This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Milstein-type method for highly non-linear non-autonomous time-changed stochastic differential equations

Wei Liu, Ruoxue Wu, Ruchun Zuo
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
[email protected]; [email protected]; [email protected]
Abstract

A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some Hölder’s continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.

Keywords time-changed stochastic differential equations  \cdot Milstein-type method  \cdot highly non-linear  \cdot non-autonomous  \cdot strong convergence

1 Introduction

Time-changed stochastic processes and time-changed stochastic differential equations (SDEs) have been attracting increasing attentions in the past decades, as they are one of the important tools to describe sub-diffusion processes and their close relation with deterministic fractional differential equations (DFDE) [31].

In [25], Meerschaert and Scheffler gave a detailed discussion on the time process used for changing times and established a fundamental limit theorem that links some continuous-time random walks with infinite mean waiting times with a class of time-changed stochastic processes. Some important properties and essential inequalities of time-changed fractional Brownian motion were obtained by Deng and Schilling in [4].

The existence and uniqueness theorem for time-changed SDEs and many useful tools were obtained by Kobayashi in [16]. Stabilities in different senses of all kinds of stochastic equations were broadly discussed: Wu in [34] investigated SDEs driven time-changed Brownian motion; Nane and Li in [27, 28] studied the case when the driven noise is the time-changed Lévy noise; Zhang and Yuan focused on time-changed stochastic functional differential equations in [36]; Yin et al. considered the impulsive effects on stabilities in [35] for a class of time-changed SDEs; Shen et al. in [30] discussed distribution dependent SDEs driven by time-changed Brownian motions. Li et al. discussed some theoretical results of the time-changed McKean-Vlasov SDE in [20], which is also a distribution dependent SDE.

Time-changed processes and time-changed SDEs are widely applied in modelling financial markets. Magdziarz introduced sub-diffusive Black-Scholes formula by using the classical geometric Brownian motion with the inverse α\alpha-stable subordinator [22]. Magdziarz et al. proposed the sub-diffusive version of the Bachelier Model and investigated its application in the option pricing [24]. Janczura et al. studied the time-changed Ornstein-Uhlenbeck process that is driven by the α\alpha-stable process and fitted the data from emerging markets in this model [12]. For connections between time-changed processes and various DFDE, we refer the readers to [2, 9, 23, 26] and references therein.

Since the following two main reasons, numerical approximations to time-changed SDEs become essential. (1) Explicit forms of true solutions to time-changed SDEs are hardly found. (2) Applications of time-changed SDE models in practice often require a considerable number of sample paths to conduct statistical learnings like estimations, tests and predictions based on observed data. In this case, even explicit expressions of true solutions to some types of time-changed SDE models are available, performing those calculations without the aid of computer simulations is highly unlikely.

When transition probabilities of solutions to time-changed SDEs are needed to be simulated, the typical approaches used are discretising the corresponding deterministic fractional differential equations. There are fruitful works on numerical methods for DFDE and a far-from-complete list of them includes [5, 6, 17, 32] among many others.

In this paper, we focus on another important aspect of numerical approximations to time-changed SDEs, i.e. numerical simulations of sample paths of solutions.

In this aspect, Kobayashi and collaborators studied different numerical methods for time-changed SDEs with different structures, when the global Lipschitz conditions are imposed on the spatial variables in the coefficients. The convergences in both the strong and weak senses of the Euler–Maruyama (EM) method for a class of time-changed SDEs were proved by Jum and Kobayashi in [15], which, to our best knowledge, is the first work to study simulations of sample paths of solutions to time-changed SDEs. More recently, Jin and Kobayashi investigated some Euler-type and Milstein-type methods for more general type of time-changed SDEs in [13, 14]. One of the main differences in terms of techniques used between [15] and [13, 14] is that the duality principle established in [16] was employed in [15] but not in [13, 14]. Briefly speaking, the duality principle reveals the relation between the classical SDEs and time-changed counterpart, which enables numerical methods for time-changed SDEs to be constructed by using numerical methods for classical SDEs directly. For time-changed McKean-Vlasov SDEs, Wen et al. considered the numerical method in [33].

In the case that some super-linear terms are allowed to appear in the coefficients, implicit methods and modified explicit methods are usually good alternatives as the classical Euler-type and Milstein-type methods may not be convergent [11]. When some super-linear growth conditions are imposed on the spatial variables in the drift coefficient of time-changed SDEs, Deng and Liu studied the semi-implicit EM method in [3], Liu et al. investigated the truncated EM method in [21] with the help of the duality principle, while Li et al. in [18] also discussed the truncated-type Euler method but without employing the duality principle.

In this paper, we also focus on numerical methods for time-changed SDEs with super-linear coefficients. Compared with [3, 21, 18], we consider the numerical method with the higher convergence order by proposing a Milstein-type method with the truncating techniques to suppress super-linear terms. Due to the higher convergence order, compared with those Euler-type methods Milstein-type methods are more suitable for the multi-level Monte Carlo that is quite popular for applications in finance [7, 8].

2 Mathematical preliminaries

Let (ΩW,W,W)(\Omega_{W},{\cal F}^{W},\mathbb{P}_{W}) be a complete probability space with a filtration {tW}t0\{{\cal F}^{W}_{t}\}_{t\geq 0} being right continuous and increasing, while 0W{\cal F}^{W}_{0} contains all W\mathbb{P}_{W}-null sets. Let W(t)W(t) be a one-dimensional Wiener process defined in that probability space and is tW{\cal F}^{W}_{t}-adapted. 𝔼W\mathbb{E}_{W} denotes the expectation with respect to W\mathbb{P}_{W}.

Let (ΩD,D,D)(\Omega_{D},{\cal F}^{D},\mathbb{P}_{D}) be another complete probability space with a filtration {tD}t0\left\{{\cal F}^{D}_{t}\right\}_{t\geq 0}. D(t)D(t) denotes a one-dimensional tD{\cal F}^{D}_{t}-adapted strictly increasing Lévy process on [0,)[0,\infty) starting from D(0)=0D(0)=0 defined on (ΩD,D,D)(\Omega_{D},{\cal F}^{D},\mathbb{P}_{D}). Let 𝔼D\mathbb{E}_{D} denote the expectation with respect to D\mathbb{P}_{D}. For detailed introductions and discussions on such a D(t)D(t), we refer the readers to [1, 29]

In this paper, W(t)W(t) and D(t)D(t) are assumed to be independent. Define the product probability space by (Ω,,):=(ΩW×ΩD,WD,WD)(\Omega,{\cal F},\mathbb{P}):=(\Omega_{W}\times\Omega_{D},{\cal F}^{W}\otimes{\cal F}^{D},\mathbb{P}_{W}\otimes\mathbb{P}_{D}). Let 𝔼\mathbb{E} denote the expectation under the probability measure \mathbb{P}. It is clear that 𝔼()=𝔼D(𝔼W())=𝔼W(𝔼D())\mathbb{E}(\cdot)=\mathbb{E}_{D}\left(\mathbb{E}_{W}(\cdot)\right)=\mathbb{E}_{W}\left(\mathbb{E}_{D}(\cdot)\right).

For xdx\in\mathbb{R}^{d}, |x||x| denotes the Euclidean norm. The transposition of xx is denoted by xTx^{\mathrm{T}}. For two real numbers aa and bb, set ab=max(a,b)a\vee b=\max(a,b) and ab=min(a,b)a\wedge b=\min(a,b). For a given set GG, its indicator function is denoted by 𝟏G\mathbf{1}_{G}.

Since D(t)D(t) is strictly increasing, we define the inverse of D(t)D(t) by

E(t):=inf{s0;D(s)>t},t0.\displaystyle E(t):=\inf\{s\geq 0\,;\,D(s)>t\},\quad t\geq 0.

Then, the E(t)E(t) is used for changing time, as tE(t)t\mapsto E(t) is continuous and non-decreasing. The process W(E(t))W(E(t)) is called a time-changed Wiener process and W(E(t))W(E(t)) is regarded as a sub-diffusive process. For the simplicity of notations, we consider the one-dimensional W(E(t))W(E(t)) in our work. When W(t)W(t) is a multi-dimensional Wiener process and the same E(t)E(t) is used for changing time in each entry of W(t)W(t), the results in this paper should still hold. But if different E(t)E(t)s are used to change times in different entries of W(t)W(t), our results may not be applicable.

The time-changed SDEs considered in this paper take the following form, For any T>0T>0 and t[0,T]t\in[0,T]

dY(t)=f(t,Y(t))dE(t)+g(t,Y(t))dW(E(t)),Y(0)=Y0,\displaystyle dY(t)=f(t,Y(t))dE(t)+g(t,Y(t))dW(E(t)),~{}~{}~{}Y(0)=Y_{0}, (1)

with 𝔼|Y0|q<\mathbb{E}|Y_{0}|^{q}<\infty for all q>0q>0, where f:+×ddf:\mathbb{R}_{+}\times\mathbb{R}^{d}\rightarrow\mathbb{R}^{d} and g:+×ddg:\mathbb{R}_{+}\times\mathbb{R}^{d}\rightarrow\mathbb{R}^{d}.

Before we impose assumptions on the coefficients of (1), we present some tedious but helpful notations. For any y=(y1,y2,,yd)dy=(y^{1},y^{2},...,y^{d})\in\mathbb{R}^{d} and and any t[0,T]t\in[0,T], define

Lg(t,y)=l=1dgl(t,y)Gl(t,y),\displaystyle Lg(t,y)=\sum_{l=1}^{d}g^{l}(t,y)G^{l}(t,y),

where g=(g1,g2,,gd)Tg=(g^{1},g^{2},...,g^{d})^{T}, gl:+×dg^{l}:\mathbb{R}_{+}\times\mathbb{R}^{d}\rightarrow\mathbb{R} and

Gl(t,y)=(g1(t,y)yl,g2(t,y)yl,,gd(t,y)yl)T.\displaystyle G^{l}(t,y)=\left(\dfrac{\partial g^{1}(t,y)}{\partial y^{l}},\dfrac{\partial g^{2}(t,y)}{\partial y^{l}},...,\dfrac{\partial g^{d}(t,y)}{\partial y^{l}}\right)^{\mathrm{T}}.

The following assumptions are imposed on the coefficients of (1). We first give requirements on spatial variables in the coefficients.

Assumption 1.

Assume that there exist positive constants α\alpha and CC such that

|f(t,x)f(t,y)||g(t,x)g(t,y)||Lg(t,x)Lg(t,y)|C(1+|x|α+|y|α)|xy|,\displaystyle|f(t,x)-f(t,y)|\vee|g(t,x)-g(t,y)|\vee|Lg(t,x)-Lg(t,y)|\leq C(1+|x|^{\alpha}+|y|^{\alpha})|x-y|,

for all t[0,T]t\in[0,T] and any x,ydx,y\in\mathbb{R}^{d}.

It can be observed from Assumption 1 that for all t[0,T]t\in[0,T] and any xdx\in\mathbb{R}^{d}

|f(t,x)||g(t,x)||Lg(t,x)|M(1+|x|α+1),\displaystyle|f(t,x)|\vee|g(t,x)|\vee|Lg(t,x)|\leq M(1+|x|^{\alpha+1}), (2)

where MM depends on CC and sup0tT(|f(t,0)|+|g(t,0)|+|Lg(t,0)|)\sup_{0\leq t\leq T}\left(|f(t,0)|+|g(t,0)|+|Lg(t,0)|\right).

Assumption 2.

Assume that there exists a pair of constants p>2p>2 and K>0K>0 such that

(xy)T(f(t,x)f(t,y))+(5p1)|g(t,x)g(t,y)|2K|xy|2,\displaystyle(x-y)^{\mathrm{T}}(f(t,x)-f(t,y))+(5p-1)|g(t,x)-g(t,y)|^{2}\leq K|x-y|^{2},

for all t[0,T]t\in[0,T] and any x,ydx,y\in\mathbb{R}^{d}.

Assumption 3.

Assume that there exists a pair of constants q>2q>2 and K1>0K_{1}>0 such that

xTf(t,x)+(5q1)|g(t,x)|2K1(1+|x|2),\displaystyle x^{\mathrm{T}}f(t,x)+(5q-1)|g(t,x)|^{2}\leq K_{1}(1+|x|^{2}),

for all t[0,T]t\in[0,T] and any xdx\in\mathbb{R}^{d}.

Similar to the relation between Assumption 1 and (2), Assumption 3 can be derived from Assumption 2 but with complicated relations between pp and qq as well as KK and K1K_{1}. So we present Assumption 3 as a new assumption.

Assumption 4.

Assume that there exists a positive constant MM^{\prime}such that

|f(t,x)x||2f(t,x)x2||g(t,x)x||2g(t,x)x2|M(1+|x|α+1),\displaystyle|\frac{\partial f(t,x)}{\partial x}|\vee|\frac{\partial^{2}f(t,x)}{\partial x^{2}}|\vee|\frac{\partial g(t,x)}{\partial x}|\vee|\frac{\partial^{2}g(t,x)}{\partial x^{2}}|\leq M^{\prime}(1+|x|^{\alpha+1}),

for any xdx\in\mathbb{R}^{d} and all t[0,T]t\in[0,T].

Now we turn to the requirement on the temporal variables in the coefficients.

Assumption 5.

Assume that there exists constants γf(0,1]\gamma_{f}\in(0,1], γg(0,1]\gamma_{g}\in(0,1], H1>0H_{1}>0 and H2>0H_{2}>0 such that

|f(s,x)f(t,x)|H1(1+|x|α+1)(st)γf,\displaystyle|f(s,x)-f(t,x)|\leq H_{1}(1+|x|^{\alpha+1})(s-t)^{\gamma_{f}},
|g(s,x)g(t,x)|H2(1+|x|α+1)(st)γg,\displaystyle|g(s,x)-g(t,x)|\leq H_{2}(1+|x|^{\alpha+1})(s-t)^{\gamma_{g}},

for any x,ydx,y\in\mathbb{R}^{d} and any s,t[0,T]s,t\in[0,T].

Now we introduce the procedure of constructing the Milstein-type method discussed in this paper.

Step 1. Based on the formates of the coefficients, we choose a strictly increasing continuous function μ:++\mu:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+} such that μ(u)\mu(u)\rightarrow\infty as uu\rightarrow\infty and for any l=1,2,,dl=1,2,...,d.

sup0tTsup|x|u(|f(t,x)||g(t,x)||Gl(t,x)|)μ(u),u1.\displaystyle\sup_{0\leq t\leq T}\sup_{|x|\leq u}(|f(t,x)|\vee|g(t,x)|\vee|G^{l}(t,x)|)\leq\mu(u),\quad u\geq 1.

Step 2. We choose a constant κ^1μ(1)\hat{\kappa}\geq 1\wedge\mu(1) and a strictly decreasing function κ:(0,1][μ(1),)\kappa:(0,1]\rightarrow[\mu(1),\infty) such that

h1/4κ(h)κ^for anyh(0,1]andlimh0κ(h)=.\displaystyle h^{1/4}\kappa(h)\leq\hat{\kappa}\quad\text{for any}~{}h\in(0,1]\quad\text{and}\quad\lim_{h\rightarrow 0}\kappa(h)=\infty. (3)

Step 3. Since the inverse function of μ\mu, denoted by μ1\mu^{-1}, is a strictly increasing continuous function from [μ(0),)[\mu(0),\infty) to +\mathbb{R}_{+}, for a given step size h(0,1]h\in(0,1] we define the truncated mapping by

πh(x)=(|x|μ1(κ(h)))x|x|,\displaystyle\pi_{h}(x)=\left(|x|\wedge\mu^{-1}(\kappa(h))\right)\frac{x}{|x|},

where x/|x|x/|x| is set to be 0 if x=0x=0. Then we define the truncated functions by

fh(t,x)=f(t,πh(x)),gh(t,x)=g(t,πh(x)),Ghl(t,x)=Gl(t,πh(x)).\displaystyle f_{h}(t,x)=f(t,\pi_{h}(x)),\quad g_{h}(t,x)=g(t,\pi_{h}(x)),\quad G^{l}_{h}(t,x)=G^{l}(t,\pi_{h}(x)).

for any xdx\in\mathbb{R}^{d} and l=1,2,,dl=1,2,...,d. It is not hard to see that for any t[0,T]t\in[0,T] and any xdx\in\mathbb{R}^{d},

|fh(t,x)||gh(t,x)||Ghl(t,x)|μ(μ1(κ(h)))=κ(h).\displaystyle|f_{h}(t,x)|\vee|g_{h}(t,x)|\vee|G^{l}_{h}(t,x)|\leq\mu(\mu^{-1}(\kappa(h)))=\kappa(h). (4)

we can also obtain the fact that there exists a positive constant M^\hat{M} such that

|fh(t,x)x||2fh(t,x)x2||gh(t,x)x||2gh(t,x)x2|M^,\displaystyle|\frac{\partial f_{h}(t,x)}{\partial x}|\vee|\frac{\partial^{2}f_{h}(t,x)}{\partial x^{2}}|\vee|\frac{\partial g_{h}(t,x)}{\partial x}|\vee|\frac{\partial^{2}g_{h}(t,x)}{\partial x^{2}}|\leq\hat{M},

for any t[0,T]t\in[0,T] and all xdx\in\mathbb{R}^{d}.

