (3.43). Moreover, using (3.42) and (3.43), we deduce that the linear-affine bracket

{,}:C(Vπ)×Γ(μ)C(Vπ)\{\cdot,\cdot\}:C^{\infty}(V^{*}\pi)\times\Gamma(\mu)\to C^{\infty}(V^{*}\pi)

induces an affine representation of the Lie algebra (C(Vπ),{,}l)(C^{\infty}(V^{*}\pi),\{\cdot,\cdot\}_{l}) on the affine space Γ(μ)\Gamma(\mu). More explicitly, we have

{{α0,β0}l,h}={α0,{β0,h}}l{β0,{α0,h}}l,\{\{\alpha_{0},\beta_{0}\}_{l},h\}=\{\alpha_{0},\{\beta_{0},h\}\}_{l}-\{\beta_{0},\{\alpha_{0},h\}\}_{l},

for α0,β0C(Vπ)\alpha_{0},\beta_{0}\in C^{\infty}(V^{*}\pi) and hΓ(μ)h\in\Gamma(\mu).

Therefore, in the rest of this section, we will assume the following hypothesis:

Assumption: In what follows, we will suppose that dimM2{\rm dim}M\geq 2.

First we introduce a Lie algebra structure on 𝒪{\mathcal{O}}, then we show that the linear affine bracket {,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) induces an affine representation of the Lie algebra (𝒪,{,}𝒪)({\mathcal{O}},\{\cdot,\cdot\}_{\mathcal{O}}) on the affine space Γ(μ)\Gamma(\mu).

4.1. The Lie algebra structure on the space of currents 𝒪{\mathcal{O}}

The construction of the Lie bracket is made in several steps which involve the definition of a vertical vector field on 0π{\mathcal{M}}^{0}\pi associated to a current.

4.1.1. Definition of the vertical vector field on 0π{\mathcal{M}}^{0}\pi associated to a current

Let :V(πν)/(πν)(ΛmTM)L(πν0)=Λ2m(T(0π))\flat:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to L\subseteq{\mathcal{M}}(\pi\circ\nu^{0})=\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi)) be the vector bundle isomorphism over the identity of 0π{\mathcal{M}}^{0}\pi given by (3.32) and denote by :LV(πν)/(πν)(ΛmTM)\sharp:L\to V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) the inverse morphism. If α0𝒪\alpha^{0}\in{\mathcal{O}} then, from Definition 3.11, we have α0Γ(Λ1m1(T0π))\alpha^{0}\in\Gamma(\Lambda^{m-1}_{1}(T^{*}{\mathcal{M}}^{0}\pi)) and dα0Γ(L)d\alpha^{0}\in\Gamma(L). So, we can consider the section (dα0)\sharp(d\alpha^{0}) of the vector bundle V(πν)/(πν)(ΛmTM)0π=π/π(ΛmTM)V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi={\mathcal{M}}\pi/\pi^{*}(\Lambda^{m}T^{*}M).

Remark 4.1.

The notation (dα0)\sharp(d\alpha^{0}) is justified by the following fact. The vector bundle V(πν)/(πν)(ΛmTM)V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M) is canonically isomorphic to (π)+\mathbb{P}(\pi)^{+} (an isomorphism {\mathcal{I}} between these vector bundles is characterized by condition (3.31)). So, if h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is a Hamiltonian section then dh(π)dh\in\mathbb{P}(\pi) and

(dα0),dhΓ((πν0)(ΛmTM)).\langle\sharp(d\alpha^{0}),dh\rangle\in\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)).

Moreover, as will be proved later (see the next Lemma 4.5), we can write the linear-affine bracket as

{α0,h}=(dα0),dh.\{\alpha^{0},h\}=-\langle\sharp(d\alpha^{0}),dh\rangle.

The reader can compare the previous expression with Eq. (1.3) for the definition of the canonical Poisson bracket on TQT^{*}Q. \diamond

Note that a section of the vector bundle V(πν)/(πν)(ΛmTM)0π=π/π(ΛmTM)V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi={\mathcal{M}}\pi/\pi^{*}(\Lambda^{m}T^{*}M) can be identified with a section U:πV(πν)U:{\mathcal{M}}\pi\to V(\pi\circ\nu) of V(πν)πV(\pi\circ\nu)\to{\mathcal{M}}\pi which is equivariant with respect to the fibred actions of π(ΛmTM)\pi^{*}(\Lambda^{m}T^{*}M) on π{\mathcal{M}}\pi and on V(πν)V(\pi\circ\nu).

By applying this observation to (dα0)\sharp(d\alpha^{0}), we denote by

~α0:πV(πν)\tilde{\mathcal{H}}_{\alpha^{0}}:{\mathcal{M}}\pi\to V(\pi\circ\nu)

the equivariant vector field on π{\mathcal{M}}\pi associated with the section (dα0)\sharp(d\alpha^{0}). Since ~α0\tilde{\mathcal{H}}_{\alpha^{0}} is equivariant, it follows that it is μ\mu-projectable to a vertical vector field

α0:0πV(πν0){\mathcal{H}}_{\alpha^{0}}:{\mathcal{M}}^{0}\pi\to V(\pi\circ\nu^{0})

on 0π{\mathcal{M}}^{0}\pi.

We now present a description of ~α0\tilde{\mathcal{H}}_{\alpha^{0}} in terms of α0\alpha^{0}. Let ~:V(πν)(πν)=Λ2m(T(π))\tilde{\flat}:V(\pi\circ\nu)\to{\mathcal{M}}(\pi\circ\nu)=\Lambda^{m}_{2}(T^{*}({\mathcal{M}}\pi)) be the vector bundle monomorphism given by (3.14). Denote by L~\tilde{L} the image of V(πν)V(\pi\circ\nu) by ~\tilde{\flat}, so that

~:V(πν)L~(πν)=Λ2m(Tπ)\tilde{\flat}:V(\pi\circ\nu)\to\tilde{L}\subseteq{\mathcal{M}}(\pi\circ\nu)=\Lambda^{m}_{2}(T^{*}{\mathcal{M}}\pi)

is a vector bundle isomorphism over the identity of π{\mathcal{M}}\pi. From (2.3), it follows that a local basis of Γ(L~)\Gamma(\tilde{L}) is

{dmx,duαdm1xi,dpαidm1xi}.\{d^{m}x,du^{\alpha}\wedge d^{m-1}x_{i},dp_{\alpha}^{i}\wedge d^{m-1}x_{i}\}.

Note that if γπ\gamma\in{\mathcal{M}}\pi then

(ΛmTγμ)(Lμ(γ))=L~γ.(\Lambda^{m}T^{*}_{\gamma}\mu)(L_{\mu(\gamma)})=\tilde{L}_{\gamma}.

In fact, if θ\theta is a section of (πν0)=Λ2m(T0π){\mathcal{M}}(\pi\circ\nu^{0})=\Lambda^{m}_{2}(T^{*}{\mathcal{M}}^{0}\pi) then

θΓ(L)μθΓ(L~).\theta\in\Gamma(L)\Leftrightarrow\mu^{*}\theta\in\Gamma(\tilde{L}). (4.1)

Let ¯:V(πν)L(πν0)=Λ2m(T0π)\bar{\flat}:V(\pi\circ\nu)\to L\subseteq{\mathcal{M}}(\pi\circ\nu^{0})=\Lambda_{2}^{m}(T^{*}{\mathcal{M}}^{0}\pi) be the vector bundle morphism over the canonical projection μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi which is characterized by Eq. (3.15). If γπ\gamma\in{\mathcal{M}}\pi and 𝒥γ:Vγ(πν)(V(πν)/(πν)(ΛmTM))μ(γ){\mathcal{J}}_{\gamma}:V_{\gamma}(\pi\circ\nu)\to(V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M))_{\mu(\gamma)} is the canonical isomorphism between the fibers by γ\gamma and μ(γ)\mu(\gamma) of the vector bundles V(πν)πV(\pi\circ\nu)\to{\mathcal{M}}\pi and V(πν)/(πν)(ΛmTM)0πV(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi then, using (3.17) and (3.33), it follows that the following diagram

Vγ(πν)\textstyle{V_{\gamma}(\pi\circ\nu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}~γ\scriptstyle{\tilde{\flat}_{\gamma}}¯γ\scriptstyle{\bar{\flat}_{\gamma}}𝒥γ\scriptstyle{{\mathcal{J}}_{\gamma}}L~γ\textstyle{\tilde{L}_{\gamma}}(V(πν)/(πν)(ΛmTM))μ(γ)\textstyle{(V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M))_{\mu(\gamma)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ(γ)\scriptstyle{\hskip 42.67912pt\flat_{\mu(\gamma)}}Lμ(γ)\textstyle{L_{\mu(\gamma)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΛmTγμ\scriptstyle{\Lambda^{m}T^{*}_{\gamma}\mu} (4.2)

is commutative. This implies that

~γ(~α0(γ))=(ΛmTγμ)(μ(γ)((dα0)(μ(γ))))=(ΛmTγμ)((dα0)(μ(γ))),\tilde{\flat}_{\gamma}(\tilde{\mathcal{H}}_{\alpha^{0}}(\gamma))=(\Lambda^{m}T^{*}_{\gamma}\mu)\big{(}\flat_{\mu(\gamma)}(\sharp(d\alpha^{0})(\mu(\gamma)))\big{)}=(\Lambda^{m}T^{*}_{\gamma}\mu)((d\alpha^{0})(\mu(\gamma))),

or, in other words, ~α0\tilde{\mathcal{H}}_{\alpha^{0}} satisfies the following condition

i~α0ωπ=μ(dα0).i_{\tilde{\mathcal{H}}_{\alpha^{0}}}\omega_{{\mathcal{M}}\pi}=\mu^{*}(d\alpha^{0}). (4.3)

Note that, since ωπ\omega_{{\mathcal{M}}\pi} is non-degenerate, (4.3) may be considered as a definition of the equivariant vector field ~α0\tilde{\mathcal{H}}_{\alpha^{0}}.

So, in conclusion, for a current α0𝒪\alpha^{0}\in{\mathcal{O}} we have the following objects:

  • An equivariant vertical vector field ~α0:πV(πν)\tilde{\mathcal{H}}_{\alpha^{0}}:{\mathcal{M}}\pi\to V(\pi\circ\nu) on π{\mathcal{M}}\pi, which is characterized by condition (4.3).

  • The induced section (dα0)\sharp(d\alpha^{0}) of the vector bundle

    (π)+V(πν)/(πν)(ΛmTM)0π=π/π(ΛmTM).\mathbb{P}(\pi)^{+}\simeq V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\to{\mathcal{M}}^{0}\pi={\mathcal{M}}\pi/\pi^{*}(\Lambda^{m}T^{*}M).
  • The vertical vector field on 0π{\mathcal{M}}^{0}\pi

    α0:0πV(πν0){\mathcal{H}}_{\alpha^{0}}:{\mathcal{M}}^{0}\pi\to V(\pi\circ\nu^{0})

    which is the projection, via μ:π0π\mu:{\mathcal{M}}\pi\to{\mathcal{M}}^{0}\pi, of ~α0\tilde{\mathcal{H}}_{\alpha^{0}}.

We now present the local expressions of the vector fields ~α0\tilde{\mathcal{H}}_{\alpha^{0}} and α0{\mathcal{H}}_{\alpha^{0}}. As we have seen (see Section 3.4), the local expression of an element α0𝒪\alpha^{0}\in{\mathcal{O}} is

α0(xi,uα,pαi)=(Yα(xj,uβ)pαi+αi(xj,uβ))dm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\left(Y^{\alpha}(x^{j},u^{\beta})p_{\alpha}^{i}+\alpha^{i}(x^{j},u^{\beta})\right)d^{m-1}x_{i}

with YαY^{\alpha} and αi\alpha^{i} local real CC^{\infty}-functions on EE. We have

dα0=(αixi+Yαxipαi)dmx+(αiuβ+Yαuβpαi)duβdm1xi+Yαdpαidm1xi.d\alpha^{0}=\left(\frac{\partial\alpha^{i}}{\partial x^{i}}+\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}\right)d^{m}x+\left(\frac{\partial\alpha^{i}}{\partial u^{\beta}}+\frac{\partial Y^{\alpha}}{\partial u^{\beta}}p_{\alpha}^{i}\right)du^{\beta}\wedge d^{m-1}x_{i}+Y^{\alpha}dp_{\alpha}^{i}\wedge d^{m-1}x_{i}. (4.4)

Thus, using (2.3) and (4.3), we deduce that

~α0=Yαuα(αixi+Yαxipαi)p(αiuβ+Yαuβpαi)pβi.\tilde{\mathcal{H}}_{\alpha^{0}}=Y^{\alpha}\frac{\partial}{\partial u^{\alpha}}-\left(\frac{\partial\alpha^{i}}{\partial x^{i}}+\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}\right)\frac{\partial}{\partial p}-\left(\frac{\partial\alpha^{i}}{\partial u^{\beta}}+\frac{\partial Y^{\alpha}}{\partial u^{\beta}}p_{\alpha}^{i}\right)\frac{\partial}{\partial p_{\beta}^{i}}. (4.5)

Therefore, it follows that

α0=Yαuα(αiuβ+Yαuβpαi)pβi.{\mathcal{H}}_{\alpha^{0}}=Y^{\alpha}\frac{\partial}{\partial u^{\alpha}}-\left(\frac{\partial\alpha^{i}}{\partial u^{\beta}}+\frac{\partial Y^{\alpha}}{\partial u^{\beta}}p_{\alpha}^{i}\right)\frac{\partial}{\partial p_{\beta}^{i}}. (4.6)

Following the terminology in [11] (see also [31]), Eq. (4.3) implies that μα0\mu^{*}\alpha^{0} is a Hamiltonian (m1)(m-1)-form and that the vector field ~α0\tilde{\mathcal{H}}_{\alpha^{0}} is a Hamiltonian vector field on the multisymplectic manifold (π,ωπ)({\mathcal{M}}\pi,\omega_{{\mathcal{M}}\pi}).

4.1.2. Definition of the Lie bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}}

As in [11], we consider the (m1)(m-1)-form {μ(α0),μ(β0)}𝒪~\{\mu^{*}(\alpha^{0}),\mu^{*}(\beta^{0})\}^{\tilde{}}_{\mathcal{O}} on the multisymplectic manifold (π,ωπ)({\mathcal{M}}\pi,\omega_{{\mathcal{M}}\pi}) defined by

{μ(α0),μ(β0)}𝒪~=i~α0i~β0ωπ=i~α0(μ(dβ0)).\{\mu^{*}(\alpha^{0}),\mu^{*}(\beta^{0})\}^{\tilde{}}_{\mathcal{O}}=-i_{\tilde{\mathcal{H}}_{\alpha^{0}}}i_{\tilde{\mathcal{H}}_{\beta^{0}}}\omega_{{\mathcal{M}}\pi}=-i_{\tilde{\mathcal{H}}_{\alpha^{0}}}(\mu^{*}(d\beta^{0})).

Using the fact that ~α0\tilde{\mathcal{H}}_{\alpha^{0}} is μ\mu-projectable, it follows that such a (m1)(m-1)-form is basic with respect to μ\mu. In fact,

{μ(α0),μ(β0)}𝒪~=μ(iα0dβ0).\{\mu^{*}(\alpha^{0}),\mu^{*}(\beta^{0})\}_{\mathcal{O}}^{\tilde{}}=-\mu^{*}(i_{{\mathcal{H}}_{\alpha^{0}}}d\beta^{0}).

This equation suggests the introduction of the the (m1)(m-1)-form {α0,β0}𝒪\{\alpha^{0},\beta^{0}\}_{\mathcal{O}} on 0π{\mathcal{M}}^{0}\pi given by

{α0,β0}𝒪=iα0dβ0.\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}=-i_{{\mathcal{H}}_{\alpha^{0}}}d\beta^{0}. (4.7)

Using the local expressions

α0(xi,uα,pαi)=(Yα(x,u)pαi+αi(x,u))dm1xi,β0(xi,uα,pαi)=(Zα(x,u)pαi+βi(x,u))dm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\alpha^{i}(x,u)\right)d^{m-1}x_{i},\;\;\beta^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\left(Z^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)\right)d^{m-1}x_{i}

we deduce from (4.4) and (4.6) that

{(Yα(x,u)pαi+αi(x,u))dm1xi,(Zα(x,u)pαi+βi(x,u))dm1xi}𝒪=((YβZαuβZβYαuβ)pαi+(YββiuβZβαiuβ))dm1xi\begin{array}[]{l}\{\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\alpha^{i}(x,u)\right)d^{m-1}x_{i},\left(Z^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u)\right)d^{m-1}x_{i}\}_{\mathcal{O}}\\[5.0pt] \;=-\left(\big{(}\displaystyle Y^{\beta}\frac{\partial Z^{\alpha}}{\partial u^{\beta}}-Z^{\beta}\frac{\partial Y^{\alpha}}{\partial u^{\beta}}\big{)}p_{\alpha}^{i}+\big{(}\displaystyle Y^{\beta}\frac{\partial\beta^{i}}{\partial u^{\beta}}-Z^{\beta}\frac{\partial\alpha^{i}}{\partial u^{\beta}}\big{)}\right)d^{m-1}x_{i}\end{array} (4.8)

So, it is clear that {α,β}𝒪𝒪\{\alpha,\beta\}_{\mathcal{O}}\in{\mathcal{O}}.

Moreover, we can prove the following result.

Theorem 4.2.

The bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} given by

{α0,β0}𝒪=iα0(dβ0), for α0,β0𝒪,\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}=-i_{{\mathcal{H}}_{\alpha^{0}}}(d\beta^{0}),\;\;\;\mbox{ for }\alpha^{0},\beta^{0}\in{\mathcal{O}},

defines a Lie algebra structure on the space of currents 𝒪{\mathcal{O}}.

Proof.

Using Theorem 3.13, we deduce that there exists and isomorphism between the C(E)C^{\infty}(E)-modules 𝒪{\mathcal{O}} and Γ(Vπ)×Γ(Λ1m1TE)\Gamma(V\pi)\times\Gamma(\Lambda^{m-1}_{1}T^{*}E). In addition, from (4.8), it follows that under the previous isomorphism, the bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} is given by

{(Y,α),(Z,β)}𝒪=([Y,Z],YβZα)=([Y,Z],iYdβiZdα),\{(Y,\alpha),(Z,\beta)\}_{\mathcal{O}}=-([Y,Z],{\mathcal{L}}_{Y}\beta-{\mathcal{L}}_{Z}\alpha)=-([Y,Z],i_{Y}d\beta-i_{Z}d\alpha),

for (Y,α),(Z,β)Γ(Vπ)×Γ(Λ1m1TE)(Y,\alpha),(Z,\beta)\in\Gamma(V\pi)\times\Gamma(\Lambda^{m-1}_{1}T^{*}E), where [,][\cdot,\cdot] is the Lie bracket of vector fields in EE and {\mathcal{L}} is the Lie derivative operator. Using this definition of {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}}, it is easy to prove that {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} induces a Lie algebra structure on 𝒪{\mathcal{O}}. ∎

Note that if we write the observables locally as α0(xi,uα,pαi)=α0idm1xi\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\alpha^{0i}d^{m-1}x_{i} and β0(xi,uα,pαi)=β0idm1xi\beta^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\beta^{0i}d^{m-1}x_{i} with α0i(x,u,p)=Yα(x,u)pαi+αi(x,u)\alpha^{0i}(x,u,p)=Y^{\alpha}(x,u)p_{\alpha}^{i}+\alpha^{i}(x,u) and β0i(x,u,p)=Zα(x,u)pαi+βi(x,u)\beta^{0i}(x,u,p)=Z^{\alpha}(x,u)p_{\alpha}^{i}+\beta^{i}(x,u), then the Lie bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} has the local expression

{α0idm1xi,β0idm1xi}𝒪=(α0juγβ0ipγjβ0juγα0ipγj)dm1xi\{\alpha^{0i}d^{m-1}x_{i},\beta^{0i}d^{m-1}x_{i}\}_{\mathcal{O}}=\left(\frac{\partial\alpha^{0j}}{\partial u^{\gamma}}\frac{\partial\beta^{0i}}{\partial p_{\gamma}^{j}}-\frac{\partial\beta^{0j}}{\partial u^{\gamma}}\frac{\partial\alpha^{0i}}{\partial p^{j}_{\gamma}}\right)d^{m-1}x_{i}

which is reminiscent of the local expression of the canonical Poisson bracket.

As a final remark on the definition of the morphism \flat and the bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} on the currents, we can derive a version of the classical result that any Poisson structure on a manifold induces a Lie algebroid structure on the cotangent bundle of the manifold. In this case, we will obtain a Lie algebroid structure on the vector bundle LL over M0πM^{0}\pi.

