This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

conjecturetheorem \aliascntresettheconjecture \newaliascntlemmatheorem \aliascntresetthelemma \newaliascntcorollarytheorem \aliascntresetthecorollary \newaliascntpropositiontheorem \aliascntresettheproposition \newaliascntdefinitiontheorem \aliascntresetthedefinition \newaliascntremarkxtheorem \aliascntresettheremarkx \newaliascntexamplextheorem \aliascntresettheexamplex

A global Weinstein splitting theorem for holomorphic Poisson manifolds

Stéphane Druel CNRS/Université Claude Bernard Lyon 1, [email protected]    Jorge Vitório Pereira IMPA, [email protected]    Brent Pym McGill University, [email protected]    Frédéric Touzet Université Rennes 1, [email protected]
Abstract

We prove that if a compact Kähler Poisson manifold has a symplectic leaf with finite fundamental group, then after passing to a finite étale cover, it decomposes as the product of the universal cover of the leaf and some other Poisson manifold. As a step in the proof, we establish a special case of Beauville’s conjecture on the structure of compact Kähler manifolds with split tangent bundle.

1 Introduction

In 1983, Weinstein [14] proved a fundamental fact about Poisson brackets, nowadays known as his “splitting theorem”: if pp is a point in a Poisson manifold 𝖷\mathsf{X} at which the matrix of the Poisson bracket has rank 2k2k, then pp has a neighbourhood that decomposes as a product of a symplectic manifold of dimension 2k2k, and a Poisson manifold for which the Poisson bracket vanishes at pp. An important consequence of this splitting is that 𝖷\mathsf{X} admits a canonical (and possibly singular) foliation by symplectic leaves, which is locally induced by the aforementioned product decomposition.

It is natural to ask under which conditions this splitting is global, so that 𝖷\mathsf{X} decomposes as a product of Poisson manifolds, having a symplectic leaf as a factor (perhaps after passing to a suitable covering space). If 𝖷\mathsf{X} is compact, an obvious necessary condition is that the symplectic leaf is also compact. However, this condition is not sufficient; it is easy to construct examples in the CC^{\infty} context where both 𝖷\mathsf{X} and its leaf are simply connected, but 𝖷\mathsf{X} does not decompose as a product.

In contrast, we will show that for holomorphic Poisson structures on compact Kähler manifolds, the existence of such splittings is quite a general phenomenon:

Theorem 1.1.

Let (𝖷,π)(\mathsf{X},\pi) be a compact Kähler Poisson manifold, and suppose that 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact symplectic leaf whose fundamental group is finite. Then there exist a compact Kähler Poisson manifold 𝖸\mathsf{Y}, and a finite étale Poisson morphism 𝖫~×𝖸𝖷\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X}, where 𝖫~\widetilde{\mathsf{L}} is the universal cover of 𝖫\mathsf{L}.

Here and throughout, by a “Kähler Poisson manifold”, we mean a pair (𝖷,π)(\mathsf{X},\pi) where 𝖷\mathsf{X} is a complex manifold that admits a Kähler metric, and π𝖧0(𝖷,2𝒯𝖷)\pi\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{T}_{\mathsf{X}}) is a holomorphic bivector that is Poisson, i.e. the Schouten bracket [π,π]=0[\pi,\pi]=0. We will not make reference to any specific choice of Kähler metric at any point in the paper.

We remark that all hypotheses of Theorem 1.1 are used in an essential way in the proof. Indeed, in Section 4, we give examples showing that the conclusion may fail if the Poisson manifold 𝖷\mathsf{X} is non-Kähler (CC^{\infty} or complex analytic), if 𝖷\mathsf{X} is not compact, or if the fundamental group of 𝖫\mathsf{L} is infinite.

The proof of Theorem 1.1 is given in Section 4. It rests on the following result of independent interest, which we establish using Hodge theory in Section 2.

Theorem 1.2.

Let (𝖷,π)(\mathsf{X},\pi) be compact Kähler Poisson manifold, and suppose that i:𝖫𝖷i:\mathsf{L}\hookrightarrow\mathsf{X} is the inclusion of a compact symplectic leaf. Then the holomorphic symplectic form on 𝖫\mathsf{L} extends to a global closed holomorphic two-form σ𝖧0(𝖷,Ω𝖷2)\sigma\in\mathsf{H}^{0}(\mathsf{X},\Omega^{2}_{\mathsf{X}}) of constant rank such that the composition θ:=πσnd(𝒯𝖷)\theta:=\pi^{\sharp}\sigma^{\flat}\in\mathcal{E}nd(\mathcal{T}_{\mathsf{X}}) is idempotent, i.e. θ2=θ\theta^{2}=\theta.

Here π:Ω𝖷1𝒯𝖷\pi^{\sharp}:\Omega^{1}_{\mathsf{X}}\to\mathcal{T}_{\mathsf{X}} and σ:𝒯𝖷Ω𝖷1\sigma^{\flat}:\mathcal{T}_{\mathsf{X}}\to\Omega^{1}_{\mathsf{X}} are the usual maps defined by interior contraction into the corresponding bilinear forms. Following work of Frejlich–Mărcu\cbt in the CC^{\infty} setting, we refer to a holomorphic two-form σ\sigma as in Theorem 1.2 as a subcalibration of π\pi. The key point about a subcalibration, which they observed, is that it provides a splitting 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G} into a pair of subbundles =imgθ\mathcal{F}=\operatorname{img}\theta and 𝒢=kerθ\mathcal{G}=\ker\theta that are orthogonal with respect to π\pi. Moreover \mathcal{F} is automatically involutive, and 𝒢\mathcal{G} is involutive if and only if the component of σ\sigma lying in 2\wedge^{2}\mathcal{F}^{\vee} is closed. But in the compact Kähler setting, the latter condition is automatic by Hodge theory, and furthermore, any splitting of the tangent bundle into involutive subbundles is expected to arise from a splitting of some covering space of 𝖷\mathsf{X}, according to the following open conjecture of Beauville (2000):

Conjecture \theconjecture ([3, (2.3)]).

Let 𝖷\mathsf{X} be a compact Kähler manifold equipped with a holomorphic decomposition 𝒯𝖷=iIi\mathcal{T}_{\mathsf{X}}=\bigoplus_{i\in I}\mathcal{F}_{i} of the tangent bundle such that each subbundle jJj\bigoplus_{j\in J}\mathcal{F}_{j}, for JIJ\subset I, is involutive. Then the universal cover of 𝖷\mathsf{X} is isomorphic to a product iI𝖴i\prod_{i\in I}\mathsf{U}_{i} in such a way that the given decomposition of 𝒯𝖷\mathcal{T}_{\mathsf{X}} corresponds to the natural decomposition 𝒯iI𝖴iiI𝒯𝖴i\mathcal{T}_{\prod_{i\in I}\mathsf{U}_{i}}\cong\bigoplus_{i\in I}\mathcal{T}_{\mathsf{U}_{i}}.

Thus, our second key step in the proof of Theorem 1.1 is to prove the following theorem, which establishes a special case of Section 1, but with a stronger conclusion:

Theorem 1.3.

Suppose that 𝖷\mathsf{X} is a compact Kähler manifold equipped with a splitting 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G} of the tangent bundle into involutive subbundles. If \mathcal{F} has a compact leaf 𝖫\mathsf{L} with finite holonomy group, then the splitting of 𝒯𝖷\mathcal{T}_{\mathsf{X}} is induced by a splitting of the universal cover of 𝖷\mathsf{X} as a product of manifolds. If, in addition, 𝖫\mathsf{L} has finite fundamental group and trivial canonical class, then the splitting of the universal cover is induced by a splitting of a finite étale cover.

The proof of Theorem 1.3 is given in Section 3; see in particular Theorem 3.1 and Section 3.4. It exploits the second-named author’s global Reeb stability theorem for holomorphic foliations on compact Kähler manifolds [12], which implies that all leaves of \mathcal{F} are compact with finite holonomy. We then apply the theory of holonomy groupoids to show that the holonomy covers of the leaves assemble into a bundle of Kähler manifolds over 𝖷\mathsf{X}, equipped with a flat Ehresmann connection induced by the transverse foliation 𝒢\mathcal{G}. Finally, we exploit Lieberman’s structure theory for automorphism groups of compact Kähler manifolds [8] to analyze the monodromy action of the fundamental group of 𝖷\mathsf{X} on the fibres, and deduce the result.

The results above have several interesting consequences for the global structure of compact Kähler Poisson manifolds. For instance Theorem 1.1 immediately implies the following statement.

Corollary \thecorollary.

If (𝖷,π)(\mathsf{X},\pi) is a compact Kähler Poisson manifold, then all simply connected compact symplectic leaves in (𝖷,π)(\mathsf{X},\pi) are isomorphic.

Meanwhile, we have the following immediate corollaries of Theorem 1.2:

Corollary \thecorollary.

Let (𝖷,π)(\mathsf{X},\pi) be a compact connected Kähler Poisson manifold such that the tangent bundle 𝒯𝖷\mathcal{T}_{\mathsf{X}} is irreducible. If 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact symplectic leaf, then either 𝖫=𝖷\mathsf{L}=\mathsf{X} or 𝖫\mathsf{L} is a single point.

Corollary \thecorollary.

Let (𝖷,π)(\mathsf{X},\pi) be a compact Kähler Poisson manifold such that the Hodge number h2,0(𝖷)h^{2,0}(\mathsf{X}) is equal to zero. If 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact symplectic leaf, then 𝖫\mathsf{L} is a single point.

Note that the vanishing h2,0(𝖷)=0h^{2,0}(\mathsf{X})=0 holds for a wide class of manifolds of interest in Poisson geometry, including all Fano manifolds, all rational manifolds, and more generally all rationally connected manifolds. Many natural examples arising in gauge theory and algebraic geometry fall into this class. Applied to the case in which 𝖷\mathsf{X} is a projective space, this answers a question posed by the third author about the existence of projective embeddings that are compatible with Poisson structures:

Corollary \thecorollary.

A compact holomorphic symplectic manifold of positive dimension can never be embedded as a Poisson submanifold in a projective space, for any choice of holomorphic Poisson structure on the latter.

Acknowledgements:

We thank Pedro Frejlich and Ioan Mărcu\cbt for correspondence, and in particular for sharing their (currently unpublished) work on subcalibrations with us. We also thank Henrique Bursztyn, Marco Gualtieri and Ruxandra Moraru for interesting discussions. In particular Section 1 and Section 1 were pointed out by Bursztyn and Gualtieri, respectively.

This project grew out of discussions that took place during the school on “Geometry and Dynamics of Foliations”, which was hosted May 18–22, 2020 by the Centre International de Rencontres Mathématiques (CIRM), as part of the second author’s Jean-Morlet Chair. We are grateful to the CIRM for their support, and for their remarkable agility in converting the entire event to a successful virtual format on short notice, in light of the COVID-19 pandemic.

S.D. was supported by the ERC project ALKAGE (ERC grant Nr 670846). S.D., J.V.P. and F.T. were supported by CAPES-COFECUB project Ma932/19. S.D. and F.T. were supported by the ANR project Foliage (ANR grant Nr ANR-16-CE40-0008-01). J.V.P. was supported by CNPq, FAPERJ, and CIRM. B.P. was supported by a faculty startup grant at McGill University, and by the Natural Sciences and Engineering Research Council of Canada (NSERC), through Discovery Grant RGPIN-2020-05191.

