This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Graphical Calculus for Quantum Computing with Multiple Qudits using Generalized Clifford Algebras

Robert Lin
Department of Physics
Harvard University
Cambridge, MA 02138
Abstract

In this work, we develop a graphical calculus for multi-qudit computations with generalized Clifford algebras, using the algebraic framework developed in [1]. We build our graphical calculus out of a fixed set of graphical primitives defined by algebraic expressions constructed out of elements of a given generalized Clifford algebra, a graphical primitive corresponding to the ground state, and also graphical primitives corresponding to projections onto the ground state of each qudit. We establish many properties of the graphical calculus using purely algebraic methods, including a novel algebraic proof of a Yang-Baxter equation and a construction of a corresponding braid group representation. Our algebraic proof, which applies to arbitrary qudit dimension, also enables a resolution of an open problem in [2] on the construction of self-dual braid group representations for even qudit dimension. We also derive several new identities for the braid elements, which are key to our proofs. In terms of physics, we connect these braid identities to physics by showing the presence of a conserved charge. Furthermore, we demonstrate that in many cases, the verification of involved vector identities can be reduced to the combinatorial application of two basic vector identities. We show how to explicitly compute various vector states in an efficient manner using algebraic methods. Additionally, in terms of quantum computation, we demonstrate that it is feasible to envision implementing the braid operators for quantum computation, by showing that they are 2-local operators. In fact, these braid elements are almost Clifford gates, for they normalize the generalized Pauli group up to an extra factor ζ\zeta, which is an appropriate square root of a primitive root of unity.

\newlength\absize

2020 Mathematics Subject Classification : 81P68, 81R05.

Keywords— Generalized Clifford algebras, quantum computation, Yang-Baxter equation, and braid group.

1 Introduction

The following physics questions motivate this article: Can we learn new things about quantum entanglement by studying a graphical calculus for the generalized Clifford algebras111The earliest paper introducing generalized Clifford algebras appears to be [3] in 1952. Other early work included [4] in 1964, [5] in 1966, and [6] in 1967.? In this setting, braiding operators defined using the generalized Clifford algebra are unitary operations that entangle neighboring qudits (multi-dimensional vector spaces). Thus, when we apply a sequence of braiding operators to the ground (or vacuum) state, we expect different kinds of entangled states to result, depending on the sequence and on the braidings in the sequence. Is there an easy way to classify the resulting kinds of entanglement using the graphical calculus? How does the classification depend on the number of qudits involved?

To set the stage for a treatment of these questions in a systematic manner, a algebraic framework was presented in [1]. While the algebraic framework is in it of itself sufficient for doing calculations and proving identities of various sorts, it turns out to be convenient to consider diagrammatic representations in order to obtain intuition about what kind of algebraic identities might be true. In contrast to the work of [7], this article will develop the graphical calculus along completely algebraic lines. A new result achieved in this article is an algebraic proof that a particular braid operator satisfies the Yang-Baxter equation, valid over all N2N\geq 2, which resolves an open question of Cobanera and Ortiz [2] about unitary self-dual braid group solutions for NN even.

To enable users of the graphical calculus we present to proceed in an entirely algebraic and rigorous way, the following flowchart is presented:

  1. 1.

    Write down an algebraic expression.

  2. 2.

    Convert it to one of the prescribed graphical forms.

  3. 3.

    Guess what graphical identities might be true for the graphical expression.

  4. 4.

    Write down conjectural algebraic identities corresponding to the conjectured graphical identities.

  5. 5.

    Prove the conjectured identities algebraically using explicit calculation with the algebraic framework for the generalized Clifford algebras, or using already proven algebraic identities.

  6. 6.

    Repeat.

It is quite remarkable how far one can get with this approach, once the initial difficulties of getting algebraic identities is overcome. In particular, we show that the algebraic framework, coupled with some new technical innovations of ours, enables us to show algebraically for the first time why one can treat the braiding operator as a braid in the conventional sense (namely, it satisfies a Yang-Baxter equation222One important conceptual and technical point is that the Yang-Baxter equation [8], or rather, a braiding in the tensor categorical sense[9], appears to primarily refer to a morphism from AA to AAA\otimes A, where AA is an algebra, which embeds in AAAA\otimes A\otimes A. The equation we will prove will have structural similarity to the Yang-Baxter equation, but to truly show that the equation is in fact a Yang-Baxter equation, it is necessary to show that the braid is a 2-local operator. This fact will be proven later in the section on applications. The reason for this subtlety is that generalized Clifford algebras have an additional time-ordering [7] when one wants to “tensor” elements together, and hence there is no global tensor product for the algebra. This additional structure could be useful in its own right.).

For logical consistency, the reader should consider the graphical calculus as simply a transcription of the algebraic framework into a combination of a few basic building blocks, which aids in intuition. While it may be tempting to imagine that the diagrams mean something, the reader will do well to remember that all our proofs are purely algebraic, and the diagrams are just (very helpful) visual aids.

In terms of the graphical representation, the diagrams allowed are a much smaller subset than as those of [7], in order to ensure unambiguous identification of a graphical diagram (via vertical decomposition) with an algebraic expression. In line with the requisite of unambiguity of graphical-to-algebraic correspondence, no independent interpretation is made of the subcomponents of the diagrams. The latter constraint imposed by our work makes its necessary to specify in advance all the possible configurations one may encounter in a full diagram, and the corresponding algebraic expressions. This specification is accomplished using the tool of diagrammatic composition, from the theory of Temperley-Lieb algebras [10], applied to a particular (small) set of graphical primitives which are specified in their completeness.

From a physical perspective, while it has been previously thought [11] that the graphical representation of generalized Clifford algebras is akin to Feynman diagrams, in fact the particular graphical representation considered in this article is more accurately a description of causal diagrams, which arise in the old-fashioned perturbation theory approach to quantum field theory. Thus, the diagrams are more in the spirit of Schwinger’s approach to quantum field theory than Feynman’s, as causality was at the heart of Julian Schwinger’s approach to quantum electrodynamics [12]. On a technical level, whereas the Feynman diagrams of Richard Feynman emphasize propagators in momentum space, Schwinger’s approach emphasized Green’s functions, which are correlation functions in position space.

This correspondence of the graphical representation with a causal description is ensured by the faithful transcription of diagrams into algebraic expressions. In other words, the identification of the time (vertical) axis with the order of operator composition from right to left has been elevated to the role of a physical constraint on the graphical representation. In this sense, the graphical identities that are proven in this article for vectors can be interpreted as showing that certain different unitary processes, when acting on a particular initial state, yield the same final state.

Overall, the results of this article may be summarized as the following: A graphical calculus is presented for multi-qudit computations with generalized Clifford algebras, using the algebraic framework developed in [1]. The graphical calculus is built out of a fixed set of graphical primitives defined by algebraic expressions constructed out of elements of a given generalized Clifford algebra, a graphical primitive corresponding to the ground state, and also graphical primitives corresponding to projections onto the ground state of each qudit. Many graphical properties of the graphical calculus are proven using purely algebraic methods (as well as extended to algebraic identities which are not captured by the graphical representation), including a novel algebraic proof of a Yang-Baxter equation and a construction of a corresponding braid group representation. Our algebraic proof, which applies to arbitrary qudit dimension, also enables a resolution of an open problem in [2] on the construction of self-dual braid group representations for even qudit dimension. Several new identities are derived for the braid elements, including an important relation for bringing a charge over a braid, which are key to the proofs. In terms of physics, these braid identities reflect the presence of a conserved charge. Furthermore, we demonstrate that in many cases, the verification of involved vector identities can be reduced to the combinatorial application of two basic vector identities. We show how to explicitly compute various vector states in an efficient manner using algebraic methods. Additionally, in terms of quantum computation, we demonstrate that it is feasible to envision implementing the braid operators for quantum computation, by showing that they are 2-local operators. In fact, these braid elements are almost Clifford gates, for they normalize the generalized Pauli group up to an extra factor ζ\zeta, which is an appropriate square root of a primitive root of unity.

2 The Graphical Calculus

2.1 Building Blocks

The philosophy followed in the graphical calculus we present is that the diagrams drawn are indivisible. No a priori meaning is assigned to the subcomponents of the diagrams, i.e. a single strand, or a single cap, or a single cup. The philosophy adopted is that the algebraic framework of [1] ought to be robust enough that one can derive a posteriori a large number of algebraic relations, and therefore by proving more and more relations, the initially content-free diagrams acquire new, emergent properties. On a technical level, this approach leads to a more basic construction of a graphical calculus which is directly built out of the elements of the generalized Clifford algebra, which is justified by the axiomatic framework.

In devising the graphical representation, we need to consider at the outset what kind of diagrams should be allowed. From the perspective of mathematical rigor, if one proceeds on entirely algebraic grounds, and it is decided to base the manipulation of graphical diagrams on corresponding algebraic identities, it becomes necessary that each graphical diagram have a unique algebraic expression. Note that the word “expression” is used, as opposed to “value.” Two expressions may evaluate to the same algebraic element in the generalized Clifford algebra. Likewise, two graphical diagrams may be different in the sense that they correspond to different algebraic expressions, but equal in the sense that the expressions they correspond to can be shown to be algebraically equal (under the relations of the generalized Clifford algebra and the two axioms).

To be mathematically precise, one has to specify in what sense one means “uniqueness.” In this article, by uniqueness of the algebraic expression corresponding to a diagram, it is meant that the formal algebraic expression (forgetting all properties of the generalized Clifford algebra, except associativity, the property that a(bc)=(ab)ca(bc)=(ab)c for any elements a,b,ca,b,c of the algebra) obtained from the diagram is invariant under vertical decomposition of the diagram, up to associativity. Thus, the graphical primitives are carefully chosen to guarantee uniqueness of an operator correspondence beyond diagrams and equations, a correspondence which is compatible with the vertical decomposition of diagrams. Adhering to this dictum results in a set of allowed diagrams that is much smaller than that of [7].

In previous work [1], two axioms were presented as a way to abstract certain high-level properties of the generalized Clifford algebras. It was shown that these 2 axioms are satisfied by an explicit construction. These axioms will now be converted into graphical form. As before, let us fix NN a positive integer greater than 1, nn a positive integer at least 1, and consider the generalized Clifford algebra 𝒞2n(N)\mathcal{C}_{2n}^{(N)} generated by c1c_{1}, c2c_{2}, c3c_{3}, \ldots , c2nc_{2n} subject to cicj=qcjcic_{i}c_{j}=qc_{j}c_{i} if i<ji<j, and ciN=1c_{i}^{N}=1 for all ii. Here, q=exp(2πi/N)q=\exp(2\pi i/N) is a primitive NNth root of unity. When N=2N=2, one recovers the Clifford algebra with 2n2n generators. For our purposes, we will also need to define ζ\zeta satisfying ζ2=q\zeta^{2}=q and ζN2=1\zeta^{N^{2}}=1 according to the following lemma.

Lemma 2.1.

Let q=exp(2πi/N)q=\exp(2\pi i/N). If NN is odd, ζ=exp(πi/N)\zeta=-\exp(\pi i/N) is the only square root of qq satisfying ζN2=1\zeta^{N^{2}}=1. If NN is even, setting ζ\zeta to be either square root of qq will satisfy ζN2=1\zeta^{N^{2}}=1.

Let us first define a series of graphical primitives. These graphical primitives are the only allowed graphical elements in our graphical representation. Any diagram encoded using this set of graphical primitives must be specified by a sequence of graphical primitives. One may think of each diagram as a hieroglyph in an alphabet of hieroglyphs, and the sequence of hieroglyph as running from top to bottom. (This corresponds to the composition of operators, in which, in terms of the corresponding algebraic objects, the corresponding algebraic expression are given by a sequence of operations running from right to left.)

Fix δ=N>0\delta=\sqrt{N}>0. The following graphical primitives are defined in terms of the distinguished ground state (satisfying the two axioms) via:

Definition 2.2.
   :=δn/2|Ωn\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-27.23003pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{-22.28775pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{-27.03003pt}\pgfsys@lineto{0.0pt}{-22.28775pt}\pgfsys@curveto{0.0pt}{-17.04976pt}{4.24611pt}{-12.80365pt}{9.4841pt}{-12.80365pt}\pgfsys@curveto{14.72209pt}{-12.80365pt}{18.9682pt}{-17.04976pt}{18.9682pt}{-22.28775pt}\pgfsys@lineto{18.96864pt}{-27.03003pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-27.23003pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{-22.28775pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{-27.03003pt}\pgfsys@lineto{0.0pt}{-22.28775pt}\pgfsys@curveto{0.0pt}{-17.04976pt}{4.24611pt}{-12.80365pt}{9.4841pt}{-12.80365pt}\pgfsys@curveto{14.72209pt}{-12.80365pt}{18.9682pt}{-17.04976pt}{18.9682pt}{-22.28775pt}\pgfsys@lineto{18.96864pt}{-27.03003pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-27.23003pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{-22.28775pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{-27.03003pt}\pgfsys@lineto{0.0pt}{-22.28775pt}\pgfsys@curveto{0.0pt}{-17.04976pt}{4.24611pt}{-12.80365pt}{9.4841pt}{-12.80365pt}\pgfsys@curveto{14.72209pt}{-12.80365pt}{18.9682pt}{-17.04976pt}{18.9682pt}{-22.28775pt}\pgfsys@lineto{18.96864pt}{-27.03003pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=\delta^{n/2}\ket{\Omega}^{\otimes n} (2.1)
   :=δn/2Ω|n\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower 18.76866pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{33.19502pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@curveto{0.0pt}{23.21477pt}{4.24611pt}{18.96866pt}{9.4841pt}{18.96866pt}\pgfsys@curveto{14.72209pt}{18.96866pt}{18.9682pt}{23.21477pt}{18.9682pt}{28.45276pt}\pgfsys@lineto{18.96864pt}{33.19502pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower 18.76866pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{33.19502pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@curveto{0.0pt}{23.21477pt}{4.24611pt}{18.96866pt}{9.4841pt}{18.96866pt}\pgfsys@curveto{14.72209pt}{18.96866pt}{18.9682pt}{23.21477pt}{18.9682pt}{28.45276pt}\pgfsys@lineto{18.96864pt}{33.19502pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-4.26773pt}{ \leavevmode\hbox to19.37pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower 18.76866pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{33.19502pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@curveto{0.0pt}{23.21477pt}{4.24611pt}{18.96866pt}{9.4841pt}{18.96866pt}\pgfsys@curveto{14.72209pt}{18.96866pt}{18.9682pt}{23.21477pt}{18.9682pt}{28.45276pt}\pgfsys@lineto{18.96864pt}{33.19502pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=\delta^{n/2}\bra{\Omega}^{\otimes n} (2.2)
Definition 2.3.
  a :=c2k1a\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\!\raisebox{-8.5359pt}{ \leavevmode\hbox to20.4pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 20.20233pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.86932pt}{19.1868pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=c_{2k-1}^{a} (2.3)
  b :=c2kb\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\;\raisebox{-8.5359pt}{ \leavevmode\hbox to15.16pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.88809pt}{17.86736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=c_{2k}^{b}\;\;\; (2.4)

a,b.\forall a,b\in\mathbb{Z}. Here we mean for the label aa to be placed immediately left of the 2k12k-1-th strand, and the label bb to be placed immediately left of the 2k2k-th strand. There are 2n2n total strands in each diagram.

We also define for completion that

   :=1\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=1\qquad\; (2.5)

Note that the identity primitive composed with itself “is” itself, graphically, which is consistent with its definition as being equal to 1. Similarly, the identity primitive composed (in either order) with the primitives for the powers of the generators ckc_{k} again yields those same primitives. In this sense, the diagrammatic definitions are well-behaved.

Definition 2.4.
    :=δEk\raisebox{-8.5359pt}{ \leavevmode\hbox to14.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-14.22636pt}{ \leavevmode\hbox to19.37pt{\vbox to35.46pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{33.19502pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@curveto{0.0pt}{23.21477pt}{4.24611pt}{18.96866pt}{9.4841pt}{18.96866pt}\pgfsys@curveto{14.72209pt}{18.96866pt}{18.9682pt}{23.21477pt}{18.9682pt}{28.45276pt}\pgfsys@lineto{18.96864pt}{33.19502pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to14.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=\delta E_{k} (2.6)

Here we mean for the “cup-cap” combination to be replacing the 2k12k-1 and 2k2kth strands.333In this respect, in our graphical calculus, we do not allow for the cup-cap combination which is prescribed in [7], i.e. we don’t allow not-in-place placement, i.e. on the 2k2k and 2k+12k+1th strands, which loosely speaking, straddles different qudits. There are 2n2n strands in total.

Definition 2.5.

We also define a graphical primitive, which we call the positive braid on strands ll and l+1l+1, for l=1,2,,2n1l=1,2,\ldots,2n-1:

   :=b12\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{12}\; (2.7)
    :=b23\raisebox{-8.5359pt}{ \leavevmode\hbox to0.4pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to0.4pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{23}\; (2.8)
   :=bk,k+1\qquad\;\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{k,k+1}\; (2.9)
  :=b2n1,2n\quad\;\,\,\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\cdot\cdot\;\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{2n-1,2n}\,\, (2.10)

which defines 2n12n-1 different braid operators.

We also define graphical primitives for the corresponding negative braids:

   :=b21\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{21}\; (2.11)
    :=b32\raisebox{-8.5359pt}{ \leavevmode\hbox to0.4pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{-8.5359pt}{ \leavevmode\hbox to0.4pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{32}\; (2.12)
   :=bk+1,k\qquad\;\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{k+1,k}\; (2.13)
  :=b2n,2n1.\quad\;\,\,\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\cdot\cdot\cdot\cdot\;\raisebox{-8.5359pt}{ \leavevmode\hbox to28.85pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;:=b_{2n,2n-1}.\,\, (2.14)

The algebraic definition of these braid elements is given by

bkl:=ω1/2Ni=0N1ckiclib_{kl}:=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i} (2.15)

and

blk:=ω1/2Ni=0N1clickib_{lk}:=\frac{\omega^{-1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{l}^{i}c_{k}^{-i} (2.16)

for k<lk<l in {1,2,,2n}\{1,2,\ldots,2n\}. Here,

ω:=1Ni=0N1ζi2.\omega:=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{i^{2}}. (2.17)

Note that this is a general definition of the braid element, which goes beyond the diagrams above, since we allow for |kl|1|k-l|\neq 1, which includes the local (nearest-neighbor) braid operators as a special case.

Remark 2.6.

ω\omega has modulus 1 (see [7] for a proof), implying that

bkl=blkb_{kl}^{\dagger}=b_{lk} (2.18)

for klk\neq l.

Thus, in terms of terminology, we will refer to the positive braids as just braids, and the negative braids as adjoint braids.

2.2 Graphical Representation of the Axioms

Let us recall the axioms of [1]:

Axiom 1: Let 𝒱Nn()\mathcal{V}^{N^{n}}(\mathbb{C}) be a complex vector space upon which the generalized Clifford algebra is realized as unitary NnN^{n} by NnN^{n} matrix operators. Assume that there exists a state (which we call the ground state) which is a tensor of states |Ω\ket{\Omega}, |Ωn\ket{\Omega}^{\otimes n}, that satisfies the following algebraic identity:

c2k1|Ωn=ζc2k|Ωnc_{2k-1}\ket{\Omega}^{\otimes n}=\zeta\,c_{2k}\ket{\Omega}^{\otimes n}

for all k=1,2,,nk=1,2,\ldots,n, where ζ\zeta is a square root of qq such that ζN2=1\zeta^{N^{2}}=1.

In addition, for each qudit, the projector EkE_{k} onto the kkth qudit’s ground state |Ω\ket{\Omega} is assumed to satisfy

c2k1Ek=ζc2kEk.c_{2k-1}E_{k}=\zeta\,c_{2k}E_{k}.