Indeed, it is clear that the vector bundle V(πν)πV(\pi\circ\nu)\to\mathcal{M}\pi admits a Lie algebroid structure. The Lie bracket in the space Γ(V(πν))\Gamma(V(\pi\circ\nu)) of sections is just the restriction of the standard Lie bracket to (πν)(\pi\circ\nu)-vertical vector fields and the anchor map is the inclusion Γ(V(πν))𝔛(π)\Gamma(V(\pi\circ\nu))\hookrightarrow\mathfrak{X}(\mathcal{M}\pi). So, using the vector bundle isomorphism ~:V(πν)L~(πν)\tilde{\flat}:V(\pi\circ\nu)\to\tilde{L}\subseteq\mathcal{M}(\pi\circ\nu), we can induce a Lie algebroid structure on the vector bundle L~\tilde{L}. In fact, a direct computation proves that the Lie bracket in the space of sections of L~\tilde{L}, Γ(L~)\Gamma(\tilde{L}), is given by

[θ~,θ~]L~=ρ~(θ~)θ~ρ~(θ~)θ~+d(iρ~(θ~)θ~), for θ~,θ~Γ(L~),[\tilde{\theta},\tilde{\theta}^{\prime}]_{\tilde{L}}=\mathcal{L}_{\tilde{\rho}(\tilde{\theta})}\tilde{\theta}^{\prime}-\mathcal{L}_{\tilde{\rho}(\tilde{\theta^{\prime}})}\tilde{\theta}+d(i_{\tilde{\rho}(\tilde{\theta}^{\prime})}\tilde{\theta}),\;\;\mbox{ for }\tilde{\theta},\tilde{\theta}^{\prime}\in\Gamma(\tilde{L}), (4.9)

where ρ~=~1:Γ(L~)Γ(V(πν))\tilde{\rho}=\tilde{\flat}^{-1}:\Gamma(\tilde{L})\to\Gamma(V(\pi\circ\nu)) is the anchor map.

On the other hand, the space of sections of the vector bundle V(πν)/(πν)(Λm(TM))0πV(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))\to\mathcal{M}^{0}\pi may be identified with the (πν)(\pi\circ\nu)-vertical and (πν)(Λm(TM))(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))-equivariant vector fields on π\mathcal{M}\pi. Thus, using that the standard Lie bracket of vector fields is closed for this subspace, we may induce a Lie algebroid structure on the vector bundle V(πν)/(πν)(Λm(TM))0πV(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))\to\mathcal{M}^{0}\pi. Note that every (πν)(\pi\circ\nu)-vertical and (πν)(Λm(TM))(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))-equivariant vector field on π\mathcal{M}\pi is μ\mu-projectable a vector field on 0π\mathcal{M}^{0}\pi and this fact determines the anchor map of the Lie algebroid V(πν)/(πν)(Λm(TM))0πV(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))\to\mathcal{M}^{0}\pi.

Now, using the vector bundle isomorphism

:V(πν)/(πν)(Λm(TM))L(πν0)\flat:V(\pi\circ\nu)/(\pi\circ\nu)^{*}(\Lambda^{m}(T^{*}M))\to L\subseteq\mathcal{M}(\pi\circ\nu^{0})

we can translate the previous Lie algebroid structure to a Lie algebroid structure on LL. In fact, if θΓ(L)\theta\in\Gamma(L) then, from the commutativity of the diagram (4.2), it follows that vector field ρ~(μ(θ))\tilde{\rho}(\mu^{*}(\theta)) on π\mathcal{M}\pi is μ\mu-projectable to a vector field ρ(θ)Γ(V(πν0))\rho(\theta)\in\Gamma(V(\pi\circ\nu^{0})). This fact determines the anchor map ρ:Γ(L)Γ(V(πν0))\rho:\Gamma(L)\to\Gamma(V(\pi\circ\nu^{0})) of the Lie algebroid LL. Moreover, from (4.9), we deduce that the Lie bracket [,][\cdot,\cdot] on Γ(L)\Gamma(L) is given by

[θ,θ]L=ρ(θ)θρ(θ)θ+d(iρ(θ)θ), for θ,θΓ(L).[\theta,\theta^{\prime}]_{L}=\mathcal{L}_{\rho(\theta)}\theta^{\prime}-\mathcal{L}_{\rho(\theta^{\prime})}\theta+d(i_{\rho(\theta^{\prime})}\theta),\;\;\mbox{ for }\theta,\theta^{\prime}\in\Gamma(L). (4.10)

Finally, if α0,β0𝒪\alpha^{0},\beta^{0}\in\mathcal{O} then, using (4.7), (4.10) and the fact that

ρ(dα0)=α0,ρ(dβ0)=β0,\rho(d\alpha^{0})=\mathcal{H}_{\alpha^{0}},\;\;\rho(d\beta^{0})=\mathcal{H}_{\beta^{0}},

we conclude that

d{α0,β0}𝒪=[dα0,dβ0]L, for α0,β0𝒪.d\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}=-[d\alpha^{0},d\beta^{0}]_{L},\;\;\mbox{ for }\alpha^{0},\beta^{0}\in{\mathcal{O}}. (4.11)

Eqs (4.10) and (4.11) are reminiscent of the properties of the Lie algebroid structure on the cotangent bundle of a Poisson manifold (in particular, the cotangent bundle of an arbitrary manifold).

4.2. The linear-affine bracket is an affine representation

In this subsection, we show that the linear-affine bracket {,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) induces an affine representation of the Lie algebra of currents on the affine space of Hamiltonian sections.

Theorem 4.3.

The map

:𝒪Aff(Γ(μ),(πν0)(ΛmTM)),(α0)={α0,}{\mathcal{R}}:{\mathcal{O}}\to{\rm Aff}\left(\Gamma(\mu),(\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)\right),\quad{\mathcal{R}}(\alpha^{0})=\{\alpha^{0},\cdot\} (4.12)

is an affine representation of the Lie algebra (𝒪,{,}𝒪)({\mathcal{O}},\{\cdot,\cdot\}_{\mathcal{O}}) on the affine space Γ(μ)\Gamma(\mu).

More explicitly, we have

{{α0,β0}𝒪,h}={α0,{β0,h}}l{β0,{α0,h}}l, for α0,β0𝒪 and hΓ(μ).\{\{\alpha^{0},\beta^{0}\}_{\mathcal{O}},h\}=\{\alpha^{0},\{\beta^{0},h\}\}_{l}-\{\beta^{0},\{\alpha^{0},h\}\}_{l},\;\;\mbox{ for }\alpha^{0},\beta^{0}\in{\mathcal{O}}\mbox{ and }h\in\Gamma(\mu). (4.13)

In order to prove this theorem, we will use the following results.

Lemma 4.4.

The linear map

~:𝒪Γ(V(πν)),α0~(α0):=~α0\tilde{\mathcal{H}}:{\mathcal{O}}\to\Gamma(V(\pi\circ\nu)),\;\;\alpha^{0}\to\tilde{\mathcal{H}}(\alpha^{0}):=\tilde{\mathcal{H}}_{\alpha^{0}}

is a Lie algebra anti-morphism between the Lie algebras (𝒪,{,}𝒪)({\mathcal{O}},\{\cdot,\cdot\}_{\mathcal{O}}) and (Γ(V(πν)),[,])(\Gamma(V(\pi\circ\nu)),[\cdot,\cdot]), where [,][\cdot,\cdot] is the standard Lie bracket of vector fields.

Lemma 4.5.

Let α0\alpha^{0} be an element of 𝒪{\mathcal{O}}.

  1. (i)

    If hΓ(μ)h\in\Gamma(\mu) is a Hamiltonian section then

    μ{α0,h}=(dvh)(~α0),\mu^{*}\{\alpha^{0},h\}=-(d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\alpha^{0}}), (4.14)

    where hC(π,(πν)(ΛmTM)){\mathcal{F}}_{h}\in C^{\infty}\big{(}{\mathcal{M}}\pi,(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)\big{)} is the extended Hamiltonian density associated with hh and dvhd^{v}{\mathcal{F}}_{h} is the vertical differential of h{\mathcal{F}}_{h}. So, we have

    {α0,h}=(dα0),dh.\{\alpha^{0},h\}=-\langle\sharp(d\alpha^{0}),dh\rangle. (4.15)
  2. (ii)

    If 0Γ((πν0)(ΛmTM)){\mathcal{F}}^{0}\in\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) then

    {α0,0}l=(dl0)(α0),\{\alpha^{0},{\mathcal{F}}^{0}\}_{l}=-(d^{l}{\mathcal{F}}^{0})({\mathcal{H}}_{\alpha^{0}}), (4.16)

    where dl0d^{l}{\mathcal{F}}^{0} is the linear part of the differential of 0{\mathcal{F}}^{0}.

Remark 4.6.

Note that {α0,h}Γ((πν0)(ΛmTM))\{\alpha^{0},h\}\in\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) and, thus, μ{α0,h}Γ((πν)(ΛmTM))\mu^{*}\{\alpha^{0},h\}\in\Gamma((\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)). In fact,

μ{α0,h}(γ)={α0,h}(μ(γ)), for γπ.\mu^{*}\{\alpha^{0},h\}(\gamma)=\{\alpha^{0},h\}(\mu(\gamma)),\;\;\;\mbox{ for }\gamma\in{\mathcal{M}}\pi.

\diamond

Proof.

(of Theorem 4.3) It is clear that {\mathcal{R}} is a linear map. So, we must prove that {\mathcal{R}} is a Lie algebra morphism. For this purpose, we will use Lemmas 4.4 and 4.5.

If α0,β0\alpha^{0},\beta^{0} are currents and hΓ(μ)h\in\Gamma(\mu) is a Hamiltonian section then, using (4.12) and (4.14), we obtain

μ(({α0,β0}𝒪)h)=(dvh)(~{α0,β0}𝒪).\mu^{*}\left({\mathcal{R}}(\{\alpha^{0},\beta^{0}\}_{\mathcal{O}})h\right)=-(d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}}).

Therefore, from Lemma 4.4, it follows that

μ(({α0,β0}𝒪)h)=~α0((dvh)(~β0))~β0((dvh)(~α0)).\mu^{*}\left({\mathcal{R}}(\{\alpha^{0},\beta^{0}\}_{\mathcal{O}})h\right)=\tilde{\mathcal{H}}_{\alpha^{0}}\left((d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\beta^{0}})\right)-\tilde{\mathcal{H}}_{\beta^{0}}\left((d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\alpha^{0}})\right).

Now, using (4.14) and the fact the vector fields ~α0\tilde{\mathcal{H}}_{\alpha^{0}} and ~β0\tilde{\mathcal{H}}_{\beta^{0}} are μ\mu-projectable on the vector fields α0{\mathcal{H}}_{\alpha^{0}} and β0{\mathcal{H}}_{\beta^{0}}, respectively, we deduce

μ(({α0,β0}𝒪)h)\displaystyle\mu^{*}\left({\mathcal{R}}(\{\alpha^{0},\beta^{0}\}_{\mathcal{O}})h\right) =μ(α0({β0,h})+β0({α0,h}))\displaystyle=\mu^{*}\left(-{\mathcal{H}}_{\alpha^{0}}(\{\beta^{0},h\})+{\mathcal{H}}_{\beta^{0}}(\{\alpha^{0},h\})\right)
=μ(dl{β0,h}(α0)+dl{α0,h}(β0)).\displaystyle=\mu^{*}\left(-d^{l}\{\beta^{0},h\}({\mathcal{H}}_{\alpha^{0}})+d^{l}\{\alpha^{0},h\}({\mathcal{H}}_{\beta^{0}})\right).

So, from (4.16), we obtain that

μ(({α0,β0}𝒪)h)=μ({α0,{β0,h}}l{β0,{α0,h}}l).\mu^{*}\left({\mathcal{R}}(\{\alpha^{0},\beta^{0}\}_{\mathcal{O}})h\right)=\mu^{*}\left(\{\alpha^{0},\{\beta^{0},h\}\}_{l}-\{\beta^{0},\{\alpha^{0},h\}\}_{l}\right).

Finally, using (4.12) and the fact that

(α0)l={α0,}l,(β0)l={β0,}l,{\mathcal{R}}(\alpha^{0})^{l}=\{\alpha^{0},\cdot\}_{l},\;\;\;{\mathcal{R}}(\beta^{0})^{l}=\{\beta^{0},\cdot\}_{l},

we conclude that

({α0,β0}𝒪)h\displaystyle{\mathcal{R}}(\{\alpha^{0},\beta^{0}\}_{\mathcal{O}})h =((α0)l((β0)h)(β0)l((α0)h))\displaystyle=\left({\mathcal{R}}(\alpha^{0})^{l}({\mathcal{R}}(\beta^{0})h)-{\mathcal{R}}(\beta^{0})^{l}({\mathcal{R}}(\alpha^{0})h)\right)
=((α0)l(β0)(β0)l(α0))h,\displaystyle=\big{(}{\mathcal{R}}(\alpha^{0})^{l}\circ{\mathcal{R}}(\beta^{0})-{\mathcal{R}}(\beta^{0})^{l}\circ{\mathcal{R}}(\alpha^{0})\big{)}h,

which proves the result. ∎

Proof.

(of Lemma 4.4) It is clear that the map ~:𝒪Γ(V(πν))\tilde{\mathcal{H}}:{\mathcal{O}}\to\Gamma(V(\pi\circ\nu)) is linear. So, we will prove that

[~α0,~β0]=~{α0,β0}𝒪,[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]=-\tilde{\mathcal{H}}_{\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}},

for β0𝒪\beta^{0}\in{\mathcal{O}}.

Now, we have that

i[~α0,~β0]ωπ=(~α0i~β0i~β0~α0)ωπ.i_{[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]}\omega_{{\mathcal{M}}\pi}=\left({\mathcal{L}}_{\tilde{\mathcal{H}}_{\alpha^{0}}}\circ i_{\tilde{\mathcal{H}}_{\beta^{0}}}-i_{\tilde{\mathcal{H}}_{\beta^{0}}}\circ{\mathcal{L}}_{\tilde{\mathcal{H}}_{\alpha^{0}}}\right)\omega_{{\mathcal{M}}\pi}.

Thus, using (4.3) and the fact that ωπ\omega_{{\mathcal{M}}\pi} is closed, we deduce that

i[~α0,~β0]ωπ=~α0(μ(dβ0))i~β0d(μ(dα0))=~α0(μ(dβ0))=d(i~α0(μ(dβ0))).i_{[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]}\omega_{{\mathcal{M}}\pi}={\mathcal{L}}_{\tilde{\mathcal{H}}_{\alpha^{0}}}(\mu^{*}(d\beta^{0}))-i_{\tilde{\mathcal{H}}_{\beta^{0}}}d(\mu^{*}(d\alpha^{0}))={\mathcal{L}}_{\tilde{\mathcal{H}}_{\alpha^{0}}}(\mu^{*}(d\beta^{0}))=d(i_{\tilde{\mathcal{H}}_{\alpha^{0}}}(\mu^{*}(d\beta^{0}))).

But, since the vector field ~α0\tilde{\mathcal{H}}_{\alpha^{0}} on π{\mathcal{M}}\pi is μ\mu-projectable over the vector field α0{\mathcal{H}}_{\alpha^{0}} on 0π{\mathcal{M}}^{0}\pi, it follows that

i[~α0,~β0]ωπ=d(μ(iα0dβ0)).i_{[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]}\omega_{{\mathcal{M}}\pi}=d(\mu^{*}(i_{{\mathcal{H}}_{\alpha^{0}}}d\beta^{0})).

Therefore, using (4.7), we obtain that

i[~α0,~β0]ωπ=μ(d{α0,β0}𝒪).i_{[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]}\omega_{{\mathcal{M}}\pi}=-\mu^{*}(d\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}).

So, from (4.3), it follows that

i[~α0,~β0]ωπ=i~{α0,β0}𝒪ωπi_{[\tilde{\mathcal{H}}_{\alpha^{0}},\tilde{\mathcal{H}}_{\beta^{0}}]}\omega_{{\mathcal{M}}\pi}=-i_{\tilde{\mathcal{H}}_{\{\alpha^{0},\beta^{0}\}_{\mathcal{O}}}}\omega_{{\mathcal{M}}\pi}

and, since ωπ\omega_{{\mathcal{M}}\pi} is non-degenerate, this implies the result. ∎

Proof.

(of Lemma 4.5) Suppose that

α0(xi,uα,pαi)=(Yα(x,u)pαi+αi(x,u))dm1xi.\alpha^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=\left(Y^{\alpha}(x,u)p_{\alpha}^{i}+\alpha^{i}(x,u)\right)d^{m-1}x_{i}.

(i) If

h(xi,uα,pαi)=(xi,uα,H(xj,uβ,pβj),pαi)h(x^{i},u^{\alpha},p_{\alpha}^{i})=(x^{i},u^{\alpha},-H(x^{j},u^{\beta},p_{\beta}^{j}),p_{\alpha}^{i})

then, from (3.2) and (4.5), we have

(dvh)(~α0)=(YαHuα(Yβuαpβi+αiuα)Hpαi(αixi+Yαxipαi))dmx.(d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\alpha^{0}})=\left(Y^{\alpha}\frac{\partial H}{\partial u^{\alpha}}-\left(\frac{\partial Y^{\beta}}{\partial u^{\alpha}}p_{\beta}^{i}+\frac{\partial\alpha^{i}}{\partial u^{\alpha}}\right)\frac{\partial H}{\partial p_{\alpha}^{i}}-\left(\frac{\partial\alpha^{i}}{\partial x^{i}}+\frac{\partial Y^{\alpha}}{\partial x^{i}}p_{\alpha}^{i}\right)\right)d^{m}x.

This, by (3.40), implies

μ{α0,h}=(dvh)(~α0).\mu^{*}\{\alpha^{0},h\}=-(d^{v}{\mathcal{F}}_{h})(\tilde{\mathcal{H}}_{\alpha^{0}}).

Finally, using (4.14), Definition 3.3, and the fact that ~α0\tilde{\mathcal{H}}_{\alpha^{0}} is μ\mu-projectable on the vector field α0{\mathcal{H}}_{\alpha^{0}}, we deduce that (4.15) also holds.

(ii) Suppose that

0(xi,uα,pαi)=F0(xi,uα,pαi)dmx.{\mathcal{F}}^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})=F^{0}(x^{i},u^{\alpha},p_{\alpha}^{i})d^{m}x.

Then, we have

dl0=(F0uαduα+F0pαidpαi)dmx.d^{l}{\mathcal{F}}^{0}=\left(\frac{\partial F^{0}}{\partial u^{\alpha}}du^{\alpha}+\frac{\partial F^{0}}{\partial p_{\alpha}^{i}}dp_{\alpha}^{i}\right)\otimes d^{m}x.

Thus, using (4.6), it follows

(dl0)(α0)=(YαF0uα(Yβuαpβi+αiuα)F0pαi)dmx.(d^{l}{\mathcal{F}}^{0})({\mathcal{H}}_{\alpha^{0}})=\left(Y^{\alpha}\frac{\partial F^{0}}{\partial u^{\alpha}}-\left(\frac{\partial Y^{\beta}}{\partial u^{\alpha}}p_{\beta}^{i}+\frac{\partial\alpha^{i}}{\partial u^{\alpha}}\right)\frac{\partial F^{0}}{\partial p_{\alpha}^{i}}\right)d^{m}x.

Therefore, from (3.41), we deduce the result. ∎

5. Examples

5.1. Time-dependent Hamiltonian Mechanics

In this section, we will use the following terminology. Let τ:VP\tau:V\to P be a vector bundle. Then, we can consider the vector bundle

id×τ:×V×P.id_{\mathbb{R}}\times\tau:\mathbb{R}\times V\to\mathbb{R}\times P.

The sections of this vector bundle are just the time-dependent sections of τ:VP\tau:V\to P. For this reason, the vector bundle id×τ:×V×Pid_{\mathbb{R}}\times\tau:\mathbb{R}\times V\to\mathbb{R}\times P will be called the time-dependent vector bundle associated with τ:VP\tau:V\to P.

For time-dependent Mechanics, the base space of the configuration bundle is the real line \mathbb{R}, that is, we have a fibration π:E\pi:E\to\mathbb{R}. This fibration is trivializable but not canonically trivializable. In fact, if one choses a reference frame one may trivialize the fibration. This means that EE may be identified with a global product ×Q\mathbb{R}\times Q and, under this identification, π:E×Q\pi:E\simeq\mathbb{R}\times Q\to\mathbb{R} is the canonical projection on the first factor. For simplicity, in what follows, we will assume that this is our starting point although all the constructions in this section may be extended, in a natural way, if we don’t chose a reference frame (for an affine formulation of frame-independent Mechanics, we remit to [34, 35, 36, 37, 41, 47].)