2 Subcalibrations of Kähler Poisson manifolds

Throughout this section, we fix a connected complex manifold 𝖷\mathsf{X} and a holomorphic Poisson structure on 𝖷\mathsf{X}, i.e. a holomorphic bivector π𝖧0(𝖷,2𝒯𝖷)\pi\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{T}_{\mathsf{X}}) such that the Schouten bracket [π,π][\pi,\pi] vanishes identically. We recall that the anchor map of π\pi is the 𝒪𝖷\mathcal{O}_{\mathsf{X}}-linear map

π:Ω𝖷1𝒯𝖷\pi^{\sharp}:\Omega^{1}_{\mathsf{X}}\to\mathcal{T}_{\mathsf{X}}

given by contraction of forms into π\pi. Its image is an involutive subsheaf, defining a possibly singular foliation of 𝖷\mathsf{X}. If i:𝖫𝖷i:\mathsf{L}\hookrightarrow\mathsf{X} is a leaf of this foliation, then π𝖫:=π|𝖫\pi_{\mathsf{L}}:=\pi|_{\mathsf{L}} is a nondegenerate Poisson structure on 𝖫\mathsf{L}, so that its inverse

η:=π𝖫1𝖧0(𝖫,Ω𝖫2)\eta:=\pi_{\mathsf{L}}^{-1}\in\mathsf{H}^{0}(\mathsf{L},\Omega^{2}_{\mathsf{L}})

is a holomorphic symplectic form. The pair (𝖫,η)(\mathsf{L},\eta) is called a symplectic leaf of (𝖷,π)(\mathsf{X},\pi).

2.1 Extending forms on symplectic leaves

The following lemma gives a sufficient condition for the holomorphic symplectic form on a symplectic leaf to extend to all of 𝖷\mathsf{X}.

Lemma \thelemma.

Let (𝖷,π)(\mathsf{X},\pi) be a compact Kähler Poisson manifold, and suppose that (𝖫,η)(\mathsf{L},\eta) is a compact symplectic leaf with inclusion i:𝖫𝖷i:\mathsf{L}\hookrightarrow\mathsf{X}. Then there exists a global closed holomorphic two-form σ0𝖧0(𝖷,Ω𝖷2)\sigma_{0}\in\mathsf{H}^{0}(\mathsf{X},\Omega^{2}_{\mathsf{X}}) such that iσ0=ηi^{*}\sigma_{0}=\eta.

Proof.

This proof is a variant of the arguments in [5, Proposition 3.1] and [9, Theorem 5.6]. Suppose that dim𝖫=2k\dim\mathsf{L}=2k and let ω𝖧1(𝖷,Ω𝖷1)𝖧1,1(𝖷)\omega\in\mathsf{H}^{1}(\mathsf{X},\Omega^{1}_{\mathsf{X}})\cong\mathsf{H}^{1,1}(\mathsf{X}) be any Kähler class. Note that since π\pi is holomorphic, the contraction operator ιπ\iota_{\pi} on Ω𝖷\Omega^{\bullet}_{\mathsf{X}} descends to the Dolbeault cohomology 𝖧(𝖷,Ω𝖷)\mathsf{H}^{\bullet}(\mathsf{X},\Omega^{\bullet}_{\mathsf{X}}). In particular, we have a well-defined class

α:=ιπkω2k𝖧2k(𝖷,𝒪𝖷)\alpha:=\iota_{\pi}^{k}\omega^{2k}\in\mathsf{H}^{2k}(\mathsf{X},\mathcal{O}_{\mathsf{X}})

We claim that iα𝖧2k(𝖫,𝒪𝖫)i^{*}\alpha\in\mathsf{H}^{2k}(\mathsf{L},\mathcal{O}_{\mathsf{L}}) is nonzero. Indeed, since π|𝖫=π𝖫\pi|_{\mathsf{L}}=\pi_{\mathsf{L}}, we have the following commutative diagram:

𝖧2k(𝖷,Ω𝖷2k)\textstyle{\mathsf{H}^{2k}(\mathsf{X},\Omega^{2k}_{\mathsf{X}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιπk\scriptstyle{\iota_{\pi}^{k}}i\scriptstyle{i^{*}}𝖧2k(𝖷,𝒪𝖷)\textstyle{\mathsf{H}^{2k}(\mathsf{X},\mathcal{O}_{\mathsf{X}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}𝖧2k(𝖫,Ω𝖫2k)\textstyle{\mathsf{H}^{2k}(\mathsf{L},\Omega^{2k}_{\mathsf{L}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιπ𝖫k\scriptstyle{\iota_{\pi_{\mathsf{L}}}^{k}}𝖧2k(𝖫,𝒪𝖫)\textstyle{\mathsf{H}^{2k}(\mathsf{L},\mathcal{O}_{\mathsf{L}})}

The bottom arrow is an isomorphism since π𝖫k\pi_{\mathsf{L}}^{k} is a trivialization of the anticanonical bundle of 𝖫\mathsf{L}. Meanwhile iω2k𝖧2k(𝖫,Ω𝖫2k)i^{*}\omega^{2k}\in\mathsf{H}^{2k}(\mathsf{L},\Omega^{2k}_{\mathsf{L}}) is nonzero since iωi^{*}\omega is a Kähler class on 𝖫\mathsf{L}. It follows that iα=ιπ𝖫kiω2k0i^{*}\alpha=\iota_{\pi_{\mathsf{L}}}^{k}i^{*}\omega^{2k}\neq 0 as claimed.

Using the Hodge symmetry 𝖧2k(𝖷,𝒪𝖷)¯𝖧0(𝖷,Ω𝖷2k)\overline{\mathsf{H}^{2k}(\mathsf{X},\mathcal{O}_{\mathsf{X}})}\cong\mathsf{H}^{0}(\mathsf{X},\Omega^{2k}_{\mathsf{X}}), the complex conjugate of α\alpha gives a holomorphic 2k2k-form

μ𝖧0(𝖷,Ω𝖷2k)\mu\in\mathsf{H}^{0}(\mathsf{X},\Omega^{2k}_{\mathsf{X}})

such that iμ𝖧0(𝖫,Ω𝖫2k)i^{*}\mu\in\mathsf{H}^{0}(\mathsf{L},\Omega^{2k}_{\mathsf{L}}) is nonzero. Since the canonical bundle of 𝖫\mathsf{L} is trivial, iμi^{*}\mu must be a constant multiple of the holomorphic Liouville volume form associated with the holomorphic symplectic structure on 𝖫\mathsf{L}. Hence by rescaling μ\mu, we may assume without loss of generality iμ=1k!ηki^{*}\mu=\frac{1}{k!}\eta^{k}. Now consider the global holomorphic two-form

σ0:=1(k1)!ιπk1μ,\sigma_{0}:=\tfrac{1}{(k-1)!}\iota_{\pi}^{k-1}\mu,

which is closed by Hodge theory, since 𝖷\mathsf{X} is compact Kähler. We claim that it restricts to the symplectic form on 𝖫\mathsf{L}. Indeed,

iσ0=1(k1)!i(ιπk1μ)=1(k1)!ιπ𝖫k1iμ=1(k1)!k!ιπ𝖫k1ηk=ηi^{*}\sigma_{0}=\tfrac{1}{(k-1)!}i^{*}(\iota_{\pi}^{k-1}\mu)=\tfrac{1}{(k-1)!}\iota_{\pi_{\mathsf{L}}}^{k-1}i^{*}\mu=\tfrac{1}{(k-1)!k!}\iota_{\pi_{\mathsf{L}}}^{k-1}\eta^{k}=\eta

as desired. ∎

The lemma only gives the existence of the holomorphic two-form σ0\sigma_{0}, but says little about its global properties. Nevertheless, it can be used to produce a two-form with the following property, the ramifications of which are explained in Section 2.2 below:

Definition \thedefinition (Frejlich–Mărcu\cbt).

A holomorphic two-form σ𝖧0(𝖷,Ω𝖷2)\sigma\in\mathsf{H}^{0}(\mathsf{X},\Omega^{2}_{\mathsf{X}}) is called a subcalibration of (𝖷,π)(\mathsf{X},\pi) if it is closed, and the composition

θ:=πσnd(𝒯𝖷)\theta:=\pi^{\sharp}\sigma^{\flat}\in\mathcal{E}nd(\mathcal{T}_{\mathsf{X}})

is idempotent (i.e. θ2=θ\theta^{2}=\theta), where σ:𝒯𝖷Ω𝖷1\sigma^{\flat}:\mathcal{T}_{\mathsf{X}}\to\Omega^{1}_{\mathsf{X}} is the map defined by contraction of vector fields into σ\sigma.

We will be interested in subcalibrations that are compatible with our chosen symplectic leaf 𝖫\mathsf{L} in the following sense:

Definition \thedefinition.

A subcalibration σ\sigma of (𝖷,π)(\mathsf{X},\pi) is compatible with the symplectic leaf i:𝖫𝖷i:\mathsf{L}\hookrightarrow\mathsf{X} if iimgθ=𝒯𝖫i𝒯𝖷i^{*}\operatorname{img}\theta=\mathcal{T}_{\mathsf{L}}\subset i^{*}\mathcal{T}_{\mathsf{X}}.

Equivalently, the subcalibration is compatible with 𝖫\mathsf{L} if the projection of π\pi to 2imgθ\wedge^{2}\operatorname{img}\theta is a constant rank bivector that is an extension of the nondegenerate Poisson structure π𝖫\pi_{\mathsf{L}} on 𝖫\mathsf{L}.

The following gives a simple condition that allows an arbitrary extension of the two-form on 𝖫\mathsf{L} to be refined to a subcalibration compatible with 𝖫\mathsf{L}. Note that it applies, in particular, whenever 𝖷\mathsf{X} is a compact connected Kähler manifold:

Lemma \thelemma.

Let (𝖷,π)(\mathsf{X},\pi) be a holomorphic Poisson manifold and let (𝖫,η)(\mathsf{L},\eta) be a symplectic leaf of (𝖷,π)(\mathsf{X},\pi). Suppose that the following conditions hold:

  1. 1.

    h0(𝖷,𝒪𝖷)=1h^{0}(\mathsf{X},\mathcal{O}_{\mathsf{X}})=1, i.e. every global holomorphic function on 𝖷\mathsf{X} is constant

  2. 2.

    𝖧0(𝖷,Ω𝖷2)=𝖧0(𝖷,Ω𝖷2,cl)\mathsf{H}^{0}(\mathsf{X},\Omega^{2}_{\mathsf{X}})=\mathsf{H}^{0}(\mathsf{X},\Omega^{2,\textrm{cl}}_{\mathsf{X}}), i.e. every global holomorphic two-form on 𝖷\mathsf{X} is closed

  3. 3.

    η\eta extends to a global holomorphic two-form on 𝖷\mathsf{X}

Then η\eta extends to a subcalibration compatible with 𝖫\mathsf{L}.

Proof.