Axiom 2: Scalar product: The set {c2a1c4a2c2nan|Ωn:ai=0,1,,N1}\{c_{2}^{a_{1}}c_{4}^{a_{2}}\ldots c_{2n}^{a_{n}}\ket{\Omega}^{\otimes n}:a_{i}=0,1,\ldots,N-1\} is an orthonormal basis for 𝒱Nn()\mathcal{V}^{N^{n}}(\mathbb{C}).

These axioms are now shown to give rise to basic graphical identities. The algebraic identities

cicj=qcjcic_{i}c_{j}=qc_{j}c_{i}

for i<ji<j,

ciN=1c_{i}^{N}=1

for all i=1,2,,2ni=1,2,\ldots,2n, as well as

c2k1Ek=ζc2kEkc_{2k-1}E_{k}=\zeta c_{2k}E_{k}

tell us that

11.... .... 11 == qq 11.... .... 11 (2.19)

i.e. when the primitive for cjc_{j} precedes that for cic_{i}, swapping the order of primitives yields a factor of qq, for i<ji<j, and also that

 .. 

N

..
 
= .. 

N

..
 
= .. .. 
\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to39.32pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 20.37189pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.03888pt}{18.77708pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\scalebox{0.75}{{N}}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;=\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to29.84pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 10.88777pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.55476pt}{4.5507pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\scalebox{0.75}{{N}}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;=\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}
(2.20)

and

 ....  1....  = ζ ....  1.... .\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{-31.2982pt}\pgfsys@lineto{-9.4841pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\raisebox{-8.5359pt}{ \leavevmode\hbox to39.01pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 67.48079pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-52.16324pt}{21.33957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{28.45276pt}\pgfsys@lineto{-56.90552pt}{21.33957pt}\pgfsys@curveto{-56.90552pt}{18.72046pt}{-54.78236pt}{16.5973pt}{-52.16325pt}{16.5973pt}\pgfsys@curveto{-49.54414pt}{16.5973pt}{-47.42099pt}{18.72046pt}{-47.42099pt}{21.33957pt}\pgfsys@lineto{-47.4214pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.14778pt}{-24.56178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{-31.2982pt}\pgfsys@lineto{-9.4841pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{14.22636pt}{ \leavevmode\hbox to14.44pt{\vbox to10.33pt{\pgfpicture\makeatletter\hbox{\hskip 11.96417pt\lower 23.28539pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.63116pt}{26.6184pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$=$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\!\raisebox{14.22636pt}{ \leavevmode\hbox to11.04pt{\vbox to15.55pt{\pgfpicture\makeatletter\hbox{\hskip 10.26277pt\lower 20.67531pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.92976pt}{25.95276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\zeta$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\!\raisebox{-8.5359pt}{ \leavevmode\hbox to28.63pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{-31.2982pt}\pgfsys@lineto{-9.4841pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.09521pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.8375pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\raisebox{-8.5359pt}{ \leavevmode\hbox to30.2pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-52.16324pt}{21.33957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{28.45276pt}\pgfsys@lineto{-56.90552pt}{21.33957pt}\pgfsys@curveto{-56.90552pt}{18.72046pt}{-54.78236pt}{16.5973pt}{-52.16325pt}{16.5973pt}\pgfsys@curveto{-49.54414pt}{16.5973pt}{-47.42099pt}{18.72046pt}{-47.42099pt}{21.33957pt}\pgfsys@lineto{-47.4214pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.66324pt}{-24.56178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{13.69861pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to9.88pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{-31.2982pt}\pgfsys@lineto{-9.4841pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;. (2.21)

Furthermore, the vector identity

c2k1|Ωn=ζc2k|Ωnc_{2k-1}\ket{\Omega}^{\otimes n}=\zeta c_{2k}\ket{\Omega}^{\otimes n}

yields the diagrammatic “identity”

  ....  1....   = ζ  ....  1....  .\raisebox{-8.5359pt}{ \leavevmode\hbox to30.2pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\raisebox{-8.5359pt}{ \leavevmode\hbox to39.01pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 67.48079pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.14778pt}{-24.56178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to13.03pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\raisebox{4.26773pt}{ \leavevmode\hbox to14.44pt{\vbox to10.33pt{\pgfpicture\makeatletter\hbox{\hskip 11.96417pt\lower 1.94582pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.63116pt}{5.27882pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$=$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\!\raisebox{2.84544pt}{ \leavevmode\hbox to11.04pt{\vbox to15.55pt{\pgfpicture\makeatletter\hbox{\hskip 10.26277pt\lower-0.66426pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.92976pt}{4.61319pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\zeta$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\!\raisebox{-8.5359pt}{ \leavevmode\hbox to30.2pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\!\!\raisebox{-8.5359pt}{ \leavevmode\hbox to30.2pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.66324pt}{-24.56178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-39.32574pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{-18.31075pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-34.58391pt}{6.58542pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$.$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-8.5359pt}{ \leavevmode\hbox to13.03pt{\vbox to45.42pt{\pgfpicture\makeatletter\hbox{\hskip 58.67682pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.34381pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-56.90552pt}{0.0pt}\pgfsys@lineto{-56.90552pt}{7.11319pt}\pgfsys@curveto{-56.90552pt}{9.7323pt}{-54.78236pt}{11.85545pt}{-52.16325pt}{11.85545pt}\pgfsys@curveto{-49.54414pt}{11.85545pt}{-47.42099pt}{9.7323pt}{-47.42099pt}{7.11319pt}\pgfsys@lineto{-47.4214pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-56.90552pt}{-31.2982pt}\pgfsys@lineto{-56.90552pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-47.4214pt}{-31.2982pt}\pgfsys@lineto{-47.4214pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;. (2.22)

An additional identity which is useful [7] is the following:

Lemma 2.7.
ciacjb=qabcjbciac_{i}^{a}c_{j}^{b}=q^{ab}c_{j}^{b}c_{i}^{a} (2.23)

for i<ji<j, aa, bb integers.

Proof.

By double induction on aa and bb. ∎

Another identity, due to [7], is

Lemma 2.8.
c2i1aEi=ζa2c2iaE2ic_{2i-1}^{a}E_{i}=\zeta^{a^{2}}c_{2i}^{a}E_{2i} (2.24)

for i=1,2,,ni=1,2,\ldots,n, aa an integer.

Proof.

By induction. ∎

3 Algebraic Identities from Algebraic Methods

Our aim in this section is to obtain a large swath of identities, which are related to the graphical representation we have presented, but for which we provide purely algebraic proofs. At the heart of the results of this section are a new “charge-braid” identity that answers an open question due to Jaffe, namely, how to bring the charge “over” the braid when N2N\neq 2 (this terminology will make more sense when we introduce the notion of a conserved charge). This seemingly innocuous result is used to great effect, by using the structural property that the generalized Clifford algebra generated by c1,c2,,c2nc_{1},c_{2},\ldots,c_{2n} has trivial center. In particular, we provide an algebraic proof, using the proof strategy based on this structural characterization, that the braid elements bklb_{kl} satisfy many Yang-Baxter equations. Furthermore, we construct a general solution to the braid group relations, which enables us to resolve an open question of [2] for the case where NN is even.

3.1 Structural Properties of the Generalized Clifford Algebras

Proposition 3.1.

The set {c1r1c2r2c2nr2n:r1,r2,r2n=0,1,N1}\{c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}:r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1\} is a basis for the generalized Clifford algebra 𝒞2n(N)\mathcal{C}_{2n}^{(N)}.

Proof.

Any element of the generalized Clifford algebra is a finite sum of elements of the form αck1ϵ1ck2ϵ2ckmϵm\alpha\,c_{k_{1}}^{\epsilon_{1}}c_{k_{2}}^{\epsilon_{2}}\cdots c_{k_{m}}^{\epsilon_{m}} for α\alpha\in\mathbb{C}, mm a positive integer, kik_{i} in the index set I2n={1,2,,2n}I_{2n}=\{1,2,\cdots,2n\}, and ϵi{1,1}\epsilon_{i}\in\{1,-1\} for i=1,2,,mi=1,2,\ldots,m. By repeatedly applying the relations cki1=ckiN1c_{k_{i}}^{-1}=c_{k_{i}}^{N-1} and cicj=qcjcic_{i}c_{j}=qc_{j}c_{i} for i<ji<j to swap the order of multiplication, we can put each term in the sum into normal form, by which we mean that the term is of the form βr1r2r2nc1r1c2r2c2nr2n\beta_{r_{1}r_{2}\ldots r_{2n}}\,c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}, for ri{0,1,2,,N1}r_{i}\in\{0,1,2,\ldots,N-1\}. Thus, we obtain that every element xx of the generalized Clifford algebra is prescribed by a sum given by

x=r1,r2,r2n=0,1,N1xr1r2r2nc1r1c2r2c2nr2n.x=\sum_{r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1}x_{r_{1}r_{2}\ldots r_{2n}}c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}.

Now we want to show that x=0x=0 in the algebra if and only if xr1r2r2n=0x_{r_{1}r_{2}\cdots r_{2n}}=0 for all indices, i.e. the set {c1r1c2r2c2nr2n:r1,r2,r2n=0,1,N1}\{c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}:r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1\} is a basis. The if direction is obviously true. For the only if direction, suppose x=0x=0. Then multiplying xx by any product of generators cic_{i} also yields zero. It is clear that we can multiply xx on the left by the product c2nr2nc2n1r2n1c2r2c1r1c_{2n}^{-r_{2n}}c_{2n-1}^{-r_{2n-1}}\cdots c_{2}^{-r_{2}}c_{1}^{-r_{1}} so that the constant term of c2nr2nc2n1r2n1c2r2c1r1xc_{2n}^{-r_{2n}}c_{2n-1}^{-r_{2n-1}}\cdots c_{2}^{-r_{2}}c_{1}^{-r_{1}}x is xr1r2r2nx_{r_{1}r_{2}\cdots r_{2n}}. Thus, without loss of generality, it suffices to show that if x=0x=0, then its constant term must vanish. Then the rest of the coefficients all vanish by applying the same result to
c2nr2nc2n1r2n1c2r2c1r1xc_{2n}^{-r_{2n}}c_{2n-1}^{-r_{2n-1}}\cdots c_{2}^{-r_{2}}c_{1}^{-r_{1}}x for each index tuple.

To show that the constant term must vanish, we use an operator method. Consider the set of operators Lk(y)=i=0N1ckiyckiL_{k}(y)=\sum_{i=0}^{N-1}c_{k}^{i}yc_{k}^{-i}, and let Lk(l):=Lk(l1)LkL_{k}^{(l)}:=L_{k}^{(l-1)}\circ L_{k} and Lk(0):=1L_{k}^{(0)}:=1 define Lk(l)L_{k}^{(l)} iteratively. Then the operator Mk=l=0N1Lk(l)M_{k}=\sum_{l=0}^{N-1}L_{k}^{(l)} acting on a term c1r1c2r2c2nr2nc_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}} yields

(l=0N1(qi<kri+i>kri)l)c1r1c2r2c2nr2n=Nδ(i<kri,i>kri)c1r1c2r2c2nr2n,\left(\sum_{l=0}^{N-1}(q^{-\sum_{i<k}r_{i}+\sum_{i>k}r_{i}})^{l}\right)c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}=N\delta(\sum_{i<k}r_{i},\sum_{i>k}r_{i})c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}, (3.25)

where δ(a,b):=1\delta(a,b):=1 if ab mod Na\equiv b\text{ mod }N, and 0 otherwise. Acting on xx by the commuting operators 1NMk\frac{1}{N}M_{k} (which all have a diagonal action on c1r1c2r2c2nr2nc_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}) thus projects xx down to

(k=12n1NMk)(x)=r1,r2,r2n=0,1,N1(k=12nδ(i<kri,i>kri))xr1r2r2nc1r1c2r2c2nr2n.(\prod_{k=1}^{2n}\frac{1}{N}M_{k})(x)=\sum_{r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1}\left(\prod_{k=1}^{2n}\delta(\sum_{i<k}r_{i},\sum_{i>k}r_{i})\right)x_{r_{1}r_{2}\ldots r_{2n}}c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}. (3.26)

We first claim that the only terms that survive are those for which rk+rk+1=0 mod Nr_{k}+r_{k+1}=0\text{ mod }N for k=1,2,,2n1k=1,2,\ldots,2n-1. This can be seen since

i<kri=i>kri2i<kri+rk=i=12nri\sum_{i<k}r_{i}=\sum_{i>k}r_{i}\Rightarrow 2\sum_{i<k}r_{i}+r_{k}=\sum_{i=1}^{2n}r_{i} (3.27)

for all k=1,2,,2nk=1,2,\ldots,2n implies that

2i<kri+rk=2i<k+1ri+rk+1=2i<kri+2rk+rk+12\sum_{i<k}r_{i}+r_{k}=2\sum_{i<k+1}r_{i}+r_{k+1}=2\sum_{i<k}r_{i}+2r_{k}+r_{k+1} (3.28)

for all k=1,2,,2n1k=1,2,\ldots,2n-1, and so

rk+rk+1=0 mod N,r_{k}+r_{k+1}=0\text{ mod }N, (3.29)

as desired.

As a result, we further obtain that

r2n=0r_{2n}=0

since

i<2n1ri=(r1+r2)+(r3+r4)++(r2n3+r2n2)=0=r2n.\sum_{i<2n-1}r_{i}=(r_{1}+r_{2})+(r_{3}+r_{4})+\cdots+(r_{2n-3}+r_{2n-2})=0=r_{2n}.

Finally, using rk+rk+1=0r_{k}+r_{k+1}=0 for k=1,2,,2n1k=1,2,\ldots,2n-1 we obtain that rk=0r_{k}=0 for all k=1,2,,2nk=1,2,\ldots,2n. Hence the constant term is the only term left, and must equal 0 since Mk(0)=0M_{k}(0)=0.

Proposition 3.2 (Golden Rule).

The generalized Clifford algebra 𝒞2n(N)\mathcal{C}_{2n}^{(N)} has trivial center, i.e. the only elements that commute with all elements of the generalized Clifford algebra are 1\mathbb{C}1.

Proof.

Every element of the generalized Clifford algebra is prescribed by a sum given by

x=r1,r2,r2n=0,1,N1xr1r2r2nc1r1c2r2c2nr2n.x=\sum_{r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1}x_{r_{1}r_{2}\ldots r_{2n}}c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}.

Using the basis property (Proposition 3.1), it becomes simple to show that the algebra has trivial center. Note that the basis property implies uniqueness of the sum decomposition. Let xx lie in the center of the algebra, and x0x\neq 0. Then there is an index label r1,r2,,r2nr_{1},r_{2},\cdots,r_{2n} such that xr1r2r2n0x_{r_{1}r_{2}\cdots r_{2n}}\neq 0. Note that xc1=c1xxc_{1}=c_{1}x implies that xr1r2r2n=q(r2+r3+r2n)xr1r2r2nx_{r_{1}r_{2}\cdots r_{2n}}=q^{-(r_{2}+r_{3}+\cdots r_{2n})}x_{r_{1}r_{2}\cdots r_{2n}} by comparing the coefficient of c1r1+1c2r2c2nr2nc_{1}^{r_{1}+1}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}. Thus, r2+r3++r2n=0r_{2}+r_{3}+\cdots+r_{2n}=0. Similarly, xck=ckxxc_{k}=c_{k}x implies that qi<krixr1r2r2nqi>krixr1r2r2n=1q^{-\sum_{i<k}r_{i}}x_{r_{1}r_{2}\cdots r_{2n}}q^{\sum_{i>k}r_{i}}x_{r_{1}r_{2}\cdots r_{2n}}=1 and so

i=12nϵikri=0 (mod N),\sum_{i=1}^{2n}\epsilon_{ik}r_{i}=0\text{ (mod }N), (3.30)

for kk from 11 to 2n2n, where ϵik=1\epsilon_{ik}=1 if i<ki<k and 1-1 if i>ki>k and 0 if i=ki=k, yielding 2n2n equations in 2n2n unknowns. Equivalently,

i<kri=i>kri (mod N)\sum_{i<k}r_{i}=\sum_{i>k}r_{i}\text{ (mod }N) (3.31)

for all k=1,2,,2nk=1,2,\cdot,2n. Since in Proposition 3.1, it was shown that this set of equations is uniquely solved by r1=r2==r2n=0r_{1}=r_{2}=\cdots=r_{2n}=0, it follows that xx is a multiple of the identity 11. ∎

3.2 An “Intertwining” Approach for New Identities for the Generalized Clifford Algebra

3.2.1 A Systematic Procedure

The golden rule of Proposition 3.2 allows us to give a systematic procedure for proving identities in the algebra. The basis of the procedure is the following proposition:

Proposition 3.3.

Let xx, yy lie in the generalized Clifford algebra, and suppose yy is invertible. Further assume that the constant terms of xx and yy are nonzero. Then x=yx=y if and only if y1xy^{-1}x lies in the center of the generalized Clifford algebra, and the constant term in xx agrees with the constant term in yy.

Proof.

Clearly, the only if direction is true since x=yx=y implies y1x=1y^{-1}x=1. For the if direction, if y1xy^{-1}x lies in the center, by the golden rule, y1x1y^{-1}x\in\mathbb{C}1, i.e. y=αxy=\alpha x. In the proof of proposition 3.2, we showed that this implies that all terms of yy and αx\alpha x agree, in particular the constant terms. By hypothesis, the constant terms of yy and xx agree and are nonzero, so α=1\alpha=1. ∎

We now provide a concrete way to show that an element lies in the center of the generalized Clifford algebra.

Proposition 3.4.

An element xx lies in the center of the generalized Clifford algebra if and only if it commutes with cic_{i} for each i=1,2,,2ni=1,2,\ldots,2n.

Proof.

The only if direction is clearly true.

For the if direction, any element yy in the algebra has a unique decomposition as

y=r1,r2,r2n=0,1,N1yr1r2r2nc1r1c2r2c2nr2n.y=\sum_{r_{1},r_{2},\ldots r_{2n}=0,1,\ldots N-1}y_{r_{1}r_{2}\ldots r_{2n}}c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}.

By iterative commutation, using the commutation property of xx with cic_{i}, one can show that xc1r1c2r2c2nr2n=c1r1c2r2c2nr2nxx\,c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}=c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}\,x. Multiplying by the constant prefactor and summing over the indices, one obtains that xy=yxxy=yx, as desired, for arbitrary yy in the algebra. ∎

3.2.2 Intertwining Identities

By intertwining identities, we mean identities of the form bx=ybbx=yb. In this section, we prove some new intertwining identities, using the systematic procedure we presented in the previous subsection.

In particular, we have discovered the following new intertwining identity for the braid bijb_{ij}. We first give a direct proof, and then give an alternate proof which involves some intermediate intertwining identities, which may have more general applications.This identity significantly generalizes a result of [7], which is the special case for a=0a=0.

Proposition 3.5.
bklckaclb=qa2+abck2a+bclabklb_{kl}c_{k}^{a}c_{l}^{b}=q^{a^{2}+ab}c_{k}^{2a+b}c_{l}^{-a}b_{kl} (3.32)

for k<lk<l.

Proof.

Since bkl=ω1/2Ni=0N1ckiclib_{kl}=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}, it suffices to show that

(i=0N1ckicli)ckaclb=qa2+abck2a+bcla(i=0N1ckicli).\left(\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}\right)c_{k}^{a}c_{l}^{b}=q^{a^{2}+ab}c_{k}^{2a+b}c_{l}^{-a}\left(\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}\right).