So, if the configuration bundle is trivial, the 11-jet bundle J1π=J1(pr1)E=×QJ^{1}\pi=J^{1}(pr_{1})\to E=\mathbb{R}\times Q may be identified with the affine subbundle of T(×Q)=××TQT(\mathbb{R}\times Q)=\mathbb{R}\times\mathbb{R}\times TQ

J1(pr1)={t|t+vqTt×TqQ(t,q)×Q and vqTqQ}.J^{1}(pr_{1})=\big{\{}\frac{\partial}{\partial t}_{|t}+v_{q}\in T_{t}\mathbb{R}\times T_{q}Q\mid(t,q)\in\mathbb{R}\times Q\mbox{ and }v_{q}\in T_{q}Q\big{\}}.

Thus, J1(pr1)J^{1}(pr_{1}) is isomorphic to the vector bundle ×TQ×Q\mathbb{R}\times TQ\to\mathbb{R}\times Q.

An Ehresmann connection :H(×Q)×THT(×Q){}^{H}:(\mathbb{R}\times Q)\times_{\mathbb{R}}T\mathbb{R}\to H\subseteq T(\mathbb{R}\times Q) on the fibration pr1:×Qpr_{1}:\mathbb{R}\times Q\to\mathbb{R} is completely determined by a vector field Γ\Gamma on ×Q\mathbb{R}\times Q satisfying

dt,Γ=1.\left\langle dt,\Gamma\right\rangle=1.

In fact, the horizontal subbundle associated with the connection is of rank 11 and generated by the vector field Γ\Gamma.

The extended (resp. restricted) multimomentum bundle may be identified with the cotangent bundle T(×Q)=××TQT^{*}(\mathbb{R}\times Q)=\mathbb{R}\times\mathbb{R}\times T^{*}Q (resp. the vector bundle ×TQ\mathbb{R}\times T^{*}Q) and, under this identification, the multisymplectic structure on ××TQ\mathbb{R}\times\mathbb{R}\times T^{*}Q is just the canonical symplectic structure ω(×Q)\omega_{(\mathbb{R}\times Q)} on ××TQ\mathbb{R}\times\mathbb{R}\times T^{*}Q.

We have a principal \mathbb{R}-action on T(×Q)=××TQT^{*}(\mathbb{R}\times Q)=\mathbb{R}\times\mathbb{R}\times T^{*}Q given by

p(t,p,αq)=(t,p+p,αq)p^{\prime}\cdot(t,p,\alpha_{q})=(t,p+p^{\prime},\alpha_{q})

for (t,p,αq)×TqQ(t,p,\alpha_{q})\in\mathbb{R}\times T^{*}_{q}Q and pp^{\prime}\in\mathbb{R}. The principal bundle projection is just the canonical projection

μ:T(×Q)=××TQV(pr1)=×TQ,(t,p,αq)(t,αq).\mu:T^{*}(\mathbb{R}\times Q)=\mathbb{R}\times\mathbb{R}\times T^{*}Q\to V^{*}(pr_{1})=\mathbb{R}\times T^{*}Q,\;\;(t,p,\alpha_{q})\to(t,\alpha_{q}).

Note that ×TQ\mathbb{R}\times T^{*}Q admits a Poisson structure of corank 11 which is induced by the canonical symplectic structure on TQT^{*}Q. In fact, the \mathbb{R}-action on the extended multimomentum bundle preserves the symplectic form and the canonical projection μ\mu is a Poisson map.

In this case, a Hamiltonian section h:V(pr1)=×TQT(×Q)=××TQh:V^{*}(pr_{1})=\mathbb{R}\times T^{*}Q\to T^{*}(\mathbb{R}\times Q)=\mathbb{R}\times\mathbb{R}\times T^{*}Q may be identified with a global time-dependent Hamiltonian function H:×TQH:\mathbb{R}\times T^{*}Q\to\mathbb{R}. In addition, the couple

(ωh=hω(×Q),η=(πν0)(dt))(\omega_{h}=h^{*}\omega_{(\mathbb{R}\times Q)},\eta=(\pi\circ\nu^{0})^{*}(dt))

is a cosymplectic structure on V(pr1)=×TQV^{*}(pr_{1})=\mathbb{R}\times T^{*}Q and, thus, we can consider the Reeb vector field ΓH\Gamma_{H} of (ωH=ωh,η)(\omega_{H}=\omega_{h},\eta).

Remark 5.1.

We recall that a cosymplectic structure on a manifold PP of odd dimension 2p+12p+1 is a couple (ω,θ)(\omega,\theta), where ω\omega is a closed 22-form, θ\theta is a closed 11-form and θωp\theta\wedge\omega^{p} is a volume form on PP. The Reeb vector field Γ\Gamma associated with the structure (ω,θ)(\omega,\theta) is the vector field on PP which is completely characterized by the conditions

iΓω=0,iΓη=1.i_{\Gamma}\omega=0,\quad i_{\Gamma}\eta=1.

\diamond

Note that the 22-form ωH\omega_{H} on ×TQ\mathbb{R}\times T^{*}Q is given by

ωH=ωQ+dHdt,\omega_{H}=\omega_{Q}+dH\wedge dt,

where ωQ\omega_{Q} is the canonical symplectic structure on TQT^{*}Q. So, the Reeb vector field ΓH\Gamma_{H} of the cosymplectic structure (ωH,η)(\omega_{H},\eta) on ×TQ\mathbb{R}\times T^{*}Q is

(t,α)ΓH(t,α)=t|t+XH(t,)(α),(t,\alpha)\to\Gamma_{H}(t,\alpha)=\frac{\partial}{\partial t}_{|t}+X_{H(t,\cdot)}(\alpha),

with XH(t,)X_{H(t,\cdot)} the Hamiltonian vector field on TQT^{*}Q associated with the function

H(t,):TQ,βH(t,β).H(t,\cdot):T^{*}Q\to\mathbb{R},\;\;\beta\to H(t,\beta).

Thus, if (t,qi,pi)(t,q^{i},p_{i}) are canonical coordinates on ×TQ\mathbb{R}\times T^{*}Q then

ΓH=t+i(HpiqiHqipi)\Gamma_{H}=\frac{\partial}{\partial t}+\sum_{i}\left(\frac{\partial H}{\partial p_{i}}\frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{i}}\frac{\partial}{\partial p_{i}}\right)

and the integral curves t(t,qi(t),pi(t))t\to(t,q^{i}(t),p_{i}(t)) of ΓH\Gamma_{H} are just of the solution of the Hamilton equations for HH, that is,

dqidt=Hpi,dpidt=Hqi.\displaystyle\frac{dq^{i}}{dt}=\frac{\partial H}{\partial p_{i}},\;\;\;\frac{dp_{i}}{dt}=-\frac{\partial H}{\partial q^{i}}.

Therefore, ΓH\Gamma_{H} is the evolution vector field associated with the time-dependent Hamiltonian function H:×TQH:\mathbb{R}\times T^{*}Q\to\mathbb{R} (for more details see, for instance, [15, 20]).

In addition, the vector bundle V(πν)V^{*}(\pi\circ\nu) may be identified with the time-dependent cotangent bundle to ×TQ\mathbb{R}\times T^{*}Q,

id×π×TQ:×T(×TQ)×(×TQ),id_{\mathbb{R}}\times\pi_{\mathbb{R}\times T^{*}Q}:\mathbb{R}\times T^{*}(\mathbb{R}\times T^{*}Q)\to\mathbb{R}\times(\mathbb{R}\times T^{*}Q),

where π×TQ:T(×TQ)×TQ\pi_{\mathbb{R}\times T^{*}Q}:T^{*}(\mathbb{R}\times T^{*}Q)\to\mathbb{R}\times T^{*}Q is the canonical projection.

Under the previous identification, the principal \mathbb{R}-action on V(πν)×T(×TQ)×(××TTQ)V^{*}(\pi\circ\nu)\simeq\mathbb{R}\times T^{*}(\mathbb{R}\times T^{*}Q)\simeq\mathbb{R}\times(\mathbb{R}\times\mathbb{R}\times T^{*}T^{*}Q) is given by

p(t,(p,pq,γ~))=(t,(p+p,pq,γ~)),p^{\prime}\cdot(t,(p,p_{q},\tilde{\gamma}))=(t,(p+p^{\prime},p_{q},\tilde{\gamma})),

for pp^{\prime}\in\mathbb{R} and (t,(p,pq,γ~))×(××TTQ)(t,(p,p_{q},\tilde{\gamma}))\in\mathbb{R}\times(\mathbb{R}\times\mathbb{R}\times T^{*}T^{*}Q).

Moreover, the extended phase bundle (π)~\widetilde{\mathbb{P}(\pi)} is

(π)~={(t,dp|p+γ)(t,p) and γT(TQ)}.\widetilde{\mathbb{P}(\pi)}=\{(t,dp_{|p}+\gamma)\mid(t,p)\in\mathbb{R}\mbox{ and }\gamma\in T^{*}(T^{*}Q)\}.

In other words, (π)~\widetilde{\mathbb{P}(\pi)} may be identified with the time-dependent vector bundle associated with the vector bundle id×πTQ:×TTQ×TQid_{\mathbb{R}}\times\pi_{T^{*}Q}:\mathbb{R}\times T^{*}T^{*}Q\to\mathbb{R}\times T^{*}Q, that is,

id×(id×πTQ):(π)~×(×TTQ)T(×Q)××TQid_{\mathbb{R}}\times(id_{\mathbb{R}}\times\pi_{T^{*}Q}):\widetilde{\mathbb{P}(\pi)}\simeq\mathbb{R}\times(\mathbb{R}\times T^{*}T^{*}Q)\to T^{*}(\mathbb{R}\times Q)\simeq\mathbb{R}\times\mathbb{R}\times T^{*}Q

and the principal \mathbb{R}-action on (π)~×(×TTQ)\widetilde{\mathbb{P}(\pi)}\simeq\mathbb{R}\times(\mathbb{R}\times T^{*}T^{*}Q) is given by

p(t,(p,γ~))=(t,p+pγ~)p^{\prime}\cdot(t,(p,\tilde{\gamma}))=(t,p+p^{\prime}\tilde{\gamma})

for p,t,pp^{\prime},t,p\in\mathbb{R} and γ~T(TQ)\tilde{\gamma}\in T^{*}(T^{*}Q).

Thus, the phase bundle (π)\mathbb{P}(\pi) may be identified with the time-dependent cotangent bundle to TQT^{*}Q

id×πTQ:(π)×TTQ×TQ.id_{\mathbb{R}}\times\pi_{T^{*}Q}:\mathbb{P}(\pi)\simeq\mathbb{R}\times T^{*}T^{*}Q\to\mathbb{R}\times T^{*}Q.

Then, the differential dhdh of hh is just the vertical differential dvHd^{v}H (with respect to the projection pr1:×TQpr_{1}:\mathbb{R}\times T^{*}Q\to\mathbb{R}) of the Hamiltonian function HH, that is,

dvH:×TQ×TTQ,(t,α)dvH(t,α)=(t,dH(t,)(α)).d^{v}H:\mathbb{R}\times T^{*}Q\to\mathbb{R}\times T^{*}T^{*}Q,\;\;(t,\alpha)\to d^{v}H(t,\alpha)=(t,dH_{(t,\cdot)}(\alpha)).

On the other hand, the vector bundle LL, which was introduced in Proposition 3.10, is isomorphic to the cotangent bundle to ×TQ\mathbb{R}\times T^{*}Q.

Moreover, as we know, the 11-jet bundle to the projection

πν0:×TQ\pi\circ\nu^{0}:\mathbb{R}\times T^{*}Q\to\mathbb{R}

may be identified with the affine subbundle of T(×TQ)T(\mathbb{R}\times T^{*}Q) given by

{t|t+XαTt×TαTQ(t,α)×TQ}\big{\{}\frac{\partial}{\partial t}_{|t}+X_{\alpha}\in T_{t}\mathbb{R}\times T_{\alpha}T^{*}Q\mid(t,\alpha)\in\mathbb{R}\times T^{*}Q\big{\}} (5.1)

or, equivalently, with the time-dependent tangent bundle to TQT^{*}Q

id×τTQ:×TTQ×TQ.id_{\mathbb{R}}\times\tau_{T^{*}Q}:\mathbb{R}\times TT^{*}Q\to\mathbb{R}\times T^{*}Q.

Under all the previous identifications, the affine bundle isomorphism A:J1(πν0)×TTQ(π)×TTQA:J^{1}(\pi\circ\nu^{0})\simeq\mathbb{R}\times TT^{*}Q\to\mathbb{P}(\pi)\simeq\mathbb{R}\times T^{*}T^{*}Q is given by

A(t,X)=(t,iXωQ), for (t,X)×TTQ,A(t,X)=(t,i_{X}\omega_{Q}),\;\;\mbox{ for }(t,X)\in\mathbb{R}\times TT^{*}Q,

with ωQ\omega_{Q} the canonical symplectic structure of TQT^{*}Q. Thus, in this case, the vector subbundle KerA\operatorname{Ker}A is trivial and this implies that there exists a unique Hamiltonian connection for the hamiltonian section hh. In fact, the horizontal subbundle of such a connection is generated by the evolution vector field ΓH\Gamma_{H}.

In addition, if aff:(π)J1(πν0)\sharp^{\rm aff}:\mathbb{P}(\pi)\to J^{1}(\pi\circ\nu^{0}) is the inverse morphism of A:J1(πν0)(π)A:J^{1}(\pi\circ\nu^{0})\to\mathbb{P}(\pi) it is clear that, under the identification of J1(πν0)J^{1}(\pi\circ\nu^{0}) with the affine subbundle of T(×TQ)T(\mathbb{R}\times T^{*}Q) given by (5.1), the image of the section dhdh of (π)\mathbb{P}(\pi) is just the evolution vector field ΓH\Gamma_{H}.

On the other hand, the space 𝒪{\mathcal{O}} of currents is the set of smooth real functions on ×TQ\mathbb{R}\times T^{*}Q (the space of observables in Classical Mechanics)

𝒪C(×TQ){\mathcal{O}}\simeq C^{\infty}(\mathbb{R}\times T^{*}Q)

and it is clear that the space Γ(μ)\Gamma(\mu) of sections of the projection

μ:T(×Q)×TQ\mu:T^{*}(\mathbb{R}\times Q)\to\mathbb{R}\times T^{*}Q

may be also identified with C(×TQ)C^{\infty}(\mathbb{R}\times T^{*}Q). Then, the linear-affine bracket

{,}:𝒪×Γ(μ)C(×TQ)\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to C^{\infty}(\mathbb{R}\times T^{*}Q)

is given by

{F0,H}=dF0,ΓH=F0t+i(F0qiHpiF0piHqi),\{F^{0},H\}=\langle dF^{0},\Gamma_{H}\rangle=\frac{\partial F^{0}}{\partial t}+\sum_{i}\left(\frac{\partial F^{0}}{\partial q^{i}}\frac{\partial H}{\partial p_{i}}-\frac{\partial F^{0}}{\partial p_{i}}\frac{\partial H}{\partial q^{i}}\right),

for (F0,H)𝒪×Γ(μ)C(×TQ)×C(×TQ)(F^{0},H)\in{\mathcal{O}}\times\Gamma(\mu)\simeq C^{\infty}(\mathbb{R}\times T^{*}Q)\times C^{\infty}(\mathbb{R}\times T^{*}Q).

This bracket was considered in [34, 35, 47].

In addition, the bracket {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} on the space of observables 𝒪C(×TQ){\mathcal{O}}\simeq C^{\infty}(\mathbb{R}\times T^{*}Q) is just the standard Poisson bracket {,}×TQ\{\cdot,\cdot\}_{\mathbb{R}\times T^{*}Q} induced by the canonical symplectic structure of TQT^{*}Q. In other words,

{F0,G0}×TQ=i(F0qiG0piF0piG0qi)\{F^{0},G^{0}\}_{\mathbb{R}\times T^{*}Q}=\sum_{i}\left(\frac{\partial F^{0}}{\partial q^{i}}\frac{\partial G^{0}}{\partial p_{i}}-\frac{\partial F^{0}}{\partial p_{i}}\frac{\partial G^{0}}{\partial q^{i}}\right)

for F0,G0C(×TQ)F^{0},G^{0}\in C^{\infty}(\mathbb{R}\times T^{*}Q).

Finally, the affine representation {\mathcal{R}} of the Lie algebra (C(×TQ),{,}×TQ)(C^{\infty}(\mathbb{R}\times T^{*}Q),\{\cdot,\cdot\}_{\mathbb{R}\times T^{*}Q}) on the affine space Γ(μ)C(×TQ)\Gamma(\mu)\simeq C^{\infty}(\mathbb{R}\times T^{*}Q) is given by

:C(×TQ)Aff(C(×TQ),C(×TQ)),(F0)H=dF0,ΓH.{\mathcal{R}}:C^{\infty}(\mathbb{R}\times T^{*}Q)\to{\rm Aff}(C^{\infty}(\mathbb{R}\times T^{*}Q),C^{\infty}(\mathbb{R}\times T^{*}Q)),\quad{\mathcal{R}}(F^{0})H=\langle dF^{0},\Gamma_{H}\rangle.

Concretely, we have

{{F0,G0}×TQ,H}={F0,{G0,H}}×TQ{G0,{F0,H}}×TQ,\{\{F_{0},G_{0}\}_{\mathbb{R}\times T^{*}Q},H\}=\{F_{0},\{G_{0},H\}\}_{\mathbb{R}\times T^{*}Q}-\{G_{0},\{F_{0},H\}\}_{\mathbb{R}\times T^{*}Q},

5.2. A particular case: the configuration bundle is trivial and the base space is orientable

In this section we will assume that E=M×QE=M\times Q, π:EM\pi:E\to M is the canonical projection pr1:M×QMpr_{1}:M\times Q\to M on the first factor. In this case, the affine bundle

J1(pr1)M×QJ^{1}(pr_{1})\to M\times Q

can be identified with the vector bundle

TMTQ=(x,y)M×QLin(TxM,TyQ).T^{*}M\otimes TQ=\cup_{(x,y)\in M\times Q}{\rm Lin}(T_{x}M,T_{y}Q).

Let us further assume that MM is orientable, with m=dimM2m=dimM\geq 2, and fix a volume form volΩm(M)\mbox{vol}\in\Omega^{m}(M) on MM. We denote by χvol\chi_{\mbox{vol}} the mm-vector on MM which is characterized by the condition

i(χvol)vol=1.i(\chi_{\mbox{vol}})\mbox{vol}=1.

Using the volume form vol on MM, we have

ΛmTxM,xM,\Lambda^{m}T_{x}^{*}M\simeq\mathbb{R},\;\;\;\forall x\in M,

and the vector bundle ΛmTMM\Lambda^{m}T^{*}M\to M may be trivialized as the trivial line vector bundle M×MM\times\mathbb{R}\to M. Using vol again, the reduced multimomentun bundle 0π{\mathcal{M}}^{0}\pi is isomorphic to the vector bundle.

Λm1TMTQ=(x,y)M×QLin(TyQ,Λm1(TxM))\Lambda^{m-1}T^{*}M\otimes T^{*}Q=\cup_{(x,y)\in M\times Q}{\rm Lin}(T_{y}Q,\Lambda^{m-1}(T_{x}^{*}M))

We can also identify it with

TMTQ=(x,y)M×QLin(TxM,TyQ).TM\otimes T^{*}Q=\cup_{(x,y)\in M\times Q}\operatorname{Lin}(T^{*}_{x}M,T^{*}_{y}Q).

As in the general case, we will denote by ν0:Λm1TMTQM×Q\nu^{0}:\Lambda^{m-1}T^{*}M\otimes T^{*}Q\to M\times Q the vector bundle projection. We will see that this space admits a multisymplectic structure.

Proposition 5.2.

