This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A finite element elasticity complex in three dimensions

Long Chen Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA [email protected]  and  Xuehai Huang School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China [email protected]
Abstract.

A finite element elasticity complex on tetrahedral meshes is devised. The H1H^{1} conforming finite element is the smooth finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H(inc)H(\operatorname{inc})-conforming finite element for symmetric tensors is the main focus of this paper. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc\operatorname{inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition of polynomial tensor spaces. The trace of the inc\operatorname{inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Our construction appears to be the first H(inc)H(\operatorname{inc})-conforming finite elements on tetrahedral meshes without further splits.

The first author was supported by NSF DMS-1913080 and DMS-2012465.
The second author was supported by the National Natural Science Foundation of China Project 11771338, the Natural Science Foundation of Shanghai 21ZR1480500 and the Fundamental Research Funds for the Central Universities 2019110066.

1. Introduction

A Hilbert complex is a sequence of Hilbert spaces connected by a sequence of linear operators satisfying the property: the composition of two consecutive operators is vanished. Let Ω\Omega be a bounded domain in 3\mathbb{R}^{3}. The elasticity complex

(1) 𝑹𝑴𝑯1(Ω;3)def𝑯(inc,Ω;𝕊) inc 𝑯(div,Ω;𝕊) div 𝑳2(Ω;3)0\boldsymbol{RM}\stackrel{{\scriptstyle\subset}}{{\longrightarrow}}\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{3})\stackrel{{\scriptstyle\operatorname{def}}}{{\longrightarrow}}\boldsymbol{H}(\mathrm{inc},\Omega;\mathbb{S})\stackrel{{\scriptstyle\text{ inc }}}{{\longrightarrow}}\boldsymbol{H}(\operatorname{div},\Omega;\mathbb{S})\stackrel{{\scriptstyle\text{ div }}}{{\longrightarrow}}\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})\rightarrow 0

plays an important role in both theoretical and numerical study of linear elasticity, where 𝑹𝑴\boldsymbol{RM} is the space of the linearized rigid body motion, def\operatorname{def} is the symmetric gradient operator, 𝑯(inc,Ω;𝕊)\boldsymbol{H}(\mathrm{inc},\Omega;\mathbb{S}) is the space of symmetric tensor 𝝉\boldsymbol{\tau} s.t. inc𝝉:=curl(curl𝝉)𝑳2(Ω;𝕄)\operatorname{inc}\boldsymbol{\tau}:=-\operatorname{curl}(\operatorname{curl}\boldsymbol{\tau})^{\intercal}\in\boldsymbol{L}^{2}(\Omega;\mathbb{M}), and 𝑯(div,Ω;𝕊)\boldsymbol{H}(\operatorname{div},\Omega;\mathbb{S}) is the space for the symmetric stress tensor 𝝈\boldsymbol{\sigma} with div𝝈𝑳2(Ω;3)\operatorname{div}\boldsymbol{\sigma}\in\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3}). We shall present a finite element elasticity complex

(2) 𝑹𝑴𝑽hdef𝚺hinc inc 𝚺hdiv div 𝒬h0\boldsymbol{RM}\stackrel{{\scriptstyle\subset}}{{\longrightarrow}}\boldsymbol{V}_{h}\stackrel{{\scriptstyle\operatorname{def}}}{{\longrightarrow}}\boldsymbol{\Sigma}_{h}^{\rm inc}\stackrel{{\scriptstyle\text{ inc }}}{{\longrightarrow}}\boldsymbol{\Sigma}_{h}^{\rm div}\stackrel{{\scriptstyle\text{ div }}}{{\longrightarrow}}\mathcal{Q}_{h}\rightarrow 0

on a tetrahedral mesh 𝒯h\mathcal{T}_{h}. In the complex (2), the H1H^{1}-conforming finite element is the smooth finite element 𝑽h\boldsymbol{V}_{h} developed by Neilan for the velocity field in a finite element Stokes complex [26]. The 𝑯(div;𝕊)\boldsymbol{H}(\operatorname{div};\mathbb{S})-conforming finite element 𝚺hdiv\boldsymbol{\Sigma}_{h}^{\rm div} is the Hu-Zhang element for the symmetric stress tensor [22, 24]. The space 𝒬h\mathcal{Q}_{h} for 𝑳2(Ω;3)\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3}) is simply the discontinuous piecewise polynomial space. The missing component is an 𝑯(inc;𝕊)\boldsymbol{H}(\operatorname{inc};\mathbb{S})-conforming finite element 𝚺hinc\boldsymbol{\Sigma}_{h}^{\rm inc} which is the focus of this work.

In the engineering application, the most important component in the complex (2) is the finite element 𝚺hdiv\boldsymbol{\Sigma}_{h}^{\rm div} for the stress tensor. Construction of finite element for stress tensors can be benefit from the structure of the complex. For example, the bubble polynomial elasticity complex is build and used in [4] to construct a finite element for symmetric stress tensors. Here the bubble polynomial spaces are referred to polynomials with vanished traces on the boundary of each element. In [24], a precise characterization of 𝑯(div;𝕊)\boldsymbol{H}(\operatorname{div};\mathbb{S}) bubble polynomial space is given which leads to a stable k(𝕊)k1(d)\mathbb{P}_{k}(\mathbb{S})-\mathbb{P}_{k-1}(\mathbb{R}^{d}) stress-displacement finite element pair for kd+1,d=2,3k\geq d+1,d=2,3. Identification of its preceding space 𝚺hinc\boldsymbol{\Sigma}_{h}^{\rm inc} will be helpful for the design of fast solvers and a posterior error analysis [10] for the mixed formulation of linear elasticity problems. It may also find application in other fields such as continuum modeling of defects [2] and relativity [14].

Elasticity complex (1) and many more complexes can be derived from composition of de Rham complexes in the so-called Bernstein-Gelfand-Gelfand (BGG) construction [6]. Finite element complexes for the de Rham complex are well understood and can be derived systematically in the framework of Finite Element Exterior Calculus [3, 5]. It is natural to ask if a finite element elasticity complex can be derived by the BGG construction. The key in the BGG construction is the existence of smooth finite element de Rham complexes. With nodal finite element de Rham complexes, a two dimensional finite element elasticity complex has been constructed in [16] which generalizes the first finite element elasticity complex of Arnold and Winther [7].

In three dimensions, however, smooth discrete de Rham complexes are not easy due to the super-smoothness of multivariate splines [20]. To relax the super-smoothness, the element can be further split so that inside one element the shape function is not 𝒞\mathcal{C}^{\infty} smooth. Such approach leads to the so-called macro elements. In particular, a two dimensional elasticity strain complex has been constructed on the Clough-Tocher split of a triangle [17], and more recently a finite element elasticity complex has been constructed on the Alfeld split of a tetrahedron [15] based on the smooth finite element de Rham complex [21] on such split.

We shall construct a finite element elasticity complex on a tetrahedral mesh without further split. Let KK be a polyhedron. We first give a polynomial elasticity complex and a Koszul type complex, which can be summarized as one diagram below:

𝑹𝑴k+1(K;3)defπRMk(K;𝕊)inc𝝉𝒙k2(K;𝕊)div𝒙×𝝉×𝒙k3(K;3)sym(𝒗𝒙)0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.2309pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\crcr}}}\ignorespaces{\hbox{\kern-12.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.50867pt\raise 6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.2309pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k+1}(K;\mathbb{R}^{3})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.63925pt\raise 7.15274pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{def}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.20871pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.54347pt\raise-6.91246pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.82361pt\hbox{$\scriptstyle{\pi_{RM}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 12.23091pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 113.20871pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k}(K;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 158.95319pt\raise 7.0597pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.33751pt\hbox{$\scriptstyle{\operatorname{inc}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 178.42542pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.70613pt\raise-6.27774pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.55556pt\hbox{$\scriptstyle{\boldsymbol{\tau}\cdot\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 89.20872pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 178.42542pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-2}(K;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 228.5449pt\raise 7.15274pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 248.3088pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 152.45026pt\raise-7.05551pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\boldsymbol{x}\times\boldsymbol{\tau}\times\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 154.42543pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 248.3088pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-3}(K;\mathbb{R}^{3})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 307.79773pt\raise 1.72218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 322.79773pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 219.50856pt\raise-8.22218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}(\boldsymbol{v}\boldsymbol{x}^{\intercal})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 224.3088pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 322.79773pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 305.07552pt\raise-6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\supset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 298.79774pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

Several decompositions of polynomial tensor spaces, especially for k(K;𝕊)\mathbb{P}_{k}(K;\mathbb{S}), can be obtained consequently. We then study trace operators for the inc\operatorname{inc} operator since the traces on face and edges are crucial to ensure the H(inc)H(\operatorname{inc})-conformity. To do so, we use more symmetric notation inc𝝉=×𝝉×\operatorname{inc}\boldsymbol{\tau}=\nabla\times\boldsymbol{\tau}\times\nabla and derive the following symmetric form Green’s identity:

(×𝝈×,𝝉)K(𝝈,×𝝉×)K\displaystyle(\nabla\times\boldsymbol{\sigma}\times\nabla,\boldsymbol{\tau})_{K}-(\boldsymbol{\sigma},\nabla\times\boldsymbol{\tau}\times\nabla)_{K} =(tr1(𝝈),tr2(𝝉))K(tr2(𝝈),tr1(𝝉))K\displaystyle=({\rm tr}_{1}(\boldsymbol{\sigma}),{\rm tr}_{2}(\boldsymbol{\tau}))_{\partial K}-({\rm tr}_{2}(\boldsymbol{\sigma}),{\rm tr}_{1}(\boldsymbol{\tau}))_{\partial K}
+F(K)eF(𝒏𝝈×𝒏,𝒕F,e𝝉)e\displaystyle\quad+\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau})_{e}
F(K)eF(𝒕F,e𝝈,𝒏𝝉×𝒏)e,\displaystyle\quad-\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\sigma},\boldsymbol{n}\cdot\boldsymbol{\tau}\times\boldsymbol{n})_{e},

where, with ΠF\Pi_{F} denoting the projection operator to face FF,

tr1(𝝉)\displaystyle{\rm tr}_{1}(\boldsymbol{\tau}) :=𝒏×𝝉×𝒏,\displaystyle:=\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n},
tr2(𝝉)\displaystyle{\rm tr}_{2}(\boldsymbol{\tau}) :=ΠF(𝝉×)×𝒏+F(𝒏𝝉ΠF).\displaystyle:=\Pi_{F}(\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n}+\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\ \Pi_{F}).