Let σ0𝖧0(𝖷,Ω𝖷2)\sigma_{0}\in\mathsf{H}^{0}(\mathsf{X},\Omega^{2}_{\mathsf{X}}) be any extension of the symplectic form on 𝖫\mathsf{L} to a global holomorphic two-form on 𝖷\mathsf{X}, and let θ0:=πσ0nd(𝒯𝖷)\theta_{0}:=\pi^{\sharp}\sigma_{0}^{\flat}\in\mathcal{E}nd(\mathcal{T}_{\mathsf{X}}). Since π𝖫=π|𝖫\pi_{\mathsf{L}}=\pi|_{\mathsf{L}} is inverse to the symplectic form η=iσ0\eta=i^{*}\sigma_{0} on 𝖫\mathsf{L}, it follows easily that θ0|𝖫nd(i𝒯𝖷)\theta_{0}|_{\mathsf{L}}\in\mathcal{E}nd(i^{*}\mathcal{T}_{\mathsf{X}}) is idempotent with image 𝒯𝖫i𝒯𝖷\mathcal{T}_{\mathsf{L}}\subset i^{*}\mathcal{T}_{\mathsf{X}}, giving a splitting

i𝒯𝖷𝒯𝖫kerθ0|𝖫i^{*}\mathcal{T}_{\mathsf{X}}\cong\mathcal{T}_{\mathsf{L}}\oplus\ker\theta_{0}|_{\mathsf{L}}

In particular, the characteristic polynomial of θ0|𝖫\theta_{0}|_{\mathsf{L}} is given by

P(t)=tn2k(t1)2kP(t)=t^{n-2k}(t-1)^{2k}

where n=dim𝖷n=\dim\mathsf{X} and k=12dim𝖫k=\tfrac{1}{2}\dim\mathsf{L}. But the coefficients of the characteristic polynomial of θ0\theta_{0} are holomorphic functions on 𝖷\mathsf{X}, and since h0(𝖷,𝒪𝖷)=1h^{0}(\mathsf{X},\mathcal{O}_{\mathsf{X}})=1, such functions are constant. We conclude that P(t)P(t) is the characteristic polynomial of θ0\theta_{0} over all of 𝖷\mathsf{X}.

Taking generalized eigenspaces of θ0\theta_{0}, we obtain a decomposition

𝒯𝖷𝒢\mathcal{T}_{\mathsf{X}}\cong\mathcal{F}\oplus\mathcal{G}

where i=𝒯𝖫i^{*}\mathcal{F}=\mathcal{T}_{\mathsf{L}}. Projecting the two-form σ0\sigma_{0} to 2\wedge^{2}\mathcal{F}^{\vee} we therefore obtain a new holomorphic two-form σ1\sigma_{1} such that iσ1=ηi^{*}\sigma_{1}=\eta, which has the additional property that 𝒢kerσ1\mathcal{G}\subset\ker\sigma_{1}. Then θ1=πσ1\theta_{1}=\pi^{\sharp}\sigma_{1}^{\flat} also has characteristic polynomial P(t)P(t), giving a splitting 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}^{\prime}\oplus\mathcal{G} with respect to which θ1\theta_{1} takes on the Jordan–Chevalley block form

θ1=(1+ϕ000)\theta_{1}=\begin{pmatrix}1+\phi&0\\ 0&0\end{pmatrix}

where ϕ𝖤𝗇𝖽()\phi\in\mathsf{End}(\mathcal{F}^{\prime}) is nilpotent. Using the identity θ1π=πθ1\theta_{1}\pi^{\sharp}=\pi^{\sharp}\theta_{1}^{\vee} as maps Ω𝖷1𝒯𝖷\Omega^{1}_{\mathsf{X}}\to\mathcal{T}_{\mathsf{X}}, one calculates that π\pi must be block diagonal, i.e. equal to the sum of its projections to 2𝒢\wedge^{2}\mathcal{G} and 2\wedge^{2}\mathcal{F}^{\prime}. The latter projection, say π2\pi^{\prime}\in\wedge^{2}\mathcal{F}^{\prime}, is then nondegenerate because θ1=πσ1\theta_{1}=\pi^{\sharp}\sigma_{1}^{\flat} is invertible on \mathcal{F}^{\prime}. We may therefore define a two-form σ:=(π)12Ω𝖷2\sigma:=(\pi^{\prime})^{-1}\in\wedge^{2}\mathcal{F}^{\prime}\subset\Omega^{2}_{\mathsf{X}}. By construction, the endomorphism θ:=πσ\theta:=\pi^{\sharp}\sigma^{\flat} preserves the decomposition 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}^{\prime}\oplus\mathcal{G}, acts as the identity on \mathcal{F}^{\prime}, and has 𝒢\mathcal{G} as its kernel. In particular, θ\theta is idempotent and σ\sigma restricts to the symplectic form on 𝖫\mathsf{L}. Moreover, σ\sigma is closed by hypothesis. Thus σ\sigma is a subcalibration of π\pi compatible with 𝖫\mathsf{L}, as desired. ∎

Combining Section 2.1 and Section 2.1, we immediately obtain the following statement, which is a rephrasing of Theorem 1.2 from the introduction:

Corollary \thecorollary.

If (𝖷,π)(\mathsf{X},\pi) is a compact Kähler manifold equipped with a holomorphic Poisson structure and 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact symplectic leaf, then there exists a subcalibration of (𝖷,π)(\mathsf{X},\pi) compatible with 𝖫\mathsf{L}.

2.2 Splitting the tangent bundle

Note that if σ\sigma is a subcalibration of (𝖷,π)(\mathsf{X},\pi), then the operator θ:=πσ\theta:=\pi^{\sharp}\sigma^{\flat} gives a decomposition

𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G}

of the tangent bundle into the complementary subbundles

:=imgθ,𝒢:=kerθ.\mathcal{F}:=\operatorname{img}\theta,\qquad\mathcal{G}:=\ker\theta.

We may then project π\pi onto the corresponding summands in the exterior powers to obtain global bivectors

π𝖧0(𝖷,2)π𝒢𝖧0(𝖷2𝒢).\pi_{\mathcal{F}}\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{F})\qquad\pi_{\mathcal{G}}\in\mathsf{H}^{0}(\mathsf{X}\wedge^{2}\mathcal{G}).

Similarly, the form σ\sigma projects to a pair of sections

σ𝖧0(𝖷,2)σ𝒢𝖧0(𝖷,2𝒢),\sigma_{\mathcal{F}}\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{F}^{\vee})\qquad\sigma_{\mathcal{G}}\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{G}^{\vee}),

which we may view as global holomorphic two-forms on 𝖷\mathsf{X} via the splitting 𝒯𝖷𝒢\mathcal{T}_{\mathsf{X}}^{\vee}\cong\mathcal{F}^{\vee}\oplus\mathcal{G}^{\vee}.

An elementary linear algebra computation then shows that

π=π+π𝒢,σ=σ+σ𝒢\pi=\pi_{\mathcal{F}}+\pi_{\mathcal{G}},\qquad\sigma=\sigma_{\mathcal{F}}+\sigma_{\mathcal{G}}

and π\pi_{\mathcal{F}} is inverse to σ\sigma_{\mathcal{F}} on \mathcal{F}, so that

=imgπand𝒢=kerσ.\mathcal{F}=\operatorname{img}\pi_{\mathcal{F}}\qquad\textrm{and}\qquad\mathcal{G}=\ker\sigma_{\mathcal{F}}.

With this notation in place, we may state the following fundamental result about subcalibrations, due to Frejlich–Mărcu\cbt, which will play a key role in what follows:

Theorem 2.1 (Frejlich–Mărcu\cbt).

Suppose that σ\sigma is a subcalibration of (𝖷,π)(\mathsf{X},\pi). Then the bivector fields π,π𝒢\pi_{\mathcal{F}},\pi_{\mathcal{G}} are Schouten commuting Poisson structures, i.e.

[π,π]=[π𝒢,π𝒢]=[π,π𝒢]=0.\displaystyle[\pi_{\mathcal{F}},\pi_{\mathcal{F}}]=[\pi_{\mathcal{G}},\pi_{\mathcal{G}}]=[\pi_{\mathcal{F}},\pi_{\mathcal{G}}]=0. (1)

In particular, =imgπ\mathcal{F}=\operatorname{img}\pi_{\mathcal{F}} is involutive. Moreover, 𝒢\mathcal{G} is involutive if and only if σ\sigma_{\mathcal{F}} is closed.

Proof.

The proof of Frejlich–Mărcu\cbt makes elegant use of the notion of a Dirac structure. For completeness, we present here an essentially equivalent argument based on the related notion of a gauge transformation of Poisson structures.

We recall from [13, Section 4] that if BB is a closed holomorphic two-form such that the operator 1+Bπnd(Ω𝖷1)1+B^{\flat}\pi^{\sharp}\in\mathcal{E}nd(\Omega^{1}_{\mathsf{X}}) is invertible, then the gauge transformation of π\pi by BB is a new Poisson structure Bπ𝖧0(𝖷,2𝒯𝖷)B\star\pi\in\mathsf{H}^{0}(\mathsf{X},\wedge^{2}\mathcal{T}_{\mathsf{X}}) whose underlying foliation is the same as that of π\pi, but with the symplectic form on each leaf modified by adding the pullback of BB. Equivalently, BπB\star\pi is determined by its anchor map, which is given by the formula (Bπ)=π(1+Bπ)1:Ω𝖷1𝒯𝖷(B\star\pi)^{\sharp}=\pi^{\sharp}(1+B^{\flat}\pi^{\sharp})^{-1}:\Omega^{1}_{\mathsf{X}}\to\mathcal{T}_{\mathsf{X}}. The skew symmetry of BπB\star\pi follows from the skew symmetry of π\pi and BB, while the identity [Bπ,Bπ]=0[B\star\pi,B\star\pi]=0 is deduced using the closedness of BB and the equation [π,π]=0[\pi,\pi]=0.

We apply this construction to the family of two-forms B(t):=tσB(t):=t\sigma. Note that since θ:=πσ\theta:=\pi^{\sharp}\sigma^{\flat} is idempotent, the operator 1+B(t)π=1+tθnd(Ω𝖷1)1+B^{\flat}(t)\pi^{\sharp}=1+t\theta^{\vee}\in\mathcal{E}nd(\Omega^{1}_{\mathsf{X}}) is invertible for all t1t\neq-1. We therefore obtain a family of holomorphic Poisson bivectors

π(t):=B(t)π,t{1},\pi(t):=B(t)\star\pi,\qquad t\in\mathbb{C}\setminus\{-1\},

with anchor map

π(t)=π(1+tθ)1.\pi^{\sharp}(t)=\pi^{\sharp}(1+t\theta^{\vee})^{-1}.

Since θ\theta is idempotent, we have (1+tθ)1=1t1+tθ(1+t\theta^{\vee})^{-1}=1-\tfrac{t}{1+t}\theta^{\vee}, which implies that

π(t)=π+π𝒢t1+tπ=11+tπ+π𝒢\pi(t)=\pi_{\mathcal{F}}+\pi_{\mathcal{G}}-\tfrac{t}{1+t}\pi_{\mathcal{F}}=\tfrac{1}{1+t}\pi_{\mathcal{F}}+\pi_{\mathcal{G}}

for all t1t\neq-1. Since [π(t),π(t)]=0[\pi(t),\pi(t)]=0 for all t1t\neq-1, the bilinearity of the Schouten bracket therefore implies the desired identities (1). This implies immediately that =imgπ\mathcal{F}=\operatorname{img}\pi_{\mathcal{F}} is the tangent sheaf of the symplectic foliation of the Poisson bivector π\pi_{\mathcal{F}}; in particular, it is involutive.