Step 4. Now we turn to discretise the process E(t)E(t) in a finite time interval [0,T][0,T] for any given T>0T>0. For the given step size h, set ti=iht_{i}=ih and let Δi\Delta_{i} be independently identically sequence satisfying Δi=D(h)\Delta_{i}=D(h) in distribution for i=0,1,2,i=0,1,2,.... By the iteration, Dh(ti)=Dh(ti1)+ΔiD_{h}(t_{i})=D_{h}(t_{i-1})+\Delta_{i} with Dh(0)=0D_{h}(0)=0, the sample path of D(t)D(t) can be simulated. And we stop the iteration for some positive integer NN when

T[Dh(tN),Dh(tN+1))\displaystyle T\in[D_{h}(t_{N}),D_{h}(t_{N+1}))

holds.

Step 5. The discretised E(t)E(t), denoted by Eh(t)E_{h}(t), can be found by

Eh(t)=(min{n;Dh(tn)>t}1)h,\displaystyle E_{h}(t)=\big{(}\min\{n;D_{h}(t_{n})>t\}-1\big{)}h, (5)

for t[0,T]t\in[0,T]. It is not hard to see Eh(t)=ihE_{h}(t)=ih for t[Dh(ti),Dh(ti+1))t\in\left[D_{h}(t_{i}),D_{h}(t_{i+1})\right).

For i=0,1,2,,Ni=0,1,2,...,N, denote τi=Dh(ti)\tau_{i}=D_{h}(t_{i}). Then it can be observed that

Eh(τi)=Eh(Dh(ti))=ih.\displaystyle E_{h}(\tau_{i})=E_{h}(D_{h}(t_{i}))=ih. (6)

Step 6. Finally by setting X0=Y(0)X_{0}=Y(0), the discrete version of the Milstein method is defined as

Xτn+1=\displaystyle X_{\tau_{n+1}}= Xτn+fh(τn,Xτn)(Eh(τn+1)Eh(τn))\displaystyle X_{\tau_{n}}+f_{h}(\tau_{n},X_{\tau_{n}})\bigg{(}E_{h}(\tau_{n+1})-E_{h}(\tau_{n})\bigg{)}
+gh(τn,Xτn)(W(Eh(τn+1))W(Eh(τn)))\displaystyle+g_{h}(\tau_{n},X_{\tau_{n}})\bigg{(}W(E_{h}(\tau_{n+1}))-W(E_{h}(\tau_{n}))\bigg{)}
+12l=1dghl(τn,Xτn)Ghl(τn,Xτn)(ΔW2(Eh(τn))Δ(Eh(τn))).\displaystyle+\dfrac{1}{2}\sum_{l=1}^{d}g^{l}_{h}(\tau_{n},X_{\tau_{n}})G^{l}_{h}(\tau_{n},X_{\tau_{n}})\bigg{(}\Delta W^{2}(E_{h}(\tau_{n}))-\Delta(E_{h}(\tau_{n}))\bigg{)}. (7)

It should be noted that {τn}n=1,2,,N\{\tau_{n}\}_{n=1,2,...,N} is a random sequence but independent from the Wiener process. In addition, it is not hard to see from (6) that

Eh(τn+1)Eh(τn)=handW(Eh(τn+1))W(Eh(τn))=W((n+1)h)W(nh).\displaystyle E_{h}(\tau_{n+1})-E_{h}(\tau_{n})=h~{}~{}\text{and}~{}~{}W(E_{h}(\tau_{n+1}))-W(E_{h}(\tau_{n}))=W((n+1)h)-W(nh).

Now we present the continuous version of (2), as it is more convenient to use it in our proofs.

For any t[0,T]t\in[0,T] and any xdx\in\mathbb{R}^{d}, set

Lgh(t,x):=l=1dghl(t,x)Ghl(t,x),\displaystyle Lg_{h}(t,x):=\sum_{l=1}^{d}g_{h}^{l}(t,x)G_{h}^{l}(t,x),

For any t[0,T]t\in[0,T]. the continuous version of our Milstein method is

X(t)=\displaystyle X(t)= X(0)+0tfh(τ¯(s),X¯(s))𝑑E(s)+0tgh(τ¯(s),X¯(s))𝑑W(E(s))\displaystyle X(0)+\int_{0}^{t}f_{h}{(\bar{\tau}(s),\bar{X}(s))dE(s)}+\int_{0}^{t}g_{h}{(\bar{\tau}(s),\bar{X}(s))dW(E(s))}
+0tLgh(τ¯(s),X¯(s))ΔW(Eh(s))𝑑W(E(s)),\displaystyle+\int_{0}^{t}Lg_{h}{(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))dW(E(s))}, (8)

where τ¯(s)=τn𝟏[τn,τn+1)(s)\bar{\tau}(s)=\tau_{n}\mathbf{1}_{[\tau_{n},\tau_{n+1})}(s), X¯(t)=n=0NXτn𝟏[τn,τn+1)(t)\bar{X}(t)=\sum_{n=0}^{N}X_{\tau_{n}}\mathbf{1}_{[\tau_{n},\tau_{n+1})}(t) and

ΔW(Eh(s))=i=1N𝟏{τis<τi+1}(W(Eh(s))W(Eh(τi))).\displaystyle\Delta W(E_{h}(s))=\sum_{i=1}^{N}\mathbf{1}_{\left\{\tau_{i}\leqslant s<\tau_{i+1}\right\}}\big{(}W(E_{h}(s))-W(E_{h}(\tau_{i}))\big{)}.

The following version of the Taylor expansion is essential for proofs in our paper.

Given ψ:d+1d\psi:\mathbb{R}^{d+1}\to\mathbb{R}^{d} is a third-order continuously differentiable function, for z,zd+1z,z^{*}\in\mathbb{R}^{d+1} we have

ψ(z)ψ(z)=ψ(z)|z=z(zz)+Rψ(z,z),\displaystyle\begin{split}\psi(z)-\psi(z^{*})=\psi^{{}^{\prime}}(z)|_{z=z^{*}}(z-z^{*})+R_{\psi}(z,z^{*}),\end{split}

where

Rψ(z,z)=01(1θ)ψ′′(z)|z=z+θ(zz)(zz,zz)dθ.\displaystyle\begin{split}R_{\psi}(z,z^{*})=\int_{0}^{1}(1-\theta)\psi^{{}^{\prime\prime}}(z)|_{z=z^{*}+\theta(z-z^{*})}(z-z^{*},z-z^{*})d\theta.\end{split}

Here, ψ\psi^{{}^{\prime}} and ψ′′\psi^{{}^{\prime\prime}}are defined in the following way, for any z,z^,z~d+1z,\hat{z},\tilde{z}\in\mathbb{R}^{d+1}.

ψ(z)(z^)=i=1d+1ψziz^i,ψ′′(z)(z^,h)=i,k=1d+12ψzizkz^iz~k,\displaystyle\psi^{{}^{\prime}}(z)(\hat{z})=\sum_{i=1}^{d+1}\dfrac{\partial\psi}{\partial z^{i}}\hat{z}_{i},\quad\psi^{{}^{\prime\prime}}(z)(\hat{z},h)=\sum_{i,k=1}^{d+1}\dfrac{\partial^{2}\psi}{\partial z^{i}\partial z^{k}}\hat{z}_{i}\tilde{z}_{k},

where ψ=(ψ1,ψ2,,ψd)T\psi=(\psi_{1},\psi_{2},...,\psi_{d})^{T}, ψj:d+1\psi_{j}:\mathbb{R}^{d+1}\to\mathbb{R} for j=1,2,dj=1,2,...d, and ψzi=(ψ1zi,ψ2zi,,ψdzi)T\dfrac{\partial\psi}{\partial z^{i}}=(\dfrac{\partial\psi_{1}}{\partial z^{i}},\dfrac{\partial\psi_{2}}{\partial z^{i}},...,\dfrac{\partial\psi_{d}}{\partial z^{i}})^{T} for i=1,2,,d+1i=1,2,...,d+1.

In the paper, we employ the Taylor expansion above by using one dimension for the time variable and dd dimensions for the state variable, to be more precise, we set z=(η,x¯)z=(\eta,\bar{x}) and z=(η,x)z^{*}=(\eta,x^{*}) for η+\eta\in\mathbb{R}_{+} and x¯,xd\bar{x},x^{*}\in\mathbb{R}^{d}. It is clear that zz=(0,x¯x)z-z^{*}=(0,\bar{x}-x^{*}), in the case. Therefore, for ψ:+×dd\psi:\mathbb{R}_{+}\times\mathbb{R}^{d}\to\mathbb{R}^{d} we have that

ψ(η,x¯)ψ(η,x)=ψ(η,x)|x=x(x¯x)+Rψ(η,x¯,x),\displaystyle\begin{split}\psi(\eta,\bar{x})-\psi(\eta,x^{*})=\psi^{{}^{\prime}}(\eta,x)\big{|}_{x=x^{*}}(\bar{x}-x^{*})+R_{\psi}(\eta,\bar{x},x^{*}),\end{split}

where

Rψ(η,x¯,x)=01(1θ)ψ′′(η,x)|x=x+θ(x¯x)(x¯x,x¯x)dθ,\displaystyle\begin{split}R_{\psi}(\eta,\bar{x},x^{*})=\int_{0}^{1}(1-\theta)\psi^{{}^{\prime\prime}}(\eta,x)|_{x=x^{*}+\theta(\bar{x}-x^{*})}(\bar{x}-x^{*},\bar{x}-x^{*})d\theta,\end{split}

for any η+\eta\in\mathbb{R}_{+} and x¯,xd\bar{x},x^{*}\in\mathbb{R}^{d}. In this case, for any x,j¯,h¯d,ψx,\bar{j},\bar{h}\in\mathbb{R}^{d},\psi^{{}^{\prime}} and ψ′′\psi^{{}^{\prime\prime}} are defined by

ψ(η,x)(j¯)=i=1dψxij¯i,ψ′′(η,x)(j¯,h¯)=i,k=1d2ψxixkj¯ih¯k.\displaystyle\psi^{{}^{\prime}}(\eta,x)(\bar{j})=\sum_{i=1}^{d}\dfrac{\partial\psi}{\partial x^{i}}\bar{j}_{i},\quad\psi^{{}^{\prime\prime}}(\eta,x)(\bar{j},\bar{h})=\sum_{i,k=1}^{d}\dfrac{\partial^{2}\psi}{\partial x^{i}\partial x^{k}}\bar{j}_{i}\bar{h}_{k}.

respecttively. Here, ψ=(ψ1,ψ2,,ψd)T\psi=(\psi_{1},\psi_{2},...,\psi_{d})^{T},ψxi=(ψ1xi,ψ2xi,,ψdxi)T\dfrac{\partial\psi}{\partial x^{i}}=(\dfrac{\partial\psi_{1}}{\partial x^{i}},\dfrac{\partial\psi_{2}}{\partial x^{i}},...,\dfrac{\partial\psi_{d}}{\partial x^{i}})^{T}, j¯=(j¯1,j¯2,,j¯d)T\bar{j}=(\bar{j}_{1},\bar{j}_{2},...,\bar{j}_{d})^{T} and h¯=(h¯1,h¯2,,h¯d)T\bar{h}=(\bar{h}_{1},\bar{h}_{2},...,\bar{h}_{d})^{T}.

Setting η=τ¯(t),x¯=X(t)\eta=\bar{\tau}(t),\bar{x}=X(t) and x=X¯(t)x^{*}=\bar{X}(t), we derive from above, that for any fixed t[0,T]t\in[0,T],

ψ(τ¯(t),X(t))ψ(τ¯(t),X¯(t))=\displaystyle\psi(\bar{\tau}(t),X(t))-\psi(\bar{\tau}(t),\bar{X}(t))= ψ(τ¯(t),x)|x=X¯(t)0tgh(τ¯(s),X¯(s))𝑑W(E(s))\displaystyle\psi^{{}^{\prime}}(\bar{\tau}(t),x)\big{|}_{x=\bar{X}(t)}\int_{0}^{t}g_{h}(\bar{\tau}(s),\bar{X}(s))dW(E(s))
+R~ψ(t,X(t),X¯(t)),\displaystyle+\tilde{R}_{\psi}(t,X(t),\bar{X}(t)), (9)

Here

R~ψ(t,X(t),X¯(t))=\displaystyle\tilde{R}_{\psi}(t,X(t),\bar{X}(t))= ψ(τ¯(t),x)|x=X¯(t)(0tfh(τ¯(s),X¯(s))dE(s)\displaystyle\psi^{{}^{\prime}}(\bar{\tau}(t),x)\big{|}_{x=\bar{X}(t)}\bigg{(}\int_{0}^{t}f_{h}(\bar{\tau}(s),\bar{X}(s))dE(s)
+0tLgh(τ¯(s),X¯(s))ΔW(Eh(s))dW(E(s)))\displaystyle+\int_{0}^{t}Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))dW(E(s))\bigg{)}
+Rψ(τ¯(t),X(t),X¯(t)).\displaystyle+R_{\psi}(\bar{\tau}(t),X(t),\bar{X}(t)). (10)

Thus, resplacing ψ\psi by ghg_{h}, we obtain

R~gh(t,X(t),X¯(t))\displaystyle\tilde{R}_{g_{h}}(t,X(t),\bar{X}(t))
=\displaystyle= gh(τ¯(t),X(t))gh(τ¯(t),X¯(t))Lgh(τ¯(t),X¯(t))ΔW(Eh(t)).\displaystyle g_{h}(\bar{\tau}(t),X(t))-g_{h}(\bar{\tau}(t),\bar{X}(t))-Lg_{h}(\bar{\tau}(t),\bar{X}(t))\Delta W(E_{h}(t)). (11)

At the end of this section, we mention some known results. For the proofs of Lemmas 1 and 2, we refer the readers to [10]. The proof of Lemma 3 can be found in [15]. Lemma 4 is borrowed from [19].

Lemma 1.

Let Assumption 1 hold. For all h(0,1]h\in(0,1]

|fh(t,x)fh(t,y)||gh(t,x)gh(t,y)||Lgh(t,x)Lgh(t,y)|\displaystyle|f_{h}(t,x)-f_{h}(t,y)|\vee|g_{h}(t,x)-g_{h}(t,y)|\vee|Lg_{h}(t,x)-Lg_{h}(t,y)|
\displaystyle\leq C(1+|x|α+|y|α)|xy|\displaystyle C(1+|x|^{\alpha}+|y|^{\alpha})|x-y|

holds for all t(0,T]t\in(0,T] and x,ydx,y\in\mathbb{R}^{d}.

Lemma 2.

Let Assumption 3 hold. Then, for all h(0,1]h\in(0,1], we have

xTfh(t,x)+(5q1)|gh(t,x)|2K^1(1+|x|2),xd,\displaystyle x^{\mathrm{T}}f_{h}(t,x)+(5q-1)|g_{h}(t,x)|^{2}\leq\hat{K}_{1}(1+|x|^{2}),\quad\forall x\in\mathbb{R}^{d},

where K^1=2K1(11μ1(κ(1)))\hat{K}_{1}=2K_{1}\left(1\vee\frac{1}{\mu^{-1}(\kappa(1))}\right).

Lemma 3.

For any titti+1t_{i}\leq t\leq t_{i+1}, there exists a constant cc such that

|Eh(t)Eh(ti)||Eh(ti+1)Eh(ti)|ch.\displaystyle|E_{h}(t)-E_{h}(t_{i})|\leq|E_{h}(t_{i+1})-E_{h}(t_{i})|\leq ch.
Lemma 4.

Suppose Assumption 1 and 3 hold. Then, for any p[2,q)p\in[2,q)

𝔼(sup0tT|Y(t)|p)<.\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|Y(t)|^{p}\right)<\infty.

Briefly speaking, Lemmas 1 and 2 indicate that, to some extended, the truncated functions fhf_{h} and ghg_{h} inherit Assumptions 1 and 3. Lemma 3 is useful for the analysis of the convergence order of Eh(t)E_{h}(t). Lemma 4 states the moment boundedness of the underlying solution.

3 Lemmas prepared for main results

Lemmas that will be used in the proofs of main results in Section 4 are presented and proved in this section.

Lemma 5.