We show tr1(𝝉)𝑯(divFdivF,F;𝕊){\rm tr}_{1}(\boldsymbol{\tau})\in\boldsymbol{H}(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) and tr2(𝝉)𝑯(rotF,F;𝕊){\rm tr}_{2}(\boldsymbol{\tau})\in\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{S}), and reveal boundary complexes induced by trace operators; see Section 4.2 for details. Then the edge traces of the face traces tr1(𝝉){\rm tr}_{1}(\boldsymbol{\tau}) and tr2(𝝉){\rm tr}_{2}(\boldsymbol{\tau}) imply the continuity of 𝝉|e\boldsymbol{\tau}|_{e} and (×𝝉)𝒕e(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t}_{e}. Further edge degree of freedoms will be derived from the requirement inc𝝉\operatorname{inc}\boldsymbol{\tau} is in Hu-Zhang finite element space. The face degree of freedom will be based on the decomposition of polynomial tensors of 𝑯(divFdivF,F;𝕊)\boldsymbol{H}(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) and 𝑯(rotF,F;𝕊)\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{S}). The volume degree of freedom is from the decomposition of k(K;𝕊)\mathbb{P}_{k}(K;\mathbb{S}).

Recently there has been a lot progress in the construction of finite elements for tensors [9, 16, 17, 12, 11, 13, 23, 15]. Our construction appears to be the first H(inc)H(\operatorname{inc})-conforming finite elements for symmetric tensors on tetrahedral meshes without further splits. Our finite element spaces are constructed for tetrahedrons but some results, e.g., traces and Green’s formulae etc, hold for general polyhedrons. Our approach of constructing finite element for tensors, through decomposition of polynomial space and characterization of trace operators, seems simpler and more straightforward than the BGG construction through smooth finite element de Rham complexes.

Notation on meshes

Let {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0} be a regular family of polyhedral meshes of Ω\Omega. For each element K𝒯hK\in\mathcal{T}_{h}, denote by 𝒏K\boldsymbol{n}_{K} the unit outward normal vector to K\partial K. In most places, it will be abbreviated as 𝒏\boldsymbol{n} for simplicity. Denote by (K)\mathcal{F}(K), (K)\mathcal{E}(K) and 𝒱(K)\mathcal{V}(K) the set of all faces, edges and vertices of KK, respectively. Similarly let (F)\mathcal{E}(F) be the set of all edges of face FF. For F(K)F\in\mathcal{F}(K), its orientation is given by the outwards normal direction 𝒏K\boldsymbol{n}_{\partial K} which also induces a consistent orientation of edge e(F)e\in\mathcal{E}(F). Namely the edge vectors 𝒕F,e\boldsymbol{t}_{F,e} and outwards normal vector 𝒏K\boldsymbol{n}_{\partial K} follows the right hand rule. Then define 𝒏F,e=𝒕F,e×𝒏K\boldsymbol{n}_{F,e}=\boldsymbol{t}_{F,e}\times\boldsymbol{n}_{\partial K} as the outwards normal vector of ee on the face FF.

Let h\mathcal{F}_{h}, h\mathcal{E}_{h}, and 𝒱h\mathcal{V}_{h} be the union of all faces, all edges, vertices and of the partition 𝒯h\mathcal{T}_{h}, respectively. For any FhF\in\mathcal{F}_{h}, fix a unit normal vector 𝒏F\boldsymbol{n}_{F} and two unit tangent vectors 𝒕F,1\boldsymbol{t}_{F,1} and 𝒕F,2\boldsymbol{t}_{F,2}, which will be abbreviated as 𝒕1\boldsymbol{t}_{1} and 𝒕2\boldsymbol{t}_{2} without causing any confusions. For any ehe\in\mathcal{E}_{h}, fix a unit tangent vector 𝒕e\boldsymbol{t}_{e} and two unit normal vectors 𝒏e,1\boldsymbol{n}_{e,1} and 𝒏e,2\boldsymbol{n}_{e,2}, which will be abbreviated as 𝒏1\boldsymbol{n}_{1} and 𝒏2\boldsymbol{n}_{2} without causing any confusions. We emphasize that 𝒏F,𝒕e,𝒏e,1\boldsymbol{n}_{F},\boldsymbol{t}_{e},\boldsymbol{n}_{e,1}, and 𝒏e,2\boldsymbol{n}_{e,2} are globally defined not depending on the elements.

The rest of this paper is organized as follows. In Section 2, we present a notation system on the vector and tensor operations. We construct polynomial complexes and derive decompositions of polynomial tensors spaces related to the elasticity complex in Section 3. In Section 4, we discuss traces for the inc\operatorname{inc} operator based on the Green’s identity, and present corresponding trace complexes and bubble complexes. In Section 5, we construct an H(inc)H(\operatorname{inc})-conforming finite element and a finite element elasticity complex in three dimensions.

2. Vector and tensor operations

One complication on the construction of finite elements for tensors is the notation system for tensor operations. We shall adapt the notation system used in the solid mechanic [25]. In particular, we separate the row and column operations to the right and left sides of the matrix, respectively.

2.1. Tensor calculus

Define the dot product and the cross product from the left

𝒃𝑨,𝒃×𝑨,\boldsymbol{b}\cdot\boldsymbol{A},\quad\boldsymbol{b}\times\boldsymbol{A},

which is applied column-wisely to the matrix AA. When the vector is on the right of the matrix

𝑨𝒃,𝑨×𝒃,\boldsymbol{A}\cdot\boldsymbol{b},\quad\boldsymbol{A}\times\boldsymbol{b},

the operation is defined row-wisely. Here for the clean of notation, when the vector 𝒃\boldsymbol{b} is on the right, it is treated as a row-vector 𝒃\boldsymbol{b}^{\intercal} while when on the left, it is a column vector.

The ordering of performing the row and column products does not matter which leads to the associative rule of the triple products

𝒃×𝑨×𝒄:=(𝒃×𝑨)×𝒄=𝒃×(𝑨×𝒄).\boldsymbol{b}\times\boldsymbol{A}\times\boldsymbol{c}:=(\boldsymbol{b}\times\boldsymbol{A})\times\boldsymbol{c}=\boldsymbol{b}\times(\boldsymbol{A}\times\boldsymbol{c}).

Similar rules hold for 𝒃𝑨𝒄\boldsymbol{b}\cdot\boldsymbol{A}\cdot\boldsymbol{c} and 𝒃𝑨×𝒄\boldsymbol{b}\cdot\boldsymbol{A}\times\boldsymbol{c} and thus parentheses can be safely skipped. Another benefit is the transpose of products. For the transpose of product of two objects, we take transpose of each one, switch their order, and add a negative sign if it is the cross product.

For two column vectors 𝒖,𝒗\boldsymbol{u},\boldsymbol{v}, the tensor product 𝒖𝒗:=𝒖𝒗\boldsymbol{u}\otimes\boldsymbol{v}:=\boldsymbol{u}\boldsymbol{v}^{\intercal} is a matrix which is also known as the dyadic product 𝒖𝒗:=𝒖𝒗\boldsymbol{u}\boldsymbol{v}:=\boldsymbol{u}\boldsymbol{v}^{\intercal} with more clean notation (one is skipped). The row-wise product and column-wise product with another vector will be applied to the neighbor vector

𝒙(𝒖𝒗)=(𝒙𝒖)𝒗,(𝒖𝒗)𝒙=𝒖(𝒗𝒙),\displaystyle\boldsymbol{x}\cdot(\boldsymbol{u}\boldsymbol{v})=(\boldsymbol{x}\cdot\boldsymbol{u})\boldsymbol{v}^{\intercal},\quad(\boldsymbol{u}\boldsymbol{v})\cdot\boldsymbol{x}=\boldsymbol{u}(\boldsymbol{v}\cdot\boldsymbol{x}),
𝒙×(𝒖𝒗)=(𝒙×𝒖)𝒗,(𝒖𝒗)×𝒙=𝒖(𝒗×𝒙).\displaystyle\boldsymbol{x}\times(\boldsymbol{u}\boldsymbol{v})=(\boldsymbol{x}\times\boldsymbol{u})\boldsymbol{v},\quad(\boldsymbol{u}\boldsymbol{v})\times\boldsymbol{x}=\boldsymbol{u}(\boldsymbol{v}\times\boldsymbol{x}).

