This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A gauge-symmetrization method for energy-momentum tensors in high-order electromagnetic field theories

Peifeng Fan Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China    Jianyuan Xiao School of nuclear science and technology, University of Science and Technology of China, Hefei, Anhui 230026, China    Hong Qin Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
Abstract

For electromagnetic field theories, canonical energy-momentum conservation laws can be derived from the underpinning spacetime translation symmetry according to the Noether procedure. However, the canonical Energy-Momentum Tensors (EMTs) are neither symmetric nor gauge-symmetric (gauge invariant). The Belinfante-Rosenfeld (BR) method is a well-known procedure to symmetrize the EMTs, which also render them gauge symmetric for first-order field theories. High-order electromagnetic field theories appear in the study of gyrokinetic systems for magnetized plasmas and the Podolsky system for the radiation reaction of classical charged particles. For these high-order field theories, gauge-symmetric EMTs are not necessarily symmetric and vice versa. In the present study, we develop a new gauge-symmetrization method for EMTs in high-order electromagnetic field theories. The Noether procedure is carried out using the Faraday tensor FμνF_{\mu\nu}, instead of the 4-potential AμA_{\mu}, to derive a canonical EMT TNμνT_{\text{N}}^{\mu\nu}. We show that the gauge-dependent part of TNμνT_{\text{N}}^{\mu\nu} can be removed using the displacement-potential tensor σμν𝒟σμAν/4π\mathcal{F}^{\sigma\mu\nu}\equiv\mathcal{D}^{\sigma\mu}A^{\nu}/4\pi, where 𝒟σμ\mathcal{D}^{\sigma\mu} is the anti-symmetric electric displacement tensor. This method gauge-symmetrize the EMT without necessarily making it symmetric, which is adequate for applications not involving general relativity. For first-order electromagnetic field theories, such as the standard Maxwell system, σμν\mathcal{F}^{\sigma\mu\nu} reduces to the familiar BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu}, and the method developed can be used as a simpler procedure to calculate 𝒮σμν\mathcal{S}^{\sigma\mu\nu} without employing the angular momentum tensor in 4D spacetime. When the electromagnetic system is coupled to classical charged particles, the gauge-symmetrization method for EMTs is shown to be effective as well.

I introduction

In classical field theories, one can derive canonical Energy-Momentum Tensors (EMTs) TNμνT_{\text{N}}^{\mu\nu} from the underpinning spacetime translation symmetry using the Noether procedure (Noether, 1918). However, for classical systems of electromagnetic field, the canonical EMTs are neither symmetric with respect to tensor indices nor electromagnetic gauge invariant. Gauge dependence is un-physical, and non-symmetric EMT is not consistent with general relativity. In the present study, we will call a EMT symmetric if it is symmetric with respect to tensor indices, and gauge symmetric if it is gauge invariant. To date, much effort has been focused on symmetrizing the EMTs (with respect to tensor indices), while constructing gauge-symmetric EMTs is oftentimes a challenging task for general systems (Babak and Grishchuk, 1999; Gratus et al., 2012; Arminjon, 2016; Inglis and Jarvis, 2016; Jiménez et al., 2018; Ilin and Paston, 2020).

The first method for symmetrizing EMTs was discovered by Belinfante (Belinfante, 1939, 1940) and Rosenfeld (Rosenfeld, 1940), who added a divergence-free tensor σ𝒮σμν\partial_{\sigma}\mathcal{S}^{\sigma\mu\nu} to obtain a symmetric EMT, i.e.,

TBRμν=TNμν+σ𝒮σμν,\displaystyle T_{\mathrm{BR}}^{\mu\nu}=T_{\text{N}}^{\mu\nu}+\partial_{\sigma}\mathcal{S}^{\sigma\mu\nu}, (1)
μσ𝒮σμν=0.\displaystyle\partial_{\mu}\partial_{\sigma}\mathcal{S}^{\sigma\mu\nu}=0. (2)

Here, TBRμνT_{\mathrm{BR}}^{\mu\nu} is Belinfante-Rosenfeld (BR) EMT, and 𝒮σμν\mathcal{S}^{\sigma\mu\nu} is known as BR super-potential that depends on the angular momentum tensor and is anti-symmetric with respect to σ\sigma and μ\mu [see Eq. (52)]. General relativity suggests another method to generate symmetric EMTs (Hawking and Ellis, 1973; Landau and lifshitz, 1975), which was modified by Gotay and Marsden, who employed constraints to define symmetric EMTs (Gotay and Marsden, 1992; Lopez et al., 2007). The relations between these three types of symmetric EMTs have been discussed in the literature (Zhang, 2005; Ilin and Paston, 2019; Baker et al., 2021).

In many systems, including the standard Maxwell system (6), the symmetrization of TNμνT_{\text{N}}^{\mu\nu} also renders it gauge symmetric. But for general electromagnetic field theories with high-order field derivations, symmetry with respect to tensor indices in general does not imply gauge symmetry and vice versa. High-order electromagnetic field theories appear in the study of gyrokinetic systems (Qin, 2005; Qin et al., 2007; Fan et al., 2020) for magnetized plasmas and the Podolsky system (Bopp, 1940; Podolsky, 1942) for the radiation reaction of classical charged particles. In the present study, we propose a new method to gauge-symmetrize the canonical EMTs TNμνT_{\text{N}}^{\mu\nu} in general electromagnetic field theories with high-order field derivations. Our method removes the gauge dependence, but does not necessarily symmetrize the EMTs. In applications that don’t involve general relativity, gauge-symmetrized EMTs are adequate.

We first reformulate the equation of motion for the field by the variational principle with respect to the Faraday tensor FμνF_{\mu\nu}, instead of the 4-potential AμA^{\mu} as in the standard field theory. The Euler-Lagrange (EL) equation is cast into an explicitly gauge-symmetric form. The canonical EMT is then separated into a gauge-invariant part and a gauge-dependent part, the later of which contains the anti-symmetric electric displacement tensor 𝒟μν\mathcal{D}^{\mu\nu}. We define a super-potential σμν𝒟σμAν/4π\mathcal{F}^{\sigma\mu\nu}\equiv\mathcal{D}^{\sigma\mu}A^{\nu}/4\pi, called displacement-potential tensor, whose divergence with respect to the first index is divergence free with respect to the second index and removes the gauge dependence in the canonical EMT. It is simpler to calculate the displacement-potential tensor σμν\mathcal{F}^{\sigma\mu\nu} than the BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu}, and the former only gauge-symmetrizes the canonical EMT without render it symmetric (with respect to tensor indices). For first-order electromagnetic field theories, such as the standard Maxwell system, σμν\mathcal{F}^{\sigma\mu\nu} reduces to the familiar BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu}, and the method developed here can be used as a simpler procedure to calculate 𝒮σμν\mathcal{S}^{\sigma\mu\nu} without employing the angular momentum tensor in 4D spacetime. In addition, when the electromagnetic system is coupled with classical charged particles, we find that the method is effective as well, even though the Lagrangian density is not gauge symmetric in general.

The paper is organized as follows. In Sec. II, we describe the gauge-symmetrization method for the EMT in a general high-order electromagnetic field theory, and highlight the difference in comparison with the BR method using the example of the Podolsky system (Bopp, 1940; Podolsky, 1942). Section III shows how the gauge-symmetrization method for the EMT works when the electromagnetic system is coupled with classical charged particles.

II explicitly gauge-symmetric conservation laws for high-order electromagnetic systems

II.1 Explicitly gauge-symmetric Euler-Lagrange equation

The Lagrangian density of a general electromagnetic system is written as

F=F(xμ,DAμ,,D(n+1)Aμ),\mathcal{L}_{F}=\mathcal{L}_{F}\left(x^{\mu},DA_{\mu},\cdots,D^{\left(n+1\right)}A_{\mu}\right), (3)

where A=(φ,𝑨)A=\left(\varphi,-\bm{A}\right) is the 4-potential and D=((1/c)t,)D=\left(\left(1/c\right)\partial_{t},\bm{\nabla}\right) is the derivative operator over spacetime. The EL equation of the Lagrangian density is

EAμ(F)=0,E_{A}^{\mu}\left(\mathcal{L}_{F}\right)=0, (4)

where the Euler operator EAμE_{A}^{\mu} of AμA_{\mu} is defined by

EAμi=1n+1(1)iDμ1Dμi(μ1μiAμ).E_{A}^{\mu}\equiv\sum_{i=1}^{n+1}\left(-1\right)^{i}D_{\mu_{1}}\cdots D_{\mu_{i}}\frac{\partial}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{i}}A_{\mu}\right)}. (5)

Note that the Lagrangian density F\mathcal{L}_{F} depends on derivatives of AA with respect to the spacetime coordinates up to the (n+1)(n+1)-th order. It includes the standard Maxwell system, i.e.,

F=116πFμνFμν,\mathcal{L}_{F}=-\frac{1}{16\pi}F_{\mu\nu}F^{\mu\nu}, (6)

as a special case, where

Fμν=μAννAμ.F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}. (7)

is the Faraday tensor. In Eq. (6), F\mathcal{L}_{F} depends only on first-order derivatives of AA. High-order electromagnetic field theories appear in the study of gyrokinetic systems (Qin, 2005; Qin et al., 2007; Fan et al., 2020) for magnetized plasmas and radiation reaction for classical charged particles (Bopp, 1940; Podolsky, 1942). Physics requires that the EL equation (4) is gauge symmetric, i.e, invariant under the gauge transformation AμAμ+μfA_{\mu}\mapsto A_{\mu}+\partial_{\mu}f. In the present study, we assume that F\mathcal{L}_{F} is explicitly gauge symmetric in the form of

F=F(xμ,Fμν,DFμν,,D(n)Fμν).\mathcal{L}_{F}=\mathcal{L}_{F}\left(x^{\mu},F_{\mu\nu},DF_{\mu\nu},\cdots,D^{\left(n\right)}F_{\mu\nu}\right). (8)

From the variational principle, δ𝒜=δFd4x=0\delta\mathcal{A}=\delta\int\mathcal{L}_{F}d^{4}x=0, we have