For any h(0,1]h\in(0,1] and any p^>2\hat{p}>2, we have

𝔼W|X(t)X¯(t)|p^cp^hp^/2(κ(h))p^,t0,\displaystyle\mathbb{E}_{W}|X(t)-\bar{X}(t)|^{\hat{p}}\leq c_{\hat{p}}h^{\hat{p}/2}\left(\kappa(h)\right)^{\hat{p}},\quad\forall t\geq 0, (12)

where cp^=c(p^(p^1)2)p^23p^1c_{\hat{p}}=c\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}3^{\hat{p}-1}, consequently,

limh0𝔼W|X(t)X¯(t)|p^=0,t0.\displaystyle\lim_{h\rightarrow 0}\mathbb{E}_{W}|X(t)-\bar{X}(t)|^{\hat{p}}=0,\quad\forall t\geq 0. (13)

Proof. Fix any h(0,1]h\in(0,1], p^>2\hat{p}>2 and t0t\geq 0. There is a unique integer n0n\geq 0 such that τnt<τn+1\tau_{n}\leq t<\tau_{n+1}. By properties of the basic inequality, we then derive from (2) that

|X(t)X¯(t)|p^\displaystyle|X(t)-\bar{X}(t)|^{\hat{p}}
=\displaystyle= |X(t)X(τn)|p^\displaystyle|X(t)-X(\tau_{n})|^{\hat{p}}
=\displaystyle= |τntfh(τ¯(s),X¯(s))dE(s)+τntgh(τ¯(s),X¯(s))dW(E(s))\displaystyle\bigg{|}\int_{\tau_{n}}^{t}{f_{h}(\bar{\tau}(s),\bar{X}(s))dE(s)}+\int_{\tau_{n}}^{t}{g_{h}(\bar{\tau}(s),\bar{X}(s))dW(E(s))}
+τntLgh(τ¯(s),X¯(s))ΔW(Eh(s))dW(E(s))|p^\displaystyle+\int_{\tau_{n}}^{t}{Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))dW(E(s))}\bigg{|}^{\hat{p}}
\displaystyle\leq 3p^1(|τntfh(τ¯(s),X¯(s))dE(s)|p^+|τntgh(τ¯(s),X¯(s))dW(E(s))|p^\displaystyle 3^{\hat{p}-1}\bigg{(}\left|\int_{\tau_{n}}^{t}{f_{h}(\bar{\tau}(s),\bar{X}(s))dE(s)}\right|^{\hat{p}}+\left|\int_{\tau_{n}}^{t}{g_{h}(\bar{\tau}(s),\bar{X}(s))dW(E(s))}\right|^{\hat{p}}
+|τntLgh(τ¯(s),X¯(s))ΔW(Eh(s))dW(E(s))|p^).\displaystyle+\left|\int_{\tau_{n}}^{t}{Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))dW(E(s))}\right|^{\hat{p}}\bigg{)}. (14)

Now, we estimate those three terms inside the bracket on the right hand side of the last inequality of (3) By the Hölder inequality, the first term can be estimated by

𝔼W|τntfh(τ¯(s),X¯(s))𝑑E(s)|p^hp^1𝔼Wτnt|fh(τ¯(s),X¯(s))|p^𝑑E(s).\displaystyle\mathbb{E}_{W}\left|\int_{\tau_{n}}^{t}{f_{h}(\bar{\tau}(s),\bar{X}(s))dE(s)}\right|^{\hat{p}}\leq h^{\hat{p}-1}\mathbb{E}_{W}\int_{\tau_{n}}^{t}{\left|f_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)}. (15)

The second item Let x(t)=τntgh(τ¯(s),X¯(s))𝑑W(E(s))x(t)=\int_{\tau_{n}}^{t}{g_{h}(\bar{\tau}(s),\bar{X}(s))dW(E(s))}, so we have

𝔼W|x(t)|p^\displaystyle\mathbb{E}_{W}\left|x(t)\right|^{\hat{p}}
=\displaystyle= p^2𝔼Wτnt(|x(s)|p^2|gh(τ¯(s),X¯(s))|2+(p^2)|x(s)|p^4|xT(s)g(s)|2)𝑑E(s)\displaystyle\dfrac{\hat{p}}{2}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left(\left|x(s)\right|^{\hat{p}-2}\big{|}{g_{h}(\bar{\tau}(s),\bar{X}(s))\big{|}^{2}+({\hat{p}-2})\left|x(s)\right|^{\hat{p}-4}}\big{|}x^{T}(s)g(s)\big{|}^{2}\right)dE(s)
\displaystyle\leq p^(p^1)2𝔼Wτnt|x(s)|p^2|gh(τ¯(s),X¯(s))|2𝑑E(s)\displaystyle\frac{\hat{p}(\hat{p}-1)}{2}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|x(s)\right|^{\hat{p}-2}\left|g_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{2}dE(s)
\displaystyle\leq p^(p^1)2(𝔼Wτnt|x(s)|p^𝑑E(s))p^2p^(𝔼Wτnt|gh(ρ¯(s),X¯(s))|p^𝑑E(s))2p^\displaystyle\frac{\hat{p}(\hat{p}-1)}{2}\left(\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|x(s)\right|^{\hat{p}}dE(s)\right)^{\frac{\hat{p}-2}{\hat{p}}}\left(\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\rho}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)\right)^{\frac{2}{\hat{p}}}
=\displaystyle= p^(p^1)2(τnt𝔼W|x(s)|p^𝑑E(s))p^2p^(𝔼Wτnt|gh(ρ¯(s),X¯(s))|p^𝑑E(s))2p^.\displaystyle\frac{\hat{p}(\hat{p}-1)}{2}\left(\int_{\tau_{n}}^{t}\mathbb{E}_{W}\left|x(s)\right|^{\hat{p}}dE(s)\right)^{\frac{\hat{p}-2}{\hat{p}}}\left(\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\rho}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)\right)^{\frac{2}{\hat{p}}}.

Note that 𝔼W|x(t)|p^\mathbb{E}_{W}\left|x(t)\right|^{\hat{p}} is nondecreasing in tt, it then follows

𝔼W|x(t)|p^p^(p^1)2[ch𝔼W|x(t)|p^]p^2p^(𝔼Wτnt|gh(τ¯(s),X¯(s))|p^𝑑E(s))2p^.\displaystyle\begin{split}\mathbb{E}_{W}\left|x(t)\right|^{\hat{p}}&\leq\frac{\hat{p}(\hat{p}-1)}{2}\left[ch\mathbb{E}_{W}\left|x(t)\right|^{\hat{p}}\right]^{\frac{\hat{p}-2}{\hat{p}}}\left(\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)\right)^{\frac{2}{\hat{p}}}.\end{split}

It is obtained by further shifting and simplification,

𝔼W|x(t)|p^(p^(p^1)2)p^2chp^22𝔼Wτnt|gh(τ¯(s),X¯(s))|p^𝑑E(s).\displaystyle\begin{split}\mathbb{E}_{W}\left|x(t)\right|^{\hat{p}}\leq\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s).\\ \end{split}

So we can have

𝔼W|τntgh(τ¯(s),X¯(s))𝑑W(E(s))|p^\displaystyle\mathbb{E}_{W}\left|\int_{\tau_{n}}^{t}{g_{h}(\bar{\tau}(s),\bar{X}(s))dW(E(s))}\right|^{\hat{p}}
\displaystyle\leq (p^(p^1)2)p^2chp^22𝔼Wτnt|gh(τ¯(s),X¯(s))|p^𝑑E(s).\displaystyle\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s). (16)

The third item in the above brackets, using the same way as the second item, we can see

𝔼W|τntLgh(τ¯(s),X¯(s))ΔW(E(s))𝑑W(Eh(s))|p^\displaystyle\mathbb{E}_{W}\left|\int_{\tau_{n}}^{t}{Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E(s))dW(E_{h}(s))}\right|^{\hat{p}}
(p^(p^1)2)p^2chp^22𝔼Wτnt|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|p^𝑑E(s).\displaystyle\leq\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\right|^{\hat{p}}dE(s). (17)

Substituting the estimates (15) ,(3) and (3) into (3), we use the (6) and lemma 3 and (4), we have

𝔼W|X(t)X¯(t)|p^\displaystyle\mathbb{E}_{W}|X(t)-\bar{X}(t)|^{\hat{p}} 3p^1(hp^1𝔼Wτnt|fh(τ¯(s),X¯(s))|p^dE(s)\displaystyle\leq 3^{\hat{p}-1}\bigg{(}h^{\hat{p}-1}\mathbb{E}_{W}\int_{\tau_{n}}^{t}{\left|f_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)}
+(p^(p^1)2)p^2chp^22𝔼Wτnt|gh(τ¯(s),X¯(s))|p^𝑑E(s)\displaystyle+\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\left|g_{h}(\bar{\tau}(s),\bar{X}(s))\right|^{\hat{p}}dE(s)
+(p^(p^1)2)p^2chp^22𝔼Wτnt|Lgh(τ¯(s),X¯(s))\displaystyle+\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}\mathbb{E}_{W}\int_{\tau_{n}}^{t}\bigg{|}Lg_{h}(\bar{\tau}(s),\bar{X}(s))
×ΔW(Eh(s))|p^dE(s))\displaystyle\times\Delta W(E_{h}(s))\bigg{|}^{\hat{p}}dE(s)\bigg{)}
3p^1(hp^1ch(κ(h))p^+(p^(p^1)2)p^2chp^22h(κ(h))p^\displaystyle\leq 3^{\hat{p}-1}\bigg{(}h^{\hat{p}-1}ch(\kappa(h))^{\hat{p}}+\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}h(\kappa(h))^{\hat{p}}
+(p^(p^1)2)p^2chp^22hp^2h(κ(h))2p^)\displaystyle+\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}ch^{\frac{\hat{p}-2}{2}}h^{\frac{\hat{p}}{2}}h(\kappa(h))^{2\hat{p}}\bigg{)}
cp^(hp^1h(κ(h))p^+hp^/21h(κ(h))p^+hp^/2hp^/2(κ(h))2p^)\displaystyle\leq c_{\hat{p}}\left(h^{\hat{p}-1}h(\kappa(h))^{\hat{p}}+h^{\hat{p}/2-1}h(\kappa(h))^{\hat{p}}+h^{\hat{p}/2}h^{\hat{p}/2}(\kappa(h))^{2\hat{p}}\right)
cp^(hp^(κ(h))p^+hp^/2(κ(h))p^+hp^(κ(h))2p^)\displaystyle\leq c_{\hat{p}}\left(h^{\hat{p}}(\kappa(h))^{\hat{p}}+h^{\hat{p}/2}(\kappa(h))^{\hat{p}}+h^{\hat{p}}(\kappa(h))^{2\hat{p}}\right)
cp^hp^/2(κ(h))p^,\displaystyle\leq c_{\hat{p}}h^{\hat{p}/2}(\kappa(h))^{\hat{p}},

where cp^=c(p^(p^1)2)p^23p^1c_{\hat{p}}=c\left(\frac{\hat{p}(\hat{p}-1)}{2}\right)^{\frac{\hat{p}}{2}}3^{\hat{p}-1}, this completes the proof of (12). Noting from (3), we have hp^/2(κ(h))p^hp^/4h^{\hat{p}/2}(\kappa(h))^{\hat{p}}\leq h^{\hat{p}/4}. Then, (13) can be derived from (12).  

Now, we prove the boundedness of the pth moment the numerical solution.

Lemma 6.

Let Assumptions 1 and 3 hold. Then

sup0<h1𝔼[sup0tT|X(t)|p]C,T>0,\displaystyle\sup_{0<h\leq 1}\mathbb{E}[\sup_{0\leq t\leq T}|X(t)|^{p}]\leq C,\quad\forall T>0, (18)

where C=(2|X(0)|p+4cp12k^E(t)+2(5p2p)ck^E(t))e3(2pK^12(p2)2(5p2p))E(T)C=\bigg{(}2|X(0)|^{p}+4c_{p}^{\frac{1}{2}}\hat{k}E(t)+2(5p^{2}-p)c\hat{k}E(t)\bigg{)}e^{3(2p\hat{K}_{1}\vee 2(p-2)\vee 2(5p^{2}-p))E(T)} is a constant dependent on X(0)X(0), pp, TT,cpc_{p},k^\hat{k} and K^1\hat{K}_{1}, but independent from hh.

Proof. Define the stopping time ζ:=inf{t0;|X(t)|>}\zeta_{\ell}:=\inf\{t\geq 0;|X(t)|>\ell\} for some positive integer \ell. It can be seen that

0t𝔼W(sup0stζ|X(s)|p)𝑑E(r)pE(t).\displaystyle\int_{0}^{t}{\mathbb{E}_{W}\left(\sup_{0\leq s\leq t\wedge\zeta_{\ell}}|X(s)|^{p}\right)dE(r)}\leq\ell^{p}E(t).

Fix any h(0,1]h\in(0,1] and T0T\geq 0. By the Itô formula, we derive from (2) that, for 0utζ0\leq u\leq t\wedge\zeta_{\ell},

|X(u)|p=|X(0)|p+Au+Mu,\displaystyle|X(u)|^{p}=|X(0)|^{p}+A_{u}+M_{u}, (19)

where

Au:=\displaystyle A_{u}:= 0u(p|X(s)|p2XT(s)fh(τ¯(s),X¯(s))+12p(p1)|X(s)|p2|gh(τ¯(s),X¯(s))\displaystyle\int_{0}^{u}\bigg{(}p|X(s)|^{p-2}X^{\mathrm{T}}(s)f_{h}(\bar{\tau}(s),\bar{X}(s))+\frac{1}{2}p(p-1)|X(s)|^{p-2}|g_{h}(\bar{\tau}(s),\bar{X}(s))
+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2)dE(s),\displaystyle+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}\bigg{)}dE(s),
Mu:=0up|X(s)|p1|gh(τ¯(s),X¯(s))+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|𝑑W(E(s)).\displaystyle M_{u}:=\int_{0}^{u}{p|X(s)|^{p-1}|g_{h}(\bar{\tau}(s),\bar{X}(s))+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|dW(E(s))}.

It can be noted that the stochastic integral (Mu)u0(M_{u})_{u\geq 0} is a local martingale with quadratic variation

[M,M]u=0up2|X(s)|2p2|gh(τ¯(s),X¯(s))+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s),\displaystyle[M,M]_{u}=\int_{0}^{u}{p^{2}|X(s)|^{2p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)},

For 0stζ0\leq s\leq t\wedge\zeta_{\ell},

p2|X(s)|2p2|gh(τ¯(s),X¯(s))+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2\displaystyle p^{2}|X(s)|^{2p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}
p2|X(s)|p|X(s)|p2|gh(τ¯(s),X¯(s))+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2\displaystyle\leq p^{2}|X(s)|^{p}|X(s)|^{p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}
p2(sup0utζ|X(u)|p)|X(s)|p2|gh(τ¯(s),X¯(s))+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2.\displaystyle\leq p^{2}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\right)\big{|}X(s)|^{p-2}|g_{h}(\bar{\tau}(s),\bar{X}(s))+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}.

By using the inequality (ab)1/2a/ł+łb(ab)^{1/2}\leq a/\l+\l b valid for any a,b0a,b\geq 0 and ł>0\l>0, we can see that for 0utζ0\leq u\leq t\wedge\zeta_{\ell},

([M,M]u)1/2\displaystyle([M,M]_{u})^{1/2}
\displaystyle\leq p(sup0utζ|X(u)|p0u|X(s)|p2|gh(τ¯(s),X¯(s))\displaystyle p\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\int_{0}^{u}|X(s)|^{p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))
+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s))1/2\displaystyle+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)\bigg{)}^{1/2}
\displaystyle\leq p(sup0utζ|X(u)|p2p+2p0u|X(s)|p2|gh(τ¯(s),X¯(s))\displaystyle p\bigg{(}\frac{\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}}{2p}+2p\int_{0}^{u}|X(s)|^{p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))
+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s)).\displaystyle+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)\bigg{)}.

We have expectations for AuA_{u} and MuM_{u}, respectively

𝔼W(Au)=\displaystyle\mathbb{E}_{W}(A_{u})= 𝔼W(sup0utζ0u(p|X(s)|p2XT(s)fh(τ¯(s),X¯(s))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}\bigg{(}p|X(s)|^{p-2}X^{\mathrm{T}}(s)f_{h}(\bar{\tau}(s),\bar{X}(s))
+12p(p1)|X(s)|p2|gh(τ¯(s),X¯(s))\displaystyle+\frac{1}{2}p(p-1)|X(s)|^{p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))
+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2)dE(s)),\displaystyle+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}\bigg{)}dE(s)\bigg{)}, (20)
𝔼W(Mu)=\displaystyle\mathbb{E}_{W}(M_{u})= 𝔼W(12sup0utζ|X(u)|p+sup0utζ0u2p2|X(s)|p2|gh(τ¯(s),X¯(s))\displaystyle\mathbb{E}_{W}\bigg{(}\frac{1}{2}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}+\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}2p^{2}|X(s)|^{p-2}\big{|}g_{h}(\bar{\tau}(s),\bar{X}(s))
+Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s)).\displaystyle+Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)\bigg{)}. (21)

Take the expectation for (3.12), then substitute (3.13) and (3.14), and use the basic inequality (a+b)22(a2+b2)(a+b)^{2}\leq 2(a^{2}+b^{2}), we can have

𝔼W(sup0utζ|X(u)|p)\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\bigg{)}
=\displaystyle= |X(0)|p+𝔼W(Au)+𝔼W(Mu)\displaystyle|X(0)|^{p}+\mathbb{E}_{W}(A_{u})+\mathbb{E}_{W}(M_{u})
\displaystyle\leq |X(0)|p+12𝔼W(sup0utζ|X(u)|p)\displaystyle|X(0)|^{p}+\frac{1}{2}\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\bigg{)}
+𝔼W(sup0utζ0up|X(s)|p2(XT(s)fh(τ¯(s),X¯(s))\displaystyle+\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}p|X(s)|^{p-2}\bigg{(}X^{\mathrm{T}}(s)f_{h}(\bar{\tau}(s),\bar{X}(s))
+(5p1)|gh(τ¯(s),X¯(s))|2)dE(s))+(p(p1)+4p2)\displaystyle+(5p-1)|g_{h}(\bar{\tau}(s),\bar{X}(s))|^{2}\bigg{)}dE(s)\bigg{)}+\big{(}p(p-1)+4p^{2}\big{)}
×𝔼W(sup0utζ0u|X(s)|p2|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s))\displaystyle\times\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}|X(s)|^{p-2}|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}dE(s)\bigg{)}
\displaystyle\leq |X(0)|p+12𝔼W(sup0utζ|X(u)|p)\displaystyle|X(0)|^{p}+\frac{1}{2}\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\bigg{)}
+𝔼W(sup0utζ0up|X(s)|p2(X¯T(s)fh(τ¯(s),X¯(s))\displaystyle+\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}p|X(s)|^{p-2}\bigg{(}\bar{X}^{\mathrm{T}}(s)f_{h}(\bar{\tau}(s),\bar{X}(s))
+(5p1)|gh(τ¯(s),X¯(s))|2)dE(s))\displaystyle+(5p-1)|g_{h}(\bar{\tau}(s),\bar{X}(s))|^{2}\bigg{)}dE(s)\bigg{)}
+𝔼W(sup0utζ0up|X(s)|p2(X(s)X¯(s))Tfh(τ¯(s),X¯(s))𝑑E(s))\displaystyle+\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}p|X(s)|^{p-2}(X(s)-\bar{X}(s))^{\mathrm{T}}f_{h}(\bar{\tau}(s),\bar{X}(s))dE(s)\bigg{)}
+(5p2p)𝔼W(sup0utζ0u|X(s)|p2|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s)).\displaystyle+(5p^{2}-p)\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}|X(s)|^{p-2}|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}dE(s)\bigg{)}.