Applying lemma 2.7, the LHS becomes

i=0N1qaicka+iclbi\sum_{i=0}^{N-1}q^{ai}c_{k}^{a+i}c_{l}^{b-i} (3.33)

and the RHS becomes

i=0N1qa2+abqaick2a+b+iclai.\sum_{i=0}^{N-1}q^{a^{2}+ab}q^{ai}c_{k}^{2a+b+i}c_{l}^{-a-i}. (3.34)

By shifting the index of summation from ii to i+a+bi+a+b in the LHS, the LHS becomes

i=0N1qa(i+a+b)ck2a+b+iclai\sum_{i=0}^{N-1}q^{a(i+a+b)}c_{k}^{2a+b+i}c_{l}^{-a-i} (3.35)

which is just the RHS. ∎

In terms of the graphical calculus, we economically write down the following diagrammatic identity, which is specific to b12b_{12} and the generalized Clifford algebra with only 2 generators c1c_{1}, c2c_{2}:

ab=qa2+ab2a+ba\!\raisebox{-18.49411pt}{\scalebox{0.8}{ \leavevmode\hbox to44.11pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 43.91281pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.5798pt}{35.78409pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.68173pt}{45.84601pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{56.90552pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\;=q^{a^{2}+ab}\raisebox{-18.49411pt}{\scalebox{0.8}{ \leavevmode\hbox to61.98pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 61.7829pt\lower-28.65276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{-9.4841pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-58.44989pt}{-22.0242pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$2a+b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.90479pt}{-11.63687pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-28.45276pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\; (3.36)

It is convenient to also write down the corresponding identity for the adjoint braid:

Corollary 3.6.
blkckrcls=qrs+s2cksclr+2sblk.b_{lk}c_{k}^{r}c_{l}^{s}=q^{rs+s^{2}}c_{k}^{-s}c_{l}^{r+2s}b_{lk}. (3.37)

for k<lk<l, and rr,ss integers.

Proof.

The adjoint of the identity in 3.5 is clbckablk=qa2abblkclack2abc_{l}^{-b}c_{k}^{-a}b_{lk}=q^{-a^{2}-ab}b_{lk}c_{l}^{a}c_{k}^{-2a-b}, which becomes qabckaclbblk=qa2blkck2abclaq^{-ab}c_{k}^{-a}c_{l}^{-b}b_{lk}=q^{a^{2}}b_{lk}c_{k}^{-2a-b}c_{l}^{a} upon commutation. Now we let r=2abr=-2a-b, s=as=a, so

blkckrcls=qrs+s2cksclr+2sblk,b_{lk}c_{k}^{r}c_{l}^{s}=q^{rs+s^{2}}c_{k}^{-s}c_{l}^{r+2s}b_{lk}, (3.38)

which gives the desired result. ∎

The corresponding diagrammatic identity for the adjoint braid b21b_{21} arising from Corollary 3.6 for the generalized Clifford algebra with two generators c1c_{1}, c2c_{2} is

rs=qrs+s2sr+2s\!\raisebox{-18.49411pt}{\scalebox{0.8}{ \leavevmode\hbox to43.86pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 43.66455pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.33154pt}{35.78409pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$r$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.87965pt}{47.16545pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$s$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{56.90552pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\;=q^{rs+s^{2}}\raisebox{-18.49411pt}{\scalebox{0.8}{ \leavevmode\hbox to48.85pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 46.39136pt\lower-28.65276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{28.45276pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-9.4841pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-43.05835pt}{-21.12141pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-s$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.57588pt}{-12.28966pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$r+2s$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-28.45276pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-28.45276pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\; (3.39)

We now pursue an alternate route to proving Equation 3.5, which illuminates complementary aspects. We start with an intertwining identity which is a commutation relation:

Lemma 3.7.
(ckbclb)(ckacla)=(ckacla)(ckbclb)(c_{k}^{b}c_{l}^{-b})(c_{k}^{a}c_{l}^{-a})=(c_{k}^{a}c_{l}^{-a})(c_{k}^{b}c_{l}^{-b}) (3.40)

for k<lk<l.

Proof.

Applying lemma 2.7 to LHS yields qabcka+bcl(a+b)q^{ab}c_{k}^{a+b}c_{l}^{-(a+b)}; applying lemma 2.7 to RHS yields qabcka+bcl(a+b)q^{ab}c_{k}^{a+b}c_{l}^{-(a+b)}. Thus, LHS=RHS. ∎

We also note that the following commutation relation holds as well:

Lemma 3.8.
(ckacla)cp=cp(ckacla)(c_{k}^{a}c_{l}^{-a})c_{p}=c_{p}(c_{k}^{a}c_{l}^{-a}) (3.41)

for k<lk<l and pp satisfies p<k<lp<k<l or p>l>kp>l>k.

Proof.

If k<l<pk<l<p, commuting cpc_{p} past (in front of) clac_{l}^{-a} in the LHS yields qaq^{-a}; commuting it past ckac_{k}^{a} then yields an additional factor qaq^{a}. So we obtain the RHS. A similar proof applies for the case p<k<lp<k<l. ∎

Now comes the exciting part. Since the braid bklb_{kl} is a sum of elements of the form ckiclic_{k}^{i}c_{l}^{-i}, it follows that

Lemma 3.9.
bklckacla=ckaclabklb_{kl}\,c_{k}^{a}c_{l}^{-a}=c_{k}^{a}c_{l}^{-a}\,b_{kl} (3.42)

for k<lk<l.

Proof.

By linear extension of Lemma 3.7. ∎

Now we use a simple result due to Jaffe and Liu [7]:

Lemma 3.10.
bklcl=ckbklb_{kl}c_{l}=c_{k}b_{kl} (3.43)

for k<lk<l.

Proof.

It suffices to show that

(i=0N1ckicli)cl=ck(i=0N1ckicli).\left(\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}\right)c_{l}=c_{k}\left(\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}\right). (3.44)

Collecting terms, it is equivalent to show that

i=0N1ckicl(i1)=i=0N1cki+1cli.\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-(i-1)}=\sum_{i=0}^{N-1}c_{k}^{i+1}c_{l}^{-i}. (3.45)

It is clear that the two are equal since the RHS is just the LHS with ii shifted to i1i-1. ∎

It remains but to combine lemmas 3.9 and 3.10, giving us an alternate proof of proposition 3.5:

Alternate Proof of Proposition 3.5.

We want to show that

bklckaclb=qa2+abck2a+bclabklb_{kl}c_{k}^{a}c_{l}^{b}=q^{a^{2}+ab}c_{k}^{2a+b}c_{l}^{-a}b_{kl} (3.46)

for k<lk<l. To use lemmas 3.9 and 3.10, we rewrite bklckaclbb_{kl}c_{k}^{a}c_{l}^{b} as bklckaclacla+bb_{kl}c_{k}^{a}c_{l}^{-a}c_{l}^{a+b}. This becomes ckaclabklcla+bc_{k}^{a}c_{l}^{-a}b_{kl}c_{l}^{a+b} after commuting past the braid, and then ckaclacka+bbklc_{k}^{a}c_{l}^{-a}c_{k}^{a+b}b_{kl} after applying lemma 3.10 a+ba+b times. Finally, applying lemma 2.7 to the middle two terms yields qa2+abck2a+bclabklq^{a^{2}+ab}c_{k}^{2a+b}c_{l}^{-a}b_{kl} as desired. ∎

3.2.3 The Notion of Charge Conservation

We now interpret the previous section’s intertwining identities in terms of physics. In particular, it is observed that the new charge-braid identity in Proposition 3.5 is a consequence of a particular property of neutral pairings of ckc_{k} and clc_{l}. First, we define a charge operator CC:

Definition 3.11.

Define CC by linear extension of its action on the basis:

C(c1r1c2r2c2nr2n):=qr1+r2++r2nc1r1c2r2c2nr2nC(c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}}):=q^{r_{1}+r_{2}+\cdots+r_{2n}}c_{1}^{r_{1}}c_{2}^{r_{2}}\cdots c_{2n}^{r_{2n}} (3.47)

for all integer indices rir_{i}. We call r1+r2++r2nr_{1}+r_{2}+\cdots+r_{2n} the charge of the basis element, following [13], which is well-defined modulo NN. This terminology of an element’s charge is also applicable for linear combinations of basis elements with the same charge.

Then, lemma 3.7 tells us that eigenstates of CC of eigenvalue 1 which lie in the subalgebra generated by ckc_{k}, clc_{l} commute. We call eigenstates of CC with eigenvalue 1 neutral.

Graphically, we can describe this commutation relation 3.7 for the algebra generated by c1c_{1} and c2c_{2} as

 abba= baab\raisebox{-28.45274pt}{ \leavevmode\hbox to41.74pt{\vbox to60.15pt{\pgfpicture\makeatletter\hbox{\hskip 41.5419pt\lower-31.4982pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-31.2982pt}\pgfsys@lineto{-28.45276pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.90479pt}{-12.82256pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.40767pt}{17.86736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.71178pt}{3.64098pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-38.2089pt}{-27.04893pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;=\raisebox{-28.45274pt}{ \leavevmode\hbox to41.74pt{\vbox to60.35pt{\pgfpicture\makeatletter\hbox{\hskip 41.5419pt\lower-31.70139pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-31.2982pt}\pgfsys@lineto{-28.45276pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-31.2982pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.40767pt}{-14.142pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.90479pt}{19.1868pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-38.2089pt}{4.96042pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$a$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.71178pt}{-28.36838pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$b$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} (3.48)

and there are analogous diagrams (with additional strands in between, and to the left and right) for the generalized Clifford algebras with more generators.

We now observe that the lemma 3.9 can be reinterpreted in terms of respecting charge conservation, i.e. bringing an element of definite charge across the braid will conserve the charge, which is in this case just 0. Thus, we say that the relation 3.9 provides a physical constraint on the action of the braid. In fact, this physical constraint provides a compelling explanation for why the master intertwining relation 3.5 holds; the latter is essentially forced by the constraint and the additional relation bklcl=ckbklb_{kl}c_{l}=c_{k}b_{kl}.

3.3 Applications of the Golden Rule

Using the prior sections on the golden rule and various intertwining identities, we can now prove some identities involving the braid in a relatively straightforward manner.

3.3.1 Unitarity

Proposition 3.12 (Unitarity of Braid Elements).

Suppose |kl|=1|k-l|=1, then

bklblk=blkbkl=1.b_{kl}b_{lk}=b_{lk}b_{kl}=1. (3.49)

(As was remarked in the definition of the braids, bkl=blkb_{kl}^{\dagger}=b_{lk}, so equivalently, bklb_{kl} is unitary.)

Proof.

Fix k<lk<l, so we fix the braid elements. To prove this identity, we rely on propositions 3.3 and 3.4. Thus, we just need to show that a) bklblkb_{kl}b_{lk} and blkbklb_{lk}b_{kl} lie in the center, and b) the constant terms of bklblkb_{kl}b_{lk} and blkbklb_{lk}b_{kl} are both 1. To show that they lie in the center, we need to check that cpc_{p} commutes with bklblkb_{kl}b_{lk} for all pp. Note that if p<k<lp<k<l or p>l>kp>l>k, then cpc_{p} commutes with bklb_{kl} since it commutes with ckaclac_{k}^{a}c_{l}^{-a} by lemma 3.8. We now note that cpbkl=bklcpc_{p}b_{kl}=b_{kl}c_{p} implies the adjoint equation blkcp1=cp1blkb_{lk}c_{p}^{-1}=c_{p}^{-1}b_{lk}, which further yields blkcp=cpblkb_{lk}c_{p}=c_{p}b_{lk} by iterating the commutation relation for cp1c_{p}^{-1} N1N-1 times. Thus, cpc_{p} commutes with both bklb_{kl} and blkb_{lk}. Since |kl|=1|k-l|=1, the only other possibilities we need to check for cpc_{p} are p=kp=k or p=lp=l.

Recall that we have the master braid identity 3.5: bklckaclb=qa2+abck2a+bclabklb_{kl}c_{k}^{a}c_{l}^{b}=q^{a^{2}+ab}c_{k}^{2a+b}c_{l}^{-a}b_{kl}. Applying this identity allows us to bring ckc_{k} past bklblkb_{kl}b_{lk} via

bklblkck\displaystyle b_{kl}b_{lk}c_{k} =bklclblk\displaystyle=b_{kl}c_{l}b_{lk} (3.50)
=ckbklblk,\displaystyle=c_{k}b_{kl}b_{lk}, (3.51)

and clc_{l} past bklblkb_{kl}b_{lk} via the slightly more involved

bklblkcl\displaystyle b_{kl}b_{lk}c_{l} =qbklck1cl2blk\displaystyle=q\,b_{kl}c_{k}^{-1}c_{l}^{2}b_{lk} (3.52)
=clbklblk.\displaystyle=c_{l}b_{kl}b_{lk}. (3.53)

Thus, bklblkb_{kl}b_{lk} lies in the center. A similar argument using the adjoint braid identity, equation 3.6, yields the computation

blkbklcl\displaystyle b_{lk}b_{kl}c_{l} =blkckbkl\displaystyle=b_{lk}c_{k}b_{kl} (3.54)
=clblkbkl,\displaystyle=c_{l}b_{lk}b_{kl}, (3.55)

and

blkbklck\displaystyle b_{lk}b_{kl}c_{k} =qblkck2cl1bkl\displaystyle=q\,b_{lk}c_{k}^{2}c_{l}^{-1}b_{kl} (3.56)
=ckblkbkl,\displaystyle=c_{k}b_{lk}b_{kl}, (3.57)

so blkbklb_{lk}b_{kl} lies in the center as well.

We now need to compute the constant terms for bklblkb_{kl}b_{lk} and blkbklb_{lk}b_{kl}. A direct computation
shows that bklblkb_{kl}b_{lk} has the constant term 1Ni=0N1(ckicli)(clicki)=1\frac{1}{N}\sum_{i=0}^{N-1}(c_{k}^{i}c_{l}^{-i})(c_{l}^{i}c_{k}^{-i})=1. Similarly, blkbklb_{lk}b_{kl} has the constant term 1Ni=0N1(clicki)(ckicli)=1\frac{1}{N}\sum_{i=0}^{N-1}(c_{l}^{i}c_{k}^{-i})(c_{k}^{i}c_{l}^{-i})=1. Thus, applying proposition 3.3 in the case x=bklblkx=b_{kl}b_{lk} and y=1y=1, we obtain that bklblk=1b_{kl}b_{lk}=1. Similarly, again applying proposition 3.3 and setting x=blkbklx=b_{lk}b_{kl} and y=1y=1, we obtain that blkbkl=1b_{lk}b_{kl}=1, concluding the proof. ∎

The corresponding graphical identity for unitarity, for the special case n=1n=1 (only two generators), b21b12=b12b21b_{21}b_{12}=b_{12}b_{21}, is

 = .\raisebox{-14.22636pt}{ { \leavevmode\hbox to19.37pt{\vbox to38.34pt{\pgfpicture\makeatletter\hbox{\hskip 19.16864pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-12.64561pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-6.32259pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-6.32259pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-12.64561pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\!\raisebox{-11.38092pt}{ \leavevmode\hbox to9.88pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 9.6841pt\lower 28.25276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-9.4841pt}{56.90552pt}\pgfsys@lineto{-9.4841pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;\,\,. (3.58)

Analogous graphical identities hold for bk,k+1b_{k,k+1} and for general nn, where one puts more strands to the left and right of the above diagram. Again, we emphasize the requirement of having a diagram being represented by all strands. Hence, the above diagram does not represent the unitarity condition for all bklb_{kl}, but merely for b12b_{12}.

In fact, we can now generalize the above unitarity condition extends to braid elements with no graphical interpretation at all:

Corollary 3.13.
bklblk=blkbkl=1b_{kl}b_{lk}=b_{lk}b_{kl}=1 (3.59)

for all klk\neq l in the set {1,2,,2n}\{1,2,\ldots,2n\}.

Proof.

Suppose without loss of generality that k<lk<l, and consider the isomorphism of subalgebras c1,c2\langle c_{1},c_{2}\rangle and ck,cl\langle c_{k},c_{l}\rangle given by the linear mapping ϕ\phi satisfying ϕ(c1ac2b):=ckaclb\phi(c_{1}^{a}c_{2}^{b}):=c_{k}^{a}c_{l}^{b}, defining ϕ\phi by its action on a basis for the subalgebra c1,c2\langle c_{1},c_{2}\rangle. This is an isomorphism since
ϕ((c1ac2b)(c1ic2j))=ϕ(qbic1a+ic2b+j)=qbicka+iclb+j=ckaclbckiclj=ϕ(c1ac2b)ϕ(c1ic2j)\phi((c_{1}^{a}c_{2}^{b})(c_{1}^{i}c_{2}^{j}))=\phi(q^{-bi}c_{1}^{a+i}c_{2}^{b+j})=q^{-bi}c_{k}^{a+i}c_{l}^{b+j}=c_{k}^{a}c_{l}^{b}c_{k}^{i}c_{l}^{j}=\phi(c_{1}^{a}c_{2}^{b})\phi(c_{1}^{i}c_{2}^{j}), and the map is invertible. By double distributivity of multiplication in the two subalgebras, the mapping extends to a homomorphism, and thus is an isomorphism. The isomorphism maps b12b21b_{12}b_{21} to bklblkb_{kl}b_{lk} and 11 to 11, so we obtain that bklblk=1b_{kl}b_{lk}=1. Similarly, blkbkl=1b_{lk}b_{kl}=1.

The above proof of proposition 3.12 may seem slightly over-kill, since we could have also expanded the product of bklb_{kl} and blkb_{lk}, and performed the double sum. The strength (and elegance) of the method becomes more apparent when one deals with more complicated products, which is what we take up next.

3.3.2 Yang-Baxter Equation and Braid Group Realization

We now give one of our main results, which is an explicit algebraic proof of a Yang-Baxter equation, using the golden rule and a systematic application of the master braid and adjoint braid identities. The Yang-Baxter equation [14] reads as ABA=BABABA=BAB and is what is known as a braid relation. More formally, we will establish the braid relations satisfied by the braid group generated by the bk,k+1b_{k,k+1}’s. The braid group, introduced by Artin[15], is defined to be the object

BL=σ1,,σL1|σkσk+1σk=σk+1σkσk+1,σkσl=σlσk if |kl|2.B_{L}=\langle\sigma_{1},\ldots,\sigma_{L-1}|\sigma_{k}\sigma_{k+1}\sigma_{k}=\sigma_{k+1}\sigma_{k}\sigma_{k+1},\sigma_{k}\sigma_{l}=\sigma_{l}\sigma_{k}\text{ if }|k-l|\geq 2\rangle. (3.60)

We need to show that, setting σk=bk,k+1\sigma_{k}=b_{k,k+1} for k=1,2,,2n1k=1,2,\cdots,2n-1, these σk\sigma_{k}’s satisfy the relations for the braid group generators.

We first present a proof of a special case of the Yang-Baxter equation, specialized to a generalized Clifford algebra with three generators c1,c2,c3c_{1},c_{2},c_{3}:

Proposition 3.14 (Special Case of the Yang-Baxter Equation).
b12b23b12=b23b12b23b_{12}b_{23}b_{12}=b_{23}b_{12}b_{23} (3.61)
Proof.

