This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A generalized fractional Halanay inequality and its applications

La Van Thinh111 [email protected], Academy of Finance, No. 58, Le Van Hien St., Duc Thang Wrd., Bac Tu Liem Dist., Hanoi, Viet Nam, Hoang The Tuan222Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam
Abstract

This paper is concerned with a generalized Halanay inequality and its applications to fractional-order delay linear systems. First, based on a sub-semigroup property of Mittag-Leffler functions, a generalized Halanay inequality is established. Then, applying this result to fractional-order delay systems with an order-preserving structure, an optimal estimate for the solutions is given. Next, inspired by the obtained Halanay inequality, a linear matrix inequality is designed to derive the Mittag-Leffler stability of general fractional-order delay linear systems. Finally, numerical examples are provided to illustrate the proposed theoretical results.

Key words: Fractional-order delay linear systems, Mittag-Leffler stability, Generalized fractional Halanay inequality, Positive systems, Linear matrix inequality

AMS subject classifications: 34A08, 34K37, 45A05, 45M05, 45M20, 33E12, 26D10, 15A39

1 Introduction

Fractional delay differential equations is an important class that has many applications in practical problems of fractional differential equations. To our knowledge, the following approaches are commonly used to study the asymptotic behavior of the solutions of these equations: I. Spectrum analysis method; II. Lyapunov–Razumikhin method; III. Comparison method.

Regarding the spectrum analysis method, interested readers can refer to [12, 1, 18, 21, 22]. The drawback of this approach is that it leads to solving complex fractions of fractional orders containing delays and thus requires many tools from complex analysis.

One of the first attempts at formulating a Razumikhin-type theorem for delay fractional differential equations was [2]. Recently, this approach has been improved in [11, 27]. However, the lack of an effective Leibniz rule for fractional derivatives significantly reduces the validity of these results.

Comparison arguments were used very early in fractional calculus, see e.g., [14]. They seem to be particularly suitable for positive delay systems [16, 5, 10, 15, 24, 19].

Halanay inequality is a comparison principle for delay differential equations [6]. In [25], the first fractional version of this inequality was established to prove the stability and the dissipativity of fractional-order delay systems. Later, an extended version of [25, Lemma 2.3] was proposed in [7] to investigate the finite-time stability of nonlinear fractional order delay systems while other results have been developed in [17, 13] (for the case with distributed delays), and in [9] (for the case with unbounded delays).

Motivated by the above discussions, in light of a sub-semigroup property of classical Mittag-Leffler functions, we propose a generalized fractional Halanay inequality which improves and generalizes the existing works [25, Lemma 2.3] and [7, Theorem 1.2]. Then, the obtained inequality is applied to investigate the Mittag-Leffler stability of fractional-order delay systems in both cases: the systems with or without a structure that preserves the order of solutions.

The rest of this paper is organized as follows. In section 2, some preliminaries and a fractional Hanlanay inequality are provided. In section 3, by combining the established fractional Halanay inequality with the property of preserving the order of the solutions, we present a new optimal estimate to characterize the asymptotic stability of fractional-order positive delay linear systems. Next, we consider general fractional-order delay linear systems. With the help of the Halanay-type inequality, a linear matrix inequality is designed to ensure the Mittag-Leffler stability of these systems. In section 4, several numerical examples are presented to illustrate the validity of the theoretical results.

We close this section by introducing some symbols and definitions that will be used throughout the article. Let ,,0,+,0\mathbb{N},\,\mathbb{R},\,\mathbb{R}_{\geq 0},\,\mathbb{R}_{+},\;\mathbb{R}_{\leq 0}, \mathbb{C} be the set of natural numbers, real numbers, nonnegative real numbers, positive real numbers, nonpositive real numbers, and complex numbers, respectively. Let dd\in\mathbb{N} and d\mathbb{R}^{d} stands for the dd-dimensional real Euclidean space. Denote by 0d\mathbb{R}^{d}_{\geq 0} the set of all vectors in d\mathbb{R}^{d} with nonnegative entries, that is,

0d={y=(y1,,yd)Td:yi0, 1id},\mathbb{R}_{\geq 0}^{d}=\left\{y=(y_{1},...,y_{d})^{\rm T}\in\mathbb{R}^{d}:y_{i}\geq 0,\ 1\leq i\leq d\right\},

+d\mathbb{R}^{d}_{+} the set of all vectors in d\mathbb{R}^{d} with positive entries, that is,

+d={y=(y1,,yd)Td:yi>0, 1id},\mathbb{R}_{+}^{d}=\left\{y=(y_{1},...,y_{d})^{\rm T}\in\mathbb{R}^{d}:y_{i}>0,\ 1\leq i\leq d\right\},

and 0d\mathbb{R}^{d}_{\leq 0} the set of all vectors in d\mathbb{R}^{d} with nonpositive entries, that is,

0d={y=(y1,,yd)Td:yi0, 1id}.\mathbb{R}_{\leq 0}^{d}=\left\{y=(y_{1},...,y_{d})^{\rm T}\in\mathbb{R}^{d}:y_{i}\leq 0,\ 1\leq i\leq d\right\}.

For two vectors u,vdu,v\in\mathbb{R}^{d}, we write uvu\preceq v if uiviu_{i}\leq v_{i} for all 1id1\leq i\leq d. Let A=(aij)1i,jd,B=(bij)1i,jdd×dA=(a_{ij})_{1\leq i,j\leq d},B=(b_{ij})_{1\leq i,j\leq d}\in\mathbb{R}^{d\times d}, we write ABA\preceq B if aijbija_{ij}\leq b_{ij} for all 1i,jd1\leq i,j\leq d. For any xdx\in\mathbb{R}^{d}, we set x:=i=1d|xi|\|x\|:=\displaystyle\sum_{i=1}^{d}|x_{i}|. Let AA be a matrix in d×d\mathbb{R}^{d\times d}. The transpose of AA is denoted by ATA^{\rm T}. The matrix AA is Metzler if its off-diagonal entries are nonnegative. It is said to be non-negative if all its entries are non-negative. AA is Hurwitz matrix if its spectrum σ(A)\sigma{(A)} satisfies the stable condition

σ(A){λ:(λ)<0}.\sigma{(A)}\subset\{\lambda\in\mathbb{C}:\Re(\lambda)<0\}.

If xTAx0,xd{0}x^{\rm T}Ax\leq 0,\;\forall x\in\mathbb{R}^{d}\setminus\{0\}, the matrix AA is negative semi-definite and we write A0A\leq 0. Given a closed interval JJ\subset\mathbb{R} and XX is a subset of d\mathbb{R}^{d}, we define C(J;d)C(J;\mathbb{R}^{d}) as the set of all continuous functions from JJ to XX.

For α(0,1]\alpha\in(0,1] and T>0T>0, the Riemann–Liouville fractional integral of a function x:[0,T]x:[0,T]\rightarrow\mathbb{R} is defined by

I0+αx(t):=1Γ(α)0t(tu)α1x(u)𝑑u,t(0,T],I^{\alpha}_{0^{+}}x(t):=\frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-u)^{\alpha-1}x(u)du,\;t\in(0,T],

and its Caputo fractional derivative of the order α\alpha as

D0+αCx(t):=ddtI0+1α(x(t)x(0)),t(0,T],{}^{C}D^{\alpha}_{0^{+}}x(t):=\frac{d}{dt}I^{1-\alpha}_{0^{+}}(x(t)-x(0)),\;t\in(0,T],

here Γ()\Gamma(\cdot) is the Gamma function and ddt\displaystyle\frac{d}{dt} is the usual derivative. For dd\in\mathbb{N} and a vector-valued function x()x(\cdot) in d,\mathbb{R}^{d}, we use the notation

D0+αCx(t):=(D0+αCx1(t),,Dα0+Cxd(t))T.{}^{\!C}D^{{\alpha}}_{0^{+}}x(t):=\left({}^{\!C}D^{\alpha}_{0^{+}}x_{1}(t),\dots,{{}^{\!C}D^{\alpha}}_{0^{+}}x_{d}(t)\right)^{\rm T}.

2 A generalized fractional Halanay inequality

In this part, we aim to derive a generalized Halanay-type inequality. To do this, some basic properties of the Mittag-Leffler functions need to be used (especially the sub-semigroup property of the classical Mittag-Leffler functions in Lemma 2.2 below).

Let α,β+\alpha,\beta\in\mathbb{R}_{+}. The Mittag-Leffler function Eα,β():E_{\alpha,\beta}(\cdot):\mathbb{R}\rightarrow\mathbb{R} is defined by

Eα,β(x):=k=0xkΓ(αk+β),x.E_{\alpha,\beta}(x):=\sum_{k=0}^{\infty}\frac{x^{k}}{\Gamma(\alpha k+\beta)},\;\forall x\in\mathbb{R}.

When β=1\beta=1, for simplicity, we use the convention Eα():=Eα,1()E_{\alpha}(\cdot):=E_{\alpha,1}(\cdot) to denote the classical Mittag-Leffler function.

Throughout the rest of the paper, we always assume α(0,1]\alpha\in(0,1].

Lemma 2.1.
  • (i)

    Eα(t)>0,Eα,α(t)>0E_{\alpha}(t)>0,\ E_{\alpha,\alpha}(t)>0 for all tt\in\mathbb{R} and limtEα(t)=0\displaystyle\lim_{t\to\infty}E_{\alpha}(-t)=0.

  • (ii)

    ddtEα(t)=1αEα,α(t)\displaystyle\frac{d}{dt}E_{\alpha}(t)=\frac{1}{\alpha}E_{\alpha,\alpha}(t) for all tt\in\mathbb{R} and D0+αCEα(λtα)=λEα(λtα){}^{\!C}D^{\alpha}_{0^{+}}E_{\alpha}(\lambda t^{\alpha})=\lambda E_{\alpha}(\lambda t^{\alpha}) for all λ,t0.\lambda\in\mathbb{R},\;t\geq 0.

Proof.