0=δFd4x={EFμν(F)δFμν}d4x={EFμν(F)(μδAννδAμ)}d4x\displaystyle 0=\delta\int\mathcal{L}_{F}d^{4}x=\int\left\{E_{F}^{\mu\nu}\left(\mathcal{L}_{F}\right)\delta F_{\mu\nu}\right\}d^{4}x=\int\left\{E_{F}^{\mu\nu}\left(\mathcal{L}_{F}\right)\left(\partial_{\mu}\delta A_{\nu}-\partial_{\nu}\delta A_{\mu}\right)\right\}d^{4}x
=μ{2EF[μν](F)}δAνd4x,\displaystyle=-\int\partial_{\mu}\left\{2E_{F}^{\left[\mu\nu\right]}\left(\mathcal{L}_{F}\right)\right\}\delta A_{\nu}d^{4}x, (9)

where the boundary term has been dropped, and EFμνE_{F}^{\mu\nu} denotes the Euler operator for the Faraday tensor FμνF_{\mu\nu} defined by

EFμν(F)=FFμν+i=1n(1)iDμ1DμiFμ1μiFμν.E_{F}^{\mu\nu}\left(\mathcal{L}_{F}\right)=\frac{\partial\mathcal{L}_{F}}{\partial F_{\mu\nu}}+\sum_{i=1}^{n}\left(-1\right)^{i}D_{\mu_{1}}\cdots D_{\mu_{i}}\frac{\partial\mathcal{L}_{F}}{\partial\partial_{\mu_{1}}\cdots\partial_{\mu_{i}}F_{\mu\nu}}\,. (10)

In Eq. (9), superscript [μν]\left[\mu\nu\right] represents anti-symmetrization with respect to μ\mu and ν\nu, i.e.,

EF[μν](F)12[EFμν(F)EFνμ(F)].E_{F}^{\left[\mu\nu\right]}\left(\mathcal{L}_{F}\right)\equiv\frac{1}{2}\left[E_{F}^{\mu\nu}\left(\mathcal{L}_{F}\right)-E_{F}^{\nu\mu}\left(\mathcal{L}_{F}\right)\right]. (11)

Due to the arbitrariness of δAν\delta A_{\nu} in Eq. (9), the equation of motion for the system is

μ𝒟μν=0,\partial_{\mu}\mathcal{D}^{\mu\nu}=0, (12)

where

𝒟μν8πEF[μν](F)\mathcal{D}^{\mu\nu}\equiv-8\pi E_{F}^{\left[\mu\nu\right]}\left(\mathcal{L}_{F}\right) (13)

is the electric displacement tensor.

In Sec. III, we will consider electromagnetic systems coupled with charged particles, and the Lagrangian density \mathcal{L} will depend on 4-potential AμA_{\mu} i.e.,

=(xμ,Aμ,Fμν,,D(n)Fμν).\mathcal{L}=\mathcal{L}\left(x^{\mu},A_{\mu},F_{\mu\nu},\cdots,D^{\left(n\right)}F_{\mu\nu}\right).

Equation (12) then becomes

μ𝒟μν=4πcJfν,\partial_{\mu}\mathcal{D}^{\mu\nu}=\frac{4\pi}{c}J_{f}^{\nu}, (14)

where

JfνcFAνJ_{f}^{\nu}\equiv-c\frac{\partial\mathcal{L}_{F}}{\partial A_{\nu}} (15)

is the free 4-current.

For the standard Maxwell system (6) without free 4-current, the electric displacement tensor is the Faraday tensor, i.e., 𝒟μν=Fμν\mathcal{D}^{\mu\nu}=F^{\mu\nu}, and Eq. (12) reduces to Maxwell’s equation

μFμν=0.\partial_{\mu}F^{\mu\nu}=0. (16)

II.2 Infinitesimal criterion of symmetry and conservation laws

A continuous symmetry of the action 𝒜\mathcal{A} is a group of transformation

(xμ,Aν)(x~μ,A~ν)=gϵ(xμ,Aν),\left(x^{\mu},A^{\nu}\right)\mapsto\left(\tilde{x}^{\mu},\tilde{A}^{\nu}\right)=g_{\epsilon}\cdot\left(x^{\mu},A^{\nu}\right), (17)

such that

F(x~μ,F~μν,D~F~μν,,D~(n)F~μν)d4x~=F(xμ,Fμν,DFμν,,D(n)Fμν)d4x,\int\mathcal{L}_{F}\left(\tilde{x}^{\mu},\tilde{F}_{\mu\nu},\tilde{D}\tilde{F}_{\mu\nu},\cdots,\tilde{D}^{\left(n\right)}\tilde{F}_{\mu\nu}\right)d^{4}\tilde{x}=\int\mathcal{L}_{F}\left(x^{\mu},F_{\mu\nu},DF_{\mu\nu},\cdots,D^{\left(n\right)}F_{\mu\nu}\right)d^{4}x, (18)

where gϵg_{\epsilon} constitutes a continuous group of the transformations parameterized by ϵ\epsilon (Olver, 1993). The infinitesimal generator of the transformation group is

𝒗ddϵ|0gϵ(xμ,Aν)=ξμxμ+ϕμAμ.\bm{v}\coloneqq\frac{d}{d\epsilon}|_{0}g_{\epsilon}\cdot\left(x^{\mu},A^{\nu}\right)=\xi^{\mu}\frac{\partial}{\partial x^{\mu}}+\phi_{\mu}\frac{\partial}{\partial A_{\mu}}. (19)

By rewriting the symmetry condition (18) as

ddϵ|0F(x~μ,F~μν,D~F~μν,,D~(n)F~μν)d4x~=0,\frac{d}{d\epsilon}|_{0}\int\mathcal{L}_{F}\left(\tilde{x}^{\mu},\tilde{F}_{\mu\nu},\tilde{D}\tilde{F}_{\mu\nu},\cdots,\tilde{D}^{\left(n\right)}\tilde{F}_{\mu\nu}\right)d^{4}\tilde{x}=0, (20)

we can derive the following infinitesimal version of the symmetry condition,

pr(n+1)𝒗(F)+FDμξμ=0,\text{pr}^{\left(n+1\right)}\bm{v}\left(\mathcal{L}_{F}\right)+\mathcal{L}_{F}D_{\mu}\xi^{\mu}=0, (21)

where pr(n+1)𝒗\text{pr}^{\left(n+1\right)}\bm{v} is the prolongation of 𝒗\bm{v}. The standard prolongation formula for pr(n+1)𝒗\text{pr}^{\left(n+1\right)}\bm{v} can be found in Ref. (Olver, 1993). In the present study, we rewrite the prolongation formula with respect to FμνF_{\mu\nu}, instead of AμA_{\mu}, as

pr(n+1)𝒗=𝒗+[Gσρ+ξσDσFσρ]FFσρ\displaystyle\text{pr}^{\left(n+1\right)}\bm{v}=\bm{v}+\left[G_{\sigma\rho}+\xi^{\sigma}D_{\sigma}F_{\sigma\rho}\right]\frac{\partial\mathcal{L}_{F}}{\partial F_{\sigma\rho}}
+i=1n[Dμ1DμiGσρ+ξσDσDμ1DμiFσρ]F(μ1μiFσρ),\displaystyle+\sum_{i=1}^{n}\left[D_{\mu_{1}}\cdots D_{\mu_{i}}G_{\sigma\rho}+\xi^{\sigma}D_{\sigma}D_{\mu_{1}}\cdots D_{\mu_{i}}F_{\sigma\rho}\right]\frac{\partial\mathcal{L}_{F}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{i}}F_{\sigma\rho}\right)}, (22)

where

Gσρ=σQρρQσ2[σQρ]G_{\sigma\rho}=\partial_{\sigma}Q_{\rho}-\partial_{\rho}Q_{\sigma}\equiv 2\partial_{[\sigma}Q_{\rho]} (23)

and

Qν=ϕνξσDσAν,Q_{\nu}=\phi_{\nu}-\xi^{\sigma}D_{\sigma}A_{\nu}, (24)

is a characteristic of the Lie algebra.

Combining Eqs. (12) and (21) generates the conservation law corresponding to the symmetry,

Dμ{Fξμ14π𝒟μν(F)Qν+μ}=0,D_{\mu}\left\{\mathcal{L}_{F}\xi^{\mu}-\frac{1}{4\pi}\mathcal{D}^{\mu\nu}\left(\mathcal{L}_{F}\right)Q_{\nu}+\mathbb{P}^{\mu}\right\}=0, (25)

where

μ=i=1nj=1i(1)j+1(Dμj+1DμiGσρ)[Dμ1Dμj1F(μ1μj1μμj+1μiFσρ)].\mathbb{P}^{\mu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}\left(D_{\mu_{j+1}}\cdots D_{\mu_{i}}G_{\sigma\rho}\right)\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}_{F}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\sigma\rho}\right)}\right]. (26)

The conservation law given by Eq. (25) is not gauge-symmetric in general.

II.3 Gauge-symmetrization of the canonical EMT

Now we assume the high-order electromagnetic field theory admits the spacetime translation symmetry, i.e.,

Fxμ=0,\frac{\partial\mathcal{L}_{F}}{\partial x^{\mu}}=0, (27)

and derive the corresponding energy-momentum conservation law. Because of Eq. (27), the action is invariant under the spacetime translation

(xμ,Aν)(xμ+ϵX0μ,Aν),\left(x^{\mu},A_{\nu}\right)\mapsto\left(x^{\mu}+\epsilon X_{0}^{\mu},A_{\nu}\right), (28)

where X0μX_{0}^{\mu} is 4D constant vector field. The infinitesimal generator 𝒗\bm{v}, characteristic QνQ^{\nu}, and GσρG_{\sigma\rho} in Eq. (23) are

𝒗=X0μxμ,\displaystyle\bm{v}=X_{0}^{\mu}\frac{\partial}{\partial x^{\mu}}, (29)
Qν=X0ννAσ,\displaystyle Q^{\nu}=-X_{0}^{\nu}\partial_{\nu}A_{\sigma}, (30)
Gσρ=X0ννFσρ.\displaystyle G_{\sigma\rho}=-X_{0}^{\nu}\partial_{\nu}F_{\sigma\rho}. (31)

The Lagrangian density satisfies the infinitesimal criterion because

X0μFxμ=0,X_{0}^{\mu}\frac{\partial\mathcal{L}_{F}}{\partial x^{\mu}}=0, (32)

which implies a conservation law. Substituting Eqs. (29)-(31) into to Eq. (25), we obtain the canonical energy-momentum conservation law according the standard Noether procedure,

DμTNμν=0,\displaystyle D_{\mu}T_{\text{N}}^{\mu\nu}=0, (33)
TNμν=Fημν+14π𝒟μσνAσΣμν,\displaystyle T_{\text{N}}^{\mu\nu}=\mathcal{L}_{F}\eta^{\mu\nu}+\frac{1}{4\pi}\mathcal{D}^{\mu\sigma}\partial^{\nu}A_{\sigma}-\Sigma^{\mu\nu}, (34)
Σμν=i=1nj=1i(1)j+1(Dμj+1DμiνFσρ)[Dμ1Dμj1F(μ1μj1μμj+1μiFσρ)].\displaystyle\Sigma^{\mu\nu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}\left(D_{\mu_{j+1}}\cdots D_{\mu_{i}}\partial^{\nu}F_{\sigma\rho}\right)\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}_{F}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\sigma\rho}\right)}\right]. (35)

In Eq. (33), TNμνT_{\text{N}}^{\mu\nu} is the canonical EMT derived from the standard Noether procedure.