Since the braid elements are unitary, it suffices to prove the assertion that
b32b21b32b12b23b12b_{32}b_{21}b_{32}b_{12}b_{23}b_{12} lies in the center and that the constant of proportionality between b12b23b12b_{12}b_{23}b_{12} and b23b12b23b_{23}b_{12}b_{23} is 1. By Proposition 3.4, to show that b32b21b32b12b23b12b_{32}b_{21}b_{32}b_{12}b_{23}b_{12} lies in the center, we just need to show that it commutes with ckc_{k} for all k=1,2,,2nk=1,2,\cdots,2n. Clearly, for k>3k>3,
b32b21b32b12b23b12b_{32}b_{21}b_{32}b_{12}b_{23}b_{12} commutes with ckc_{k}, since each braid element commutes with ckc_{k}. So we want to do case analysis for k=1,2,3k=1,2,3. For k=1k=1,

b32b21b32b12b23b12c1\displaystyle b_{32}b_{21}b_{32}b_{12}b_{23}b_{12}c_{1} =qb32b21b32b12b23c12c21b12\displaystyle=qb_{32}b_{21}b_{32}b_{12}b_{23}c_{1}^{2}c_{2}^{-1}b_{12} (3.62)
=q2b32b21b32b12c12c22c3b23b12\displaystyle=q^{2}b_{32}b_{21}b_{32}b_{12}c_{1}^{2}c_{2}^{-2}c_{3}b_{23}b_{12} (3.63)
=q2b32b21b32c12c22c3b12b23b12\displaystyle=q^{2}b_{32}b_{21}b_{32}c_{1}^{2}c_{2}^{-2}c_{3}b_{12}b_{23}b_{12} (3.64)

after applying the master braid identity, Proposition 3.5 thrice and using Lemma 3.8. Applying the adjoint braid identity thrice (equation 3.6) then yields

q2b32b21b32c12c22c3b12b23b12\displaystyle q^{2}b_{32}b_{21}b_{32}c_{1}^{2}c_{2}^{-2}c_{3}b_{12}b_{23}b_{12} =qb32b21c12c21b32b12b23b12\displaystyle=qb_{32}b_{21}c_{1}^{2}c_{2}^{-1}b_{32}b_{12}b_{23}b_{12} (3.65)
=b32c1b21b32b12b23b12\displaystyle=b_{32}c_{1}b_{21}b_{32}b_{12}b_{23}b_{12} (3.66)
=c1b32b21b32b12b23b12,\displaystyle=c_{1}b_{32}b_{21}b_{32}b_{12}b_{23}b_{12}, (3.67)

as desired. The cases k=2k=2, k=3k=3 are similarly shown to satisfy

b32b21b32b12b23b12ck=ckb32b21b32b12b23b12b_{32}b_{21}b_{32}b_{12}b_{23}b_{12}c_{k}=c_{k}b_{32}b_{21}b_{32}b_{12}b_{23}b_{12} (3.68)

in like manner. Thus, we conclude that b32b21b32b12b23b12b_{32}b_{21}b_{32}b_{12}b_{23}b_{12} lies in the center.

It remains to show that the constant of proportionality between b12b23b12b_{12}b_{23}b_{12} and b23b12b23b_{23}b_{12}b_{23} is 1. First focus on the constant terms. Since bkl=ω1/2Ni=0N1ckiclib_{kl}=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i}, it suffices to compare the constant terms of i,j,k=0N1(c1ic2i)(c2jc3j)(c1kc2k)\sum_{i,j,k=0}^{N-1}(c_{1}^{i}c_{2}^{-i})(c_{2}^{j}c_{3}^{-j})(c_{1}^{k}c_{2}^{-k}) and i,j,k=0N1(c2ic3i)(c1jc2j)(c2kc3k)\sum_{i,j,k=0}^{N-1}(c_{2}^{i}c_{3}^{-i})(c_{1}^{j}c_{2}^{-j})(c_{2}^{k}c_{3}^{-k}). Note that in the first sum, the constant term only includes terms with i+k=0i+k=0 and j=0j=0, so the constant is given by i=0N1(c1ic2i)(c1ic2i)=i=0N1qi2\sum_{i=0}^{N-1}(c_{1}^{i}c_{2}^{-i})(c_{1}^{-i}c_{2}^{i})=\sum_{i=0}^{N-1}q^{-i^{2}}. In the second sum, the constant term only includes terms with j=0j=0 and i+k=0i+k=0, so the constant is given by i=0N1(c2ic3i)(c2ic3i)=i=0N1qi2\sum_{i=0}^{N-1}(c_{2}^{i}c_{3}^{-i})(c_{2}^{-i}c_{3}^{i})=\sum_{i=0}^{N-1}q^{-i^{2}}. Clearly the constant terms agree. However, this is not sufficient to conclude the constant of proportionality is 1, since the constant term may vanish. In fact, for N=2(mod 4)N=2(\text{mod }4), it does vanish, while it does not vanish for other NN. This fact is due to the following formulas corresponding to Gauss’ classical result for quadratic sums, which are tabulated in [16]:

k=0n1sin(2πk2n)=n2(1+cos(nπ/2)sin(nπ/2))\sum_{k=0}^{n-1}\sin\left(\frac{2\pi k^{2}}{n}\right)=\frac{\sqrt{n}}{2}\left(1+\cos(n\pi/2)-\sin(n\pi/2)\right) (3.69)
k=0n1cos(2πk2n)=n2(1+cos(nπ/2)+sin(nπ/2))\sum_{k=0}^{n-1}\cos\left(\frac{2\pi k^{2}}{n}\right)=\frac{\sqrt{n}}{2}\left(1+\cos(n\pi/2)+\sin(n\pi/2)\right) (3.70)

Applying these formulas to i=0N1qi2=k=0N1exp2πik2/N\sum_{i=0}^{N-1}q^{-i^{2}}=\sum_{k=0}^{N-1}\exp{-2\pi ik^{2}/N} yields that the real part of the sum vanishes if 1+cos(Nπ/2)+sin(Nπ/2)1+\cos(N\pi/2)+\sin(N\pi/2) vanishes, and the imaginary part vanishes if 1+cos(Nπ/2)sin(Nπ/2)1+\cos(N\pi/2)-\sin(N\pi/2) vanishes. Thus, we require that cos(Nπ/2)=1\cos(N\pi/2)=-1 and sin(Nπ/2)=0\sin(N\pi/2)=0, so Nπ/2=π+2mπN\pi/2=\pi+2m\pi and Nπ/2=lπN\pi/2=l\pi, i.e. N=2+4mN=2+4m and N=2lN=2l, i.e. N=2(mod 4)N=2(\text{mod }4). This shows that the constant term does not vanish unless N=2(mod 4)N=2(\text{mod }4).

Now focus on the term with c2c31c_{2}c_{3}^{-1}. In the first sum, this term is (i=0N1qii2)c2c31\left(\sum_{i=0}^{N-1}q^{i-i^{2}}\right)c_{2}c_{3}^{-1}. In the second sum, this term is i,k=0N1(c2ic3i)(c21ic3i1)=(i=0N1qii2)c2c31\sum_{i,k=0}^{N-1}(c_{2}^{i}c_{3}^{-i})(c_{2}^{1-i}c_{3}^{i-1})=\left(\sum_{i=0}^{N-1}q^{i-i^{2}}\right)c_{2}c_{3}^{-1}, so the two terms are identical. The multiplicative factor i=0N1qii2=q1/4k=0N1q(k1/2)2\sum_{i=0}^{N-1}q^{i-i^{2}}=q^{1/4}\sum_{k=0}^{N-1}q^{-(k-1/2)^{2}}, which equals
q1/4k=0N1e2πi(2k1)2/4Nq^{1/4}\sum_{k=0}^{N-1}e^{-2\pi i(2k-1)^{2}/4N}, vanishes only for N=0N=0 (mod 4).444I have not been able to find the corresponding Gauss sum identity in the literature, but have been able to verify this numerically using Mathematica, which shows that the half-integer-shifted quadratic Gauss sum multiplied by 1/N1/\sqrt{N} is periodic in NN mod 4.

Thus, the constant term and the c2c31c_{2}c_{3}^{-1} term agree and their sum can never vanish. Hence, we conclude that the constant of proportionality must be 1, as desired.

The corresponding graphical identity for the Yang-Baxter equation b12b23b12=b23b12b23b_{12}b_{23}b_{12}=b_{23}b_{12}b_{23} is given economically for the algebra with 3 generators c1c_{1}, c2c_{2}, c3c_{3}, as

 = .\raisebox{-25.6073pt}{ { \leavevmode\hbox to38.34pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 19.16864pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-6.32259pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{-12.64561pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\;=\;\raisebox{-25.6073pt}{ { \leavevmode\hbox to38.34pt{\vbox to57.31pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{37.93686pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{0.0pt}\pgfsys@lineto{-37.93686pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-37.93686pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-25.29124pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-31.61426pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-6.32259pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{-12.64561pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\;\,. (3.71)

For 2n2n generators, one needs to put 2n32n-3 strands to the right of the diagram for completeness.

Similar to the case of the unitarity condition, a more general Yang-Baxter-like equation holds for braid elements which do not admit a graphical interpretation:

Proposition 3.15 (General Case of the Yang-Baxter Equation).

Suppose i<j<ki<j<k, then

bijbjkbij=bjkbijbjk.b_{ij}b_{jk}b_{ij}=b_{jk}b_{ij}b_{jk}. (3.72)
Proof.

We define an isomorphism, this time between the subalgebras c1,c2,c3\langle c_{1},c_{2},c_{3}\rangle and ci,cj,ck\langle c_{i},c_{j},c_{k}\rangle. Specifically, define ϕ\phi by its action on a basis for the subalgebra c1,c2,c3\langle c_{1},c_{2},c_{3}\rangle via ϕ(c1pc2qc3r):=cipcjqckr\phi(c_{1}^{p}c_{2}^{q}c_{3}^{r}):=c_{i}^{p}c_{j}^{q}c_{k}^{r} for all p,q,r{0,1,,N1}p,q,r\in\{0,1,\ldots,N-1\}. Clearly, ϕ(1)=1\phi(1)=1. Furthermore, ϕ\phi is a homomorphism since

ϕ((c1uc2vc3w)(c1pc2qc3r))\displaystyle\phi((c_{1}^{u}c_{2}^{v}c_{3}^{w})(c_{1}^{p}c_{2}^{q}c_{3}^{r})) =αϕ(c1u+pc2v+qc3w+r)\displaystyle=\alpha\,\phi(c_{1}^{u+p}c_{2}^{v+q}c_{3}^{w+r}) (3.73)
=αciu+pcjv+qckw+r\displaystyle=\alpha\,c_{i}^{u+p}c_{j}^{v+q}c_{k}^{w+r} (3.74)
=(ciucjvckw)(cipcjqckr),\displaystyle=(c_{i}^{u}c_{j}^{v}c_{k}^{w})(c_{i}^{p}c_{j}^{q}c_{k}^{r}), (3.75)

where α\alpha collects all the phase factors from commuting the cc’s around. It is clear that ϕ\phi is a one-to-one mapping. Then applying ϕ\phi to the product formula

b32b21b32b12b23b12=1b_{32}b_{21}b_{32}b_{12}b_{23}b_{12}=1 (3.76)

yields

bkjbjibkjbijbjkbij=1,b_{kj}b_{ji}b_{kj}b_{ij}b_{jk}b_{ij}=1, (3.77)

which implies the desired result by taking the adjoint braids to the other side to become braids. ∎

Now we claim that setting σk=bk,k+1\sigma_{k}=b_{k,k+1} yields the desired braid group.

Proposition 3.16.

Set σk=bk,k+1\sigma_{k}=b_{k,k+1}. These elements generate a unitary representation of the braid group

B2n=σ1,,σ2n1|σkσk+1σk=σk+1σkσk+1,σkσl=σlσk if |kl|2.B_{2n}=\langle\sigma_{1},\ldots,\sigma_{2n-1}|\sigma_{k}\sigma_{k+1}\sigma_{k}=\sigma_{k+1}\sigma_{k}\sigma_{k+1},\sigma_{k}\sigma_{l}=\sigma_{l}\sigma_{k}\text{ if }|k-l|\geq 2\rangle. (3.78)
Proof.

The condition σkσk+1σk=σk+1σkσk+1\sigma_{k}\sigma_{k+1}\sigma_{k}=\sigma_{k+1}\sigma_{k}\sigma_{k+1} is true by Proposition 3.15 taking the three generators to be ck,ck+1,ck+2c_{k},c_{k+1},c_{k+2}. Meanwhile, the commutation relation σkσl=σlσk\sigma_{k}\sigma_{l}=\sigma_{l}\sigma_{k} for |kl|2|k-l|\geq 2 follows by applying the linear extension of Proposition 3.8. ∎

3.3.3 Vector Identities for the Algebraic Framework

The fact that the Yang-Baxter equation holds for the elements bklb_{kl} of the generalized Clifford algebra suggests that perhaps some kind of identities should also hold for the vectors with respect to the action of the generalized Clifford algebra. While one might speculate that the vectors (caps and cups) automatically satisfy a kind of an isotopy invariance, taking this to be a built-in axiom (in, e.g., [7]) would most certainly be incompatible with the algebraic axiomatic approach we have taken. Any such property ought to be derived from the axioms we have presented, not simply taken to be true. Of course, when working with our vectors, we must stick to the representation we have chosen for the generalized Clifford algebra, so our investigation will by necessity proceed from axiom 1 of our algebraic framework.

To those who are familiar with some subfactor theory or category theory, it may be tempting to appeal to these theories as a kind of panacea for isotopy invariance with respect to braidings. However, it must be pointed out that one cannot rely on the algebraic results of subfactor theory555Popa’s results on the axiomatization of the standard invariant [17] are for subfactors; one would need a (conjectural) graded subfactor theory, as noted in [7]. or tensor category theory666There is no tensor category here, since the tensor product is not defined between two nonneutral elements of the generalized Clifford algebra. See, e.g., [9], for a nice exposition of tensor category theory. approaches for any N>2N>2 (we do not rule out the possibility of an explanation of the N=2N=2 case), as these do not cover the case of parastatistics for N>2N>2. In fact, our algebraic framework was devised precisely to enable one to circumvent these theoretical difficulties.

As the methods of proof we developed within the algebra in the previous section cannot logically extend to proofs for the vectors, we are forced to devise new methods to prove vector identities. These methods are independent of the Yang-Baxter equation. It turns out that the results we obtain using these methods include not only graphical identities, but also encompass more general algebraic identities which supersede the graphical identities. In terms of our results, we will show that in a combinatorial sense, two basic vector identities give rise to a plethora of identifications between different vectors generated from the ground state by braidings.

First, we begin by proving a general projection-braid identity and two basic vector identities which uniformly apply to a multi-qudit space of an arbitrary number of qudits. The second vector identity, which we call the “slip” move, appears to be new. In their full generality, our two vector identities go beyond a graphical representation. We then show by example that these identities can be thought of as representing combinatorial moves that one can perform on braided states without changing the state. We conclude with an example in which we show, rigorously and without any computations, that two entangled vector states can be shown to be equal using these combinatorial moves in combination.

Thus, an important general result in this section is the introduction of a reduction procedure: in many cases, one may reduce the problem of showing equivalence of two different sequences of braidings applied to the ground state, to that of a tractable combinatorial problem, instead of one of explicit algebraic computation. The essential starting point for these vector identities is the identity lemma 2.8, and can be thought of as an important reason for using axiom 1 as an axiomatic starting point for the entire theory777 Given how the “rest” of the theory is following from the axiomatic framework, the reader perhaps is gaining more appreciation of why it was so important to separate the algebraic framework into two parts: axioms which allow one to do lots of derivations and algebraic proofs, and a proof of that these axioms are satisfied by an explicit example, i.e. the existence of a consistent vector representation of the generalized Clifford algebra that satisfied both axiom 1 and axiom 2. The division of labor is made clear, and thus each part can be independently rigorously verified..

We start with the two main combinatorial moves we will need. In this section, as a matter of form, we will draw the diagrams first, and then writing out the algebraic expressions, as the diagrams in the vector representation take on increasing importance for intuition.

Proposition 3.17 (Projection-Braid Identity, or the “Twist” Move).
  =ω1/2  \raisebox{-21.33955pt}{ { \leavevmode\hbox to19.37pt{\vbox to52.56pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower 18.76865pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{66.38962pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{71.1319pt}\pgfsys@lineto{0.0pt}{66.38962pt}\pgfsys@curveto{0.0pt}{61.15163pt}{4.24611pt}{56.90552pt}{9.4841pt}{56.90552pt}\pgfsys@curveto{14.72209pt}{56.90552pt}{18.9682pt}{61.15163pt}{18.9682pt}{66.38962pt}\pgfsys@lineto{18.96864pt}{71.1319pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\omega^{-1/2}\raisebox{-14.22636pt}{ \leavevmode\hbox to19.37pt{\vbox to35.46pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.4841pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}} {{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{33.19502pt}\pgfsys@lineto{0.0pt}{28.45276pt}\pgfsys@curveto{0.0pt}{23.21477pt}{4.24611pt}{18.96866pt}{9.4841pt}{18.96866pt}\pgfsys@curveto{14.72209pt}{18.96866pt}{18.9682pt}{23.21477pt}{18.9682pt}{28.45276pt}\pgfsys@lineto{18.96864pt}{33.19502pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\; (3.79)

Equivalently (by scaling the graphical identity by δ\delta),

b12E1=ω1/2E1.b_{12}E_{1}=\omega^{-1/2}E_{1}. (3.80)

More generally,

b2k1,2kEk=ω1/2Ekb_{2k-1,2k}E_{k}=\omega^{-1/2}E_{k} (3.81)

for k=1,2,,nk=1,2,\ldots,n.

Proof.

By definition,

b12E1=ω1/2Ni=0N1c1ic2iE1.\displaystyle b_{12}E_{1}\,=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{1}^{i}c_{2}^{-i}E_{1}. (3.82)

Recall that the axioms for the projectors imply via lemma 2.8 that c1aE1=ζa2c2aE1c_{1}^{a}E_{1}=\zeta^{a^{2}}c_{2}^{a}E_{1}. So the above equality translates to

b12E1\displaystyle b_{12}E_{1} =ω1/2N(i=0N1ζi2)E1\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\left(\sum_{i=0}^{N-1}\zeta^{-i^{2}}\right)E_{1} (3.83)
=ω1/2ωE1=ω1/2E1.\displaystyle=\omega^{1/2}\omega^{*}E_{1}=\omega^{-1/2}E_{1}. (3.84)

The general statement b2k1,2kEk=ω1/2Ekb_{2k-1,2k}E_{k}=\omega^{-1/2}E_{k} follows similarly since the same lemma gives c2k1aEk=ζa2c2kaEkc_{2k-1}^{a}E_{k}=\zeta^{a^{2}}c_{2k}^{a}E_{k}, which allows for a similar simplification from the sum over generators to a single complex number. ∎

Proposition 3.18 (“Slide” Move).
   =    \raisebox{-28.45274pt}{ { \leavevmode\hbox to57.31pt{\vbox to71.53pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{37.93686pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{0.0pt}\pgfsys@lineto{-37.93686pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-37.93686pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-25.29124pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-31.61426pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-6.32259pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{-12.64561pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\; (3.85)

More generally (i.e. for nn (where 2n2n is the number of strands) not necessarily equal to 2),

b23b34b12b23|Ωn=|Ωn.b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}. (3.86)
Proof.

Graphically, it is wisest to expand the braids on the 2nd and 3rd strands, since we may use existing algebraic graphical identities to simplify the result. This yields

b23b34b12b23|Ωn=ωNi,j=0N1c2jc3jb34b12c2ic3i|Ωn.b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n}=\frac{\omega}{N}\sum_{i,j=0}^{N-1}c_{2}^{j}c_{3}^{-j}b_{34}b_{12}c_{2}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n}. (3.87)

Note that b12b_{12}, b34b_{34} commute by linear extension of lemma 3.8 so the order doesn’t matter.

