This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A method for constructing graphs with the same resistance spectrum

Si-Ao Xu Huan Zhou Xiang-Feng Pan 111Funding:Xiang-Feng Pan was supported by Natural Science Foundation of Anhui Province under Grant No. 2108085MA02 and University Natural Science Research Project of Anhui Province under Grant No. KJ2020A0001. [email protected] School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, P.R. China
Abstract

Let G=(V(G),E(G))G=(V(G),E(G)) be a graph with vertex set V(G)V(G) and edge set E(G)E(G). The resistance distance RG(x,y)R_{G}(x,y) between two vertices x,yx,y of GG is defined to be the effective resistance between the two vertices in the corresponding electrical network in which each edge of GG is replaced by a unit resistor. The resistance spectrum RS(G)\operatorname{RS}(G) of a graph GG is the multiset of the resistance distances of all pairs of vertices in the graph. This paper presents a method for constructing graphs with the same resistance spectrum. It is obtained that for any positive integer kk, there exist at least 2k2^{k} graphs with the same resistance spectrum. Furthermore, it is shown that for n10n\geq 10, there are at least 2(n9)p(n9)2(n-9)p(n-9) pairs of graphs of order nn with the same resistance spectrum, where p(n9)p(n-9) is the number of partitions of the integer n9n-9.

keywords:
Resistance distance, Resistance spectrum, Partition of positive integer
MSC:
[2010] 05C12, 05C76
journal:

1 Introduction

In 1993, Klein and Randić [1] introduced the concept of resistance distance based on the theory of electrical networks. The resistance distance RG(x,y)R_{G}(x,y) between two vertices xx and yy of a graph GG is defined as the effective resistance of the two points in the corresponding electrical network, which the electrical network is attained from GG by replacing each edge of the graph with a unit resistor.

The resistance spectrum RS(G)\operatorname{RS}(G) of a graph GG is defined as the multiset of the resistance distances of all pairs of vertices in the graph. The resistance spectrum of a graph had been initially used to solve the graph isomorphism problem by Baxter [2] who conjectured that two graphs are isomorphic if and only if their resistance spectra are identical. However, this conjecture had been quickly disproved after some counterexamples [3, 4] were found.

All nonisomorphic simple graphs with no more than 88 vertices are determined by their resistance spectra. However, there are exactly 1111 and 4949 pairs of nonisomorphic graphs, each pair of which shares the same resistance spectrum, among all simple graphs with 99 and 1010 vertices, respectively [5]. In addition, a number of other pairs with the same resistance spectrum but different structures have been discovered. Figure 1 illustrates 1313 such pairs of nonisomorphic graphs, whose resistance spectra are given in Table 1. The first 1111 pairs of graphs here are the ones with 9 vertices. The 2nd, 3rd, and 12th, 13th pairs were discovered by Baxter [3] and Rickard [4], respectively. A graph GG is said to be DRSDRS if it is determined by the resistance spectrum, that is, there is no nonisomorphic graph with the same resistance spectrum as GG; conversely, if there is a nonisomorphic graph such that it has the same resistance spectrum as GG, then GG is said to be nonnon-DRSDRS.

Refer to caption
Figure 1: 1313 pairs of nonisomorphic graphs with the same resistance spectrum [5].
Table 1: Resistance spectra of the graphs [5].
Graph pair Resistance spectrum
1 [1]6[1]^{6} [2]6[2]^{6} [+]24[+\infty]^{24}
2 [2/3]3[2/3]^{3} [1]6[1]^{6} [5/3]12[5/3]^{12} [2]6[2]^{6} [8/3]9[8/3]^{9}
3 [1]8[1]^{8} [2]13[2]^{13} [3]12[3]^{12} [4]3[4]^{3}
4 [3/4]8[3/4]^{8} [1]6[1]^{6} [3/2]4[3/2]^{4} [7/4]8[7/4]^{8} [2]4[2]^{4} [11/4]4[11/4]^{4} [3]2[3]^{2}
5 [1]6[1]^{6} [2]4[2]^{4} [3]2[3]^{2} [+]24[+\infty]^{24}
6 [1]8[1]^{8} [2]10[2]^{10} [3]10[3]^{10} [4]6[4]^{6} [5]2[5]^{2}
7 [1/2]1[1/2]^{1} [5/8]4[5/8]^{4} [1]6[1]^{6} [3/2]2[3/2]^{2} [13/8]8[13/8]^{8} [2]4[2]^{4} [5/2]1[5/2]^{1} [21/8]6[21/8]^{6} [3]2[3]^{2} [29/8]2[29/8]^{2}
8 [3/4]4[3/4]^{4} [1]7[1]^{7} [7/4]4[7/4]^{4} [2]6[2]^{6} [11/4]4[11/4]^{4} [3]5[3]^{5} [15/4]2[15/4]^{2} [4]3[4]^{3} [5]1[5]^{1}
9 [2/3]10[2/3]^{10} [1]5[1]^{5} [4/3]4[4/3]^{4} [5/3]10[5/3]^{10} [2]2[2]^{2} [7/3]2[7/3]^{2} [8/3]3[8/3]^{3}
10 [1/2]1[1/2]^{1} [5/8]4[5/8]^{4} [1]6[1]^{6} [13/8]4[13/8]^{4} [2]6[2]^{6} [21/8]4[21/8]^{4} [3]5[3]^{5} [29/8]2[29/8]^{2} [4]3[4]^{3} [5]1[5]^{1}
11 [1/2]2[1/2]^{2} [5/8]8[5/8]^{8} [1]4[1]^{4} [5/4]4[5/4]^{4} [13/8]8[13/8]^{8} [2]4[2]^{4} [21/8]4[21/8]^{4} [3]2[3]^{2}
12 [3/4]4[3/4]^{4} [1]18[1]^{18} [7/4]16[7/4]^{16} [2]22[2]^{22} [11/4]32[11/4]^{32} [3]24[3]^{24} [15/4]32[15/4]^{32} [4]18[4]^{18} [19/4]16[19/4]^{16} [5]8[5]^{8}
13 [1]29[1]^{29} [2]38[2]^{38} [3]50[3]^{50} [4]64[4]^{64} [5]78[5]^{78} [6]82[6]^{82} [7]64[7]^{64} [8]26[8]^{26} [9]4[9]^{4}