Obviously, TNμνT_{\text{N}}^{\mu\nu} depends on the gauge as expected. In the expression of TNμνT_{\text{N}}^{\mu\nu} given by Eq. (34), the gauge dependence comes from the second term, and the first and third terms are gauge symmetric. Now we show how to gauge-symmetrize TNμνT_{\text{N}}^{\mu\nu}. Note that because electric displacement tensor 𝒟σμ\mathcal{D}^{\sigma\mu} is anti-symmetric, the following equations hold,

Dμ(Dσσμν)=0,\displaystyle D_{\mu}\left(D_{\sigma}\mathcal{F}^{\sigma\mu\nu}\right)=0, (36)
σμν14π𝒟σμAν.\displaystyle\mathcal{F}^{\sigma\mu\nu}\equiv\frac{1}{4\pi}\mathcal{D}^{\sigma\mu}A^{\nu}. (37)

Here, σμν\mathcal{F}^{\sigma\mu\nu} is a super-potential that is anti-symmetric with respect to the first two indices. For easy reference, we will call σμν\mathcal{F}^{\sigma\mu\nu} displacement-potential tensor. The divergence of σμν\mathcal{F}^{\sigma\mu\nu} defines a divergence-free tensor, i.e.,

T0μνDσσμν=14π𝒟μσσAν,T_{0}^{\mu\nu}\equiv D_{\sigma}\mathcal{F}^{\sigma\mu\nu}=-\frac{1}{4\pi}\mathcal{D}^{\mu\sigma}\partial_{\sigma}A^{\nu}, (38)

where used is made of Eq. (12). When T0μνT_{0}^{\mu\nu} is added to TNμν,T_{\text{N}}^{\mu\nu}, the gauge dependence is removed, i.e.,

DμTGSμν=0,\displaystyle D_{\mu}T_{\text{GS}}^{\mu\nu}=0, (39)
TGSμνTNμν+T0μν=Fημν+14π𝒟μσFσνΣμν,\displaystyle T_{\text{GS}}^{\mu\nu}\equiv T_{\text{N}}^{\mu\nu}+T_{0}^{\mu\nu}=\mathcal{L}_{F}\eta^{\mu\nu}+\frac{1}{4\pi}\mathcal{D}^{\mu\sigma}F_{\;\sigma}^{\nu}-\Sigma^{\mu\nu}, (40)

where TGSμνT_{\text{GS}}^{\mu\nu} is the gauge-symmetric EMT.

It is worthwhile to mention that we derived the gauge-symmetrized EMT TGSμνT_{\text{GS}}^{\mu\nu} from the expression of TNμνT_{\text{N}}^{\mu\nu} in Eq. (34), which is calculated from the prolongation with respect to FμνF_{\mu\nu}. On the other hand, had we started from Eq. (3) and calculated the EMT from the prolongation with respect to AμA_{\mu}, we would have obtained a canonical EMT in the form of

TNμν=FημνΣ^μν,T_{\text{N}}^{\mu\nu}=\mathcal{L}_{F}\eta^{\mu\nu}-\hat{\Sigma}^{\mu\nu}, (41)

where

Σ^μν=i=1n+1j=1i(1)j+1Dμj+1Dμi(νAσ)[Dμ1Dμj1F(μ1μj1μμj+1μiAσ)].\hat{\Sigma}^{\mu\nu}=\sum_{i=1}^{n+1}\sum_{j=1}^{i}\left(-1\right)^{j+1}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(\partial_{\nu}A_{\sigma}\right)\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}_{F}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}A_{\sigma}\right)}\right]. (42)

However, different from the situation in Eq. (34), every term in Eq. (42) is gauge dependent, making the gauge symmetrization difficult, if not impossible.

For the standard Maxwell electromagnetic system specified by Eq. (6), the electric displacement tensor reduces to the Faraday tensor FσμF^{\sigma\mu}, and the displacement-potential tensor σμν\mathcal{F}^{\sigma\mu\nu} reduces to FσμAν/4πF^{\sigma\mu}A^{\nu}/4\pi, coinciding with the tensor used by Blaschke et al. for the U(1)\left(1\right) gauge theory (Blaschke et al., 2016).

II.4 Comparison with the BR method

As described above, the method proposed in the present study employs displacement-potential tensor σμν\mathcal{F}^{\sigma\mu\nu} to gauge-symmetrize the EMT, while the BR method use the super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu} to symmetrize the EMT. In this subsection, we discuss the difference between the displacement-potential tensor σμν\mathcal{F}^{\sigma\mu\nu} in Eq. (36) and the BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu}. To calculate 𝒮σμν\mathcal{S}^{\sigma\mu\nu}, we need to first derive the 4D angular momentum conservation laws generated by the Lorentz symmetry. Assume that system is invariant under rotational transformation in 4D spacetime

(xμ,Aν)(x~μ,A~ν)=(Λϵμσxσ,ΛϵνσAσ),\left(x^{\mu},A^{\nu}\right)\mapsto\left(\tilde{x}^{\mu},\tilde{A}^{\nu}\right)=\left(\Lambda_{\epsilon}^{\mu\sigma}x_{\sigma},\Lambda_{\epsilon}^{\nu\sigma}A_{\sigma}\right), (43)

where {Λϵμσ}\left\{\Lambda_{\epsilon}^{\mu\sigma}\right\} is one-parameter subgroup of the Lorentz group. The infinitesimal generator 𝒗\bm{v}, the characteristic QρQ_{\rho}, and the term GsρG_{s\rho} are calculated respectively by Eqs. (19), (24), and (23) as

𝒗=ddϵ|0(Λϵμσxσ,ΛϵνσAσ)=(Ωμσxσ,ΩμσAσ),\displaystyle\bm{v}=\frac{d}{d\epsilon}|_{0}\left(\Lambda_{\epsilon}^{\mu\sigma}x_{\sigma},\Lambda_{\epsilon}^{\nu\sigma}A_{\sigma}\right)=\left(\Omega^{\mu\sigma}x_{\sigma},\Omega^{\mu\sigma}A_{\sigma}\right), (44)
Qρ=ϕρξαDαAρ=ΩραAαΩαβxβDαAρ,\displaystyle Q_{\rho}=\phi_{\rho}-\xi^{\alpha}D_{\alpha}A_{\rho}=\Omega_{\rho\alpha}A^{\alpha}-\Omega_{\alpha\beta}x^{\beta}D^{\alpha}A_{\rho}, (45)
Gsρ=ΩραFsαΩsαFραΩαβxβαFsρ,\displaystyle G_{s\rho}=\Omega_{\rho\alpha}F_{s}^{\;\alpha}-\Omega_{s\alpha}F_{\rho}^{\;\alpha}-\Omega_{\alpha\beta}x^{\beta}\partial^{\alpha}F_{s\rho}, (46)

where the anti-symmetric tensor Ωμσ=[dΛϵμσ/dϵ]0\Omega^{\mu\sigma}=\left[d\Lambda_{\epsilon}^{\mu\sigma}/d\epsilon\right]_{0} is the Lie algebra element of the Lorentz group. Substituting Eqs. (44)-(46) into Eq. (25), we obtain the angular momentum conservation law in 4D spacetime,

ΩνσDμ{xσTNμν+2EF[μν](F)Aσ+Lμνσ}=0,\Omega_{\nu\sigma}D_{\mu}\left\{x^{\sigma}T_{\text{N}}^{\mu\nu}+2E_{F}^{\left[\mu\nu\right]}\left(\mathcal{L}_{F}\right)A^{\sigma}+L^{\mu\nu\sigma}\right\}=0, (47)

which can be rewritten as

Dμ{[xσTNμνxνTNμσ]+Sμνσ}=0.D_{\mu}\left\{\left[x^{\sigma}T_{\text{N}}^{\mu\nu}-x^{\nu}T_{\text{N}}^{\mu\sigma}\right]+S^{\mu\nu\sigma}\right\}=0. (48)

In above equations,

Lμνσ=i=1nj=1i(1)j+1Dμj+1Dμi(Fρσ)Dμ1Dμj1×\displaystyle L^{\mu\nu\sigma}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(F_{\rho}^{\;\sigma}\right)D_{\mu_{1}}\cdots D_{\mu_{j-1}}\times
[(μ1μj1μμj+1μiFρν)(μ1μj1μμj+1μiFνρ)]\displaystyle\left[\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\rho\nu}\right)}-\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\nu\rho}\right)}\right]
[i=1nj=1i(1)j+1Dμj+1Dμi(xσνFsρ)Dμ1Dμj1(μ1μj1μμj+1μiFsρ)xσΣμν]\displaystyle-\left[\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(x^{\sigma}\partial^{\nu}F_{s\rho}\right)D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{s\rho}\right)}-x^{\sigma}\Sigma^{\mu\nu}\right] (49)
12Sμνσ=EF[μν](F)AσEF[μσ](F)Aν+Δμνσ,\displaystyle\frac{1}{2}S^{\mu\nu\sigma}=E_{F}^{\left[\mu\nu\right]}\left(\mathcal{L}_{F}\right)A^{\sigma}-E_{F}^{\left[\mu\sigma\right]}\left(\mathcal{L}_{F}\right)A^{\nu}+\Delta^{\mu\nu\sigma}, (50)
Δμνσ2Lμ[νσ]\displaystyle\Delta^{\mu\nu\sigma}\equiv 2L^{\mu\left[\nu\sigma\right]}
=i=1nj=1i(1)j+1Dμj+1Dμi{(Fρσ)Dμ1Dμj1[(μ1μj1μμj+1μiFρν)\displaystyle=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left\{\left(F_{\rho}^{\;\sigma}\right)D_{\mu_{1}}\cdots D_{\mu_{j-1}}\left[\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\rho\nu}\right)}\right.\right.
(μ1μj1μμj+1μiFνρ)](Fρν)Dμ1Dμj1\displaystyle\left.\vphantom{\left(F_{\rho}^{\;\sigma}\right)}-\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\nu\rho}\right)}\right]-\left(F_{\rho}^{\;\nu}\right)D_{\mu_{1}}\cdots D_{\mu_{j-1}}
×[(μ1μj1μμj+1μiFρσ)(μ1μj1μμj+1μiFσρ)]}\displaystyle\left.\vphantom{\left(F_{\rho}^{\;\sigma}\right)}\times\left[\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\rho\sigma}\right)}-\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{\sigma\rho}\right)}\right]\right\}
i=1nj=1i(1)j+1Dμj+1Dμi(xσνFsρxνσFsρ)Dμ1Dμj1×\displaystyle-\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j+1}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(x^{\sigma}\partial^{\nu}F_{s\rho}-x^{\nu}\partial^{\sigma}F_{s\rho}\right)D_{\mu_{1}}\cdots D_{\mu_{j-1}}\times
(μ1μj1μμj+1μiFsρ)+xσΣμνxνΣμσ,\displaystyle\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu_{1}}\cdots\partial_{\mu_{j-1}}\partial_{\mu}\partial_{\mu_{j+1}}\cdots\partial_{\mu_{i}}F_{s\rho}\right)}+x^{\sigma}\Sigma^{\mu\nu}-x^{\nu}\Sigma^{\mu\sigma}, (51)

where the superscript [μν]\left[\mu\nu\right] denotes anti-symmetrization with respect to μ\mu and ν\nu.