Therefore, for any 0utζ0\leq u\leq t\wedge\zeta_{\ell}, by Lemma 2 and the Young inequality

ap2bp2pap+2pbp/2,a,b0.\displaystyle a^{p-2}b\leq\frac{p-2}{p}a^{p}+\frac{2}{p}b^{p/2},\quad\forall a,b\geq 0.

we can get from (3.15)

𝔼W(sup0utζ|X(u)|p)\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\bigg{)}
\displaystyle\leq |X(0)|p+12𝔼W(sup0utζ|X(u)|p)\displaystyle|X(0)|^{p}+\frac{1}{2}\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\bigg{)}
+pK^1𝔼W(sup0utζ0u|X(s)|p2(1+|X¯(s)|2)𝑑E(s))\displaystyle+p\hat{K}_{1}\mathbb{E}_{W}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}{|X(s)|^{p-2}(1+|\bar{X}(s)|^{2})dE(s)}\right)
+𝔼Wsup0utζ((p2)0u|X(s)|pdE(s)\displaystyle+\mathbb{E}_{W}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\bigg{(}(p-2)\int_{0}^{u}{|X(s)|^{p}dE(s)}
+20u|X(s)X¯(s)|p/2|fh(τ¯(s),X¯(s))|p/2dE(s))\displaystyle+2\int_{0}^{u}{|X(s)-\bar{X}(s)|^{p/2}|f_{h}(\bar{\tau}(s),\bar{X}(s))|^{p/2}dE(s)}\bigg{)}
+(5p2p)𝔼W(sup0utζ0u|X(s)|p2|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s)).\displaystyle+(5p^{2}-p)\mathbb{E}_{W}\bigg{(}\sup_{0\leq u\leq t\wedge\zeta_{\ell}}\int_{0}^{u}{|X(s)|^{p-2}|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}dE(s)}\bigg{)}.

Thus, for any 0utζ0\leq u\leq t\wedge\zeta_{\ell} and apply basic inequality, we have

𝔼W(sup0utζ|X(t)|p)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(t)|^{p}\right) 2|X(0)|p+2pK^1𝔼W0t|X(tζ)|p2\displaystyle\leq 2|X(0)|^{p}+2p\hat{K}_{1}\mathbb{E}_{W}\int_{0}^{t}|X(t\wedge\zeta_{\ell})|^{p-2}
×(1+|X¯(s)|2)dE(s)\displaystyle\times(1+|\bar{X}(s)|^{2})dE(s)
+2(p2)0t𝔼W|X(tζ)|p𝑑E(s)+I1+I2,\displaystyle+2(p-2)\int_{0}^{t}\mathbb{E}_{W}|X(t\wedge\zeta_{\ell})|^{p}dE(s)+I_{1}+I_{2}, (23)

where

I1=4𝔼W0t|X(s)X¯(s)|p/2|fh(τ¯(s),X¯(s))|p/2𝑑E(s),\displaystyle I_{1}=4\mathbb{E}_{W}\int_{0}^{t}{|X(s)-\bar{X}(s)|^{p/2}|f_{h}(\bar{\tau}(s),\bar{X}(s))|^{p/2}dE(s)},
I2=2(5p2p)𝔼W(0t|X(tζ)|p2|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s)).\displaystyle I_{2}=2(5p^{2}-p)\mathbb{E}_{W}\left(\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p-2}|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}dE(s)}\right).

Now we deal with the I1I_{1} item above, by Lemma 5, inequalities (3) and (4), we have

I1=\displaystyle I_{1}= 4𝔼W0t|X(s)X¯(s)|p/2|fh(τ¯(s),X¯(s))|p/2𝑑E(s)\displaystyle 4\mathbb{E}_{W}\int_{0}^{t}{|X(s)-\bar{X}(s)|^{p/2}|f_{h}(\bar{\tau}(s),\bar{X}(s))|^{p/2}dE(s)}
\displaystyle\leq 4(κ(h))p/20t𝔼W|X(s)X¯(s)|p/2𝑑E(s)\displaystyle 4\left(\kappa(h)\right)^{p/2}\int_{0}^{t}{\mathbb{E}_{W}|X(s)-\bar{X}(s)|^{p/2}dE(s)}
\displaystyle\leq 4(κ(h))p/20t(𝔼W|X(s)X¯(s)|p)1/2𝑑E(s)\displaystyle 4\left(\kappa(h)\right)^{p/2}\int_{0}^{t}{\big{(}\mathbb{E}_{W}|X(s)-\bar{X}(s)|^{p}\big{)}^{1/2}dE(s)}
\displaystyle\leq 4cp12(κ(h))php/4E(t)\displaystyle 4c_{p}^{\frac{1}{2}}\left(\kappa(h)\right)^{p}h^{p/4}E(t)
\displaystyle\leq 4cp12k^E(t).\displaystyle 4c_{p}^{\frac{1}{2}}\hat{k}E(t).

We deal with the I2I_{2} item above, by inequalities (4),(3) and lemma 3, we have

I2\displaystyle I_{2} =2(5p2p)𝔼W(0t|X(tζ)|p2|Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2𝑑E(s))\displaystyle=2(5p^{2}-p)\mathbb{E}_{W}\left(\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p-2}|Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))|^{2}dE(s)}\right)
2(5p2p)𝔼W(0t|X(tζ)|p2ch|κ(h)|4𝑑E(s))\displaystyle\leq 2(5p^{2}-p)\mathbb{E}_{W}\left(\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p-2}ch|\kappa(h)|^{4}dE(s)}\right)
2(5p2p)(𝔼W0tp2p|X(tζ)|p𝑑E(s)+𝔼W0u2p|κ(h)|2pchp2𝑑E(s))\displaystyle\leq 2(5p^{2}-p)\left(\mathbb{E}_{W}\int_{0}^{t}{\frac{p-2}{p}|X(t\wedge\zeta_{\ell})|^{p}dE(s)}+\mathbb{E}_{W}\int_{0}^{u}{\frac{2}{p}|\kappa(h)|^{2p}ch^{\frac{p}{2}}dE(s)}\right)
2(5p2p)(𝔼W0t|X(tζ)|p𝑑E(s))+2(5p2p)|κ(h)|2pchp2E(t)\displaystyle\leq 2(5p^{2}-p)\left(\mathbb{E}_{W}\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p}dE(s)}\right)+2(5p^{2}-p)|\kappa(h)|^{2p}ch^{\frac{p}{2}}E(t)
2(5p2p)(𝔼W0t|X(tζ)|p𝑑E(s))+2(5p2p)ck^E(t).\displaystyle\leq 2(5p^{2}-p)\left(\mathbb{E}_{W}\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p}dE(s)}\right)+2(5p^{2}-p)c\hat{k}E(t).

We can obtain by substituing I1I_{1} and I2I_{2} into the (3)

𝔼W(sup0utζ|X(u)|p)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\right) 2|X(0)|p+2pK^1𝔼W0t|X(tζ)|p2(1+|X¯(s)|2)𝑑E(s)\displaystyle\leq 2|X(0)|^{p}+2p\hat{K}_{1}\mathbb{E}_{W}\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p-2}(1+|\bar{X}(s)|^{2})dE(s)}
+2(p2)0t𝔼W|X(tζ)|p𝑑E(s)+4cp12k^E(t)\displaystyle\quad+2(p-2)\int_{0}^{t}{\mathbb{E}_{W}|X(t\wedge\zeta_{\ell})|^{p}dE(s)}+4c_{p}^{\frac{1}{2}}\hat{k}E(t)
+2(5p2p)(𝔼W0t|X(tζ)|p𝑑E(s))+2(5p21)ck^E(t)\displaystyle\quad+2(5p^{2}-p)\left(\mathbb{E}_{W}\int_{0}^{t}{|X(t\wedge\zeta_{\ell})|^{p}dE(s)}\right)+2(5p^{2}-1)c\hat{k}E(t)
C1+3C20t𝔼W(sup0utζ|X(u)|p)𝑑E(s),\displaystyle\leq C_{1}+3C_{2}\int_{0}^{t}{\mathbb{E}_{W}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\right)dE(s)},

where C1=2|X(0)|p+4cp12k^E(t)+2(5p2p)ck^E(t)C_{1}=2|X(0)|^{p}+4c_{p}^{\frac{1}{2}}\hat{k}E(t)+2(5p^{2}-p)c\hat{k}E(t) and C2=2pK^12(p2)2(5p2p)C_{2}=2p\hat{K}_{1}\vee 2(p-2)\vee 2(5p^{2}-p), applying the well-known Gronwall-type inequality, for any t[0,T]t\in[0,T],

𝔼W(sup0utζ|X(u)|p)C1e(3C2)E(t).\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq u\leq t\wedge\zeta_{\ell}}|X(u)|^{p}\right)\leq C_{1}e^{(3C_{2})E(t)}.

Since ζ\zeta_{\ell}\rightarrow\infty as \ell\rightarrow\infty. Setting t=Tt=T and letting \ell\rightarrow\infty give

𝔼W(sup0tT|X(t)|p)C1e(3C2)E(T).\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|X(t)|^{p}\right)\leq C_{1}e^{(3C_{2})E(T)}.

Taking 𝔼D\mathbb{E}_{D} on both sides, and using the fact that 𝔼D(E(T)eE(T))<𝔼D(e2E(T))<𝔼D(e3E(T))<\mathbb{E}_{D}\left(E(T)e^{E(T)}\right)<\mathbb{E}_{D}\left(e^{2E(T)}\right)<\mathbb{E}_{D}\left(e^{3E(T)}\right)<\infty yield,

𝔼(sup0tT|X(t)|p)C,\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|X(t)|^{p}\right)\leq C,

where C=(2|X(0)|p+4cp12k^E(t)+2(5p2p)ck^E(t))e3(2pK^12(p2)2(5p2p))E(T)C=\bigg{(}2|X(0)|^{p}+4c_{p}^{\frac{1}{2}}\hat{k}E(t)+2(5p^{2}-p)c\hat{k}E(t)\bigg{)}e^{3(2p\hat{K}_{1}\vee 2(p-2)\vee 2(5p^{2}-p))E(T)}, as this holds for any h(0,1]h\in(0,1] and CC is independent of hh, we see the required assertion (18).  

Lemma 7.

Let Assumptions 1,3,5 and 4 hold, and assume that q2(α+1)pq\geq 2(\alpha+1)p for a constant p>2p>2, then for any p¯[2,p)\bar{p}\in[2,p) and h(0,1]h\in(0,1],

sup0<h1sup0tT[𝔼|f(t,x)|x=X(t)|p¯𝔼|g(t,x)|x=X(t)|p¯]<,\displaystyle\sup_{0<h\leq 1}\sup_{0\leq t\leq T}\left[\mathbb{E}|f^{{}^{\prime}}(t,x)|_{x=X(t)}|^{\bar{p}}\vee\mathbb{E}|g^{{}^{\prime}}(t,x)|_{x=X(t)}|^{\bar{p}}\right]<\infty,

where ff^{{}^{\prime}} and gg^{{}^{\prime}} denote the first partial derivatives of ff and gg with respect to the state variable xx,respectively.

We can derive it from Assumption 4 and lemma 7.

Lemma 8.

Let Assumptions 1,2,3, 5 and 4 hold, and assume that q2(α+1)pq\geq 2(\alpha+1)p for a constant p>2p>2, then for any p¯[2,p)\bar{p}\in[2,p) and h(0,1]h\in(0,1], t[0,T]t\in[0,T],

𝔼|R~f(t,X(t),X¯(t))|p¯𝔼|R~g(t,X(t),X¯(t))|p¯𝔼|R~gh(t,X(t),X¯(t))|p¯<Chp¯(κ(h))2p¯,\displaystyle\mathbb{E}|\tilde{R}_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}\vee\mathbb{E}|\tilde{R}_{g}(t,X(t),\bar{X}(t))|^{\bar{p}}\vee\mathbb{E}|\tilde{R}_{g_{h}}(t,X(t),\bar{X}(t))|^{\bar{p}}<Ch^{\bar{p}}(\kappa(h))^{2\bar{p}},

where CC is a positive constant independent of hh and tt.

Proof. First, for all 0tT0\leq t\leq T, we give an estimate on|Rf(t,X(t),X¯(t))|p¯|R_{f}(t,X(t),\bar{X}(t))|^{\bar{p}} by Assusmption 4, lemma 5 and lemma 6, there exists a constant C such that, we apply Hölder inequality and Jesen’s inequality.

𝔼W|Rf(t,X(t),X¯(t))|p¯\displaystyle\mathbb{E}_{W}|R_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}
\displaystyle\leq 01(1θ)p¯𝔼W|f′′(τ¯(t),x)|x=X¯(t)+θ(X(t)X¯(t))\displaystyle\int^{1}_{0}(1-\theta)^{\bar{p}}\mathbb{E}_{W}\big{|}f^{{}^{\prime\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)+\theta(X(t)-\bar{X}(t))}
×(X(t)X¯(t),X(t)X¯(t))|p¯dθ\displaystyle\times\big{(}X(t)-\bar{X}(t),X(t)-\bar{X}(t)\big{)}\big{|}^{\bar{p}}d\theta
\displaystyle\leq 01[𝔼W|f′′(τ¯(t),x)|x=X¯(t)+θ(X(t)X¯(t))|2p¯𝔼W|X(t)X¯(t)|4p¯]12dθ\displaystyle\int^{1}_{0}\big{[}\mathbb{E}_{W}\big{|}f^{{}^{\prime\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)+\theta(X(t)-\bar{X}(t))}\big{|}^{2\bar{p}}\mathbb{E}_{W}|X(t)-\bar{X}(t)|^{4\bar{p}}\big{]}^{\frac{1}{2}}d\theta
\displaystyle\leq C(1+𝔼W|X(t)|2(1+α)p¯+𝔼W|X¯(t)|2(1+α)p¯)12(𝔼W|X(t)X¯(t)|4p¯)12\displaystyle C\big{(}1+\mathbb{E}_{W}|X(t)|^{2(1+\alpha)\bar{p}}+\mathbb{E}_{W}|\bar{X}(t)|^{2(1+\alpha)\bar{p}}\big{)}^{\frac{1}{2}}\big{(}\mathbb{E}_{W}|X(t)-\bar{X}(t)|^{4\bar{p}}\big{)}^{\frac{1}{2}}
\displaystyle\leq Chp¯k(h)2p¯.\displaystyle Ch^{\bar{p}}k(h)^{2\bar{p}}. (24)

Then we can observe from (2.11), and the Hölder inequality that.