It remains to show that 𝒢\mathcal{G} is involutive if and only if σ\sigma_{\mathcal{F}} is closed. To this end, observe that if σ\sigma_{\mathcal{F}} is closed, then its kernel 𝒢=kerσ\mathcal{G}=\ker\sigma_{\mathcal{F}} is involutive by elementary Cartan calculus. Conversely, if 𝒢\mathcal{G} is involutive, then both \mathcal{F}^{\vee} and 𝒢\mathcal{G}^{\vee} generate differential ideals in Ω𝖷\Omega^{\bullet}_{\mathsf{X}}. This implies that the exterior derivatives of σ2\sigma_{\mathcal{F}}\in\wedge^{2}\mathcal{F}^{\vee} and σ𝒢2𝒢\sigma_{\mathcal{G}}\in\wedge^{2}\mathcal{G}^{\vee} lie in complementary subbundles of Ω𝖷2\Omega^{2}_{\mathsf{X}}, namely

dσ3(2𝒢)dσ𝒢(2𝒢)3𝒢.\mathrm{d}\sigma_{\mathcal{F}}\in\wedge^{3}\mathcal{F}^{\vee}\oplus(\wedge^{2}\mathcal{F}^{\vee}\otimes\mathcal{G}^{\vee})\qquad\mathrm{d}\sigma_{\mathcal{G}}\in(\wedge^{2}\mathcal{G}^{\vee}\otimes\mathcal{F}^{\vee})\oplus\wedge^{3}\mathcal{G}^{\vee}.

Since dσ+dσ𝒢=dσ=0\mathrm{d}\sigma_{\mathcal{F}}+\mathrm{d}\sigma_{\mathcal{G}}=\mathrm{d}\sigma=0, we conclude that dσ=0\mathrm{d}\sigma_{\mathcal{F}}=0, as desired. ∎

3 Product decompositions

The subcalibrations discussed in the previous section give, in particular, a decomposition of the tangent bundle into involutive subbundles. In this section we fix a complex manifold 𝖷\mathsf{X} and give criteria for such a decomposition of 𝒯𝖷\mathcal{T}_{\mathsf{X}} to arise from a decomposition of some covering of 𝖷\mathsf{X} as a product as in Section 1. The main objects are therefore the following:

Definition \thedefinition.

Suppose that \mathcal{F} is a regular foliation of 𝖷\mathsf{X}. A foliation complementary to \mathcal{F} is an involutive holomorphic subbundle 𝒢𝒯𝖷\mathcal{G}\subset\mathcal{T}_{\mathsf{X}} such that 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G}.

Note that the definition is symmetric: if 𝒢\mathcal{G} is complementary to \mathcal{F} then \mathcal{F} is complementary to 𝒢\mathcal{G}. However, in what follows, the foliations \mathcal{F} and 𝒢\mathcal{G} will play markedly different roles.

3.1 Fibrations, flat connections and suspensions

Definition \thedefinition.

Let 𝒯𝖷\mathcal{F}\subset\mathcal{T}_{\mathsf{X}} be a regular holomorphic foliation. We say that \mathcal{F} is a fibration if there exists a surjective holomorphic submersion f:𝖷𝖸f:\mathsf{X}\to\mathsf{Y} whose fibres are the leaves of \mathcal{F}. In this case, we call 𝖸\mathsf{Y} the leaf space of \mathcal{F} and the map ff the quotient map.

Remark \theremarkx.

The submersion f:𝖷𝖸f:\mathsf{X}\to\mathsf{Y}, if it exists, is unique up to isomorphism, so there is no ambiguity in referring to 𝖸\mathsf{Y} as “the” leaf space of the foliation \mathcal{F}. ∎

Suppose that \mathcal{F} is a fibration, and 𝒢\mathcal{G} is a foliation complementary to \mathcal{F}. Then 𝒢\mathcal{G} is precisely the data of a flat connection on the submersion f:𝖷𝖸f:\mathsf{X}\to\mathsf{Y}, in the sense of Ehresmann [6]. Recall that such a connection is complete if it has the path lifting propery, i.e. given any point y𝖸y\in\mathsf{Y}, any path γ:[0,1]𝖸\gamma:[0,1]\to\mathsf{Y} starting at γ(0)=y\gamma(0)=y, and any point xx lying in the fibre f1(y)𝖷f^{-1}(y)\subset\mathsf{X}, there exists a unique path γ~:[0,1]𝖷\widetilde{\gamma}:[0,1]\to\mathsf{X} that is tangent to the leaves of 𝒢\mathcal{G} and starts at the point γ~(0)=x\widetilde{\gamma}(0)=x. If ff is proper, then every flat Ehresmann connection is complete in this sense.

Definition \thedefinition.

Suppose that (,𝒢)(\mathcal{F},\mathcal{G}) is a pair consisting of a regular holomorphic foliation \mathcal{F} and a complementary foliation 𝒢\mathcal{G}. We say that the pair (,𝒢)(\mathcal{F},\mathcal{G}) is a suspension if \mathcal{F} is a fibration for which 𝒢\mathcal{G} defines a complete flat Ehresmann connection.

Suppose that (,𝒢)(\mathcal{F},\mathcal{G}) is a suspension with underlying fibration f:𝖷𝖸f:\mathsf{X}\to\mathsf{Y}, and y𝖸y\in\mathsf{Y} is a point in the leaf space of \mathcal{F}. Let 𝖫=f1(y)\mathsf{L}=f^{-1}(y) be the fibre. The monodromy representation at yy is the homomorphism π1(𝖸,y)𝖠𝗎𝗍(𝖫)\pi_{1}(\mathsf{Y},y)\to\mathsf{Aut}\left(\mathsf{L}\right) defined by declaring that a homotopy class [γ]π1(𝖸,y)[\gamma]\in\pi_{1}(\mathsf{Y},y) acts on 𝖫\mathsf{L} by sending x𝖫x\in\mathsf{L} to γ~(1)\widetilde{\gamma}(1) where γ~\widetilde{\gamma} is the path lifting γ\gamma with initial condition γ~(0)=x\widetilde{\gamma}(0)=x. Lifting arbitrary paths in 𝖸\mathsf{Y} based at yy then gives a canonical isomorphism

𝖷𝖫×𝖸~π1(𝖸,y)\mathsf{X}\cong\frac{\mathsf{L}\times\widetilde{\mathsf{Y}}}{\pi_{1}(\mathsf{Y},y)}

where 𝖸~\widetilde{\mathsf{Y}} is the universal cover of 𝖸\mathsf{Y} based at yy, and π1(𝖸,y)\pi_{1}(\mathsf{Y},y) acts diagonally on the product. Moreover the pullbacks of \mathcal{F} and 𝒢\mathcal{G} to 𝖫×𝖸~\mathsf{L}\times\widetilde{\mathsf{Y}} coincide with the tangent bundle of the factors 𝖫\mathsf{L} and 𝖸~\widetilde{\mathsf{Y}}, respectively, as in Section 1. In this way, we obtain an equivalence between suspensions (,𝒢)(\mathcal{F},\mathcal{G}) and homomorphisms ρ:π1(𝖸,y)𝖠𝗎𝗍(𝖫)\rho:\pi_{1}(\mathsf{Y},y)\to\mathsf{Aut}\left(\mathsf{L}\right), where 𝖸\mathsf{Y} and 𝖫\mathsf{L} are complex manifolds and y𝖸y\in\mathsf{Y}.

Remark \theremarkx.

We will make repeated use of the following observation: if 𝖷\mathsf{X} is compact Kähler, the restriction of any Kähler class on 𝖷\mathsf{X} to a leaf 𝖫\mathsf{L} of \mathcal{F} gives a Kähler class ω𝖧1,1(𝖫)\omega\in\mathsf{H}^{1,1}(\mathsf{L}) that is invariant under the monodromy representation, i.e. the monodromy representation is given by a homomorphism

ρ:π1(𝖸,y)𝖠𝗎𝗍ω(𝖫)\rho:\pi_{1}(\mathsf{Y},y)\to\mathsf{Aut}_{\omega}(\mathsf{L})

where 𝖠𝗎𝗍ω(𝖫)\mathsf{Aut}_{\omega}(\mathsf{L}) is the group of biholomorphisms of 𝖫\mathsf{L} that fix the class ω\omega. The structure of 𝖠𝗎𝗍ω(𝖫)\mathsf{Aut}_{\omega}(\mathsf{L}) is well understood thanks to work of Lieberman [8], and this will allow us to control the behaviour of various suspensions. ∎

3.2 Holonomy groupoids

In Theorem 3.1 below, we will give criteria for a pair of foliations on a compact Kähler manifold to be a suspension. Our key technical tool is the holonomy groupoid 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}) of a regular foliation \mathcal{F}. We briefly recall the construction and refer the reader to [11, 15] for details. (Note that in [15], the holonomy groupoid is called the “graph” of \mathcal{F}.)

If x,yx,y are two points on the same leaf 𝖫\mathsf{L} of the foliation \mathcal{F}, and γ\gamma is a path from xx to yy in 𝖫\mathsf{L}, then by lifting γ\gamma to nearby leaves one obtains a germ of a biholomorphism from the leaf space of |𝖴x\mathcal{F}|_{\mathsf{U}_{x}} to the leaf space of |𝖴y\mathcal{F}|_{\mathsf{U}_{y}} where 𝖴x,𝖴y𝖷\mathsf{U}_{x},\mathsf{U}_{y}\subset\mathsf{X} are sufficiently small neighbourhoods of xx and yy, respectively. This germ is called the holonomy transformation induced by γ\gamma. We say that two paths tangent to \mathcal{F} have the same holonomy class if their endpoints are the same, and they induce the same holonomy transformation.

The holonomy groupoid 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}) is the set of holonomy classes of paths tangent to \mathcal{F}. It carries a natural complex manifold structure of dimension equal to dim𝖷+rank\dim\mathsf{X}+\operatorname{rank}\mathcal{F}, and comes equipped with a pair of surjective submersions s,t:𝖧𝗈𝗅()𝖷s,t:\mathsf{Hol}(\mathcal{F})\to\mathsf{X} that pick out the endpoints of paths. The usual composition of paths then makes 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}) into a complex Lie groupoid over 𝖷\mathsf{X}.

Remark \theremarkx.

In the differentiable setting, the holonomy groupoid may fail to be Hausdorff, but in the analytic setting we consider here, the Hausdorffness is guaranteed by [15, Corollary of Proposition 2.1]. ∎

Remark \theremarkx.

The map (s,t):𝖧𝗈𝗅()𝖷×𝖷(s,t):\mathsf{Hol}(\mathcal{F})\to\mathsf{X}\times\mathsf{X} is an immersion [15, 0.3]. Hence a Kähler structure on 𝖷\mathsf{X} induces a Kähler structure on 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}) by pullback. ∎

Suppose that x𝖷x\in\mathsf{X}, and let 𝖫𝖷\mathsf{L}\subset\mathsf{X} be the leaf through 𝖷\mathsf{X}. We denote by 𝖧𝗈𝗅()x𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F})_{x}\subset\mathsf{Hol}(\mathcal{F}) the group of holonomy classes of loops based at xx. Since homotopic loops induce the same holonomy transformation, 𝖧𝗈𝗅()x\mathsf{Hol}(\mathcal{F})_{x} is a quotient of the fundamental group π1(𝖫,x)\pi_{1}(\mathsf{L},x). Moreover, it acts freely on the fibre s1(x)s^{-1}(x), and the map tt descends to an isomorphism s1(x)/𝖧𝗈𝗅()x𝖫s^{-1}(x)/\mathsf{Hol}(\mathcal{F})_{x}\cong\mathsf{L}. Put differently, the fibration s1(𝖫)𝖫s^{-1}(\mathsf{L})\to\mathsf{L} is a fibre bundle equipped with a complete flat Ehresmann connection whose horizontal leaves are the fibres t1(y)s1(𝖫)t^{-1}(y)\subset s^{-1}(\mathsf{L}) where y𝖫y\in\mathsf{L}. The holonomy group 𝖧𝗈𝗅()x\mathsf{Hol}(\mathcal{F})_{x} is the image of the homomorphism

holx:π1(𝖫,x)𝖠𝗎𝗍(s1(x))\displaystyle\operatorname{hol}_{x}:\pi_{1}(\mathsf{L},x)\to\mathsf{Aut}\left(s^{-1}(x)\right) (2)

obtained by taking the monodromy of this flat connection.