(i) From [4, Corolary 3.7, p. 29], we have limtEα(t)=0\displaystyle\lim_{t\to\infty}E_{\alpha}(-t)=0. The assertions Eα(t)>0,Eα,α(t)>0E_{\alpha}(t)>0,\ E_{\alpha,\alpha}(t)>0 for all tt\in\mathbb{R} are implied from [4, Proposition 3.23, p. 47] and [4, Lemma 4.25, p. 86].
(ii) By a simple computation, it is easy to check that ddtEα(t)=1αEα,α(t)\displaystyle\frac{d}{dt}E_{\alpha}(t)=\frac{1}{\alpha}E_{\alpha,\alpha}(t) for all tt\in\mathbb{R}. The assertion D0+αCEα(λtα)=λEα(λtα){}^{\!C}D^{\alpha}_{0^{+}}E_{\alpha}(\lambda t^{\alpha})=\lambda E_{\alpha}(\lambda t^{\alpha}) for all λ,t0\lambda\in\mathbb{R},\;t\geq 0 is derived from the fact that the function Eα(λtα)E_{\alpha}(\lambda t^{\alpha}) is the unique solution of the initial value problem

{D0+αCx(t)=λx(t),t>0,x(0)=1.\begin{cases}{}^{\!C}D^{\alpha}_{0^{+}}x(t)&=\lambda x(t),\;t>0,\\ x(0)&=1.\end{cases}

Lemma 2.2.

(Sub-semigroup property) [13, Lemma 4] For λ>0\lambda>0 and t,s0t,s\geq 0, we have

Eα(λtα)Eα(λsα)Eα(λ(t+s)α).E_{\alpha}(-\lambda t^{\alpha})E_{\alpha}(-\lambda s^{\alpha})\leq E_{\alpha}(-\lambda(t+s)^{\alpha}).
Lemma 2.3.

[3, Lemma 25] Let x:[0,T]x:[0,T]\rightarrow\mathbb{R} be continuous and the Caputo fractional derivative D0+αCx(t){}^{\!C}D^{\alpha}_{0^{+}}x(t) exists on the interval (0,T](0,T]. If there exists t1(0,T]t_{1}\in(0,T] such that x(t1)=0x(t_{1})=0 and x(t)<0,t[0,t1)x(t)<0,\ \forall t\in[0,t_{1}), then

D0+αCx(t1)0.{}^{\!C}D^{\alpha}_{0^{+}}x(t_{1})\geq 0.
Theorem 2.4.

Let w:[τ,+)0w:[-\tau,+\infty)\rightarrow\mathbb{R}_{\geq 0} be continuous functions such that D0+αCw(){}^{\!C}D^{\alpha}_{0^{+}}w(\cdot) exists on (0,+)(0,+\infty) and a(),b(),c()a(\cdot),\ b(\cdot),\ c(\cdot) are nonnegative continuous functions on [0,+).[0,+\infty). Consider the system

D0+αCw(t){}^{\!C}D^{\alpha}_{0^{+}}w(t) a(t)w(t)+b(t)suptq(t)stw(s)+c(t),t>0,\displaystyle\leq-a(t)w(t)+b(t)\sup_{t-q(t)\leq s\leq t}w(s)+c(t),\ t>0, (1)
w(s)\displaystyle w(s) =φ(s),s[τ,0],\displaystyle=\varphi(s),\ s\in[-\tau,0], (2)

where τ>0\tau>0, φ:[τ,0]0\varphi:[-\tau,0]\rightarrow\mathbb{R}_{\geq 0} is a given continuous function and the delay function q:0[0,τ]q:\mathbb{R}_{\geq 0}\rightarrow[0,\tau] is continuous. Suppose that supt0c(t)=c\displaystyle\sup_{t\geq 0}c(t)=c^{*} and one of the following two conditions holds.

  • (i)

    a()a(\cdot) is bounded on the interval [0,+)[0,+\infty) and a(t)b(t)σ>0,t0a(t)-b(t)\geq\sigma>0,\ \forall t\geq 0.

  • (ii)

    a()a(\cdot) is not necessarily bounded on [0,)[0,\infty), a(t)a0>0,t0a(t)\geq a_{0}>0,\ \forall t\geq 0 and

    supt0b(t)a(t)p<1.\displaystyle\sup_{t\geq 0}\frac{b(t)}{a(t)}\leq p<1.

Then, there exists w00,λ>0w_{0}\geq 0,\ \lambda^{*}>0 such that

w(t)w0+MEα(λtα),t0,w(t)\leq w_{0}+ME_{\alpha}(-\lambda^{*}t^{\alpha}),\ \forall t\geq 0, (3)

where M=sups[τ,0]|φ(s)|M=\displaystyle\sup_{s\in[-\tau,0]}|\varphi(s)|.

Proof.

The proof is divided into three steps.

Step 1. First, we prove that for each fixed t0t\geq 0, there is a unique λ:=λ(t)>0\lambda:=\lambda(t)>0 that satisfies the equation

λa(t)+b(t)Eα(λqα(t))=0.\lambda-a(t)+\frac{b(t)}{E_{\alpha}(-\lambda q^{\alpha}(t))}=0. (4)

Indeed, let

h(λ):=λa(t)+b(t)Eα(λqα(t)).h(\lambda):=\lambda-a(t)+\frac{b(t)}{E_{\alpha}(-\lambda q^{\alpha}(t))}.

By the fact that h()h(\cdot) is a continuously differentiable function with respect to the variable λ\lambda on [0,+)[0,+\infty), by a simple computation and Lemma 2.1(ii), we obtain

h(λ)=1+b(t)qα(t)Eα,α(λqα(t))α(Eα(λqα(t)))2>0,λ0.h^{\prime}(\lambda)=1+\frac{b(t)q^{\alpha}(t)E_{\alpha,\alpha}(-\lambda q^{\alpha}(t))}{\alpha\left(E_{\alpha}(-\lambda q^{\alpha}(t))\right)^{2}}>0,\ \forall\lambda\in\mathbb{R}_{\geq 0}.

Notice that h(0)=a(t)+b(t)<0h(0)=-a(t)+b(t)<0 and limλh(λ)=\displaystyle\lim_{\lambda\to\infty}h(\lambda)=\infty. Thus, the equation (4) (h(λ)=0h(\lambda)=0) has a unique root λ=λ(t)(0,)\lambda=\lambda(t)\in(0,\infty).

Step 2. Let

λ:=inft0{λ(t):λ(t)a(t)+b(t)Eα(λ(t)qα(t))=0}.\lambda^{*}:=\inf_{t\geq 0}\left\{\lambda(t):\lambda(t)-a(t)+\frac{b(t)}{E_{\alpha}(-\lambda(t)q^{\alpha}(t))}=0\right\}.

It is obvious to see λ0\lambda^{*}\geq 0. Suppose by contradiction that λ=0\lambda^{*}=0.

Consider the case when the condition (i) is true. There is a a1>0a_{1}>0 with a1a(t),t0.a_{1}\geq a(t),\ \forall t\geq 0. From the definition of λ\lambda^{*}, we can find a t10t^{1}_{*}\geq 0 so that 0<λ(t1)<ϵ10<\lambda(t^{1}_{*})<\epsilon_{1}, where ϵ1\epsilon_{1} is small enough satisfying ϵ1<p~1\epsilon_{1}<\tilde{p}_{1} and p~1\tilde{p}_{1} is the unique root of the equation p~1σ+a1[1Eα(p~1τα)1]=0.\tilde{p}_{1}-\sigma+a_{1}\displaystyle\left[\frac{1}{E_{\alpha}(-\tilde{p}_{1}\tau^{\alpha})}-1\right]=0. Furthermore,

0\displaystyle 0 =λ(t1)a(t1)+b(t1)Eα(λ(t1)qα(t1))\displaystyle=\lambda(t^{1}_{*})-a(t^{1}_{*})+\frac{b(t^{1}_{*})}{E_{\alpha}(-\lambda(t^{1}_{*})q^{\alpha}(t^{1}_{*}))}
<ϵ1a(t1)+a(t1)σEα(λ(t1)qα(t1))\displaystyle<\epsilon_{1}-a(t^{1}_{*})+\frac{a(t^{1}_{*})-\sigma}{E_{\alpha}(-\lambda(t^{1}_{*})q^{\alpha}(t^{1}_{*}))}
=ϵ1σEα(λ(t1)qα(t1))+a(t1)[1Eα(λ(t1)qα(t1))1]\displaystyle=\epsilon_{1}-\frac{\sigma}{E_{\alpha}(-\lambda(t^{1}_{*})q^{\alpha}(t^{1}_{*}))}+a(t^{1}_{*})\left[\frac{1}{E_{\alpha}(-\lambda(t^{1}_{*})q^{\alpha}(t^{1}_{*}))}-1\right]
<ϵ1σ+a1[1Eα(ϵ1τα)1]\displaystyle<\epsilon_{1}-\sigma+a_{1}\left[\frac{1}{E_{\alpha}(-\epsilon_{1}\tau^{\alpha})}-1\right]
<p~1σ+a1[1Eα(p~1τα)1]=0,\displaystyle<\tilde{p}_{1}-\sigma+a_{1}\left[\frac{1}{E_{\alpha}(-\tilde{p}_{1}\tau^{\alpha})}-1\right]=0,

a contradiction. Here, the final estimate above is derived from strictly increasing to the variable tt on [0,)[0,\infty) of the function g1()g_{1}(\cdot) defined by

g1(t):=tσ+a1[1Eα(tτα)1].g_{1}(t):=t-\sigma+a_{1}\displaystyle\left[\frac{1}{E_{\alpha}(-t\tau^{\alpha})}-1\right].

Concerning the assumption (ii), there exists a t20t_{*}^{2}\geq 0 such that 0<λ(t2)<ϵ20<\lambda(t_{*}^{2})<\epsilon_{2}, where ϵ2>0\epsilon_{2}>0 is small enough satisfying

Eα(ϵ2τα)>p and ϵ2<p~2E_{\alpha}(-\epsilon_{2}\tau^{\alpha})>p\text{ and }\epsilon_{2}<\tilde{p}_{2} (5)

with p~2\tilde{p}_{2} is the unique root of the equation p~2a0+pa0Eα(p~2τα)=0.\displaystyle\tilde{p}_{2}-a_{0}+\frac{pa_{0}}{E_{\alpha}(-\tilde{p}_{2}\tau^{\alpha})}=0. From the fact that g2(t)=ta0+pa0Eα(tτα)g_{2}(t)=t-a_{0}+\displaystyle\frac{pa_{0}}{E_{\alpha}(-t\tau^{\alpha})} is strictly increasing with respect to the variable tt on [0,)[0,\infty), we conclude

0\displaystyle 0 =λ(t2)a(t2)+b(t2)Eα(λ(t2)qα(t2))\displaystyle=\lambda(t_{*}^{2})-a(t_{*}^{2})+\frac{b(t_{*}^{2})}{E_{\alpha}(-\lambda(t_{*}^{2})q^{\alpha}(t_{*}^{2}))}
<ϵ2a(t2)+pa(t2)Eα(λ(t2)qα(t2))\displaystyle<\epsilon_{2}-a(t_{*}^{2})+\frac{pa(t_{*}^{2})}{E_{\alpha}(-\lambda(t_{*}^{2})q^{\alpha}(t_{*}^{2}))}
=ϵ2+a(t2)[pEα(λ(t2)qα(t2))1]\displaystyle=\epsilon_{2}+a(t_{*}^{2})\left[\frac{p}{E_{\alpha}(-\lambda(t_{*}^{2})q^{\alpha}(t_{*}^{2}))}-1\right]
<ϵ2+a0[pEα(ϵ2τα)1]\displaystyle<\epsilon_{2}+a_{0}\left[\frac{p}{E_{\alpha}(-\epsilon_{2}\tau^{\alpha})}-1\right]
<p~2+a0[pEα(p~2τα)1]=0,\displaystyle<\tilde{p}_{2}+a_{0}\left[\frac{p}{E_{\alpha}(-\tilde{p}_{2}\tau^{\alpha})}-1\right]=0,

a contradiction.