In terms of a diagram, expanding the middle braids yields

ωNi,j=0N1  ji  ji=ωNi,j=0N1ζi2  ji  ji,\frac{\omega}{N}\sum_{i,j=0}^{N-1}\raisebox{-28.45274pt}{ { \leavevmode\hbox to20.1pt{\vbox to62.34pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.48965pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{48.69102pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{52.16324pt}\pgfsys@curveto{0.0pt}{57.40123pt}{4.24611pt}{61.64734pt}{9.4841pt}{61.64734pt}\pgfsys@curveto{14.72209pt}{61.64734pt}{18.9682pt}{57.40123pt}{18.9682pt}{52.16324pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{4.78778pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.50381pt}{39.38152pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\raisebox{-28.45274pt}{ { \leavevmode\hbox to37.11pt{\vbox to62.05pt{\pgfpicture\makeatletter\hbox{\hskip 17.9401pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{48.69102pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{52.16324pt}\pgfsys@curveto{0.0pt}{57.40123pt}{4.24611pt}{61.64734pt}{9.4841pt}{61.64734pt}\pgfsys@curveto{14.72209pt}{61.64734pt}{18.9682pt}{57.40123pt}{18.9682pt}{52.16324pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.60709pt}{8.34438pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.9844pt}{42.93811pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\frac{\omega}{N}\sum_{i,j=0}^{N-1}\zeta^{i^{2}}\!\raisebox{-32.72049pt}{ { \leavevmode\hbox to29.7pt{\vbox to67.08pt{\pgfpicture\makeatletter\hbox{\hskip 9.79784pt\lower-14.71603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-9.4841pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-9.4841pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{-9.4386pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.46483pt}{0.25897pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\!\raisebox{-28.45274pt}{ { \leavevmode\hbox to37.11pt{\vbox to63.52pt{\pgfpicture\makeatletter\hbox{\hskip 17.9401pt\lower-11.15944pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-9.4841pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-9.4841pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.60709pt}{-5.882pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.9844pt}{7.37216pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}, (3.88)

where we have applied axiom 1 to bring the charge i-i over to the 4th strand, yielding the phase factor ζi2\zeta^{i^{2}}, and then commuted it over the braid back to the 3rd strand. Similarly, the charge ii can be brought over the braid. Note that no additional phase accumulates, since overall the relative vertical positions of the charges are unchanged. Now apply the twist move in proposition 3.17 to get the diagram

1Ni,j=0N1ζi2  ji  ji.\frac{1}{N}\sum_{i,j=0}^{N-1}\zeta^{i^{2}}\!\!\raisebox{-21.33955pt}{ { \leavevmode\hbox to29.7pt{\vbox to45.74pt{\pgfpicture\makeatletter\hbox{\hskip 9.79784pt\lower 6.62354pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{9.4841pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{11.90097pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.46483pt}{28.71173pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\!\raisebox{-17.07182pt}{ { \leavevmode\hbox to37.11pt{\vbox to43.08pt{\pgfpicture\makeatletter\hbox{\hskip 17.9401pt\lower 9.2841pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{9.4841pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{9.4841pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.60709pt}{15.45757pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.9844pt}{35.82492pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}.\! (3.89)

Following the logic of the diagram, we can perform the same operations to obtain that

b23b34b12b23|Ωn=1Ni,j=0N1ζi2c2jc3jc1ic3i|Ωn.b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{i,j=0}^{N-1}\zeta^{i^{2}}c_{2}^{j}c_{3}^{-j}c_{1}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n}. (3.90)

By unitarity of the braids, it suffices to show that Ω|nb23b34b12b23|Ωn=1\bra{\Omega}^{\otimes n}b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n}=1.

Note that the projection onto the ground state yields 1Ni,j=0N1ζi2Ω|nc2jc3jc1ic3i|Ωn=1Ni,j=0N1ζi2Ω|nc1ic2jc3ij|Ωn\frac{1}{N}\sum_{i,j=0}^{N-1}\zeta^{i^{2}}\bra{\Omega}^{\otimes n}c_{2}^{j}c_{3}^{-j}c_{1}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{i,j=0}^{N-1}\zeta^{i^{2}}\bra{\Omega}^{\otimes n}c_{1}^{i}c_{2}^{j}c_{3}^{-i-j}\ket{\Omega}^{\otimes n} by commuting c1ic_{1}^{i} past the neutral c2jc3jc_{2}^{j}c_{3}^{-j}. By orthonormality of c2ac4b|Ωnc_{2}^{a}c_{4}^{b}\ket{\Omega}^{\otimes n} states, and equivalently, the orthonormality of c1ac3b|Ωnc_{1}^{a}c_{3}^{b}\ket{\Omega}^{\otimes n} states, only the terms with ij=0-i-j=0 survive. Thus, the sum reduces to 1Ni=0N1ζi2Ω|nc1ic2i|Ωn\frac{1}{N}\sum_{i=0}^{N-1}\zeta^{i^{2}}\bra{\Omega}^{\otimes n}c_{1}^{i}c_{2}^{-i}\ket{\Omega}^{\otimes n}, and this is simply equal to 11 by lemma 2.8.

Thus, it follows by unitarity of the braids that

b23b34b12b23|Ωn=|Ωn.b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}. (3.91)

In terms of the diagram, for n=2n=2, we have

   =    .\raisebox{-28.45274pt}{ { \leavevmode\hbox to57.31pt{\vbox to71.53pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{37.93686pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{0.0pt}\pgfsys@lineto{-37.93686pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-37.93686pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-25.29124pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-31.61426pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-6.32259pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{-12.64561pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\;. (3.92)

In terms of combinatorial moves, this identity gives us a way to “slide” one cap over the other.

Corollary 3.19.
b12b23|Ωn=b43b32|Ωn.b_{12}b_{23}\ket{\Omega}^{\otimes n}=b_{43}b_{32}\ket{\Omega}^{\otimes n}. (3.93)
Proof.

By taking b34b_{34} and b23b_{23} to the right hand side in Proposition 3.18. ∎

The above “slide” move generalizes to the general result:

Proposition 3.20 (General “Slide” Move).
b2k,2l1b2l1,2lb2k1,2kb2k,2l1|Ωn=|Ωnb_{2k,2l-1}b_{2l-1,2l}b_{2k-1,2k}b_{2k,2l-1}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n} (3.94)

for k<lk<l in {1,2,,n}\{1,2,\ldots,n\}.

Note that this result does not generally have a graphical interpretation unless l=k+1l=k+1.

Proof.

Again, by expansion,

b2k,2l1b2l1,2lb2k1,2kb2k,2l1|Ωn=ωNi,j=0N1c2kjc2l1jb2l1,2lb2k1,2kc2kic2l1i|Ωn.b_{2k,2l-1}b_{2l-1,2l}b_{2k-1,2k}b_{2k,2l-1}\ket{\Omega}^{\otimes n}=\frac{\omega}{N}\sum_{i,j=0}^{N-1}c_{2k}^{j}c_{2l-1}^{-j}b_{2l-1,2l}b_{2k-1,2k}c_{2k}^{i}c_{2l-1}^{-i}\ket{\Omega}^{\otimes n}. (3.95)

The same proof as before works in this general case since we can apply the braid intertwining identities and also the twist moves (for braids b2l1,2lb_{2l-1,2l} and b2k1,2kb_{2k-1,2k}), and then apply the axioms to simplify the vacuum expectation value. So we conclude that

b2k,2l1b2l1,2lb2k1,2kb2k,2l1|Ωn=|Ωn.b_{2k,2l-1}b_{2l-1,2l}b_{2k-1,2k}b_{2k,2l-1}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}. (3.96)

We would also like to be able to “slip” one cap in and out of another cap.

Proposition 3.21 (“Slip” Move).
   =    \raisebox{-28.45274pt}{ { \leavevmode\hbox to57.31pt{\vbox to71.53pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{37.93686pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{0.0pt}\pgfsys@lineto{-37.93686pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{37.93686pt}\pgfsys@lineto{-31.61426pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-25.29124pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{-6.32259pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{0.0pt}\pgfsys@lineto{-12.64561pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{56.90552pt}\pgfsys@lineto{-12.64561pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-6.32259pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\raisebox{-7.11317pt}{ \leavevmode\hbox to19.37pt{\vbox to16.49pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-2.06296pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{1.27005pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.74226pt}\pgfsys@curveto{0.0pt}{9.98026pt}{4.24611pt}{14.22636pt}{9.4841pt}{14.22636pt}\pgfsys@curveto{14.72209pt}{14.22636pt}{18.9682pt}{9.98026pt}{18.9682pt}{4.74226pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\; (3.97)

More generally, for nn a positive integer not necessarily 1,

b23b34b21b32|Ωn=|Ωn.b_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}.
Proof.

As demonstrated in the proof of the “slide” move, this kind of proof doesn’t depend on nn, so long as n2n\geq 2, so let’s specialize to n=2n=2 for convenience. The previous proposition gave a clear handle on how to manipulate the algebraic computations, so we’ll stick with the algebra.

b23b34b21b32|Ωn=1Ni,j=0N1c2jc3jb34b21c3ic2i|Ωn.b_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{i,j=0}^{N-1}c_{2}^{j}c_{3}^{-j}b_{34}b_{21}c_{3}^{i}c_{2}^{-i}\ket{\Omega}^{\otimes n}. (3.98)

In terms of a diagram, multiplying the state by δ\delta (every cap contributes an extra factor of δ\sqrt{\delta}) yields

LHS=1Ni,j=0N1  ji  ji=1Ni,j=0N1  ji  ji,LHS=\frac{1}{N}\sum_{i,j=0}^{N-1}\raisebox{-28.45274pt}{ { \leavevmode\hbox to20.1pt{\vbox to62.34pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-0.48965pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{48.69102pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{52.16324pt}\pgfsys@curveto{0.0pt}{57.40123pt}{4.24611pt}{61.64734pt}{9.4841pt}{61.64734pt}\pgfsys@curveto{14.72209pt}{61.64734pt}{18.9682pt}{57.40123pt}{18.9682pt}{52.16324pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{6.32259pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{12.64561pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{4.78778pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.88062pt}{46.4947pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\raisebox{-28.45274pt}{ { \leavevmode\hbox to37.11pt{\vbox to62.05pt{\pgfpicture\makeatletter\hbox{\hskip 17.9401pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{48.69102pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{52.16324pt}\pgfsys@curveto{0.0pt}{57.40123pt}{4.24611pt}{61.64734pt}{9.4841pt}{61.64734pt}\pgfsys@curveto{14.72209pt}{61.64734pt}{18.9682pt}{57.40123pt}{18.9682pt}{52.16324pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.60709pt}{10.12267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.36165pt}{39.38152pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\frac{1}{N}\sum_{i,j=0}^{N-1}\!\raisebox{-32.72049pt}{ { \leavevmode\hbox to20.1pt{\vbox to67.08pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-14.71603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-9.4841pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-9.4841pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{6.32259pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{12.64561pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{-9.4386pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.88062pt}{9.15045pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\!\raisebox{-28.45274pt}{ { \leavevmode\hbox to37.11pt{\vbox to63.52pt{\pgfpicture\makeatletter\hbox{\hskip 17.9401pt\lower-11.15944pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{39.20692pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@curveto{0.0pt}{47.91713pt}{4.24611pt}{52.16324pt}{9.4841pt}{52.16324pt}\pgfsys@curveto{14.72209pt}{52.16324pt}{18.9682pt}{47.91713pt}{18.9682pt}{42.67914pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-9.4841pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-9.4841pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.60709pt}{-5.882pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.36165pt}{3.81557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}, (3.99)

since the factors of ζi2\zeta^{i^{2}} and ζi2\zeta^{-i^{2}} cancel.

Undoing the twists yields factors of ω1/2\omega^{1/2} and ω1/2\omega^{-1/2}, respectively, which cancel, so we are left with

LHS=1Ni,j=0N1  ij ij.LHS=\frac{1}{N}\sum_{i,j=0}^{N-1}\!\raisebox{-21.33955pt}{ { \leavevmode\hbox to57.31pt{\vbox to55.22pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower 1.88126pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{43.94919pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{4.74226pt}\pgfsys@lineto{0.0pt}{47.4214pt}\pgfsys@curveto{0.0pt}{52.6594pt}{4.24611pt}{56.9055pt}{9.4841pt}{56.9055pt}\pgfsys@curveto{14.72209pt}{56.9055pt}{18.9682pt}{52.6594pt}{18.9682pt}{47.4214pt}\pgfsys@lineto{18.96864pt}{4.74226pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.88062pt}{34.63924pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.88113pt}{7.15869pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.24083pt}{43.94919pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{37.93686pt}{4.74226pt}\pgfsys@lineto{37.93686pt}{47.4214pt}\pgfsys@curveto{37.93686pt}{52.6594pt}{42.18297pt}{56.9055pt}{47.42096pt}{56.9055pt}\pgfsys@curveto{52.65895pt}{56.9055pt}{56.90506pt}{52.6594pt}{56.90506pt}{47.4214pt}\pgfsys@lineto{56.90552pt}{4.74226pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.57564pt}{25.15514pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$i$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{24.27795pt}{11.90097pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$-j$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\;. (3.100)

Converting back to the algebraic form, one has

b23b34b21b32|Ωn=1Ni,j=0N1c2jc3jc3ic2i|Ωn.b_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{i,j=0}^{N-1}c_{2}^{j}c_{3}^{-j}c_{3}^{i}c_{2}^{-i}\ket{\Omega}^{\otimes n}. (3.101)

Note that the |00\ket{00} component has norm 1, since setting i=ji=j yields the |00\ket{00} component. Thus, by unitarity of the braid elements, the other basis state projections vanish, so

b23b34b21b32|Ωn=|Ωnb_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n} (3.102)

as desired.

As with the “slide” move, there is again an algebraic generalization to braid elements with no graphical interpretation:

Proposition 3.22 (General “Slip” Move).
b2k,2l1b2l1,2lb2k,2k1b2l1,2k|Ωn=|Ωnb_{2k,2l-1}b_{2l-1,2l}b_{2k,2k-1}b_{2l-1,2k}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n} (3.103)

for k<lk<l in {1,2,,n}\{1,2,\ldots,n\}.

Proof.

By expansion,

b2k,2l1b2l1,2lb2k,2k1b2l1,2k|Ωn=1Ni,j=0N1c2kjc2l1jb2l1,2lb2k,2k1c2l1ic2ki|Ωn,b_{2k,2l-1}b_{2l-1,2l}b_{2k,2k-1}b_{2l-1,2k}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{i,j=0}^{N-1}c_{2k}^{j}c_{2l-1}^{-j}b_{2l-1,2l}b_{2k,2k-1}c_{2l-1}^{i}c_{2k}^{-i}\ket{\Omega}^{\otimes n}, (3.104)

and the same proof follows through as before. ∎

Corollary 3.23.
b21b32|Ωn=b43b32|Ωnb_{21}b_{32}\ket{\Omega}^{\otimes n}=b_{43}b_{32}\ket{\Omega}^{\otimes n} (3.105)
Proof.

By taking b23b_{23} and b34b_{34} to the right hand side in proposition 3.21. ∎

Proposition 3.24.
   =   \raisebox{-21.33955pt}{ { \leavevmode\hbox to57.31pt{\vbox to52.56pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower 18.76865pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\raisebox{-21.33955pt}{ { \leavevmode\hbox to57.31pt{\vbox to52.56pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower 18.76865pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{18.96864pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{6.32259pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{12.64561pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{56.90552pt}\pgfsys@lineto{-12.64561pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-6.32259pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\, (3.106)

i.e.

b34b23|Ωn=b43b32|Ωnb_{34}b_{23}\ket{\Omega}^{\otimes n}=b_{43}b_{32}\ket{\Omega}^{\otimes n} (3.107)
Proof.

It suffices to show that b23b34b34b23|Ωn=|Ωnb_{23}b_{34}b_{34}b_{23}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}, using the fact that bjkbkj=1b_{jk}b_{kj}=1.

Note that this relation does not follow immediately from the Yang-Baxter-like equation, since the Yang-Baxter-like equation does not know about the vector structure, or even about the behavior of the ground state.

First recall that proposition 3.18 says that the ground state |Ωn\ket{\Omega}^{\otimes n} is invariant under a
“slide” move via

|Ωn=b23b34b12b23|Ωn\ket{\Omega}^{\otimes n}=b_{23}b_{34}b_{12}b_{23}\ket{\Omega}^{\otimes n} (3.108)

and so we have that

b32b43b21b32|Ωn=|Ωn.b_{32}b_{43}b_{21}b_{32}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}. (3.109)

Thus,

b23b34b34b23|Ωn\displaystyle b_{23}b_{34}b_{34}b_{23}\ket{\Omega}^{\otimes n} =b23b34b34b23b32b43b21b32|Ωn\displaystyle=b_{23}b_{34}b_{34}b_{23}b_{32}b_{43}b_{21}b_{32}\ket{\Omega}^{\otimes n} (3.110)
=b23b34b21b32|Ωn\displaystyle=b_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n} (3.111)

which equals |Ωn\ket{\Omega}^{\otimes n} by proposition 3.21, as desired.

Now we prove something quite nontrivial using the above braiding relations in combination.

Proposition 3.25.
    =    \raisebox{-35.56593pt}{ { \leavevmode\hbox to95.24pt{\vbox to90.5pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-19.16864pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.23128pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{37.9273pt}{56.90552pt}\pgfsys@lineto{37.9273pt}{61.64778pt}\pgfsys@curveto{37.9273pt}{66.88577pt}{42.17342pt}{71.13188pt}{47.4114pt}{71.13188pt}\pgfsys@curveto{52.6494pt}{71.13188pt}{56.89551pt}{66.88577pt}{56.89551pt}{61.64778pt}\pgfsys@lineto{56.89597pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{-18.96864pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{-18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-18.96864pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-18.96864pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{18.96864pt}\pgfsys@lineto{37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{56.90552pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{0.0pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{12.64561pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{6.32259pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{-6.32259pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{-12.64561pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{-18.96864pt}\pgfsys@lineto{37.93686pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{50.58292pt}{-6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{-18.96864pt}\pgfsys@lineto{44.25989pt}{-12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{0.0pt}\pgfsys@lineto{18.96864pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{18.96864pt}\pgfsys@lineto{31.61426pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{25.29124pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\,=\raisebox{-35.56593pt}{ { \leavevmode\hbox to95.24pt{\vbox to90.5pt{\pgfpicture\makeatletter\hbox{\hskip 38.13686pt\lower-19.16864pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.30353pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{0.0pt}{56.90552pt}\pgfsys@lineto{0.0pt}{61.64778pt}\pgfsys@curveto{0.0pt}{66.88577pt}{4.24611pt}{71.13188pt}{9.4841pt}{71.13188pt}\pgfsys@curveto{14.72209pt}{71.13188pt}{18.9682pt}{66.88577pt}{18.9682pt}{61.64778pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.62378pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{-37.9273pt}{56.90552pt}\pgfsys@lineto{-37.9273pt}{61.64778pt}\pgfsys@curveto{-37.9273pt}{66.88577pt}{-33.6812pt}{71.13188pt}{-28.4432pt}{71.13188pt}\pgfsys@curveto{-23.20522pt}{71.13188pt}{-18.9591pt}{66.88577pt}{-18.9591pt}{61.64778pt}\pgfsys@lineto{-18.95909pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.23128pt}{58.17557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{$\phantom{ll}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{{}{}{}{{}}{{{{}{}{}{}}}{{}{}{}{}}}}{} {} {} {} {}{} {}{}{}\pgfsys@moveto{37.9273pt}{56.90552pt}\pgfsys@lineto{37.9273pt}{61.64778pt}\pgfsys@curveto{37.9273pt}{66.88577pt}{42.17342pt}{71.13188pt}{47.4114pt}{71.13188pt}\pgfsys@curveto{52.6494pt}{71.13188pt}{56.89551pt}{66.88577pt}{56.89551pt}{61.64778pt}\pgfsys@lineto{56.89597pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-37.93686pt}{-18.96864pt}\pgfsys@lineto{-37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{-18.96864pt}\pgfsys@lineto{-18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-18.96864pt}\pgfsys@lineto{0.0pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{37.93686pt}\pgfsys@lineto{18.96864pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{-18.96864pt}\pgfsys@lineto{18.96864pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{18.96864pt}\pgfsys@lineto{37.93686pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{56.90552pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{18.96864pt}\pgfsys@lineto{18.96864pt}{37.93686pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{6.32259pt}{31.61426pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{12.64561pt}{25.29124pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{37.93686pt}\pgfsys@lineto{0.0pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.96864pt}{56.90552pt}\pgfsys@lineto{-12.64561pt}{50.58292pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{37.93686pt}\pgfsys@lineto{-6.32259pt}{44.25989pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{-18.96864pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{0.0pt}\pgfsys@lineto{44.25989pt}{-6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{56.90552pt}{-18.96864pt}\pgfsys@lineto{50.58292pt}{-12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{0.0pt}\pgfsys@lineto{37.93686pt}{18.96864pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.96864pt}{18.96864pt}\pgfsys@lineto{25.29124pt}{12.64561pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{37.93686pt}{0.0pt}\pgfsys@lineto{31.61426pt}{6.32259pt}\pgfsys@stroke\pgfsys@invoke{ } } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}\, (3.112)

i.e.

b56b45b34b23|Ωn=b65b54b43b32|Ωn.b_{56}b_{45}b_{34}b_{23}\ket{\Omega}^{\otimes n}=b_{65}b_{54}b_{43}b_{32}\ket{\Omega}^{\otimes n}. (3.113)
Proof.