The resistance distances are shown in ascending order. [a/b]n[a/b]^{n} denotes nn occurrences of the fraction a/ba/b.

2 Preliminary knowledge

In this paper, we only consider simple undirected graphs. For undefined notations and terminologies, see the book by Bondy and Murty [6].

A partition of a positive integer tt is a multiset of positive integers that sum to tt. We denote the number of partitions of tt by p(t)p(t). For example, since {5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1}\{5\},\{4,1\},\{3,2\},\{3,1,1\},\{2,2,1\},\{2,1,1,1\}, {1,1,1,1,1}\{1,1,1,1,1\} are all the partitions of 55, p(5)=7p(5)=7.

Definition 2.1.

Let A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\} and B={b1,b2,,bq}B=\{b_{1},b_{2},\ldots,b_{q}\} be two different partitions of a positive integer nn. We say AA and BB are of equal sums of squares if

i=1pai2=i=1qbi2.\sum_{i=1}^{p}a_{i}^{2}=\sum_{i=1}^{q}b_{i}^{2}.

Example 2.2.

A:={3,3},B:={4,1,1}A:=\{3,3\},B:=\{4,1,1\} are of equal sums of squares.

Proposition 2.3.

Let AA and BB be two different partitions of a positive integer nn, where A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\} and B={b1,b2,,bq}B=\{b_{1},b_{2},\ldots,b_{q}\}. If AA and BB are of equal sums of squares, then

1i<jpaiaj=1i<jqbibj.\sum_{1\leq i<j\leq p}a_{i}a_{j}=\sum_{1\leq i<j\leq q}b_{i}b_{j}.

Definition 2.4.

Let GG be a graph with V(G)={g1,g2,,gn}V(G)=\{g_{1},g_{2},\ldots,g_{n}\}. Let SS be a subset of V(G)V(G), where S={gk1,gk2,,gks}S=\{g_{k_{1}},g_{k_{2}},\ldots,g_{k_{s}}\}, 1sn1\leq s\leq n and 1k1<<ksn1\leq k_{1}<\cdots<k_{s}\leq n. Let A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\} be a partition of a positive integer tt, where psp\leq s. Let H1,H2,,HtH_{1},H_{2},\ldots,H_{t} be tt graphs, where V(Hi)={hi,1,hi,2,,hi,ni}V(H_{i})=\{h_{i,1},h_{i,2},\ldots,h_{i,n_{i}}\} for i=1,2,,ti=1,2,\ldots,t. Let =(H1,H2,,Ht)\mathcal{H}=(H_{1},H_{2},\ldots,H_{t}) and T={h1,t1,,ht,tt}T=\{h_{1,t_{1}},\ldots,h_{t,t_{t}}\}. The graph G(S,A,,T)G(S,A,\mathcal{H},T) is constructed from GG and \mathcal{H} by identifying gk1,h1,t1,h2,t2,,ha1,ta1g_{k_{1}},h_{1,t_{1}},h_{2,t_{2}},\ldots,h_{a_{1},t_{a_{1}}}, identifying gki,hj=1i1aj+1,tj=1i1aj+1,hj=1i1aj+2,tj=1i1aj+2,g_{k_{i}},h_{\sum_{j=1}^{i-1}a_{j}+1,t_{\sum_{j=1}^{i-1}a_{j}+1}},h_{\sum_{j=1}^{i-1}a_{j}+2,t_{\sum_{j=1}^{i-1}a_{j}+2}},\ldots, hj=1iaj,tj=1iajh_{\sum_{j=1}^{i}a_{j},t_{\sum_{j=1}^{i}a_{j}}}, where i=2,3,,pi=2,3,\ldots,p.

Example 2.5.