The anti-symmetric BR super-potentail 𝒮σμν\mathcal{S}^{\sigma\mu\nu} is defined from the tensor SσμνS^{\sigma\mu\nu} in Eq. (48) as (Belinfante, 1939, 1940; Rosenfeld, 1940)

𝒮σμν\displaystyle\mathcal{S}^{\sigma\mu\nu} 12[SσνμSμνσSνμσ].\displaystyle\equiv\frac{1}{2}\left[S^{\sigma\nu\mu}-S^{\mu\nu\sigma}-S^{\nu\mu\sigma}\right]. (52)

It is clear from Eqs. (49)-(51) that 𝒮σμν\mathcal{S}^{\sigma\mu\nu} and σμν\mathcal{F}^{\sigma\mu\nu} are related as follows,

𝒮σμν=σμν+12[ΔσνμΔμνσΔνμσ].\mathcal{S}^{\sigma\mu\nu}=\mathcal{F}^{\sigma\mu\nu}+\frac{1}{2}\left[\Delta^{\sigma\nu\mu}-\Delta^{\mu\nu\sigma}-\Delta^{\nu\mu\sigma}\right]. (53)

Equation (52) shows that in general σμν\mathcal{F}^{\sigma\mu\nu} is different from 𝒮σμν\mathcal{S}^{\sigma\mu\nu} when Δσνμ\Delta^{\sigma\nu\mu} is non-vanishing. For a first-order field theory, such as the standard Maxwell system (6), n=1n=1 and the last three terms vanish such that 𝒮σμν=σμν\mathcal{S}^{\sigma\mu\nu}=\mathcal{F}^{\sigma\mu\nu}. In this situation, adding T0μνDσσμνT_{0}^{\mu\nu}\equiv D_{\sigma}\mathcal{F}^{\sigma\mu\nu} to TNμνT_{\text{N}}^{\mu\nu} will render it both symmetric and gauge-symmetric, and the method developed here can be used as a simpler procedure to calculate the BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu} without the necessity to calculate the angular momentum tensor in 4D spacetime.

As an example of high-order electromagnetic field theory, we consider the Podolsky system (Bopp, 1940; Podolsky, 1942), which was proposed to study the radiation reaction of classical charged particles. The Podolsky Lagrangian density is

Po=18π{𝑬2𝑩2+a2[(𝑬)2(×𝑩1ct𝑬)2]}\mathcal{L}_{\text{Po}}=\frac{1}{8\pi}\left\{\bm{E}^{2}-\bm{B}^{2}+a^{2}\left[\left(\bm{\nabla}\cdot\bm{E}\right)^{2}-\left(\bm{\nabla}\times\bm{B}-\frac{1}{c}\partial_{t}\bm{E}\right)^{2}\right]\right\} (54)

or in a manifestly covariant form

Po=116πFσρFσρa28πσFσλρFρλ.\mathcal{L}_{\text{Po}}=-\frac{1}{16\pi}F_{\sigma\rho}F^{\sigma\rho}-\frac{a^{2}}{8\pi}\partial_{\sigma}F^{\sigma\lambda}\partial^{\rho}F_{\rho\lambda}. (55)

We substitute the Lagrangian density (55) into Eq. (34) to obtain the canonical EMT

4πTNμν=(14FσρFσρa22σFσλρFρλ)ημν\displaystyle 4\pi T_{\text{N}}^{\mu\nu}=\left(-\frac{1}{4}F_{\sigma\rho}F^{\sigma\rho}-\frac{a^{2}}{2}\partial_{\sigma}F^{\sigma\lambda}\partial^{\rho}F_{\rho\lambda}\right)\eta^{\mu\nu}
+[Fμσa2(μλFλσσλFλμ)]νAσ+a2(νFρμ)(σFσρ),\displaystyle+\left[F^{\mu\sigma}-a^{2}\left(\partial^{\mu}\partial_{\lambda}F^{\lambda\sigma}-\partial^{\sigma}\partial_{\lambda}F^{\lambda\mu}\right)\right]\partial^{\nu}A_{\sigma}+a^{2}\left(\partial^{\nu}F_{\;\rho}^{\mu}\right)\left(\partial_{\sigma}F^{\sigma\rho}\right), (56)

where use is made of the following equations,

(σFμν)[αFαλρFρλ]=2ησμλFλν,\displaystyle\frac{\partial}{\partial\left(\partial_{\sigma}F_{\mu\nu}\right)}\left[\partial_{\alpha}F^{\alpha\lambda}\partial^{\rho}F_{\rho\lambda}\right]=2\eta^{\sigma\mu}\partial_{\lambda}F^{\lambda\nu}, (57)
Dσ(σFμν)[αFαλρFρλ]=2μσFσν,\displaystyle D_{\sigma}\frac{\partial}{\partial\left(\partial_{\sigma}F_{\mu\nu}\right)}\left[\partial_{\alpha}F^{\alpha\lambda}\partial^{\rho}F_{\rho\lambda}\right]=2\partial^{\mu}\partial_{\sigma}F^{\sigma\nu}, (58)
EFμσ=PoFμσDρPoρFμσ=18πFμσ+a24πμλFλσ,\displaystyle E_{F}^{\mu\sigma}=\frac{\partial\mathcal{L}_{\text{Po}}}{\partial F_{\mu\sigma}}-D_{\rho}\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\partial_{\rho}F_{\mu\sigma}}=-\frac{1}{8\pi}F^{\mu\sigma}+\frac{a^{2}}{4\pi}\partial^{\mu}\partial_{\lambda}F^{\lambda\sigma}, (59)
2EF[μσ]=14πFμσ+a24π(μλFλσσλFλμ),\displaystyle 2E_{F}^{\left[\mu\sigma\right]}=-\frac{1}{4\pi}F^{\mu\sigma}+\frac{a^{2}}{4\pi}\left(\partial^{\mu}\partial_{\lambda}F^{\lambda\sigma}-\partial^{\sigma}\partial_{\lambda}F^{\lambda\mu}\right), (60)
Σμν=(νFσρ)Po(μFσρ)=a24πνFσρ[ημσλFλρ]=a24π(νFρμ)(σFσρ).\displaystyle\Sigma^{\mu\nu}=\left(\partial^{\nu}F_{\sigma\rho}\right)\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\left(\partial_{\mu}F_{\sigma\rho}\right)}=-\frac{a^{2}}{4\pi}\partial^{\nu}F_{\sigma\rho}\left[\eta^{\mu\sigma}\partial_{\lambda}F^{\lambda\rho}\right]=-\frac{a^{2}}{4\pi}\left(\partial^{\nu}F_{\;\rho}^{\mu}\right)\left(\partial_{\sigma}F^{\sigma\rho}\right). (61)

The displacement-potential tensor is

μνσ14π𝒟σμAν=14π[Fμσ+a2(μλFλσσλFλμ)]Aν,\mathcal{F}^{\mu\nu\sigma}\equiv\frac{1}{4\pi}\mathcal{D}^{\sigma\mu}A^{\nu}=\frac{1}{4\pi}\left[-F^{\mu\sigma}+a^{2}\left(\partial^{\mu}\partial_{\lambda}F^{\lambda\sigma}-\partial^{\sigma}\partial_{\lambda}F^{\lambda\mu}\right)\right]A^{\nu}, (62)

and

4πσμνσ=[Fμσ+a2(μλFλσσλFλμ)]σAν.4\pi\partial_{\sigma}\mathcal{F}^{\mu\nu\sigma}=\left[-F^{\mu\sigma}+a^{2}\left(\partial^{\mu}\partial_{\lambda}F^{\lambda\sigma}-\partial^{\sigma}\partial_{\lambda}F^{\lambda\mu}\right)\right]\partial_{\sigma}A^{\nu}. (63)

Adding Eq. (63) to Eq. (56), we obtain the gauge-symmetric EMT,

4πTGSμν=[FμσFνσ14(FσρFσρ)ημν]a22(σFσλρFρλ)ημν\displaystyle 4\pi T_{\text{GS}}^{\mu\nu}=\left[F^{\mu\sigma}F_{\nu\sigma}-\frac{1}{4}\left(F_{\sigma\rho}F^{\sigma\rho}\right)\eta^{\mu\nu}\right]-\frac{a^{2}}{2}\left(\partial_{\sigma}F^{\sigma\lambda}\partial^{\rho}F_{\rho\lambda}\right)\eta^{\mu\nu}
a2Fσν(μρFρσ)+a2Fσν(σρFρμ)+a2(νFρμ)(σFσρ).\displaystyle-a^{2}F_{\;\sigma}^{\nu}\left(\partial^{\mu}\partial_{\rho}F^{\rho\sigma}\right)+a^{2}F_{\;\sigma}^{\nu}\left(\partial^{\sigma}\partial_{\rho}F^{\rho\mu}\right)+a^{2}\left(\partial^{\nu}F_{\;\rho}^{\mu}\right)\left(\partial_{\sigma}F^{\sigma\rho}\right). (64)

It is easy to see that TGSμνT_{\text{GS}}^{\mu\nu} for the Podolsky system is not symmetric, i.e., TGSμνTGSνμT_{\text{GS}}^{\mu\nu}\neq T_{\text{GS}}^{\nu\mu}.