Equivalently, we will show that

b23b34b45b56b56b45b34b23|Ωn=|Ωn.b_{23}b_{34}b_{45}b_{56}b_{56}b_{45}b_{34}b_{23}\ket{\Omega}^{\otimes n}=\ket{\Omega}^{\otimes n}. (3.114)

We first substitute b32b43b21b32|Ωnb_{32}b_{43}b_{21}b_{32}\ket{\Omega}^{\otimes n} for |Ωn\ket{\Omega}^{\otimes n} following Proposition 3.18. This kills off the b34b_{34} and b23b_{23} braids and we are left with

b23b34b45b56b56b45b21b32|Ωn.b_{23}b_{34}b_{45}b_{56}b_{56}b_{45}b_{21}b_{32}\ket{\Omega}^{\otimes n}. (3.115)

Now we commute the braids which do not overlap so we get

b23b34b21b32b45b56b56b45|Ωn.b_{23}b_{34}b_{21}b_{32}b_{45}b_{56}b_{56}b_{45}\ket{\Omega}^{\otimes n}. (3.116)

We now substitute b54b65b43b54|Ωnb_{54}b_{65}b_{43}b_{54}\ket{\Omega}^{\otimes n} for |Ωn\ket{\Omega}^{\otimes n} to get

b23b34b21b32b45b56b43b54|Ωnb_{23}b_{34}b_{21}b_{32}b_{45}b_{56}b_{43}b_{54}\ket{\Omega}^{\otimes n} (3.117)

upon braid and adjoint braid cancellation. Now we apply the slip move in reverse to get

b23b34b21b32|Ωnb_{23}b_{34}b_{21}b_{32}\ket{\Omega}^{\otimes n} (3.118)

and then apply the slip move in reverse again to get |Ωn\ket{\Omega}^{\otimes n}, as desired. ∎

3.4 Significance of the Yang-Baxter Equation Proof

At this point, we wish to elaborate on the significance of our algebraic proof of the Yang-Baxter equation. This subsection is divided into two parts, the first being the particular local representation for the bk,k+1b_{k,k+1}’s built out of cic_{i}’s satisfying the two axioms, and the second being the local representation for an alternate local representation bk,k+1b_{k,k+1}’s built out of cic_{i}’s not conforming to the explicit representation we constructed to satisfy our two axioms, but still satisfying the relations of a generalized Clifford algebra. By local, we mean that the unitary braid elements are 2-qudit entangling gates or single-qudit gates, in the terminology of quantum circuits; and furthermore, only adjacent qudits are entangled. Via a suitable realization of the generalized Clifford algebras, the latter section provides a solution to an open question in the work of Cobanera and Ortiz [2], regarding the construction of unitary solutions realizing the braid group B2nB_{2n} when the underlying qudit dimension NN of the nn-qudit system is even, of the “self-dual” form:

ρsd(σ2i1)\displaystyle\rho_{sd}(\sigma_{2i-1}) =1Nm=0N1αmUim,i=1,,n\displaystyle=\frac{1}{\sqrt{N}}\sum_{m=0}^{N-1}\alpha_{m}U_{i}^{-m},i=1,\ldots,n (3.119)
ρsd(σ2i)\displaystyle\rho_{sd}(\sigma_{2i}) =1Nm=0N1βmVimVi+1m,i=1,,n1.\displaystyle=\frac{1}{\sqrt{N}}\sum_{m=0}^{N-1}\beta_{m}V_{i}^{m}V_{i+1}^{-m},i=1,\dots,n-1. (3.120)

Here, the operators VkV_{k} and UkU_{k}, termed Weyl generators, are defined by

Vk|a1,a2,,an=|a1,a2,,(ak1)(mod N),,anV_{k}\ket{a_{1},a_{2},\ldots,a_{n}}=\ket{a_{1},a_{2},\ldots,(a_{k}-1)(\text{mod }N),\ldots,a_{n}} (3.121)

and

Uk|a1,a2,,an=qak|a1,a2,,ak,,an.U_{k}\ket{a_{1},a_{2},\ldots,a_{n}}=q^{a_{k}}\ket{a_{1},a_{2},\ldots,a_{k},\ldots,a_{n}}. (3.122)

VkV_{k} and UkU_{k} satisfy the commutation relation VkUk=qUkVkV_{k}U_{k}=qU_{k}V_{k} and Weyl generators with different kk’s commute. The operators VkV_{k}, UkU_{k} correspond to the generalized Pauli operators X1X^{-1} (XX is bit increment) and ZZ (ZZ is phase increment).

3.4.1 Local Representation of the bk,k+1b_{k,k+1}’s

We first recall [1] the particular realization of the generalized Clifford algebras that was constructed in order to satisfy the two axioms:

c2k|a1,a2,,an=qi<kai|a1,a2,,(ak+1)(mod N),,anc_{2k}\ket{a_{1},a_{2},\ldots,a_{n}}=q^{-\sum_{i<k}a_{i}}\ket{a_{1},a_{2},\ldots,(a_{k}+1)(\text{mod }N),\ldots,a_{n}} (3.123)

and

c2k1|a1,a2,,an=ζqakqi<kai|a1,a2,,(ak+1)(mod N),,an.c_{2k-1}\ket{a_{1},a_{2},\ldots,a_{n}}=\zeta\,q^{a_{k}}q^{-\sum_{i<k}a_{i}}\ket{a_{1},a_{2},\ldots,(a_{k}+1)(\text{mod }N),\ldots,a_{n}}. (3.124)

To connect to [2], we need to rewrite c2kc_{2k} and c2k1c_{2k-1} in terms of the single-qudit generalized Pauli operators, also called Heisenberg-Weyl operators. Such rewriting in terms of single-qudit operators is known as a Jordan-Wigner transformation [7]; the particular Jordan-Wigner transformation depends on some conventions about phases and the single-qudit operators chosen and needs to be computed explicitly. Thus, there was some nontriviality in verifying the axioms we presented, since we insisted on particular phases associated with the corresponding c2kc_{2k} and c2k1c_{2k-1}’s in axiom 1, which depend in some way on the parity of NN.

In our case, we compute the Jordan-Wigner transformation using the single-qudit operators of [2], UkU_{k} and VkV_{k} above. Thus,

c2k=U11U21Uk11Vk1c_{2k}=U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1} (3.125)

and

c2k1=ζU11U21Uk11Vk1Uk.c_{2k-1}=\zeta U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1}U_{k}. (3.126)

First, we show that c2k1c2k1c_{2k-1}c_{2k}^{-1} is 1-local:

Proposition 3.26.

c2k1c2k1c_{2k-1}c_{2k}^{-1} is 1-local, i.e. it only acts on the kkth qudit and leaves the rest fixed. In particular, c2k1c2k1=ζ1Ukc_{2k-1}c_{2k}^{-1}=\zeta^{-1}U_{k}.

Proof.
c2k1c2k1\displaystyle c_{2k-1}c_{2k}^{-1} =(ζU11U21Uk11Vk1Uk)(U1U2Uk1Vk)\displaystyle=\left(\zeta U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1}U_{k}\right)\left(U_{1}U_{2}\cdots U_{k-1}V_{k}\right) (3.127)
=ζVk1UkVk\displaystyle=\zeta V_{k}^{-1}U_{k}V_{k} (3.128)
=ζq1Vk1VkUk\displaystyle=\zeta q^{-1}V_{k}^{-1}V_{k}U_{k} (3.129)
=ζ1Uk.\displaystyle=\zeta^{-1}U_{k}. (3.130)

It will be convenient also to have c2k+1c_{2k+1} and c2k+11c_{2k+1}^{-1} at our disposal:

c2k+1\displaystyle c_{2k+1} =ζU11U21Uk11Uk1Vk+11Uk+1\displaystyle=\zeta U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}U_{k}^{-1}V_{k+1}^{-1}U_{k+1} (3.131)
c2k+11\displaystyle c_{2k+1}^{-1} =ζ1U1U2Uk1UkUk+11Vk+1.\displaystyle=\zeta^{-1}U_{1}U_{2}\cdots U_{k-1}U_{k}U_{k+1}^{-1}V_{k+1}. (3.132)

Thus, the following combination is 2-local:

Proposition 3.27.

c2kc2k+11c_{2k}c_{2k+1}^{-1} is 2-local, i.e. it only acts on the kkth and (k+1)(k+1)th qudits and leaves the rest of them fixed. In particular,

c2kc2k+11=ζ1Vk1UkUk+11Vk+1.c_{2k}c_{2k+1}^{-1}=\zeta^{-1}V_{k}^{-1}U_{k}U_{k+1}^{-1}V_{k+1}. (3.133)
Proof.

Using equations 3.125 and 3.132,

c2kc2k+11\displaystyle c_{2k}c_{2k+1}^{-1} =(U11U21Uk11Vk1)(ζ1U1U2Uk1UkUk+11Vk+1)\displaystyle=\left(U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1}\right)\left(\zeta^{-1}U_{1}U_{2}\cdots U_{k-1}U_{k}U_{k+1}^{-1}V_{k+1}\right) (3.134)
=ζ1Vk1UkUk+11Vk+1.\displaystyle=\zeta^{-1}V_{k}^{-1}U_{k}U_{k+1}^{-1}V_{k+1}. (3.135)

Since UkU_{k}, VkV_{k} act only on the kkth qudit, it follows that c2kc2k+11c_{2k}c_{2k+1}^{-1} only acts on the kkth and (k+1)(k+1)th qudits. ∎

As a consequence, we obtain the important relation that the braid elements b2k,2k+1b_{2k,2k+1} are 2-local:

Proposition 3.28.

b2k,2k+1b_{2k,2k+1} is 2-local. In particular,

b2k,2k+1\displaystyle b_{2k,2k+1} =ω1/2Ni=0N1ζi2WkiWk+1i,\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i^{2}}W_{k}^{i}W_{k+1}^{-i}, (3.136)

where Wk=Vk1UkW_{k}=V_{k}^{-1}U_{k} for each k{1,2,,n}k\in\{1,2,\ldots,n\}.

Proof.

Recall that

bkl:=ω1/2Ni=0N1ckiclib_{kl}:=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{k}^{i}c_{l}^{-i} (3.137)

defines the braid elements. We will compute b2k,2k+1b_{2k,2k+1} in terms of UkU_{k}, VkV_{k}, Uk+1U_{k+1} and Vk+1V_{k+1}.

Lemma 3.29.

Suppose ckcl=Qclckc_{k}c_{l}=Qc_{l}c_{k}, then (ckcl1)n=Qn(n1)/2ckncln(c_{k}c_{l}^{-1})^{n}=Q^{n(n-1)/2}c_{k}^{n}c_{l}^{-n}.

Proof.

Suppose ckcl=Qclckc_{k}c_{l}=Qc_{l}c_{k}, then

ckcl1=ckclN1=QN1clN1ck=Q1cl1ckc_{k}c_{l}^{-1}=c_{k}c_{l}^{N-1}=Q^{N-1}c_{l}^{N-1}c_{k}=Q^{-1}c_{l}^{-1}c_{k} (3.138)

. Thus, cknclnc_{k}^{n}c_{l}^{-n} in terms of (ckcl1)n(c_{k}c_{l}^{-1})^{n} is given by

(ckcl1)n\displaystyle(c_{k}c_{l}^{-1})^{n} =ckcl1ckcl1ckcl1\displaystyle=c_{k}c_{l}^{-1}c_{k}c_{l}^{-1}\cdots c_{k}c_{l}^{-1} (3.139)
=Qck2cl2ckcl1ckcl1\displaystyle=Qc_{k}^{2}c_{l}^{-2}c_{k}c_{l}^{-1}\cdots c_{k}c_{l}^{-1} (3.140)
=Q1+2++(n1)ckncln\displaystyle=Q^{1+2+\cdots+(n-1)}c_{k}^{n}c_{l}^{-n} (3.141)
=Qn(n1)/2ckncln.\displaystyle=Q^{n(n-1)/2}c_{k}^{n}c_{l}^{-n}. (3.142)

In particular, c2kc2k+1=qc2k+1c2kc_{2k}c_{2k+1}=qc_{2k+1}c_{2k}, so

c2knc2k+1n=qn(n1)/2(c2kc2k+11)n.c_{2k}^{n}c_{2k+1}^{-n}=q^{-n(n-1)/2}(c_{2k}c_{2k+1}^{-1})^{n}. (3.143)

Thus, applying Proposition 3.27

b2k,2k+1\displaystyle b_{2k,2k+1} =ω1/2Ni=0N1qi(i1)/2(c2kc2k+11)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k}c_{2k+1}^{-1})^{i} (3.144)
=ω1/2Ni=0N1qi(i1)/2(ζ1Vk1UkUk+11Vk+1)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(\zeta^{-1}V_{k}^{-1}U_{k}U_{k+1}^{-1}V_{k+1})^{i} (3.145)
=ω1/2Ni=0N1qi(i1)/2ζi(Vk1Uk)i(Uk+11Vk+1)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\zeta^{-i}(V_{k}^{-1}U_{k})^{i}(U_{k+1}^{-1}V_{k+1})^{i} (3.146)

For convenience, set Wk=Vk1UkW_{k}=V_{k}^{-1}U_{k} for each kk, and rewrite q=ζ2q=\zeta^{2}, yielding

b2k,2k+1\displaystyle b_{2k,2k+1} =ω1/2Ni=0N1ζi(i1)ζiWkiWk+1i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i(i-1)}\zeta^{-i}W_{k}^{i}W_{k+1}^{-i} (3.147)
=ω1/2Ni=0N1ζi2WkiWk+1i.\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i^{2}}W_{k}^{i}W_{k+1}^{-i}. (3.148)

As a consistency check, let us show that this form of the sum for b2k,2k+1b_{2k,2k+1} is invariant under shifting the index by NN. The proof is nontrivial in this generalized Pauli basis, as it requires a cancellation of covariant factors. From a physics perspective, we remark that the cancellation of covariant factors is reminiscent of the construction of scalars in the theory of general relativity.

Proposition 3.30 (Cancellation of Covariant Factors).

Each term in the sum b2k,2k+1=ω1/2Ni=0N1ζi2WkiWk+1ib_{2k,2k+1}=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i^{2}}W_{k}^{i}W_{k+1}^{-i} is invariant under shifting the sum index by NN. Thus, the sum is invariant under shifting the indexing by arbitrary integers.

Proof.

Note that WkN=1W_{k}^{N}=-1 if NN is even, since VkN=UkN=1V_{k}^{N}=U_{k}^{N}=1, VkUk=qUkVkV_{k}U_{k}=qU_{k}V_{k} and we can apply Lemma 3.29 for Wk=Vk1UkW_{k}=V_{k}^{-1}U_{k} to obtain that WkN=QN(N1)/2W_{k}^{N}=Q^{N(N-1)/2}. As VK1Uk=q1UkVk1V_{K}^{-1}U_{k}=q^{-1}U_{k}V_{k}^{-1}, it follows that Q=q1Q=q^{-1}, so WkN=qN(N1)/2W_{k}^{N}=q^{-N(N-1)/2}. Since qq is a primitive NNth root of unity, qN/2=1q^{-N/2}=-1, so WkN=(1)(N1)=1W_{k}^{N}=(-1)^{(N-1)}=-1 if NN is even. This is not a problem for the invariance of the sum of the braid, under shifting the index, since there are two WW’s, a WkW_{k} and a Wk+1W_{k+1}, so under shifting by NN, one acquires two factors of 1-1, which cancel each other out.

If NN is odd, the WW factors are invariant under shifting by NN since

WkN=QN(N1)/2=(QN)(N1)/2=1W_{k}^{N}=Q^{N(N-1)/2}=(Q^{N})^{(N-1)/2}=1 (3.149)

since (N1)/2(N-1)/2 is an integer. Recall that in both cases, ζ\zeta is a square root of qq such that ζN2=1\zeta^{N^{2}}=1 so ζi2\zeta^{-i^{2}} is invariant under translations by NN. So each term in the sum is invariant under shifting the sum index by NN.

Finally, it follows that shifting the indexing (e.g., from 0 to N1N-1, to 11 to NN) by arbitrary integers preserves the entire sum, since we can simply maps the terms back into N\mathbb{Z}_{N} by subtracting from or adding to the index of the relevant terms appropriate multiples of NN. ∎

It remains to compute the form of b2k1,2kb_{2k-1,2k}, which is accomplished with the aid of Lemma 3.29 and Proposition 3.26:

Proposition 3.31.

b2k1,2kb_{2k-1,2k} is 1-local. In particular,

b2k1,2k=ω1/2Ni=0N1ζi2Ukib_{2k-1,2k}=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i^{2}}U_{k}^{i} (3.150)
Proof.

Applying Lemma 3.29 and Proposition 3.26:

b2k1,2k=\displaystyle b_{2k-1,2k}= =ω1/2Ni=0N1qi(i1)/2(c2k1c2k1)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k-1}c_{2k}^{-1})^{i} (3.151)
=ω1/2Ni=0N1qi(i1)/2(ζ1Uk)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\left(\zeta^{-1}U_{k}\right)^{i} (3.152)
=ω1/2Ni=0N1qi(i1)/2(ζ1Uk)i\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\left(\zeta^{-1}U_{k}\right)^{i} (3.153)
=ω1/2Ni=0N1ζi(i1)ζiUki\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i(i-1)}\zeta^{-i}U_{k}^{i} (3.154)
=ω1/2Ni=0N1ζi2Uki.\displaystyle=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i^{2}}U_{k}^{i}. (3.155)

Note that the form of the braid group generators b2k,2k+1b_{2k,2k+1} is not in the requisite form of [2] (one may neglect the unimodular phase factor ω\omega in this comparison). It is, however, sufficiently similar, if one replaces VV’s by WW’s, that one expects that some adaptation of our approach should work to get solutions in the form desired by [2]. We take up this problem next.

3.4.2 A General Solution to the Open Question of Cobanera and Ortiz

We now solve for braid elements of “self-dual” form given in [2]:

ρsd(σ2i1)\displaystyle\rho_{sd}(\sigma_{2i-1}) =1Nm=0N1αmUim,i=1,,n\displaystyle=\frac{1}{\sqrt{N}}\sum_{m=0}^{N-1}\alpha_{m}U_{i}^{-m},i=1,\ldots,n (3.156)
ρsd(σ2i)\displaystyle\rho_{sd}(\sigma_{2i}) =1Nm=0N1βmVimVi+1m,i=1,,n1.\displaystyle=\frac{1}{\sqrt{N}}\sum_{m=0}^{N-1}\beta_{m}V_{i}^{m}V_{i+1}^{-m},i=1,\dots,n-1. (3.157)

Our construction of a realization of the braid group B2nB_{2n} out of solutions of the self-dual form will depend on constructing a generalized Clifford algebra out of a particular combination of UkU_{k}’s and VkV_{k}’s. We will need to verify that the resulting particular Jordan-Wigner transformation from UkU_{k}’s and VkV_{k}’s indeed satisfies the relations of a generalized Clifford algebra. This verification step is a nontrivial point. In fact, in the original work of [2], the Jordan-Wigner transformation presented, expressing their generators Γi\Gamma_{i} and Δi\Delta_{i} (similar to our c2k1c_{2k-1} and c2kc_{2k}’s) in terms of the UiU_{i}’s and ViV_{i}’s, is incorrect. In odd qudit dimension, they were able to use results of Jones [18] on braid group representations when NN is a power of an odd prime, to find a solution of the self-dual form. The flaw is that for even qudit dimension, their Δi\Delta_{i} generators do not satisfy ΔiN=1\Delta_{i}^{N}=1! The solution, informed by our development of our algebraic framework, is to incorporate the factor of ζ\zeta (appearing in our axiom 11) to modify their Jordan-Wigner transformation. Thus, our construction illustrates once more the importance of the axiomatic approach [1] we are following, in which we both isolated the necessary algebraic structure in the two axioms, which depended on the choice of ζ\zeta, and justified the validity of the two axioms by an explicit construction888As a reminder, ζ\zeta is a square root of qq such that ζN2=1\zeta^{N^{2}}=1, which guarantees that ζi2\zeta^{-i^{2}} is invariant under shifting ii by NN.. Note that since for NN even, ζ\zeta can have two possible values, our construction gives rise to two distinct classes of solutions of the self-dual form.