We treat Hamilton operator =(1,2,3)\nabla=(\partial_{1},\partial_{2},\partial_{3})^{\intercal} as a column vector. For a vector function 𝒖=(u1,u2,u3)\boldsymbol{u}=(u_{1},u_{2},u_{3})^{\intercal}, curl𝒖=×𝒖\operatorname{curl}\boldsymbol{u}=\nabla\times\boldsymbol{u}, and div𝒖=𝒖\operatorname{div}\boldsymbol{u}=\nabla\cdot\boldsymbol{u} are standard differential operations. Define 𝒖=𝒖=(iuj)\nabla\boldsymbol{u}=\nabla\boldsymbol{u}^{\intercal}=(\partial_{i}u_{j}) which can be understood as the dyadic product of Hamilton operator \nabla and column vector 𝒖\boldsymbol{u}.

Apply these matrix-vector operations to the Hamilton operator \nabla, we get column-wise differentiation 𝑨,×𝑨,\nabla\cdot\boldsymbol{A},\nabla\times\boldsymbol{A}, and row-wise differentiation 𝑨,𝑨×.\boldsymbol{A}\cdot\nabla,\boldsymbol{A}\times\nabla. Conventionally, the differentiation is applied to the function after the \nabla symbol. So a more conventional notation is

𝑨:=(𝑨),𝑨×:=(×𝑨).\displaystyle\boldsymbol{A}\cdot\nabla:=(\nabla\cdot\boldsymbol{A}^{\intercal})^{\intercal},\quad\boldsymbol{A}\times\nabla:=-(\nabla\times\boldsymbol{A}^{\intercal})^{\intercal}.

By moving the differential operator to the right, the notation is simplified and the transpose rule for matrix-vector products can be formally used. Again the right most column vector is treated as a row vector to make the notation more clean. We introduce the double differential operators as

inc𝑨:=×𝑨×,divdiv𝑨:=𝑨.\operatorname{inc}\boldsymbol{A}:=\nabla\times\boldsymbol{A}\times\nabla,\quad\operatorname{div}\operatorname{div}\boldsymbol{A}:=\nabla\cdot\boldsymbol{A}\cdot\nabla.

As the column and row operations are independent, and no chain rule is needed, the ordering of operations is not important and parentheses is skipped. Parentheses will be added when it is necessary.

In the literature, differential operators are usually applied row-wisely to tensors. To distinguish with \nabla notation, we define operators in letters as

grad𝒖\displaystyle\operatorname{grad}\boldsymbol{u} :=𝒖=(jui)=(𝒖),\displaystyle:=\boldsymbol{u}\nabla^{\intercal}=(\partial_{j}u_{i})=(\nabla\boldsymbol{u})^{\intercal},
curl𝑨\displaystyle\operatorname{curl}\boldsymbol{A} :=𝑨×=(×𝑨),\displaystyle:=-\boldsymbol{A}\times\nabla=(\nabla\times\boldsymbol{A}^{\intercal})^{\intercal},
div𝑨\displaystyle\operatorname{div}\boldsymbol{A} :=𝑨=(𝑨).\displaystyle:=\boldsymbol{A}\cdot\nabla=(\nabla\cdot\boldsymbol{A}^{\intercal})^{\intercal}.

Note that the transpose operator is involved for tensors and in particular grad𝒖𝒖\operatorname{grad}\boldsymbol{u}\neq\nabla\boldsymbol{u}, curl𝑨×𝑨\operatorname{curl}\boldsymbol{A}\neq\nabla\times\boldsymbol{A}, curl𝑨𝑨×\operatorname{curl}\boldsymbol{A}\neq\boldsymbol{A}\times\nabla and div𝑨𝑨\operatorname{div}\boldsymbol{A}\neq\nabla\cdot\boldsymbol{A}. For symmetric tensors, div𝑨=𝑨,\operatorname{div}\boldsymbol{A}=\boldsymbol{A}\cdot\nabla, curl𝑨=𝑨×\operatorname{curl}\boldsymbol{A}=-\boldsymbol{A}\times\nabla.

Integration by parts can be applied to row-wise differentiations as well as column-wise ones. For example, we shall frequently use

(×𝝉,𝝈)K\displaystyle(\nabla\times\boldsymbol{\tau},\boldsymbol{\sigma})_{K} =(𝝉,×𝝈)K+(𝒏×𝝉,𝝈)K,\displaystyle=(\boldsymbol{\tau},\nabla\times\boldsymbol{\sigma})_{K}+(\boldsymbol{n}\times\boldsymbol{\tau},\boldsymbol{\sigma})_{\partial K},
(𝝉×,𝝈)K\displaystyle(\boldsymbol{\tau}\times\nabla,\boldsymbol{\sigma})_{K} =(𝝉,𝝈×)K+(𝝉×𝒏,𝝈)K.\displaystyle=(\boldsymbol{\tau},\boldsymbol{\sigma}\times\nabla)_{K}+(\boldsymbol{\tau}\times\boldsymbol{n},\boldsymbol{\sigma})_{\partial K}.

Similar formulae hold for grad,curl,div\operatorname{grad},\operatorname{curl},\operatorname{div} operators. Be careful on the possible sign and transpose when letter differential operators and \nabla operators are mixed together. Chain rules are also better used in the same category of differential operations (row-wise, column-wise or letter operators).

Denote the space of all 3×33\times 3 matrix by 𝕄\mathbb{M}, all symmetric 3×33\times 3 matrix by 𝕊\mathbb{S} and all skew-symmetric 3×33\times 3 matrix by 𝕂\mathbb{K}. For any matrix 𝑩𝕄\boldsymbol{B}\in\mathbb{M}, we can decompose it into symmetric and skew-symmetric part as

𝑩=sym(𝑩)+skw(𝑩):=12(𝑩+𝑩)+12(𝑩𝑩).\boldsymbol{B}={\rm sym}(\boldsymbol{B})+{\rm skw}(\boldsymbol{B}):=\frac{1}{2}(\boldsymbol{B}+\boldsymbol{B}^{\intercal})+\frac{1}{2}(\boldsymbol{B}-\boldsymbol{B}^{\intercal}).

The symmetric gradient of a vector function 𝒖\boldsymbol{u} is defined as

def𝒖:=sym𝒖=12(𝒖+(𝒖))=12(𝒖+𝒖).\operatorname{def}\boldsymbol{u}:=\operatorname{sym}\nabla\boldsymbol{u}=\frac{1}{2}(\nabla\boldsymbol{u}+(\nabla\boldsymbol{u})^{\intercal})=\frac{1}{2}(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}).

In the last identity, the dyadic product is used to emphasize the symmetry in notation. In the context of elasticity, it is commonly denoted by ε(𝒖)\varepsilon(\boldsymbol{u}).

We define an isomorphism of 3\mathbb{R}^{3} and the space of skew-symmetric matrices 𝕂\mathbb{K} as follows: for a vector 𝝎=(ω1,ω2,ω3)3,\boldsymbol{\omega}=(\omega_{1},\omega_{2},\omega_{3})^{\intercal}\in\mathbb{R}^{3},

mskw𝝎:=(0ω3ω2ω30ω1ω2ω10).\operatorname{mskw}\boldsymbol{\omega}:=\begin{pmatrix}0&-\omega_{3}&\omega_{2}\\ \omega_{3}&0&-\omega_{1}\\ -\omega_{2}&\omega_{1}&0\end{pmatrix}.

Obviously mskw:3𝕂\operatorname{mskw}:\mathbb{R}^{3}\to\mathbb{K} is a bijection. We define vskw:𝕄3\operatorname{vskw}:\mathbb{M}\to\mathbb{R}^{3} by vskw:=mskw1skw\operatorname{vskw}:=\operatorname{mskw}^{-1}\circ\operatorname{skw}. Using these notation, we have the decomposition

(3) grad𝒗=def𝒗+12mskw(×𝒗).\operatorname{grad}\boldsymbol{v}=\operatorname{def}\boldsymbol{v}+\frac{1}{2}\operatorname{mskw}(\nabla\times\boldsymbol{v}).

2.2. Identities on tensors

We shall present identities based on diagram (4) and refer to [6] for an unified proof. Let S𝝉=𝝉tr(𝝉)𝑰S\boldsymbol{\tau}=\boldsymbol{\tau}^{\intercal}-\operatorname*{tr}(\boldsymbol{\tau})\boldsymbol{I} and ι:𝕄\iota:\mathbb{R}\to\mathbb{M} by ιv=v𝑰\iota v=v\boldsymbol{I}.