To calculate the BR EMT TBRμνT_{\text{BR}}^{\mu\nu} for the Podolsky system, we evaluate the Δμνσ\Delta^{\mu\nu\sigma} term in Eq. (52). Using Eq. (51), we have

Δμνσ\displaystyle\Delta^{\mu\nu\sigma} =Fρσ[Po(μFρν)Po(μFνρ)]Fρν[Po(μFρσ)Po(μFσρ)]\displaystyle=F_{\rho}^{\;\sigma}\left[\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\left(\partial_{\mu}F_{\rho\nu}\right)}-\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\left(\partial_{\mu}F_{\nu\rho}\right)}\right]-F_{\rho}^{\;\nu}\left[\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\left(\partial_{\mu}F_{\rho\sigma}\right)}-\frac{\partial\mathcal{L}_{\text{Po}}}{\partial\left(\partial_{\mu}F_{\sigma\rho}\right)}\right]
=a24π[FμσρFρνημν(FρσλFλρ)FμνρFρσ+ημσFρν(λFλρ)].\displaystyle=-\frac{a^{2}}{4\pi}\left[F^{\mu\sigma}\partial_{\rho}F^{\rho\nu}-\eta^{\mu\nu}\left(F_{\rho}^{\;\sigma}\partial_{\lambda}F^{\lambda\rho}\right)-F^{\mu\nu}\partial_{\rho}F^{\rho\sigma}+\eta^{\mu\sigma}F_{\rho}^{\;\nu}\left(\partial_{\lambda}F^{\lambda\rho}\right)\right]. (65)

Substituting Eqs. (52) and (65) into Eq. (1), we obtain the BR EMT as

4πTBRμν=4πTGSμν+2π[ΔσνμΔμνσΔνμσ]\displaystyle 4\pi T_{\text{BR}}^{\mu\nu}=4\pi T_{\text{GS}}^{\mu\nu}+2\pi\left[\Delta^{\sigma\nu\mu}-\Delta^{\mu\nu\sigma}-\Delta^{\nu\mu\sigma}\right]
=[FμσFνσ14(FσρFσρ)ημν]+a22[(σFσρ)(λFλρ)2Fρσ(σλFλρ)]ημν\displaystyle=\left[F^{\mu\sigma}F_{\nu\sigma}-\frac{1}{4}\left(F_{\sigma\rho}F^{\sigma\rho}\right)\eta^{\mu\nu}\right]+\frac{a^{2}}{2}\left[\left(\partial_{\sigma}F^{\sigma\rho}\right)\left(\partial^{\lambda}F_{\lambda\rho}\right)-2F_{\rho}^{\;\sigma}\left(\partial_{\sigma}\partial_{\lambda}F^{\lambda\rho}\right)\right]\eta^{\mu\nu}
+a2[Fνσ(σρFρμ)+Fμσ(σρFρν)(σFσμ)(ρFρν)\displaystyle+a^{2}\left[F^{\nu\sigma}\left(\partial_{\sigma}\partial_{\rho}F^{\rho\mu}\right)+F^{\mu\sigma}\left(\partial_{\sigma}\partial_{\rho}F^{\rho\nu}\right)-\left(\partial_{\sigma}F^{\sigma\mu}\right)\left(\partial_{\rho}F^{\rho\nu}\right)\right.
Fσν(μρFρσ)Fσμ(νρFρσ)].\displaystyle\left.\vphantom{\left(\partial_{\rho}F^{\rho\nu}\right)}-F_{\;\sigma}^{\nu}\left(\partial^{\mu}\partial_{\rho}F^{\rho\sigma}\right)-F_{\;\sigma}^{\mu}\left(\partial^{\nu}\partial_{\rho}F^{\rho\sigma}\right)\right]. (66)

It is easy to verify that TBRμνT_{\text{BR}}^{\mu\nu} for the Podolsky system is both symmetric and gauge-symmetric.

III Gauge-symmetric EMTs for electromagnetic systems coupled with classical charged particles

For self-consistent electromagnetic systems with free currents, the electromagnetic fields are coupled with charged particles. In this section, we apply the theory established in Sec. II to derive gauge-symmetric EMTs for electromagnetic systems coupled with classical charged particles.

For practical applications, such as in the gyrokinetic theory (Qin, 2005; Qin et al., 2007; Fan et al., 2020) for magnetized plasmas, reduced theoretical models are often adopted due to the intrinsic complexity of the systems. The equations of motion for the systems are usually gauge invariant, but the Lagrangian densities are not always specified by manifestly covariant forms. For these systems, energy and momentum conservation laws need to be derived separately. We demonstrate how the energy and momentum conservation laws can be transformed into gauge-symmetric forms using the “3+1” form of Eq. (36), i.e.,

DDt{DD𝒙[𝑬𝑬()φ]}+DD𝒙{DDt[𝑬𝑬()φ]}=0\frac{D}{Dt}\left\{\frac{D}{D\bm{x}}\cdot\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi\right]\right\}+\frac{D}{D\bm{x}}\cdot\left\{\frac{D}{Dt}\left[-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi\right]\right\}=0 (67)

and

DDt{DD𝒙[1c𝑬𝑬()𝑨]}+DD𝒙{DDt[1c𝑬𝑬()𝑨]}=0.\frac{D}{Dt}\left\{\frac{D}{D\bm{x}}\cdot\left[-\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}\right]\right\}+\frac{D}{D\bm{x}}\cdot\left\{\frac{D}{Dt}\left[\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}\right]\right\}=0. (68)

III.1 Weak Euler-Lagrange equation and conservation law

The Lagrangian density of a generic classical electromagnetic field-charge particle system assumes the form of

\displaystyle\mathcal{L} =aa+F,\displaystyle=\sum_{a}\mathcal{L}_{a}+\mathcal{L}_{F}, (69)
a\displaystyle\mathcal{L}_{a} =Laδa,La=La(xμ,𝑿a,𝑿˙a;φ,𝑨,𝑬,𝑩,D𝑬,D𝑩,,Dn𝑬,Dn𝑩)\displaystyle=L_{a}\delta_{a},\quad L_{a}=L_{a}\left(x^{\mu},\bm{X}_{a},\dot{\bm{X}}_{a};\varphi,\bm{A},\bm{E},\bm{B},D\bm{E},D\bm{B},\cdots,D^{n}\bm{E},D^{n}\bm{B}\right) (70)

where the subscript aa labels particles, 𝑿a\bm{X}_{a} is its trajectory, a\mathcal{L}_{a} is its Lagrangian density, and δaδ(𝒙𝑿a)\delta_{a}\equiv\delta\left(\bm{x}-\bm{X}_{a}\right). Here, δ(x)\delta(x) is the Dirac δ\delta-function.

In the “3+1” form, the equations of motion for the electromagnetic field are

𝑬𝑬()=φ,\displaystyle\nabla\cdot\bm{E}_{\bm{E}}\left(\mathcal{L}\right)=-\frac{\partial\mathcal{L}}{\partial\varphi}, (71)
1ct[𝑬𝑬()]×[𝑬𝑩()]=𝑨.\displaystyle-\frac{1}{c}\frac{\partial}{\partial t}\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]-\bm{\nabla}\times\left[\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]=\frac{\partial\mathcal{L}}{\partial\bm{A}}. (72)

In this study, it is assumed that the Lagrangian density \mathcal{L} is linear in terms of φ\varphi and 𝑨\bm{A}, and Eqs. (71) and (72) are thus gauge symmetric. Specifically, we assume that \mathcal{L} depends on φ\varphi and 𝑨\bm{A} only through the term qaδa(φ+𝑨𝑿˙a/c)-q_{a}\delta_{a}(\varphi+\bm{A}\cdot\dot{\bm{X}}_{a}/c), i.e., the Lagrangian density can be written as

=a[φ+1c𝑨𝑿˙a]qaδa+GSP(),\mathcal{L}=\sum_{a}\left[-\varphi+\frac{1}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\right]q_{a}\delta_{a}+\text{GSP}\left(\mathcal{L}\right), (73)

where “GSP()\text{GSP}\left(\mathcal{L}\right)” denotes the gauge-symmetric parts of the Lagrangian density \mathcal{L}. The right hand side of Eqs. (71) and (72) are the “3+1” form of Eq. (15), the free charge density ρf\rho_{f} and current density 𝒋f\bm{j}_{f}, respectively. Using Eq. (73), we have

ρf=φ=aqaδa,𝒋f=c𝑨=aqa𝑿˙aδa.\rho_{f}=-\frac{\partial\mathcal{L}}{\partial\varphi}=\sum_{a}q_{a}\delta_{a},\quad\bm{j}_{f}=c\frac{\partial\mathcal{L}}{\partial\bm{A}}=\sum_{a}q_{a}\dot{\bm{X}}_{a}\delta_{a}. (74)

The equation of motion for particles is also derived from the variational principle. However, because particles and field reside on different manifolds, the equation of motion for particles will be the weak EL equation (Qin et al., 2014; Fan et al., 2018, 2019, 2020)

𝑬𝑿a()=DD𝒙(𝑿˙a𝑿˙aa𝑰),\bm{E}_{\bm{X}_{a}}\left(\mathcal{L}\right)=\frac{D}{D\bm{x}}\cdot\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right), (75)

where 𝑬𝑿a\bm{E}_{\bm{X}_{a}} is the Euler operator for the trajectory of the aa-th particle,

𝑬𝑿a=𝑿addt𝑿a˙.\bm{E}_{\bm{X}_{a}}=\frac{\partial}{\partial\bm{X}_{a}}-\frac{d}{dt}\frac{\partial}{\partial\dot{\bm{X}_{a}}}. (76)

To derive a local conservation law from a symmetry, we need the infinitesimal symmetry criterion for the Lagrangian density. A symmetry of the action 𝒜𝑑td3𝒙\mathcal{A}\equiv\int\mathcal{L}dtd^{3}\bm{x} is defined by group transformations