𝔼W|R~f(t,X(t),X¯(t))|p¯\displaystyle\mathbb{E}_{W}|\tilde{R}_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}
\displaystyle\leq C[hp¯𝔼W|f(τ¯(t),x)|x=X¯(t)fh(τ¯(t),X¯(t))|p¯\displaystyle C\big{[}h^{\bar{p}}\mathbb{E}_{W}\big{|}f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}f_{h}(\bar{\tau}(t),\bar{X}(t))\big{|}^{\bar{p}}
+12𝔼W|f(τ¯(t),x)|x=X¯(t)Lgh(τ¯(t),X¯(t))(ΔW(Eh(t))2h)|p¯\displaystyle+\dfrac{1}{2}\mathbb{E}_{W}\big{|}f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}Lg_{h}(\bar{\tau}(t),\bar{X}(t))(\Delta W(E_{h}(t))^{2}-h)\big{|}^{\bar{p}}
+𝔼W|Rf(t,X(t),X¯(t))|p¯]\displaystyle+\mathbb{E}_{W}|R_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}\big{]}
\displaystyle\leq C[hp¯𝔼W|f(τ¯(t),x)|x=X¯(t)fh(τ¯(t),X¯(t))|p¯\displaystyle C\big{[}h^{\bar{p}}\mathbb{E}_{W}|f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}f_{h}(\bar{\tau}(t),\bar{X}(t))|^{\bar{p}}
+12(𝔼W|f(τ¯(t),x)|x=X¯(t)Lgh(τ¯(t),X¯(t))|2p¯𝔼W|ΔW(E(t))2h|2p¯)12\displaystyle+\dfrac{1}{2}\big{(}\mathbb{E}_{W}|f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}Lg_{h}(\bar{\tau}(t),\bar{X}(t))|^{2\bar{p}}\mathbb{E}_{W}|\Delta W(E(t))^{2}-h|^{2\bar{p}}\big{)}^{\frac{1}{2}}
+𝔼W|Rf(t,X(t),X¯(t))|p¯].\displaystyle+\mathbb{E}_{W}|R_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}\big{]}. (25)

We can derive from the elementary inequality |i=1mai|mp1i=1m|ai|p|\sum_{i=1}^{m}a_{i}|\leq m^{p-1}\sum_{i=1}^{m}|a_{i}|^{p} and Lemma 3 that

𝔼W|ΔW(E(t))2h|2p¯\displaystyle\mathbb{E}_{W}|\Delta W(E(t))^{2}-h|^{2\bar{p}}\leq 22p¯1(𝔼W|ΔW(E(t))|4p¯+h2p¯)\displaystyle 2^{2\bar{p}-1}(\mathbb{E}_{W}|\Delta W(E(t))|^{4\bar{p}}+h^{2\bar{p}})
\displaystyle\leq 22p¯1(Δ(E(t))2p¯+h2p¯)\displaystyle 2^{2\bar{p}-1}(\Delta(E(t))^{2\bar{p}}+h^{2\bar{p}})
\displaystyle\leq 22p¯1(2h2p¯)\displaystyle 2^{2\bar{p}-1}(2h^{2\bar{p}})
\displaystyle\leq 22p¯ch2p¯.\displaystyle 2^{2\bar{p}}ch^{2\bar{p}}. (26)

By using (4) and lemma 7, we can see that for 0tT0\leq t\leq T,

𝔼W|f(τ¯(t),x)|x=X¯(t)fh(τ¯(t),X¯(t))|p¯C(k(h))p¯,\displaystyle\mathbb{E}_{W}\big{|}f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}f_{h}(\bar{\tau}(t),\bar{X}(t))\big{|}^{\bar{p}}\leq C(k(h))^{\bar{p}}, (27)
𝔼W|f(τ¯(t),x)|x=X¯(t)Lgh(τ¯(t),X¯(t))|2p¯C(k(h))4p¯.\displaystyle\mathbb{E}_{W}\big{|}f^{{}^{\prime}}(\bar{\tau}(t),x)|_{x=\bar{X}(t)}Lg_{h}(\bar{\tau}(t),\bar{X}(t))\big{|}^{2\bar{p}}\leq C(k(h))^{4\bar{p}}. (28)

Subsittuting (3.17),(3.19),(3.20) and (3.21) into (3.18) and using the independence between X¯(t)\bar{X}(t)and ΔW(t)\Delta W(t), we have

𝔼W|R~f(t,X(t),X¯(t))|p¯Chp¯(k(h))2p¯.\displaystyle\mathbb{E}_{W}|\tilde{R}_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}\leq Ch^{\bar{p}}(k(h))^{2\bar{p}}.

Taking 𝔼D\mathbb{E}_{D} on the both sides, we have

𝔼|R~f(t,X(t),X¯(t))|p¯Chp¯(k(h))2p¯.\displaystyle\mathbb{E}|\tilde{R}_{f}(t,X(t),\bar{X}(t))|^{\bar{p}}\leq Ch^{\bar{p}}(k(h))^{2\bar{p}}.

Similarly, we can show

𝔼|R~g(t,X(t),X¯(t))|p¯𝔼|R~gh(t,X(t),X¯(t))|p¯Chp¯(k(h))2p¯.\displaystyle\begin{split}\mathbb{E}|\tilde{R}_{g}(t,X(t),\bar{X}(t))|^{\bar{p}}\vee\mathbb{E}|\tilde{R}_{g_{h}}(t,X(t),\bar{X}(t))|^{\bar{p}}\leq Ch^{\bar{p}}(k(h))^{2\bar{p}}.\end{split}

The proof is complete.  

4 Main results

Theorem 1.

Let Assumptions 1, 2 and 5 hold, and let Assumption 3 hold for any q>2q>2, then for any p¯[2,p)\bar{p}\in[2,p) and ε(0,14]\varepsilon\in(0,\frac{1}{4}], there exists a constant C such that for any h(0,1]h\in(0,1] and ł>0\l>0,

𝔼(sup0tT|Y(t)X(t)|p¯)hmin{γfp¯,γgp¯,(12ε)p¯}\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|Y(t)-X(t)|^{\bar{p}}\right)\leq h^{\min\{\gamma_{f}\bar{p},\gamma_{g}\bar{p},(1-2\varepsilon)\bar{p}\}} (29)

and

𝔼(sup0tT|Y(t)X¯(t)|p¯)Chmin{γfp¯,γgp¯,(12ε)p¯}.\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|Y(t)-\bar{X}(t)|^{\bar{p}}\right)\leq Ch^{\min\{\gamma_{f}\bar{p},\gamma_{g}\bar{p},(1-2\varepsilon)\bar{p}\}}. (30)

Proof. Fix p¯[2,p)\bar{p}\in[2,p) and h(0,1]h\in(0,1] arbitrarily. Let e(t)=Y(t)X(t)e(t)=Y(t)-X(t) for t0t\geq 0. For each integer >|Y(0)|\ell>|Y(0)|, define the stopping time

θ=inf{t0:|Y(t)||X(t)|},\displaystyle\theta_{\ell}=\inf\{t\geq 0:|Y(t)|\vee|X(t)|\geq\ell\}, (31)

where we set inf=\inf\emptyset=\infty (as usual \emptyset denotes the empty set). By the Itô formula, we have that for any 0tT0\leq t\leq T,

|e(tθ)|p¯\displaystyle|e(t\wedge\theta_{\ell})|^{\bar{p}} =0tθ(p¯|e(s)|p¯1(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle=\int^{t\wedge\theta_{\ell}}_{0}\bigg{(}\bar{p}|e(s)|^{\bar{p}-1}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+p¯(p¯1)2|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))\displaystyle\quad+\frac{\bar{p}(\bar{p}-1)}{2}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))
Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2)dE(s)+Mtθ,\displaystyle\quad-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}\bigg{)}dE(s)+M_{t\wedge\theta_{\ell}}, (32)

where

Mtθ:=\displaystyle M_{t\wedge\theta_{\ell}}:= 0tθp¯|e(s)|p¯1|g(s,Y(s))gh(τ¯(s),X¯(s))\displaystyle\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-1}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))
Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|dW(E(s)).\displaystyle-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}dW(E(s)).

Note that the stochastic integral (Mt)t0(M_{t})_{t\geq 0} is a local martingale with quadratic variation

[M,M]tθ=\displaystyle[M,M]_{t\wedge\theta_{\ell}}= 0tθp¯2|e(s)|2p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))\displaystyle\int^{t\wedge\theta_{\ell}}_{0}\bar{p}^{2}|e(s)|^{2\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))
Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s).\displaystyle-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s).

For 0stθ0\leq s\leq t\wedge\theta_{\ell}, we have

p¯2|e(s)|2p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2=p¯2|e(s)|p¯|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2p¯2(sup0rtθ|e(r)|p¯)|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2.\displaystyle\begin{split}&\bar{p}^{2}|e(s)|^{2\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}\\ =&\bar{p}^{2}|e(s)|^{\bar{p}}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}\\ \leq&\bar{p}^{2}(\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}})|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))\\ &-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}.\end{split}

Hence, using the inequality (ab)1/2a/ł+łb(ab)^{1/2}\leq a/\l+\l b valid for any a,b>0a,b>0 and ł>0\l>0, with ł=2p¯\l=2\bar{p} we have

([M,M]tθ)1/2\displaystyle([M,M]_{t\wedge\theta_{\ell}})^{1/2}
\displaystyle\leq p¯(sup0rtθ|e(r)|p¯0tθ|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X¯(s))\displaystyle\bar{p}\bigg{(}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))
Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s))12\displaystyle-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)\bigg{)}^{\frac{1}{2}}
\displaystyle\leq p¯(sup0rtθ|e(r)|p¯2p¯+2p¯0tθ|e(s)|p¯2|g(s,Y(s))\displaystyle\bar{p}\bigg{(}\frac{\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}}{2\bar{p}}+2\bar{p}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))
gh(τ¯(s),X¯(s))Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2dE(s))\displaystyle-g_{h}(\bar{\tau}(s),\bar{X}(s))-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}dE(s)\bigg{)}
\displaystyle\leq 12sup0rtθ|e(r)|p¯+2p¯20tθ(|e(s)|p¯2|g(s,Y(s))\displaystyle\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+2\bar{p}^{2}\int^{t\wedge\theta_{\ell}}_{0}\bigg{(}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))
gh(τ¯(s),X(s))+R~gh(s,X(s),X¯(s))|2)dE(s),\displaystyle-g_{h}(\bar{\tau}(s),{X}(s))+\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))\big{|}^{2}\bigg{)}dE(s), (33)

where (2) is used to get the last inequality.

We have expectation from (4)

𝔼W(Mtθ)=\displaystyle\mathbb{E}_{W}(M_{t\wedge\theta_{\ell}})= 𝔼W([M,M]tθ)12\displaystyle\mathbb{E}_{W}([M,M]_{t\wedge\theta_{\ell}})^{\frac{1}{2}}
=\displaystyle= 𝔼W(12sup0rtθ|e(r)|p¯+2p¯20tθ|e(s)|p¯2|g(s,Y(s))\displaystyle\mathbb{E}_{W}\bigg{(}\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+2\bar{p}^{2}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))
gh(τ¯(s),X(s))+R~gh(s,X(s),X¯(s))|2dE(s)).\displaystyle-g_{h}(\bar{\tau}(s),{X}(s))+\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))\big{|}^{2}dE(s)\bigg{)}. (34)

Combing (4) and (4) then we have

𝔼W(sup0tT|e(tθ)|p¯)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|e(t\wedge\theta_{\ell})|^{\bar{p}}\right)
\displaystyle\leq 𝔼W(sup0tT0tθp¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+p¯12|g(s,Y(s))gh(τ¯(s),X¯(s))Lgh(τ¯(s),X¯(s))ΔW(Eh(s))|2)dE(s)\displaystyle+\frac{\bar{p}-1}{2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),\bar{X}(s))-Lg_{h}(\bar{\tau}(s),\bar{X}(s))\Delta W(E_{h}(s))\big{|}^{2}\bigg{)}dE(s)
+12sup0rtθ|e(r)|p¯+2p¯2sup0tT0tθ|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X(s))\displaystyle+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+2\bar{p}^{2}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))
+R~gh(s,X(s),X¯(s))|2dE(s))\displaystyle+\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))\big{|}^{2}dE(s)\bigg{)}
\displaystyle\leq 𝔼W(sup0tT0tθp¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+p¯12|g(s,Y(s))gh(τ¯(s),X(s))+R~gh(s,X(s),X¯(s))|2)dE(s)\displaystyle+\frac{\bar{p}-1}{2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))+\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))\big{|}^{2}\bigg{)}dE(s)
+12sup0rtθ|e(r)|p¯+2p¯2sup0tT0tθ|e(s)|p¯2|g(s,Y(s))gh(τ¯(s),X(s))\displaystyle+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+2\bar{p}^{2}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}\big{|}g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))
+R~gh(s,X(s),X¯(s))|2dE(s)).\displaystyle+\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))\big{|}^{2}dE(s)\bigg{)}.

Where the second term uses (2), then, by organizing the above equations, we obtained,

𝔼W(sup0tT|e(t)θ)|p¯)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|e(t)\wedge\theta_{\ell})|^{\bar{p}}\right)
\displaystyle\leq 𝔼W(sup0tT0tθp¯|e(s)|p¯2(|e(s|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+(p¯1)|g(s,Y(s))gh(τ¯(s),X(s))|2\displaystyle+(\bar{p}-1)|g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}
+(p¯1)|R~gh(s,X(s),X¯(s))|2)dE(s)+12sup0rtθ|e(r)|p¯\displaystyle+(\bar{p}-1)|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}\bigg{)}dE(s)+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}
+p¯|e(s)|p¯2sup0tT0tθ(4p¯|g(s,Y(s))gh(τ¯(s),X(s))|2\displaystyle+\bar{p}|e(s)|^{\bar{p}-2}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bigg{(}4\bar{p}|g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}
+4p¯|R~gh(s,X(s),X¯(s))|2)dE(s))\displaystyle+4\bar{p}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}\bigg{)}dE(s)\bigg{)}
\displaystyle\leq 𝔼W(sup0tT0tθp¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+(5p¯1)|g(s,Y(s))gh(τ¯(s),X(s))|2)dE(s)+12sup0rtθ|e(r)|p¯\displaystyle+(5\bar{p}-1)|g(s,Y(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}
+p¯(5p¯1)sup0tT0tθ|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s)).\displaystyle+\bar{p}(5\bar{p}-1)\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)\bigg{)}. (35)

For the last two items uses a basic inequality (a+b)22(a2+b2)(a+b)^{2}\leq 2(a^{2}+b^{2}) and then merge.

Next, Let’s organize the equation and use the Young inequality (a+b)2(1+ε)a2+(1+1/ε)b2(a+b)^{2}\leq(1+\varepsilon)a^{2}+(1+1/\varepsilon)b^{2} for any a,b0a,b\geq 0, ε>0\varepsilon>0, we choose ε=(5p5p¯)/(5p¯1)\varepsilon=(5p-5\bar{p})/(5\bar{p}-1) in the second term, we can get from (4)

𝔼W(sup0tT|e(tθ)|p¯)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|e(t\wedge\theta_{\ell})|^{\bar{p}}\right)
\displaystyle\leq 𝔼W(sup0tTtθ0p¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+(5p¯1)|g(s,Y(s))g(s,X(s))+g(s,X(s))\displaystyle+(5\bar{p}-1)\big{|}g(s,Y(s))-g(s,X(s))+g(s,X(s))
gh(τ¯(s),X(s))|2)dE(s)+12sup0rtθ|e(r)|p¯\displaystyle-g_{h}(\bar{\tau}(s),X(s))\big{|}^{2}\bigg{)}dE(s)+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}
+(5p¯2p¯)sup0tTtθ0|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s))\displaystyle+(5{\bar{p}}^{2}-\bar{p})\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)\bigg{)}
\displaystyle\leq 𝔼W(sup0tTtθ0p¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+(5p¯1)((1+5p5p¯5p¯1)|g(s,Y(s))g(s,X(s))|2\displaystyle+(5\bar{p}-1)\bigg{(}(1+\dfrac{5p-5\bar{p}}{5\bar{p}-1})|g(s,Y(s))-g(s,X(s))|^{2}
+(1+5p¯15p5p¯)|g(s,X(s))gh(τ¯(s),X(s))|2)dE(s)\displaystyle+(1+\dfrac{5\bar{p}-1}{5p-5\bar{p}})|g(s,X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)
+12sup0rtθ|e(r)|p¯+(5p¯2p¯)sup0tTtθ0|e(s)|p¯2\displaystyle+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+(5{\bar{p}}^{2}-\bar{p})\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}
×|R~gh(s,X(s),X¯(s))|2dE(s))\displaystyle\times|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)\bigg{)}
\displaystyle\leq 𝔼W(sup0tTtθ0p¯|e(s)|p¯2(|e(s)|T(f(s,Y(s))fh(τ¯(s),X¯(s)))\displaystyle\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}|e(s)|^{\mathrm{T}}\left(f(s,Y(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+(5p1)|g(s,Y(s))g(s,X(s))|2+5p15p5p¯|g(s,X(s))\displaystyle+(5p-1)|g(s,Y(s))-g(s,X(s))|^{2}+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))
gh(τ¯(s),X(s))|2)dE(s)+12sup0rtθ|e(r)|p¯\displaystyle-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)+\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}
+(5p¯2p¯)sup0tTtθ0|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s)).\displaystyle+(5{\bar{p}}^{2}-\bar{p})\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)\bigg{)}. (36)