Now suppose that 𝒢\mathcal{G} is a foliation complementary to \mathcal{F}. Then the preimage t1𝒢𝒯𝖧𝗈𝗅()t^{-1}\mathcal{G}\subset\mathcal{T}_{\mathsf{Hol}(\mathcal{F})} defines a regular foliation on 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}). The leaves of this foliation are the submanifolds of the form t1(𝖶)t^{-1}(\mathsf{W}) where 𝖶𝖷\mathsf{W}\subset\mathsf{X} is a leaf of 𝒢\mathcal{G}.

Lemma \thelemma.

Suppose that \mathcal{F} is a regular foliation of 𝖷\mathsf{X} such that the map s:𝖧𝗈𝗅()𝖷s:\mathsf{Hol}(\mathcal{F})\to\mathsf{X} is proper, and that 𝒢\mathcal{G} is a foliation complementary to \mathcal{F}. Then the following statements hold:

  1. 1.

    The foliation t1𝒢𝒯𝖧𝗈𝗅()t^{-1}\mathcal{G}\subset\mathcal{T}_{\mathsf{Hol}(\mathcal{F})} defines a complete flat Ehresmann connection on the fibration s:𝖧𝗈𝗅()𝖷s:\mathsf{Hol}(\mathcal{F})\to\mathsf{X}.

  2. 2.

    If 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a leaf of \mathcal{F}, then the t1𝒢t^{-1}\mathcal{G}-horizontal lifts of 𝖫\mathsf{L} are exactly the fibres t1(y)t^{-1}(y) for y𝖫y\in\mathsf{L}.

  3. 3.

    If x𝖷x\in\mathsf{X} and 𝖫\mathsf{L} is the leaf of \mathcal{F} through xx, then the monodromy representation ρx:π1(𝖷,x)𝖠𝗎𝗍(s1(x))\rho_{x}:\pi_{1}(\mathsf{X},x)\to\mathsf{Aut}\left(s^{-1}(x)\right) of t1𝒢t^{-1}\mathcal{G} extends the holonomy representation of \mathcal{F} at xx, i.e. the following diagram commutes:

    π1(𝖫,x)\textstyle{\pi_{1}(\mathsf{L},x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}holx\scriptstyle{\operatorname{hol}_{x}}π1(𝖷,x)\textstyle{\pi_{1}(\mathsf{X},x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρx\scriptstyle{\rho_{x}}𝖧𝗈𝗅()x\textstyle{\mathsf{Hol}(\mathcal{F})_{x}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖠𝗎𝗍(s1(x))\textstyle{\mathsf{Aut}\left(s^{-1}(x)\right)}
Proof.

For the first statement, note that rank𝒢=dim𝖷rank\operatorname{rank}\mathcal{G}=\dim\mathsf{X}-\operatorname{rank}\mathcal{F} and the fibres of tt have dimension equal to rank\operatorname{rank}\mathcal{F}. Therefore t1𝒢t^{-1}\mathcal{G} has rank equal to dim𝖷\dim\mathsf{X}. Note that 𝒢\mathcal{G} is identified with the normal bundle of the foliation \mathcal{F} and therefore t1𝒢t^{-1}\mathcal{G} surjects by ss onto the normal bundle of every leaf. Meanwhile every tt-fibre surjects by ss onto the corresponding leaf. Considering the ranks, it follows that t1(𝒢)t^{-1}(\mathcal{G}) is complementary to the fibres of ss, defining a flat Ehresmann connection. Since ss is proper, this connection is complete, as desired.

For the second statement, note that the horizontal lifts of a leaf 𝖫𝖷\mathsf{L}\subset\mathsf{X} of \mathcal{F} are, by definition, given by intersecting the preimage s1(𝖫)s^{-1}(\mathsf{L}) with the leaves of t1𝒢t^{-1}\mathcal{G}. But tt projects s1(𝖫)s^{-1}(\mathsf{L}) onto 𝖫\mathsf{L}, which is complementary to 𝒢\mathcal{G}. It follows that the intersection of the leaves of t1𝒢t^{-1}\mathcal{G} with s1(𝖫)s^{-1}(\mathsf{L}) are the fibres t1(y)t^{-1}(y) for y𝖫y\in\mathsf{L}, as claimed. The third statement then follows immediately from the description of the holonomy representation (2) above. ∎

3.3 Suspensions on Kähler manifolds

We are now in a position to prove our main result on complementary foliations.

Theorem 3.1.

Let \mathcal{F} be a regular foliation on a compact Kähler manifold, and suppose that \mathcal{F} has a compact leaf 𝖫𝖷\mathsf{L}\subset\mathsf{X} with finite holonomy group. Then the following statements hold:

  1. 1.

    For every foliation 𝒢\mathcal{G} complementary to \mathcal{F}, there exists a finite étale cover ϕ:𝖷~𝖷\phi:\widetilde{\mathsf{X}}\to\mathsf{X} such that (ϕ1,ϕ1𝒢)(\phi^{-1}\mathcal{F},\phi^{-1}\mathcal{G}) is a suspension.

  2. 2.

    If, in addition, the fundamental group of 𝖫\mathsf{L} is finite and the universal cover 𝖫~\widetilde{\mathsf{L}} admits no nonzero holomorphic vector fields, i.e. h0(𝖫~,𝒯𝖫~)=0h^{0}(\widetilde{\mathsf{L}},\mathcal{T}_{\widetilde{\mathsf{L}}})=0, then we can arrange so that the suspension in statement 1 is trivial, i.e. there exists a compact Kähler manifold 𝖸\mathsf{Y} and a finite étale cover

    ϕ:𝖫~×𝖸𝖷\phi:\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X}

    such that ϕ1\phi^{-1}\mathcal{F} and ϕ1𝒢\phi^{-1}\mathcal{G} are identified with the tangent bundles of the factors 𝖫~\widetilde{\mathsf{L}} and 𝖸\mathsf{Y}, respectively.

As an immediate corollary of part 1 of Theorem 3.1, we obtain the following special case of Beauville’s conjecture:

Corollary \thecorollary.

Section 1 holds for decompositions of the tangent bundle of the form 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G} where \mathcal{F} has a compact leaf with finite holonomy.

Proof of Theorem 3.1, part 1.

Suppose that 𝖷\mathsf{X} is a compact Kähler manifold and \mathcal{F} is a regular holomorphic foliation having a compact leaf with finite holonomy group. Then by the global Reeb stability theorem for compact Kähler manifolds [12, Theorem 1], every leaf of \mathcal{F} is compact with finite holonomy group. As observed in [11, Example 5.28(2)], this implies that the submersions s,t:𝖧𝗈𝗅()𝖷s,t:\mathsf{Hol}(\mathcal{F})\to\mathsf{X} are proper maps.

If 𝒢\mathcal{G} is any foliation complementary to \mathcal{F}, we obtain from Section 3.2 a flat Ehresmann connection on the fibration s:𝖧𝗈𝗅()𝖷s:\mathsf{Hol}(\mathcal{F})\to\mathsf{X} whose monodromy representation induces the holonomy representation of every leaf. Let us choose a base point x𝖷x\in\mathsf{X}, and consider the monodromy representation

ρ:π1(𝖷,x)𝖠𝗎𝗍(s1(x)).\rho:\pi_{1}(\mathsf{X},x)\to\mathsf{Aut}\left(s^{-1}(x)\right).

Note that by Section 3.2, 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}) is a Kähler manifold. If we choose a Kähler class on 𝖧𝗈𝗅()\mathsf{Hol}(\mathcal{F}), its restriction to s1(x)s^{-1}(x) gives a Kähler class ω𝖧1,1(s1(x))\omega\in\mathsf{H}^{1,1}(s^{-1}(x)) that is invariant under the monodromy action. Hence ρ\rho factors through the subgroup 𝖠𝗎𝗍ω(s1(x))\mathsf{Aut}_{\omega}(s^{-1}(x)) of biholomorphisms of s1(x)s^{-1}(x) that fix the class ω\omega.

By Section 3.3 below applied to the monodromy action of Π:=π1(𝖷,x)\Pi:=\pi_{1}(\mathsf{X},x) on 𝖹:=s1(x)\mathsf{Z}:=s^{-1}(x), there exists a finite-index subgroup Γ<π1(𝖷,x)\Gamma<\pi_{1}(\mathsf{X},x) whose image ρ(Γ)<𝖠𝗎𝗍ω(s1(x))\rho(\Gamma)<\mathsf{Aut}_{\omega}(s^{-1}(x)) contains no finite subgroups that act freely on s1(x)s^{-1}(x). Let ϕ:𝖷~𝖷\phi:\widetilde{\mathsf{X}}\to\mathsf{X} be the covering space corresponding to Γ\Gamma, with base point x~𝖷~\widetilde{x}\in\widetilde{\mathsf{X}} chosen so that ϕπ1(𝖷~,x~)=Γ\phi_{*}\pi_{1}(\widetilde{\mathsf{X}},\widetilde{x})=\Gamma. Then ϕ\phi is a finite étale cover since Γ\Gamma has finite index.

We claim that the pair (ϕ1,ϕ1𝒢)(\phi^{-1}\mathcal{F},\phi^{-1}\mathcal{G}) is a suspension. Note that to prove this, it suffices to show that the holonomy groups of the leaves of ϕ1\phi^{-1}\mathcal{F} are trivial, for in this case the holonomy groupoid of ϕ\phi^{*}\mathcal{F} embeds as the graph of an equivalence relation in 𝖷~×𝖷~\widetilde{\mathsf{X}}\times\widetilde{\mathsf{X}}, which in turn implies that ϕ1\phi^{-1}\mathcal{F} is a fibration whose quotient map is proper. Then the complementary foliation ϕ1𝒢\phi^{-1}\mathcal{G} is a flat Ehresmann connection, as desired, and this establishes part 1 of the theorem.