(xμ,𝑿a;φ,𝑨)(x~μ,𝑿~a;φ~,𝑨~)=gϵ(xμ,𝑿a;φ,𝑨),\left(x^{\mu},\bm{X}_{a};\varphi,\bm{A}\right)\mapsto\left(\tilde{x}^{\mu},\tilde{\bm{X}}_{a};\tilde{\varphi},\tilde{\bm{A}}\right)=g_{\epsilon}\cdot\left(x^{\mu},\bm{X}_{a};\varphi,\bm{A}\right), (77)

such that

(x~μ,𝑿~a,𝑬~,𝑩~,,D~n𝑬~,D~n𝑩~)𝑑t~d3𝒙~=(xμ,𝑿a,𝑬,𝑩,,D(n)𝑬,D(n)𝑩)𝑑td3𝒙.\int\mathcal{L}\left(\tilde{x}^{\mu},\tilde{\bm{X}}_{a},\tilde{\bm{E}},\tilde{\bm{B}},\cdots,\tilde{D}^{n}\tilde{\bm{E}},\tilde{D}^{n}\tilde{\bm{B}}\right)d\tilde{t}d^{3}\tilde{\bm{x}}=\int\mathcal{L}\left(x^{\mu},\bm{X}_{a},\bm{E},\bm{B},\cdots,D^{\left(n\right)}\bm{E},D^{\left(n\right)}\bm{B}\right)dtd^{3}\bm{x}. (78)

The corresponding infinitesimal generator of (77) is

𝒗=ξμxμ+a𝜽a𝑿a+ϕ0φ+ϕ𝑨𝑨.\bm{v}=\xi^{\mu}\frac{\partial}{\partial x^{\mu}}+\sum_{a}\bm{\theta}_{a}\cdot\frac{\partial}{\partial\bm{X}_{a}}+\phi_{0}\frac{\partial}{\partial\varphi}+\bm{\phi}_{\bm{A}}\cdot\frac{\partial}{\partial\bm{A}}. (79)

The infinitesimal criterion of the symmetry condition can be derived using the same procedure in Sec. II.2,

pr(n+1)𝒗()+Dμξμ=0.\text{pr}^{\left(n+1\right)}\bm{v}\left(\mathcal{L}\right)+\mathcal{L}D_{\mu}\xi^{\mu}=0. (80)

The prolongation of 𝒗\bm{v} now reads

pr(n+1)𝒗()\displaystyle\text{pr}^{\left(n+1\right)}\bm{v}\left(\mathcal{L}\right)
=𝒗+a[(𝒒˙a+ξt𝑿¨a)𝑿˙a][Q0+ξμDμ(φ)]𝑬\displaystyle=\bm{v}+\sum_{a}\left[\left(\dot{\bm{q}}_{a}+\xi^{t}\ddot{\bm{X}}_{a}\right)\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right]-\left[\bm{\nabla}Q_{0}+\xi^{\mu}D_{\mu}\left(\bm{\nabla}\varphi\right)\right]\cdot\frac{\partial\mathcal{L}}{\partial\bm{E}}
i=1n[Dμ1DμiQα0+ξμDμDμ1Dμi(φα)]Dμ1Dμi𝑬\displaystyle-\cdots-\sum_{i=1}^{n}\left[D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{\nabla}Q_{\alpha 0}+\xi^{\mu}D_{\mu}D_{\mu_{1}}\cdots D_{\mu_{i}}\left(\bm{\nabla}\varphi_{\alpha}\right)\right]\cdot\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{E}}
[Dt𝑸𝑨+ξμDμ𝑨,t](1c𝑬)\displaystyle-\left[D_{t}\bm{Q}_{\bm{A}}+\xi^{\mu}D_{\mu}\bm{A}_{,t}\right]\cdot\left(\frac{1}{c}\frac{\partial\mathcal{L}}{\partial\bm{E}}\right)
i=1n[Dμ1DμiDt𝑸𝑨+ξμDμDμ1Dμi𝑨,t]Dμ1Dμi𝑬\displaystyle-\cdots-\sum_{i=1}^{n}\left[D_{\mu_{1}}\cdots D_{\mu_{i}}D_{t}\bm{Q}_{\bm{A}}+\xi^{\mu}D_{\mu}D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{A}_{,t}\right]\cdot\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{E}}
+[𝑸𝑨+ξμDμ𝑨]:(𝜺𝑩)\displaystyle+\left[\bm{\nabla}\bm{Q}_{\bm{A}}+\xi^{\mu}D_{\mu}\bm{\nabla}\bm{A}\right]:\left(\bm{\varepsilon}\cdot\frac{\partial\mathcal{L}}{\partial\bm{B}}\right)
++i=1n[Dμ1Dμi𝑸𝑨+ξμDμDμ1Dμi𝑨]:(𝜺Dμ1Dμi𝑩),\displaystyle+\cdots+\sum_{i=1}^{n}\left[D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{\nabla}\bm{Q}_{\bm{A}}+\xi^{\mu}D_{\mu}D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{\nabla}\bm{A}\right]:\left(\bm{\varepsilon}\cdot\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{i}}\bm{B}}\right), (81)

where

𝒒a=𝜽aξt𝑿˙a\bm{q}_{a}=\bm{\theta}_{a}-\xi^{t}\dot{\bm{X}}_{a} (82)

is another characteristic of 𝒗\bm{v} induced by particle’s trajectory. To obtain the corresponding conservation law, we transform the infinitesimal criterion into

t[ξt1c𝑸𝑨𝑬𝑬()+a(𝒒a𝑿˙a)]+[𝜿Q0𝑬𝑬()+𝑸𝑨×𝑬𝑩()]\displaystyle\partial_{t}\left[\mathcal{L}\xi^{t}-\frac{1}{c}\bm{Q}_{\bm{A}}\cdot\bm{E}_{\bm{E}}\left(\mathcal{L}\right)+\sum_{a}\left(\bm{q}_{a}\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)\right]+\bm{\nabla}\cdot\left[\mathcal{L}\bm{\kappa}-Q_{0}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)+\bm{Q}_{\bm{A}}\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]
+Dμ[1μ+2μ]+a[𝒒a𝑬𝑿a()]+{φ+[𝑬𝑬()]}Q0\displaystyle+D_{\mu}\left[\mathcal{\mathbb{P}}_{1}^{\mu}+\mathcal{\mathbb{P}}_{2}^{\mu}\right]+\sum_{a}\left[\bm{q}_{a}\cdot\bm{E}_{\bm{X}_{a}}\left(\mathcal{L}\right)\right]+\left\{\frac{\partial\mathcal{L}}{\partial\varphi}+\bm{\nabla}\cdot\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]\right\}Q_{0}
+{𝑨+1ct[𝑬𝑬()]+[×𝑬𝑩()]}𝑸𝑨=0,\displaystyle+\left\{\frac{\partial\mathcal{L}}{\partial\bm{A}}+\frac{1}{c}\partial_{t}\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]+\left[\bm{\nabla}\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\right\}\cdot\bm{Q}_{\bm{A}}=0, (83)

where

1μ\displaystyle\mathcal{\mathbb{P}}_{1}^{\mu} =i=1nj=1i(1)jDμj+1Dμi(Q0+1cDt𝑸𝑨)\displaystyle=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(\bm{\nabla}Q_{0}+\frac{1}{c}D_{t}\bm{Q}_{\bm{A}}\right)
[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑬],\displaystyle\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{E}}\right], (84)
2μ\displaystyle\mathbb{P}_{2}^{\mu} =i=1nj=1i(1)jDμj+1Dμi(×𝑸𝑨)\displaystyle=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\left(-\bm{\nabla}\times\bm{Q}_{\bm{A}}\right)
[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑩].\displaystyle\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{B}}\right]. (85)

The last two terms on the left-hand-side of Eq. (83) vanish due to Eqs. (71) and (72), but the fourth term does not because of the weak EL equation (75). If the characteristic 𝒒a\bm{q}_{a} is independent of 𝒙\bm{x}, 𝑬\bm{E}, and 𝑩\bm{B}, the conservation law of the symmetry is established as

t[ξt1c𝑸𝑨𝑬𝑬()+a(𝒒a𝑿˙a)]+[𝜿Q0𝑬𝑬()\displaystyle\partial_{t}\left[\mathcal{L}\xi^{t}-\frac{1}{c}\bm{Q}_{\bm{A}}\cdot\bm{E}_{\bm{E}}\left(\mathcal{L}\right)+\sum_{a}\left(\bm{q}_{a}\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)\right]+\bm{\nabla}\cdot\left[\mathcal{L}\bm{\kappa}-Q_{0}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right.
+𝑸𝑨×𝑬𝑩()+a(𝑿˙aa𝑿˙aa𝑰)𝒒a]+Dμ[1μ+2μ]=0.\displaystyle\left.\vphantom{\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}}+\bm{Q}_{\bm{A}}\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)+\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\cdot\bm{q}_{a}\right]+D_{\mu}\left[\mathcal{\mathbb{P}}_{1}^{\mu}+\mathcal{\mathbb{P}}_{2}^{\mu}\right]=0. (86)

III.2 Gauge-symmetric energy conservation law

We first derive the gauge-symmetric energy conservation law, assuming that the action 𝒜𝑑td3𝒙\mathcal{A}\equiv\int\mathcal{L}dtd^{3}\bm{x} is unchanged under the time translation

(t,𝒙,𝑿a,φ,𝑨)(t+ϵ,𝒙,𝑿a,φ,𝑨),ϵ.\left(t,\bm{x},\bm{X}_{a},\varphi,\bm{A}\right)\mapsto\left(t+\epsilon,\bm{x},\bm{X}_{a},\varphi,\bm{A}\right),\epsilon\in\mathbb{R}. (87)

The infinitesimal generator and characteristic are calculated as

𝒗=t,ξt=1,𝜿=0,𝜽a=0,ϕ0=ϕ𝑨=0,\displaystyle\bm{v}=\frac{\partial}{\partial t},\medspace\xi^{t}=1,\bm{\kappa}=0,\>\bm{\theta}_{a}=0,\medspace\phi_{0}=\bm{\phi}_{\bm{A}}=0, (88)
𝒒a=𝑿˙a, Q0=φ,t,𝑸𝑨=𝑨,t.\displaystyle\bm{q}_{a}=-\dot{\bm{X}}_{a},\text{$\;$}Q_{0}=-\varphi_{,t},\medspace\bm{Q}_{\bm{A}}=-\bm{A}_{,t}. (89)

And the infinitesimal criterion (80) of the symmetry is

t=0.\frac{\partial\mathcal{L}}{\partial t}=0. (90)