(4) 𝒞(){\mathcal{C}^{\infty}(\mathbb{R})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(){\mathcal{C}^{\infty}(\mathbb{R})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(𝕄){\mathcal{C}^{\infty}(\mathbb{M})}𝒞(𝕄){\mathcal{C}^{\infty}(\mathbb{M})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(𝕄){\mathcal{C}^{\infty}(\mathbb{M})}𝒞(𝕄){\mathcal{C}^{\infty}(\mathbb{M})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(){\mathcal{C}^{\infty}(\mathbb{R})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞(3){\mathcal{C}^{\infty}(\mathbb{R}^{3})}𝒞().{\mathcal{C}^{\infty}(\mathbb{R}).}\scriptstyle{\nabla}×\scriptstyle{\nabla\times}\scriptstyle{\nabla\cdot}𝒙\scriptstyle{\cdot\boldsymbol{x}}\scriptstyle{\nabla}id\scriptstyle{\mathrm{id}}𝒙\scriptstyle{\cdot\boldsymbol{x}}𝒙\scriptstyle{\cdot\boldsymbol{x}}×\scriptstyle{\nabla\times}2vskw\scriptstyle{2\operatorname{vskw}}𝒙\scriptstyle{\cdot\boldsymbol{x}}\scriptstyle{\nabla\cdot}tr\scriptstyle{\operatorname*{tr}}𝒙\scriptstyle{\cdot\boldsymbol{x}}×𝒙\scriptstyle{\times\boldsymbol{x}}\scriptstyle{\nabla}mskw\scriptstyle{-\operatorname{mskw}}×𝒙\scriptstyle{\times\boldsymbol{x}}×\scriptstyle{\nabla\times}S\scriptstyle{S}×𝒙\scriptstyle{\times\boldsymbol{x}}\scriptstyle{\nabla\cdot}2vskw\scriptstyle{2\operatorname{vskw}}×𝒙\scriptstyle{\times\boldsymbol{x}}𝒙\scriptstyle{\boldsymbol{x}}\scriptstyle{\nabla}ι\scriptstyle{\iota}𝒙\scriptstyle{\boldsymbol{x}}×\scriptstyle{\nabla\times}mskw\scriptstyle{-\operatorname{mskw}}𝒙\scriptstyle{\boldsymbol{x}}\scriptstyle{\nabla\cdot}id\scriptstyle{\mathrm{id}}𝒙\scriptstyle{\boldsymbol{x}}

The north-east diagonal operator is the Poisson bracket [d,κ]=d(()κ)(d())κ[\,{\rm d},\kappa]=\,{\rm d}((\cdot)\kappa)-(\,{\rm d}(\cdot))\kappa for d=,×,\,{\rm d}=\nabla,\nabla\times,\nabla\cdot being applied from the left and the Koszul operator κ=𝒙,×𝒙,𝒙\kappa=\boldsymbol{x},\times\boldsymbol{x},\cdot\boldsymbol{x} applied from the right. For example, we have

(5) ×(𝝉𝒙)(×𝝉)𝒙\displaystyle\nabla\times(\boldsymbol{\tau}\cdot\boldsymbol{x})-(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{x} =2vskw𝝉,block (1,2),\displaystyle=2\operatorname{vskw}\boldsymbol{\tau},\quad\;\;\text{block }(1,2),
(𝒖×𝒙)(𝒖)×𝒙\displaystyle\nabla(\boldsymbol{u}\times\boldsymbol{x})-(\nabla\boldsymbol{u})\times\boldsymbol{x} =mskw𝒖,block (2,1).\displaystyle=-\operatorname{mskw}\boldsymbol{u},\quad\text{block }(2,1).

The parallelogram formed by the north-east diagonal and the horizontal operators is anticomutative. For example, we will use the following identities:

(6) tr(×𝝉)\displaystyle\operatorname*{tr}(\nabla\times\boldsymbol{\tau}) =2vskw(𝝉),block (1,2),\displaystyle=-\nabla\cdot 2\operatorname{vskw}(\boldsymbol{\tau}),\quad\;\;\text{block }(1,2),
2vskw𝒖\displaystyle 2{\rm vskw}\nabla\boldsymbol{u} =×𝒖,\displaystyle=-\nabla\times\boldsymbol{u},
×𝒖\displaystyle\nabla\times\boldsymbol{u} =mskw(𝒖).\displaystyle=\nabla\cdot{\rm mskw}(\boldsymbol{u}).

By taking transpose, we can get similar formulae for row-wise differential operators. By replacing i\partial_{i} by xix_{i}, we can get the anticomutativity of the parallelgorms formed by the vertical and the north-east diagonal operators. For example, (6) becomes

(7) tr(𝝉×𝒙)=2vskw(𝝉)𝒙.\operatorname*{tr}(\boldsymbol{\tau}\times\boldsymbol{x})=-2\operatorname{vskw}(\boldsymbol{\tau})\cdot\boldsymbol{x}.

2.3. Tensors on surfaces

Given a plane FF with normal vector 𝒏\boldsymbol{n}, for a vector 𝒗3\boldsymbol{v}\in\mathbb{R}^{3}, we define its projection to plane FF

ΠF𝒗:=(𝒏×𝒗)×𝒏=𝒏×(𝒗×𝒏)=𝒏×(𝒏×𝒗)=(𝑰𝒏𝒏)𝒗,\Pi_{F}\boldsymbol{v}:=(\boldsymbol{n}\times\boldsymbol{v})\times\boldsymbol{n}=\boldsymbol{n}\times(\boldsymbol{v}\times\boldsymbol{n})=-\boldsymbol{n}\times(\boldsymbol{n}\times\boldsymbol{v})=(\boldsymbol{I}-\boldsymbol{n}\boldsymbol{n}^{\intercal})\boldsymbol{v},

which is called the tangential component of 𝒗\boldsymbol{v}. The vector

ΠF𝒗:=𝒏×𝒗=(𝒏×ΠF)𝒗\Pi_{F}^{\bot}\boldsymbol{v}:=\boldsymbol{n}\times\boldsymbol{v}=(\boldsymbol{n}\times\Pi_{F})\boldsymbol{v}

is called the tangential trace of 𝒗\boldsymbol{v}, which is a rotation of ΠF𝒗\Pi_{F}\boldsymbol{v} on FF (9090^{\circ} counter-clockwise with respect to 𝒏\boldsymbol{n}). Note that ΠF\Pi_{F} is a 3×33\times 3 symmetric matrix. With a slight abuse of notation, we use ΠF\Pi_{F} to denote the piece-wisely defined projection to the boundary of KK.

We treat Hamilton operator =(1,2,3)\nabla=(\partial_{1},\partial_{2},\partial_{3})^{\intercal} as a column vector and define

F:=ΠF,F:=ΠF.\nabla_{F}:=\Pi_{F}\nabla,\quad\nabla_{F}^{\bot}:=\Pi_{F}^{\bot}\nabla.

We have the decomposition

=F+𝒏n.\nabla=\nabla_{F}+\boldsymbol{n}\,\partial_{n}.

For a scalar function vv,

Fv\displaystyle\nabla_{F}v =ΠF(v)=𝒏×(𝒏×v),\displaystyle=\Pi_{F}(\nabla v)=-\boldsymbol{n}\times(\boldsymbol{n}\times\nabla v),
Fv\displaystyle\nabla_{F}^{\bot}v =𝒏×v=𝒏×Fv,\displaystyle=\boldsymbol{n}\times\nabla v=\boldsymbol{n}\times\nabla_{F}v,

are the surface gradient of vv and surface curl\operatorname{curl}, respectively. For a vector function 𝒗\boldsymbol{v}, F𝒗\nabla_{F}\cdot\boldsymbol{v} is the surface divergence:

divF𝒗:=F𝒗=F(ΠF𝒗).\operatorname{div}_{F}\boldsymbol{v}:=\nabla_{F}\cdot\boldsymbol{v}=\nabla_{F}\cdot(\Pi_{F}\boldsymbol{v}).

By the cyclic invariance of the mix product and the fact 𝒏\boldsymbol{n} is constant, the surface rot operator is

(8) rotF𝒗:=F𝒗=(𝒏×)𝒗=𝒏(×𝒗),{\rm rot}_{F}\boldsymbol{v}:=\nabla_{F}^{\bot}\cdot\boldsymbol{v}=(\boldsymbol{n}\times\nabla)\cdot\boldsymbol{v}=\boldsymbol{n}\cdot(\nabla\times\boldsymbol{v}),

which is the normal component of ×𝒗\nabla\times\boldsymbol{v}. The tangential trace of ×𝒖\nabla\times\boldsymbol{u} is

(9) 𝒏×(×𝒗)=(𝒏𝒗)n𝒗.\boldsymbol{n}\times(\nabla\times\boldsymbol{v})=\nabla(\boldsymbol{n}\cdot\boldsymbol{v})-\partial_{n}\boldsymbol{v}.

By definition,

F𝒗=F(𝒏×𝒗),F𝒗=F(𝒏×𝒗).\nabla_{F}^{\bot}\cdot\boldsymbol{v}=-\nabla_{F}\cdot(\boldsymbol{n}\times\boldsymbol{v}),\quad\nabla_{F}\cdot\boldsymbol{v}=\nabla_{F}^{\bot}\cdot(\boldsymbol{n}\times\boldsymbol{v}).