Our starting point is Proposition 3.16, which asserts that the bk,k+1b_{k,k+1}’s constructed out of the generators cic_{i}, for i=1,2,,2ni=1,2,\ldots,2n, generate the braid group B2nB_{2n}. Since this proof only depends on the properties of the generalized Clifford algebra, rather than on a particular representation of the algebra, the proof extends to any construction of generators c1,c2,,c2n1,c2nc_{1},c_{2},\ldots,c_{2n-1},c_{2n} out of the Weyl generators UjU_{j} and VjV_{j}, which satisfies the relations of the generalized Clifford algebra, namely:

cacb\displaystyle c_{a}c_{b} =qcbca if a<b\displaystyle=qc_{b}c_{a}\text{ if }a<b (3.158)
caN\displaystyle c_{a}^{N} =1 for any a=1,2,,2n.\displaystyle=1\,\text{ for any }a=1,2,\ldots,2n. (3.159)

In the following proposition, we construct an automorphism of the generalized Clifford algebra which gives the mapping into the “self-dual” form specified by [2]. We claim that using

u2k1=c2k1u_{2k-1}=c_{2k}^{-1} (3.160)
u2k=ζc2k1Uk\displaystyle u_{2k}=\zeta c_{2k}^{-1}U_{k} (3.161)

yields an automorphism. Since Uk=ζc2k1c2k1U_{k}=\zeta c_{2k-1}c_{2k}^{-1}, and phases that are powers of qq do not affect the GCA relations, we can alternately use the mapping

u2k1\displaystyle u_{2k-1} =c2k1\displaystyle=c_{2k}^{-1} (3.162)
u2k\displaystyle u_{2k} =c2k1c2k2\displaystyle=c_{2k-1}c_{2k}^{-2} (3.163)
Proposition 3.32.

Define uau_{a} for a=1,2,,2na=1,2,\ldots,2n by

u2k1\displaystyle u_{2k-1} =c2k1\displaystyle=c_{2k}^{-1} (3.164)
u2k\displaystyle u_{2k} =c2k1c2k2\displaystyle=c_{2k-1}c_{2k}^{-2} (3.165)

Then uau_{a} satisfies the relations of a generalized Clifford algebra, namely:

uaub\displaystyle u_{a}u_{b} =qubua if a<b\displaystyle=qu_{b}u_{a}\text{ if }a<b (3.166)
uaN\displaystyle u_{a}^{N} =1 for any a=1,2,,2n.\displaystyle=1\,\text{ for any }a=1,2,\ldots,2n. (3.167)
Proof.

By Lemma 2.7, two elements x,yx,y of charge 1-1, where xx is located on generators (graphically, strands) which are left of all the generators (strands) on which yy is located, commute past each other with xy=qyxxy=qyx, hence uaub=qubuau_{a}u_{b}=qu_{b}u_{a} for a{2k1,2k}a\in\{2k-1,2k\} and b{2l1,2l}b\in\{2l-1,2l\}, k<lk<l. So we simply need to check the commutation relation for u2k1u_{2k-1} and u2ku_{2k}.

u2k1u2k\displaystyle u_{2k-1}u_{2k} =c2k1c2k1c2k2=qc2k1c2k1c2k2\displaystyle=c_{2k}^{-1}c_{2k-1}c_{2k}^{-2}=qc_{2k-1}c_{2k}^{-1}c_{2k}^{-2} (3.168)
=qu2ku2k1.\displaystyle=qu_{2k}u_{2k-1}. (3.169)

Furthermore,

u2k1N\displaystyle u_{2k-1}^{N} =c2kN=1\displaystyle=c_{2k}^{-N}=1 (3.170)
u2kN\displaystyle u_{2k}^{N} =(c2k1c2k2)N=QN(N1)/2c2k1Nc2k2N\displaystyle=\left(c_{2k-1}c_{2k}^{-2}\right)^{N}=Q^{N(N-1)/2}c_{2k-1}^{N}c_{2k}^{-2N} (3.171)

by Lemma 3.29, where c2k1c2k2=Qc2k2c2k1c_{2k-1}c_{2k}^{-2}=Qc_{2k}^{-2}c_{2k-1}. It is clear that Q=q2Q=q^{-2}, hence QN(N1)/2=qN(N1)=1Q^{N(N-1)/2}=q^{-N(N-1)}=1. Thus,

u2kN=1.u_{2k}^{N}=1. (3.172)

Hence we have obtained an automorphism of the generalized Clifford algebra. ∎

Remark: Note that since one can construct c2k1c_{2k-1} and c2kc_{2k} out of products of u2k1u_{2k-1} and u2ku_{2k} and their powers and inverses, the size of the basis of the algebra is the same. This is a useful check to see whether the automorphism is actually an automorphism, independently of the relations.

Proposition 3.33 (Braid Group Representation).

Define βk,l\beta_{k,l} by

βk,l=1Ni=0N1ukiuli,\beta_{k,l}=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}u_{k}^{i}u_{l}^{-i}, (3.173)

where uau_{a} are as above. Then setting σk=βk,k+1\sigma_{k}=\beta_{k,k+1} for k=1,2,,2n1k=1,2,\ldots,2n-1 yields a unitary representation of the braid group B2nB_{2n}.

Proof.

Unitarity follows from the fact Proposition 3.12 only depends on the relations of the generalized Clifford algebra. Meanwhile, the braid group relations follow from the fact that the proof for Proposition 3.16, relying on the proof of the Yang-Baxter equation, and the commutation of elements of neutral charge, only depends on the properties of the generalized Clifford algebra as an algebra. Thus, we pass from cac_{a} to uau_{a} and Proposition 3.16 still holds. Finally, since there is freedom in the definition of the braid element by a complex phase factor, we may change ω\omega to 11 without affecting unitarity. ∎

Corollary 3.34.

More generally, by the same proof, any automorphism of the generalized Clifford algebra will preserve unitarity as well as the braid group relations.

It remains to express the βk,k+1\beta_{k,k+1}’s in terms of the Weyl generators ViV_{i},UiU_{i}.

Proposition 3.35.

β2k1,2k\beta_{2k-1,2k} is 1-local and β2k,2k+1\beta_{2k,2k+1} is 2-local. They are given by

β2k1,2k\displaystyle\beta_{2k-1,2k} =ζNi=0N1ζ(i1)2Uki for k=1,2,,n\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i-1)^{2}}U_{k}^{-i}\,\,\text{ for }k=1,2,\ldots,n (3.174)
β2k,2k+1\displaystyle\beta_{2k,2k+1} =ζNi=0N1ζ(i+1)2VkiVk+1i for k=1,2,,n1\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+1)^{2}}V_{k}^{i}V_{k+1}^{-i}\,\,\text{ for }k=1,2,\ldots,n-1 (3.175)
Proof.

Applying Lemma 3.29:

β2k1,2k\displaystyle\beta_{2k-1,2k} =1Ni=0N1qi(i1)/2(u2k1u2k1)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(u_{2k-1}u_{2k}^{-1})^{i} (3.176)
=1Ni=0N1qi(i1)/2(c2k1(c2k1c2k2)1)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k}^{-1}(c_{2k-1}c_{2k}^{-2})^{-1})^{i} (3.177)
=1Ni=0N1qi(i1)/2(c2k1c2k2c2k11)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k}^{-1}c_{2k}^{2}c_{2k-1}^{-1})^{i} (3.178)
=1Ni=0N1qi(i1)/2(c2kc2k11)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k}c_{2k-1}^{-1})^{i} (3.179)
=1Ni=0N1qi(i1)/2(c2k1c2k1)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k-1}c_{2k}^{-1})^{-i} (3.180)
=1Ni=0N1qi(i1)/2(ζ1Uk)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(\zeta^{-1}U_{k})^{-i} (3.181)
=1Ni=0N1ζi(i1)ζiUki\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i(i-1)}\zeta^{i}U_{k}^{-i} (3.182)
=ζNi=0N1ζ(i1)2Uki\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i-1)^{2}}U_{k}^{-i} (3.183)

where we applied Proposition 3.26 to simplify c2k1c2k1c_{2k-1}c_{2k}^{-1}.

Applying Lemma 3.29 again:

β2k,2k+1\displaystyle\beta_{2k,2k+1} =1Ni=0N1qi(i1)/2(u2ku2k+11)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(u_{2k}u_{2k+1}^{-1})^{i} (3.184)
=1Ni=0N1qi(i1)/2(c2k1c2k2(c2k+21)1)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k-1}c_{2k}^{-2}(c_{2k+2}^{-1})^{-1})^{i} (3.185)
=1Ni=0N1qi(i1)/2(c2k1c2k2c2k+2)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}(c_{2k-1}c_{2k}^{-2}c_{2k+2})^{i} (3.186)
=1Ni=0N1qi(i1)/2((ζU11U21Uk11Vk1Uk)(U11U21Uk11Vk1)2\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}((\zeta U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1}U_{k})\cdot(U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}V_{k}^{-1})^{-2} (3.187)
(U11U21Uk11Uk1Vk+11))i\displaystyle\,\,\,\,\cdot(U_{1}^{-1}U_{2}^{-1}\cdots U_{k-1}^{-1}U_{k}^{-1}V_{k+1}^{-1}))^{i} (3.188)
=1Ni=0N1qi(i1)/2ζi(Vk1UkVk2Uk1Vk+11)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\zeta^{i}\left(V_{k}^{-1}U_{k}V_{k}^{2}U_{k}^{-1}V_{k+1}^{-1}\right)^{i} (3.189)
=1Ni=0N1qi(i1)/2ζi(q2VkVk+11)i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\zeta^{i}\left(q^{-2}V_{k}V_{k+1}^{-1}\right)^{i} (3.190)
=1Ni=0N1qi(i1)/2ζiq2iVkiVk+1i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{-i(i-1)/2}\zeta^{i}q^{-2i}V_{k}^{i}V_{k+1}^{-i} (3.191)
=1Ni=0N1ζi(i1)ζiζ4iVkiVk+1i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-i(i-1)}\zeta^{i}\zeta^{-4i}V_{k}^{i}V_{k+1}^{-i} (3.192)
=ζNi=0N1ζ(i+1)2VkiVk+1i.\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+1)^{2}}V_{k}^{i}V_{k+1}^{-i}. (3.193)

In the braid elements, the indexing of the coefficients ζ(i1)2\zeta^{-(i-1)^{2}} and ζ(i+1)2\zeta^{-(i+1)^{2}} is quite curious. Partially inspired by the suggestion of Cobanera and Ortiz [2] that there may be many classes of braid group solutions of the self-dual form, we may try to extrapolate the coefficient to have different indexing. In particular, we may use the fact that the relations of the generators forming the generalized Clifford algebra are preserved under the scaling of generators cac_{a} and cbc_{b} by factors of qq to generate different coefficients in the self-dual solutions. This appears to be related to a choice of gauge on each generator. Let us define wa(r1,r2,,r2n)w_{a}(r_{1},r_{2},\ldots,r_{2n}) by

wa=qraua,\displaystyle w_{a}=q^{r_{a}}u_{a}, (3.194)

where raNr_{a}\in\mathbb{Z}_{N}. Then the waw_{a}’s again form a generalized Clifford algebra. Then the new braid elements γk,k+1\gamma_{k,k+1} are given by the following proposition:

Proposition 3.36.
γ2k1,2k+1\displaystyle\gamma_{2k-1,2k+1} =ζ(r2kr2k11)2Ni=0N1ζ(i+(r2kr2k11))2Uki for k=1,2,,n\displaystyle=\frac{\zeta^{(r_{2k}-r_{2k-1}-1)^{2}}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+(r_{2k}-r_{2k-1}-1))^{2}}U_{k}^{-i}\,\,\text{ for }k=1,2,\ldots,n (3.195)
γ2k,2k+1\displaystyle\gamma_{2k,2k+1} =ζ(1+r2k+1r2k)2Ni=0N1ζ(i+(1+r2k+1r2k))2VkiVk+1i for k=1,2,,n1.\displaystyle=\frac{\zeta^{(1+r_{2k+1}-r_{2k})^{2}}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+(1+r_{2k+1}-r_{2k}))^{2}}V_{k}^{i}V_{k+1}^{-i}\,\,\text{ for }k=1,2,\ldots,n-1. (3.196)
Proof.

We simply need to add in the rescaling factors induced in by the rescaling of the generators by phase factors:

γ2k1,2k\displaystyle\gamma_{2k-1,2k} =ζNi=0N1(qr2k1qr2k)iζ(i1)2Uki\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}(q^{r_{2k-1}}q^{-r_{2k}})^{i}\zeta^{-(i-1)^{2}}U_{k}^{-i} (3.197)
=1Ni=0N1ζ2(r2k1r2k)iζi2+2iUki\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{2(r_{2k-1}-r_{2k})i}\zeta^{-i^{2}+2i}U_{k}^{-i} (3.198)
=1Ni=0N1ζ(i2+2(r2kr2k11)i)Uki\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i^{2}+2(r_{2k}-r_{2k-1}-1)i)}U_{k}^{-i} (3.199)
=ζ(r2kr2k11)2Ni=0N1ζ(i+(r2kr2k11))2Uki.\displaystyle=\frac{\zeta^{(r_{2k}-r_{2k-1}-1)^{2}}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+(r_{2k}-r_{2k-1}-1))^{2}}U_{k}^{-i}. (3.200)
γ2k,2k+1\displaystyle\gamma_{2k,2k+1} =ζNi=0N1(qr2kqr2k+1)iζ(i+1)2VkiVk+1i\displaystyle=\frac{\zeta}{\sqrt{N}}\sum_{i=0}^{N-1}(q^{r_{2k}}q^{-r_{2k+1}})^{i}\zeta^{-(i+1)^{2}}V_{k}^{i}V_{k+1}^{-i} (3.201)
=1Ni=0N1ζ2(r2kr2k+1)iζi22iVkiVk+1i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{2(r_{2k}-r_{2k+1})i}\zeta^{-i^{2}-2i}V_{k}^{i}V_{k+1}^{-i} (3.202)
=1Ni=0N1ζ(i2+2(1+r2k+1r2k)i)VkiVk+1i\displaystyle=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i^{2}+2(1+r_{2k+1}-r_{2k})i)}V_{k}^{i}V_{k+1}^{-i} (3.203)
=ζ(1+r2k+1r2k)2Ni=0N1ζ(i+(1+r2k+1r2k))2VkiVk+1i.\displaystyle=\frac{\zeta^{(1+r_{2k+1}-r_{2k})^{2}}}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{-(i+(1+r_{2k+1}-r_{2k}))^{2}}V_{k}^{i}V_{k+1}^{-i}. (3.204)

Proposition 3.37.

Setting σk=γk,k+1\sigma_{k}=\gamma_{k,k+1} yields a unitary braid group representation.

Proof.

The proposition follows by Corollary 3.34. ∎

Since the phase of each braid element does not affect the braid group relations, it follows that up to phase, the set of self-dual braid group solutions that we have obtained is indexed by a 2n2n-dimensional vector (r1,r2,,r2n)(r_{1},r_{2},\ldots,r_{2n}) in N2n\mathbb{Z}_{N}^{2n}. Thus, using a particular automorphism of the generalized Clifford algebra and the gauge symmetry for each generator of the generalized Clifford algebra, we have obtained, from our proof of the Yang-Baxter equation and the related braid group construction, a general set of solutions to the braid group satisfying the “self-dual” form of Cobanera and Ortiz [2], which works for both odd and even NN (N2N\geq 2).

From a quantum computation standpoint, the braid elements are 2-local, and hence it is feasible that one might try to implement these gates. In fact, from the commutation relations 3.5 between the braid elements and the elements cac_{a}, and the representation of cac_{a}’s in terms of the generalized Pauli operators VkV_{k} and UkU_{k} from equations 3.125 and 3.126, it is further evident that they almost normalize the generalized Pauli group on nn qudits, the almost being due to the extra factor of ζ\zeta. To see this, simply examine the equation b12c1=qc12c21b12b_{12}c_{1}=qc_{1}^{2}c_{2}^{-1}b_{12}; c1c_{1} has a prefactor ζ\zeta, but c12c_{1}^{2} has a prefactor of qq, so the ζ\zeta factor remains. Further, observe that we may recover VkV_{k} in terms of ζ\zeta’s and the generalized Clifford algebra by using the expression for c2kc_{2k} in terms of UiU_{i}’s and the expression for UiU_{i} in terms of cac_{a}’s. Thus, we can access the entire generalized Pauli group, which is generated by VkV_{k} and UkU_{k}’s, by appropriate products of generators of the generalized Clifford algebra, combined with appropriate factors of ζ\zeta (qq is contained in the generalized Pauli group, so it would be redundant to keep track of factors of qq). Since these products of cac_{a}’s can be commuted past the braid elements to yield again products of cac_{a}’s time powers of qq, it follows from the representation of any generalized Pauli operator as a product of generators of the algebra up to powers of ζ\zeta that these braid elements are almost Clifford gates, where the Clifford group [19] refers to the normalizer of the generalized Pauli group within the special unitary group over nn qudits of dimension NN.

4 Explicit Computation of Some Entangled Vector States

This section is devoted to explicit algebraic computations of some entangled vector states, to demonstrate some of the variety of entangled states that can arise by braid element actions. Whereas the previous section was devoted to proof methods for showing that two vector states are equal, it did not resolve the question of what those states were, which is clearly a more complicated matter, from the computational standpoint. In proving vector identities, we were able to cleverly chain together two basic moves, the “slide” and “slip” moves, which enable one to maneuver neighboring caps over and under, as well as in and out of each other. Clearly, different methods are needed for explicit computation of the states.

In this section, we develop computational techniques which enable one to reduce vector state computation in various cases to the evaluation of a single explicit inner product, i.e. a single vacuum expectation value. Thus, the novelty here, compared with [11], for example, which also studies state computations, is that we show that state computation of entangled states using the generalized Clifford algebra is quite doable using purely algebraic methods. In fact, as we demonstrate in the final example, the braiding structures can inform one as to the strategy one should employ to reduce the state computation to the evaluation of a single explicit vacuum expectation value.

The braid elements preserve the charge of states of definite charge under the charge operator CC, so there is an extra symmetry. So some algebraic structure may be expected to emerge from the application of braid elements to the ground state, which is neutral.

For example, we have the following identity:

Proposition 4.1.
b34b23|Ωn=1Ni=0N1ζi2c2ic3i|Ωn=1Ni=0N1qi2c2ic4i|Ωnb_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\zeta^{i^{2}}c_{2}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n}=\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{i^{2}}c_{2}^{i}c_{4}^{-i}\ket{\Omega}^{\otimes n} (4.205)
Proof.