Let GG be a cycle of length 3 with vertex set {g1,g2,g3}\{g_{1},g_{2},g_{3}\}, S={g2,g3}S=\{g_{2},g_{3}\} and A={3,3}A=\{3,3\}. Let =(H1,H2,,H6)\mathcal{H}=(H_{1},H_{2},\ldots,H_{6}) and T={h1,1,h2,1,,ht,1}T=\{h_{1,1},h_{2,1},\ldots,h_{t,1}\}, where HiH_{i} is a path of length 11 with V(Hi)={hi,1,hi,2}V(H_{i})=\{h_{i,1},h_{i,2}\} for i=1,2,,6i=1,2,\ldots,6. The graph G(S,A,,T)G(S,A,\mathcal{H},T) is depicted in Figure 2.

g1g_{1}g2g_{2}g3g_{3}h1,2h_{1,2}h2,2h_{2,2}h3,2h_{3,2}h4,2h_{4,2}h5,2h_{5,2}h6,2h_{6,2}
Figure 2: G(S,A,,T)G(S,A,\mathcal{H},T).

We denote by RSV(G,v)\operatorname{RSV}(G,v) the multiset of the resistance distances between vv and other vertices of GG, that is, RSV(G,v)={RG(v,u)uV(G){v}}\operatorname{RSV}(G,v)=\{R_{G}(v,u)\mid u\in V(G)\setminus\{v\}\}.

For two nonempty multisets AA and BB, both consisting of real numbers, we define the sum of AA and BB as the following multiset:

A+B={a+baA,bB}.A+B=\{a+b\mid a\in A,b\in B\}.
Lemma 2.6.

[1] Let xx be a cut vertex of a connected graph GG. Let uu and vv be two vertices belonging to different components after xx is deleted from GG. Then RG(u,v)=RG(u,x)+RG(x,v)R_{G}(u,v)=R_{G}(u,x)+R_{G}(x,v).

Proposition 2.7.

Let G1,G2,H1G_{1},G_{2},H_{1} and H2H_{2} be four graphs. Let V(Gi)={gi,1,,gi,n}V(G_{i})=\{g_{i,1},\ldots,g_{i,n}\}, V(Hi)={hi,1,V(H_{i})=\{h_{i,1},\ldots, hi,m}h_{i,m}\}, Si={gi,1}S_{i}=\{g_{i,1}\}, Ti={hi,1}T_{i}=\{h_{i,1}\}, i=(Hi)\mathcal{H}_{i}=(H_{i}), where i=1,2i=1,2, and A={1}A=\{1\}. Let G=G1(S1,A,1,T1)G=G_{1}(S_{1},A,\mathcal{H}_{1},T_{1}) and H=G2(S2,A,2,T2)H=G_{2}(S_{2},A,\mathcal{H}_{2},T_{2}). If RS(G1)=RS(G2)\operatorname{RS}(G_{1})=\operatorname{RS}(G_{2}), RSV(G1,g1,1)=RSV(G2,g2,1)\operatorname{RSV}(G_{1},g_{1,1})=\operatorname{RSV}(G_{2},g_{2,1}), RS(H1)=RS(H2)\operatorname{RS}(H_{1})=\operatorname{RS}(H_{2}) and RSV(H1,h1,1)=RSV(H2,h2,1)\operatorname{RSV}(H_{1},h_{1,1})=\operatorname{RSV}(H_{2},h_{2,1}), then RSV(G,g1,1)=RSV(H,g2,1)\operatorname{RSV}(G,g_{1,1})=\operatorname{RSV}(H,g_{2,1}) and RS(G)=RS(H)\operatorname{RS}(G)=\operatorname{RS}(H).

Proof.

By Lemma 2.6, we have

RS(G)=RS(G1)RS(H1)(RSV(G1,g1,1)+RSV(H1,h1,1)),\displaystyle\operatorname{RS}(G)=\operatorname{RS}(G_{1})\cup\operatorname{RS}(H_{1})\cup(\operatorname{RSV}(G_{1},g_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})),
RS(H)=RS(G2)RS(H2)(RSV(G2,g2,1)+RSV(H2,h2,1)),\displaystyle\operatorname{RS}(H)=\operatorname{RS}(G_{2})\cup\operatorname{RS}(H_{2})\cup(\operatorname{RSV}(G_{2},g_{2,1})+\operatorname{RSV}(H_{2},h_{2,1})),
RSV(G,g1,1)=RSV(G1,g1,1)RSV(H1,h1,1)\displaystyle\operatorname{RSV}(G,g_{1,1})=\operatorname{RSV}(G_{1},g_{1,1})\cup\operatorname{RSV}(H_{1},h_{1,1})

and

RSV(H,g2,1)=RSV(G2,g2,1)RSV(H2,h2,1).\operatorname{RSV}(H,g_{2,1})=\operatorname{RSV}(G_{2},g_{2,1})\cup\operatorname{RSV}(H_{2},h_{2,1}).

The results can be reached by a simple examination.

For two graphs GG and HH, if RS(G)=RS(H)\operatorname{RS}(G)=\operatorname{RS}(H) and there is a vertex gg of GG and a vertex hh of HH, such that RSV(G,g)=RSV(H,h)\operatorname{RSV}(G,g)=\operatorname{RSV}(H,h), then we say that GG and HH hold relation 𝒰\mathcal{U} with respect to vertices gg and hh, denoted by GG-gg-𝒰\mathcal{U}-hh-HH. Sometimes, we say that GG holds relation 𝒰\mathcal{U} with HH instead for simplicity while GG-gg-𝒰\mathcal{U}-hh-HH is abbreviated as G𝒰HG\mathcal{U}H.

Example 2.8.