When involving tensors, we define, for a vector function 𝒗\boldsymbol{v},

F𝒗:=F𝒗=ΠF𝒗,gradF𝒗=𝒗F=(F𝒗),\displaystyle\nabla_{F}\boldsymbol{v}:=\nabla_{F}\boldsymbol{v}^{\intercal}=\Pi_{F}\nabla\boldsymbol{v}^{\intercal},\quad\operatorname{grad}_{F}\boldsymbol{v}=\boldsymbol{v}\nabla_{F}=(\nabla_{F}\boldsymbol{v})^{\intercal},
F𝒗:=F𝒗=𝒏×(𝒗),curlF𝒗:=𝒗F=(F𝒗),\displaystyle\nabla_{F}^{\bot}\boldsymbol{v}:=\nabla_{F}^{\bot}\boldsymbol{v}^{\intercal}=\boldsymbol{n}\times(\nabla\boldsymbol{v}^{\intercal}),\quad\operatorname{curl}_{F}\boldsymbol{v}:=\boldsymbol{v}\nabla_{F}^{\bot}=(\nabla_{F}^{\bot}\boldsymbol{v})^{\intercal},
defF𝒗:=symF𝒗,symcurlF𝒗:=sym(curlF𝒗).\displaystyle\operatorname{def}_{F}\boldsymbol{v}:=\operatorname{sym}\nabla_{F}\boldsymbol{v},\quad\operatorname{sym}\operatorname{curl}_{F}\boldsymbol{v}:=\operatorname{sym}(\operatorname{curl}_{F}\boldsymbol{v}).

For a tensor function 𝝉\boldsymbol{\tau},

divF𝝉:=𝝉F=(F𝝉),divFdivF𝝉:=F𝝉F,\displaystyle\operatorname{div}_{F}\boldsymbol{\tau}:=\boldsymbol{\tau}\cdot\nabla_{F}=(\nabla_{F}\cdot\boldsymbol{\tau}^{\intercal})^{\intercal},\quad\operatorname{div}_{F}\operatorname{div}_{F}\boldsymbol{\tau}:=\nabla_{F}\cdot\boldsymbol{\tau}\cdot\nabla_{F},
rotF𝝉:=𝝉(𝒏×)=(F𝝉),rotFrotF𝝉:=F𝝉F.\displaystyle\text{rot}_{F}\boldsymbol{\tau}:=\boldsymbol{\tau}\cdot(\boldsymbol{n}\times\nabla)=(\nabla_{F}^{\bot}\cdot\boldsymbol{\tau}^{\intercal})^{\intercal},\quad{\rm rot}_{F}{\rm rot}_{F}\boldsymbol{\tau}:=\nabla_{F}^{\bot}\cdot\boldsymbol{\tau}\cdot\nabla_{F}^{\bot}.

Although we define the surface differentiation through the projection of differentiation of a function defined in space, it can be verified that the definition is intrinsic in the sense that it depends only on the function value on the surface FF. Namely Fv=F(v|F),F𝒗=FΠF𝒗,F𝒗=F(𝒗|F)\nabla_{F}v=\nabla_{F}(v|_{F}),\nabla_{F}\cdot\boldsymbol{v}=\nabla_{F}\cdot\Pi_{F}\boldsymbol{v},\nabla_{F}\boldsymbol{v}=\nabla_{F}(\boldsymbol{v}|_{F}) and thus ΠF\Pi_{F} is sometimes skipped after F\nabla_{F}.

3. Polynomial Complexes

In this section we consider polynomial elasticity complexes on a bounded and topologically trivial domain D3D\subset\mathbb{R}^{3} in this section. Without loss of generality, we assume (0,0,0)D(0,0,0)\in D which can be easily satisfied by changing of variable 𝒙𝒙c\boldsymbol{x}-\boldsymbol{x}_{c} with an arbitrary 𝒙cD\boldsymbol{x}_{c}\in D for polynomials in DD.

Given a non-negative integer kk, let k(D)\mathbb{P}_{k}(D) stand for the set of all polynomials in DD with the total degree no more than kk, and k(D;𝕏)\mathbb{P}_{k}(D;\mathbb{X}) denote the tensor or vector version for 𝕏=𝕊,𝕂,𝕄\mathbb{X}=\mathbb{S},\mathbb{K},\mathbb{M}, or 3\mathbb{R}^{3}. Similar notation will be applied to a two dimensional face FF and one dimensional edge ee.

Recall that dimk(D)=(k+dd)\dim\mathbb{P}_{k}(D)={k+d\choose d} for a dd-dimensional domain DD, dim𝕄=9,dim𝕊=6,\dim\mathbb{M}=9,\dim\mathbb{S}=6, and dim𝕂=3\dim\mathbb{K}=3. We list a useful result in [13]

(10) k(D)ker(+𝒙)=0\mathbb{P}_{k}(D)\cap\ker(\ell+\boldsymbol{x}\cdot\nabla)=0

for any positive number \ell.

3.1. Polynomial elasticity complex

The polynomial de Rham complex is

(11) \autorightarrowk+1(D)\autorightarrowk(D;3)\autorightarrow×k2(D;3)\autorightarrowk3(D)\autorightarrow0.\leavevmode\resizebox{422.77661pt}{}{$\mathbb{R}\autorightarrow{$\subset$}{}\mathbb{P}_{k+1}(D)\autorightarrow{$\nabla$}{}\mathbb{P}_{k}(D;\mathbb{R}^{3})\autorightarrow{$\nabla\times$}{}\mathbb{P}_{k-2}(D;\mathbb{R}^{3})\autorightarrow{$\nabla\cdot$}{}\mathbb{P}_{k-3}(D)\autorightarrow{}{}0$}.

As DD is topologically trivial, complex (11) is also exact, which means the range of each map is the kernel of the succeeding map.

Lemma 3.1.

div:sym(𝒙k3(D;3))k3(D;3)\operatorname{div}:\operatorname{sym}(\boldsymbol{x}\mathbb{P}_{k-3}(D;\mathbb{R}^{3}))\to\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) is bijective.

Proof.

As div(sym(𝒙k3(D;3)))k3(D;3)\operatorname{div}(\operatorname{sym}(\boldsymbol{x}\mathbb{P}_{k-3}(D;\mathbb{R}^{3})))\subseteq\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) and dimsym(𝒙k3(D;3))=dimk3(D;3)\dim\operatorname{sym}(\boldsymbol{x}\mathbb{P}_{k-3}(D;\mathbb{R}^{3}))=\dim\mathbb{P}_{k-3}(D;\mathbb{R}^{3}), it is sufficient to prove sym(𝒙k3(D;3))ker(div)={𝟎}\operatorname{sym}(\boldsymbol{x}\mathbb{P}_{k-3}(D;\mathbb{R}^{3}))\cap\ker(\operatorname{div})=\{\boldsymbol{0}\}. That is: for any 𝒒k3(D;3)\boldsymbol{q}\in\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) satisfying divsym(𝒙𝒒)=𝟎\operatorname{div}\operatorname{sym}(\boldsymbol{x}\boldsymbol{q}^{\intercal})=\boldsymbol{0}, we are going to prove 𝒒=𝟎\boldsymbol{q}=\boldsymbol{0}.

By direct computation,

div(𝒒𝒙)\displaystyle\operatorname{div}(\boldsymbol{q}\boldsymbol{x}^{\intercal}) =(div𝒙)𝒒+(grad𝒒)𝒙=3𝒒+(grad𝒒)𝒙,\displaystyle=(\operatorname{div}\boldsymbol{x})\boldsymbol{q}+(\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x}=3\boldsymbol{q}+(\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x},
div(𝒙𝒒)\displaystyle\operatorname{div}(\boldsymbol{x}\boldsymbol{q}^{\intercal}) =(div𝒒)𝒙+(grad𝒙)𝒒=𝒒+(div𝒒)𝒙,\displaystyle=(\operatorname{div}\boldsymbol{q})\boldsymbol{x}+(\operatorname{grad}\boldsymbol{x})\cdot\boldsymbol{q}=\boldsymbol{q}+(\operatorname{div}\boldsymbol{q})\boldsymbol{x},
2divsym(𝒙𝒒)\displaystyle 2\operatorname{div}\operatorname{sym}(\boldsymbol{x}\boldsymbol{q}^{\intercal}) =4𝒒+(grad𝒒)𝒙+(div𝒒)𝒙.\displaystyle=4\boldsymbol{q}+(\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x}+(\operatorname{div}\boldsymbol{q})\boldsymbol{x}.

It follows from divsym(𝒙𝒒)=𝟎\operatorname{div}\operatorname{sym}(\boldsymbol{x}\boldsymbol{q})=\boldsymbol{0} that

(12) 4𝒒+(grad𝒒)𝒙=(div𝒒)𝒙.4\boldsymbol{q}+(\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x}=-(\operatorname{div}\boldsymbol{q})\boldsymbol{x}.

Since div((grad𝒒)𝒙)=(1+𝒙grad)div𝒒\operatorname{div}((\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x})=(1+\boldsymbol{x}\cdot\operatorname{grad})\operatorname{div}\boldsymbol{q}, applying the divergence operator div\operatorname{div} on both side of (12) yields

(5+𝒙grad)div𝒒=(3+𝒙grad)div𝒒.(5+\boldsymbol{x}\cdot\operatorname{grad})\operatorname{div}\boldsymbol{q}=-(3+\boldsymbol{x}\cdot\operatorname{grad})\operatorname{div}\boldsymbol{q}.