By direct expansion, b34b23|Ωn=ωNi,j=0N1c3jc4jc2ic3i|Ωnb_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{\omega}{N}\sum_{i,j=0}^{N-1}c_{3}^{j}c_{4}^{-j}c_{2}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n}. As a prelude to putting the sum in normal order, we put each term into “pairwise” normal order, so b34b23|Ωn=ωNi,j=0N1c2i(c3jc4jc3i)|Ωnb_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{\omega}{N}\sum_{i,j=0}^{N-1}c_{2}^{i}(c_{3}^{j}c_{4}^{-j}c_{3}^{-i})\ket{\Omega}^{\otimes n}. Now the action of the c3c_{3} and c4c_{4} elements on the ground state can be combined to yield qj2ζ(ji)2c4i|Ωnq^{-j^{2}}\zeta^{(j-i)^{2}}c_{4}^{-i}\ket{\Omega}^{\otimes n}. This is by first shifting c3c_{3}’s to the right of c4c_{4} and then combining the powers of c3c_{3}, convert the c3c_{3}’s to c4c_{4}’s via their action on the ground state.

At this point, the sum over jj can be explicitly evaluated since

j=0N1qj2ζ(ji)2=j=0N1ζ(i+j)2qi2.\sum_{j=0}^{N-1}q^{-j^{2}}\zeta^{(j-i)^{2}}=\sum_{j=0}^{N-1}\zeta^{-(i+j)^{2}}q^{i^{2}}. (4.206)

Summing over jj yields Nω1qi2\sqrt{N}\omega^{-1}q^{i^{2}} (since the sum is shift invariant due to the axiom ζ(i+N)2=ζi2\zeta^{(i+N)^{2}}=\zeta^{i^{2}}). So we are left with 1Ni=0N1qi2c2ic4i|Ωn\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}q^{i^{2}}c_{2}^{i}c_{4}^{-i}\ket{\Omega}^{\otimes n}, which equals i=0N1ζi2c2ic3i|Ωn\sum_{i=0}^{N-1}\zeta^{i^{2}}c_{2}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n} as desired. ∎

Remark 4.2.

Note that if we restrict to the case of the 2-qudit ground state, then up to phase redefinition of the basis, the resulting state is of the form 1Ni=0N1|i,i\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\ket{i,-i} (as noted in [20]). More generally, we have (up to phase redefinitions) 1Ni=0N1|i,i,0,0,,0\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}\ket{i,-i,0,0,\ldots,0}.

There is actually an easier way to get this state algebraically, using b42b_{42}, one of the nonlocal braids we defined:

Proposition 4.3.
b42|Ωn=ω1/2b34b23|Ωnb_{42}\ket{\Omega}^{\otimes n}=\omega^{-1/2}b_{34}b_{23}\ket{\Omega}^{\otimes n} (4.207)
Proof.

Since b42=ω1/2Ni=0N1c4ic2i=ω1/2Ni=0N1qi2c2ic4ib_{42}=\frac{\omega^{-1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}c_{4}^{-i}c_{2}^{i}=\frac{\omega^{-1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{i^{2}}c_{2}^{i}c_{4}^{-i}, if we apply it to |Ωn\ket{\Omega}^{\otimes n} we get ω1/2Ni=0N1qi2ζi2c2ic3i|Ωn\frac{\omega^{-1/2}}{\sqrt{N}}\sum_{i=0}^{N-1}q^{i^{2}}\zeta^{-i^{2}}c_{2}^{i}c_{3}^{-i}\ket{\Omega}^{\otimes n} by bringing the charge ii from the fourth strand over to the third strand using the property of the ground state. Thus,

b42|Ωn=ω1/2b34b23|Ωnb_{42}\ket{\Omega}^{\otimes n}=\omega^{-1/2}b_{34}b_{23}\ket{\Omega}^{\otimes n} (4.208)

We can also get rid of the extra constant factor by the following corollary:

Corollary 4.4.
b42|Ωn=b34b23b34|Ωnb_{42}\ket{\Omega}^{\otimes n}=b_{34}b_{23}b_{34}\ket{\Omega}^{\otimes n} (4.209)
Proof.

It follows from b34|Ωn=ω1/2|Ωnb_{34}\ket{\Omega}^{\otimes n}=\omega^{-1/2}\ket{\Omega}^{\otimes n} by proposition 3.17. ∎

We now compute the state given by b56b45b34b23|Ωnb_{56}b_{45}b_{34}b_{23}\ket{\Omega}^{\otimes n}:

Proposition 4.5.
b56b45b34b23|Ωn=1Nj,l=0N1qjlql2+j2c2lc4jlc6j|Ωnb_{56}b_{45}b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N}\sum_{j,l=0}^{N-1}q^{-jl}q^{l^{2}+j^{2}}c_{2}^{l}c_{4}^{j-l}c_{6}^{-j}\ket{\Omega}^{\otimes n} (4.210)
Proof.

We give a direct computation analogous to that of proposition 4.1. Expanding all of the braids yields ω2N2i,j,k,l=0N1c5ic6ic4jc5jc3kc4kc2lc3l|Ωn\frac{\omega^{2}}{N^{2}}\sum_{i,j,k,l=0}^{N-1}c_{5}^{i}c_{6}^{-i}c_{4}^{j}c_{5}^{-j}c_{3}^{k}c_{4}^{-k}c_{2}^{l}c_{3}^{-l}\ket{\Omega}^{\otimes n}. Our strategy is to put all the terms in “pairwise” normal order, so we get ω2N2j,l=0N1i,k=0N1qjlc2l(c4jc3kc4kc3l)(c5ic6ic5j)|Ωn\frac{\omega^{2}}{N^{2}}\sum_{j,l=0}^{N-1}\sum_{i,k=0}^{N-1}q^{-jl}c_{2}^{l}(c_{4}^{j}c_{3}^{k}c_{4}^{-k}c_{3}^{-l})(c_{5}^{i}c_{6}^{-i}c_{5}^{-j})\ket{\Omega}^{\otimes n}. Using the property of the ground state under action of the c2k1c_{2k-1}’s, we can reduce (c5ic6ic5j)|Ωn(c_{5}^{i}c_{6}^{-i}c_{5}^{-j})\ket{\Omega}^{\otimes n} to qi2ζ(ij)2c6j|Ωnq^{-i^{2}}\zeta^{(i-j)^{2}}c_{6}^{-j}\ket{\Omega}^{\otimes n}, and then reduce (c4jc3kc4kc3l)|Ωn(c_{4}^{j}c_{3}^{k}c_{4}^{-k}c_{3}^{-l})\ket{\Omega}^{\otimes n} to qk2ζ(kl)2c4jl|Ωnq^{-k^{2}}\zeta^{(k-l)^{2}}c_{4}^{j-l}\ket{\Omega}^{\otimes n}. So we are left to evaluate

ω2N2j,lqjlc2l(kqk2ζ(kl)2)c4jl(iqi2ζ(ij)2)c6j|Ωn\frac{\omega^{2}}{N^{2}}\sum_{j,l}q^{-jl}c_{2}^{l}\left(\sum_{k}q^{-k^{2}}\zeta^{(k-l)^{2}}\right)c_{4}^{j-l}\left(\sum_{i}q^{-i^{2}}\zeta^{(i-j)^{2}}\right)c_{6}^{-j}\ket{\Omega}^{\otimes n} (4.211)

which yields

ω2N2j,lqjlc2l(Nω1ql2)c4jl(Nω1qj2)c6j|Ωn\frac{\omega^{2}}{N^{2}}\sum_{j,l}q^{-jl}c_{2}^{l}\left(\sqrt{N}\omega^{-1}q^{l^{2}}\right)c_{4}^{j-l}\left(\sqrt{N}\omega^{-1}q^{j^{2}}\right)c_{6}^{-j}\ket{\Omega}^{\otimes n} (4.212)

which is just

1Nj,l=0N1qjlql2+j2c2lc4jlc6j|Ωn\frac{1}{N}\sum_{j,l=0}^{N-1}q^{-jl}q^{l^{2}+j^{2}}c_{2}^{l}c_{4}^{j-l}c_{6}^{-j}\ket{\Omega}^{\otimes n} (4.213)

as desired.

As a simple example, suppose we take N=3N=3, so there are nine terms on the right-hand-side, yielding

b56b45b34b23|Ωn=13j=02(qj2c4jc6j+qjq1+j2c2c4j1c6j+q2jq4+j2c22c4j2c6j)|Ωn.b_{56}b_{45}b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{3}\sum_{j=0}^{2}\left(q^{j^{2}}c_{4}^{j}c_{6}^{-j}+q^{-j}q^{1+j^{2}}c_{2}c_{4}^{j-1}c_{6}^{-j}+q^{-2j}q^{4+j^{2}}c_{2}^{2}c_{4}^{j-2}c_{6}^{-j}\right)\ket{\Omega}^{\otimes n}. (4.214)

Interestingly, we can write the coefficient term as ζa12+a22+a32\zeta^{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}, which allows us to rewrite the sum as

1Na1+a2+a3=0 mod Nζa12+a22+a32c2a1c4a2c6a3|Ωn.\frac{1}{N}\sum_{a_{1}+a_{2}+a_{3}=0\text{ mod N}}\zeta^{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}c_{2}^{a_{1}}c_{4}^{a_{2}}c_{6}^{a_{3}}\ket{\Omega}^{\otimes n}. (4.215)

Following this pattern, we may conjecture that the general case is given by

b2k1,2kb2k2,2k1b34b23|Ωn=1N(k1)/2i=1kai=0ζi=1kai2c2a1c4a2c2kak|Ωn.b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N^{(k-1)/2}}\sum_{\sum_{i=1}^{k}a_{i}=0}\zeta^{\sum_{i=1}^{k}a_{i}^{2}}c_{2}^{a_{1}}c_{4}^{a_{2}}\cdots c_{2k}^{a_{k}}\ket{\Omega}^{\otimes n}. (4.216)

Clearly, the case k=2k=2 and k=3k=3 hold. It turns out that this is indeed the case in general:

Proposition 4.6.

Suppose knk\leq n. Then

b2k1,2kb2k2,2k1b34b23|Ωn=1N(k1)/2i=1kai=0ζi=1kai2c2a1c4a2c2kak|Ωn.b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N^{(k-1)/2}}\sum_{\sum_{i=1}^{k}a_{i}=0}\zeta^{\sum_{i=1}^{k}a_{i}^{2}}c_{2}^{a_{1}}c_{4}^{a_{2}}\cdots c_{2k}^{a_{k}}\ket{\Omega}^{\otimes n}. (4.217)

Equivalently,

b2k1,2kb2k2,2k1b34b23|Ωn=1N(k1)/2i=1kai=0c1a1c3a2c2k1ak|Ωn.b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N^{(k-1)/2}}\sum_{\sum_{i=1}^{k}a_{i}=0}c_{1}^{a_{1}}c_{3}^{a_{2}}\cdots c_{2k-1}^{a_{k}}\ket{\Omega}^{\otimes n}. (4.218)
Proof.

By unitarity of the braid element, it suffices to show that

Ω|nc2k1akc2k3ak1c3a2c1a1b2k1,2kb2k2,2k1b34b23|Ωn=1N(k1)/2\bra{\Omega}^{\otimes n}c_{2k-1}^{a_{k}}c_{2k-3}^{a_{k-1}}\cdots c_{3}^{a_{2}}c_{1}^{a_{1}}b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}=\frac{1}{N^{(k-1)/2}} (4.219)

whenever i=1kai=0\sum_{i=1}^{k}a_{i}=0. The norm of the sum over these states is already 1, so this would imply that there cannot be components in addition to these neutral states.

First, observe999This series of manipulations is motivated by drawing the diagram for this vacuum expectation value, and trying to transfer the charge on the first strand over to the third strand. that we can change the c1a1c_{1}^{a_{1}} to ζa12c2a1\zeta^{-a_{1}^{2}}c_{2}^{a_{1}} by commuting past the other cic_{i}’s to act on the bra vector and then commuting back to its original position. Then we can commute c2a1c_{2}^{a_{1}} past the braids until we get c2a1b23|Ωnc_{2}^{a_{1}}b_{23}\ket{\Omega}^{\otimes n}, which is just b23c3a1|Ωn=b23ζa12c4a1|Ωnb_{23}c_{3}^{a_{1}}\ket{\Omega}^{\otimes n}=b_{23}\zeta^{a_{1}^{2}}c_{4}^{a_{1}}\ket{\Omega}^{\otimes n}. This phase factor cancels the previous ζa12\zeta^{-a_{1}^{2}} so we are left with the b34b23c4a1|Ωnb_{34}b_{23}c_{4}^{a_{1}}\ket{\Omega}^{\otimes n}, acted on by a product of cic_{i}’s and braids. We can then move c4a1c_{4}^{a_{1}} past b23b_{23} and then apply b34c4a1=c3a1b34b_{34}c_{4}^{a_{1}}=c_{3}^{a_{1}}b_{34}. After commuting this c3c_{3} past the other braids we finally get

Ω|nc2k1akc2k3ak1c3a2+a1b2k1,2kb2k2,2k1b34b23|Ωn.\bra{\Omega}^{\otimes n}c_{2k-1}^{a_{k}}c_{2k-3}^{a_{k-1}}\cdots c_{3}^{a_{2}+a_{1}}b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}. (4.220)

Applying this same procedure iteratively, the end result is

Ω|nc2k1ak+ak1++a1b2k1,2kb2k2,2k1b34b23|Ωn.\bra{\Omega}^{\otimes n}c_{2k-1}^{a_{k}+a_{k-1}+\cdots+a_{1}}b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}. (4.221)

By assumption ak+ak1++a1=0a_{k}+a_{k-1}+\cdots+a_{1}=0, so we just need to compute

Ω|nb2k1,2kb2k2,2k1b34b23|Ωn.\bra{\Omega}^{\otimes n}b_{2k-1,2k}b_{2k-2,2k-1}\cdots b_{34}b_{23}\ket{\Omega}^{\otimes n}. (4.222)

Since bl,l+1=ω1/2Nm=0N1clmcl+1mb_{l,l+1}=\frac{\omega^{1/2}}{\sqrt{N}}\sum_{m=0}^{N-1}c_{l}^{m}c_{l+1}^{-m}, the only terms that contribute to the projection onto the ground state are101010This fact is justified by the axiom that the c2a1c4a2c2nan|Ωnc_{2}^{a_{1}}c_{4}^{a_{2}}\cdots c_{2n}^{a_{n}}\ket{\Omega}^{\otimes n} form a basis. Drawing the diagram for the expanded braid sums makes the deduction apparent. from the constant component of b23b_{23}, and similarly, the constant component of b45b_{45}, b67b_{67}, etc. So we are left to evaluate

ω(k1)/2N(k1)/2Ω|nb2k1,2kb2k3,2k2b2k5,2k4b34|Ωn.\frac{\omega^{(k-1)/2}}{N^{(k-1)/2}}\bra{\Omega}^{\otimes n}b_{2k-1,2k}b_{2k-3,2k-2}b_{2k-5,2k-4}\cdots b_{34}\ket{\Omega}^{\otimes n}. (4.223)

Applying the twist move k1k-1 times to get rid of the braids yields ω(k1)/2\omega^{-(k-1)/2}, so this expression evaluates to 1N(k1)/2\frac{1}{N^{(k-1)/2}}, as desired.

Remark 4.7.

As seen in numerous computations for vector states, the key is to latch onto a symmetry (which may be more readily deduced from the diagram) of the vector state under the action of a neutral product of generators c2k1c_{2k-1} (which act on the vacuum state to form a basis; it is important that we project onto a basis). For a complete set of such symmetries (i.e. enough so that the square norm of the sum of projections onto the corresponding states is 1), the computation of a normalized vector state reduces to the computation of the projection onto a single vector state. Thus, in the end, only one explicit computation (expanding braid elements) must be performed.

5 Conclusion

In this work, we showed that the algebraic framework we developed in [1] allows us to construct a purely definitional graphical calculus for multi-qudit computations with the generalized Clifford algebra. Using purely algebraic methods, we established many graphical and beyond graphical identities of the representation of generalized Clifford algebras considered in the previous chapter, including a novel algebraic proof of a Yang-Baxter equation and a construction of a corresponding braid group representation. Our algebraic proof also enabled a resolution of an open problem in [2] on the construction of self-dual braid group representations for NN even. We also derived several new identities for the braid elements, which are key to our proofs. In terms of physics, we connected these braid identities to physics by showing the presence of a conserved charge. Furthermore, we demonstrated that in many cases, the verification of involved vector identities can be reduced to the combinatorial application of two basic vector identities. Finally, we showed how to explicitly compute various vector states in an efficient manner using algebraic methods.

Furthermore, we demonstrated that it is feasible to envision implementing the braid operators for quantum computation, by showing that they are 2-local operators. In fact, as we demonstrated these braid elements are almost Clifford gates, for they normalize the generalized Pauli group up to an extra factor ζ\zeta.

Acknowledgments

I would like to express my gratitude and thanks to Professor Arthur Jaffe, for helpful discussion and guidance, especially his recommendation to find a more general identity for the braid.

I have been supported in the later stages of this work by ARO Grant W911NF-20-1-0082 through the MURI project “Toward Mathematical Intelligence and Certifiable Automated Reasoning: From Theoretical Foundations to Experimental Realization.”

References

  • [1] R. Lin, “An algebraic framework for multi-qudit computations with generalized clifford algebras,” March 2021. arXiv:2103.15324.
  • [2] E. Cobanera and G. Ortiz, “Fock parafermions and self-dual representations of the braid group,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 89, no. 1, 2014.
  • [3] K. Morinaga and T. Nōno, “On the linearization of a form of higher degree and its representation,” Hiroshima Mathematical Journal, vol. 16, no. none, 2019.
  • [4] K. Yamazaki, “On projective representations and ring extensions of finite groups,” J. Fat. Sci. University of Tokyo, vol. Set I, no. 10, pp. 147–195, 1964.
  • [5] I. Popovici and C. Gheorghe, “Algèbres de clifford généralisées,” C. R. Acad. Sci. Paris, vol. 262, pp. 682–685, 1966.
  • [6] A. O. Morris, “On a generalized clifford algebra,” Quarterly Journal of Mathematics, vol. 18, no. 1, 1967.
  • [7] A. Jaffe and Z. Liu, “Planar para algebras, reflection positivity,” Communications in Mathematical Physics, vol. 352, no. 1, 2017.
  • [8] V. Drinfeld, “Quantum groups,” in Proceedings of the International Congress of Mathematicians (Berkeley, 1986), vol. 1, p. 789–820, American Mathematical Society, 1986.
  • [9] M. Müger, “From subfactors to categories and topology ii: The quantum double of tensor categories and subfactors,” Journal of Pure and Applied Algebra, vol. 180, no. 1-2, 2003.
  • [10] H. Temperley and E. Lieb, “Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 322, no. 1549, 1971.
  • [11] A. M. Jaffe and Z. Liu, “Mathematical picture language program,” Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 1, 2018.
  • [12] J. Schwinger, Particles, sources, and fields, vol. 1. Perseus Books Publishing, L.L.C., 1970.
  • [13] Z. Liu, A. Wozniakowski, and A. M. Jaffe, “Quon 3D language for quantum information,” Proceedings of the National Academy of Sciences, vol. 114, pp. 2497–2502, Feb 2017.
  • [14] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Physical Review Letters, vol. 19, no. 23, 1967.
  • [15] E. Artin, “Theory of braids,” Hamburger Abh., vol. 4, pp. 47–72, 1925.
  • [16] E. R. Hansen, A table of series and products. Prentice Hall, 1975.
  • [17] S. Popa, “An axiomatization of the lattice of higher relative commutants of a subfactor,” Inventiones Mathematicae, vol. 120, no. 1, 1995.
  • [18] V. F. Jones, “On a certain value of the Kauffman polynomial,” Communications in Mathematical Physics, vol. 125, 1989.
  • [19] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature, vol. 402, pp. 390–393, Nov 1999.
  • [20] A. Jaffe, Z. Liu, and A. Wozniakowski, “Holographic software for quantum networks,” Science China Mathematics, vol. 61, no. 4, 2018.