Step 3. Take

M:=sups[τ,0]|φ(s)|.M:=\sup_{s\in[-\tau,0]}|\varphi(s)|.

Assume that (ii) is true. Let w0:=c(1p)a00w_{0}:=\displaystyle\frac{c^{*}}{(1-p)a_{0}}\geq 0. To verify the statement (3), we first show that

w(t)<w0+(M+ε)Eα((λε)tα),t0,w(t)<w_{0}+(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t^{\alpha}),\;\forall t\geq 0, (6)

where ε>0\varepsilon>0 is small arbitrarily (λε>0\lambda^{*}-\varepsilon>0). Suppose by contradiction that statement (6) is not true. Due to w(0)=φ(0)<c(1p)a0+M+εw(0)=\varphi(0)<\displaystyle\frac{c^{*}}{(1-p)a_{0}}+M+\varepsilon, there is a t1>0t_{1}>0 such that

w(t1)\displaystyle w(t_{1}) =w0+(M+ε)Eα((λε)t1α),\displaystyle=w_{0}+(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha}),
w(t)\displaystyle w(t) <w0+(M+ε)Eα((λε)tα),t[0,t1).\displaystyle<w_{0}+(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t^{\alpha}),\ \forall t\in[0,t_{1}).

Define

z(t)=w(t)w0(M+ε)Eα((λε)tα),t0.z(t)=w(t)-w_{0}-(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t^{\alpha}),\ t\geq 0.

Then,

z(t1)=0 and z(t)<0,t[0,t1),z(t_{1})=0\text{ and }z(t)<0,\ \forall t\in[0,t_{1}),

by Lemma 2.3, it implies that

CD0+αz(t1)0.^{\!C}D^{\alpha}_{0^{+}}z(t_{1})\geq 0. (7)

On the other hand,

D0+αCz(t1)\displaystyle{{}^{\!C}D}_{0^{+}}^{\alpha}z(t_{1}) =D0+αCw(t1)+(M+ε)(λε)Eα((λε)t1α)\displaystyle={{}^{\!C}D}_{0^{+}}^{\alpha}w(t_{1})+(M+\varepsilon)(\lambda^{*}-\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})
a(t1)w(t1)+b(t1)supt1q(t1)st1w(s)+(M+ε)(λε)Eα((λε)t1α)+c\displaystyle\leq-a(t_{1})w(t_{1})+b(t_{1})\sup_{t_{1}-q(t_{1})\leq s\leq t_{1}}w(s)+(M+\varepsilon)(\lambda^{*}-\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})+c^{*}
=w0a(t1)a(t1)(M+ε)Eα((λε)t1α)+(M+ε)(λε)Eα((λε)t1α)\displaystyle=-w_{0}a(t_{1})-a(t_{1})(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})+(M+\varepsilon)(\lambda^{*}-\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})
+b(t1)supt1q(t1)st1w(s)+c.\displaystyle\hskip 142.26378pt+b(t_{1})\sup_{t_{1}-q(t_{1})\leq s\leq t_{1}}w(s)+c^{*}.

Noting that h()h(\cdot) is strictly increasing on [0,+)[0,+\infty), we have

λεa(t1)+b(t1)Eα((λε)qα(t1))<λ(t1)a(t1)+b(t1)Eα(λ(t1)qα(t1)).\lambda^{*}-\varepsilon-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-(\lambda^{*}-\varepsilon)q^{\alpha}(t_{1}))}<\lambda(t_{1})-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-\lambda(t_{1})q^{\alpha}(t_{1}))}.

Case I: t1q(t1)t_{1}\leq q(t_{1}). It is easy to check that supt1q(t1)st1w(s)<w0+(M+ε)\displaystyle\sup_{t_{1}-q(t_{1})\leq s\leq t_{1}}w(s)<w_{0}+(M+\varepsilon). From this,

D0+αCz(t1){}^{\!C}D_{0^{+}}^{\alpha}z(t_{1}) <w0a(t1)a(t1)(M+ε)Eα((λε)t1α)+(M+ε)(λε)Eα((λε)t1α)\displaystyle<-w_{0}a(t_{1})-a(t_{1})(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})+(M+\varepsilon)(\lambda^{*}-\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})
+(M+ε)b(t1)+w0b(t1)+c\displaystyle\hskip 85.35826pt+(M+\varepsilon)b(t_{1})+w_{0}b(t_{1})+c^{*}
=(M+ε)Eα((λε)t1α)[λεa(t1)+b(t1)Eα((λε)t1α)]\displaystyle=(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda^{*}-\varepsilon-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})}\right]
+a(t1)[w0b(t1)a(t1)w0+ca(t1)]\displaystyle\hskip 85.35826pt+a(t_{1})\left[w_{0}\frac{b(t_{1})}{a(t_{1})}-w_{0}+\frac{c^{*}}{a(t_{1})}\right]
(M+ε)Eα((λε)t1α)[λεa(t1)+b(t1)Eα((λε)qα(t1))]\displaystyle\leq(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda^{*}-\varepsilon-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-(\lambda^{*}-\varepsilon)q^{\alpha}(t_{1}))}\right]
+a(t1)[w0pw0+ca0]\displaystyle\hskip 85.35826pt+a(t_{1})\left[w_{0}p-w_{0}+\frac{c^{*}}{a_{0}}\right]
<(M+ε)Eα((λε)t1α)[λ(t1)a(t1)+b(t1)Eα(λ(t1)qα(t1))]\displaystyle<(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda(t_{1})-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-\lambda(t_{1})q^{\alpha}(t_{1}))}\right]
=0,\displaystyle=0,

which contracts (7).

Case 2: t1>q(t1)t_{1}>q(t_{1}). In this case, we observe that

supt1q(t1)st1w(s)\displaystyle\displaystyle\sup_{t_{1}-q(t_{1})\leq s\leq t_{1}}w(s) w0+(M+ε)supt1q(t1)st1Eα((λε)sα)\displaystyle\leq w_{0}+(M+\varepsilon)\displaystyle\sup_{t_{1}-q(t_{1})\leq s\leq t_{1}}E_{\alpha}(-(\lambda^{*}-\varepsilon)s^{\alpha})
=w0+(M+ε)Eα((λε)(t1q(t1))α).\displaystyle=w_{0}+(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)(t_{1}-q(t_{1}))^{\alpha}).

This together with Lemma 2.2 leads to

D0+αCz(t1){}^{\!C}D^{\alpha}_{0^{+}}z(t_{1}) a(t1)(M+ε)Eα((λε)t1α)+(M+ε)(λε)Eα((λε)t1α)\displaystyle\leq-a(t_{1})(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})+(M+\varepsilon)(\lambda^{*}-\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})
+b(t1)Eα((λε)(t1q(t1))α)+w0[b(t1)a(t1)]+c\displaystyle\hskip 64.01869pt+b(t_{1})E_{\alpha}(-(\lambda^{*}-\varepsilon)(t_{1}-q(t_{1}))^{\alpha})+w_{0}\left[b(t_{1})-a(t_{1})\right]+c^{*}
(M+ε)Eα((λε)t1α)[λεa(t1)+b(t1)Eα((λε)(t1q(t1))α)Eα((λε)t1α)]\displaystyle\leq(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda^{*}-\varepsilon-a(t_{1})+\frac{b(t_{1})E_{\alpha}(-(\lambda^{*}-\varepsilon)(t_{1}-q(t_{1}))^{\alpha})}{E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})}\right]
(M+ε)Eα((λε)t1α)[λεa(t1)+b(t1)Eα((λε)qα(t1))]\displaystyle\leq(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda^{*}-\varepsilon-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-(\lambda^{*}-\varepsilon)q^{\alpha}(t_{1}))}\right]
<(M+ε)Eα((λε)t1α)[λ(t1)a(t1)+b(t1)Eα(λ(t1)qα(t1))]\displaystyle<(M+\varepsilon)E_{\alpha}(-(\lambda^{*}-\varepsilon)t_{1}^{\alpha})\left[\lambda(t_{1})-a(t_{1})+\frac{b(t_{1})}{E_{\alpha}(-\lambda(t_{1})q^{\alpha}(t_{1}))}\right]
=0,\displaystyle=0,

a contradiction with (7). In short, we assert that (6) holds. Let ε0\varepsilon\to 0, the estimate (3) is checked completely.

If the condition (i) is true, choosing w0=cσ0w_{0}=\displaystyle\frac{c^{*}}{\sigma}\geq 0 and arguing similarly to the above proof, we also get the desired estimate. ∎

Remark 2.5.

The theorem 2.4 is an extended and improved version of [25, Lemma 2.3], [26, Lemma 4] and [7, Theorem 1.2].

Remark 2.6.

The key point in the proof of Theorem 2.4 is to compare the decay solutions of the original inequality with a given classical Mittag-Leffler function. The difficulty one faces in this situation is that Mittag-Leffler functions in general do not have the semigroup property as exponential functions. Fortunately, the sub-semigroup property (see Lemma 2.2) is enough for us to overcome that obstacle.

Using similar arguments in the proof of Theorem 2.4, we can easily extend this result to the case of various bounded delays as follows.

Corollary 2.7.