If T1T_{1} and T2T_{2} are two graphs of 99 verteices as shown in Figure 3, then T1T_{1} holds relation 𝒰\mathcal{U} with T2T_{2}.

By a simple calculation, RS(T1)=RS(T2)={[5]1,[4]3,[154]2,[3]5,[114]4,[2]6,[74]4,[1]7,[34]4}\operatorname{RS}(T_{1})=\operatorname{RS}(T_{2})=\{[5]^{1},[4]^{3},[\frac{15}{4}]^{2},[3]^{5},[\frac{11}{4}]^{4},[2]^{6},[\frac{7}{4}]^{4},[1]^{7},[\frac{3}{4}]^{4}\} and
RSV(T1,t1,3)=RSV(T2,t2,3)={154,114,114,74,74,1,34,34}\operatorname{RSV}(T_{1},t_{1,3})=\operatorname{RSV}(T_{2},t_{2,3})=\{\frac{15}{4},\frac{11}{4},\frac{11}{4},\frac{7}{4},\frac{7}{4},1,\frac{3}{4},\frac{3}{4}\}.

t1,2t_{1,2}t1,3t_{1,3}t1,4t_{1,4}t1,5t_{1,5}t1,6t_{1,6}t1,7t_{1,7}t1,8t_{1,8}t1,9t_{1,9}t1,1t_{1,1}
(a) T1T_{1}
t2,2t_{2,2}t2,1t_{2,1}t2,3t_{2,3}t2,4t_{2,4}t2,5t_{2,5}t2,6t_{2,6}t2,7t_{2,7}t2,8t_{2,8}t2,9t_{2,9}
(b) T2T_{2}
Figure 3: Two graphs T1T_{1} and T2T_{2} holding the relation 𝒰\mathcal{U}.
Proposition 2.9.

Let GG be a graph with vertex set {g1,g2,,gn}\{g_{1},g_{2},\ldots,g_{n}\}, and S={gk1,gk2,,gks}S=\{g_{k_{1}},g_{k_{2}},\ldots,g_{k_{s}}\}, where 1sn1\leq s\leq n and 1k1<<ksn1\leq k_{1}<\cdots<k_{s}\leq n. Let F1,F2,,Ft,H1,H2,,HtF_{1},F_{2},\ldots,F_{t},H_{1},H_{2},\ldots,H_{t} be graphs with FiF_{i}-fi,1f_{i,1}-𝒰\mathcal{U}-hi,1h_{i,1}-HiH_{i}, fi,1V(Fi)f_{i,1}\in V(F_{i}) and hi,1V(Hi)h_{i,1}\in V(H_{i}) for i=1,2,,ti=1,2,\ldots,t. Let =(F1,F2,,Ft)\mathcal{F}=(F_{1},F_{2},\ldots,F_{t}), =(H1,H2,,Ht)\mathcal{H}=(H_{1},H_{2},\ldots,H_{t}), T1={f1,1,,ft,1}T_{1}=\{f_{1,1},\ldots,f_{t,1}\} and T2={h1,1,,ht,1}T_{2}=\{h_{1,1},\ldots,h_{t,1}\}. Let AA be a partition of positive integer tt, where A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\}, 1psn1\leq p\leq s\leq n. Then G(S,A,,T1)G(S,A,\mathcal{F},T_{1}) and G(S,A,,T2)G(S,A,\mathcal{H},T_{2}) have the same resistance spectrum.

Proof.

Since F1,F2,,Ft,H1,H2,,HtF_{1},F_{2},\ldots,F_{t},H_{1},H_{2},\ldots,H_{t} be graphs with FiF_{i}-fi,1f_{i,1}-𝒰\mathcal{U}-hi,1h_{i,1}-HiH_{i} for i=1,2,,ti=1,2,\ldots,t, we have RS(Hi)=RS(Fi),i=1,2,,t\operatorname{RS}(H_{i})=\operatorname{RS}(F_{i}),i=1,2,\ldots,t, and RSV(Hi,hi,1)=RSV(Fi,fi,1)\operatorname{RSV}(H_{i},h_{i,1})=\operatorname{RSV}(F_{i},f_{i,1}). Then by Proposition 2.7, repeatedly, we have

RS(G(S,A,,T1))=RS(G(S,A,,T2)).\operatorname{RS}(G(S,A,\mathcal{F},T_{1}))=\operatorname{RS}(G(S,A,\mathcal{H},T_{2})).

Theorem 2.10.

For any positive integer kk, there exist at least 2k2^{k} graphs with the same resistance spectrum.

Proof.