Using the basic properties of inequalities, we get from(4) that

𝔼W(sup0tT|e(tθ)|p¯)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|e(t\wedge\theta_{\ell})|^{\bar{p}}\right)
\displaystyle\leq 12sup0rtθ|e(r)|p¯+𝔼Wsup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,Y(s))\displaystyle\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{\mathrm{T}}(s)\big{(}f(s,Y(s))
f(s,X(s)))+(5p1)|g(s,Y(s))g(s,X(s))|2)dE(s)\displaystyle-f(s,X(s))\big{)}+(5p-1)|g(s,Y(s))-g(s,X(s))|^{2}\bigg{)}dE(s)
+𝔼Wsup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,X(s))fh(τ¯(s),X(s)))\displaystyle+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{\mathrm{T}}(s)\big{(}f(s,X(s))-f_{h}(\bar{\tau}(s),X(s))\big{)}
+5p15p5p¯|g(s,X(s))gh(τ¯(s),X(s))|2)dE(s)\displaystyle+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)
+𝔼Wsup0tTtθ0(5p¯2p)|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s)\displaystyle+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}(5\bar{p}^{2}-p)|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)
\displaystyle\leq 12sup0rtθ|e(r)|p¯+[J1]+[J2]+[J3],\displaystyle\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+[J_{1}]+[J_{2}]+[J_{3}], (37)

where

J1\displaystyle J_{1} :=𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,Y(s))f(s,X(s)))\displaystyle:=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{\mathrm{T}}(s)\big{(}f(s,Y(s))-f(s,X(s))\big{)}
+(5p1)|g(s,Y(s))g(s,X(s))|2)dE(s)),\displaystyle\quad+(5p-1)|g(s,Y(s))-g(s,X(s))|^{2}\bigg{)}dE(s)\bigg{)},
J2\displaystyle J_{2} :=𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,X(s))fh(τ¯(s),X¯(s)))\displaystyle:=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{\mathrm{T}}(s)\left(f(s,X(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\right)
+5p15p5p¯|g(s,X(s))gh(τ¯(s),X(s))|2)dE(s)),\displaystyle\quad+\frac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)},
J3:=𝔼W(sup0tTtθ0(5p¯2p)|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s)).\displaystyle\begin{split}J_{3}&:=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}(5\bar{p}^{2}-p)|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)\bigg{)}.\end{split}

By Assumption 2, we have

J1H1T0𝔼W|e(s)|p¯dE(s),\displaystyle J_{1}\leq H_{1}\int^{T}_{0}\mathbb{E}_{W}|e(s)|^{\bar{p}}dE(s), (38)

where H1=p¯KH_{1}=\bar{p}K. Next, handling the J2J_{2}

J2\displaystyle J_{2} =𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,X(s))fh(τ¯(s),X¯(s)))\displaystyle=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(s,X(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\big{)}
+5p15p5p¯|g(s,X(s))gh(τ¯(s),X(s))|2)dE(s))\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}
𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,X(s))f(τ¯(s),X(s)))\displaystyle\leq\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(s,X(s))-f(\bar{\tau}(s),X(s))\big{)}
+5p15p5p¯|g(s,X(s))g(τ¯(s),X(s))|2)dE(s)\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)
+sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X(s))fh(τ¯(s),X¯(s)))\displaystyle\quad+\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),X(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\big{)}
+5p15p5p¯|g(τ¯(s),X(s))gh(τ¯(s),X(s))|2)dE(s))\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(\bar{\tau}(s),X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}
J21+J22,\displaystyle\leq J_{21}+J_{22}, (39)

where

J21\displaystyle J_{21} =𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(s,X(s))f(τ¯(s),X(s)))\displaystyle=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(s,X(s))-f(\bar{\tau}(s),X(s))\big{)}
+5p15p5p¯|g(s,X(s))g(τ¯(s),X(s))|2)dE(s)),\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)},
J22\displaystyle J_{22} =𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X(s))fh(τ¯(s),X¯(s)))\displaystyle=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),X(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\big{)}
+5p15p5p¯|g(τ¯(s),X(s))gh(τ¯(s),X(s))|2)dE(s)).\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(\bar{\tau}(s),X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}.

Using Assumption 5, basic inequality and the Young inequality, for any 0ttθT0\leq t\leq t\wedge\theta_{\ell}\leq T,

ap2bp2pap+2pbp/2,a,b0.\displaystyle a^{p-2}b\leq\frac{p-2}{p}a^{p}+\frac{2}{p}b^{p/2},\quad\forall a,b\geq 0.

We can derive

J21\displaystyle J_{21} 𝔼W(sup0tTtθ0p¯|e(s)|p¯2(12|e(s)|2+12|f(s,X(s))f(τ¯(s),X(s))|2\displaystyle\leq\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}\frac{1}{2}|e(s)|^{2}+\frac{1}{2}|f(s,X(s))-f(\bar{\tau}(s),X(s))|^{2}
+5p15p5p¯|g(s,X(s))g(τ¯(s),X(s))|2)dE(s))\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(s,X(s))-g(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}
C(𝔼Wsup0tT(tθ0|e(s)|p¯dE(s)+tθ0|f(s,X(s))f(τ¯(s),X(s))|p¯dE(s)\displaystyle\leq C\bigg{(}\mathbb{E}_{W}\sup_{0\leq t\leq T}\bigg{(}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}}dE(s)+\int^{t\wedge\theta_{\ell}}_{0}|f(s,X(s))-f(\bar{\tau}(s),X(s))|^{\bar{p}}dE(s)
+tθ0|g(s,X(s))g(τ¯(s),X(s))|p¯)dE(s))\displaystyle\quad+\int^{t\wedge\theta_{\ell}}_{0}|g(s,X(s))-g(\bar{\tau}(s),X(s))|^{\bar{p}}\bigg{)}dE(s)\bigg{)}
C(𝔼WT0|e(s)|p¯dE(s)+𝔼WT0H1p¯(1+|X(s)|(1+α)p¯)hγfp¯dE(s)\displaystyle\leq C\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\mathbb{E}_{W}\int^{T}_{0}H_{1}^{\bar{p}}(1+|X(s)|^{(1+\alpha)\bar{p}})h^{\gamma_{f}\bar{p}}dE(s)
+𝔼WT0H2p¯(1+|X(s)|(1+α)p¯)hγgp¯)dE(s))\displaystyle\quad+\mathbb{E}_{W}\int^{T}_{0}H_{2}^{\bar{p}}(1+|X(s)|^{(1+\alpha)\bar{p}})h^{\gamma_{g}\bar{p}})dE(s)\bigg{)}
C(𝔼WT0|e(s)|p¯dE(s)+hγfp¯E(T)+hγgp¯E(T)).\displaystyle\leq C\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+h^{\gamma_{f}\bar{p}}E(T)+h^{\gamma_{g}\bar{p}}E(T)\bigg{)}. (40)

Where lemma 6 is used to get the last inequality.
We use the basic properties of inequalities to handle the J22J_{22} item,

J22\displaystyle J_{22} 𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X(s))f(τ¯(s),X¯(s))))dE(s)\displaystyle\leq\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),X(s))-f(\bar{\tau}(s),\bar{X}(s))\big{)}\bigg{)}dE(s)
+sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X¯(s))fh(τ¯(s),X¯(s)))\displaystyle\quad+\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),\bar{X}(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\big{)}
+5p15p5p¯|g(τ¯(s),X(s))gh(τ¯(s),X(s))|2)dE(s))\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(\bar{\tau}(s),X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}
I1+I2.\displaystyle\leq I_{1}+I_{2}. (41)

We can derive from the (2) and Young inequality

I1\displaystyle I_{1} =𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X(s))f(τ¯(s),X¯(s))))dE(s))\displaystyle=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),X(s))-f(\bar{\tau}(s),\bar{X}(s))\big{)}\bigg{)}dE(s)\bigg{)}
𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),x)|x=X¯(s)s0gh(τ¯(s1),X¯(s1))\displaystyle\leq\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f^{{}^{\prime}}(\bar{\tau}(s),x)|_{x=\bar{X}(s)}\int^{s}_{0}g_{h}(\bar{\tau}(s_{1}),\bar{X}(s_{1}))
×dW(E(s1))+R~f(s,X(s),X¯(s))))dE(s))\displaystyle\quad\times dW(E(s_{1}))+\tilde{R}_{f}(s,X(s),\bar{X}(s))\big{)}\bigg{)}dE(s)\bigg{)}
H21𝔼W(sup0tTtθ0(|e(s)|p¯+|e(s)T(f(τ¯(s),x)|x=X¯(s)s0gh(τ¯(s1),X¯(s1))\displaystyle\leq H_{21}\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bigg{(}|e(s)|^{\bar{p}}+\big{|}e(s)^{T}(f^{{}^{\prime}}(\bar{\tau}(s),x)|_{x=\bar{X}(s)}\int^{s}_{0}g_{h}(\bar{\tau}(s_{1}),\bar{X}(s_{1}))
×dW(E(s1))|p¯2+|e(s)TR~f(s,X(s),X¯(s))|p¯2)dE(s))\displaystyle\quad\times dW(E(s_{1}))\big{|}^{\frac{\bar{p}}{2}}+|e(s)^{T}\tilde{R}_{f}(s,X(s),\bar{X}(s))|^{{\frac{\bar{p}}{2}}}\bigg{)}dE(s)\bigg{)}
H21(𝔼Wsup0tTtθ0(|e(s)|p¯dE(s)+|e(s)T(f(τ¯(s),x)|x=X¯(s)s0gh(τ¯(s1),X¯(s1))\displaystyle\leq H_{21}\bigg{(}\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bigg{(}|e(s)|^{\bar{p}}dE(s)+\big{|}e(s)^{T}(f^{{}^{\prime}}(\bar{\tau}(s),x)|_{x=\bar{X}(s)}\int^{s}_{0}g_{h}(\bar{\tau}(s_{1}),\bar{X}(s_{1}))
×dW(E(s1))|p¯2dE(s)+|R~f(s,X(s),X¯(s))|p¯dE(s)).\displaystyle\quad\times dW(E(s_{1}))\big{|}^{\frac{\bar{p}}{2}}dE(s)+|\tilde{R}_{f}(s,X(s),\bar{X}(s))|^{\bar{p}}dE(s)\bigg{)}. (42)

Apply a similar approach, used for (3.35) in [Wang2013] and combing (4) and lemma 8, we obtain

I1\displaystyle I_{1} H21(𝔼WT0|e(s)|p¯dE(s)+𝔼WT0|R~f(s,X(s),X¯(s))|p¯dE(s)+hp¯)\displaystyle\leq H_{21}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\mathbb{E}_{W}\int^{T}_{0}|\tilde{R}_{f}(s,X(s),\bar{X}(s))|^{\bar{p}}dE(s)+h^{\bar{p}}\bigg{)}
H21(𝔼WT0|e(s)|p¯dE(s)+T0𝔼W|R~f(s,X(s),X¯(s))|P¯dE(s)+hp¯)\displaystyle\leq H_{21}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\int^{T}_{0}\mathbb{E}_{W}|\tilde{R}_{f}(s,X(s),\bar{X}(s))|^{\bar{P}}dE(s)+h^{\bar{p}}\bigg{)}
H21(𝔼WT0|e(s)p¯dE(s))+hp¯(k(h))2p¯+hp¯).\displaystyle\leq H_{21}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)^{\bar{p}}dE(s))+h^{\bar{p}}(k(h))^{2\bar{p}}+h^{\bar{p}}\bigg{)}. (43)

Applying the Young inequality, Assumption 1 and Hölder inequality, we can show that

I2\displaystyle I_{2} =𝔼W(sup0tTtθ0p¯|e(s)|p¯2(eT(s)(f(τ¯(s),X¯(s))fh(τ¯(s),X¯(s)))\displaystyle=\mathbb{E}_{W}\bigg{(}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\bar{p}|e(s)|^{\bar{p}-2}\bigg{(}e^{T}(s)\big{(}f(\bar{\tau}(s),\bar{X}(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))\big{)}
+5p15p5p¯|g(τ¯(s),X(s))gh(τ¯(s),X(s))|2)dE(s))\displaystyle\quad+\dfrac{5p-1}{5p-5\bar{p}}|g(\bar{\tau}(s),X(s))-g_{h}(\bar{\tau}(s),X(s))|^{2}\bigg{)}dE(s)\bigg{)}
H22(𝔼Wsup0tTtθ0|e(s)|p¯dE(s)+𝔼Wsup0tTtθ0|f(τ¯(s),X¯(s))fh(τ¯(s),X¯(s))|p¯\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}}dE(s)+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|f(\bar{\tau}(s),\bar{X}(s))-f_{h}(\bar{\tau}(s),\bar{X}(s))|^{\bar{p}}
+|g(τ¯(s),X(s))gh(τ¯(s),X(s))|p¯dE(s))\displaystyle\quad+|g(\bar{\tau}(s),X(s))-g_{h}(\bar{\tau}(s),X(s))|^{\bar{p}}dE(s)\bigg{)}
H22(𝔼Wsup0tTtθ0|e(s)|p¯dE(s)+𝔼Wsup0tTtθ0(1+|X¯(s)|αp¯\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}|e(s)|^{\bar{p}}dE(s)+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}\big{(}1+|\bar{X}(s)|^{\alpha\bar{p}}
+||X¯(s)|μ1(k(h))|αp¯)|X¯(s)(|X¯(s)|μ1(k(h)))X¯(s)|X¯(s)||p¯dE(s)\displaystyle\quad+\big{|}|\bar{X}(s)|\wedge\mu^{-1}(k(h))\big{|}^{\alpha\bar{p}}\big{)}\bigg{|}\bar{X}(s)-\big{(}|\bar{X}(s)|\wedge\mu^{-1}(k(h))\big{)}\frac{\bar{X}(s)}{|\bar{X}(s)|}\bigg{|}^{\bar{p}}dE(s)
+𝔼Wsup0tTtθ0(1+|X(s)|αp¯+||X(s)|μ1(k(h))|αp¯)\displaystyle\quad+\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}(1+|X(s)|^{\alpha\bar{p}}+\big{|}|X(s)|\wedge\mu^{-1}(k(h))\big{|}^{\alpha\bar{p}})
×|X(s)(|X(s)|μ1(k(h)))X(s)|X(s)||p¯dE(s))\displaystyle\quad\times\bigg{|}X(s)-\big{(}|X(s)|\wedge\mu^{-1}(k(h))\big{)}\frac{X(s)}{|X(s)|}\bigg{|}^{\bar{p}}dE(s)\bigg{)}
H22(𝔼WT0|e(s)|p¯dE(s)+T0(𝔼W[1+|X¯(s)|q+||X¯(s)|μ1(k(h))|q])αp¯q\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\int^{T}_{0}\bigg{(}\mathbb{E}_{W}\bigg{[}1+|\bar{X}(s)|^{q}+\big{|}|\bar{X}(s)|\wedge\mu^{-1}(k(h))\big{|}^{q}\bigg{]}\bigg{)}^{\frac{\alpha\bar{p}}{q}}
×[𝔼W|X¯(s)(|X¯(s)|μ1(k(h)))X¯(s)|X¯(s)||qp¯qαp¯]qαp¯qdE(s)\displaystyle\quad\times\bigg{[}\mathbb{E}_{W}\big{|}\bar{X}(s)-\big{(}|\bar{X}(s)|\wedge\mu^{-1}(k(h))\big{)}\frac{\bar{X}(s)}{|\bar{X}(s)|}\big{|}^{\frac{q\bar{p}}{q-\alpha\bar{p}}}\bigg{]}^{\frac{q-\alpha\bar{p}}{q}}dE(s)
+T0(𝔼W[1+|X(s)|q+||X(s)|μ1(k(h))|q])αp¯q\displaystyle\quad+\int^{T}_{0}\bigg{(}\mathbb{E}_{W}\bigg{[}1+|X(s)|^{q}+\big{|}|X(s)|\wedge\mu^{-1}(k(h))\big{|}^{q}\bigg{]}\bigg{)}^{\frac{\alpha\bar{p}}{q}}
×[𝔼W|X(s)(|X(s)|μ1(k(h)))X(s)|X(s)||qp¯qαp¯]qαp¯qdE(s)),\displaystyle\quad\times\bigg{[}\mathbb{E}_{W}\big{|}X(s)-\big{(}|X(s)|\wedge\mu^{-1}(k(h))\big{)}\frac{X(s)}{|X(s)|}\big{|}^{\frac{q\bar{p}}{q-\alpha\bar{p}}}\bigg{]}^{\frac{q-\alpha\bar{p}}{q}}dE(s)\bigg{)},

where the lemma 6 are used above, also used in the follwing last inequality, using the Hölder inequality and chebyshev inequality (|x|a)aq𝔼|x|q\mathbb{P}(|x|\geqslant a)\leqslant a^{-q}\mathbb{E}|x|^{q}, if a>0,q>0a>0,q>0 , we can obtain