Hence we acquire from (10) that div𝒒=0\operatorname{div}\boldsymbol{q}=0, and (12) reduces to

4𝒒+(grad𝒒)𝒙=𝟎𝒙D.4\boldsymbol{q}+(\operatorname{grad}\boldsymbol{q})\cdot\boldsymbol{x}=\boldsymbol{0}\quad\forall\leavevmode\nobreak\ \boldsymbol{x}\in D.

Applying (10) again gives 𝒒=𝟎\boldsymbol{q}=\boldsymbol{0}. ∎

Recall that the linearized rigid body motion is

(13) 𝑹𝑴={𝒂×𝒙+𝒃:𝒂,𝒃3}={𝑵𝒙+𝒃:𝑵𝕂,𝒃3}.\boldsymbol{RM}=\{\boldsymbol{a}\times\boldsymbol{x}+\boldsymbol{b}:\boldsymbol{a},\boldsymbol{b}\in\mathbb{R}^{3}\}=\{\boldsymbol{N}\boldsymbol{x}+\boldsymbol{b}:\boldsymbol{N}\in\mathbb{K},\boldsymbol{b}\in\mathbb{R}^{3}\}.
Lemma 3.2.

The polynomial sequence

(14)

𝑹𝑴\autorightarrowk+1(D;3)\autorightarrowdefk(D;𝕊)\autorightarrowinck2(D;𝕊)\autorightarrowdivk3(D;3)\autorightarrow0\boldsymbol{RM}\autorightarrow{$\subset$}{}\mathbb{P}_{k+1}(D;\mathbb{R}^{3})\autorightarrow{$\operatorname{def}$}{}\mathbb{P}_{k}(D;\mathbb{S})\autorightarrow{$\operatorname{inc}$}{}\mathbb{P}_{k-2}(D;\mathbb{S})\autorightarrow{$\operatorname{div}$}{}\mathbb{P}_{k-3}(D;\mathbb{R}^{3})\autorightarrow{}{}0

is an exact complex.

Proof.

Verification of (14) being a complex is straightforward using our notation system:

×(𝒖+𝒖)×=0,(×𝝉×)=0.\nabla\times(\nabla\boldsymbol{u}+\boldsymbol{u}\nabla)\times\nabla=0,\quad(\nabla\times\boldsymbol{\tau}\times\nabla)\cdot\nabla=0.

We then verify the exactness.

1. If def(𝐯)=0\operatorname{def}(\boldsymbol{v})=0, then 𝐯𝐑𝐌\boldsymbol{v}\in\boldsymbol{RM}. This is well-known and can be found in e.g. [19].

2. defk+1(D;3)=k(D;𝕊)ker(inc)\operatorname{def}\mathbb{P}_{k+1}(D;\mathbb{R}^{3})=\mathbb{P}_{k}(D;\mathbb{S})\cap\ker(\operatorname{inc}), i.e. if inc(𝛕)=0\operatorname{inc}(\boldsymbol{\tau})=0 and 𝛕k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}), then there exists a 𝐯k+1(D;3)\boldsymbol{v}\in\mathbb{P}_{k+1}(D;\mathbb{R}^{3}), s.t. 𝛕=def𝐯\boldsymbol{\tau}=\operatorname{def}\boldsymbol{v}.

As ×(𝝉×)=0\nabla\times(\boldsymbol{\tau}\times\nabla)=0, we apply the exactness of de Rham complex (11) to each column of 𝝉×\boldsymbol{\tau}\times\nabla to conclude there exists 𝒒k(D;3)\boldsymbol{q}\in\mathbb{P}_{k}(D;\mathbb{R}^{3}) such that 𝝉×=𝒒.\boldsymbol{\tau}\times\nabla=\nabla\boldsymbol{q}. As 𝝉\boldsymbol{\tau} is symmetric, taking transpose, we get

×𝝉=𝒒.-\nabla\times\boldsymbol{\tau}=\boldsymbol{q}\nabla.

And use (6) to conclude

𝒒=tr(𝒒)=tr(𝝉×)=tr(×𝝉)=2vskw(𝝉)=0.\nabla\cdot\boldsymbol{q}=\operatorname*{tr}(\nabla\boldsymbol{q})=\operatorname*{tr}(\boldsymbol{\tau}\times\nabla)=-\operatorname*{tr}(\nabla\times\boldsymbol{\tau})=\nabla\cdot 2\operatorname{vskw}(\boldsymbol{\tau})=0.

Hence there exists 𝒒1k+1(D;3)\boldsymbol{q}_{1}\in\mathbb{P}_{k+1}(D;\mathbb{R}^{3}) such that

𝒒=×𝒒1,\boldsymbol{q}=\nabla\times\boldsymbol{q}_{1},

which implies

×𝝉=𝒒=(×𝒒1)=×(𝒒1).-\nabla\times\boldsymbol{\tau}=\boldsymbol{q}\nabla=(\nabla\times\boldsymbol{q}_{1})\nabla=\nabla\times(\boldsymbol{q}_{1}\nabla).

i.e. ×(𝝉+𝒒1)=0\nabla\times(\boldsymbol{\tau}+\boldsymbol{q}_{1}\nabla)=0. Then there exists 𝒒2k+1(D;3)\boldsymbol{q}_{2}\in\mathbb{P}_{k+1}(D;\mathbb{R}^{3}) such that

𝝉+𝒒1=𝒒2.\boldsymbol{\tau}+\boldsymbol{q}_{1}\nabla=\nabla\boldsymbol{q}_{2}.

Then, as 𝝉\boldsymbol{\tau} is symmetric,

𝝉=sym𝝉=sym(𝒒2𝒒1)=def(𝒒2𝒒1)defk+1(D;3).\boldsymbol{\tau}=\operatorname{sym}\boldsymbol{\tau}=\operatorname{sym}(\nabla\boldsymbol{q}_{2}-\boldsymbol{q}_{1}\nabla)=\operatorname{def}(\boldsymbol{q}_{2}-\boldsymbol{q}_{1})\in\operatorname{def}\mathbb{P}_{k+1}(D;\mathbb{R}^{3}).

3. divk2(D;𝕊)=k3(D;3)\operatorname{div}\mathbb{P}_{k-2}(D;\mathbb{S})=\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) holds from Lemma 3.1.

4. inck(D;𝕊)=k2(D;𝕊)ker(div)\operatorname{inc}\mathbb{P}_{k}(D;\mathbb{S})=\mathbb{P}_{k-2}(D;\mathbb{S})\cap\ker(\operatorname{div}).

Obviously inck(D;𝕊)k2(D;𝕊)ker(div)\operatorname{inc}\mathbb{P}_{k}(D;\mathbb{S})\subseteq\mathbb{P}_{k-2}(D;\mathbb{S})\cap\ker(\operatorname{div}). Then it suffices to show the dimensions of these two subspaces are equal. Recall that for a linear operator TT defined on a finite dimensional linear space VV, we have the relation

(15) dimV=dimker(T)+dimimg(T).\dim V=\dim\ker(T)+\dim\operatorname*{img}(T).

As div\operatorname{div} is surjective shown in Step 3, by (15),

dimk2(D;𝕊)ker(div)=dimk2(D;𝕊)dimk3(D;3)=12(k+4)(k2k).\dim\mathbb{P}_{k-2}(D;\mathbb{S})\cap\ker(\operatorname{div})=\dim\mathbb{P}_{k-2}(D;\mathbb{S})-\dim\mathbb{P}_{k-3}(D;\mathbb{R}^{3})=\frac{1}{2}(k+4)(k^{2}-k).

By results in Step 1 and 2, we count the dimension

dim(inck(D;𝕊))\displaystyle\dim(\operatorname{inc}\mathbb{P}_{k}(D;\mathbb{S})) =dim(k(D;𝕊))dim(defk+1(D;3))\displaystyle=\dim(\mathbb{P}_{k}(D;\mathbb{S}))-\dim(\operatorname{def}\mathbb{P}_{k+1}(D;\mathbb{R}^{3}))
=dim(k(D;𝕊))dim(k+1(D;3))+dim𝑹𝑴\displaystyle=\dim(\mathbb{P}_{k}(D;\mathbb{S}))-\dim(\mathbb{P}_{k+1}(D;\mathbb{R}^{3}))+\dim\boldsymbol{RM}
=12(k+4)(k2k).\displaystyle=\frac{1}{2}(k+4)(k^{2}-k).

Then the desired result follows. ∎

3.2. Koszul elasticity complex

Recall the Koszul complex

(16) 0\autorightarrowk2(D)\autorightarrowϕ𝒙k1(D;3)\autorightarrow𝒖×𝒙k(D;3)\autorightarrow𝒗𝒙k+1(D)0.0\autorightarrow{}{}\mathbb{P}_{k-2}(D)\autorightarrow{\phi\boldsymbol{x}}{}\mathbb{P}_{k-1}(D;\mathbb{R}^{3})\autorightarrow{\boldsymbol{u}\times\boldsymbol{x}}{}\mathbb{P}_{k}(D;\mathbb{R}^{3})\autorightarrow{\boldsymbol{v}\cdot\boldsymbol{x}}{}\mathbb{P}_{k+1}(D)\longrightarrow 0.