Let λ0π\lambda_{{\mathcal{M}}^{0}\pi} be the mm-form on 0π{\mathcal{M}}^{0}\pi given by

λ0π(γ0)(Z10,,Zm0)\displaystyle\lambda_{{\mathcal{M}}^{0}\pi}(\gamma^{0})(Z_{1}^{0},\dots,Z_{m}^{0}) =i=1m(1)i+1(γ0(Tγ0(pr2ν0)(Zi0)))\displaystyle=\sum_{i=1}^{m}(-1)^{i+1}\left(\gamma^{0}(T_{\gamma^{0}}(pr_{2}\circ\nu^{0})(Z_{i}^{0}))\right)
(Tγ0(pr1ν0)(Z10),,Tγ0(pr1ν0)(Zi0)^,,Tγ0(pr1ν0)(Zm0)),\displaystyle\qquad\Big{(}T_{\gamma^{0}}(pr_{1}\circ\nu^{0})(Z_{1}^{0}),\dots,\widehat{T_{\gamma^{0}}(pr_{1}\circ\nu^{0})(Z_{i}^{0})},\dots,T_{\gamma^{0}}(pr_{1}\circ\nu^{0})(Z_{m}^{0})\Big{)},

for γ0Lin(TyQ,Λm1(TxM))\gamma^{0}\in{\rm Lin}(T_{y}Q,\Lambda^{m-1}(T_{x}^{*}M)) and Z10,,Zm0Tγ0(Λm1TMTQ)Z_{1}^{0},\dots,Z_{m}^{0}\in T_{\gamma^{0}}(\Lambda^{m-1}T^{*}M\otimes T^{*}Q), where pr2:M×QQpr_{2}:M\times Q\to Q is the projection on the second factor. Then, ω0π=dλ0π\omega_{{\mathcal{M}}^{0}\pi}=-d\lambda_{{\mathcal{M}}^{0}\pi} is a multisymplectic structure on 0π{\mathcal{M}}^{0}\pi.

Proof.

A direct computation proves that the local expression of λ0π\lambda_{{\mathcal{M}}^{0}\pi} is

λ0π=pαiduαdm1xi.\lambda_{{\mathcal{M}}^{0}\pi}=p_{\alpha}^{i}du^{\alpha}\wedge d^{m-1}x_{i}.

Thus, the local expression of ω0π\omega_{{\mathcal{M}}^{0}\pi} is

ω0π=duαdpαidm1xi.\omega_{{\mathcal{M}}^{0}\pi}=du^{\alpha}\wedge dp_{\alpha}^{i}\wedge d^{m-1}x_{i}. (5.2)

Therefore,

ixjω0π=duαdpαidm2xij,iuαω0π=dpαidm1xi,ipαiω0π=duαdm1xi,i_{\frac{\partial}{\partial x^{j}}}\omega_{{\mathcal{M}}^{0}\pi}=du^{\alpha}\wedge dp_{\alpha}^{i}\wedge d^{m-2}x_{ij},\;i_{\frac{\partial}{\partial u^{\alpha}}}\omega_{{\mathcal{M}}^{0}\pi}=dp_{\alpha}^{i}\wedge d^{m-1}x_{i},\;i_{\frac{\partial}{\partial p_{\alpha}^{i}}}\omega_{{\mathcal{M}}^{0}\pi}=-du^{\alpha}\wedge d^{m-1}x_{i},

which implies that ω0π\omega_{{\mathcal{M}}^{0}\pi} is a multisymplectic structure on 0π{\mathcal{M}}^{0}\pi. ∎

On the other hand, the extended multimomentum bundle π{\mathcal{M}}\pi may be identified with the Withney sum of the vector bundles ΛmTM×QM×Q\Lambda^{m}T^{*}M\times Q\to M\times Q and Λm1TMTQM×Q\Lambda^{m-1}T^{*}M\otimes T^{*}Q\to M\times Q, that is,

π(ΛmTM×Q)(Λm1TMTQ).{\mathcal{M}}\pi\simeq(\Lambda^{m}T^{*}M\times Q)\oplus(\Lambda^{m-1}T^{*}M\otimes T^{*}Q).

So, using the volume form vol, we deduce that

π×0π.{\mathcal{M}}\pi\simeq\mathbb{R}\times{\mathcal{M}}^{0}\pi.

Under this identification, the canonical multisymplectic structure ωπ\omega_{{\mathcal{M}}\pi} on π{\mathcal{M}}\pi is

ωπ=ω0πdpvol,\omega_{{\mathcal{M}}\pi}=\omega_{{\mathcal{M}}^{0}\pi}-dp\wedge\mbox{vol},

where pp is the canonical coordinate on \mathbb{R}. Here, we also denote by ω0π\omega_{{\mathcal{M}}^{0}\pi} and vol the pullbacks to π{\mathcal{M}}\pi of ω0π\omega_{{\mathcal{M}}^{0}\pi} and vol, respectively.

Moreover, a Hamiltonian section h:0ππh:{\mathcal{M}}^{0}\pi\to{\mathcal{M}}\pi is just a global Hamiltonian function H:0πH:{\mathcal{M}}^{0}\pi\to\mathbb{R} on 0π{\mathcal{M}}^{0}\pi and the (m+1)(m+1)-form ωh\omega_{h} on 0π{\mathcal{M}}^{0}\pi is

ωh=ωH=ω0π+dHvol.\omega_{h}=\omega_{H}=\omega_{{\mathcal{M}}^{0}\pi}+dH\wedge\mbox{vol}. (5.3)

On the other hand, under the identification between π{\mathcal{M}}\pi and ×0π\mathbb{R}\times{\mathcal{M}}^{0}\pi and using (B.1) (see Appendix B), it follows that

(vol)𝐯=p,(\mbox{vol})^{\bf v}=\frac{\partial}{\partial p}, (5.4)

where pp is the standard coordinate on \mathbb{R}.

So, the extended phase bundle (pr1)~\widetilde{\mathbb{P}(pr_{1})} is isomorphic to the affine bundle over π×0π{\mathcal{M}}\pi\simeq\mathbb{R}\times{\mathcal{M}}^{0}\pi

(p,γ0)×0π{𝒜~V(p,γ0)(pr1ν)𝒜~(p|p)=1},\cup_{(p,\gamma^{0})\in\mathbb{R}\times{\mathcal{M}}^{0}\pi}\Big{\{}\tilde{\mathcal{A}}\in V^{*}_{(p,\gamma^{0})}(pr_{1}\circ\nu)\mid\tilde{\mathcal{A}}(\frac{\partial}{\partial p}_{|p})=1\Big{\}},

where V(pr1ν)V(pr_{1}\circ\nu) is the vertical bundle of the fibration pr1ν:πMpr_{1}\circ\nu:{\mathcal{M}}\pi\to M.

Now, using the previous identifications, we have that the fibred action of π(ΛmTM)\pi^{*}(\Lambda^{m}T^{*}M) on (pr1){\mathcal{M}}(pr_{1}) is just the standard action of \mathbb{R} on ×0π\mathbb{R}\times{\mathcal{M}}^{0}\pi. Therefore, since

V(p,γ0)(pr1ν)spanp|pVγ0(pr1ν0),V_{(p,\gamma^{0})}(pr_{1}\circ\nu)\simeq{\rm span}\frac{\partial}{\partial p}_{|p}\oplus V_{\gamma^{0}}(pr_{1}\circ\nu^{0}),

for (p,γ0)×0(pr1)(p,\gamma^{0})\in\mathbb{R}\times{\mathcal{M}}^{0}(pr_{1}), we deduce that the phase bundle (pr1)\mathbb{P}(pr_{1}) is isomorphic to the vector bundle V(pr1ν0)V^{*}(pr_{1}\circ\nu^{0}). An isomorphism

V(pr1ν0)(pr1)=(pr1)~V^{*}(pr_{1}\circ\nu^{0})\to\mathbb{P}(pr_{1})=\frac{\widetilde{\mathbb{P}(pr_{1})}}{\mathbb{R}}

between these spaces is given by

𝒜γ0Vγ0(pr1ν0)[dp|p+Aγ0](pr1)γ0,{\mathcal{A}}_{\gamma^{0}}\in V^{*}_{\gamma^{0}}(pr_{1}\circ\nu^{0})\to[dp_{|p}+A_{\gamma^{0}}]\in\mathbb{P}(pr_{1})_{\gamma^{0}},

for γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi, with pp an arbitrary real number.

Thus, the image of the vertical differential dvHd^{v}H of HH under the previous isomorphism is just the equivalence class induced by the vertical differential dvhd^{v}{\mathcal{F}}_{h} of the extended Hamiltonian density h=p+H{\mathcal{F}}_{h}=p+H. This implies that, under the identification between V(pr1ν0)V^{*}(pr_{1}\circ\nu^{0}) and (pr1)\mathbb{P}(pr_{1}), the differential dhdh of hh (as a section of the affine bundle (pr1)0(pr1)\mathbb{P}(pr_{1})\to{\mathcal{M}}^{0}(pr_{1})) is just dvHd^{v}H (as a section of the vector bundle V(pr1ν0)0(pr1)V^{*}(pr_{1}\circ\nu^{0})\to{\mathcal{M}}^{0}(pr_{1})).

Next, following Section 3.2 (see (3.14) and (3.15)), we will define the vector bundle monomorphism

0:V(pr1ν0)(pr1ν0)=Λ2m(T(0π))\flat^{0}:V(pr_{1}\circ\nu^{0})\to{\mathcal{M}}(pr_{1}\circ\nu^{0})=\Lambda^{m}_{2}(T^{*}({\mathcal{M}}^{0}\pi))

as follows

0(U)=iUω0π(γ0),\flat^{0}(U)=-i_{U}\omega_{{\mathcal{M}}^{0}\pi}(\gamma^{0}),

for UVγ0(pr1ν0)U\in V_{\gamma^{0}}(pr_{1}\circ\nu^{0}) and γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi. We have

0(uα)=(dpαidm1xi),0(pαi)=duαdm1xi.\flat^{0}(\frac{\partial}{\partial u^{\alpha}})=-(dp_{\alpha}^{i}\wedge d^{m-1}x_{i}),\;\;\flat^{0}(\frac{\partial}{\partial p_{\alpha}^{i}})=du^{\alpha}\wedge d^{m-1}x_{i}.

Now, we consider the restriction to J1(pr1ν0)J^{1}(pr_{1}\circ\nu^{0}) of the dual morphism of 0\flat^{0}, that is,

(0):J1(pr1ν0)V(pr1ν0).(\flat^{0})^{*}:J^{1}(pr_{1}\circ\nu^{0})\to V^{*}(pr_{1}\circ\nu^{0}).

A direct computation proves that

(0)(Z0)=(1)m+1(i(ΛmZ0)(χvol(γ0))ω0π(γ0))|Vγ0(pr1ν0),(\flat^{0})^{*}(Z^{0})=(-1)^{m+1}\left(i_{(\Lambda^{m}Z^{0})(\chi_{\mbox{vol}}(\gamma^{0}))}\omega_{{\mathcal{M}}^{0}\pi}(\gamma^{0})\right)_{|V_{\gamma^{0}}(pr_{1}\circ\nu^{0})},

for Z0:Tpr1(ν0(γ0))MTγ0(0π)Jγ01(pr1ν0)Z^{0}:T_{pr_{1}(\nu^{0}(\gamma^{0}))}M\to T_{\gamma^{0}}({\mathcal{M}}^{0}\pi)\in J^{1}_{\gamma^{0}}(pr_{1}\circ\nu^{0}) and γ00π\gamma^{0}\in{\mathcal{M}}^{0}\pi. Thus, if (xi,uα,pαi)(x^{i},u^{\alpha},p_{\alpha}^{i}) are local coordinates on 0π{\mathcal{M}}^{0}\pi such that

vol=dmx\mbox{vol}=d^{m}x

then, using (5.2), we deduce that

(0)(xi,uα,pαi;ujα,pαji)=(xi,uα,pαi;ipαii,uiα).(\flat^{0})^{*}(x^{i},u^{\alpha},p_{\alpha}^{i};u^{\alpha}_{j},p^{i}_{\alpha j})=\big{(}x^{i},u^{\alpha},p_{\alpha}^{i};-\sum_{i}p^{i}_{\alpha i},u^{\alpha}_{i}\big{)}.

This, from (3.20) and under the identification between (pr1)\mathbb{P}(\mathrm{pr}_{1}) and V(pr1ν0)V^{*}(pr_{1}\circ\nu^{0}), implies that (0)=A(\flat^{0})^{*}=A, with A:J1(pr1ν0)(pr1)A:J^{1}(pr_{1}\circ\nu^{0})\to\mathbb{P}(pr_{1}) the affine bundle epimorphism given by (3.15), (3.18) and (3.19).

So, if (0)^:J1(pr1ν0)/KerAV(pr1ν0)\widehat{(\flat^{0})^{*}}:J^{1}(pr_{1}\circ\nu^{0})/\operatorname{Ker}A\to V^{*}(pr_{1}\circ\nu^{0}) is the affine bundle isomorphism induced by (0):J1(pr1ν0)V(pr1ν0)(\flat^{0})^{*}:J^{1}(pr_{1}\circ\nu^{0})\to V^{*}(pr_{1}\circ\nu^{0}) then, under the identification between (pr1)\mathbb{P}(pr_{1}) and V(pr1ν0)V^{*}(pr_{1}\circ\nu^{0}), we conclude that

(0)^=A^.\widehat{(\flat^{0})^{*}}=\hat{A}.

We will denote by

0:V(pr1ν0)J1(pr1ν0)/KerA\sharp^{0}:V^{*}(pr_{1}\circ\nu^{0})\to J^{1}(pr_{1}\circ\nu^{0})/\operatorname{Ker}A

the inverse morphism of (0)^:J1(pr1ν0)/KerAV(pr1ν0)\widehat{(\flat^{0})^{*}}:J^{1}(pr_{1}\circ\nu^{0})/\operatorname{Ker}A\to V^{*}(pr_{1}\circ\nu^{0}).

Now, from (5.3) and Definition 3.5, we deduce that a connection :H0π×MTMHT(0π){}^{H}:{\mathcal{M}}^{0}\pi\times_{M}TM\to H\subseteq T({\mathcal{M}}^{0}\pi) on the fibration pr1ν0:0πMpr_{1}\circ\nu^{0}:{\mathcal{M}}^{0}\pi\to M is Hamiltonian if and only if

(1)m+1(iχvolHω0π)|V(pr1ν0)=dvH,(-1)^{m+1}\big{(}i_{\chi_{\mbox{vol}}^{H}}\omega_{{\mathcal{M}}^{0}\pi}\big{)}_{|V(pr_{1}\circ\nu^{0})}=d^{v}H,

where dvHd^{v}H is the vertical differential of HH with respect to the projection pr1ν0pr_{1}\circ\nu^{0}.

Moreover, using that (0)=A(\flat^{0})^{*}=A, it follows that the vector subbundle LL of (pr1ν0){\mathcal{M}}(pr_{1}\circ\nu^{0}) introduced in Proposition 3.10 is

Lγ0=span(vol(γ0))0(Vγ0(pr1ν0)), for γ00πL_{\gamma^{0}}={\rm span}(\mbox{vol}(\gamma^{0}))\oplus\flat_{0}(V_{\gamma^{0}}(pr_{1}\circ\nu^{0})),\;\;\mbox{ for }\gamma^{0}\in{\mathcal{M}}^{0}\pi

In addition, as we know (see first step in Section 3.4), we have that

(J1(pr1ν0)/KerA)+=Aff(J1(pr1ν0)/KerA,)L.\left(J^{1}(pr_{1}\circ\nu^{0})/\operatorname{Ker}A\right)^{+}={\rm Aff}\left(J^{1}(pr_{1}\circ\nu^{0})/\operatorname{Ker}A,\mathbb{R}\right)\simeq L.

On the other hand, under the identification between (pr1){\mathcal{M}}(pr_{1}) and ×0(pr1)\mathbb{R}\times{\mathcal{M}}^{0}(pr_{1}), the projection μ:(pr1)0(pr1)\mu:{\mathcal{M}}(pr_{1})\to{\mathcal{M}}^{0}(pr_{1}) is just the canonical projection on the second factor. Thus, the affine space Γ(μ)\Gamma(\mu) is isomorphic to the vector space C(0(pr1))C^{\infty}({\mathcal{M}}^{0}(pr_{1})) and the linear-affine bracket

{,}:𝒪×Γ(μ)Γ((pr1ν0)(ΛmTM))\{\cdot,\cdot\}:{\mathcal{O}}\times\Gamma(\mu)\to\Gamma((pr_{1}\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))

given by (3.39) may be considered as a bracket

{,}:𝒪×C(0(pr1))C(0(pr1))\{\cdot,\cdot\}:{\mathcal{O}}\times C^{\infty}({\mathcal{M}}^{0}(pr_{1}))\to C^{\infty}({\mathcal{M}}^{0}(pr_{1}))

defined by

{α0,H}=dα0,0(dvH), for α0𝒪 and HC(0(pr1)).\{\alpha^{0},H\}=\left\langle d\alpha^{0},\sharp^{0}(d^{v}H)\right\rangle,\;\;\mbox{ for }\alpha^{0}\in{\mathcal{O}}\mbox{ and }H\in C^{\infty}({\mathcal{M}}^{0}(pr_{1})).

5.3. Continuum Mechanics

In this section we develop the formulation of Continuum Mechanics as a Canonical Hamiltonian Field Theory. This covers the case of fluid mechanics and nonlinear elasticity. We shall assume that the reference configuration of the continuum is described by a manifold BB of dimension NN, N=2,3N=2,3 possibly with boundary, and we suppose that the continuum evolves in a NN dimensional manifold QQ without boundary, the ambient manifold, typically N\mathbb{R}^{N}. The elements xBx\in B denote the labels of the material points of the continuum, whereas the elements uQu\in Q denote the current positions of these material points. The evolution of the continuum is described by a map φ:[0,T]×BQ\varphi:[0,T]\times B\rightarrow Q, where [0,T][0,T] is the interval of time. Hence, u=φ(t,x)u=\varphi(t,x) describes the position of the material point xx at time tt. We shall assume that for each tt fixed, the map xBφ(t,x)Qx\in B\mapsto\varphi(t,x)\in Q is a smooth embedding. Boundary conditions will be described in §5.3.4

5.3.1. Lagrangian and Hamiltonian formulations in continuum mechanics.

Continuum mechanics is usually written either as a Lagrangian field theory or as an infinite dimensional classical Lagrangian or Hamiltonian system. While the infinite dimensional description is more classical, the field-theoretic description is especially useful for the derivation of multisymplectic integrators for fluid and elasticity ([16, 17, 18, 42, 45]).

In the field theoretic Lagrangian description, the map φ\varphi is interpreted as a section ϕΓ(π)\phi\in\Gamma(\pi) of the trivial fiber bundle π:E=M×QM\pi:E=M\times Q\rightarrow M, M=[0,T]×BM=[0,T]\times B, by writing ϕ(t,x)=(t,x,φ(t,x))\phi(t,x)=(t,x,\varphi(t,x)). The equations of motion are given by the Euler-Lagrange equations for a given Lagrangian density :J1πΛmTM\mathcal{L}:J^{1}\pi\rightarrow\Lambda^{m}T^{*}M, m=N+1m=N+1. Since the bundle is trivial, we have J1π(t,x,u)T(t,x)MTuQJ^{1}\pi_{(t,x,u)}\simeq T_{(t,x)}^{*}M\otimes T_{u}Q. We denote by (t,xi,uα,Vα,Fiα)(t,x^{i},u^{\alpha},V^{\alpha},F^{\alpha}_{i}) the local coordinates. Writing locally the Lagrangian density as =¯(t,xi,uα,Vα,Fiα)dtdNx\mathcal{L}=\bar{\mathcal{L}}(t,x^{i},u^{\alpha},V^{\alpha},F^{\alpha}_{i})dt\wedge d^{N}x, the Euler-Lagrange equations are given by

t¯Vα+xi¯Fiα=¯uα.\frac{\partial}{\partial t}\frac{\partial\bar{\mathcal{L}}}{\partial V^{\alpha}}+\frac{\partial}{\partial x^{i}}\frac{\partial\bar{\mathcal{L}}}{\partial F^{\alpha}_{i}}=\frac{\partial\bar{\mathcal{L}}}{\partial u^{\alpha}}.