Let w:[τ,+)+w:[-\tau,+\infty)\rightarrow\mathbb{R}_{+} be a continuous function such that D0+αCw(){}^{\!C}D^{\alpha}_{0^{+}}w(\cdot) exists on (0,+)(0,+\infty) and a(),bk(),c()a(\cdot),\ b_{k}(\cdot),\ c(\cdot) are nonnegative continuous functions on [0,+)[0,+\infty), k=1,,m.k=1,\dots,m. Consider the system

D0+αCw(t){}^{\!C}D^{\alpha}_{0^{+}}w(t) a(t)w(t)+k=1mbk(t)suptqk(t)stw(s)+c(t),t>0,\displaystyle\leq-a(t)w(t)+\sum_{k=1}^{m}b_{k}(t)\sup_{t-q_{k}(t)\leq s\leq t}w(s)+c(t),\ t>0,
w(t)\displaystyle w(t) =φ(t),t[τ,0],\displaystyle=\varphi(t),\ t\in[-\tau,0],

where φ:[τ,0]+\varphi:[-\tau,0]\rightarrow\mathbb{R}_{+} is continuous, the delays qk()q_{k}(\cdot), k=1,,mk=1,\dots,m, are continuous and bounded by τ\tau, i.e., 0qk(t)τ,t0,k=1,,m0\leq q_{k}(t)\leq\tau,\ \forall t\geq 0,\ \forall k=1,\dots,m. Suppose that supt0c(t)=c\displaystyle\sup_{t\geq 0}c(t)=c^{*} and one of the following two conditions is true.

  • (C1)

    a()a(\cdot) is bounded on [0,+)[0,+\infty), a(t)k=1mbk(t)σ>0,t0a(t)-\displaystyle\sum_{k=1}^{m}b_{k}(t)\geq\sigma>0,\ \forall t\geq 0.

  • (C2)

    a()a(\cdot) is not necessarily bounded on [0,)[0,\infty), a(t)a0>0,t0a(t)\geq a_{0}>0,\ \forall t\geq 0 and

    supt0k=1mbk(t)a(t)p<1.\sup_{t\geq 0}\sum_{k=1}^{m}\frac{b_{k}(t)}{a(t)}\leq p<1.

Then, there exists w0>0,λ>0w_{0}>0,\,\lambda^{*}>0 such that

w(t)w0+sups[τ,0]|φ(s)|Eα(λtα),t0,w(t)\leq w_{0}+\sup_{s\in[-\tau,0]}|\varphi(s)|E_{\alpha}(-\lambda^{*}t^{\alpha}),\ \forall t\geq 0,

where

λ\displaystyle\lambda^{*} =inft0{λ(t):λ(t)a(t)+k=1mbk(t)Eα(λ(t)qkα(t))=0},\displaystyle=\inf_{t\geq 0}\left\{\lambda(t):\lambda(t)-a(t)+\displaystyle\sum_{k=1}^{m}\frac{b_{k}(t)}{E_{\alpha}(-\lambda(t)q_{k}^{\alpha}(t))}=0\right\},
w0\displaystyle w_{0} ={cσin the case when the assumption (C1) is satisfied,c(1p)a0in the case when the assumption (C2) is satisfied.\displaystyle=\begin{cases}\displaystyle\frac{c^{*}}{\sigma}&\text{in the case when the assumption {(C1)} is satisfied,}\\ \displaystyle\frac{c^{*}}{(1-p)a_{0}}&\text{in the case when the assumption {(C2)} is satisfied.}\end{cases}

3 Mittag-Leffler stability of fractional-order delay linear systems

3.1 Fractional-order delay systems with a structure that preserves the order of solutions

The positive fractional-order system has been studied by many authors before, see e.g., [16, 5, 10, 15, 24, 19]. The method was to use comparison arguments. In the current work, we are concerned with these systems when their initial conditions are arbitrary by exploiting a Halanay-type inequality combined with the property of preserving the order of the solutions. This is a new approach that seems to have never appeared in the literature.

Our research object in this section is the system

D0+αCx(t)\displaystyle{{}^{\!C}D}^{{\alpha}}_{0^{+}}x(t) =A(t)x(t)+B(t)x(tq(t)),t>0,\displaystyle=A(t)x(t)+B(t)x(t-q(t)),\,\forall t>0, (8)
x(t)\displaystyle x(t) =φ(t),t[τ,0],\displaystyle=\varphi(t),\;\forall t\in[-\tau,0], (9)

where A()A(\cdot), B():[0,+)d×dB(\cdot):[0,+\infty)\rightarrow\mathbb{R}^{d\times d} are continuous matrix-valued functions, the delay function q():[0,+)[0,τ]q(\cdot):[0,+\infty)\rightarrow[0,\tau] is continuous, and φ():[τ,0]d\varphi(\cdot):[-\tau,0]\rightarrow\mathbb{R}^{d} is a given continuous initial condition. Due to [23, Theorem 2.2], it can be shown that the initial value problem (8)–(9) has a unique global solution on [τ,+)[-\tau,+\infty) denoted by Φ(,φ)\Phi(\cdot,\varphi).

Lemma 3.1.

[19, Lemma 2.1] Suppose that for each t[0,+),A(t)t\in[0,+\infty),\ A(t) is a Metzler matrix and B(t)B(t) is a nonnegative matrix. Then, for any initial condition φ()0\varphi(\cdot)\succeq 0 on [τ,0],[-\tau,0], the solution Φ(,φ)\Phi(\cdot,\varphi) of the systems (8)–(9) satisfies

Φ(,φ)0on[0,+).\Phi(\cdot,\varphi)\succeq 0\ \text{on}\ [0,+\infty).
Lemma 3.2.

Consider the system (8). Assume that A(t)A(t) is a Metzler Matrix and B(t)B(t) is a nonnegative matrix for each t0t\geq 0. Let φ,φ¯C([τ,0];d)\varphi,\ \overline{\varphi}\in C([-\tau,0];\mathbb{R}^{d}) with φ(s)φ¯(s),s[τ,0]\varphi(s)\preceq\overline{\varphi}(s),\ \forall s\in[-\tau,0]. Then,

Φ(t,φ)Φ(t,φ¯)for allt0.\Phi(t,\varphi)\preceq\Phi(t,\overline{\varphi})\ \text{for all}\ t\geq 0.
Proof.

Define

z(t):=Φ(t,φ¯)Φ(t,φ),tτ.z(t):=\Phi(t,\overline{\varphi})-\Phi(t,\varphi),\;\forall t\geq-\tau.

Then,

D0+αCz(t){}^{\!C}D^{{\alpha}}_{0^{+}}z(t) =CD0+αΦ(t,φ¯)CD0+αΦ(t,φ)\displaystyle=^{\!C}D^{{\alpha}}_{0^{+}}\Phi(t,\overline{\varphi})-^{\!C}D^{{\alpha}}_{0^{+}}\Phi(t,\varphi)
=(A(t)Φ(t,φ¯)+B(t)Φ(tq(t),φ¯))(A(t)Φ(t,φ)+B(t)Φ(tq(t),φ))\displaystyle=\bigg{(}A(t)\Phi(t,\overline{\varphi})+B(t)\Phi(t-q(t),\overline{\varphi})\bigg{)}-\bigg{(}A(t)\Phi(t,{\varphi})+B(t)\Phi(t-q(t),{\varphi})\bigg{)}
=A(t)[Φ(t,φ¯)Φ(t,φ)]+B(t)[Φ(tq(t),φ¯)Φ(tq(t),φ)]\displaystyle=A(t)\bigg{[}\Phi(t,\overline{\varphi})-\Phi(t,{\varphi})\bigg{]}+B(t)\bigg{[}\Phi(t-q(t),\overline{\varphi})-\Phi(t-q(t),{\varphi})\bigg{]}
=A(t)z(t)+B(t)z(tq(t)),t>0,\displaystyle=A(t)z(t)+B(t)z(t-q(t)),\;\forall t>0,

and

z(s)=φ¯(s)φ(s)0for alls[τ,0].z(s)=\overline{\varphi}(s)-{\varphi}(s)\succeq 0\ \text{for all}\ s\in[-\tau,0].

From Lemma 3.1, it implies z(t)0,t0z(t)\succeq 0,\ \forall t\geq 0 or Φ(t,φ)Φ(t,φ¯),t0.\Phi(t,\varphi)\preceq\Phi(t,\overline{\varphi}),\ \forall t\geq 0. The proof is complete. ∎

Theorem 3.3.

Consider the system (8)–(9). Assume that A(t)A(t) is Metzler and B(t)B(t) is nonnegative for each t0t\geq 0. In addition, there exist a0>0,p(0,1)a_{0}>0,\ p\in(0,1) satisfying

maxj{1,,d}i=1daij(t)a0andmaxj{1,,d}i=1dbij(t)maxj{1,,d}i=1daij(t)p\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t)\leq-a_{0}\ \ \text{and}\;\;\frac{\displaystyle\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}b_{ij}(t)}{\displaystyle\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t)}\geq-p (10)

for all t0t\geq 0. Then, for any φC([τ,0];d)\varphi\in C([-\tau,0];\mathbb{R}^{d}), the solution Φ(,φ)\Phi(\cdot,\varphi) converges to the origin, that is,

limtΦ(t,φ)=0.\lim_{t\to\infty}\Phi(t,\varphi)=0.

Furthermore, we can find a constant λ>0\lambda>0 such that

Φ(t,φ)(sups[τ,0]φ(s))Eα(λtα)for allt0.\|\Phi(t,\varphi)\|\leq\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda t^{\alpha})\ \text{for all}\;t\geq 0. (11)
Proof.

Case 1. We first take the initial condition φ()C([τ,0];0d)\varphi(\cdot)\in C([-\tau,0];\mathbb{R}^{d}_{\geq 0}) on [τ,0].[-\tau,0]. To simplify notation, we also denote x()=(x1(),,xd())Tx(\cdot)=(x_{1}(\cdot),\dots,x_{d}(\cdot))^{\rm T} as the solution of system (8)–(9). By Lemma 3.1, we have xi(t)0x_{i}(t)\geq 0 for all t0t\geq 0 and i=1,,d.i=1,\dots,d.

Let

X(t):=x1(t)+x2(t)++xd(t),t[τ,+).X(t):=x_{1}(t)+x_{2}(t)+\cdots+x_{d}(t),\;\forall t\in[-\tau,+\infty).