Define operator 𝝅RM:𝒞1(D;3)𝑹𝑴\boldsymbol{\pi}_{RM}:\mathcal{C}^{1}(D;\mathbb{R}^{3})\to\boldsymbol{RM} as

𝝅RM𝒗:=𝒗(0,0,0)+12(curl𝒗)(0,0,0)×𝒙.\boldsymbol{\pi}_{RM}\boldsymbol{v}:=\boldsymbol{v}(0,0,0)+\frac{1}{2}(\operatorname{curl}\boldsymbol{v})(0,0,0)\times\boldsymbol{x}.

By direct calculation ×(𝒂×𝒙)=2𝒂\nabla\times(\boldsymbol{a}\times\boldsymbol{x})=2\boldsymbol{a} and definition of 𝑹𝑴\boldsymbol{RM} cf. (13), it holds

(17) 𝝅RM𝒗=𝒗𝒗𝑹𝑴.\boldsymbol{\pi}_{RM}\boldsymbol{v}=\boldsymbol{v}\quad\forall\leavevmode\nobreak\ \boldsymbol{v}\in\boldsymbol{RM}.
Lemma 3.3.

The following polynomial and operators sequences

(18)

0k3(D;3)sym(𝒗𝒙)k2(D;𝕊)𝒙×𝝉×𝒙k(D;𝕊)𝝉𝒙k+1(D;3)𝝅RM𝑹𝑴00\stackrel{{\scriptstyle\subset}}{{\longrightarrow}}\mathbb{P}_{k-3}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle\operatorname{sym}(\boldsymbol{v}\boldsymbol{x}^{\intercal})}}{{\longrightarrow}}\mathbb{P}_{k-2}(D;\mathbb{S})\stackrel{{\scriptstyle\boldsymbol{x}\times\boldsymbol{\tau}\times\boldsymbol{x}}}{{\longrightarrow}}\mathbb{P}_{k}(D;\mathbb{S})\stackrel{{\scriptstyle\boldsymbol{\tau}\cdot\boldsymbol{x}}}{{\longrightarrow}}\mathbb{P}_{k+1}(D;\mathbb{R}^{3})\stackrel{{\scriptstyle\boldsymbol{\pi}_{RM}}}{{\longrightarrow}}\boldsymbol{RM}\stackrel{{\scriptstyle}}{{\longrightarrow}}0

is a complex and is exact.

Proof.

It is similar to the proof of Lemma 3.2 and symbolically replace =(1,2,3)\nabla=(\partial_{1},\partial_{2},\partial_{3})^{\intercal} by 𝒙=(𝒙1,𝒙2,𝒙3)\boldsymbol{x}=(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\boldsymbol{x}_{3})^{\intercal}. We first verify (18) is a complex. For any 𝒗k3(D;3)\boldsymbol{v}\in\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) and 𝝉k2(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k-2}(D;\mathbb{S}), we have

𝒙×sym(𝒗𝒙)×𝒙\displaystyle\boldsymbol{x}\times\operatorname{sym}(\boldsymbol{v}\boldsymbol{x}^{\intercal})\times\boldsymbol{x} =12𝒙×(𝒙𝒗+𝒗𝒙)×𝒙=𝟎,\displaystyle=\frac{1}{2}\boldsymbol{x}\times(\boldsymbol{x}\boldsymbol{v}^{\intercal}+\boldsymbol{v}\boldsymbol{x}^{\intercal})\times\boldsymbol{x}=\boldsymbol{0},
(𝒙×𝝉×𝒙)𝒙\displaystyle(\boldsymbol{x}\times\boldsymbol{\tau}\times\boldsymbol{x})\cdot\boldsymbol{x} =𝟎.\displaystyle=\boldsymbol{0}.

As 𝝉k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}), (5) implies ×(𝝉𝒙)=(×𝝉)𝒙,\nabla\times(\boldsymbol{\tau}\cdot\boldsymbol{x})=(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{x}, we get 𝝅RM(𝝉𝒙)=𝟎.\boldsymbol{\pi}_{RM}(\boldsymbol{\tau}\cdot\boldsymbol{x})=\boldsymbol{0}. Thus (18) is a complex.

We now verify the exactness.

1. If 𝐱×𝛕×𝐱=𝟎\boldsymbol{x}\times\boldsymbol{\tau}\times\boldsymbol{x}=\boldsymbol{0} and 𝛕k2(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k-2}(D;\mathbb{S}), then 𝛕=sym(𝐯𝐱)\boldsymbol{\tau}=\operatorname{sym}(\boldsymbol{v}\boldsymbol{x}^{\intercal}) for some 𝐯k3(D;3)\boldsymbol{v}\in\mathbb{P}_{k-3}(D;\mathbb{R}^{3}).

For any 𝝉k2(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k-2}(D;\mathbb{S}) satisfying 𝒙×(𝝉×𝒙)=𝟎\boldsymbol{x}\times(\boldsymbol{\tau}\times\boldsymbol{x})=\boldsymbol{0}, by the exactness of Koszul complex (16), there exists 𝒗~k2(D;3)\widetilde{\boldsymbol{v}}\in\mathbb{P}_{k-2}(D;\mathbb{R}^{3}) such that 𝝉×𝒙=𝒙𝒗~\boldsymbol{\tau}\times\boldsymbol{x}=\boldsymbol{x}\widetilde{\boldsymbol{v}}. By (7), as 𝝉\boldsymbol{\tau} is symmetric, 𝝉×𝒙\boldsymbol{\tau}\times\boldsymbol{x} is trace-free. Then it follows 𝒗~𝒙=tr(𝒙𝒗~)=tr(𝝉×𝒙)=0\widetilde{\boldsymbol{v}}\cdot\boldsymbol{x}=\operatorname*{tr}(\boldsymbol{x}\widetilde{\boldsymbol{v}})=\operatorname*{tr}(\boldsymbol{\tau}\times\boldsymbol{x})=0. Then there exists 𝒗1k3(D;3)\boldsymbol{v}_{1}\in\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) such that 𝒗~=𝒗1×𝒙\widetilde{\boldsymbol{v}}=\boldsymbol{v}_{1}\times\boldsymbol{x}. As a result, we have

(𝝉𝒙𝒗1)×𝒙=𝝉×𝒙𝒙(𝒗1×𝒙)=𝝉×𝒙𝒙𝒗~=0.(\boldsymbol{\tau}-\boldsymbol{x}\boldsymbol{v}_{1})\times\boldsymbol{x}=\boldsymbol{\tau}\times\boldsymbol{x}-\boldsymbol{x}(\boldsymbol{v}_{1}\times\boldsymbol{x})=\boldsymbol{\tau}\times\boldsymbol{x}-\boldsymbol{x}\widetilde{\boldsymbol{v}}=0.

Again there exists 𝒗2k3(D;3)\boldsymbol{v}_{2}\in\mathbb{P}_{k-3}(D;\mathbb{R}^{3}) such that 𝝉=𝒙𝒗1+𝒗2𝒙\boldsymbol{\tau}=\boldsymbol{x}\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\boldsymbol{x}. By the symmetry of 𝝉\boldsymbol{\tau}, it holds 𝝉=sym(𝒙(𝒗1+𝒗2))\boldsymbol{\tau}=\operatorname{sym}(\boldsymbol{x}(\boldsymbol{v}_{1}+\boldsymbol{v}_{2})).

2. If 𝛕𝐱=0\boldsymbol{\tau}\cdot\boldsymbol{x}=0 and 𝛕k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}), then 𝛕=𝐱×𝛔×𝐱\boldsymbol{\tau}=\boldsymbol{x}\times\boldsymbol{\sigma}\times\boldsymbol{x} for some 𝛔k2(D;𝕊)\boldsymbol{\sigma}\in\mathbb{P}_{k-2}(D;\mathbb{S}).

For any 𝝉k(D;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(D;\mathbb{S}) satisfying 𝝉𝒙=𝟎\boldsymbol{\tau}\cdot\boldsymbol{x}=\boldsymbol{0}, by the exactness of Koszul complex (16), there exists 𝝉1k1(D;𝕄)\boldsymbol{\tau}_{1}\in\mathbb{P}_{k-1}(D;\mathbb{M}) such that 𝝉=𝝉1×𝒙\boldsymbol{\tau}=\boldsymbol{\tau}_{1}\times\boldsymbol{x}. By the symmetry of 𝝉\boldsymbol{\tau}, it holds

(𝒙𝝉1)×𝒙=𝒙(𝝉1×𝒙)=𝒙𝝉=(𝝉𝒙)=𝟎.(\boldsymbol{x}\cdot\boldsymbol{\tau}_{1})\times\boldsymbol{x}=\boldsymbol{x}\cdot(\boldsymbol{\tau}_{1}\times\boldsymbol{x})=\boldsymbol{x}\cdot\boldsymbol{\tau}=(\boldsymbol{\tau}\cdot\boldsymbol{x})^{\intercal}=\boldsymbol{0}.