The corresponding energy conservation law is thus

t[+1c𝑨,t𝑬𝑬()a(𝑿˙a𝑿˙a)]+{[φ,t𝑬𝑬()𝑨,t×𝑬𝑩()]\displaystyle\partial_{t}\left[\mathcal{L}+\frac{1}{c}\bm{A}_{,t}\cdot\bm{E}_{\bm{E}}\left(\mathcal{L}\right)-\sum_{a}\left(\dot{\bm{X}}_{a}\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)\right]+\bm{\nabla}\cdot\left\{\left[\varphi_{,t}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)-\bm{A}_{,t}\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\right.
a(𝑿˙aa𝑿˙aa𝑰)𝑿˙a}+Dμ[1μ+2μ]=0,\displaystyle\left.\vphantom{\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}}-\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\cdot\dot{\bm{X}}_{a}\right\}+D_{\mu}\left[\mathcal{\mathbb{P}}_{1}^{\mu}+\mathcal{\mathbb{P}}_{2}^{\mu}\right]=0, (91)

where

1μ=i=1nj=1i(1)jDμj+1Dμit𝑬[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑬],\displaystyle\mathcal{\mathbb{P}}_{1}^{\mu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\partial_{t}\bm{E}\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{E}}\right], (92)
2μ=i=1nj=1i(1)jDμj+1Dμit𝑩[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑩].\displaystyle\mathcal{\mathbb{P}}_{2}^{\mu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\partial_{t}\bm{B}\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{B}}\right]. (93)

The energy density and flux in Eq. (91) are obviously gauge dependent. To gauge-symmetrize the conservation law, we add Eq. (67) to Eq. (91) and obtain,

t[φφa(𝑿˙a𝑿˙a)𝑬𝑬𝑬()]+{c𝑬×𝑬𝑩()\displaystyle\partial_{t}\left[\mathcal{L}-\frac{\partial\mathcal{L}}{\partial\varphi}\varphi-\sum_{a}\left(\dot{\bm{X}}_{a}\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)-\bm{E}\cdot\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]+\bm{\nabla}\cdot\left\{c\bm{E}\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right.
+c𝑨φa(𝑿˙aa𝑿˙aa𝑰)𝑿˙a}+Dμ[1μ+2μ]=0.\displaystyle\left.\vphantom{\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}}+c\frac{\partial\mathcal{L}}{\partial\bm{A}}\varphi-\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\cdot\dot{\bm{X}}_{a}\right\}+D_{\mu}\left[\mathcal{\mathbb{P}}_{1}^{\mu}+\mathcal{\mathbb{P}}_{2}^{\mu}\right]=0. (94)

In deriving Eq. (94), we have rewritten the first and second terms of Eq. (67) as

DDt{DD𝒙[𝑬𝑬()φ]}=DDt{[𝑬𝑬()]φ+𝑬𝑬()φ}\displaystyle\frac{D}{Dt}\left\{\frac{D}{D\bm{x}}\cdot\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi\right]\right\}=\frac{D}{Dt}\left\{\bm{\nabla}\cdot\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]\varphi+\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\cdot\bm{\nabla}\varphi\right\}
=DDt{φφ+𝑬𝑬()φ},\displaystyle=\frac{D}{Dt}\left\{-\frac{\partial\mathcal{L}}{\partial\varphi}\varphi+\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\cdot\bm{\nabla}\varphi\right\}, (95)
DD𝒙{DDt[𝑬𝑬()φ]}=DD𝒙{t[𝑬𝑬()]φ𝑬𝑬()φ,t}\displaystyle\frac{D}{D\bm{x}}\cdot\left\{\frac{D}{Dt}\left[-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi\right]\right\}=\frac{D}{D\bm{x}}\cdot\left\{-\frac{\partial}{\partial t}\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]\varphi-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi_{,t}\right\}
=DD𝒙{c×[𝑬𝑩()]φ+c𝑨φ𝑬𝑬()φ,t}\displaystyle=\frac{D}{D\bm{x}}\cdot\left\{c\bm{\nabla}\times\left[\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\varphi+c\frac{\partial\mathcal{L}}{\partial\bm{A}}\varphi-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi_{,t}\right\}
=DD𝒙{𝑬𝑬()φ,tcφ×𝑬𝑩()+c𝑨φ},\displaystyle=\frac{D}{D\bm{x}}\cdot\left\{-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\varphi_{,t}-c\bm{\nabla}\varphi\times\bm{E}_{\bm{B}}\left(\mathcal{L}\right)+c\frac{\partial\mathcal{L}}{\partial\bm{A}}\varphi\right\}, (96)

where use has been made of Eqs. (71) and (72). Adding Eqs. (95) and (96) to Eq. (91) leads to Eq. (94).

We now prove that the energy density and flux in Eq. (94) are gauge symmetric. It suffices to show that the following terms

s1\displaystyle s_{1} φφa(𝑿˙a𝑿˙a),\displaystyle\equiv\mathcal{L}-\frac{\partial\mathcal{L}}{\partial\varphi}\varphi-\sum_{a}\left(\dot{\bm{X}}_{a}\cdot\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right), (97)
𝒔2\displaystyle\bm{s}_{2} c𝑨φa(𝑿˙aa𝑿˙aa𝑰)𝑿˙a\displaystyle\equiv c\frac{\partial\mathcal{L}}{\partial\bm{A}}\varphi-\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\cdot\dot{\bm{X}}_{a}

are gauge symmetric. Substituting Eq. (73) into the expression of s1s_{1}, we have

s1=a[qaφδa+qac𝑨𝑿˙aδa]+GIP()\displaystyle s_{1}=\sum_{a}\left[-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right]+\text{GIP}\left(\mathcal{L}\right)
φ[a(qaφδa+qac𝑨𝑿˙aδa)]φa[𝑿˙a𝑿˙a(qaφδa+qac𝑨𝑿˙aδa)]\displaystyle-\frac{\partial}{\partial\varphi}\left[\sum_{a}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\right]\varphi-\sum_{a}\left[\dot{\bm{X}}_{a}\cdot\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\right]
=GSP().\displaystyle=\text{GSP}\left(\mathcal{L}\right). (98)

Similarly, 𝒔2\bm{s}_{2} is also gauge symmetric,

𝒔2=c𝑨φa(𝑿˙aa𝑿˙aa𝑰)𝑿˙a=c𝑨[a(qaφδa+qac𝑨𝑿˙aδa)]φ\displaystyle\bm{s}_{2}=c\frac{\partial\mathcal{L}}{\partial\bm{A}}\varphi-\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\cdot\dot{\bm{X}}_{a}=c\frac{\partial}{\partial\bm{A}}\left[\sum_{a}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\right]\varphi
a{𝑿˙a𝑿˙a(qaφδa+qac𝑨𝑿˙aδa)(qaφδa+qac𝑨𝑿˙aδa)𝑰+GSP(a)𝑰}𝑿˙a\displaystyle-\sum_{a}\left\{\dot{\bm{X}}_{a}\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)-\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\bm{I}+\text{GSP}\left(\mathcal{L}_{a}\right)\bm{I}\right\}\cdot\dot{\bm{X}}_{a}
=aGSP(a)𝑿˙a.\displaystyle=\sum_{a}\text{GSP}\left(\mathcal{L}_{a}\right)\dot{\bm{X}}_{a}. (99)

III.3 Gauge-symmetric momentum conservation law

We now discuss how to derive a gauge-symmetric momentum conservation law, assuming that the action 𝒜𝑑td3𝒙\mathcal{A}\equiv\int\mathcal{L}dtd^{3}\bm{x} of the electromagnetic field-charged particle system is invariant under the space translation

(t,x,𝑿a,φ,𝑨)(t,𝒙+ϵ𝒉,𝑿a+ϵ𝒉,φ,𝑨),ϵ.\left(t,x,\bm{X}_{a},\varphi,\bm{A}\right)\mapsto\left(t,\bm{x}+\epsilon\bm{h},\bm{X}_{a}+\epsilon\bm{h},\varphi,\bm{A}\right),\epsilon\in\mathbb{R}. (100)

We emphasize that, different from the situation in standard field theories, this symmetry group simultaneously translates both the spatial coordinate 𝒙\bm{x} for the field and particle’s position 𝑿a\bm{X}_{a} (Qin et al., 2014; Fan et al., 2018, 2019). The infinitesimal criterion of this symmetry is

𝒙+a𝑿a=0.\frac{\partial\mathcal{L}}{\partial\bm{x}}+\sum_{a}\frac{\partial\mathcal{L}}{\partial\bm{X}_{a}}=0. (101)

From Eq. (100), the infinitesimal generator and its characteristic are

𝒗=𝒉a(𝒙+𝑿a),ξt=0,𝜿=𝜽a=𝒉,,ϕ0=ϕ𝑨=0,\displaystyle\bm{v}=\bm{h}\cdot\sum_{a}\left(\frac{\partial}{\partial\bm{x}}+\frac{\partial}{\partial\bm{X}_{a}}\right),\medspace\xi^{t}=0,\bm{\kappa}=\bm{\theta}_{a}=\bm{h},,\medspace\phi_{0}=\bm{\phi}_{\bm{A}}=0, (102)
𝒒a=𝒉,Q0=𝒉φ,𝑸𝑨=𝒉𝑨.\displaystyle\bm{q}_{a}=\bm{h},Q_{0}=-\bm{h}\cdot\bm{\nabla}\varphi,\medspace\bm{Q}_{\bm{A}}=-\bm{h}\cdot\bm{\nabla}\bm{A}. (103)

The corresponding momentum conservation law is obtained by substituting Eqs. (102) and (103) into Eq. (86), i.e.,

t[1c𝑬𝑬()(𝑨)T+a(𝑿˙a)]+{𝑰+a(𝑿˙aa𝑿˙aa𝑰)\displaystyle\partial_{t}\left[\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\cdot\left(\bm{\nabla}\bm{A}\right)^{T}+\sum_{a}\left(\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)\right]+\bm{\nabla}\cdot\left\{\mathcal{L}\bm{I}+\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}-\mathcal{L}_{a}\bm{I}\right)\right.
+[𝑬𝑬()φ+𝑬𝑩()×(𝑨)T]}+Dμ[¯1μ+¯2μ]=0,\displaystyle\left.\vphantom{\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}}+\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{\nabla}\varphi+\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\times\left(\bm{\nabla}\bm{A}\right)^{T}\right]\right\}+D_{\mu}\left[\mathcal{\bar{\mathbb{\bm{P}}}}_{1}^{\mu}+\mathcal{\bar{\mathbb{P}}}_{2}^{\mu}\right]=0, (104)

where

¯1μ=i=1nj=1i(1)jDμj+1Dμi𝑬[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑬],\displaystyle\mathcal{\bar{\mathbb{\bm{P}}}}_{1}^{\mu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{\nabla}\bm{E}\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{E}}\right], (105)
¯2μ=i=1nj=1i(1)jDμj+1Dμi𝑩[Dμ1Dμj1Dμ1Dμj1DμDμj+1Dμi𝑩].\displaystyle\mathcal{\bar{\mathbb{\bm{P}}}}_{2}^{\mu}=\sum_{i=1}^{n}\sum_{j=1}^{i}\left(-1\right)^{j}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{\nabla}\bm{B}\cdot\left[D_{\mu_{1}}\cdots D_{\mu_{j-1}}\frac{\partial\mathcal{L}}{\partial D_{\mu_{1}}\cdots D_{\mu_{j-1}}D_{\mu}D_{\mu_{j+1}}\cdots D_{\mu_{i}}\bm{B}}\right]. (106)