It is easy to check that

D0+αCX(t)\displaystyle{{}^{\!C}D}^{{\alpha}}_{0^{+}}X(t) =D0+αCx1(t)+D0+αCx2(t)++D0+αCxd(t)\displaystyle={{}^{\!C}D}^{{\alpha}}_{0^{+}}x_{1}(t)+{{}^{\!C}D}^{{\alpha}}_{0^{+}}x_{2}(t)+\cdots+{{}^{\!C}D}^{{\alpha}}_{0^{+}}x_{d}(t)
=j=1da1j(t)xj(t)+j=1db1j(t)xj(tq(t))++j=1dadj(t)xj(t)+j=1dbdj(t)xj(tq(t))\displaystyle=\sum_{j=1}^{d}a_{1j}(t)x_{j}(t)+\sum_{j=1}^{d}b_{1j}(t)x_{j}(t-q(t))+\cdots+\sum_{j=1}^{d}a_{dj}(t)x_{j}(t)+\sum_{j=1}^{d}b_{dj}(t)x_{j}(t-q(t))
=i=1dai1(t)x1(t)+i=1dai2(t)x2(t)++i=1daid(t)xd(t)\displaystyle=\sum_{i=1}^{d}a_{i1}(t)x_{1}(t)+\sum_{i=1}^{d}a_{i2}(t)x_{2}(t)+\cdots+\sum_{i=1}^{d}a_{id}(t)x_{d}(t)
+i=1dbi1(t)x1(tq(t))+i=1dbi2(t)x2(tq(t))++i=1dbid(t)xd(tq(t))\displaystyle+\sum_{i=1}^{d}b_{i1}(t)x_{1}(t-q(t))+\sum_{i=1}^{d}b_{i2}(t)x_{2}(t-q(t))+\cdots+\sum_{i=1}^{d}b_{id}(t)x_{d}(t-q(t))
(maxj{1,,d}i=1daij(t))X(t)+(maxj{1,,d}i=1dbij(t))X(tq(t)),t>0.\displaystyle\leq\bigg{(}\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t)\bigg{)}X(t)+\bigg{(}\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}b_{ij}(t)\bigg{)}X(t-q(t)),\;\forall t>0.

Let

a(t):=maxj{1,,d}i=1daij(t)andb(t):=maxj{1,,d}i=1dbij(t)a(t):=-\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t)\ \text{and}\ b(t):=\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}b_{ij}(t)

for all t0t\geq 0. It follows from the assumption (10) that a(t)a(t) and b(t)b(t) satisfy the condition (ii) in Theorem 2.4. This leads to that there exists a λ>0\lambda>0 such that

0X(t)(sups[τ,0]φ(s))Eα(λtα)for allt0.0\leq X(t)\leq\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda t^{\alpha})\ \text{for all}\ t\geq 0. (12)

Case 2. Next, let φ()C([τ,0];0d)\varphi(\cdot)\in C([-\tau,0];\mathbb{R}^{d}_{\leq 0}). Put z(t):=x(t),tτz(t):=-x(t),\ t\geq-\tau. Then,

D0+αCz(t){}^{\!C}D^{{\alpha}}_{0^{+}}z(t) =CD0+αx(t)=(A(t)x(t)+B(t)x(tq(t)))\displaystyle=-^{\!C}D^{{\alpha}}_{0^{+}}x(t)=-\bigg{(}A(t)x(t)+B(t)x(t-q(t))\bigg{)}
=A(t)z(t)+B(t)z(tq(t)),t>0,\displaystyle=A(t)z(t)+B(t)z(t-q(t)),\ \forall t>0,
z(s)\displaystyle z(s) =x(s)=φ(s)0,s[τ,0].\displaystyle=-x(s)=-{\varphi}(s)\succeq 0,\ \forall s\in[-\tau,0].

As shown in Case 1, there is a λ>0\lambda>0 satisfying

0zi(t)(sups[τ,0]φ(s))Eα(λtα)for allt0andi=1,,d,0\leq z_{i}(t)\leq\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda t^{\alpha})\ \text{for all}\ t\geq 0\ \text{and}\ i=1,\dots,d,

or

(sups[τ,0]φ(s))Eα(λtα)xi(t)0for allt0andi=1,,d.-\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda t^{\alpha})\leq x_{i}(t)\leq 0\ \text{for all}\ t\geq 0\ \text{and}\ i=1,\dots,d. (13)

Case 3. Finally, we consider φ()C([τ,0];d)\varphi(\cdot)\in C([-\tau,0];\mathbb{R}^{d}). Define φ+(s):=(φ1+(s),,φd+(s))T\varphi^{+}(s):=(\varphi_{1}^{+}(s),\dots,\varphi_{d}^{+}(s))^{\rm T} and φ(s):=(φ1(s),,φd(s))T\varphi^{-}(s):=(\varphi_{1}^{-}(s),\dots,\varphi_{d}^{-}(s))^{\rm T}, where, for i=1,,di=1,\dots,d and s[τ,0]s\in[-\tau,0],

φi+(s)={φi(s)ifφi(s)0,φi(s)ifφi(s)<0,andφi(s)={φi(s)ifφ(s)0,φi(s)ifφi(s)>0.\varphi^{+}_{i}(s)=\begin{cases}\varphi_{i}(s)&\text{if}\ \varphi_{i}(s)\geq 0,\\ -\varphi_{i}(s)&\text{if}\ \varphi_{i}(s)<0,\end{cases}\ \text{and}\ \varphi_{i}^{-}(s)=\begin{cases}\varphi_{i}(s)&\text{if}\ \varphi(s)\leq 0,\\ -\varphi_{i}(s)&\text{if}\ \varphi_{i}(s)>0.\end{cases}

Then, φ+()C([τ,0];0d),φ()C([τ,0];0d)\varphi^{+}(\cdot)\in C([-\tau,0];\mathbb{R}^{d}_{\geq 0}),\ \varphi^{-}(\cdot)\in C([-\tau,0];\mathbb{R}^{d}_{\leq 0}) and

φ(s)φ(s)φ+(s)for alls[τ,0].\varphi^{-}(s)\preceq\varphi(s)\preceq\varphi^{+}(s)\ \text{for all}\ s\in[-\tau,0].

From Lemma 3.2, we see

Φ(t,φ)Φ(t,φ)Φ(t,φ+)for allt0.\Phi(t,\varphi^{-})\preceq\Phi(t,\varphi)\preceq\Phi(t,\varphi^{+})\ \text{for all}\ t\geq 0. (14)

Furthermore, from (12) and (13), we can find λ1,λ2>0\lambda_{1},\lambda_{2}>0 satisfying

0\displaystyle 0 Φi(t,φ+)(sups[τ,0]φ+(s))Eα(λ1tα)=(sups[τ,0]φ(s))Eα(λ1tα),\displaystyle\leq\Phi_{i}(t,\varphi^{+})\leq\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi^{+}(s)\|\bigg{)}E_{\alpha}(-\lambda_{1}t^{\alpha})=\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda_{1}t^{\alpha}), (15)
0\displaystyle 0 Φi(t,φ)(sups[τ,0]φ(s))Eα(λ2tα)=(sups[τ,0]φ(s))Eα(λ2tα),\displaystyle\geq\Phi_{i}(t,\varphi^{-})\geq-\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi^{-}(s)\|\bigg{)}E_{\alpha}(-\lambda_{2}t^{\alpha})=-\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda_{2}t^{\alpha}), (16)

for all t0t\geq 0i=1,,di=1,\dots,d. By combining (14), (15) and (16), it leads to

(sups[τ,0]φ(s))Eα(λ2tα)Φi(t,φ)(sups[τ,0]φ(s))Eα(λ1tα)-\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda_{2}t^{\alpha})\leq\Phi_{i}(t,\varphi)\leq\bigg{(}\sup_{s\in[-\tau,0]}\|\varphi(s)\|\bigg{)}E_{\alpha}(-\lambda_{1}t^{\alpha})

for all t0t\geq 0i=1,,di=1,\dots,d, and thus the estimate (11) is verified with the parameter λ:=min{λ1,λ2}\lambda:=\min\{\lambda_{1},\lambda_{2}\}. In particular, for any φ()C([τ,0];d)\varphi(\cdot)\in C([-\tau,0];\mathbb{R}^{d}), then

limtΦ(t,φ)=0,\lim_{t\to\infty}\Phi(t,\varphi)=0,

which finishes the proof. ∎

Remark 3.4.

Consider the system (8)–(9). Suppose that the following assumptions hold.

  • (R1)

    maxj{1,,d}i=1daij(t)-\displaystyle\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t) is bounded from above on [0,)[0,\infty).

  • (R2)

    supt0{maxj{1,,d}i=1daij(t)+maxj{1,,d}i=1dbij(t)}σ\displaystyle\sup_{t\geq 0}\{\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}a_{ij}(t)+\max_{j\in\{1,\dots,d\}}\sum_{i=1}^{d}b_{ij}(t)\}\leq-\sigma with some positive constant σ\sigma.

Then, by Theorem 2.4, the conclusions of Theorem 3.3 are still true.

Remark 3.5.

Although also established in the class of positive systems like Theorems 4.5, 4.6 in [19], Theorem 3.3 in the current paper provides a new criterion to study the asymptotic behavior of solutions with arbitrary initial conditions. Indeed, compared to [19, Theorem 4.5], Theorem 3.3 does not require the boundedness of the coefficient matrices or the Hurwitz characteristic of the dominant system. Meanwhile, compared to [19, Theorem 4.5], it is significantly simpler and even allows conclusions about the stability of the systems without having to solve additional supporting inequalities. In section 4, we will show specific numerical examples to clarify these findings.

3.2 General fractional-order delay linear systems

This section deals with general fractional-order delay linear systems. Based on the Halanay inequality established in Theorem 2.4, a linear matrix inequality has been designed to ensure their Mittag-Lefler stability.

Consider the system

D0+αCx(t){}^{\!C}D^{{\alpha}}_{0^{+}}x(t) =A(t)x(t)+B(t)x(tq(t)),t>0,\displaystyle=A(t)x(t)+B(t)x(t-q(t)),\,\forall t>0, (17)
x(t)\displaystyle x(t) =φ(t),t[τ,0].\displaystyle=\varphi(t),\;\forall t\in[-\tau,0]. (18)

Here, A(),B():[0,)dA(\cdot),B(\cdot):[0,\infty)\rightarrow\mathbb{R}^{d} are continuous, τ>0\tau>0, q():[0,)[0,τ]q(\cdot):[0,\infty)\rightarrow[0,\tau] is a continuous delay function, and φC([τ,0];d)\varphi\in C([-\tau,0];\mathbb{R}^{d}) is an arbitrary initial condition.

Lemma 3.6.