Let LkL_{k} denote the set of all kk-dimensional row vectors consisting of elements 11 or 22. Clearly, |Lk|=2k|L_{k}|=2^{k}. Let T1T_{1} and T2T_{2} be defined as in Example 2.8. Let Gk,p,q=u1u2upv1v2vkw1w2wqG_{k,p,q}=u_{1}u_{2}\cdots u_{p}v_{1}v_{2}\cdots v_{k}w_{1}w_{2}\cdots w_{q} be a path of length k+p+q1k+p+q-1, where qp+18q\geq p+1\geq 8. Let S={v1,v2,,vk}S=\{v_{1},v_{2},\ldots,v_{k}\} and A={[1]k}A=\{[1]^{k}\}. For any element II in LkL_{k}, let I=(I1,I2,,Ik)I=(I_{1},I_{2},\ldots,I_{k}), =(H1,H2,,Hk)\mathcal{H_{I}}=(H_{1},H_{2},\ldots,H_{k}), where HiH_{i} is isomorphic to TIiT_{I_{i}} and the vertex hi,1h_{i,1} is identical to TIi,3T_{I_{i},3} under some isomorphism θ\theta between HiH_{i} and TIiT_{I_{i}}. Let T={h1,1,h2,1,,ht,1}T=\{h_{1,1},h_{2,1},\ldots,h_{t,1}\} and Gk,p,qI=Gk,p,q(S,A,,T)G_{k,p,q}^{I}=G_{k,p,q}(S,A,\mathcal{H_{I}},T). When k=2,p=7,q=8k=2,p=7,q=8 and I=(1,2)I=(1,2), Gk,p,qIG_{k,p,q}^{I} is shown in Figure 4. Note that Gk,p,qIG_{k,p,q}^{I} has a unique longest path of length k+p+q1k+p+q-1. It follows easily that Gk,p,qIG_{k,p,q}^{I} and Gk,p,qJG_{k,p,q}^{J} are not isomorphic for any two different elements II and JJ of LkL_{k}. By Proposition 2.9, Gk,p,qIG_{k,p,q}^{I} and Gk,p,qJG_{k,p,q}^{J} have the same resistance spectrum. Therefore, we can find 2k2^{k} graphs with the same resistance spectrum.

Figure 4: G2,7,8IG_{2,7,8}^{I}
Definition 2.11 (SS-resistance transitive).

Let GG be a graph with vertex set {g1,g2,,gn}\{g_{1},g_{2},\ldots,g_{n}\}. Let S={gk1,gk2,,gks}S=\{g_{k_{1}},g_{k_{2}},\ldots,g_{k_{s}}\} and T=V(G)ST=V(G)\setminus S, where 3sn3\leq s\leq n and 1k1<<ksn1\leq k_{1}<\cdots<k_{s}\leq n.

Then GG is SS-resistance transitive if the following properties are satisfied:
(1) Let uu and vv be any two vertices in SS. If TT is not an empty set, then for each vertex xx in TT, RG(x,u)=RG(x,v)R_{G}(x,u)=R_{G}(x,v).
(2) For each pair of different vertices uu and vv in SS, the resistance distance between them equal to the same value.

Example 2.12.

Let GG be a complete graph K4K_{4}, GG^{\prime} an empty graph K4¯\overline{K_{4}}, V(G)={g1,g2,g3,g4}V(G)=\{g_{1},g_{2},g_{3},g_{4}\} and V(G)={g1,g2,g3,g4}V(G^{\prime})=\{g_{1}^{\prime},g_{2}^{\prime},g_{3}^{\prime},g_{4}^{\prime}\}. Let S={g1,g2,g3},T={g4},S={g1,g2,g3},T={g4}S=\{g_{1},g_{2},g_{3}\},T=\{g_{4}\},S^{\prime}=\{g_{1}^{\prime},g_{2}^{\prime},g_{3}^{\prime}\},T^{\prime}=\{g_{4}^{\prime}\}. Clearly, R(gi,gj)=12R(g_{i},g_{j})=\frac{1}{2} and R(gi,gj)=+R(g_{i}^{\prime},g_{j}^{\prime})=+\infty for 1ij41\leq i\neq j\leq 4. Thus, GG and GG^{\prime} are SS-resistance transitive and SS^{\prime}-resistance transitive, respectively.

3 Main results

Lemma 3.1.

Let GG be a SS-resistance transitive graph with V(G)={g1,g2,,gn1}V(G)=\{g_{1},g_{2},\ldots,g_{n_{1}}\}, S={g1,g2,,gs}S=\{g_{1},g_{2},\ldots,g_{s}\} and T={gs+1,gs+2,,gn1}T=\{g_{s+1},g_{s+2},\ldots,g_{n_{1}}\}. There exists a constant cc such that for any two vertices s1s2S,s_{1}\neq s_{2}\in S, RG(s1,s2)=cR_{G}(s_{1},s_{2})=c. Let H1,H2,,HtH_{1},H_{2},\ldots,H_{t} be tt graphs with V(Hi)={hi,1,hi,2,,hi,ni}V(H_{i})=\{h_{i,1},h_{i,2},\ldots,h_{i,n_{i}}\} and Hi𝒰HjH_{i}\mathcal{U}H_{j} for i,j{1,2,,t}i,j\in\{1,2,\ldots,t\}. Assume RSV(Hi,hi,1)=RSV(Hj,hj,1)\operatorname{RSV}(H_{i},h_{i,1})=\operatorname{RSV}(H_{j},h_{j,1}). Let =(H1,H2,,Ht)\mathcal{H}=(H_{1},H_{2},\ldots,H_{t}) and T1={h1,1,h2,1,,ht,1}T_{1}=\{h_{1,1},h_{2,1},\ldots,h_{t,1}\}. Let A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\} be a partition of a positive integer t,t, where psp\leq s.