In the infinite dimensional classical Lagrangian description, the map φ\varphi is interpreted as a curve φ(t)\varphi(t) in the infinite dimensional manifold Emb(B,Q)\operatorname{Emb}(B,Q) of smooth embeddings of BB into QQ. The equations are given by the (classical) Euler-Lagrange equations for the Lagrangian function L:TEmb(B,Q)L:T\operatorname{Emb}(B,Q)\rightarrow\mathbb{R} defined from \mathcal{L} as

L(φ,V)=Bit(x,φ(x),V(x),Txφ)=B¯(xi,Vα(x),φ,iα(x))dNx,L(\varphi,V)=\int_{B}i_{\partial_{t}}\mathcal{L}(x,\varphi(x),V(x),T_{x}\varphi)=\int_{B}\bar{\mathcal{L}}(x^{i},V^{\alpha}(x),\varphi^{\alpha}_{,i}(x))d^{N}x,

where we assumed that the Lagrangian density \mathcal{L} does not depend explicitly on the time tt, and TXφ:TXBTφ(X)QT_{X}\varphi:T_{X}B\rightarrow T_{\varphi(X)}Q denotes the tangent map to φEmb(B,M)\varphi\in\operatorname{Emb}(B,M), i.e. locally Txφ=φ,iαuαdxiT_{x}\varphi=\varphi^{\alpha}_{,i}\frac{\partial}{\partial u^{\alpha}}\otimes dx^{i}. When LL is hyperregular, to this classical Lagrangian description is formally associated a classical Hamiltonian description with respect to the Hamiltonian H:TEmb(B,Q)H:T^{*}\operatorname{Emb}(B,Q)\rightarrow\mathbb{R} defined on the (regular) cotangent bundle of Emb(B,Q)\operatorname{Emb}(B,Q). The Hamiltonian is defined by

H(φ,M)=Bit(Vα(x,φ(x),V(x),Txφ)Vα(x,φ(x),V(x),Txφ)),H(\varphi,M)=\int_{B}i_{\partial_{t}}\Big{(}\frac{\partial\mathcal{L}}{\partial V^{\alpha}}(x,\varphi(x),V(x),T_{x}\varphi)V^{\alpha}-\mathcal{L}(x,\varphi(x),V(x),T_{x}\varphi)\Big{)},

where VTφEmb(B,Q)V\in T_{\varphi}\operatorname{Emb}(B,Q) is such that itV=MTφEmb(B,Q)i_{\partial_{t}}\frac{\partial\mathcal{L}}{\partial V}=M\in T^{*}_{\varphi}\operatorname{Emb}(B,Q). In this case, the associated equations can formally be written F˙={F,H}can\dot{F}=\{F,H\}_{\rm can} with respect to the canonical Poisson bracket on TEmb(B,Q)T^{*}\operatorname{Emb}(B,Q).

The Hamiltonian formulation that we present below is different from this one, since it is associated to the field theoretic Lagrangian formulation. Roughly speaking, while the canonical Hamiltonian formulation recalled above is based on a Legendre transform with respect to the time direction only, the canonical Hamiltonian field theoretic description that we will describe below is based on a Legendre transform with respect to all the variables in the base manifold MM.

We warn the reader that the coordinates xix^{i} that were used in the previous sections for the base manifold MM are here given by (t,xi)(t,x^{i}) for M=[0,T]×BM=[0,T]\times B. The coordinates uiαu^{\alpha}_{i} used earlier on the fiber of J1πJ^{1}\pi are here given by (Vα,Fiα)(V^{\alpha},F^{\alpha}_{i}) and represent the material velocity and the deformation gradient of the continuum.

5.3.2. Lagrangian density and Legendre transform

The Lagrangian density of continuum mechanics is defined with the help of given tensor fields on BB and QQ. In order to treat both fluid dynamics and elasticity from a unified perspective, we shall consider here a Riemannian metric GG on BB, two volume forms ϱ\varrho and ς\varsigma on BB, and a Riemannian metric gg on QQ. Additional tensor fields can be introduced to describe electromagnetic effects or microstructures. The volume forms ϱ\varrho and ς\varsigma are the mass density and the entropy density in the reference configuration and are locally written as ϱ=ϱ¯dNX\varrho=\bar{\varrho}d^{N}X and ς=ς¯dNX\varsigma=\bar{\varsigma}d^{N}X. The potential energy density is a bundle map

:(TxBTuQ)×ΛNTxB×ΛNTxB×S2TxB×S2TuQΛNTxB,\mathcal{E}:(T_{x}^{*}B\otimes T_{u}Q)\times\Lambda^{N}T^{*}_{x}B\times\Lambda^{N}T^{*}_{x}B\times S^{2}T_{x}B\times S^{2}T_{u}^{*}Q\rightarrow\Lambda^{N}T^{*}_{x}B,

covering the projection B×QBB\times Q\rightarrow B. In local coordinates, it reads

¯(xi,uα,Fiα,ϱ¯,ς¯,Gij,gαβ)dNX.\bar{\mathcal{E}}(x^{i},u^{\alpha},F^{\alpha}_{i},\bar{\varrho},\bar{\varsigma},G^{ij},g_{\alpha\beta})d^{N}X.

This is a general form of potential energy density for continua, including fluid and elasticity, which may describe both internal and stored energies.

The associated Lagrangian density :J1πΛmTM\mathcal{L}:J^{1}\pi\rightarrow\Lambda^{m}T^{*}M is given by the kinetic minus the potential energy, and reads

(t,xi,uα,Vα,Fiα)=\displaystyle\mathcal{L}(t,x^{i},u^{\alpha},V^{\alpha},F^{\alpha}_{i})= 12gαβ(u)VαVβϱ¯(x)dtdNx\displaystyle\frac{1}{2}g_{\alpha\beta}(u)V^{\alpha}V^{\beta}\bar{\varrho}(x)dt\wedge d^{N}x (5.5)
¯(xi,uα,Fiα,ϱ¯(x),ς¯(x),Gij(x),gαβ(u))dtdNx\displaystyle-\bar{\mathcal{E}}(x^{i},u^{\alpha},F^{\alpha}_{i},\bar{\varrho}(x),\bar{\varsigma}(x),G^{ij}(x),g_{\alpha\beta}(u))dt\wedge d^{N}x

in local coordinates. Note that the Lagrangian is defined with the help of the given tensor fields ϱ=ϱ¯dNx\varrho=\bar{\varrho}d^{N}x, ς=ς¯dNx\varsigma=\bar{\varsigma}d^{N}x, G1=GijxixjG^{-1}=G^{ij}\frac{\partial}{\partial x^{i}}\frac{\partial}{\partial x^{j}}, and g=gαβdxαdxβg=g_{\alpha\beta}dx^{\alpha}dx^{\beta}. We chose to work with the cometric GijG^{ij} associated to GijG_{ij}, in order to directly get the Finger deformation (or left Cauchy-Green) tensor bαβb^{\alpha\beta}, rather than its inverse, later.

The restricted multimomentum bundle for continuum mechanics is given by

(t,x,u)0πT(t,x)MTuQ=Lin(T(t,x)M,TuQ){\mathcal{M}}^{0}_{(t,x,u)}\pi\simeq T_{(t,x)}M\otimes T^{*}_{u}Q=\operatorname{Lin}(T^{*}_{(t,x)}M,T^{*}_{u}Q)

with coordinates (t,xi,uα,Mα,Pαi)(t,x^{i},u^{\alpha},M_{\alpha},P^{i}_{\alpha}). The restricted Legendre transform of the Lagrangian density is

Leg:J1π0π,(t,xi,uα,Vα,Fiα)(t,xi,uα,Mα,Pαi),Leg_{\mathcal{L}}:J^{1}\pi\rightarrow{\mathcal{M}}^{0}\pi,\quad(t,x^{i},u^{\alpha},V^{\alpha},F^{\alpha}_{i})\mapsto(t,x^{i},u^{\alpha},M_{\alpha},P^{i}_{\alpha}), (5.6)

with MαM_{\alpha} and PαiP^{i}_{\alpha} given by

Mα=gαβ(u)Vβϱ¯(x),Pαi=¯Fiα,M_{\alpha}=g_{\alpha\beta}(u)V^{\beta}\bar{\varrho}(x),\quad P^{i}_{\alpha}=-\frac{\partial\bar{\mathcal{E}}}{\partial F^{\alpha}_{i}}, (5.7)

with MαM_{\alpha} the momentum density (in the Lagrangian description) and PαiP^{i}_{\alpha} is the Piola-Kirchoff stress tensor density. Note that the coordinates (Mα,Pαi)(M_{\alpha},P_{\alpha}^{i}) on the fiber of 0π\mathcal{M}^{0}\pi correspond to the coordinates denoted pαip_{\alpha}^{i} earlier.

The Eulerian versions of these tensor densities are the Eulerian momentum density mαm_{\alpha} and the Cauchy stress tensor density σαβ\sigma^{\alpha\beta} given by the Piola transformation

mα=Mαdet(F)1andσαβ=FiαPγigβγdet(F)1.m_{\alpha}=M_{\alpha}\operatorname{det}(F)^{-1}\quad\text{and}\quad\sigma^{\alpha\beta}=-F_{i}^{\alpha}P_{\gamma}^{i}g^{\beta\gamma}\operatorname{det}(F)^{-1}. (5.8)

From the second relation, we have

Pαi=det(F)(F1)γiσγβgβα.P_{\alpha}^{i}=-\operatorname{det}(F)(F^{-1})_{\gamma}^{i}\sigma^{\gamma\beta}g_{\beta\alpha}. (5.9)

Note that the first relation in (5.7) is always invertible, but the invertibility of the second relation depends in the potential energy density \mathcal{E}. As we shall illustrate below, relation (5.9) is extremely useful to check if the restricted Legendre transform (5.6) is an isomorphism, in which case we say that the Lagrangian density is hyperregular.

5.3.3. The Hamiltonian density and the linear-affine bracket for Continuum Mechanics

By assuming that \mathcal{L} is hyperregular, we get the Hamiltonian HC(0π)H\in C^{\infty}(\mathcal{M}^{0}\pi)

H(t,xi,uα,Mα,Pαi)=12gαβ(u)MαMβ1ϱ¯(x)+¯¯FiαFiα,H(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})=\frac{1}{2}g^{\alpha\beta}(u)M_{\alpha}M_{\beta}\frac{1}{\bar{\varrho}(x)}+\bar{\mathcal{E}}-\frac{\partial\bar{\mathcal{E}}}{\partial F_{i}^{\alpha}}F_{i}^{\alpha}, (5.10)

where FiαF_{i}^{\alpha} is expressed in terms of the variables in 0π\mathcal{M}^{0}\pi by inverting the second relation in (5.7).

A section of the restricted momentum bundle 0π\mathcal{M}^{0}\pi is locally given by

s0(t,xi)=(t,xi,φα(t,xi),Mα(t,xi),Pαi(t,xi))s_{0}(t,x^{i})=\left(t,x^{i},\varphi^{\alpha}(t,x^{i}),M_{\alpha}(t,x^{i}),P_{\alpha}^{i}(t,x^{i})\right)

and, in the hyperregular case, the Euler-Lagrange equation are equivalent to the Hamilton-deDonder-Weyl equations given by

φαt=HMα,φαxi=HPαi,Mαt+Pαixi=Huα.\frac{\partial\varphi^{\alpha}}{\partial t}=\frac{\partial H}{\partial M_{\alpha}},\quad\frac{\partial\varphi^{\alpha}}{\partial x^{i}}=\frac{\partial H}{\partial P_{\alpha}^{i}},\quad\frac{\partial M_{\alpha}}{\partial t}+\frac{\partial P_{\alpha}^{i}}{\partial x^{i}}=-\frac{\partial H}{\partial u^{\alpha}}. (5.11)

These equations admit the canonical linear-affine bracket formulation, that is, a section (t,xi)s0(t,xi)=(t,xi,uα(t,x),Mα(t,x),Pαi(t,x))(t,x^{i})\to s^{0}(t,x^{i})=(t,x^{i},u^{\alpha}(t,x),M_{\alpha}(t,x),P_{\alpha}^{i}(t,x)) is a solution of the previous equations if

(s0)(dα0)={α0,h}s0,α0𝒪,(s^{0})^{*}(d\alpha^{0})=\{\alpha^{0},h\}\circ s^{0},\;\;\forall\;\alpha^{0}\in\mathcal{O}, (5.12)

where the currents α0𝒪\alpha^{0}\in\mathcal{O} for Continuum Mechanics are of the form

α0(t,xi,uα,Mα,Pαi)\displaystyle\alpha^{0}(t,x^{i},u^{\alpha},M_{\alpha},P^{i}_{\alpha})
=α00(t,xi,uα,Mα,Pαi)dNxα0i(t,xi,uα,Mα,Pαi)dtdN1xi\displaystyle=\alpha^{00}(t,x^{i},u^{\alpha},M_{\alpha},P^{i}_{\alpha})d^{N}x-\alpha^{0i}(t,x^{i},u^{\alpha},M_{\alpha},P^{i}_{\alpha})dt\wedge d^{N-1}x_{i}
=(Yα(t,x,u)Mα+β0(t,x,u))dNx(Yα(t,x,u)Pαi+βi(t,x,u))dtdN1xi\displaystyle=\big{(}Y^{\alpha}(t,x,u)M_{\alpha}+\beta^{0}(t,x,u)\big{)}d^{N}x-\big{(}Y^{\alpha}(t,x,u)P^{i}_{\alpha}+\beta^{i}(t,x,u)\big{)}dt\wedge d^{N-1}x_{i}

with dN1xi=ixidNxd^{N-1}x_{i}=i_{\frac{\partial}{\partial x^{i}}}d^{N}x. The canonical linear-affine bracket {,}:𝒪×C(0π)C(0π)\{\cdot,\cdot\}:\mathcal{O}\times C^{\infty}(\mathcal{M}^{0}\pi)\rightarrow C^{\infty}(\mathcal{M}^{0}\pi) is given by

{α00dNxα0idtdN1xi,H}=α00t+α0ixi+α00uαHMα1mHuαα00Mα+α0iuαHPαi1mHuαα0iPαi.\begin{array}[]{l}\displaystyle\{\alpha^{00}d^{N}x-\alpha^{0i}dt\wedge d^{N-1}x_{i},H\}\\[8.0pt] \displaystyle=\frac{\partial\alpha^{00}}{\partial t}+\frac{\partial\alpha^{0i}}{\partial x^{i}}+\frac{\partial\alpha^{00}}{\partial u^{\alpha}}\frac{\partial H}{\partial M_{\alpha}}-\frac{1}{m}\frac{\partial H}{\partial u^{\alpha}}\frac{\partial\alpha^{00}}{\partial M_{\alpha}}+\frac{\partial\alpha^{0i}}{\partial u^{\alpha}}\frac{\partial H}{\partial P^{i}_{\alpha}}-\frac{1}{m}\frac{\partial H}{\partial u^{\alpha}}\frac{\partial\alpha^{0i}}{\partial P_{\alpha}^{i}}.\end{array}

This formulation assumes that the Legendre transform is invertible. Except in some simple situations, this invertibility is a priori difficult to check. We shall show below how to facilitate the approach by using two symmetries of the potential energy density \mathcal{E}. The first one, the material covariance, is related to the isotropy of the continuum, while the second, the material frame indifference, is a general covariance assumption of continuum theories, see [48] and [30].

We assume that the potential energy density is of the form

¯(xi,uα,Fiα,Gij,ϱ¯,ς¯,gαβ)=det(F)ϵ¯(uα,ϱ¯det(F)1,ς¯det(F)1,FiαGijFjβ,gαβ),\bar{\mathcal{E}}\big{(}x^{i},u^{\alpha},F_{i}^{\alpha},G^{ij},\bar{\varrho},\bar{\varsigma},g_{\alpha\beta}\big{)}=\operatorname{det}(F)\bar{\epsilon}\big{(}u^{\alpha},\bar{\varrho}\operatorname{det}(F)^{-1},\bar{\varsigma}\operatorname{det}(F)^{-1},F^{\alpha}_{i}G^{ij}F_{j}^{\beta},g_{\alpha\beta}\big{)},

where ϵ¯\bar{\epsilon} is the potential energy density in the Eulerian description. This assumption is compatible with the assumption of material covariance. Here ϵ=ϵ¯dNu\epsilon=\bar{\epsilon}d^{N}u is a bundle map

ϵ:ΛNTuQ×ΛNTuQ×S2TxQ×S2TxQΛuNQ\epsilon:\Lambda^{N}T^{*}_{u}Q\times\Lambda^{N}T^{*}_{u}Q\times S^{2}T_{x}Q\times S^{2}T_{x}^{*}Q\rightarrow\Lambda^{N}_{u}Q

covering the identity on QQ. From this expression, we compute the momenta from the second equality in (5.7) as

Pαi=((ϵ¯ϵ¯ρ¯ρ¯ϵ¯s¯s¯)(F1)αi+2ϵ¯bαβFiγGijFjβ(F1)γi)det(F),\displaystyle P_{\alpha}^{i}=\left(\Big{(}\bar{\epsilon}-\frac{\partial\bar{\epsilon}}{\partial\bar{\rho}}\bar{\rho}-\frac{\partial\bar{\epsilon}}{\partial\bar{s}}\bar{s}\Big{)}(F^{-1})_{\alpha}^{i}+2\frac{\partial\bar{\epsilon}}{\partial b^{\alpha\beta}}F_{i}^{\gamma}G^{ij}F_{j}^{\beta}(F^{-1})_{\gamma}^{i}\right)\operatorname{det}(F), (5.13)

where we introduced the notations

ρ¯=ϱ¯det(F)1,s¯=ς¯det(F)1,bαβ=FiαGijFjβ.\bar{\rho}=\bar{\varrho}\operatorname{det}(F)^{-1},\quad\bar{s}=\bar{\varsigma}\operatorname{det}(F)^{-1},\quad b^{\alpha\beta}=F^{\alpha}_{i}G^{ij}F_{j}^{\beta}.

These are the local expressions of the mass density and entropy density in Eulerian description, and of the Finger deformation (or left Cauchy-Green) tensor.

The associated Cauchy stress tensor density σ\sigma, see the second equation in (5.8), is

σαβ=(ϵ¯ϵ¯ρ¯ρ¯ϵ¯s¯s¯)gαβ+2ϵ¯bγδFiαGijFjδgγβ.\sigma^{\alpha\beta}=\Big{(}\bar{\epsilon}-\frac{\partial\bar{\epsilon}}{\partial\bar{\rho}}\bar{\rho}-\frac{\partial\bar{\epsilon}}{\partial\bar{s}}\bar{s}\Big{)}g^{\alpha\beta}+2\frac{\partial\bar{\epsilon}}{\partial b^{\gamma\delta}}F_{i}^{\alpha}G^{ij}F_{j}^{\delta}g^{\gamma\beta}. (5.14)

If in addition \mathcal{E} satisfies the material frame indifference, then

ϵ(ψρ,ψs,ψb,ψg)=ψ(ϵ(ρ,s,b,g)),\epsilon(\psi^{*}\rho,\psi^{*}s,\psi^{*}b,\psi^{*}g)=\psi^{*}\big{(}\epsilon(\rho,s,b,g)\big{)}, (5.15)

for all diffeomorphisms ψ\psi of QQ and we have the Doyle-Ericksen formula

σαβ=2ϵ¯gαβ.\sigma^{\alpha\beta}=2\frac{\partial\bar{\epsilon}}{\partial g_{\alpha\beta}}. (5.16)

By inserting these relations into (5.10), we get the following result which is a step towards a more explicit expression of the Hamiltonian density, because in practice ϵ\epsilon, rather than \mathcal{E}, is given.

Proposition 5.3.

Assume that the Lagrangian is hyperregular and that \mathcal{E} satisfies the two invariance mentioned above, and consider the associated Eulerian potential energy density ϵ\epsilon. Then, the Hamiltonian density of continuum mechanics HC(0π)H\in C^{\infty}(\mathcal{M}^{0}\pi) is given by

H(t,xi,uα,Mα,Pαi)=12gαβ(u)MαMβ1ϱ¯(x)+(ϵ¯2ϵ¯gαβgαβ(u))det(F).H(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})=\frac{1}{2}g^{\alpha\beta}(u)M_{\alpha}M_{\beta}\frac{1}{\bar{\varrho}(x)}+\Big{(}\bar{\epsilon}-2\frac{\partial\bar{\epsilon}}{\partial g_{\alpha\beta}}g_{\alpha\beta}(u)\Big{)}\operatorname{det}(F). (5.17)

5.3.4. Boundary conditions

We briefly describe two mains boundary conditions used in Continuum Mechanics following §3.6. These conditions only arise at the spatial part of the boundary of the base manifold MM, hence the bundle B0B_{0} is over [0,T]×BM[0,T]\times\partial B\subset\partial M only and the boundary condition reads s([0,T]×B)B0s([0,T]\times\partial B)\subseteq B_{0}.

For a continuum moving in a fixed domain BQB^{\prime}\subset Q diffeomorphic to BB, we have the boundary condition φ(t,B)=B\varphi(t,\partial B)=\partial B^{\prime} on the motion and, in addition, the boundary condition on the Piola-Kirchhoff stress tensor PP given by Pαi(t,x)Ni(x)|TB=0P_{\alpha}^{i}(t,x)N^{\flat}_{i}(x)|_{TB^{\prime}}=0, for all xBx\in\partial B, with NN the normal vector field to BB with respect to GG. This corresponds to zero tangential traction on the boundary, a condition that vanishes for fluids. In this case, the subbundle B0[0,T]×BB^{0}\rightarrow[0,T]\times\partial B is given by

B0(t,xi)={(t,xi,uα,Mα,Pαi)uαB,PαiNi(TB)},(t,xi)[0,T]×B.B^{0}(t,x^{i})=\{(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})\mid u^{\alpha}\in\partial B^{\prime},\;P_{\alpha}^{i}N_{i}^{\flat}\in(TB^{\prime})^{\circ}\},\quad(t,x^{i})\in[0,T]\times\partial B.