[20, Theorem 2] Let x:[0,+)dx:[0,+\infty)\rightarrow\mathbb{R}^{d} is continuous and the Caputo fractional derivative D0+αCx(){}^{\!C}D^{{\alpha}}_{0^{+}}x(\cdot) exists on (0,)(0,\infty). Then, for any t0t\geq 0, we have

D0+αC[xT(t)x(t)]2xT(t)CD0+αx(t).{}^{\!C}D^{{\alpha}}_{0^{+}}\left[x^{\rm T}(t)x(t)\right]\leq 2x^{\rm T}(t)^{\!C}D^{{\alpha}}_{0^{+}}x(t).
Theorem 3.7.

Consider the system (17)–(18). Suppose that there exist two nonnegative continuous functions γ(),σ():[0,)0\gamma(\cdot),\;\sigma(\cdot):[0,\infty)\rightarrow\mathbb{R}_{\geq 0} such that the following linear matrix inequality is satisfied

([A(t)]T+A(t)+γ(t)IdB(t)[B(t)]Tσ(t)Id)0,t0,\begin{pmatrix}[A(t)]^{T}+A(t)+\gamma(t)I_{d}&B(t)\\ [B(t)]^{T}&-\sigma(t)I_{d}\end{pmatrix}\leq 0,\ \forall t\geq 0, (19)

where IdI_{d} is the identity matrix in d×d\mathbb{R}^{d\times d}. In addition,

γ(t)a0>0,t0,andsupt0σ(t)γ(t)p<1.\gamma(t)\geq a_{0}>0,\ \forall t\geq 0,\;\text{and}\ \displaystyle\sup_{t\geq 0}\frac{\sigma(t)}{\gamma(t)}\leq p<1. (20)

Then, there exists a positive parameter λ>0\lambda>0 satisfying

Φ(t,φ)sups[τ,0]φT(s)φ(s)Eα(λtα),t0.\|\Phi(t,\varphi)\|\leq\sqrt{\sup_{s\in[-\tau,0]}\|\varphi^{\rm T}(s)\varphi(s)\|}\sqrt{E_{\alpha}(-\lambda t^{\alpha})},\ \forall t\geq 0.
Proof.

Let x():[τ,)dx(\cdot):[-\tau,\infty)\rightarrow\mathbb{R}^{d} be the solution of the system (17)–(18). Denote W(t):=xT(t)x(t),tτW(t):=x^{\rm T}(t)x(t),\ \forall t\geq-\tau, then W()W(\cdot) is a continuous, nonnegative function on [τ,+)[-\tau,+\infty). Using Lemma 3.6 and the condition (19), we have

D0+αC{}^{\!C}D^{\alpha}_{0^{+}} W(t)+γ(t)W(t)σ(t)suptq(t)stW(s)\displaystyle W(t)+\gamma(t)W(t)-\sigma(t)\sup_{t-q(t)\leq s\leq t}W(s)
2xT(t)CD0+αx(t)+γ(t)xT(t)x(t)σ(t)xT(tq(t))x(tq(t))\displaystyle\leq 2x^{\rm T}(t)^{\!C}D^{\alpha}_{0^{+}}x(t)+\gamma(t)x^{\rm T}(t)x(t)-\sigma(t)x^{\rm T}(t-q(t))x(t-q(t))
=2xT(t)[A(t)x(t)+B(t)x(tq(t))]+γ(t)xT(t)x(t)σ(t)xT(tq(t))x(tq(t))\displaystyle=2x^{\rm T}(t)\left[A(t)x(t)+B(t)x(t-q(t))\right]+\gamma(t)x^{\rm T}(t)x(t)-\sigma(t)x^{\rm T}(t-q(t))x(t-q(t))
=(xT(t)xT(tq(t)))([A(t)]T+A(t)+γ(t)IdB(t)[B(t)]Tσ(t)Id)(x(t)x(tq(t)))\displaystyle=\begin{pmatrix}x^{\rm T}(t)&x^{\rm T}(t-q(t))\end{pmatrix}\begin{pmatrix}[A(t)]^{\rm T}+A(t)+\gamma(t)I_{d}&B(t)\\ [B(t)]^{\rm T}&-\sigma(t)I_{d}\end{pmatrix}\begin{pmatrix}x(t)\\ x(t-q(t))\end{pmatrix}
0,t>0.\displaystyle\leq 0,\;\;\forall t>0.

It follows from Theorem 2.4 (due to the functions γ()\gamma(\cdot) and σ()\sigma(\cdot) verify the condition (20)) that there is a λ>0\lambda>0 so that

W(t)sups[τ,0]φT(s)φ(s)Eα(λtα),t0.W(t)\leq\sup_{s\in[-\tau,0]}\|\varphi^{\rm T}(s)\varphi(s)\|{E_{\alpha}(-\lambda t^{\alpha})},\ \forall t\geq 0.

This implies that

Φ(t,φ)sups[τ,0]φT(s)φ(s)Eα(λtα),t0.\|\Phi(t,\varphi)\|\leq\sqrt{\sup_{s\in[-\tau,0]}\|\varphi^{\rm T}(s)\varphi(s)\|}\sqrt{E_{\alpha}(-\lambda t^{\alpha})},\ \forall t\geq 0.

The proof is complete. ∎

Remark 3.8.

Theorem 3.7 is a significant extension of [8, Proposition 2]. Furthermore, the convergence rate of the solutions to the origin is also discussed in this result.

Remark 3.9.

Theorem 3.7 is a constructive result. It suggests combining a fractional Halanay inequality with the design of suitable linear matrix inequalities to derive various stability conditions of general delay linear systems.

Remark 3.10.

Because the norms on d\mathbb{R}^{d} are equivalent, the correctness of the conclusions in Theorem 3.3 and Theorem 3.7 on the asymptotic stability of the systems and the convergence rate of solutions to the origin does not depend on the defined norm.

4 Numerical examples

This section provides numerical examples to illustrate the validity of the proposed theoretical results.

Example 4.1.

Consider the system

D0+αCx(t){}^{\!C}D^{\alpha}_{0+}x(t) =A(t)x(t)+B(t)x(tq(t)),t(0,),\displaystyle=-A(t)x(t)+B(t)x(t-q(t)),\;t\in(0,\infty), (21)
y(s)\displaystyle y(s) =φ(s),s[τ,0],\displaystyle=\varphi(s),\ s\in[-\tau,0], (22)

where α=0.45\alpha=0.45, φC([τ,0],d)\varphi\in C([-\tau,0],\mathbb{\mathbb{R}}^{d}),

A(t)\displaystyle A(t) =(0.711+t0.005t111+t0.3+0.2sint0.1+0.003t30.81+t0.003t0.15+0.001t0.4+11+t1+0.81+t+0.001t10.004t),t0,\displaystyle=\begin{pmatrix}-0.7-\displaystyle\frac{1}{\sqrt{1+t}}-0.005t&1-\displaystyle\frac{1}{\sqrt{1+t}}&0.3+0.2\sin t\\ 0.1+0.003t&-3-\displaystyle\frac{0.8}{1+t}-0.003t&0.15+0.001t\\ 0.4+\displaystyle\frac{1}{\sqrt{1+t}}&1+\displaystyle\frac{0.8}{1+t}+0.001t&-1-0.004t\end{pmatrix},\ t\geq 0,
B(t)\displaystyle B(t) =(0.002t2sin2t1+t20.0015t00.0005t0.05+0.12+t0.001t0.10.050.12+t0.123+t),t0,\displaystyle=\begin{pmatrix}\displaystyle\frac{0.002t^{2}\sin^{2}t}{1+t^{2}}&0.0015t&0\\ 0.0005t&0.05+\displaystyle\frac{0.1}{2+t}&0.001t\\ 0.1&0.05-\displaystyle\frac{0.1}{2+t}&\displaystyle\frac{0.12}{3+t}\end{pmatrix},\ t\geq 0,

and the delay

q(t)=2cos4t,t0.q(t)=2-\cos^{4}t,\ t\geq 0.

It is obvious that τ=2\tau=2. By a simple calculation, we obtain

maxj{1,2,3}i=13aij(t)\displaystyle\max_{j\in\{1,2,3\}}\sum_{i=1}^{3}a_{ij}(t) =max{0.20.002t,10.002t11+t,0.55+0.2sint0.003t}\displaystyle=\max\{-0.2-0.002t,\ -1-0.002t-\displaystyle\frac{1}{\sqrt{1+t}},\ -0.55+0.2\sin t-0.003t\}
=0.20.002t,t0,\displaystyle=-0.2-0.002t,\ \forall t\geq 0,
maxj{1,2,3}i=13bij(t)\displaystyle\max_{j\in\{1,2,3\}}\sum_{i=1}^{3}b_{ij}(t) =max{0.1+0.0005t+0.002t2sin2t1+t2, 0.1+0.0015t, 0.001t+0.123+t}\displaystyle=\max\{0.1+0.0005t+\displaystyle\frac{0.002t^{2}\sin^{2}t}{1+t^{2}},\ 0.1+0.0015t,\ 0.001t+\frac{0.12}{3+t}\}
=0.0015t+0.1,t0.\displaystyle=0.0015t+0.1,\ \forall t\geq 0.

This leads to

maxj{1,2,3}i=13aij(t)\displaystyle\max_{j\in\{1,2,3\}}\sum_{i=1}^{3}a_{ij}(t) 0.2,t0,\displaystyle\leq-0.2,\ \forall t\geq 0,
maxj{1,2,3}i=13bij(t)maxj{1,2,3}i=13aij(t)\displaystyle\frac{\displaystyle\max_{j\in\{1,2,3\}}\sum_{i=1}^{3}b_{ij}(t)}{\displaystyle\max_{j\in\{1,2,3\}}\sum_{i=1}^{3}a_{ij}(t)} =0.0015t+0.10.002t+0.20.75,t0.\displaystyle=-\frac{0.0015t+0.1}{0.002t+0.2}\geq-0.75,\ \forall t\geq 0.

Thus, the assumptions in Theorem 3.3 are satisfied. From this, for any φC([2,0];3)\varphi\in C([-2,0];\mathbb{R}^{3}), the solution Φ(,φ)\Phi(\cdot,\varphi) of the initial value problem (21)–(22) converges to the origin. Choosing

a(t):=0.2+0.002t,b(t):=0.1+0.0015t,t0.a(t):=0.2+0.002t,\ b(t):=0.1+0.0015t,\ \forall t\geq 0.