To see that the holonomy groups of the leaves of ϕ1\phi^{-1}\mathcal{F} are indeed trivial, suppose that 𝖫~𝖷~\widetilde{\mathsf{L}}\subset\widetilde{\mathsf{X}} is a leaf of ϕ1\phi^{-1}\mathcal{F}. Then ϕ\phi restricts to an étale cover 𝖫~𝖫\widetilde{\mathsf{L}}\to\mathsf{L} where 𝖫\mathsf{L} is a leaf of \mathcal{F}. If we choose a base point y~𝖫~\widetilde{y}\in\widetilde{\mathsf{L}} with image y=ϕ(y~)𝖫y=\phi(\widetilde{y})\in\mathsf{L}, then the germ of the leaf space of ϕ1\phi^{-1}\mathcal{F} at y~\widetilde{y} is identified with the germ of the leaf space of \mathcal{F} at yy, so that the holonomy group of 𝖫~\widetilde{\mathsf{L}} at y~\widetilde{y} is canonically identified with the image of the composition

π1(𝖫~,y~)\textstyle{\pi_{1}(\widetilde{\mathsf{L}},\widetilde{y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(𝖫,y)\textstyle{\pi_{1}(\mathsf{L},y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖧𝗈𝗅()y.\textstyle{\mathsf{Hol}(\mathcal{F})_{y}.}

Choose a homotopy class of a path γ~\widetilde{\gamma} from x~\widetilde{x} to y~\widetilde{y}, let γ\gamma be its projection to a homotopy class from xx to yy, and let holγ:s1(y)s1(x)\operatorname{hol}_{\gamma}:s^{-1}(y)\to s^{-1}(x) be the isomorphism given by parallel transport of the Ehresmann connection on 𝖧𝗈𝗅()𝖷\mathsf{Hol}(\mathcal{F})\to\mathsf{X}. The adjoint actions of γ~,γ\widetilde{\gamma},\gamma and holγ\operatorname{hol}_{\gamma} then fit in a commutative diagram

π1(𝖫~,y~)\textstyle{\pi_{1}(\widetilde{\mathsf{L}},\widetilde{y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Adγ~\scriptstyle{\mathrm{Ad}_{\widetilde{\gamma}}}π1(𝖫,y)\textstyle{\pi_{1}(\mathsf{L},y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Adγ\scriptstyle{\mathrm{Ad}_{\gamma}}𝖧𝗈𝗅()y\textstyle{\mathsf{Hol}(\mathcal{F})_{y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖠𝗎𝗍(s1(y))\textstyle{\mathsf{Aut}\left(s^{-1}(y)\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Adholγ\scriptstyle{\mathrm{Ad}_{\operatorname{hol}_{\gamma}}}π1(𝖷~,x~)Γ\textstyle{\pi_{1}(\widetilde{\mathsf{X}},\widetilde{x})\cong\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(𝖷,x)\textstyle{\pi_{1}(\mathsf{X},x)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖠𝗎𝗍ω(s1(x))\textstyle{\mathsf{Aut}_{\omega}(s^{-1}(x))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖠𝗎𝗍(s1(x))\textstyle{\mathsf{Aut}\left(s^{-1}(x)\right)}

Note that since 𝖧𝗈𝗅()y\mathsf{Hol}(\mathcal{F})_{y} acts freely on s1(y)s^{-1}(y), and the holonomy holγ\operatorname{hol}_{\gamma} is an isomorphism between the fibres, the conjugate of 𝖧𝗈𝗅()y\mathsf{Hol}(\mathcal{F})_{y} by holγ\operatorname{hol}_{\gamma} acts freely on s1(x)s^{-1}(x). We conclude that the dashed arrow embeds the holonomy group of 𝖫~\widetilde{\mathsf{L}} as a finite subgroup in 𝖠𝗎𝗍ω(s1(x))\mathsf{Aut}_{\omega}(s^{-1}(x)) that acts freely on s1(x)s^{-1}(x). Since the diagram is commutative, this subgroup lies in the image of Γ\Gamma and hence by our choice of Γ\Gamma it must be trivial, as claimed. ∎

Proof of Theorem 3.1, part 2.

By part 1 of the theorem, we may assume without loss of generality that (,𝒢)(\mathcal{F},\mathcal{G}) is a suspension with base 𝖸\mathsf{Y} and typical fibre 𝖫\mathsf{L}^{\prime}, where 𝖫\mathsf{L}^{\prime} is a covering space of 𝖫\mathsf{L}. Moreover the monodromy representation of this suspension takes values in the group 𝖠𝗎𝗍ω(𝖫)\mathsf{Aut}_{\omega^{\prime}}(\mathsf{L}^{\prime}) of biholomorphism of 𝖫\mathsf{L}^{\prime} that fix some Kähler class ω𝖧1,1(𝖫)\omega^{\prime}\in\mathsf{H}^{1,1}(\mathsf{L}^{\prime}).

Now note that if the fundamental group of 𝖫\mathsf{L} is finite and the universal cover of 𝖫\mathsf{L} has no nonvanishing vector fields, then 𝖧0(𝖫,𝒯𝖫)=0\mathsf{H}^{0}(\mathsf{L}^{\prime},\mathcal{T}_{\mathsf{L}^{\prime}})=0 as well. Therefore 𝖠𝗎𝗍ω(𝖫)\mathsf{Aut}_{\omega^{\prime}}(\mathsf{L}^{\prime}) is finite by [8, Proposition 2.2]. The kernel of the monodromy representation therefore gives a finite index subgroup of π1(𝖸)\pi_{1}(\mathsf{Y}), and passing to the corresponding finite étale cover of 𝖸\mathsf{Y}, we trivialize the suspension, giving an étale map 𝖫×𝖸𝖷\mathsf{L}^{\prime}\times\mathsf{Y}\to\mathsf{X} that implements the desired splitting of the tangent bundle. Then passing to the universal cover of 𝖫\mathsf{L}^{\prime}, we obtain the desired statement. ∎

Lemma \thelemma.

Let 𝖹\mathsf{Z} be a compact Kähler manifold with Kähler class ω𝖧1,1(𝖹)\omega\in\mathsf{H}^{1,1}(\mathsf{Z}), let Π\Pi be a finitely generated group, and let ρ:Π𝖠𝗎𝗍ω(𝖹)\rho:\Pi\to\mathsf{Aut}_{\omega}(\mathsf{Z}) be a homomorphism to the group of biholomorphisms of 𝖹\mathsf{Z} that fix the class ω\omega. Then there exists a finite-index subgroup Γ<Π\Gamma<\Pi whose image ρ(Γ)<𝖠𝗎𝗍ω(𝖹)\rho(\Gamma)<\mathsf{Aut}_{\omega}(\mathsf{Z}) contains no finite subgroups that act freely on 𝖹\mathsf{Z}.

Proof.

By taking preimages under ρ\rho, we reduce the problem to the case where ρ\rho is injective, so we may assume without loss of generality that Π<𝖠𝗎𝗍ω(𝖹)\Pi<\mathsf{Aut}_{\omega}(\mathsf{Z}) is a subgroup. Moreover, by [8, Proposition 2.2], the neutral component 𝖠𝗎𝗍(𝖹)0\mathsf{Aut}\left(\mathsf{Z}\right)_{0} of the group of all biholomorphisms of 𝖹\mathsf{Z} is a finite index subgroup in 𝖠𝗎𝗍ω(𝖹)\mathsf{Aut}_{\omega}(\mathsf{Z}). In particular, Π𝖠𝗎𝗍(𝖹)0\Pi\cap\mathsf{Aut}\left(\mathsf{Z}\right)_{0} has finite index in Π\Pi, and is therefore finitely generated by Schreier’s lemma. Hence we may assume without loss of generality that Π<𝖠𝗎𝗍(𝖹)0\Pi<\mathsf{Aut}\left(\mathsf{Z}\right)_{0}.

By [8, Theorems 3.3, 3.12 and 3.14], there is an exact sequence

(5)

where 𝖭\mathsf{N} is the closed subgroup exponentiating the Lie algebra of holomorphic vector fields with nonempty zero locus, and 𝖳\mathsf{T} is a compact complex torus (a finite connected étale cover of the Albanese torus of 𝖹\mathsf{Z}).

Since Π\Pi is finitely generated, its image in 𝖳\mathsf{T} is a finitely generated abelian group. Therefore, by the classification of finitely generated abelian groups, there is a finite-index subgroup Γ<Π\Gamma<\Pi whose image in 𝖳\mathsf{T} is torsion-free. Suppose that 𝖦<Γ\mathsf{G}<\Gamma is a finite subgroup that acts freely on 𝖹\mathsf{Z}. We claim that 𝖦\mathsf{G} is trivial. Indeed, by construction, the image of 𝖦\mathsf{G} in 𝖳\mathsf{T} is a torsion-free finite group, hence trivial. We must therefore have that 𝖦<𝖭\mathsf{G}<\mathsf{N}. But by Section 3.3 below, every element of 𝖭\mathsf{N} has a fixed point, and therefore the only subgroup of 𝖭\mathsf{N} that acts freely is the trivial subgroup. ∎

Lemma \thelemma.

Let 𝖭\mathsf{N} be a connected complex Lie group, and let 𝖷\mathsf{X} be a compact complex manifold. Let a:𝖭×𝖷𝖷a:\mathsf{N}\times\mathsf{X}\to\mathsf{X} be an action of 𝖭\mathsf{N} on 𝖷\mathsf{X} by biholomorphisms. Suppose that the vector fields generating the action all have a non-empty vanishing locus. Then every element of 𝖭\mathsf{N} has a fixed point in 𝖷\mathsf{X}.

Proof.

Let 𝖴𝖭\mathsf{U}\subset\mathsf{N} be the set of elements with at least one fixed point. Note that 𝖴=p(a1(Δ))\mathsf{U}=p(a^{-1}(\Delta)), where Δ𝖷×𝖷\Delta\subset\mathsf{X}\times\mathsf{X} is the diagonal and p:𝖭×𝖷𝖭p:\mathsf{N}\times\mathsf{X}\to\mathsf{N} is the projection. Since aa is holomorphic, a1(Δ)𝖭×𝖷a^{-1}(\Delta)\subset\mathsf{N}\times\mathsf{X} is a closed analytic subspace. Since pp is proper, the Grauert direct image theorem implies that the image p(a1(Δ))=𝖴𝖭p(a^{-1}(\Delta))=\mathsf{U}\subset\mathsf{N} is a closed analytic subvariety. But we assume that every generating vector field for the action has at least one zero; therefore 𝖴\mathsf{U} contains the image of the exponential map of 𝖭\mathsf{N}, and in particular it contains an open neighbourhood of the identity. It follows that dim𝖴=dim𝖭\dim\mathsf{U}=\dim\mathsf{N}, and therefore 𝖴=𝖭\mathsf{U}=\mathsf{N} since 𝖭\mathsf{N} is connected. ∎

3.4 Foliations with trivial canonical class

In the particular case when the foliation \mathcal{F} or its compact leaf 𝖫\mathsf{L} has trivial canonical class, we can strengthen the results of the previous section. For example, we have the following:

Corollary \thecorollary.

Suppose 𝖷\mathsf{X} is a compact Kähler manifold, and 𝒯𝖷\mathcal{F}\subset\mathcal{T}_{\mathsf{X}} is a regular foliation having a compact leaf 𝖫\mathsf{L} with finite fundamental group and trivial canonical class c1(𝖫)=0c_{1}(\mathsf{L})=0. If 𝒢\mathcal{G} is any complementary foliation, then there exists a finite étale cover ϕ:𝖫~×𝖸𝖷\phi:\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X} inducing the splitting of the tangent bundle of 𝖷\mathsf{X} as in Theorem 3.1, part 2.

Proof.