Then the resistance spectrum of G(S,A,,T1)G(S,A,\mathcal{H},T_{1}) is

RS(G)tRS(H1)\displaystyle\operatorname{RS}(G)\bigcup t\cdot\operatorname{RS}(H_{1}) {[RSV(H1,h1,1)+RSV(H1,h1,1)]i=1pai(ai1)2}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})]^{\sum_{i=1}^{p}\frac{a_{i}(a_{i}-1)}{2}}\}
{[RSV(H1,h1,1)+RSV(H1,h1,1)+c]1i<jpaiaj}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})+c]^{\sum_{1\leq i<j\leq p}a_{i}a_{j}}\}
{[RSV(H1,h1,1)+c]tst}{[RG(gi,g1)+RSV(H1,h1,1)]ti=s+1,,n}.\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+c]^{ts-t}\}\bigcup\left\{\left[R_{G}(g_{i},g_{1})+\operatorname{RSV}(H_{1},h_{1,1})\right]^{t}\mid i=s+1,\ldots,n\right\}.
Proof.

The proof is obvious.

Theorem 3.2.

Let GG be a SS-resistance transitive graph with V(G)={g1,g2,,gn1}V(G)=\{g_{1},g_{2},\ldots,g_{n_{1}}\}, S={g1,g2,,gs}S=\{g_{1},g_{2},\ldots,g_{s}\} and T={gs+1,gs+2,,gn1}T=\{g_{s+1},g_{s+2},\ldots,g_{n_{1}}\}. There exists a constant cc such that for any two vertices s1s2S,s_{1}\neq s_{2}\in S, RG(s1,s2)=c.R_{G}(s_{1},s_{2})=c. Let H1,H2,,HtH_{1},H_{2},\ldots,H_{t} be tt graphs with V(Hi)={hi,1,hi,2,,hi,ni}V(H_{i})=\{h_{i,1},h_{i,2},\ldots,h_{i,n_{i}}\} and Hi𝒰HjH_{i}\mathcal{U}H_{j} for i,j{1,2,,t}i,j\in\{1,2,\ldots,t\}. Assume RSV(Hi,hi,1)=RSV(Hj,hj,1)\operatorname{RSV}(H_{i},h_{i,1})=\operatorname{RSV}(H_{j},h_{j,1}). Let =(H1,H2,,Ht)\mathcal{H}=(H_{1},H_{2},\ldots,H_{t}) and T1={h1,1,h2,1,T_{1}=\{h_{1,1},h_{2,1},\ldots,
ht,1}h_{t,1}\}. Let A={a1,a2,,ap}A=\{a_{1},a_{2},\ldots,a_{p}\} and B={b1,b2,,bq}B=\{b_{1},b_{2},\ldots,b_{q}\} be two partitions of a positive integer tt, where p,qsp,q\leq s. If AA and BB are of equal sums of squares, then graphs G(S,A,,T1)G(S,A,\mathcal{H},T_{1}) and G(S,B,,T1)G(S,B,\mathcal{H},T_{1}) have the same resistance spectrum.

Proof.

By Lemma 3.1, we have the resistance spectrum of G(S,A,,T1)G(S,A,\mathcal{H},T_{1}) is

RS(G)tRS(H1)\displaystyle\operatorname{RS}(G)\bigcup t\cdot\operatorname{RS}(H_{1}) {[RSV(H1,h1,1)+RSV(H1,h1,1)]i=1pai(ai1)2}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})]^{\sum_{i=1}^{p}\frac{a_{i}(a_{i}-1)}{2}}\}
{[RSV(H1,h1,1)+RSV(H1,h1,1)+c]1i<jpaiaj}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})+c]^{\sum_{1\leq i<j\leq p}a_{i}a_{j}}\}
{[RSV(H1,h1,1)+c]tst}{[RG(gi,g1)+RSV(H1,h1,1)]ti=s+1,,n}.\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+c]^{ts-t}\}\bigcup\left\{\left[R_{G}(g_{i},g_{1})+\operatorname{RSV}(H_{1},h_{1,1})\right]^{t}\mid i=s+1,\ldots,n\right\}.

and the resistance spectrum of G(S,B,,T1)G(S,B,\mathcal{H},T_{1}) is

RS(G)tRS(H1)\displaystyle\operatorname{RS}(G)\bigcup t\cdot\operatorname{RS}(H_{1}) {[RSV(H1,h1,1)+RSV(H1,h1,1)]i=1qbi(bi1)2}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})]^{\sum_{i=1}^{q}\frac{b_{i}(b_{i}-1)}{2}}\}
{[RSV(H1,h1,1)+RSV(H1,h1,1)+c]1i<jqbibj}\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+\operatorname{RSV}(H_{1},h_{1,1})+c]^{\sum_{1\leq i<j\leq q}b_{i}b_{j}}\}
{[RSV(H1,h1,1)+c]tst}{[RG(gi,g1)+RSV(H1,h1,1)]ti=s+1,,n}.\displaystyle\bigcup\{[\operatorname{RSV}(H_{1},h_{1,1})+c]^{ts-t}\}\bigcup\left\{\left[R_{G}(g_{i},g_{1})+\operatorname{RSV}(H_{1},h_{1,1})\right]^{t}\mid i=s+1,\ldots,n\right\}.