It is easy to check that for λ=0.075\lambda=0.075, we have

λa(t)+b(t)Eα(λqα(t))\displaystyle\lambda-a(t)+\frac{b(t)}{E_{\alpha}(-\lambda q^{\alpha}(t))} =0.1250.002t+0.1+0.0015tE0.45(0.075q0.45(t))\displaystyle=-0.125-0.002t+\frac{0.1+0.0015t}{E_{0.45}(-0.075q^{0.45}(t))}
0.1250.002t+0.1+0.0015tE0.45(0.075×20.45)\displaystyle\leq-0.125-0.002t+\frac{0.1+0.0015t}{E_{0.45}(-0.075\times 2^{0.45})}
<0.1250.002t+0.1+0.0015t0.8\displaystyle<-0.125-0.002t+\frac{0.1+0.0015t}{0.8}
=0.0001t0.8\displaystyle=\frac{-0.0001t}{0.8}
0,t0.\displaystyle\leq 0,\ \forall t\geq 0.

Taking

φ(s):=(0.20.4coss0.1+0.1slog(s+3)0.5),s[2,0].\varphi(s):=\begin{pmatrix}0.2-0.4\cos s\\ 0.1+0.1s\\ \log({s+3})-0.5\end{pmatrix},\ s\in[-2,0].

Because sups[2,0]φ(s)=1.2\displaystyle\sup_{s\in[-2,0]}\|\varphi(s)\|=1.2, Theorem 3.3 points out that

Φ(t,φ)1.2E0.45(0.075t0.45),t0.\|\Phi(t,\varphi)\|\leq 1.2E_{0.45}(-0.075t^{0.45}),\ t\geq 0.
Refer to caption
Figure 1: Orbits of the solution of the system (21) with the initial condition φ(s)=(0.20.4coss,0.1+0.1s,log(s+3)0.5)T\varphi(s)=(0.2-0.4\cos s,0.1+0.1s,\log({s+3})-0.5)^{\rm T} on [2,0][-2,0].
Remark 4.2.

In Example 4.1 above, because the coefficients aij()a_{ij}(\cdot) and bij()b_{ij}(\cdot) are unbounded on [0,)[0,\infty), it is outside the scope of [19, Theorem 4.5]. On the other hand, it is extremely complicated to find parameters γ>0\gamma>0 and w=(w1,w2,w3)T+3w=(w_{1},w_{2},w_{3})^{\rm T}\in\mathbb{R}^{3}_{+} that satisfy the following inequalities for all t0t\geq 0:

{(0.711+t0.005t)w1+(111+t)w2+(0.3+0.2sint)w3+0.002t2sin2t1+t2w1E0.45(γ20.45)+0.0015tw2E0.45(γ20.45)w1γ,(0.1+0.003t)w1+(30.81+t0.003t)w2+(0.15+0.001t)w3+(0.0005t)w1E0.45(γ20.45)+(0.05+0.12+t)w2E0.45(γ20.45)+(0.001t)w3E0.45(γ20.45)w2γ,(0.4+11+t)w1+(1+0.81+t+0.001t)w2+(10.004t)w3+0.1w1E0.45(γ20.45)+(0.050.12+t)w2E0.45(γ20.45)+0.123+tw3E0.45(γ20.45)w3γ.\begin{cases}\left(-0.7-\displaystyle\frac{1}{\sqrt{1+t}}-0.005t\right)w_{1}+\left(1-\displaystyle\frac{1}{\sqrt{1+t}}\right)w_{2}+\left(0.3+0.2\sin t\right)w_{3}\\ \hskip 14.22636pt+\displaystyle\frac{0.002t^{2}\sin^{2}t}{1+t^{2}}\frac{w_{1}}{E_{0.45}(-\gamma 2^{0.45})}+\displaystyle\frac{0.0015tw_{2}}{E_{0.45}(-\gamma 2^{0.45})}\hskip 119.50148pt\leq-w_{1}\gamma,\\ \left(0.1+0.003t\right)w_{1}+\left(-3-\displaystyle\frac{0.8}{1+t}-0.003t\right)w_{2}+\left(0.15+0.001t\right)w_{3}\\ \hskip 14.22636pt+\displaystyle\frac{(0.0005t)w_{1}}{E_{0.45}(-\gamma 2^{0.45})}+\left(0.05+\displaystyle\frac{0.1}{2+t}\right)\frac{w_{2}}{E_{0.45}(-\gamma 2^{0.45})}+\displaystyle\frac{(0.001t)w_{3}}{E_{0.45}(-\gamma 2^{0.45})}\hskip 24.18501pt\leq-w_{2}\gamma,\\ \left(0.4+\displaystyle\frac{1}{\sqrt{1+t}}\right)w_{1}+\left(1+\displaystyle\frac{0.8}{1+t}+0.001t\right)w_{2}+\left(-1-0.004t\right)w_{3}\\ \hskip 14.22636pt+\displaystyle\frac{0.1w_{1}}{E_{0.45}(-\gamma 2^{0.45})}+\left(0.05-\displaystyle\frac{0.1}{2+t}\right)\frac{w_{2}}{E_{0.45}(-\gamma 2^{0.45})}+\displaystyle\frac{0.12}{3+t}\frac{w_{3}}{E_{0.45}(-\gamma 2^{0.45})}\leq-w_{3}\gamma.\end{cases}

Therefore, it is not an easy task to test the asymptotic stability and estimate the convergence rate to the origin of the solutions of system (21)–(22) by using [19, Theorem 4.6].

Example 4.3.

Consider the system

D0+αCx(t){}^{\!C}D^{\alpha}_{0+}x(t) =A(t)x(t)+B(t)x(tq(t)),t(0,),\displaystyle=-A(t)x(t)+B(t)x(t-q(t)),\;t\in(0,\infty), (23)
x(s)\displaystyle x(s) =φ(s),s[τ,0],\displaystyle=\varphi(s),\ s\in[-\tau,0], (24)

where α=0.75\alpha=0.75,

A(t)=(311+t511+t0.2+11+t6.60.21+t),B(t)=(tsin2t1+t21.15+0.12+t1.50.1+0.22+t),\displaystyle A(t)=\begin{pmatrix}-3-\displaystyle\frac{1}{\sqrt{1+t}}&5-\displaystyle\frac{1}{\sqrt{1+t}}\\ 0.2+\displaystyle\frac{1}{1+t}&-6.6-\displaystyle\frac{0.2}{\sqrt{1+t}}\end{pmatrix},\ B(t)=\begin{pmatrix}\displaystyle\frac{t\sin^{2}t}{1+t^{2}}&1.15+\displaystyle\frac{0.1}{2+t}\\ 1.5&0.1+\displaystyle\frac{0.2}{2+t}\end{pmatrix},\

and the delay

q(t)=1+et2,t0.q(t)=\frac{1+e^{-t}}{2},\ t\geq 0.

We see that τ=1\tau=1 and

maxj{1,2}i=12aij(t)\displaystyle\max_{j\in\{1,2\}}\sum_{i=1}^{2}a_{ij}(t) =max{2.811+t+11+t,1.61.21+t}\displaystyle=\max\{-2.8-\displaystyle\frac{1}{\sqrt{1+t}}+\displaystyle\frac{1}{1+t},-1.6-\displaystyle\frac{1.2}{\sqrt{1+t}}\}
=1.61.21+t,\displaystyle=-1.6-\displaystyle\frac{1.2}{\sqrt{1+t}},
maxj{1,2}i=12bij(t)\displaystyle\max_{j\in\{1,2\}}\sum_{i=1}^{2}b_{ij}(t) =max{1.5+tsin2t1+t2;1.25+0.32+t}\displaystyle=\max\{1.5+\displaystyle\frac{{t}\sin^{2}t}{1+t^{2}};1.25+\displaystyle\frac{0.3}{2+t}\}
=1.5+tsin2t1+t2.\displaystyle=1.5+\displaystyle\frac{t\sin^{2}t}{1+t^{2}}.

It easy to check that maxj{1,2}i=12aij(t)\displaystyle\max_{j\in\{1,2\}}\sum_{i=1}^{2}a_{ij}(t) is bounded on [0,+)[0,+\infty), and

maxj{1,2}i=12aij(t)+maxj{1,2}i=12bij(t)\displaystyle\max_{j\in\{1,2\}}\sum_{i=1}^{2}a_{ij}(t)+\max_{j\in\{1,2\}}\sum_{i=1}^{2}b_{ij}(t) =0.11.21+t+tsin2t1+t2\displaystyle=-0.1-\displaystyle\frac{1.2}{\sqrt{1+t}}+\displaystyle\frac{{t}\sin^{2}t}{1+t^{2}}
<0.1+t1+t211+t\displaystyle<-0.1+\displaystyle\frac{{t}}{1+t^{2}}-\displaystyle\frac{1}{\sqrt{1+t}}
<0.1,t0.\displaystyle<-0.1,\ \forall t\geq 0.

By Remark 3.4, for any φC([1,0];2)\varphi\in C([-1,0];\mathbb{R}^{2}), the solution Φ(,φ)\Phi(\cdot,\varphi) of (23) converges to the origin. Taking

a(t)=1.6+1.21+t,b(t)=1.5+tsin2t1+t2,t0,a(t)=1.6+\displaystyle\frac{1.2}{\sqrt{1+t}},\ b(t)=1.5+\displaystyle\frac{t\sin^{2}t}{1+t^{2}},\ t\geq 0,

and choosing λ=0.02\lambda=0.02, we observe

λa(t)+b(t)Eα(λqα(t))\displaystyle\lambda-a(t)+\frac{b(t)}{E_{\alpha}(-\lambda q^{\alpha}(t))} =1.581.21+t+1.5+tsin2t1+t2E0.75(0.02q0.75(t))\displaystyle=-1.58-\displaystyle\frac{1.2}{\sqrt{1+t}}+\frac{1.5+\displaystyle\frac{t\sin^{2}t}{1+t^{2}}}{E_{0.75}(-0.02q^{0.75}(t))}
1.581.21+t+1.5+t1+t2E0.75(0.02)\displaystyle\leq-1.58-\displaystyle\frac{1.2}{\sqrt{1+t}}+\frac{1.5+\displaystyle\frac{t}{1+t^{2}}}{E_{0.75}(-0.02)}
<1.581.21+t+1.5+t1+t20.97\displaystyle<-1.58-\displaystyle\frac{1.2}{\sqrt{1+t}}+\frac{1.5+\displaystyle\frac{t}{1+t^{2}}}{0.97}
=0.03260.97+10.97(t1+t21.1641+t)\displaystyle=-\frac{0.0326}{0.97}+\frac{1}{0.97}\left(\frac{t}{1+t^{2}}-\frac{1.164}{\sqrt{1+t}}\right)
<0,t0.\displaystyle<0,\ \forall t\geq 0.