By Theorem 3.1, part 2, it suffices to show that h0(𝖫~,𝒯𝖫~)=0h^{0}(\widetilde{\mathsf{L}},\mathcal{T}_{\widetilde{\mathsf{L}}})=0 where 𝖫~\widetilde{\mathsf{L}} is the universal cover of 𝖫\mathsf{L}, but this vanishing is well known. Indeed, in this case, the canonical bundle of 𝖫~\widetilde{\mathsf{L}} is trivial, so that 𝒯𝖫~Ω𝖫~n1\mathcal{T}_{\widetilde{\mathsf{L}}}\cong\Omega^{n-1}_{\widetilde{\mathsf{L}}} where n=dim𝖫n=\dim\mathsf{L}. We then have

h0(𝖫~,𝒯𝖫~)=h0(𝖫~,Ω𝖫~n1)=hn1(𝖫~,𝒪𝖫~)=h1(𝖫~,𝒪𝖫~)=12dim𝖧1(𝖫~;)=0h^{0}(\widetilde{\mathsf{L}},\mathcal{T}_{\widetilde{\mathsf{L}}})=h^{0}(\widetilde{\mathsf{L}},\Omega^{n-1}_{\widetilde{\mathsf{L}}})=h^{n-1}(\widetilde{\mathsf{L}},\mathcal{O}_{\widetilde{\mathsf{L}}})=h^{1}(\widetilde{\mathsf{L}},\mathcal{O}_{\widetilde{\mathsf{L}}})=\tfrac{1}{2}\dim\mathsf{H}^{1}(\widetilde{\mathsf{L}};\mathbb{C})=0

by Hodge symmetry, Serre duality, the Hodge decomposition theorem and the simple connectivity of 𝖫~\widetilde{\mathsf{L}}. ∎

This corollary, in turn has consequences for the foliation itself:

Corollary \thecorollary.

Suppose that 𝖷\mathsf{X} is a compact Kähler manifold and that \mathcal{F} is a (possibly singular) foliation with trivial canonical class c1()=0c_{1}(\mathcal{F})=0. If \mathcal{F} has a compact leaf 𝖫\mathsf{L} with finite fundamental group, then there exists a finite étale cover ϕ:𝖫~×𝖸𝖷\phi:\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X} such that ϕ1=𝒯𝖫~\phi^{-1}\mathcal{F}=\mathcal{T}_{\widetilde{\mathsf{L}}}.

Proof.

By [9, Theorem 5.6], \mathcal{F} is automatically regular and admits a complementary foliation, so Section 3.4 applies. ∎

In the situation where c1()=0c_{1}(\mathcal{F})=0 but the compact leaf 𝖫\mathsf{L} has infinite fundamental group, the situation becomes more complicated. However, the Beauville–Bogomolov decomposition theorem [2, 4] implies that 𝖫\mathsf{L} has a finite étale cover of the form 𝖹×𝖳\mathsf{Z}\times\mathsf{T}, where 𝖹\mathsf{Z} is a simply connected compact Kähler manifold with c1(𝖹)=0c_{1}(\mathsf{Z})=0, and 𝖳\mathsf{T} is a compact complex torus. Moreover, amongst all such coverings there is a “minimal” one through which all others factor. This minimal split covering is unique up to a non-unique isomorphism [1, Proposition 3]. By exploiting this result we can split the leaves of \mathcal{F} in a uniform fashion:

Proposition \theproposition.

Let 𝖷\mathsf{X} be a compact Kähler manifold and let \mathcal{F} be a possibly singular foliation on 𝖷\mathsf{X} with c1()=0c_{1}(\mathcal{F})=0. If 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact leaf whose holonomy group is finite, then there exists a simply connected compact Kähler manifold 𝖹\mathsf{Z} with c1(𝖹)=0c_{1}(\mathsf{Z})=0, a compact complex torus 𝖳\mathsf{T}, a locally trivial fibration f:𝖶𝖸f\colon\mathsf{W}\to\mathsf{Y} between complex Kähler manifolds with typical fibre 𝖳\mathsf{T}, and a finite étale cover

ϕ:𝖹×𝖶𝖷\phi\colon\mathsf{Z}\times\mathsf{W}\to\mathsf{X}

such that ϕ1\phi^{-1}\mathcal{F} is given by the fibres of the natural morphism 𝖹×𝖶𝖸\mathsf{Z}\times\mathsf{W}\to\mathsf{Y} induced by ff. Moreover if 𝒢\mathcal{G} is any foliation complementary to \mathcal{F}, then we may choose ϕ\phi so that ϕ1𝒢\phi^{-1}\mathcal{G} is the pullback of a flat Ehresmann connection on ff.

Proof.

By [9, Theorem 5.6], \mathcal{F} is regular and there exists a foliation 𝒢\mathcal{G} complementary to \mathcal{F}. Then by Theorem 3.1 part 1, we may assume without loss of generality that (,𝒢)(\mathcal{F},\mathcal{G}) is a suspension with base 𝖸\mathsf{Y} and typical fibre 𝖫\mathsf{L}.

Let 𝖹×𝖳𝖫\mathsf{Z}\times\mathsf{T}\to\mathsf{L} be the minimal split cover of 𝖫\mathsf{L} as in [1, Section 3]. Since every automorphism of 𝖹×𝖳\mathsf{Z}\times\mathsf{T} respects the product decomposition [1, Section 3, Lemma], the foliations on 𝖹×𝖳\mathsf{Z}\times\mathsf{T} given by the tangent bundles of the factors descend to canonical foliations on 𝖫\mathsf{L} that split the tangent bundle 𝒯𝖫\mathcal{T}_{\mathsf{L}}. Then, since ff is a locally trivial fibration, we obtain a decomposition 𝖹𝖳\mathcal{F}\cong\mathcal{F}_{\mathsf{Z}}\oplus\mathcal{F}_{\mathsf{T}} into involutive subbundles with compact leaves. Note that by construction, the leaves of 𝖹\mathcal{F}_{\mathsf{Z}} are finite quotients of 𝖹\mathsf{Z} and therefore 𝖹\mathcal{F}_{\mathsf{Z}} satisfies the hypotheses of Section 3.4. Hence by passing to an étale cover, we may assume that 𝖷=𝖹×𝖶\mathsf{X}=\mathsf{Z}\times\mathsf{W}, so that 𝖹\mathcal{F}_{\mathsf{Z}} is identified with the tangent bundle of 𝖹\mathsf{Z}, and 𝖳𝒢\mathcal{F}_{\mathsf{T}}\oplus\mathcal{G} is identified with the tangent bundle of 𝖶\mathsf{W}.

This reduces the problem to the case in which 𝖹=0\mathcal{F}_{\mathsf{Z}}=0, or equivalently 𝖫\mathsf{L} is a finite quotient of a torus 𝖳\mathsf{T}, and \mathcal{F} is the suspension of a representation

ρ:π1(𝖸,y)𝖠𝗎𝗍ω𝖫(𝖫)\rho:\pi_{1}(\mathsf{Y},y)\to\mathsf{Aut}_{\omega_{\mathsf{L}}}(\mathsf{L})

for some Kähler class ω𝖫𝖧1,1(𝖫)\omega_{\mathsf{L}}\in\mathsf{H}^{1,1}(\mathsf{L}) and some base point y𝖸y\in\mathsf{Y}. Let ω𝖧1,1(𝖳)\omega\in\mathsf{H}^{1,1}(\mathsf{T}) be the induced Kähler class on 𝖳\mathsf{T}. By Section 3.4 below, there exists a finite index subgroup Γ<π1(𝖸,y)\Gamma<\pi_{1}(\mathsf{Y},y) such that ρ|Γ\rho|_{\Gamma} lifts to a homomorphism

ρ~:Γ𝖠𝗎𝗍ω(𝖳)\widetilde{\rho}:\Gamma\to\mathsf{Aut}_{\omega}(\mathsf{T})

Let 𝖸~𝖸\widetilde{\mathsf{Y}}\to\mathsf{Y} be the covering determined by Γ\Gamma, and let 𝖷~𝖸~\widetilde{\mathsf{X}}\to\widetilde{\mathsf{Y}} be the suspension determined by ρ~\widetilde{\rho}. Then we have a natural étale cover 𝖷~𝖷\widetilde{\mathsf{X}}\to\mathsf{X} lifting 𝖸~𝖸\widetilde{\mathsf{Y}}\to\mathsf{Y} whose restriction to each fibre corresponds to the quotient map 𝖳𝖫\mathsf{T}\to\mathsf{L}, giving the result. ∎

Lemma \thelemma.

Let 𝖫\mathsf{L} be a compact Kähler manifold equipped with a finite étale cover 𝖳𝖫\mathsf{T}\to\mathsf{L}, where 𝖳\mathsf{T} is a compact complex torus. Let ω𝖧1,1(𝖫)\omega\in\mathsf{H}^{1,1}(\mathsf{L}) be any Kähler class. If Π\Pi is a finitely generated group and ρ:Π𝖠𝗎𝗍ω(𝖫)\rho:\Pi\to\mathsf{Aut}_{\omega}(\mathsf{L}) is a homomorphism, then there exists a finite-index subgroup Γ<Π\Gamma<\Pi whose action on 𝖫\mathsf{L} lifts to an action on 𝖳\mathsf{T}.

Proof.

As in the proof of Section 3.3 we may assume without loss of generality that ρ\rho is the inclusion Π𝖠𝗎𝗍(𝖫)0<𝖠𝗎𝗍ω(𝖫)\Pi\hookrightarrow\mathsf{Aut}\left(\mathsf{L}\right)_{0}<\mathsf{Aut}_{\omega}(\mathsf{L}) of a subgroup of the neutral component of the full automorphism group. By a theorem of Lichnerowicz [7], 𝖠𝗎𝗍(𝖫)0\mathsf{Aut}\left(\mathsf{L}\right)_{0} is a torus. In particular, Π\Pi is a finitely generated abelian group, and hence it has a free abelian subgroup Γ<Π\Gamma<\Pi of finite index.

Let 𝖳1𝖫\mathsf{T}_{1}\to\mathsf{L} be the minimal split cover of 𝖫\mathsf{L} as in [1, Section 3], and let 𝖳𝖳1\mathsf{T}\to\mathsf{T}_{1} be a factorization of 𝖳𝖫\mathsf{T}\to\mathsf{L} through 𝖳1𝖫\mathsf{T}_{1}\to\mathsf{L}. We may assume without loss of generality that 𝖳𝖳1\mathsf{T}\to\mathsf{T}_{1} is a morphism of tori. Let ω𝖳1\omega_{\mathsf{T}_{1}} be the pullback of the class ω\omega to 𝖳1\mathsf{T}_{1}. Since the minimal split cover is unique up to isomorphism, any automorphism of 𝖫\mathsf{L} that fixes the class ω\omega extends to an automorphism of 𝖳1\mathsf{T}_{1} that fixes ω𝖳1\omega_{\mathsf{T}_{1}}.

Let 𝖦<𝖠𝗎𝗍ω𝖳1(𝖳1)\mathsf{G}<\mathsf{Aut}_{\omega_{\mathsf{T}_{1}}}(\mathsf{T}_{1}) be the subgroup of automorphisms of 𝖳1\mathsf{T}_{1} that lift automorphisms in 𝖠𝗎𝗍(𝖫)0\mathsf{Aut}\left(\mathsf{L}\right)_{0}. Then 𝖦\mathsf{G} is a complex Lie subgroup of 𝖠𝗎𝗍ω𝖳1(𝖳1)\mathsf{Aut}_{\omega_{\mathsf{T}_{1}}}(\mathsf{T}_{1}) and the natural map 𝖦𝖠𝗎𝗍(𝖫)0\mathsf{G}\to\mathsf{Aut}\left(\mathsf{L}\right)_{0} is a surjective morphism of complex Lie groups with finite kernel. This in turn implies that the neutral component 𝖦0<𝖠𝗎𝗍(𝖳1)0\mathsf{G}_{0}<\mathsf{Aut}\left(\mathsf{T}_{1}\right)_{0} of 𝖦\mathsf{G} is a torus where 𝖠𝗎𝗍(𝖳1)0𝖳1\mathsf{Aut}\left(\mathsf{T}_{1}\right)_{0}\cong\mathsf{T}_{1} denotes the neutral component of the automorphism group of 𝖳1\mathsf{T}_{1}. In particular, 𝖦\mathsf{G} is abelian. It follows that Γ<𝖠𝗎𝗍(𝖫)0\Gamma<\mathsf{Aut}\left(\mathsf{L}\right)_{0} lifts to an inclusion Γ<𝖦<𝖠𝗎𝗍(𝖳1)0\Gamma<\mathsf{G}<\mathsf{Aut}\left(\mathsf{T}_{1}\right)_{0}.