I2\displaystyle I_{2} H22(𝔼WT0|e(s)|p¯dE(s)\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)
+T0(𝔼W|I{|X¯(s)|>μ1(k(h))}|X¯(s)|qp¯qαp¯|)qαp¯qdE(s)\displaystyle\quad+\int^{T}_{0}\bigg{(}\mathbb{E}_{W}\big{|}I\left\{|\bar{X}(s)|>\mu^{-1}(k(h))\right\}|\bar{X}(s)|^{\frac{q\bar{p}}{q-\alpha\bar{p}}}\big{|}\bigg{)}^{\frac{q-\alpha\bar{p}}{q}}dE(s)
+T0(𝔼W|I{|X(s)|>μ1(k(h))}|X(s)|qp¯qαp¯|)qαp¯qdE(s))\displaystyle\quad+\int^{T}_{0}\bigg{(}\mathbb{E}_{W}\big{|}I\left\{|X(s)|>\mu^{-1}(k(h))\right\}|X(s)|^{\frac{q\bar{p}}{q-\alpha\bar{p}}}\big{|}\bigg{)}^{\frac{q-\alpha\bar{p}}{q}}dE(s)\bigg{)}
H22(𝔼WT0|e(s)|p¯dE(s)\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)
+T0([P{|X¯(s)|>μ1(k(h))}]qαp¯p¯qαp¯[𝔼|X¯(s)|q]p¯qαp¯)qαp¯qdE(s)\displaystyle\quad+\int^{T}_{0}\bigg{(}\big{[}P\left\{|\bar{X}(s)|>\mu^{-1}(k(h))\right\}\big{]}^{\frac{q-\alpha\bar{p}-\bar{p}}{q-\alpha\bar{p}}}\big{[}\mathbb{E}|\bar{X}(s)|^{q}\big{]}^{\frac{\bar{p}}{q-\alpha\bar{p}}}\bigg{)}^{\frac{q-\alpha\bar{p}}{q}}dE(s)
+T0([P{|X(s)|>μ1(k(h))}]qαp¯p¯qαp¯[𝔼|X(s)|q]p¯qαp¯)qαp¯qdE(s))\displaystyle\quad+\int^{T}_{0}\bigg{(}\big{[}P\left\{|X(s)|>\mu^{-1}(k(h))\right\}\big{]}^{\frac{q-\alpha\bar{p}-\bar{p}}{q-\alpha\bar{p}}}[\mathbb{E}|X(s)|^{q}]^{\frac{\bar{p}}{q-\alpha\bar{p}}}\bigg{)}^{\frac{q-\alpha\bar{p}}{q}}dE(s)\bigg{)}
H22(𝔼WT0|e(s)|p¯dE(s)+T0(𝔼W|X¯(s)|q|μ1(k(h))|q)qαp¯p¯qdE(s)\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\int^{T}_{0}\bigg{(}\frac{\mathbb{E}_{W}|\bar{X}(s)|^{q}}{|\mu^{-1}(k(h))|^{q}}\bigg{)}^{\frac{q-\alpha\bar{p}-\bar{p}}{q}}dE(s)
+T0(𝔼W|X(s)|q|μ1(k(h))|q)qαp¯p¯qdE(s))\displaystyle\quad+\int^{T}_{0}\bigg{(}\frac{\mathbb{E}_{W}|X(s)|^{q}}{|\mu^{-1}(k(h))|^{q}}\bigg{)}^{\frac{q-\alpha\bar{p}-\bar{p}}{q}}dE(s)\bigg{)}
H22(𝔼WT0|e(s)|p¯dE(s)+(μ1(k(h)))(α+1)p¯q).\displaystyle\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\big{(}\mu^{-1}(k(h))\big{)}^{(\alpha+1)\bar{p}-q}\bigg{)}. (44)

Substituing (4) and (4) into (4) gives

J22H22(𝔼WT0|e(s)|p¯dE(s)+(μ1(k(h)))(α+1)p¯q+hp¯(k(h))2p¯+hp¯).\displaystyle J_{22}\leq H_{22}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\big{(}\mu^{-1}(k(h))\big{)}^{(\alpha+1)\bar{p}-q}+h^{\bar{p}}(k(h))^{2\bar{p}}+h^{\bar{p}}\bigg{)}. (45)

Applying Young inequality and lemma 8, we derive that

J3\displaystyle J_{3} =𝔼Wsup0tTtθ0(5p¯2p¯)|e(s)|p¯2|R~gh(s,X(s),X¯(s))|2dE(s)\displaystyle=\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}(5\bar{p}^{2}-\bar{p})|e(s)|^{\bar{p}-2}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{2}dE(s)
H3𝔼Wsup0tTtθ0(|e(s)|p¯+|R~gh(s,X(s),X¯(s))|p¯)dE(s)\displaystyle\leq H_{3}\mathbb{E}_{W}\sup_{0\leq t\leq T}\int^{t\wedge\theta_{\ell}}_{0}(|e(s)|^{\bar{p}}+|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{\bar{p}})dE(s)
H3(𝔼WT0|e(s)|p¯dE(s)+T0𝔼W|R~gh(s,X(s),X¯(s))|p¯dE(s))\displaystyle\leq H_{3}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+\int^{T}_{0}\mathbb{E}_{W}|\tilde{R}_{g_{h}}(s,X(s),\bar{X}(s))|^{\bar{p}}dE(s)\bigg{)}
H3(𝔼WT0|e(s)|p¯dE(s)+hp¯(k(h))2p¯).\displaystyle\leq H_{3}\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+h^{\bar{p}}(k(h))^{2\bar{p}}\bigg{)}. (46)

Where H21,H22,H3H_{21},H_{22},H_{3} and following C are generic constants indendent of hh that may change from line to line, combining (4), (38), (4), (4), (45), (4), we can get the original formual is

𝔼W(sup0tT|e(tθ)|p¯)\displaystyle\mathbb{E}_{W}\left(\sup_{0\leq t\leq T}|e(t\wedge\theta_{\ell})|^{\bar{p}}\right)\leq 12sup0rtθ|e(r)|p¯+[J1]+[J2]+[J3]\displaystyle\frac{1}{2}\sup_{0\leq r\leq t\wedge\theta_{\ell}}|e(r)|^{\bar{p}}+[J_{1}]+[J_{2}]+[J_{3}]
\displaystyle\leq 2([J1]+[J2]+[J3])\displaystyle 2([J_{1}]+[J_{2}]+[J_{3}])
\displaystyle\leq C(𝔼WT0|e(s)|p¯dE(s)+hγfp¯+hγgp¯\displaystyle C\bigg{(}\mathbb{E}_{W}\int^{T}_{0}|e(s)|^{\bar{p}}dE(s)+h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}
+hp¯(k(h))2p¯+hp¯+(μ1(k(h)))(α+1)p¯q)\displaystyle\quad+h^{\bar{p}}(k(h))^{2\bar{p}}+h^{\bar{p}}+\big{(}\mu^{-1}(k(h))\big{)}^{(\alpha+1)\bar{p}-q}\bigg{)}
\displaystyle\leq C(T0𝔼Wsup0us|e(uθ)|p¯dE(s)+hγfp¯+hγgp¯\displaystyle C\bigg{(}\int^{T}_{0}\mathbb{E}_{W}\sup_{0\leq u\leq s}|e(u\wedge\theta_{\ell})|^{\bar{p}}dE(s)+h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}
+hp¯(k(h))2p¯+(μ1(k(h)))(α+1)p¯q).\displaystyle\quad+h^{\bar{p}}(k(h))^{2\bar{p}}+\big{(}\mu^{-1}(k(h))\big{)}^{(\alpha+1)\bar{p}-q}\bigg{)}.

An application of the Gronwall inequality yields that

𝔼W(sup0tT|e(tθ)|p¯)\displaystyle\mathbb{E}_{W}(\sup_{0\leq t\leq T}|e(t\wedge\theta_{\ell})|^{\bar{p}}) C(hγfp¯+hγgp¯+hp¯(k(h))2p¯+(μ1(k(h)))(α+1)p¯q)ełE(T),\displaystyle\leq C\bigg{(}h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}+h^{\bar{p}}(k(h))^{2\bar{p}}+(\mu^{-1}(k(h)))^{(\alpha+1)\bar{p}-q}\bigg{)}e^{\l E(T)},

therefore thanks to the Fatou lemma, the assertion is proved by letting nn\to\infty.

𝔼W(sup0tT|e(t)|p¯)\displaystyle\mathbb{E}_{W}(\sup_{0\leq t\leq T}|e(t)|^{\bar{p}}) C(hγfp¯+hγgp¯+hp¯(k(h))2p¯+(μ1(k(h)))(α+1)p¯q)ełE(T),\displaystyle\leq C\bigg{(}h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}+h^{\bar{p}}(k(h))^{2\bar{p}}+\big{(}\mu^{-1}(k(h))\big{)}^{(\alpha+1)\bar{p}-q}\bigg{)}e^{\l E(T)},

where CC is independent from hh and ł>0\l>0.

Taking 𝔼D\mathbb{E}_{D} on both sides gives

𝔼(sup0tT|Y(t)X(t)|p¯)\displaystyle\mathbb{E}\bigg{(}\sup_{0\leq t\leq T}|Y(t)-X(t)|^{\bar{p}}\bigg{)}
\displaystyle\leq C(hγfp¯+hγgp¯+hp¯(κ(h))2p¯+(μ1(κ(h)))(α+1)p¯q).\displaystyle C\bigg{(}h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}+h^{\bar{p}}(\kappa(h))^{2\bar{p}}+(\mu^{-1}(\kappa(h)))^{(\alpha+1)\bar{p}-q}\bigg{)}. (47)

Lemma 5 together with (4) indicates

𝔼(sup0tT|Y(t)X¯(t)|p¯)\displaystyle\mathbb{E}\bigg{(}\sup_{0\leq t\leq T}|Y(t)-\bar{X}(t)|^{\bar{p}}\bigg{)}
\displaystyle\leq C(hγfp¯+hγgp¯+hp¯(κ(h))2p¯+(μ1(κ(h)))(α+1)p¯q).\displaystyle C\bigg{(}h^{\gamma_{f}\bar{p}}+h^{\gamma_{g}\bar{p}}+h^{\bar{p}}(\kappa(h))^{2\bar{p}}+(\mu^{-1}(\kappa(h)))^{(\alpha+1)\bar{p}-q}\bigg{)}. (48)

At last, by properly choosing μ1()\mu^{-1}(\cdot) and κ()\kappa(\cdot), the required assertions are obtained

 

5 Numerical examples

In this section, we give two numerical examples.

Example 1.

Consider a one-dimensional time-changed SDE

{dY(t)=([t(1t)]14Y(t)Y5(t))dE(t)+([t(1t)]Y2(t))dW(E(t)),Y(0)=1,\displaystyle\left\{\begin{array}[]{lr}dY(t)=\left([t(1-t)]^{\frac{1}{4}}Y(t)-Y^{5}(t)\right)dE(t)+\left([t(1-t)]Y^{2}(t)\right)dW(E(t)),&\\ Y(0)=1,&\end{array}\right. (51)

with T=1T=1, the drift and diffusion coefficients are f(y)=[t(1t)]14yy5f(y)=[t(1-t)]^{\frac{1}{4}}y-y^{5} and g(y)=[t(1t)]y2g(y)=[t(1-t)]y^{2}, respectively. Clearly, both of them have continuous second-order derivatives and it is not hard to verify that Assumption 1 and Assumption 4 are satisfied with α=4\alpha=4.

For any p>2p>2, we can see

(xy)T(f(t,x)f(t,y))+(5p1)|g(t,x)g(t,y)|2\displaystyle(x-y)^{\mathrm{T}}(f(t,x)-f(t,y))+(5p-1)|g(t,x)-g(t,y)|^{2}
=\displaystyle= (xy)T([t(1t)]14(xy)(x5y5))+(5p1)|[t(1t)](x2y2)|2\displaystyle(x-y)^{T}\bigg{(}[t(1-t)]^{\frac{1}{4}}(x-y)-(x^{5}-y^{5})\bigg{)}+(5p-1)\big{|}[t(1-t)](x^{2}-y^{2})\big{|}^{2}
\displaystyle\leq (xy)2([t(1t)]14(x4+x3y+x2y2+xy3+y4)+(5p1)[t(1t)]2(x+y)2).\displaystyle(x-y)^{2}\bigg{(}[t(1-t)]^{\frac{1}{4}}-(x^{4}+x^{3}y+x^{2}y^{2}+xy^{3}+y^{4})+(5p-1)[t(1-t)]^{2}(x+y)^{2}\bigg{)}.

But

(x3y+xy3)=xy(x2+y2)0.5(x2+y2)2=0.5(x4+y4)+x2y2.\displaystyle-(x^{3}y+xy^{3})=-xy(x^{2}+y^{2})\leq 0.5(x^{2}+y^{2})^{2}=0.5(x^{4}+y^{4})+x^{2}y^{2}.

Hence

(xy)T(f(t,x)f(t,y))+(5p1)|g(t,x)g(t,y)|2\displaystyle(x-y)^{\mathrm{T}}(f(t,x)-f(t,y))+(5p-1)|g(t,x)-g(t,y)|^{2}
\displaystyle\leq (xy)2([t(1t)]140.5(x4+y4)+2(5p1)[t(1t)]2(x2+y2))\displaystyle(x-y)^{2}\bigg{(}[t(1-t)]^{\frac{1}{4}}-0.5(x^{4}+y^{4})+2(5p-1)[t(1-t)]^{2}(x^{2}+y^{2})\bigg{)}
\displaystyle\leq K(xy)2,\displaystyle K(x-y)^{2},

where the Young inequality is used. Note that the last inequality is due to the fact that polynomials with the negative coefficients for the highest order term can always be bounded from above. This indicates that Assumption 2 holds.

In the similar manner, for any q>2q>2 and any t[0,1]t\in[0,1], we have

xTf(t,x)+(5q1)|g(t,x)|2\displaystyle x^{\mathrm{T}}f(t,x)+(5q-1)|g(t,x)|^{2}
=\displaystyle= [t(1t)]14xx5+(5q1)[t(1t)]2x4\displaystyle[t(1-t)]^{\frac{1}{4}}x-x^{5}+(5q-1)[t(1-t)]^{2}x^{4}
\displaystyle\leq K1(1+|x|2),\displaystyle K_{1}(1+|x|^{2}),

which means that Assumption 3 is satisfied.

Using the mean theorem for the temporal variable, Assumption 5 are satisfied with γf=14\gamma_{f}=\frac{1}{4}, γg=1\gamma_{g}=1. According to Theorem 1, we know that

𝔼(sup0tT|Y(t)X(t)|p¯)C(hp¯4+hp¯+hp¯(κ(h))2p¯+(μ1(κ(h)))5p¯q)\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|Y(t)-X(t)|^{\bar{p}}\right)\leq C\bigg{(}h^{\frac{\bar{p}}{4}}+h^{\bar{p}}+h^{\bar{p}}(\kappa(h))^{2\bar{p}}+\big{(}\mu^{-1}(\kappa(h))\big{)}^{5\bar{p}-q}\bigg{)}

and

𝔼(sup0tT|Y(t)X¯(t)|p¯)C(hp¯4+hp¯+hp¯(κ(h))2p¯+(μ1(κ(h)))5p¯q).\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq T}|Y(t)-\bar{X}(t)|^{\bar{p}}\right)\leq C\bigg{(}h^{\frac{\bar{p}}{4}}+h^{\bar{p}}+h^{\bar{p}}(\kappa(h))^{2\bar{p}}+\big{(}\mu^{-1}(\kappa(h))\big{)}^{5\bar{p}-q}\bigg{)}.

In addition, it is not hard to see that

sup0t1sup|x|u(|f(t,x)||g(t,x)||Lg(t,x)|)2u5,u1.\displaystyle\sup_{0\leq t\leq 1}\sup_{|x|\leq u}(|f(t,x)|\vee|g(t,x)|\vee|Lg(t,x)|)\leq 2u^{5},\quad\forall u\geq 1.

So we set μ(u)=2u5\mu(u)=2u^{5} and κ(h)=hε\kappa(h)=h^{-\varepsilon}, for any ε(0,1/4]\varepsilon\in(0,1/4]. As a result, μ1(u)=(u/2)1/5\mu^{-1}(u)=\left(u/2\right)^{1/5} and μ1(κ(h))=(hε/2)1/5\mu^{-1}(\kappa(h))=\left(h^{-\varepsilon}/2\right)^{1/5}. Now, choosing ε\varepsilon sufficiently small, choosing pp sufficiently large, we can derive from Theorem 1 that

𝔼(sup0t1|Y(t)X(t)|p¯)Chp¯/4\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq 1}|Y(t)-X(t)|^{\bar{p}}\right)\leq Ch^{\bar{p}/4}

and

𝔼(sup0t1|Y(t)X¯(t)|p¯)Chp¯/4.\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq 1}|Y(t)-\bar{X}(t)|^{\bar{p}}\right)\leq Ch^{\bar{p}/4}.

which imply that the convergence order of truncated Milstein method for the time-change SDE (51) is 0.250.25.

Let us compute the approximation of the mean square error. We run M=100 independent trajectories using (LABEL:numerical) for every different step sizes10110^{-1} 10210^{-2}, 10310^{-3}, 10410^{-4}, 10510^{-5}. We pick up ε=0.02\varepsilon=0.02, because it is hard to find the true solution for the SDE, the numerical solution with the step size 10510^{-5} is regarded as the exact solution.

Refer to caption
Figure 1: Convergence order of Example 1

It is not hard to see from Figure 1 that the strong convergence order is approximately 0.25. To see it more clearly, applying the linear regression, the slope of errors against the step is 0.2517, which is quite close to the theoretical result.

Example 2.

Consider a two-dimensional time-changed SDE

{dx1(t)=([t(1t)]15x1(t)x25(t))dE(t)+([t(1t)]12x22(t))dW(E(t)),dx2(t)=([t(1t)]15x2(t)x15(t))dE(t)+([t(1t)]11x12(t))dW(E(t)).\displaystyle\left\{\begin{array}[]{lr}dx_{1}(t)=\left([t(1-t)]^{\frac{1}{5}}x_{1}(t)-x_{2}^{5}(t)\right)dE(t)+\left([t(1-t)]^{\frac{1}{2}}x_{2}^{2}(t)\right)dW(E(t)),&\\ dx_{2}(t)=\left([t(1-t)]^{\frac{1}{5}}x_{2}(t)-x_{1}^{5}(t)\right)dE(t)+\left([t(1-t)]^{\frac{1}{1}}x_{1}^{2}(t)\right)dW(E(t)).&\end{array}\right.