Since AA and BB are of equal sums of squares, we have

i=1pai(ai1)2=i=1qbi(bi1)2\sum_{i=1}^{p}\frac{a_{i}(a_{i}-1)}{2}={\sum_{i=1}^{q}\frac{b_{i}(b_{i}-1)}{2}}

and

1i<jpaiaj=1i<jqbibj.\sum_{1\leq i<j\leq p}a_{i}a_{j}={\sum_{1\leq i<j\leq q}b_{i}b_{j}}.

Thus graphs G(S,A,,T1)G(S,A,\mathcal{H},T_{1}) and G(S,B,,T1)G(S,B,\mathcal{H},T_{1}) have the same resistance spectrum.

Example 3.3.

Let =(H1,H2,,H6)\mathcal{H}=(H_{1},H_{2},\ldots,H_{6}), where HiH_{i} is a path of length 11 with V(Hi)={hi,1,hi,2}V(H_{i})=\{h_{i,1},h_{i,2}\} for i=1,2,,6i=1,2,\ldots,6. Let T={h1,1,h2,1,,h6,1}T=\{h_{1,1},h_{2,1},\ldots,h_{6,1}\}, A1={3,3},A2={4,1,1}A_{1}=\{3,3\},A_{2}=\{4,1,1\}. A1A_{1} and A2A_{2} are of equal sums of squares. Let S1=K3¯S_{1}=\overline{K_{3}} and S2=K3S_{2}=K_{3}. Clearly, S1S_{1} and S2S_{2} are V(S1)V(S_{1})-resistance transitive and V(S2)V(S_{2})-resistance transitive, respectively. Consequently, the graphs S1(V(S1),A1,,T)S_{1}(V(S_{1}),A_{1},\mathcal{H},T) and S1(V(S1),A2,,T)S_{1}(V(S_{1}),A_{2},\mathcal{H},T) have the same resistance spectrum, as shown in Pair 1 of Figure 1; the graphs S2(V(S2),A1,,T)S_{2}(V(S_{2}),A_{1},\mathcal{H},T) and S2(V(S2),A2,,T)S_{2}(V(S_{2}),A_{2},\mathcal{H},T) have the same resistance spectrum, as depicted in Pair 2 of Figure 1.

Proposition 3.4.

Let GG be any graph of order nn, XX be a subset of V(G)V(G), and SS be a complete graph KrK_{r} or an empty graph Kr¯\overline{K_{r}}. HH is obtained from GG and SS by join every vertex of XX to every vertex of SS. Then HH is V(S)V(S)-resistance transitive graph.

Proof.

The proof is obvious and omitted.

Theorem 3.5.

If n10n\geq 10, then there are at least 2(n9)p(n9)2(n-9)p(n-9) pairs of graphs of order nn with the same resistance spectrum, where p(n9)p(n-9) is the number of partitions of the integer n9n-9.

Proof.

Set t=n9t=n-9. Let C1,C2,,Cp(t)C_{1},C_{2},\ldots,C_{p(t)} be all partitions of tt with Ci={ci,1,ci,2,,ci,qi}C_{i}=\{c_{i,1},c_{i,2},\ldots,c_{i,q_{i}}\}, where ci,1ci,2ci,qic_{i,1}\geq c_{i,2}\geq\cdots\geq c_{i,q_{i}}, let GiG_{i} be a graph with tt vertices, where the vertex set is {gi,1,gi,2,,gi,t}\{g_{i,1},g_{i,2},\ldots,g_{i,t}\}, i{1,2,,p(t)}i\in\{1,2,\ldots,p(t)\}. The edges of GiG_{i} are defined as follows: The first ci,1c_{i,1} vertices form a complete subgraph, then the next ci,2c_{i,2} vertices form a complete subgraph, and so on, the last ci,qic_{i,q_{i}} vertices form a complete subgraph finally. Let Xi,j={gi,1,gi,2,,gi,j}X_{i,j}=\{g_{i,1},g_{i,2},\ldots,g_{i,j}\}, S1=K3S_{1}=K_{3} and S2=K3¯S_{2}=\overline{K_{3}}. Let Qi,j,kQ_{i,j,k} be a graph obtained from GiG_{i} and SkS_{k} by join every vertex of Xi,jX_{i,j} to every vertex of SkS_{k}, where i{1,2,,p(t)}i\in\{1,2,\ldots,p(t)\}, j{1,2,,t}j\in\{1,2,\ldots,t\} and k{1,2}k\in\{1,2\}. Thus, by Proposition 3.4, Qi,j,kQ_{i,j,k} is V(Sk)V(S_{k})-resistance transitive graph.