In particular, we have BE0=[0,T]×B×BB_{E}^{0}=[0,T]\times\partial B\times\partial B^{\prime} and B0BE0B_{0}\rightarrow B_{E}^{0} is a vector bundle.

For a free boundary continuum we take

B0(t,xi)={(t,xi,uα,Mα,Pαi)PαiNi=0},(t,xi)[0,T]×B,B^{0}(t,x^{i})=\{(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})\mid P_{\alpha}^{i}N_{i}^{\flat}=0\},\quad(t,x^{i})\in[0,T]\times\partial B,

which corresponds to zero traction on the boundary. This reduces to zero pressure at the boundary for fluids. We have BE0=[0,T]×B×Q=E|[0,T]×BB_{E}^{0}=[0,T]\times\partial B\times Q=E|_{[0,T]\times\partial B} and B0BE0B_{0}\rightarrow B_{E}^{0} again is a vector bundle.

5.3.5. Fluid dynamics

In this case the energy density ϵ\epsilon only depends on the mass density and entropy density ρ=ρ¯dNu\rho=\bar{\rho}d^{N}u and s=s¯dNus=\bar{s}d^{N}u, so the Cauchy stress density is given by

σαβ=(ϵ¯ϵ¯ρ¯ρ¯ϵ¯s¯s¯)gαβ=p(ρ¯,s¯,gαβ)detggαβ,\sigma^{\alpha\beta}=\Big{(}\bar{\epsilon}-\frac{\partial\bar{\epsilon}}{\partial\bar{\rho}}\bar{\rho}-\frac{\partial\bar{\epsilon}}{\partial\bar{s}}\bar{s}\Big{)}g^{\alpha\beta}=-p(\bar{\rho},\bar{s},g_{\alpha\beta})\sqrt{\det g}g^{\alpha\beta},

see (5.14), where pp is the pressure of the fluid. In this case (5.9) yields

Pαi=det(F)(F1)αip(ϱ¯det(F)1,ς¯det(F)1,gαβ)detg.P^{i}_{\alpha}=\operatorname{det}(F)(F^{-1})^{i}_{\alpha}p\big{(}\bar{\varrho}\operatorname{det}(F)^{-1},\bar{\varsigma}\operatorname{det}(F)^{-1},g_{\alpha\beta}\big{)}\sqrt{\det g}.

This relation is of the form

Pαi=𝖿(det(F))(F1)αi,P^{i}_{\alpha}=\mathsf{f}(\operatorname{det}(F))(F^{-1})^{i}_{\alpha}, (5.18)

for some function 𝖿\mathsf{f}. If the function x𝖿(x)Nxx\mapsto{\mathsf{f}(x)^{N}}{x} is invertible on ]0,[]0,\infty[, with inverse 𝗀\mathsf{g}, then relation (5.18) is invertible, with inverse

Fiα=𝖿(𝗀1(det(P)))(P1)iα.F^{\alpha}_{i}=\mathsf{f}(\mathsf{g}^{-1}(\operatorname{det}(P)))(P^{-1})^{\alpha}_{i}. (5.19)

In this case the Lagrangian density is hyperregular. Note that the function 𝖿\mathsf{f}, and hence the hyperregularity, depends on the state function of the fluid, i.e., the relation ϵ=ϵ(ρ,s,g)\epsilon=\epsilon(\rho,s,g).

Hyperregularity is satisfied for a large class of state equations, including the important case of a perfect gas for which ϵ(ρ,s,g)=ϵ0e1Cv(sρs0ρ0)(ρρ0μ(g))γμ(g)\epsilon(\rho,s,g)=\epsilon_{0}e^{\frac{1}{C_{v}}\left(\frac{s}{\rho}-\frac{s_{0}}{\rho_{0}}\right)}\big{(}\frac{\rho}{\rho_{0}\mu(g)}\big{)}^{\gamma}\mu(g), where γ=Cp/Cv\gamma=C_{p}/C_{v} is the adiabatic index and μ(g)\mu(g) is the volume form associated to gg, i.e. μ(g)=detgdNu\mu(g)=\sqrt{\det g}d^{N}u. In this case, we compute the pressure as pdetg=(γ1)ϵ¯p\sqrt{\det g}=(\gamma-1)\bar{\epsilon}.

Note that, as it should, ϵ\epsilon satisfies (5.14). Computing the derivative of ϵ¯\bar{\epsilon} with respect to the Riemannian metric, we get

ϵ¯gαβ=12(1γ)ϵ¯gαβ,\frac{\partial\bar{\epsilon}}{\partial g_{\alpha\beta}}=\frac{1}{2}(1-\gamma)\bar{\epsilon}g^{\alpha\beta},

so one directly checks that the Doyle-Ericksen formula (5.16) is verified.

For fluids, the Hamiltonian density is

H(t,xi,uα,Mα,Pαi)=(12gαβ(u)MαMβ1ϱ¯(x)+(ϵ¯+Npdetg)det(F))dtdNx,H(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})=\Big{(}\frac{1}{2}g^{\alpha\beta}(u)M_{\alpha}M_{\beta}\frac{1}{\bar{\varrho}(x)}+\Big{(}\bar{\epsilon}+Np\sqrt{\det g}\Big{)}\operatorname{det}(F)\Big{)}dt\wedge d^{N}x,

where det(F)\operatorname{det}(F) is found from (5.19). In particular, for the perfect gas, we have ϵ¯+Npdetg=(1+N(γ1))ϵ¯\bar{\epsilon}+Np\sqrt{\det g}=(1+N(\gamma-1))\bar{\epsilon}.

The fluid equations can thus be written in the canonical linear-affine bracket form (5.12).

5.3.6. Nonlinear elasticity

In general, the Hamiltonian density in nonlinear elasticity takes a complicate expression due to the dependence of ϵ\epsilon on the Finger deformation tensor bb. For example, for the compressible neo-Hookean material (see [51], [3]), with N=3N=3, the energy density is

ϵ(ρ,b,g)=12κ(lnJ)2ρ+12μ(J2/3Trg(b)3)ρ,J:=μ(g)μ(b),\epsilon(\rho,b,g)=\frac{1}{2}\kappa\left(\ln J\right)^{2}\rho+\frac{1}{2}\mu\left(J^{-2/3}\operatorname{Tr}_{g}(b)-3\right)\rho,\qquad J:=\frac{\mu(g)}{\mu(b^{\flat})},

where κ\kappa is the bulk modulus, μ\mu is the Lamé constant, and μ(b)\mu(b^{\flat}) is the volume form associated to the Riemannian metric bb^{\flat}, obtained by lowering the indices of bb. One observes that (5.14) is satisfied. The Doyle-Ericksen formula yields the expression of the stress tensor density

σ=2ϵg=κ(lnJ)gρ+μJ2/3(b13Trg(b)g)ρ.\sigma=2\frac{\partial\epsilon}{\partial g}=\kappa(\ln J)g^{\sharp}\rho+\mu J^{-2/3}\left(b-\frac{1}{3}\operatorname{Tr}_{g}(b)g^{\sharp}\right)\rho.

We thus get 2ϵg:g=3κlnJρ2\frac{\partial\epsilon}{\partial g}\!:\!g=3\kappa\ln J\rho which can then be inserted in (5.17) to yield the Hamiltonian density.

We shall illustrate the derivation of the Hamiltonian density by considering the simplified situation ϵ(ρ,b,g)=12Trg(b)ρ\epsilon(\rho,b,g)=\frac{1}{2}\operatorname{Tr}_{g}(b)\rho. In this case σ=bρ\sigma=b\rho, so we get the momenta

Pαi=GijFjβgαβϱ¯.P_{\alpha}^{i}=-G^{ij}F_{j}^{\beta}g_{\alpha\beta}\bar{\varrho}.

Using this and σ:g=Trg(b)ρ\sigma\!:\!g=\operatorname{Tr}_{g}(b)\rho, we get the Hamiltonian density

H(t,xi,uα,Mα,Pαi)=(12gαβ(u)MαMβ1ϱloc(x)12PαiGijPβjgαβ1ϱloc(x))dtd3x.H(t,x^{i},u^{\alpha},M_{\alpha},P_{\alpha}^{i})=\left(\frac{1}{2}g^{\alpha\beta}(u)M_{\alpha}M_{\beta}\frac{1}{\varrho_{\rm loc}(x)}-\frac{1}{2}P_{\alpha}^{i}G_{ij}P_{\beta}^{j}g_{\alpha\beta}\frac{1}{\varrho_{\rm loc}(x)}\right)dt\wedge d^{3}x.

The nonlinear elasticity equations can thus be written in the canonical linear-affine bracket form (5.12).

5.4. Yang-Mills theory

Yang-Mills theory may be considered as a singular Lagrangian field theory of first order associated with a principal GG-bundle over an oriented Riemannian (or a Lorentzian manifold) space MM (possibly with boundary) of dimension mm and where GG is a compact Lie group of dimension nn (we will follow [39]).

We will denote by gg the metric on MM. For simplicity, we will assume that the principal bundle is trivial, gg is a Riemannian metric and M=ϕ\partial M=\phi.

Under the previous conditions, the configuration bundle of the theory is the vector bundle

πM,𝔤:E:=TM𝔤M\pi_{M,\mathfrak{g}}:E:=T^{*}M\otimes\mathfrak{g}\to M

where 𝔤\mathfrak{g} is the Lie algebra of GG.

Then, we will proceed as follows. We will introduce a Lagrangian density on the 11-jet bundle of the fibration πM,𝔤:TM𝔤M\pi_{M,\mathfrak{g}}:T^{*}M\otimes\mathfrak{g}\to M. This Lagrangian density is singular. In fact, the image of the corresponding Legendre transformation is a proper submanifold 1\mathcal{M}^{1} of the restricted multimomentum bundle 0πM,𝔤{\mathcal{M}}^{0}\pi_{M,\mathfrak{g}}. Using the restricted and the extended Legendre transformation, we will construct a constrained Hamiltonian section h1:1μ1(1)πM,𝔤h_{1}:\mathcal{M}^{1}\to\mu^{-1}(\mathcal{M}^{1})\subseteq{\mathcal{M}}\pi_{M,\mathfrak{g}} of the fibration μ|μ1(1):μ1(1)1\mu_{|\mu^{-1}(\mathcal{M}^{1})}:\mu^{-1}(\mathcal{M}^{1})\to\mathcal{M}^{1}. Now, if we consider an (arbitrary) hamiltonian section h:0πM,𝔤πM,𝔤h:{\mathcal{M}}^{0}\pi_{M,\mathfrak{g}}\to{\mathcal{M}}\pi_{M,\mathfrak{g}}, whose restriction to 1\mathcal{M}^{1} coincides with h1h_{1}, we will obtain a Hamiltonian field theory in such a way that the solutions of the Hamilton-deDonder-Weyl equations for hh which are contained in 1\mathcal{M}^{1} are just the solutions of the corresponding Yang-Mills theory.

5.4.1. The Lagrangian formalism

Note that the sections of the vector bundle πM,𝔤:TM𝔤M\pi_{M,\mathfrak{g}}:T^{*}M\otimes\mathfrak{g}\to M are the principal connections on the trivial principal bundle pr1:M×GMpr_{1}:M\times G\to M. As we know, the 11-jet bundle J1πM,𝔤J^{1}\pi_{M,\mathfrak{g}} is an affine bundle over TM𝔤T^{*}M\otimes\mathfrak{g}. The key point is that there is a canonical epimorphism off affine bundles (over the vector bundle projection πM,𝔤:TM𝔤M\pi_{M,\mathfrak{g}}:T^{*}M\otimes\mathfrak{g}\rightarrow M), F:J1πM,𝔤Λ2TM𝔤F:J^{1}\pi_{M,\mathfrak{g}}\rightarrow\Lambda^{2}T^{*}M\otimes\mathfrak{g}, which is characterized by the condition

F(j1Θ(x))=dΘ(x)+[Θ(x),Θ(x)], for xM,F(j^{1}\Theta(x))={\rm d}\Theta(x)+[\Theta(x),\Theta(x)],\;\;\mbox{ for }x\in M,

for all principal connections Θ\Theta. In other words, the image by FF of the 11-jet bundle of a principal connection is just the curvature of the connection.

If (xi)(x^{i}) are local coordinates on MM and {eα}\{e_{\alpha}\} is a basis of 𝔤\mathfrak{g}, we have the corresponding local coordinates (xi,uiα)(x^{i},u^{\alpha}_{i}) on EE and (xi,uiα,uijα)(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij}) on J1πM,𝔤J^{1}\pi_{M,\mathfrak{g}}. Moreover,

F(xi,uiα,uijα)=12Fklγ(xi,uiα,uijα)(dxkdxl)eγF(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=\frac{1}{2}F_{kl}^{\gamma}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})(dx^{k}\wedge dx^{l})\otimes e_{\gamma}

with

Fklγ(xi,uiα,uijα)=ulkγuklγ+cαβγukαulβ.F_{kl}^{\gamma}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=u^{\gamma}_{lk}-u^{\gamma}_{kl}+c_{\alpha\beta}^{\gamma}u^{\alpha}_{k}u^{\beta}_{l}. (5.20)

Here, cαβγc_{\alpha\beta}^{\gamma} are the structure constants of the Lie algebra 𝔤\mathfrak{g} with respect to the basis {eγ}\{e_{\gamma}\}.

Next, we will introduce the Lagrangian density

:J1πM,𝔤πM,𝔤(ΛmTM).\mathcal{L}:J^{1}\pi_{M,\mathfrak{g}}\to\pi_{M,\mathfrak{g}}^{*}(\Lambda^{m}T^{*}M).

First of all, since the manifold MM is oriented, the vector bundle πM,𝔤(ΛmTM)E\pi_{M,\mathfrak{g}}^{*}(\Lambda^{m}T^{*}M)\to E is the trivial line bundle E×EE\times\mathbb{R}\to E. So, the Lagrangian density {\mathcal{L}} is, in fact, a real CC^{\infty}-function L:J1πM,𝔤L:J^{1}\pi_{M,\mathfrak{g}}\to\mathbb{R}.

In addition, we will fix an AdAd-invariant scalar product ,\langle\cdot,\cdot\rangle on 𝔤\mathfrak{g} (which is possible, since GG is compact). Then, the scalar product on 𝔤\mathfrak{g} and the Riemannian metric on MM induce a bundle metric on the vector bundle

pr1:E×MΛ2TM𝔤E.pr_{1}:E\times_{M}\Lambda^{2}T^{*}M\otimes\mathfrak{g}\to E.

So, we can consider the real function L:J1πM,𝔤L:J^{1}\pi_{M,\mathfrak{g}}\to\mathbb{R} given by

L(z)=14F(z)2, for zJ1πM,𝔤,L(z)=\displaystyle\frac{1}{4}\|F(z)\|^{2},\;\;\mbox{ for }z\in J^{1}\pi_{M,\mathfrak{g}},

where the norm is taken with respect to the bundle metric on the vector bundle pr1:E×MΛ2TM𝔤E.pr_{1}:E\times_{M}\Lambda^{2}T^{*}M\otimes\mathfrak{g}\to E.

The local expression of LL is

L(xi,uiα,uijα)=14Fklγ(xi,uiα,uijα)Fγkl(xi,uiα,uijα)L(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=\displaystyle\frac{1}{4}F_{kl}^{\gamma}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})F^{kl}_{\gamma}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})

with

Fγkl=Fmnβgkmgln,βγF^{kl}_{\gamma}=F_{mn}^{\beta}g^{km}g^{ln}\langle\cdot,\cdot\rangle_{\beta\gamma}

and (gij)(g_{ij}) the matrix of the coefficients of gg, (gij)(g^{ij}) the inverse matrix and

,βγ=eβ,eγ.\langle\cdot,\cdot\rangle_{\beta\gamma}=\langle e_{\beta},e_{\gamma}\rangle.

Thus, the Euler-Lagrange equations for LL

xj(Luijα)Luiα=0,uijα=uiαxj\displaystyle\frac{\partial}{\partial x^{j}}\left(\frac{\partial L}{\partial u^{\alpha}_{ij}}\right)-\displaystyle\frac{\partial L}{\partial u^{\alpha}_{i}}=0,\;\;u^{\alpha}_{ij}=\displaystyle\frac{\partial u^{\alpha}_{i}}{\partial x^{j}}

are, in this case, the well-known Yang-Mills equations

iFαijxi+cαβγuiβFγij=0,uijα=uiαxj.\displaystyle\sum_{i}\frac{\partial F^{ij}_{\alpha}}{\partial x^{i}}+c_{\alpha\beta}^{\gamma}u^{\beta}_{i}F^{ij}_{\gamma}=0,\;\;u^{\alpha}_{ij}=\displaystyle\frac{\partial u^{\alpha}_{i}}{\partial x^{j}}. (5.21)

5.4.2. The Legendre transformations and the constrained Hamiltonian formalism

First of all, we will consider the restricted Legendre transformation associated with LL

legL:J1πM,𝔤0πM,𝔤.leg_{L}:J^{1}\pi_{M,\mathfrak{g}}\to\mathcal{M}^{0}\pi_{M,\mathfrak{g}}.

Note that, since MM is oriented, the restricted multimomentum bundle 0πM,𝔤\mathcal{M}^{0}\pi_{M,\mathfrak{g}} may be identified with the dual bundle V(J1πM,𝔤)V^{*}(J^{1}\pi_{M,\mathfrak{g}}) of V(J1πM,𝔤)V(J^{1}\pi_{M,\mathfrak{g}}). So,

0πM,𝔤V(J1πM,𝔤)E×M(TMTM𝔤).\mathcal{M}^{0}\pi_{M,\mathfrak{g}}\simeq V^{*}(J^{1}\pi_{M,\mathfrak{g}})\simeq E\times_{M}(TM\otimes TM\otimes\mathfrak{g}^{*}).

The transformation legLleg_{L} is given by

legL(z)(v)=ddt|t=0L(z+tv),leg_{L}(z)(v)=\frac{d}{dt}_{|t=0}L(z+tv),

for zJy1πM,𝔤z\in J^{1}_{y}\pi_{M,\mathfrak{g}}, vy0πM,𝔤v\in\mathcal{M}_{y}^{0}\pi_{M,\mathfrak{g}} and yEy\in E. The local expression of leglleg_{l} is

legL(xi,uiα,uijα)=(xi,uiα,Luijα)=(xi,uiα,Fγkl(xi,uiα,uijα)).leg_{L}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=(x^{i},u^{\alpha}_{i},\frac{\partial L}{\partial u^{\alpha}_{ij}})=(x^{i},u^{\alpha}_{i},-F^{kl}_{\gamma}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})).

This implies that the image of legLleg_{L} is the vector subbundle 1{\mathcal{M}}^{1} (over EE) of 0πM,𝔤\mathcal{M}^{0}\pi_{M,\mathfrak{g}}

1E×M(Λ2TM𝔤).\mathcal{M}^{1}\simeq E\times_{M}(\Lambda^{2}TM\otimes\mathfrak{g^{*}}).

Thus, the map leg1:J1πM,𝔤1leg_{1}:J^{1}\pi_{M,\mathfrak{g}}\to\mathcal{M}^{1} is a submersion with connected fibers and LL is almost regular.

On the other hand, we can consider the extended Legendre transformation LegL:J1πM,𝔤πM,𝔤Aff(J1πM,𝔤,)Leg_{L}:J^{1}\pi_{M,\mathfrak{g}}\to\mathcal{M}\pi_{M,\mathfrak{g}}\simeq{\rm Aff}(J^{1}\pi_{M,\mathfrak{g}},\mathbb{R}) associated with LL defined by

LegL(z)(z)=ddt|t=0L(z+t(zz)), for z,zJy1πM,𝔤 and yE.Leg_{L}(z)(z^{\prime})=\displaystyle\frac{d}{dt}_{|t=0}L(z+t(z^{\prime}-z)),\;\;\mbox{ for }z,z^{\prime}\in J^{1}_{y}\pi_{M,\mathfrak{g}}\mbox{ and }y\in E.