Let now 𝖠𝗎𝗍(𝖳)0𝖳\mathsf{Aut}\left(\mathsf{T}\right)_{0}\cong\mathsf{T} be the neutral component of the automorphism group of 𝖳\mathsf{T}. Since the map 𝖳𝖳1\mathsf{T}\to\mathsf{T}_{1} is a morphism of complex Lie groups, we have a surjective natural morphism 𝖠𝗎𝗍(𝖳)0𝖠𝗎𝗍(𝖳1)0\mathsf{Aut}\left(\mathsf{T}\right)_{0}\to\mathsf{Aut}\left(\mathsf{T}_{1}\right)_{0} of complex Lie groups. Hence the inclusion Γ<𝖠𝗎𝗍(𝖳1)0\Gamma<\mathsf{Aut}\left(\mathsf{T}_{1}\right)_{0} lifts to an inclusion Γ<𝖠𝗎𝗍(𝖳)0\Gamma<\mathsf{Aut}\left(\mathsf{T}\right)_{0}, as desired. ∎

Remark \theremarkx.

If one keeps the hypotheses of Section 3.4 and further assumes that 𝖷\mathsf{X} is projective, then there exists a finite étale cover of 𝖷\mathsf{X} isomorphic to a product where the foliation \mathcal{F} becomes the relative tangent bundle of the projection to one of the factors; this follows by combining Section 3.4 with the fact that there exists a fine moduli scheme for polarized abelian varieties of dimension gg with level NN structures, provided that NN is large enough. This gives a simpler proof of [9, Theorem 5.8]. ∎

4 Global Weinstein splitting

We now combine the results of the previous sections to establish our main result (Theorem 1.1 from the introduction), whose statement we now recall:

Theorem.

Let (𝖷,π)(\mathsf{X},\pi) be a compact Kähler Poisson manifold, and suppose that 𝖫𝖷\mathsf{L}\subset\mathsf{X} is a compact symplectic leaf whose fundamental group is finite. Then there exist a compact Kähler Poisson manifold 𝖸\mathsf{Y}, and a finite étale Poisson morphism 𝖫~×𝖸𝖷\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X}, where 𝖫~\widetilde{\mathsf{L}} is the universal cover of 𝖫\mathsf{L}.

Proof.

By Section 2.1, there exists a subcalibration σ𝖧2(𝖷,Ω𝖷2)\sigma\in\mathsf{H}^{2}(\mathsf{X},\Omega^{2}_{\mathsf{X}}) compatible with π\pi. Let 𝒯𝖷=𝒢\mathcal{T}_{\mathsf{X}}=\mathcal{F}\oplus\mathcal{G} be the corresponding splitting of the tangent bundle as in Section 2.2, and let π=π+π𝒢\pi=\pi_{\mathcal{F}}+\pi_{\mathcal{G}} and σ=σ+σ𝒢\sigma=\sigma_{\mathcal{F}}+\sigma_{\mathcal{G}} be the corresponding decompositions. Note that σ\sigma_{\mathcal{F}} is closed since it is holomorphic, and 𝖷\mathsf{X} is a compact Kähler manifold. Therefore by Theorem 2.1, \mathcal{F} and 𝒢\mathcal{G} are involutive. Moreover, since 𝖫\mathsf{L} is a holomorphic symplectic manifold, we have c1(𝖫)=0c_{1}(\mathsf{L})=0, so by Section 3.4 there exists an étale cover 𝖫~×𝖸𝖷\widetilde{\mathsf{L}}\times\mathsf{Y}\to\mathsf{X} that induces the given splitting of the tangent bundle.

It remains to verify that the induced Poisson structure on this covering space is the sum of the pullbacks of Poisson structures on the factors. But since 𝖫~×𝖸\widetilde{\mathsf{L}}\times\mathsf{Y} is compact, this property follows immediately from the Künneth decomposition

𝖧0(𝖫~×𝖸,2𝒯𝖫~×𝖸)𝖧0(𝖫~,2𝒯𝖫~)(𝖧0(𝖫~,𝒯𝖫~)𝖧0(𝖸,𝒯𝖸))𝖧0(𝖸,2𝒯𝖸),\displaystyle\mathsf{H}^{0}(\widetilde{\mathsf{L}}\times\mathsf{Y},\wedge^{2}\mathcal{T}_{\widetilde{\mathsf{L}}\times\mathsf{Y}})\cong\mathsf{H}^{0}(\widetilde{\mathsf{L}},\wedge^{2}\mathcal{T}_{\widetilde{\mathsf{L}}})\,\oplus\,\left(\mathsf{H}^{0}(\widetilde{\mathsf{L}},\mathcal{T}_{\widetilde{\mathsf{L}}})\otimes\mathsf{H}^{0}(\mathsf{Y},\mathcal{T}_{\mathsf{Y}})\right)\,\oplus\,\mathsf{H}^{0}(\mathsf{Y},\wedge^{2}\mathcal{T}_{\mathsf{Y}}),

and the π\pi-orthogonality of the factors, which ensures that the induced bivector projects trivially to the middle summand in this decomposition. ∎

We conclude the paper by giving some examples which demonstrate that the conclusion of Theorem 1.1 may fail if the hypotheses are weakened.

Example \theexamplex.

The analogue of Theorem 1.1 fails in the CC^{\infty} or real analytic contexts, even for Poisson structures of constant rank.

For instance, any CC^{\infty} symplectic fibre bundle (as in [10, Chapter 6]) defines a regular Poisson manifold for which the symplectic leaves are the fibres. Such bundles need not be trivial, even if the base and fibres are simply connected. The simplest nontrivial example is the nontrivial S2S^{2}-bundle over S2S^{2} underlying the odd Hirzebruch surfaces, equipped with the CC^{\infty} Poisson structure induced by a fibrewise Kähler form. This four-manifold is simply connected but is not diffeomorphic to S2×S2S^{2}\times S^{2}.

Note that given a symplectic fibre bundle, we may rescale the symplectic form on the fibres by the pullback of an arbitrary nonvanishing function on the base, to obtain a Poisson manifold whose symplectic leaves are pairwise non-symplectomorphic. In particular, even when the underlying manifold splits as a product, the Poisson structure need not decompose as a product of Poisson structure on the factors. ∎

Example \theexamplex.

The conclusion of Theorem 1.1 can fail if the Kähler condition is dropped. For instance, by taking the mapping torus of an infinite-order holomorphic symplectic automorphism of a K3 surface, we may construct a holomorphic symplectic fibre bundle whose total space is non-Kähler. It splits only after passing to the universal cover, which has infinitely many sheets. ∎

Example \theexamplex.

The conclusion of Theorem 1.1 can fail if the leaf 𝖫\mathsf{L} has infinite fundamental group. For example, let 2nΛ2n\mathbb{Z}^{2n}\cong\Lambda\subset\mathbb{C}^{2n} be a lattice, and let 𝖸\mathsf{Y} be a compact Kähler Poisson manifold on which Λ\Lambda acts by holomorphic Poisson isomorphisms. Equip 2n\mathbb{C}^{2n} with the standard holomorphic Poisson structure in Darboux form. Then the quotient 𝖷:=(2n×𝖸)/Λ\mathsf{X}:=(\mathbb{C}^{2n}\times\mathsf{Y})/\Lambda is a compact holomorphic Poisson manifold, which is a flat fibre bundle over the symplectic base torus 𝖫:=2n/Λ\mathsf{L}:=\mathbb{C}^{2n}/\Lambda. If p𝖸p\in\mathsf{Y} is a point where the Poisson structure vanishes, then 𝖫~:=(2n×Λp)/Λ\widetilde{\mathsf{L}}:=(\mathbb{C}^{2n}\times\Lambda\cdot p)/\Lambda defines a symplectic leaf of 𝖷\mathsf{X} for which the projection 𝖫~𝖫\widetilde{\mathsf{L}}\to\mathsf{L} is a local diffeomorphism of holomorphic Poisson manifolds. Two possibilities are of note: i) if pp is a Λ\Lambda-fixed point, then 𝖫~𝖫\widetilde{\mathsf{L}}\cong\mathsf{L}, and ii) if the orbit of pp is infinite, then 𝖫\mathsf{L} is non-compact.

Note that if both i) and ii) occur for some points p𝖸p\in\mathsf{Y}, then 𝖷\mathsf{X} cannot split. It is easy to construct examples of this phenomenon, e.g. take 𝖸=2\mathsf{Y}=\mathbb{P}^{2} equipped with a Poisson bivector given by an anticanonical section vanishing on the standard toric boundary divisor (a triangle). Let Λ\Lambda act by irrational rotations of the torus. Then the vertices of the triangle are fixed, and the smooth points of the triangle are symplectic leaves with infinite orbits. Moreover, in this case 𝖷\mathsf{X} is Kähler. ∎

Example \theexamplex.

The conclusion of Theorem 1.1 can fail if 𝖷\mathsf{X} is not compact. Let 𝖸\mathsf{Y} be a smooth projective manifold and let f:𝖸𝖡f:\mathsf{Y}\to\mathsf{B} be a non-isotrivial fibration whose general fibres are K3K3 surfaces. If 𝖴\mathsf{U} is a sufficiently small euclidean open subset of 𝖡\mathsf{B} that does not intersect the critical locus of ff, and 𝖷=f1(𝖴)\mathsf{X}=f^{-1}(\mathsf{U}) then 𝖷\mathsf{X} is Kähler, simply-connected, and admits a holomorphic Poisson structure with symplectic leaves given by the fibres of ff, but it does not split as a product. ∎

References

  • [1] A. Beauville, Some remarks on Kähler manifolds with c1=0c_{1}=0, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26.
  • [2]  , Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984).
  • [3]  , Complex manifolds with split tangent bundle, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 61–70.
  • [4] F. A. Bogomolov, The decomposition of Kähler manifolds with a trivial canonical class, Mat. Sb. (N.S.) 93(135) (1974), 573–575, 630.
  • [5] S. Druel, On foliations with semi-positive anti-canonical bundle, Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 1, 315–321.
  • [6] C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 29–55.
  • [7] A. Lichnerowicz, Variétés kähleriennes et première classe de Chern, J. Differential Geometry 1 (1967), 195–223.
  • [8] D. I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140–186.
  • [9] F. Loray, J. V. Pereira, and F. Touzet, Singular foliations with trivial canonical class, Invent. Math. 213 (2018), no. 3, 1327–1380.
  • [10] D. McDuff and D. Salamon, Introduction to symplectic topology, second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
  • [11] I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003.
  • [12] J. V. Pereira, Global stability for holomorphic foliations on Kaehler manifolds, Qual. Theory Dyn. Syst. 2 (2001), no. 2, 381–384.
  • [13] P. Ševera and A. Weinstein, Poisson geometry with a 3-form background, no. 144, 2001, pp. 145–154. Noncommutative geometry and string theory (Yokohama, 2001).
  • [14] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557.
  • [15] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983), no. 3, 51–75.