Thus, by Theorem 3.3, we obtain the estimate

Φ(t,φ)sups[1,0]φ(s)E0.75(0.02t0.75),t0.\|\Phi(t,\varphi)\|\leq\sup_{s\in[-1,0]}\|\varphi(s)\|E_{0.75}(-0.02t^{0.75}),\;\forall t\geq 0.

Figure 2 describes the trajectories of the solution of the initial value problem (23)–(24) with φ(s)=(0.3+0.4sins,0.1+0.5s)T\varphi(s)=(0.3+0.4\sin s,0.1+0.5s)^{\rm T} on [1,0][-1,0].

Refer to caption
Figure 2: Orbits of the solution of the system (23) with the initial condition φ(s)=(0.3+0.4sins,0.1+0.5s)T\varphi(s)=(0.3+0.4\sin s,0.1+0.5s)^{\rm T} on [1,0][-1,0].
Remark 4.4.

In Example 4.3, we have

A(t)A^:=(351.26.6),B(t)B^:=(0.51.21.50.2),t0.\displaystyle A(t)\preceq\hat{A}:=\begin{pmatrix}-3&5\\ 1.2&-6.6\end{pmatrix},\ B(t)\preceq\hat{B}:=\begin{pmatrix}0.5&1.2\\ 1.5&0.2\end{pmatrix},\ \forall t\geq 0.

However, A^+B^=(2.56.22.76.4)\hat{A}+\hat{B}=\begin{pmatrix}-2.5&6.2\\ 2.7&-6.4\end{pmatrix} is not a Hurwitz matrix because σ(A^+B^)={λ1,λ2}\sigma(\hat{A}+\hat{B})=\{\lambda_{1},\lambda_{2}\}, here λ10.0824\lambda_{1}\approx 0.0824 and λ28.9824\lambda_{2}\approx-8.9824. Thus, one cannot apply [19, Theorem 4.5] to this case.

Example 4.5.

Consider the system

D0+αCx(t){}^{\!C}D^{\alpha}_{0+}x(t) =a(t)x(t)+b(t)x(tq(t)),t(0,),\displaystyle=-a(t)x(t)+b(t)x(t-q(t)),\;t\in(0,\infty), (25)
y(s)\displaystyle y(s) =φ(s),s[τ,0],\displaystyle=\varphi(s),\ s\in[-\tau,0], (26)

where α=0.65\alpha=0.65, a(t)=0.2+0.002t,b(t)=0.02t,q(t)=1+12+sinta(t)=0.2+0.002t,\ b(t)=-0.02\sqrt{t},\;q(t)=1+\displaystyle\frac{1}{2+\sin t} for t0.t\geq 0. Taking γ(t)=0.3,σ(t)=0.2\gamma(t)=0.3,\ \sigma(t)=0.2 for all t0t\geq 0, then the condition (20) holds. Moreover,

(2a(t)+γ(t)b(t)b(t)σ(t))=(0.10.004t0.02t0.02t0.2)<0,t0,\begin{pmatrix}-2a(t)+\gamma(t)&b(t)\\ b(t)&-\sigma(t)\end{pmatrix}=\begin{pmatrix}-0.1-0.004t&-0.02\sqrt{t}\\ -0.02\sqrt{t}&-0.2\end{pmatrix}<0,\ \forall t\geq 0,

and thus the condition (19) is also true. Using Theorem 3.7, it shows that the solution Φ(,φ)\Phi(\cdot,\varphi) converges to the origin for any φC([2,0];)\varphi\in C([-2,0];\mathbb{R}). Furthermore, by a simple computation, for λ=0.05\lambda=0.05, we see

λγ(t)+σ(t)Eα(λqα(t))\displaystyle\lambda-\gamma(t)+\frac{\sigma(t)}{E_{\alpha}(-\lambda q^{\alpha}(t))} =0.25+0.2E0.65(0.05q0.65(t))\displaystyle=-0.25+\frac{0.2}{E_{0.65}(-0.05q^{0.65}(t))}
0.25+0.2E0.65(0.05×20.65)\displaystyle\leq-0.25+\frac{0.2}{E_{0.65}(-0.05\times 2^{0.65})}
0.25+0.20.9179<0,t0.\displaystyle\approx-0.25+\frac{0.2}{0.9179}<0,\ \forall t\geq 0.

Hence, the following estimate is true

|Φ(t,φ)|sups[2,0]|φ(s)|2E0.65(0.05t0.65),t0.|\Phi(t,\varphi)|\leq\sqrt{\sup_{s\in[-2,0]}|\varphi(s)|^{2}}\sqrt{E_{0.65}(-0.05t^{0.65})},\;\forall t\geq 0.

Figure 3 depicts the orbits of the solution of the system (25) with the initial condition φ(s)=0.30.5cos(2s)\varphi(s)=0.3-0.5\cos(2s) on [2,0][-2,0].

Refer to caption
Figure 3: Orbits of the solution of the system (25) with the initial condition φ(s)=0.30.5cos(2s)\varphi(s)=0.3-0.5\cos(2s) on [2,0][-2,0].

References

  • [1] J. Cermak, J. Hornicek, and T. Kisela, Stability regions for fractional differential systems with a time delay. Commun. Nonlinear Sci. Numer. Simul., 31 (2016), pp. 108–123.
  • [2] B. Chen and J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Applied Mathematics and Computation, 254 (2015), pp. 63–69.
  • [3] N.D. Cong, H.T. Tuan, and H.Trinh, On asymptotic properties of solutions to fractional differential equations. Journal of Mathematical Analysis and Applications, 484 (2020), 123759.
  • [4] R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler functions, Related Topics and Applications. Springer-Verlag, Berlin, 2014.
  • [5] J.A. Gallegos, N. Aguila-Camacho, and M. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 83 (2020), no. 12, 105089.
  • [6] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York, USA, 1966.
  • [7] N.T.T. Huong, N.N. Thang, and T.T.M. Nguyet, Global fractional Halanay inequalities approach to finite-time stability of nonlinear fractional order delay systems. J. Math. Anal. Appl., 525 (2023), 127145.
  • [8] B.B. He, H.C. Zhou, Y. Chen, and C.H. Kou, Asymptotical stability of fractional order systems with time delay via an integral inequality. IET Control Theory Appl., 12 (2018), pp. 1748–1754.
  • [9] N.T.T. Huong, N.N. Thang, and T.D. Ke, An improved fractional Halanay inequality with distributed delays. Math. Meth. Appl. Sci., 46 (2023), pp. 19083–19099.
  • [10] J. Jia, F. Wang, and Z. Zeng, Global stabilization of fractional-order memristor-based neural networks with incommensurate orders and multiple time-varying delays: a positive-system-based approach. Nonlinear Dyn., 104 (2021), pp. 2303–2329.
  • [11] X.C. Jin and J.G. Lu, Delay-dependent criteria for robust stability and stabilization of fractional-order time-varying delay systems. European Journal of Control, 67 (2022), 100704.
  • [12] E. Kaslik, and S. Sivasundaram, Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. Comput. Appl. Math., 236 (2012), pp. 4027–4041.
  • [13] T.D. Ke and N.N. Thang, An Optimal Halanay Inequality and Decay Rate of Solutions to Some Classes of Nonlocal Functional Differential Equations. J Dyn Diff Equat 36, pp. 1617–1634 (2024).
  • [14] V. Lakshmikantham, S. Leela, and J. Devi, Theory of fractional dynamic systems. Cambridge Scientific Publishers Ltd., England, 2009.
  • [15] B.K. Lenka and S.N. Bora, New global asymptotic stability conditions for a class of nonlinear time-varying fractional systems. European Journal of Control, 63 (2022), pp. 97–106.
  • [16] J. Shen and J. Lam, Stability and Performance Analysis for Positive Fractional-order Systems with Time-varying Delays. IEEE Trans Automat Control, 61 (2016), no. 9, pp. 2676–2681.
  • [17] N. Tatar, Fractional Halanay Inequality and Application in Neural Network Theory. Acta Math Sci., 39 (2019), pp. 1605–1618.
  • [18] N.T. Thanh, H. Trinh, and V.N. Phat, Stability analysis of fractional differential time-delay equations. IET Control Theory Appl., 11 (2017), pp. 1006–1015.
  • [19] L.V. Thinh and H.T. Tuan, Separation of solutions and the attractivity of fractional-order positive linear delay systems with variable coefficients. Commun. Nonlinear Sci. Numer. Simul., 132 (2024), 10789.
  • [20] H.T. Tuan and H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl., 12 (2018), no. 17, pp. 2417–2422.
  • [21] H. T. Tuan and H. Trinh, A Linearized Stability Theorem for Nonlinear Delay Fractional Differential Equations. IEEE Trans. Automat. Control, 63 (2018), pp. 3180–3186.
  • [22] H. T. Tuan and S. Siegmund, Stability of scalar nonlinear fractional differential equations with linearly dominated delay. Fract. Calc. Appl. Anal., 23 (2020), pp. 250–267.
  • [23] H.T. Tuan and H. Trinh, A Qualitative Theory of Time Delay Nonlinear Fractional-Order Systems. SIAM Journal on Control and Optimization, 58 (2020), no. 3, pp. 491–1518.
  • [24] H.T. Tuan and L.V. Thinh, Qualitative analysis of solutions to mixed-order positive linear coupled systems with bounded or unbounded delays. ESAIM - Control, Optimisation and Calculus of Variations, 29 (2023), 66, pp. 1–35.
  • [25] D. Wang, A. Xiao, and H. Liu, Dissipativity and Stability Analysis for Fractional Functional Differential Equations. Fract. Calc. Appl. Anal., 18 (2015), pp. 1399–1422.
  • [26] D. Wang and J. Zou, Dissipativity and Contractivity Analysis for Fractional Functional Differential Equations and their Numerical Approximations. SIAM Journal on Numerical Analysis, 57 (2019), no. 3, pp. 1445–1470.
  • [27] S. Zhang, M. Tang, X. Liu, and X.M. Zhang, Mittag–Leffler stability and stabilization of delayed fractional-order memristive neural networks based on a new Razumikhin-type theorem. Journal of the Franklin Institute, 361 (2024), no. 3, pp. 1211–1226.