The local expression of LegLLeg_{L} is

LegL(xi,uiα,uijα)=(xi,uiα,EL(xi,uiα,uijα),Luklβ)=(xi,uiα,EL(xi,uiα,uijα),Fklβ(xi,uiα,uijα)),Leg_{L}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=(x^{i},u^{\alpha}_{i},-E_{L}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij}),\frac{\partial L}{\partial u^{\beta}_{kl}})=(x^{i},u^{\alpha}_{i},-E_{L}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij}),-F_{kl}^{\beta}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})),

where

EL(xi,uiα,uijα)=14Fijα(xk,ukβ,uklβ)Fαij(xk,ukβ,uklβ)12cαβγuiαujβFγij(xk,ukβ,uklβ).E_{L}(x^{i},u^{\alpha}_{i},u^{\alpha}_{ij})=\displaystyle\frac{1}{4}F_{ij}^{\alpha}(x^{k},u^{\beta}_{k},u^{\beta}_{kl})F^{ij}_{\alpha}(x^{k},u^{\beta}_{k},u^{\beta}_{kl})-\displaystyle\frac{1}{2}c_{\alpha\beta}^{\gamma}u^{\alpha}_{i}u^{\beta}_{j}F^{ij}_{\gamma}(x^{k},u^{\beta}_{k},u^{\beta}_{kl}).

Note that if μ:πM,𝔤0πM,𝔤\mu:\mathcal{M}\pi_{M,\mathfrak{g}}\to\mathcal{M}^{0}\pi_{M,\mathfrak{g}} is the canonical projection then the image of LegLLeg_{L} is a submanifold \mathcal{M} of μ1(1)πM,𝔤\mu^{-1}(\mathcal{M}^{1})\subseteq\mathcal{M}\pi_{M,\mathfrak{g}} which is diffeomorphic to 1\mathcal{M}^{1}, via the restriction of μ\mu to \mathcal{M}. The following diagram illustrates the situation

μ1(1)\textstyle{{\mathcal{M}}\subseteq\mu^{-1}({\mathcal{M}}^{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j1\scriptstyle{j_{1}}μ1=μ|μ1(1)\scriptstyle{\mu_{1}=\mu_{|\mu^{-1}({\mathcal{M}}^{1})}}πM,𝔤\textstyle{{\mathcal{M}}\pi_{M,{\mathfrak{g}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ\scriptstyle{\mu}J1πM,𝔤\textstyle{J^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\pi_{M,{\mathfrak{g}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Leg1\scriptstyle{Leg_{1}}LegL\scriptstyle{Leg_{L}}legL\scriptstyle{leg_{L}}leg1\scriptstyle{leg_{1}}1\textstyle{{\mathcal{M}}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i1\scriptstyle{i_{1}}0πM,𝔤\textstyle{{\mathcal{M}}^{0}\pi_{M,{\mathfrak{g}}}}

The maps Leg1:J1πM,𝔤Leg_{1}:J^{1}\pi_{M,\mathfrak{g}}\to\mathcal{M} and leg1:J1πM,𝔤1leg_{1}:J^{1}\pi_{M,\mathfrak{g}}\to\mathcal{M}^{1} are surjective submersions and, thus, we have a constrained Hamiltonian field theory. As a consequence (see, for instance, [21]), one may introduce a constrained Hamiltonian section

h1:1μ1(1)h_{1}:\mathcal{M}^{1}\to\mu^{-1}(\mathcal{M}^{1})

in such a way that

h1leg1=Leg1.h_{1}\circ leg_{1}=Leg_{1}.

In fact, h1=(μ|)1:1h_{1}=(\mu|_{\mathcal{M}})^{-1}:\mathcal{M}^{1}\rightarrow\mathcal{M}. In addition, if (xi,uiα,p,pαij)(x^{i},u^{\alpha}_{i},p,p_{\alpha}^{ij}) and (xi,uiα,pαij)(x^{i},u^{\alpha}_{i},p_{\alpha}^{ij}) are the standard local coordinates on πM,𝔤\mathcal{M}\pi_{M,\mathfrak{g}} and 0πM,𝔤\mathcal{M}^{0}\pi_{M,\mathfrak{g}}, respectively, we can take local coordinates

(xi,uiα,p,παij) and (xi,uiα,παij)(x^{i},u^{\alpha}_{i},p,\pi_{\alpha}^{ij})\;\mbox{ and }(x^{i},u^{\alpha}_{i},\pi_{\alpha}^{ij})

on μ1(1)\mu^{-1}(\mathcal{M}^{1}) and 1\mathcal{M}^{1}, respectively, with

12παij=pαij, for i<j.\frac{1}{2}\pi^{ij}_{\alpha}=p^{ij}_{\alpha},\;\;\mbox{ for }i<j. (5.22)

Then,

h1(xi,uiα,παij)=(xi,uiα,H1(xi,uiα,παij),παij)h_{1}(x^{i},u^{\alpha}_{i},\pi_{\alpha}^{ij})=(x^{i},u^{\alpha}_{i},-H_{1}(x^{i},u^{\alpha}_{i},\pi_{\alpha}^{ij}),\pi_{\alpha}^{ij})

where

H1(xi,uiα,παij)=14pijαpαij+12cαβγuiαujβpγij=116πijαπαij+14cαβγuiαujβπγij.H_{1}(x^{i},u^{\alpha}_{i},\pi_{\alpha}^{ij})=\displaystyle\frac{1}{4}p_{ij}^{\alpha}p^{ij}_{\alpha}+\displaystyle\frac{1}{2}c_{\alpha\beta}^{\gamma}u^{\alpha}_{i}u^{\beta}_{j}p^{ij}_{\gamma}=\displaystyle\frac{1}{16}\pi_{ij}^{\alpha}\pi^{ij}_{\alpha}+\displaystyle\frac{1}{4}c_{\alpha\beta}^{\gamma}u^{\alpha}_{i}u^{\beta}_{j}\pi^{ij}_{\gamma}. (5.23)

Note that we are assuming

παij=παji if i>j and παii=0.\pi^{ij}_{\alpha}=-\pi^{ji}_{\alpha}\;\;\mbox{ if }i>j\;\;\mbox{ and }\pi^{ii}_{\alpha}=0.

In addition,

πijα=πβklgikgjl,αβ.\pi_{ij}^{\alpha}=\pi^{kl}_{\beta}g_{ik}g_{jl}\langle\cdot,\cdot\rangle^{\alpha\beta}.

It is clear that

EL=H1leg1.E_{L}=H_{1}\circ leg_{1}.

Moreover, on 1\mathcal{M}^{1}

Fαij=12παijleg1.-F^{ij}_{\alpha}=\frac{1}{2}\pi^{ij}_{\alpha}\circ leg_{1}. (5.24)

So, using (5.20), (5.21) and (5.24), we obtain that

παijxi+cαβγuiβπγij=0.\displaystyle\frac{\partial\pi^{ij}_{\alpha}}{\partial x^{i}}+c_{\alpha\beta}^{\gamma}u^{\beta}_{i}\pi_{\gamma}^{ij}=0. (5.25)

(5.24) and (5.25) are just the Yang-Mills equations for the Yang-Mills theory in the Hamiltonian side. Thus, Yang-Mills theory may be considered as a constrained (singular) Hamiltonian field theory.

On the other hand, if h:0πM,𝔤πM,𝔤h:\mathcal{M}^{0}\pi_{M,\mathfrak{g}}\to\mathcal{M}\pi_{M,\mathfrak{g}} is a Hamiltonian section which extends h1h_{1} (that is, h|1=h1h_{|\mathcal{M}^{1}}=h_{1}), then we may consider the corresponding Hamiltonian field theory associated with hh. Furthermore, using the classical results on singular Lagrangian field theories (see [21]), if s0:UM0πM,𝔤s^{0}:U\subseteq M\to\mathcal{M}^{0}\pi_{M,\mathfrak{g}} is a solution of the Hamilton-deDonder-Weyl equations for hh which is contained in 1\mathcal{M}^{1} then s0s^{0} is just a solution of the Yang-Mills equations.

The following diagram illustrates the situation

μ1(1)\textstyle{{\mathcal{M}}\subseteq\mu^{-1}({\mathcal{M}}^{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j1\scriptstyle{j_{1}}μ1=μ|μ1(1)\scriptstyle{\mu_{1}=\mu_{|\mu^{-1}({\mathcal{M}}^{1})}}πM,𝔤\textstyle{{\mathcal{M}}\pi_{M,{\mathfrak{g}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ\scriptstyle{\mu}J1πM,𝔤\textstyle{J^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\pi_{M,{\mathfrak{g}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Leg1\scriptstyle{Leg_{1}}leg1\scriptstyle{leg_{1}}(πM,𝔤)0,1\scriptstyle{(\pi_{M,{\mathfrak{g}}})_{0,1}}1\textstyle{{\mathcal{M}}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h1\scriptstyle{h_{1}}i1\scriptstyle{i_{1}}0πM,𝔤\textstyle{{\mathcal{M}}^{0}\pi_{M,{\mathfrak{g}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s0\scriptstyle{s^{0}}i1s0\scriptstyle{i_{1}\circ s_{0}}

5.4.3. The Lie algebra of currents and the linear-affine bracket for the extended Hamiltonian field theory

After the previous subsections, we could apply all the machinery in this paper for the extended Hamiltonian field theory and, as a consequence, we could deduce results on the Yang-Mills theory. This will be the subject of a future research. Anyway, we will remark a couple of general facts on the Lie algebra of currents, the linear-affine bracket (in Section 3.5) and the Yang-Mills equations as constrained Hamilton-deDonder-Weyl equations:

  • First of all, following the proof of Theorem 4.2, we have that the space of currents, as a C(E)C^{\infty}(E)-module, may be identified with the product Γ(VπM,𝔤)×Γ(Λ1m1TE)\Gamma(V\pi_{M,\mathfrak{g}})\times\Gamma(\Lambda^{m-1}_{1}T^{*}E). But, since the configuration bundle πM,𝔤:TM𝔤M\pi_{M,\mathfrak{g}}:T^{*}M\otimes\mathfrak{g}\to M is a vector bundle, we have that Γ(VπM,𝔤)\Gamma(V\pi_{M,\mathfrak{g}}) is generated by vertical lifts of sections of the projection πM,𝔤\pi_{M,\mathfrak{g}} (see Appendix B). In fact, if

    θ=θi(x)dxi\theta=\theta_{i}(x)dx^{i}

    is a 11-form on MM and ξ𝔤\xi\in\mathfrak{g} then the local expression of the vertical lift of the section s=θξs=\theta\otimes\xi is

    (θξ)𝐯(xi,uiα)=θi(x)ξαuiα.(\theta\otimes\xi)^{\bf v}(x^{i},u^{\alpha}_{i})=\theta_{i}(x)\xi^{\alpha}\frac{\partial}{\partial u^{\alpha}_{i}}.

    So, if we chose a local basis of 11-forms and (m1)(m-1)-forms on MM

    {θ1,,θm},{α1,,αm},\{\theta_{1},\dots,\theta_{m}\},\;\;\{\alpha_{1},\dots,\alpha_{m}\},

    respectively, we have a local basis

    {(θieγ)𝐯,πM,𝔤(αi)}i=1,1,m,γ=1,,n\{(\theta_{i}\otimes e_{\gamma})^{\bf v},\pi_{M,\mathfrak{g}}^{*}(\alpha_{i})\}_{i=1,1\dots,m,\gamma=1,\dots,n}

    of the space Γ(VπM,𝔤)×Γ(Λ1m1TE)𝒪\Gamma(V\pi_{M,\mathfrak{g}})\times\Gamma(\Lambda^{m-1}_{1}T^{*}E)\simeq\mathcal{O}. Moreover, following the proof of Theorem 4.2, we also deduce that the Lie brackets in 𝒪\mathcal{O} between the previous sections are all zero. Note that if s1,s1s_{1},s_{1} are sections of the vector bundle πM,𝔤:TM𝔤M\pi_{M,\mathfrak{g}}:T^{*}M\otimes\mathfrak{g}\to M then

    [s1𝐯,s2𝐯]=0,is1𝐯d(πM,𝔤α)=0,[s_{1}^{\bf v},s_{2}^{\bf v}]=0,\;\;i_{s_{1}^{\bf v}}d(\pi_{M,\mathfrak{g}}^{*}\alpha)=0,

    for αΓ(Λm1TM)\alpha\in\Gamma(\Lambda^{m-1}T^{*}M).

  • Consider the linear-affine bracket

    {,}:𝒪×Γ(μ)Γ((πν0)(ΛmTM))\{\cdot,\cdot\}:\mathcal{O}\times\Gamma(\mu)\to\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M))

    for the Hamiltonian field theory which extends Yang-Mills theory. We have that if θ=θi(x)dxi\theta=\theta_{i}(x)dx^{i} is a 11-form on MM, ξ=ξαeα𝔤\xi=\xi^{\alpha}e_{\alpha}\in\mathfrak{g}, β=βi(x)dm1xi\beta=\beta^{i}(x)d^{m-1}x_{i} is a (m1)(m-1)-form on MM and

    h(xi,uiα,pαij)=(xi,uiα,H(xj,ujβ,pβjk),pαij)h(x^{i},u^{\alpha}_{i},p^{ij}_{\alpha})=(x^{i},u^{\alpha}_{i},-H(x^{j},u^{\beta}_{j},p^{jk}_{\beta}),p^{ij}_{\alpha})

    is a section of μ:πM,𝔤0πM,𝔤\mu:\mathcal{M}\pi_{M,\mathfrak{g}}\to\mathcal{M}^{0}\pi_{M,\mathfrak{g}} then

    {(θξ)𝐯^,h}=(θixj(x)ξαpαijHuiα(xj,ujβ,pβij)θi(x)ξα)dmx{πM,𝔤β,h}=βixidmx.\begin{array}[]{rcl}\{\widehat{(\theta\otimes\xi)^{\bf v}},h\}&=&\left(\displaystyle\frac{\partial\theta_{i}}{\partial x^{j}}(x)\xi^{\alpha}p^{ij}_{\alpha}-\displaystyle\frac{\partial H}{\partial u^{\alpha}_{i}}(x^{j},u^{\beta}_{j},p^{ij}_{\beta})\theta_{i}(x)\xi^{\alpha}\right)d^{m}x\\[8.0pt] \{\pi_{M,\mathfrak{g}}^{*}\beta,h\}&=&\displaystyle\frac{\partial\beta^{i}}{\partial x^{i}}d^{m}x.\par\end{array}

    In particular, if hh is an extension of the Yang-Mills Hamiltonian section h1:1πM,𝔤h_{1}:\mathcal{M}^{1}\to\mathcal{M}\pi_{M,\mathfrak{g}} then, s0:UM0πM,𝔤s^{0}:U\subseteq M\to\mathcal{M}^{0}\pi_{M,\mathfrak{g}} is a solution of the Yang-Mills equations if and only if

    s0(U)1s^{0}(U)\subseteq\mathcal{M}^{1}

    and

    (s0)(d(θξ)𝐯^)={(θξ)𝐯^,h}s0(s0)(dβ)={πM,𝔤β,h}s0,\begin{array}[]{rcl}(s^{0})^{*}(d\widehat{(\theta\otimes\xi)^{\bf v}})&=&\{\widehat{(\theta\otimes\xi)^{\bf v}},h\}\circ s^{0}\\[8.0pt] (s^{0})^{*}(d\beta)&=&\{\pi_{M,\mathfrak{g}}^{*}\beta,h\}\circ s^{0},\end{array}

    for θ\theta a 11-form on MM, ξ𝔤\xi\in\mathfrak{g} and β\beta a (m1)(m-1)-form on MM.

6. Conclusions and future work

In this paper, we have developed a completely canonical geometric formulation of Hamiltonian Classical Field Theories of first order which is analogous to the canonical Poisson formulation of time-independent Hamiltonian Mechanics. This formulation is valid for any configuration bundle and is independent of any external structures such as connections or volume forms. We have defined a space of currents and endowed it with a Lie algebra structure, and we have shown that the bracket induces an affine representation of the Lie algebra of currents on the affine space of Hamiltonian sections. An important difference with the case of time-independent Hamiltonian Mechanics is the linear-affine character of our bracket, which is consistent with the fact that the set of currents and the set of Hamiltonian sections are linear and affine spaces, respectively. We have applied our results to several examples and we have proved their effectiveness.

The results of this paper open some interesting future directions of research:

  • Develop appropriate processes of reduction by symmetry for Hamiltonian Classical Field Theories of first order by exploiting the canonical linear-affine bracket formulation proposed in this paper.

  • Include boundary conditions in the geometric formulation (see [44]) and discuss the relation between the resultant construction and the theory of Peierls brackets [50] in the space of solutions (see [27, 28]; see also the recent papers [13, 14] and the references therein).

  • Discuss a canonical affine formulation of Lagrangian Classical Field Theories of first oder and obtain the equivalence with the Hamiltonian formulation for the case when Lagrangian density is almost regular (this is, for instance, the case of Yang-Mills theories discussed in this paper).

Appendix A The 11-jet bundle associated with a fibration

Let π:EM\pi:E\to M be a fibration, that is, a surjective submersion from EE to MM. Assume that dimM=mdim\;M=m and dimE=m+ndim\;E=m+n.

The 11-jet bundle J1πJ^{1}\pi associated with π\pi is the affine bundle over EE whose fiber at the point yEy\in E is

Jyπ={z:Tπ(y)MTyEz is linear and Tyπz=id}.J_{y}\pi=\{z:T_{\pi(y)}M\to T_{y}E\mid z\mbox{ is linear and }T_{y}\pi\circ z=id\}.

J1πJ^{1}\pi is modelled over the vector bundle

V(J1π)=π(TM)VπyELin(Tπ(y)M,Vyπ),V(J^{1}\pi)=\pi^{*}(T^{*}M)\otimes V\pi\simeq\cup_{y\in E}{\rm Lin}(T_{\pi(y)}M,V_{y}\pi),

where VπV\pi is the vertical bundle of π\pi.

In fact, if zJy1πz\in J^{1}_{y}\pi and v:Tπ(y)MVyπVy(J1π)v:T_{\pi(y)}M\to V_{y}\pi\in V_{y}(J^{1}\pi) then one may define, in a natural way, the element z+vz+v of Jy1πJ^{1}_{y}\pi as the linear map

(z+v)(u)=z(u)+v(u), for all uTπ(y)M.(z+v)(u)=z(u)+v(u),\;\;\mbox{ for all }u\in T_{\pi(y)}M.

If (xi,uα)(x^{i},u^{\alpha}) are local coordinates on EE which are adapted to the fibration π\pi then one may consider the corresponding local coordinates on J1πJ^{1}\pi. Indeed, if zJy1πz\in J^{1}_{y}\pi, yEy\in E has local coordinates (xi,uα)(x^{i},u^{\alpha}) and

z(xi|π(y))=xi|y+uiαuα|y,i{1,,m},z\left(\frac{\partial}{\partial x^{i}}_{|\pi(y)}\right)=\frac{\partial}{\partial x^{i}}_{|y}+u^{\alpha}_{i}\frac{\partial}{\partial u^{\alpha}}_{|y},\;\;\forall i\in\{1,\dots,m\},

then zz has local coordinates (xi,uα,uiα)(x^{i},u^{\alpha},u^{\alpha}_{i}).

Sections of the affine bundle π1,0:J1πE\pi_{1,0}:J^{1}\pi\to E may be identified with Ehresmann connections on the fibration π:EM\pi:E\to M.

We recall that an Ehresmann connection on π:EM\pi:E\to M is a vector subbundle HH over EE of TETE satisfying

TE=HVπ.TE=H\oplus V\pi.

Note that if HH is an Ehresmann connection on π:EM\pi:E\to M, then one may define the horizontal lift associated with HH as a vector bundle morphism

:HE×MTMHTE{}^{H}:E\times_{M}TM\to H\subseteq TE

In fact, if (y,u)E×Tπ(y)M(y,u)\in E\times T_{\pi(y)}M then (y,u)H(y,u)^{H} is the unique vector in HyH_{y} whose projection over MM is uu, that is,

(Tyπ)((y,u)H)=u.(T_{y}\pi)((y,u)^{H})=u.

It is clear that the horizontal lift induces, in a natural way, a section sHs^{H} of the 11-jet bundle J1πJ^{1}\pi. The previous correspondence is one-to-one. Indeed, if

(xi)H=xi+Hiα(x,u)uα,\left(\frac{\partial}{\partial x^{i}}\right)^{H}=\frac{\partial}{\partial x^{i}}+H^{\alpha}_{i}(x,u)\frac{\partial}{\partial u^{\alpha}},

then

sH(xi,uα)=(xi,uα,Hiα(x,u)).s^{H}(x^{i},u^{\alpha})=(x^{i},u^{\alpha},H^{\alpha}_{i}(x,u)).

A (local) section s:UMEs:U\subseteq M\to E is said to be horizontal with respect to the Ehresmann connection HH if

(Txs)(u)H(s(x)),xU,uTxM.(T_{x}s)(u)\in H(s(x)),\;\;\forall x\in U,\;\;\forall u\in T_{x}M.