It is clear that

f(t,x)=([t(1t)]15x1x25[t(1t)]15x2x15)andg(t,x)=([t(1t)]12x22[t(1t)]12x12).\displaystyle f(t,x)=\begin{pmatrix}[t(1-t)]^{\frac{1}{5}}x_{1}-x_{2}^{5}\\ [t(1-t)]^{\frac{1}{5}}x_{2}-x_{1}^{5}\end{pmatrix}~{}~{}~{}~{}~{}\text{and}~{}~{}~{}~{}~{}g(t,x)=\begin{pmatrix}[t(1-t)]^{\frac{1}{2}}x_{2}^{2}\\ [t(1-t)]^{\frac{1}{2}}x_{1}^{2}\end{pmatrix}.

Similar to Example 4.1, it is not hard to verify that coefficients f(t,x)f(t,x) and g(t,x)g(t,x) satisfy Assumption 1 and 4 with α=4\alpha=4.

For any x,yx,y\in\mathbb{R}, it is easy to show that

(xy)T(f(t,x)f(t,y))+(5p1)|g(t,x)g(t,y)|2\displaystyle(x-y)^{\mathrm{T}}(f(t,x)-f(t,y))+(5p-1)|g(t,x)-g(t,y)|^{2}
=\displaystyle= (x1y1)([t(1t)]15(x1y1)(x25y25))+(x2y2)([t(1t)]15(x2y2)\displaystyle(x_{1}-y_{1})\bigg{(}[t(1-t)]^{\frac{1}{5}}(x_{1}-y_{1})-(x_{2}^{5}-y_{2}^{5})\bigg{)}+(x_{2}-y_{2})\bigg{(}[t(1-t)]^{\frac{1}{5}}(x_{2}-y_{2})
(x15y15))+(5p1)([t(1t)]12(x22y22)2+[t(1t)]12(x12y12))2\displaystyle-(x_{1}^{5}-y_{1}^{5})\bigg{)}+(5p-1)\bigg{(}[t(1-t)]^{\frac{1}{2}}(x_{2}^{2}-y_{2}^{2})^{2}+[t(1-t)]^{\frac{1}{2}}(x_{1}^{2}-y_{1}^{2})\bigg{)}^{2}
\displaystyle\leq (x1y1)2([t(1t)]15(x24+x23y2+x22y22+x2y23+y24))\displaystyle(x_{1}-y_{1})^{2}\left([t(1-t)]^{\frac{1}{5}}-(x_{2}^{4}+x_{2}^{3}y_{2}+x_{2}^{2}y_{2}^{2}+x_{2}y_{2}^{3}+y_{2}^{4})\right)
+(x2y2)2([t(1t)]15(x14+x13y1+x12y12+x1y13+y14))\displaystyle+(x_{2}-y_{2})^{2}\left([t(1-t)]^{\frac{1}{5}}-(x_{1}^{4}+x_{1}^{3}y_{1}+x_{1}^{2}y_{1}^{2}+x_{1}y_{1}^{3}+y_{1}^{4})\right)
+2(5p1)([t(1t)](x22y22)2+[t(1t)](x12y12)2)\displaystyle+2(5p-1)\bigg{(}[t(1-t)](x_{2}^{2}-y_{2}^{2})^{2}+[t(1-t)](x_{1}^{2}-y_{1}^{2})^{2}\bigg{)}
\displaystyle\leq (x1y1)2([t(1t)]15(x24+x23y2+x22y22+x2y23+y24))\displaystyle(x_{1}-y_{1})^{2}\left([t(1-t)]^{\frac{1}{5}}-(x_{2}^{4}+x_{2}^{3}y_{2}+x_{2}^{2}y_{2}^{2}+x_{2}y_{2}^{3}+y_{2}^{4})\right)
+(x2y2)2([t(1t)]15(x14+x13y1+x12y12+x1y13+y14))\displaystyle+(x_{2}-y_{2})^{2}\bigg{(}[t(1-t)]^{\frac{1}{5}}-(x_{1}^{4}+x_{1}^{3}y_{1}+x_{1}^{2}y_{1}^{2}+x_{1}y_{1}^{3}+y_{1}^{4})\bigg{)}
+2(x2y2)2(5p1)([t(1t)](x2+y2)2)+2(x1y1)2(5p1)\displaystyle+2(x_{2}-y_{2})^{2}(5p-1)\bigg{(}[t(1-t)](x_{2}+y_{2})^{2}\bigg{)}+2(x_{1}-y_{1})^{2}(5p-1)
×([t(1t)](x1+y1)2).\displaystyle\times\bigg{(}[t(1-t)](x_{1}+y_{1})^{2}\bigg{)}.

But

(x3y+xy3)=xy(x2+y2)0.5(x2+y2)2=0.5(x4+y4)+x2y2.\displaystyle-(x^{3}y+xy^{3})=-xy(x^{2}+y^{2})\leq 0.5(x^{2}+y^{2})^{2}=0.5(x^{4}+y^{4})+x^{2}y^{2}.

Therefore, for any t[0,1]t\in[0,1]

(xy)T(f(t,x)f(t,y))+(5p1)|g(t,x)g(t,y)|2\displaystyle(x-y)^{\mathrm{T}}(f(t,x)-f(t,y))+(5p-1)|g(t,x)-g(t,y)|^{2}
\displaystyle\leq (x1y1)2([t(1t)]150.5(x24+y24)+2(5p1)[t(1t)](x1+y1)2)\displaystyle(x_{1}-y_{1})^{2}\bigg{(}[t(1-t)]^{\frac{1}{5}}-0.5(x_{2}^{4}+y_{2}^{4})+2(5p-1)[t(1-t)](x_{1}+y_{1})^{2}\bigg{)}
+(x2y2)2([t(1t)]150.5(x14+y14)+2(5p1)[t(1t)](x2+y2)2)\displaystyle+(x_{2}-y_{2})^{2}\bigg{(}[t(1-t)]^{\frac{1}{5}}-0.5(x_{1}^{4}+y_{1}^{4})+2(5p-1)[t(1-t)](x_{2}+y_{2})^{2}\bigg{)}
\displaystyle\leq C(xy)2,\displaystyle C(x-y)^{2},

where the basic inequality (a+b)22(a2+b2)(a+b)^{2}\leq 2(a^{2}+b^{2}) is used, and the fact that polynomials with the negative coefficients for the highest order term can always be bounds. This indicates that Assumption 2 holds.

For that Assumption 3, for any q>2q>2 and any t[0,1]t\in[0,1], we can drived is satisfied next

xTf(t,x)+(5q1)|g(t,x)|2\displaystyle x^{\mathrm{T}}f(t,x)+(5q-1)|g(t,x)|^{2}
=\displaystyle= ([t(1t)]15x12x1x25)+([t(1t)]15x222x15x2)+2(5q1)|[t(1t)](x12+x22)|2\displaystyle([t(1-t)]^{\frac{1}{5}}x_{1}^{2}-x_{1}x_{2}^{5})+([t(1-t)]^{\frac{1}{5}}x_{2}^{2}-2x_{1}^{5}x_{2})+2(5q-1)|[t(1-t)](x_{1}^{2}+x_{2}^{2})|^{2}
\displaystyle\leq [t(1t)]15(x12+x22)x1x2(x14+x24)+2(5q1)[t(1t)](x12+x22)\displaystyle[t(1-t)]^{\frac{1}{5}}(x_{1}^{2}+x_{2}^{2})-x_{1}x_{2}(x_{1}^{4}+x_{2}^{4})+2(5q-1)[t(1-t)](x_{1}^{2}+x_{2}^{2})
\displaystyle\leq C(1+|x|2),\displaystyle C(1+|x|^{2}),

Then, we deal with Assumption 5 by assuming that γf(0,1]\gamma_{f}\in(0,1] and γg(0,1]\gamma_{g}\in(0,1], for any s,t[0,T]s,t\in[0,T], using the mean value theorem for the temporal variable,

|f(s,x)f(t,x)|\displaystyle|f(s,x)-f(t,x)|
\displaystyle\leq |([(s(1s)]15[t(1t)]15)x1+([s(1s)]15[t(1t)]15)x2|\displaystyle|([(s(1-s)]^{\frac{1}{5}}-[t(1-t)]^{\frac{1}{5}})x_{1}+([s(1-s)]^{\frac{1}{5}}-[t(1-t)]^{\frac{1}{5}})x_{2}|
\displaystyle\leq C1|st|15x1+C2|st|15x2,\displaystyle C_{1}|s-t|^{\frac{1}{5}}x_{1}+C_{2}|s-t|^{\frac{1}{5}}x_{2},

and

|g(s,x)g(t,x)|\displaystyle|g(s,x)-g(t,x)|
\displaystyle\leq |([s(1s)]12[t(1t)]12)x22+([s(1s)]12[t(1t)]12)x12|\displaystyle|([s(1-s)]^{\frac{1}{2}}-[t(1-t)]^{\frac{1}{2}})x_{2}^{2}+([s(1-s)]^{\frac{1}{2}}-[t(1-t)]^{\frac{1}{2}})x_{1}^{2}|
\displaystyle\leq C1|st|12x22+C2|st|12x12.\displaystyle C_{1}|s-t|^{\frac{1}{2}}x_{2}^{2}+C_{2}|s-t|^{\frac{1}{2}}x_{1}^{2}.

Thus, Assumptions 5 is satisfied with γf=1/5\gamma_{f}=1/5 and γg=1/2\gamma_{g}=1/2. According to Theorem 1 and Example 1, we can also set μ(u)=2u5\mu(u)=2u^{5} and κ(h)=hε\kappa(h)=h^{-\varepsilon}, for any ε(0,1/4]\varepsilon\in(0,1/4], choosing ε\varepsilon sufficiently small and pp sufficiently large, we can derive from Theorem LABEL:theorem3-1 that

𝔼(sup0t1|Y(t)X(t)|p¯)Chp¯/5\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq 1}|Y(t)-X(t)|^{\bar{p}}\right)\leq Ch^{\bar{p}/5}

and

𝔼(sup0t1|Y(t)X¯(t)|p¯)Chp¯/5.\displaystyle\mathbb{E}\left(\sup_{0\leq t\leq 1}|Y(t)-\bar{X}(t)|^{\bar{p}}\right)\leq Ch^{\bar{p}/5}.

which imply that the convergence order of truncated milstein method for the time-change SDE (51) is 1/51/5 similarly. Next, we will verify through computer simulation.

Same example 1, we run M=100 independent trajectories using (LABEL:numerical) for every different step sizes 10110^{-1}, 10210^{-2}, 10310^{-3}, 10410^{-4}, 10510^{-5}, the numerical solution with the step size 10510^{-5} is regarded as the exact solution.

Refer to caption
Figure 2: Convergence order of Example 2

It is not hard to see from Figure 2 that the order of convergence can be obtained as 0.2 approximately. To see it more clearly, applying the linear regression shows that the slope of the line of errors is about 0.2086, which is also very close to the theoretical result.

References

  • [1] David Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2009.
  • [2] Zhen-Qing Chen. Time fractional equations and probabilistic representation. Chaos Solitons Fractals, 102:168–174, 2017.
  • [3] Chang-Song Deng and Wei Liu. Semi-implicit Euler-Maruyama method for non-linear time-changed stochastic differential equations. BIT, 60(4):1133–1151, 2020.
  • [4] Chang-Song Deng and René L. Schilling. Harnack inequalities for SDEs driven by time-changed fractional Brownian motions. Electron. J. Probab., 22:Paper No. 71, 23, 2017.
  • [5] Kai Diethelm, Neville J. Ford, and Alan D. Freed. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam., 29(1-4):3–22, 2002.
  • [6] Qiang Du, Max Gunzburger, R. B. Lehoucq, and Kun Zhou. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev., 54(4):667–696, 2012.
  • [7] Mike Giles. Improved multilevel Monte Carlo convergence using the Milstein scheme. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 343–358. Springer, Berlin, 2008.
  • [8] Mike Giles and Lukasz Szpruch. Multilevel Monte Carlo methods for applications in finance. In Recent developments in computational finance, volume 14 of Interdiscip. Math. Sci., pages 3–47. World Sci. Publ., Hackensack, NJ, 2013.
  • [9] Marjorie Hahn, Kei Kobayashi, and Sabir Umarov. SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations. J. Theoret. Probab., 25(1):262–279, 2012.
  • [10] Liangjian Hu, Xiaoyue Li, and Xuerong Mao. Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math., 337:274–289, 2018.
  • [11] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467(2130):1563–1576, 2011.
  • [12] Joanna Janczura, Sebastian Orzeł, and Agnieszka Wyłomańska. Subordinated α\alpha-stable ornstein-uhlenbeck process as a tool for financial data description. Phys. A, 390(23-24):4379 – 4387, 2011.
  • [13] Sixian Jin and Kei Kobayashi. Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients. J. Math. Anal. Appl., 476(2):619–636, 2019.
  • [14] Sixian Jin and Kei Kobayashi. Strong approximation of time-changed stochastic differential equations involving drifts with random and non-random integrators. BIT, 61(3):829–857, 2021.
  • [15] Ernest Jum and Kei Kobayashi. A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion. Probab. Math. Statist., 36(2):201–220, 2016.
  • [16] Kei Kobayashi. Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. Theoret. Probab., 24(3):789–820, 2011.
  • [17] Changpin Li and Fanhai Zeng. Numerical methods for fractional calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton, FL, 2015.
  • [18] Xiaotong Li, Juan Liao, Wei Liu, and Zhuo Xing. Convergence and stability of an explicit method for autonomous time-changed stochastic differential equations with super-linear coefficients. Adv. Appl. Math. Mech., 15(3):651–683, 2023.
  • [19] Xiaotong Li, Wei Liu, and Tianjiao Tang. Truncated Euler-Maruyama method for time-changed stochastic differential equations with super-linear state variables and Hölder’s continuous time variables. arXiv, 2021.
  • [20] Zhi Li, Liping Xu, and Litan Yan. McKean-Vlasov stochastic differential equations driven by the time-changed Brownian motion. J. Math. Anal. Appl., 527(1):Paper No. 127336, 20, 2023.
  • [21] Wei Liu, Xuerong Mao, Jingwen Tang, and Yue Wu. Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations. Appl. Numer. Math., 153:66–81, 2020.
  • [22] Marcin Magdziarz. Black-Scholes formula in subdiffusive regime. J. Stat. Phys., 136(3):553–564, 2009.
  • [23] Marcin Magdziarz. Stochastic representation of subdiffusion processes with time-dependent drift. Stochastic Process. Appl., 119(10):3238–3252, 2009.
  • [24] Marcin Magdziarz, Sebastian Orzeł, and Aleksander Weron. Option pricing in subdiffusive Bachelier model. J. Stat. Phys., 145(1):187–203, 2011.
  • [25] Mark M. Meerschaert and Hans-Peter Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab., 41(3):623–638, 2004.
  • [26] Erkan Nane and Yinan Ni. Stochastic solution of fractional Fokker-Planck equations with space-time-dependent coefficients. J. Math. Anal. Appl., 442(1):103–116, 2016.
  • [27] Erkan Nane and Yinan Ni. Stability of the solution of stochastic differential equation driven by time-changed Lévy noise. Proc. Amer. Math. Soc., 145(7):3085–3104, 2017.
  • [28] Erkan Nane and Yinan Ni. Path stability of stochastic differential equations driven by time-changed Lévy noises. ALEA Lat. Am. J. Probab. Math. Stat., 15(1):479–507, 2018.
  • [29] Ken-iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original, Revised by the author.
  • [30] Guangjun Shen, Tingting Zhang, Jie Song, and Jiang-Lun Wu. On a class of distribution dependent stochastic differential equations driven by time-changed Brownian motions. Appl. Math. Optim., 88(2):Paper No. 33, 31, 2023.
  • [31] Sabir Umarov, Marjorie Hahn, and Kei Kobayashi. Beyond the triangle: Brownian motion, Ito calculus, and Fokker-Planck equation—fractional generalizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
  • [32] Dongling Wang and Jun Zou. Mittag-Leffler stability of numerical solutions to time fractional ODEs. Numer. Algorithms, 92(4):2125–2159, 2023.
  • [33] Xueqi Wen, Zhi Li, and Liping Xu. Strong approximation of non-autonomous time-changed McKean-Vlasov stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul., 119:Paper No. 107122, 17, 2023.
  • [34] Qiong Wu. Stability analysis for a class of nonlinear time-changed systems. Cogent Math., 3:Art. ID 1228273, 10, 2016.
  • [35] Xiuwei Yin, Wentao Xu, and Guangjun Shen. Stability of stochastic differential equations driven by the time-changed Lévy process with impulsive effects. Internat. J. Systems Sci., 52(11):2338–2357, 2021.
  • [36] Xiaozhi Zhang and Chenggui Yuan. Razumikhin-type theorem on time-changed stochastic functional differential equations with Markovian switching. Open Math., 17(1):689–699, 2019.