Again, the momentum density and flux in Eq. (104) are gauge dependent. We add Eq. (68) to Eq. (104) to obtain a gauge-symmetric momentum conservation law,

t[1c𝑬𝑬()×𝑩+1cφ𝑨+a(𝑿˙a)]+{𝑨𝑨+a(𝑿˙aa𝑿˙a)\displaystyle\partial_{t}\left[\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\times\bm{B}+\frac{1}{c}\frac{\partial\mathcal{L}}{\partial\varphi}\bm{A}+\sum_{a}\left(\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)\right]+\bm{\nabla}\cdot\left\{-\frac{\partial\mathcal{L}}{\partial\bm{A}}\bm{A}+\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}\right)\right.
[F𝑩𝑬𝑩()]𝑰+[𝑬𝑬()𝑬+𝑩𝑬𝑩()]}+Dμ[(¯1μ+¯2μ)]=0.\displaystyle\left.\vphantom{\frac{\partial\mathcal{L}}{\partial\bm{A}_{\alpha}}}\left[\mathcal{L}_{F}-\bm{B}\cdot\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\bm{I}+\left[-\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{E}+\bm{B}\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\right\}+D_{\mu}\left[\left(\mathcal{\bar{\mathbb{\bm{P}}}}_{1}^{\mu}+\mathcal{\bar{\mathbb{\bm{P}}}}_{2}^{\mu}\right)\right]=0. (107)

In the derivation of Eq. (107), we have rewritten the first and second terms of Eq. (68) as

DDt{DD𝒙[1c𝑬𝑬()𝑨]}=DDt{1c[𝑬𝑬()]𝑨1c𝑬𝑬()𝑨}\displaystyle\frac{D}{Dt}\left\{\frac{D}{D\bm{x}}\cdot\left[-\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}\right]\right\}=\frac{D}{Dt}\left\{-\frac{1}{c}\bm{\nabla}\cdot\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]\bm{A}-\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\cdot\bm{\nabla}\bm{A}\right\}
=DDt[1cφ𝑨1c𝑬𝑬()𝑨],\displaystyle=\frac{D}{Dt}\left[\frac{1}{c}\frac{\partial\mathcal{L}}{\partial\varphi}\bm{A}-\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\cdot\bm{\nabla}\bm{A}\right], (108)
DD𝒙{DDt[1c𝑬𝑬()𝑨]}=DD𝒙{1ct[𝑬𝑬()]𝑨+1c𝑬𝑬()𝑨,t}\displaystyle\frac{D}{D\bm{x}}\cdot\left\{\frac{D}{Dt}\left[\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}\right]\right\}=\frac{D}{D\bm{x}}\cdot\left\{\frac{1}{c}\frac{\partial}{\partial t}\left[\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\right]\bm{A}+\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}_{,t}\right\}
=DD𝒙{×[𝑬𝑩()]𝑨𝑨𝑨+1c𝑬𝑬()𝑨,t}\displaystyle=\frac{D}{D\bm{x}}\cdot\left\{-\bm{\nabla}\times\left[\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\right]\bm{A}-\frac{\partial\mathcal{L}}{\partial\bm{A}}\bm{A}+\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}_{,t}\right\}
=DD𝒙{𝑬𝑩()×𝑨𝑨𝑨+1c𝑬𝑬()𝑨,t},\displaystyle=\frac{D}{D\bm{x}}\cdot\left\{-\bm{E}_{\bm{B}}\left(\mathcal{L}\right)\times\bm{\nabla}\bm{A}-\frac{\partial\mathcal{L}}{\partial\bm{A}}\bm{A}+\frac{1}{c}\bm{E}_{\bm{E}}\left(\mathcal{L}\right)\bm{A}_{,t}\right\}, (109)

where use has been made of Eqs. (71) and (72). Adding Eqs. (108) and (109) into Eq. (104) gives Eq. (107).

To show that the momentum density and flux in Eq. (107) are gauge symmetric, it suffices to show that the following terms are gauge symmetric,

𝒕1\displaystyle\bm{t}_{1} 1cφ𝑨+a(𝑿˙a),\displaystyle\equiv\frac{1}{c}\frac{\partial\mathcal{L}}{\partial\varphi}\bm{A}+\sum_{a}\left(\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right), (110)
𝒕2\displaystyle\bm{t}_{2} 𝑨𝑨+a(𝑿˙aa𝑿˙a).\displaystyle\equiv-\frac{\partial\mathcal{L}}{\partial\bm{A}}\bm{A}+\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}\right).

Substituting Eq. (73) into the expression of 𝒕1,\bm{t}_{1}, we can see that it is gauge symmetric, i.e.,

𝒕1=1cφ𝑨+a(𝑿˙a)=1caφ(qaφδa+qac𝑨𝑿˙aδa)𝑨+a𝑿˙a[qaφδa\displaystyle\bm{t}_{1}=\frac{1}{c}\frac{\partial\mathcal{L}}{\partial\varphi}\bm{A}+\sum_{a}\left(\frac{\partial\mathcal{L}}{\partial\dot{\bm{X}}_{a}}\right)=\frac{1}{c}\sum_{a}\frac{\partial}{\partial\varphi}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\bm{A}+\sum_{a}\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left[-q_{a}\varphi\delta_{a}\right.
+qac𝑨𝑿˙aδa+GSP(a)]=a𝑿˙a[GSP(a)].\displaystyle\left.\vphantom{\left(\mathcal{L}_{a}\right)}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}+\text{GSP}\left(\mathcal{L}_{a}\right)\right]=\sum_{a}\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left[\text{GSP}\left(\mathcal{L}_{a}\right)\right]. (111)

Similarly, 𝒕2\bm{t}_{2} is also gauge-symmetric,

𝒕2=𝑨𝑨+a(𝑿˙aa𝑿˙a)=𝑨(qaφδa+qac𝑨𝑿˙aδa)𝑨\displaystyle\bm{t}_{2}=-\frac{\partial\mathcal{L}}{\partial\bm{A}}\bm{A}+\sum_{a}\left(\dot{\bm{X}}_{a}\frac{\partial\mathcal{L}_{a}}{\partial\dot{\bm{X}}_{a}}\right)=-\frac{\partial}{\partial\bm{A}}\left(-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}\right)\bm{A}
+a𝑿˙a𝑿˙a[qaφδa+qac𝑨𝑿˙aδa+GSP(a)]=a𝑿˙a𝑿˙a[GSP(a)].\displaystyle+\sum_{a}\dot{\bm{X}}_{a}\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left[-q_{a}\varphi\delta_{a}+\frac{q_{a}}{c}\bm{A}\cdot\dot{\bm{X}}_{a}\delta_{a}+\text{GSP}\left(\mathcal{L}_{a}\right)\right]=\sum_{a}\dot{\bm{X}}_{a}\frac{\partial}{\partial\dot{\bm{X}}_{a}}\left[\text{GSP}\left(\mathcal{L}_{a}\right)\right]. (112)

IV conclusion

In this study, we developed a gauge-symmetrization method for the energy and momentum conservation laws in general high-order classical electromagnetic field theories, which appear in the study of gyrokinetic systems (Qin, 2005; Qin et al., 2007; Fan et al., 2020) for magnetized plasmas and the Podolsky system (Bopp, 1940; Podolsky, 1942) for the radiation reaction of classical charged particles. The method only removes the electromagnetic gauge dependence from the canonical EMT derived from the spacetime translation symmetry, without necessarily symmetrizing the EMT with respect to the tensor indices. This is adequate for applications not involving general relativity.

To achieve this goal, we reformulated the EL equation and infinitesimal criterion in terms of the Faraday tensor FμνF_{\mu\nu}. The canonical EMT TNμνT_{\text{N}}^{\mu\nu} is derived using this formalism, and it was found that the gauge dependent part of TNμνT_{\text{N}}^{\mu\nu} can be removed by adding the divergence of the displacement-potential tensor, which is defined as

σμν14π𝒟σμAν.\displaystyle\mathcal{F}^{\sigma\mu\nu}\equiv\frac{1}{4\pi}\mathcal{D}^{\sigma\mu}A^{\nu}. (113)

It was shown that the displacement-potential tensor σμν\mathcal{F}^{\sigma\mu\nu} is related to the well-known BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu} as

𝒮σμν=σμν+12[ΔσνμΔμνσΔνμσ],\mathcal{S}^{\sigma\mu\nu}=\mathcal{F}^{\sigma\mu\nu}+\frac{1}{2}\left[\Delta^{\sigma\nu\mu}-\Delta^{\mu\nu\sigma}-\Delta^{\nu\mu\sigma}\right], (114)

where Δσνμ\Delta^{\sigma\nu\mu} is defined in Eq. (51). Using the example of the Podolsky system (Bopp, 1940; Podolsky, 1942), we show that Δσνμ\Delta^{\sigma\nu\mu} in general is non-vanishing for high-order field theories. For a first-order field theory, such as the standard Maxwell system (6), Δσνμ\Delta^{\sigma\nu\mu} vanishes such that 𝒮σμν=σμν\mathcal{S}^{\sigma\mu\nu}=\mathcal{F}^{\sigma\mu\nu}. In the case, the method developed can be used as a simpler procedure to calculate the BR super-potential 𝒮σμν\mathcal{S}^{\sigma\mu\nu} without the necessity to calculate the angular momentum tensor in 4D spacetime.

Lastly, we applied the method to derive gauge-symmetric EMTs for high-order electromagnetic systems coupled with classical charged particles. Using the “3+1” form of Eq. (36), we obtained the explicitly gauge-symmetric energy and momentum conservation laws in a general setting [see Eqs. (94) and (107)].

Acknowledgements.
P. Fan was supported by Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China (NSFC-12005141). J. Xiao was supported by the National MC Energy R&D Program (2018YFE0304100), National Key Research and Development Program (2016YFA0400600, 2016YFA0400601 and 2016YFA0400602), and the National Natural Science Foundation of China (NSFC-11905220 and 11805273). H. Qin was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

References