So, if

s(xi)=(xi,uα(x)),s(x^{i})=(x^{i},u^{\alpha}(x)),

then ss is a horizontal section of HH if and only if it satisfies the following system of partial differential equations

uαxi=Hiα(x,u(x)),i,α.\frac{\partial u^{\alpha}}{\partial x^{i}}=H^{\alpha}_{i}(x,u(x)),\;\;\forall\;i,\alpha.

The Ehresmann connection HH is said to be integrable if the distribution HH is completely integrable. In such a case, for every point yEy\in E there exists a unique horizontal (local) section s:UMEs:U\subseteq M\to E of HH such that π(y)U\pi(y)\in U and

s(π(y))=y.s(\pi(y))=y.

Appendix B The vertical lift of a section of a vector bundle

In this appendix, we review the definition of the vertical lift of a section of a vector bundle.

Let τ:WM\tau:W\to M be a vector bundle and s:MWs:M\to W a smooth section of τ:WM\tau:W\to M. Then, one may define the vertical lift s𝐯s^{\bf v} of ss as a vector field on WW given by

s𝐯(w)=ddt|t=0(w+ts(x)), for wWx and xM.s^{\bf v}(w)=\frac{d}{dt}_{|t=0}(w+ts(x)),\;\;\,\mbox{ for }w\in W_{x}\mbox{ and }x\in M.

It is clear that s𝐯s^{\bf v} is vertical with respect to the vector bundle projection τ\tau.

Next, we will obtain a local expression of s𝐯s^{\bf v}. For this purpose, we consider local coordinates (xi)(x^{i}) in an open subset OO of MM and a local basis {ea}\{e_{a}\} of Γ(W)\Gamma(W) in OO. Then, we will denote by (xi,za)(x^{i},z^{a}) the corresponding local coordinates on WW. Moreover, if

s(xi)=sa(xi)ea(xi), with saC(O),s(x^{i})=s^{a}(x^{i})e_{a}(x^{i}),\;\;\mbox{ with }s^{a}\in C^{\infty}(O),

then

s𝐯(xi,za)=sa(xi)za|(x,z).s^{\bf v}(x^{i},z^{a})=s^{a}(x^{i})\frac{\partial}{\partial z^{a}}_{|(x,z)}.

A particular case of the previous situation is the following one.

Let π:EM\pi:E\to M be a fibration, with dimM=mdimM=m, and ν:π=Λ2m(TE)E\nu:{\mathcal{M}}\pi=\Lambda_{2}^{m}(T^{*}E)\to E the multimomentum bundle associated with the fibration π:EM\pi:E\to M. It is a vector bundle over EE (see Section 2.1).

Now, if ΩΓ(ΛmTM)\Omega\in\Gamma(\Lambda^{m}T^{*}M) is a mm-form on MM then πΩ\pi^{*}\Omega is a mm-form on EE. Moreover, πΩ\pi^{*}\Omega also is a section of the vector bundle ν:π=Λ2m(TE)E\nu:{\mathcal{M}}\pi=\Lambda^{m}_{2}(T^{*}E)\to E. Thus, one may consider the vertical lift Ω𝐯:=(πΩ)𝐯\Omega^{\bf v}:=(\pi^{*}\Omega)^{\bf v} of πΩ\pi^{*}\Omega as a ν\nu-vertical vector field on π{\mathcal{M}}\pi. In fact, if (xi,uα,p,pαi)(x^{i},u^{\alpha},p,p_{\alpha}^{i}) are canonical coordinates on π{\mathcal{M}}\pi as in Section 2.1, then

(dmx)𝐯=(dx1dxm)𝐯=p.(d^{m}x)^{\bf v}=(dx^{1}\wedge\cdots\wedge dx^{m})^{\bf v}=\frac{\partial}{\partial p}. (B.1)

Appendix C Diagram

The diagram below illustrates some of the objects used in the paper and their relations. The arrows with label ()+(\;)^{+} (resp. ()(\;)^{*}) indicate that we associate the vector bundle dual to a given affine (resp. vector) bundle. The four dashed arrows pointing down indicate the associated model vector bundle to a given affine bundle. The diagram illustrates the isomorphism aff\sharp^{\rm aff} of affine bundles and three vector bundle isomorphisms naturally associated to it:

  • (1)

    the vector bundle isomorphism =(aff)+\sharp=-(\sharp^{\rm aff})^{+} obtained by taking (minus) the affine dual to aff\sharp^{\rm aff};

  • (2)

    the vector bundle isomorphism lin\sharp^{\rm lin} naturally induced by aff\sharp^{\rm aff} on the associated model vector bundles;

  • (3)

    the vector bundle isomorphism (lin)-(\sharp^{\rm lin})^{*} obtained by taking (minus) the dual to lin\sharp^{\rm lin}.

Given a Hamiltonian section hΓ(μ)h\in\Gamma(\mu), an observable α0𝒪\alpha^{0}\in\mathcal{O} and a section 0Γ((πν0)(ΛmTM))\mathcal{F}_{0}\in\Gamma((\pi\circ\nu^{0})^{*}(\Lambda^{m}T^{*}M)) (the space of sections of the vector bundle associated to Γ(μ)\Gamma(\mu)), the diagram also illustrates the sections dhdh, dα0d\alpha^{0}, dl0d^{l}\mathcal{F}_{0}, μ0(dα0)\mu_{0}(d\alpha^{0}) and the corresponding objects obtained by applying sharp operators, namely affdh\sharp^{\rm aff}dh, dα0\sharp d\alpha^{0}, lindl0\sharp^{\rm lin}d^{l}\mathcal{F}_{0}, (lin)μ0(dα0)-(\sharp^{\rm lin})^{*}\mu_{0}(d\alpha^{0}). These objects enter into the definition of the three structures {,}\{\cdot,\cdot\}, {,}l\{\cdot,\cdot\}_{l}, {,}𝒪\{\cdot,\cdot\}_{\mathcal{O}} as

{α0,h}\displaystyle\{\alpha_{0},h\} =dα0,affdh=dα0,dh\displaystyle=\langle d\alpha^{0},\sharp^{\rm aff}dh\rangle=-\langle\sharp d\alpha^{0},dh\rangle
{α0,0}l\displaystyle\{\alpha_{0},\mathcal{F}_{0}\}_{l} =μ0dα0,lindl0=α0,dl0\displaystyle=\langle\mu_{0}d\alpha^{0},\sharp^{\rm lin}d^{l}\mathcal{F}_{0}\rangle=-\langle\mathcal{H}_{\alpha^{0}},d^{l}\mathcal{F}_{0}\rangle
{α0,β0}𝒪\displaystyle\{\alpha_{0},\beta_{0}\}_{\mathcal{O}} =iβ0dα0=iα0dβ0.\displaystyle=i_{\mathcal{H}_{\beta^{0}}}d\alpha^{0}=-i_{\mathcal{H}_{\alpha^{0}}}d\beta^{0}.
V(πν)~(π)~+\textstyle{V(\pi\circ\nu)\;\stackrel{{\scriptstyle{\tilde{\mathcal{I}}}}}{{\simeq}}\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\widetilde{\mathbb{P}(\pi)}^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒥\scriptstyle{\mathcal{J}}¯\scriptstyle{\bar{\flat}}(πν0)=J1(πν0)+\textstyle{\mathcal{M}(\pi\circ\nu^{0})=J^{1}(\pi\circ\nu^{0})^{+}}(π)~\textstyle{\widetilde{\mathbb{P}(\pi)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()+\scriptstyle{(\;)^{+}}μ~\scriptstyle{\tilde{\mu}}J1(πν0)\textstyle{J^{1}(\pi\circ\nu^{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}()+\scriptstyle{(\;)^{+}}A\scriptstyle{\quad\;A}V(πν)(πν)(ΛmTM)(π)+\textstyle{\frac{V(\pi\circ\nu)}{(\pi\circ\nu)^{*}(\Lambda^{m}T^{*}M)}\;\stackrel{{\scriptstyle{\mathcal{I}}}}{{\simeq}}\;\mathbb{P}(\pi)^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L=(J1(πν0)kerA)+\textstyle{L=\left(\frac{J^{1}(\pi\circ\nu^{0})}{\operatorname{ker}A}\right)^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=1=(aff)+\scriptstyle{\hskip 28.45274pt\sharp=\flat^{-1}=-(\sharp^{\rm aff})^{+}}(π)\textstyle{\mathbb{P}(\pi)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()+\scriptstyle{(\;)^{+}}aff=(A^)1\scriptstyle{\hskip 28.45274pt\sharp^{\rm aff}=(\hat{A})^{-1}}J1(πν0)kerA\textstyle{\frac{J^{1}(\pi\circ\nu^{0})}{\operatorname{ker}A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()+\scriptstyle{(\;)^{+}}0π\textstyle{\mathcal{M}^{0}\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dh\scriptstyle{dh}Γh=affdh\scriptstyle{\Gamma_{h}=\sharp^{\rm aff}dh}dα0\scriptstyle{\sharp d\alpha^{0}}dα0\scriptstyle{d\alpha^{0}}α0=(lin)μ0(dα0)\scriptstyle{\mathcal{H}_{\alpha^{0}}=-(\sharp^{\rm lin})^{*}\mu_{0}(d\alpha^{0})}dl0\scriptstyle{d^{l}\mathcal{F}_{0}}μ0(dα0)\scriptstyle{\mu_{0}(d\alpha^{0})}lin(dl0)\scriptstyle{\sharp^{\rm lin}(d^{l}\mathcal{F}_{0})}V(πν0)=V((π))\textstyle{V(\pi\circ\nu^{0})=V(\mathbb{P}(\pi))^{*}}V(J1(πν0)kerA)\textstyle{V\left(\frac{J^{1}(\pi\circ\nu^{0})}{\operatorname{ker}A}\right)^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(lin)\scriptstyle{\hskip 42.67912pt-(\sharp^{\rm lin})^{*}}V((π))\textstyle{V(\mathbb{P}(\pi))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()\scriptstyle{(\;)^{*}}lin=(lin)1\scriptstyle{\sharp^{\rm lin}=(\flat^{\rm lin})^{-1}}V(J1(πν0)kerA)\textstyle{V\left(\frac{J^{1}(\pi\circ\nu^{0})}{\operatorname{ker}A}\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()\scriptstyle{(\;)^{*}}

References

  • [1] Abraham, R.; Marsden, J.E.
    Foundations of mechanics.
    Second edition, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
  • [2] Asorey, M.; Ibort, A.; Spivak, A.
    Admissible boundary conditions for Hamiltonian field theories. Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 8, 1740006, 17 pp.
  • [3] Başar, Y.; Weichert, D.
    Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts.
    Springer-Verlag, 2000.
  • [4] Barbero G., J. Fernando; Margalef-Bentabol, Juan; Varo, Valle; Villaseñor, Eduardo J. S.
    Palatini gravity with nonmetricity, torsion, and boundaries in metric and connection variables. Phys. Rev. D 104 (2021), no. 4, Paper No. 044046, 6 pp.
  • [5] Barbero G., J. Fernando; Margalef-Bentabol, Juan; Varo, Valle; Villaseñor, Eduardo J. S.
    Covariant phase space for gravity with boundaries: metric versus tetrad formulations. Phys. Rev. D 104 (2021), no. 4, Paper No. 044048, 16 pp.
  • [6] Barbero G., J. Fernando; Margalef-Bentabol, Juan; Varo, Valle; Villaseñor, Eduardo J. S.
    On-shell equivalence of general relativity and Holst theories with nonmetricity, torsion, and boundaries. Phys. Rev. D 105 (2022), no. 6, Paper No. 064066, 15 pp.
  • [7] Binz, E.; Sniatycki, J.; Fischer, H.
    Geometry of classical fields.
    North-Holland Mathematics Studies, 154. Notas de Matemática (Mathematical Notes), 123. North-Holland Publishing Co., Amsterdam, 1988.
  • [8] Bursztyn, H.; Cabrera, A.; Iglesias, D.
    Multisymplectic geometry and Lie groupoids.
    Geometry, mechanics, and dynamics, 57–73, Fields Inst. Commun., 73, Springer, New York, 2015.
  • [9] Bursztyn, H; Martínez Alba N.; Rubio, R.
    On higher Dirac structures. International Mathematics Research Notices, Volume 2019, Issue 5, March 2019, Pages 1503–1542.
  • [10] Campos, Cédric M.; Guzmán, Elisa; Marrero, Juan Carlos
    Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. J. Geom. Mech. 4 (2012), no. 1, 1–26.
  • [11] Cariñena, J.F.; Crampin, M.; Ibort, A.
    On the multisymplectic formalism for first order field theories. Differential Geom. Appl. 1 (1991), no. 4, 345–374.
  • [12] Castrillón López, M.; Marsden, J.E.
    Some remarks on Lagrangian and Poisson reduction for field theories. J. Geom. Phys. 48 (2003), no. 1, 52–83.
  • [13] Ciaglia, Florio M.; Di Cosmo, Fabio; Ibort, Alberto; Marmo, Giuseppe; Schiavone Luca; Zampini, Alessandro
    The Geometry of the solution space of first order Hamiltonian field theories I: from particle dynamics to free Electrodynamics. Preprint, arXiv:2208.14136, 2022.
  • [14] Ciaglia, Florio M.; Di Cosmo, Fabio; Ibort, Alberto; Marmo, Giuseppe; Schiavone Luca; Zampini, Alessandro
    The Geometry of the solution space of first order Hamiltonian field theories II: non-Abelian gauge theories Preprint, arXiv:2208.14155, 2022.
  • [15] Chinea, D.; de León, M.; Marrero, J.C.
    The constraint algorithm for time-dependent Lagrangians. J. Math. Phys. 35 (1994), no. 7, 3410–3447.
  • [16] Demoures, F; Gay-Balmaz F.
    Multisymplectic variational integrators for barotropic and incompressible fluid models with constraints, Preprint arXiv:2102.10907
  • [17] Demoures, F; Gay-Balmaz F.
    Unified discrete multisymplectic Lagrangian formulation for hyperelastic solids and barotropic fluids, J. Nonlin. Sc., accepted.
  • [18] Demoures, F; Gay-Balmaz F.; Ratiu, T.S
    Multisymplectic variational integrator and space/time symplecticity, Anal. Appl., 14 (2014), no. 3, 341–391.
  • [19] de León, M.; Marín-Solano, J.; Marrero, J.C.
    Ehresmann connections in classical field theories.
    Differential geometry and its applications (Granada, 1994), 73–89, An. Fís. Monogr., 2, CIEMAT, Madrid, 1995.
  • [20] de León, M.; Marín-Solano, J.; Marrero, J.C.
    The constraint algorithm in the jet formalism.
    Differential Geom. Appl. 6 (1996), no. 3, 275–300.
  • [21] de León, M.; Marín-Solano, J.; Marrero, J.C.
    A geometrical approach to classical field theories: a constraint algorithm for singular theories.
    New developments in differential geometry (Debrecen, 1994), 291–312, Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, 1996.
  • [22] de León, M.; Martín de Diego, D.; Santamaría-Merino, A.
    Symmetries in classical field theory.
    Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 5, 651–710.
  • [23] de León, M.; Rodrigues, P.R.
    Methods of differential geometry in analytical mechanics. North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.
  • [24] Echeverría-Enríquez, A.; de León, M.; Muñoz-Lecanda, M.C.; Román-Roy, N.
    Extended Hamiltonian systems in multisymplectic field theories. J. Math. Phys. 48 (2007), no. 11, 112901, 30 pp.
  • [25] Echeverría-Enríquez, A.; Muñoz-Lecanda, M.C.; Román-Roy, N.
    Multivector field formulation of Hamiltonian field theories: equations and symmetries. J. Phys. A 32 (1999), no. 48, 8461–8484.
  • [26] Echeverría-Enríquez, A.; Muñoz-Lecanda, M.C.; Román-Roy, N.
    Geometry of multisymplectic Hamiltonian first-order field theories. J. Math. Phys. 41 (2000), no. 11, 7402–7444.
  • [27] Forger, M.; Romero, Sandro V.
    Covariant Poisson brackets in geometric field theory. Comm. Math. Phys. 256 (2005), no. 2, 375–410.
  • [28] Forger, M.; Salles, Mário O.
    On covariant Poisson brackets in classical field theory. J. Math. Phys. 56 (2015), no. 10, 102901, 26 pp.
  • [29] García, P. L.
    The Poincaré-Cartan invariant in the calculus of variations. Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), pp. 219–246. Academic Press, London, 1974.
  • [30] Gay-Balmaz, F.; Marsden, J.E.; Ratiu T.S.
    Reduced variational formulations in free boundary continuum mechanics.
    J. Nonlinear Sci. 22 (2012), no. 2, 553–597.
  • [31] Goldschmidt, H.; Sternberg, S.
    The Hamilton-Cartan formalism in the calculus of variations.
    Ann. Inst. Fourier, 23 (1973), 203–267.
  • [32] Grabowska, K.
    A Tulczyjew triple for classical fields.
    J. Phys. A 45 (2012), no. 14, 145207, 35 pp.
  • [33] Grabowska, K.; Grabowski, J.
    Tulczyjew triples: from statics to field theory. J. Geom. Mech. 5 (2013), no. 4, 445–472.
  • [34] Grabowska, K.; Grabowski, J.; Urbański, P.
    Lie brackets on affine bundles.
    Ann. Global Anal. Geom. 24 (2003), no. 2, 101–130.
  • [35] Grabowska, K.; Grabowski, J.; Urbański, P.
    AV-differential geometry: Poisson and Jacobi structures.
    J. Geom. Phys. 52 (2004), no. 4, 398–446.
  • [36] Grabowska, Katarzyna; Grabowski, Janusz; Urbański, P.
    Frame-independent mechanics: geometry on affine bundles.
    Travaux mathématiques. Fasc. XVI, 107–120, Trav. Math., 16, Univ. Luxemb., Luxembourg, 2005.
  • [37] Grabowska, Katarzyna; Grabowski, Janusz; Urbański, P.
    AV-differential geometry: Euler-Lagrange equations. J. Geom. Phys. 57 (2007), no. 10, 1984–1998.
  • [38] Hansoul, S.; Lecomte, P.
    Affine representations of Lie algebras and geometric interpretation in the case of smooth manifolds.
    Int. Math. Res. Not. 2005, no. 16, 981–1003.
  • [39] Ibort, A.; Spivak, A.
    Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories.
    J. Geom. Mech. 9 (2017), no. 1, 47–82.
  • [40] Ibort, A.: Spivak, A.
    On a covariant Hamiltonian description of Palatini’s gravity on manifolds with boundary. Preprint arXiv:1605.03492
  • [41] Iglesias, D.; Marrero, J. C.; Padrón, E.; Sosa, D.
    Lagrangian submanifolds and dynamics on Lie affgebroids. Rep. Math. Phys. 57 (2006), no. 3, 385–436.
  • [42] Lew A.; Marsden, J. E.; Ortiz, M.; West, M.
    Asynchronous variational integrators. Arch. Rational Mech. Anal., 167 (2003), no.2, 85–146.
  • [43] Libermann, P.; Marle, C.-M.
    Symplectic geometry and analytical mechanics. Translated from the French by Bertram Eugene Schwarzbach. Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987.
  • [44] Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
    Geometric formulation of the covariant phase space methods with boundaries. Phys. Rev. D 103 (2021), no. 2, Paper No. 025011, 37 pp.
  • [45] Marsden, J.E.; Patrick, G.W.; Shkoller, S.
    Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199, 1998, 351–395.
  • [46] Marsden, J.E.; Shkoller, S.
    Multisymplectic geometry, covariant Hamiltonians, and water waves. Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 553–575.
  • [47] Martínez, E.; Mestdag, T.; Sarlet, W.
    Lie algebroid structures and Lagrangian systems on affine bundles.
    J. Geom. Phys. 44 (2002), no. 1, 70–95.
  • [48] Marsden, J. E.; Hughes, T.J.R.
    Mathematical Foundations of Elasticity.
    (Prentice Hall, New York, 1983) (reprinted by Dover, New York, 1994).
  • [49] Marsden, J.E.; Ratiu, T.S.
    Introduction to Mechanics and Symmetry. A basic exposition of classical mechanical systems. Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
  • [50] Peierls, R.E.
    The commutation laws of relativistic field theory. Proc. Roy. Soc. London. Ser. A. 214, (1952). 143–157.
  • [51] Simo J.C.; Taylor, R.L., and Pister, K.S.
    Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comp. Meth. Appl. Mech. Engng. 51, (1985), 177–208.
  • [52] Volterra, V.
    Sulle equazioni differenziali che provengono da questiono di calcolo delle variazioni, Rend. Cont. Acad. Lincei, ser. IV, vol. VI, 1890, 42–54.
  • [53] Volterra, V.
    Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle varizioni, Rend. Cont. Acad. Lincei, ser. IV, vol. VI, 1890, 127–138