Let =(H1,H2,,H6)\mathcal{H}=(H_{1},H_{2},\ldots,H_{6}), where HiH_{i} is a path of length 11 with V(Hi)={hi,1,hi,2}V(H_{i})=\{h_{i,1},h_{i,2}\} for i=1,2,,6i=1,2,\ldots,6. Let T={h1,1,h2,1,,h6,1}T=\{h_{1,1},h_{2,1},\ldots,h_{6,1}\}. A1:={3,3}A_{1}:=\{3,3\} and A2:={4,1,1}A_{2}:=\{4,1,1\} are two different partitions of a positive integer 66, since A1A_{1} and A2A_{2} are of equal sums of squares, by Theorem 3.2, graphs Qi,j,k(V(Sk),A1,,T)Q_{i,j,k}(V(S_{k}),A_{1},\mathcal{H},T) and Qi,j,k(V(Sk),A2,,T)Q_{i,j,k}(V(S_{k}),A_{2},\mathcal{H},T) have the same resistance spectrum. Note that there exists a unique connected component QQ in Qi,j,k(V(Sk),Al,,T)Q_{i,j,k}(V(S_{k}),A_{l},\mathcal{H},T) satisfying the conditions: QQ contains at least 66 vertices with degree 11, and there exist three vertices with degree 11 in QQ that share a common neighbor. It follows easily that Qi1,j1,k1(V(Sk1),Al1,,T)Q_{i_{1},j_{1},k_{1}}(V(S_{k_{1}}),A_{l_{1}},\mathcal{H},T) and Qi2,j2,k2(V(Sk2),Al2,,T)Q_{i_{2},j_{2},k_{2}}(V(S_{k_{2}}),A_{l_{2}},\mathcal{H},T) are not isomorphic if i1=i2i_{1}=i_{2}, j1=j2j_{1}=j_{2}, k1=k2k_{1}=k_{2}, and l1=l2l_{1}=l_{2} are not all simultaneously satisfied.

According to the multiplication principle, there are at least 2tp(t)2tp(t) pair graphs with the same resistance spectrum. Therefore, when n10n\geq 10, there are at least 2(n9)p(n9)2\cdot(n-9)p(n-9) pairs of graphs with the same resistance spectrum.

Example 3.6.

There exist 88 pairs of graphs of order 1111 with the same resistance spectrum, as shown in Figures 612. Here Qi,j,k,l=Qi,j,k(V(Sk),Al,,T)Q_{i,j,k,l}=Q_{i,j,k}(V(S_{k}),A_{l},\mathcal{H},T), where Qi,j,k(V(Sk),Al,,T)Q_{i,j,k}(V(S_{k}),A_{l},\mathcal{H},T) is defined as in Theorem 3.5 for i,j,k,l{1,2}i,j,k,l\in\{1,2\}.

(a) Q1,1,1,1Q_{1,1,1,1}
(b) Q1,1,1,2Q_{1,1,1,2}
Figure 5: Q1,1,1,1Q_{1,1,1,1} and Q1,1,1,2Q_{1,1,1,2}
(c) Q1,2,1,1Q_{1,2,1,1}
(d) Q1,2,1,2Q_{1,2,1,2}
Figure 6: Q1,2,1,1Q_{1,2,1,1} and Q1,2,1,2Q_{1,2,1,2}
(a) Q1,1,2,1Q_{1,1,2,1}
(b) Q1,1,2,2Q_{1,1,2,2}
Figure 7: Q1,1,2,1Q_{1,1,2,1} and Q1,1,2,2Q_{1,1,2,2}
(c) Q1,2,2,1Q_{1,2,2,1}
(d) Q1,2,2,2Q_{1,2,2,2}
Figure 8: Q1,2,2,1Q_{1,2,2,1} and Q1,2,2,2Q_{1,2,2,2}
(a) Q2,1,1,1Q_{2,1,1,1}
(b) Q2,1,1,2Q_{2,1,1,2}
Figure 9: Q2,1,1,1Q_{2,1,1,1} and Q2,1,1,2Q_{2,1,1,2}
(c) Q2,2,1,1Q_{2,2,1,1}
(d) Q2,2,1,2Q_{2,2,1,2}
Figure 10: Q2,2,1,1Q_{2,2,1,1} and Q2,2,1,2Q_{2,2,1,2}
(a) Q2,1,2,1Q_{2,1,2,1}
(b) Q2,1,2,2Q_{2,1,2,2}
Figure 11: Q2,1,2,1Q_{2,1,2,1} and Q2,1,2,2Q_{2,1,2,2}
(c) Q2,2,2,1Q_{2,2,2,1}
(d) Q2,2,2,2Q_{2,2,2,2}
Figure 12: Q2,2,2,1Q_{2,2,2,1} and Q2,2,2,2Q_{2,2,2,2}

4 Conclusion

In this paper, we propose a method for constructing graphs with the same resistance spectrum. We also present a lower bound for the number of pairs of graphs which have the same resistance spectrum among graphs with n(10)n(\geq 10) vertices. Our method is derived from observing pairs 1 and 2 in Figure 1. By carefully examining the other pairs of graphs in Figure 1, it is possible to find more methods for construting non-isomorphic graphs with the same resistance spectrum.

References

  • [1] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1) (1993) 81–95.
  • [2] L. Baxter, Counterexamples wanted–graph isomorphism & resistances, sci.math.research (Apr. 22, 1999).
  • [3] L. Baxter, Counterexample wanted for graph isomorphism conjecture, USENET: comp.theory (Apr. 26, 1999).
  • [4] J. Rickard, Counterexample wanted for graph isomorphism conjecture, USENET: comp.theory (Apr. 23, 1999).
  • [5] E. W. Weisstein, Resistance-equivalent graphs, mathworld—a wolfram web resource (Feb. 19, 2021).
  • [6] J. A. Bondy, U. S. R. Murty, Graph theory, Grad. Texts In Math. 244, Springer-Verlag, New York, 2008.