Thus there exists qk1(D)q\in\mathbb{P}_{k-1}(D) satisfying 𝒙𝝉1=q𝒙\boldsymbol{x}\cdot\boldsymbol{\tau}_{1}=q\boldsymbol{x}, i.e. 𝒙(𝝉1q𝑰)=𝟎\boldsymbol{x}\cdot(\boldsymbol{\tau}_{1}-q\boldsymbol{I})=\boldsymbol{0}. Again there exists 𝝉2k2(D;𝕄)\boldsymbol{\tau}_{2}\in\mathbb{P}_{k-2}(D;\mathbb{M}) satisfying 𝝉1=q𝑰+𝒙×𝝉2\boldsymbol{\tau}_{1}=q\boldsymbol{I}+\boldsymbol{x}\times\boldsymbol{\tau}_{2}. Hence

𝝉=q𝑰×𝒙+𝒙×𝝉2×𝒙.\boldsymbol{\tau}=q\boldsymbol{I}\times\boldsymbol{x}+\boldsymbol{x}\times\boldsymbol{\tau}_{2}\times\boldsymbol{x}.

It follows from the symmetry of 𝝉\boldsymbol{\tau} that

𝝉\displaystyle\boldsymbol{\tau} =sym𝝉=sym(q𝑰×𝒙+𝒙×𝝉2×𝒙)=sym(𝒙×𝝉2×𝒙)=𝒙×sym𝝉2×𝒙.\displaystyle=\operatorname{sym}\boldsymbol{\tau}=\operatorname{sym}(q\boldsymbol{I}\times\boldsymbol{x}+\boldsymbol{x}\times\boldsymbol{\tau}_{2}\times\boldsymbol{x})=\operatorname{sym}(\boldsymbol{x}\times\boldsymbol{\tau}_{2}\times\boldsymbol{x})=\boldsymbol{x}\times\operatorname{sym}\boldsymbol{\tau}_{2}\boldsymbol{\times}\boldsymbol{x}.

Here we use the fact that 𝒙×skw𝝉2×𝒙k(D;𝕂)\boldsymbol{x}\times\operatorname{skw}\boldsymbol{\tau}_{2}\times\boldsymbol{x}\in\mathbb{P}_{k}(D;\mathbb{K}).

3. k(D;𝕊)𝒙=k+1(D;3)ker(πRM)\mathbb{P}_{k}(D;\mathbb{S})\cdot\boldsymbol{x}=\mathbb{P}_{k+1}(D;\mathbb{R}^{3})\cap\ker(\pi_{RM}).

As a result of step 1,

dim(𝒙×k2(D;𝕊)×𝒙)=dimk2(D;𝕊)dimk3(D;3)=12k(k1)(k+4).\displaystyle\dim(\boldsymbol{x}\times\mathbb{P}_{k-2}(D;\mathbb{S})\times\boldsymbol{x})=\dim\mathbb{P}_{k-2}(D;\mathbb{S})-\dim\mathbb{P}_{k-3}(D;\mathbb{R}^{3})=\frac{1}{2}k(k-1)(k+4).

Then we get from step 2 that

dim(k(D;𝕊)𝒙)\displaystyle\dim(\mathbb{P}_{k}(D;\mathbb{S})\cdot\boldsymbol{x}) =dimk(D;𝕊)dim(𝒙×k2(D;𝕊)×𝒙)\displaystyle=\dim\mathbb{P}_{k}(D;\mathbb{S})-\dim(\boldsymbol{x}\times\mathbb{P}_{k-2}(D;\mathbb{S})\times\boldsymbol{x})
=(k+3)(k+2)(k+1)12k(k1)(k+4)\displaystyle=(k+3)(k+2)(k+1)-\frac{1}{2}k(k-1)(k+4)
(19) =12(k+4)(k+3)(k+2)6.\displaystyle=\frac{1}{2}(k+4)(k+3)(k+2)-6.

It follows from (17) that 𝝅RMk+1(D;3)=𝑹𝑴\boldsymbol{\pi}_{RM}\mathbb{P}_{k+1}(D;\mathbb{R}^{3})=\boldsymbol{RM}, and by (19),

dim(k(D;𝕊)𝒙)+dim𝑹𝑴=dimk+1(D;3).\dim(\mathbb{P}_{k}(D;\mathbb{S})\cdot\boldsymbol{x})+\dim\boldsymbol{RM}=\dim\mathbb{P}_{k+1}(D;\mathbb{R}^{3}).

Therefore the complex (18) is exact. ∎

Remark 3.4.

Another Koszul elasticity complex is constructed in [18, Section 3.2] by using different Koszul operators which satisfies homotopy identities. Ours is simpler and sufficient to derive the required decomposition.

3.3. Decomposition of polynomial tensor spaces

Combining the two complexes (14) and (18) yields

(20)

𝑹𝑴k+1(D;3)defπRMk(D;𝕊)inc𝝉𝒙k2(D;𝕊)div𝒙×𝝉×𝒙k3(D;3)sym(𝒗𝒙)0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 12.2309pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&\crcr}}}\ignorespaces{\hbox{\kern-12.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RM}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 18.50867pt\raise 6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.2309pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.2309pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k+1}(D;\mathbb{R}^{3})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 92.98788pt\raise 7.15274pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{def}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 112.55734pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.54347pt\raise-6.91246pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.82361pt\hbox{$\scriptstyle{\pi_{RM}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 12.23091pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 112.55734pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k}(D;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 157.65045pt\raise 7.0597pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.33751pt\hbox{$\scriptstyle{\operatorname{inc}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 177.12268pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.05475pt\raise-6.27774pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.55556pt\hbox{$\scriptstyle{\boldsymbol{\tau}\cdot\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.55734pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 177.12268pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-2}(D;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 226.59077pt\raise 7.15274pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{{\operatorname{div}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 246.35468pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 151.1475pt\raise-7.05551pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\boldsymbol{x}\times\boldsymbol{\tau}\times\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 153.12268pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 246.35468pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{k-3}(D;\mathbb{R}^{3})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 305.19223pt\raise 1.72218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 320.19223pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 217.55444pt\raise-8.22218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}(\boldsymbol{v}\boldsymbol{x}^{\intercal})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 222.35469pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 320.19223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 302.47pt\raise-6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\supset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 296.19223pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

Although no homotopy identity, from (20), we can derive the following space decompositions which play an vital role in the design of degree of freedoms.

Lemma 3.5.

We have the following space decompositions

(21) k+1(D;3)\displaystyle\mathbb{P}_{k+1}(D;\mathbb{R}^{3}) =(k(D;𝕊)𝒙)𝑹𝑴,\displaystyle=(\mathbb{P}_{k}(D;\mathbb{S})\cdot\boldsymbol{x})\oplus\boldsymbol{RM},
(22) k(D;𝕊)\displaystyle\mathbb{P}_{k}(D;\mathbb{S}) =defk+1(D;3)(𝒙×k2(D;𝕊)×𝒙),\displaystyle=\operatorname{def}\mathbb{P}_{k+1}(D;\mathbb{R}^{3})\oplus(\boldsymbol{x}\times\mathbb{P}_{k-2}(D;\mathbb{S})\times\boldsymbol{x}),
(23) k2(D;𝕊)\displaystyle\mathbb{P}_{k-2}(D;\mathbb{S}) =inck(D;𝕊)sym(k3(D;3)𝒙).\displaystyle=\operatorname{inc}\mathbb{P}_{k}(D;\mathbb{S})\oplus\operatorname{sym}(\mathbb{P}_{k-3}(D;\mathbb{R}^{3})\boldsymbol{x}).
Proof.

The decomposition (21) is trivial by the exactness of (18).

For any 𝒒k+1(D;3)\boldsymbol{q}\in\mathbb{P}_{k+1}(D;\mathbb{R}^{3}) satisfying def𝒒𝒙×k2(D;𝕊)×𝒙\operatorname{def}\boldsymbol{q}\in\boldsymbol{x}\times\mathbb{P}_{k-2}(D;\mathbb{S})\times\boldsymbol{x}, we have

(𝒒+(𝒒))𝒙=2(def𝒒)𝒙=𝟎.(\nabla\boldsymbol{q}+(\nabla\boldsymbol{q})^{\intercal})\cdot\boldsymbol{x}=2(\operatorname{def}\boldsymbol{q})\cdot\boldsymbol{x}=\boldsymbol{0}.

Since (𝒒)𝒙=(𝒙𝒒)𝒒(\nabla\boldsymbol{q})\boldsymbol{x}=\nabla(\boldsymbol{x}^{\intercal}\boldsymbol{q})-\boldsymbol{q}, we get

(24) (𝒒)𝒙+(𝒙𝒒)=𝒒.(\nabla\boldsymbol{q})^{\intercal}\cdot\boldsymbol{x}+\nabla(\boldsymbol{x}^{\intercal}\boldsymbol{q})=\boldsymbol{q}.

Noting that

𝒙(𝒒)𝒙=𝒙(def𝒒)𝒙=0,\boldsymbol{x}\cdot(\nabla\boldsymbol{q})^{\intercal}\cdot\boldsymbol{x}=\boldsymbol{x}\cdot(\operatorname{def}\boldsymbol{q})\cdot\boldsymbol{x}=0,

we obtain from (24) that

(𝒙)(𝒙𝒒)=𝒙𝒒.(\boldsymbol{x}\cdot\nabla)(\boldsymbol{x}^{\intercal}\boldsymbol{q})=\boldsymbol{x}^{\intercal}\boldsymbol{q}.

Hence 𝒙𝒒\boldsymbol{x}^{\intercal}\boldsymbol{q} is a linear function. In turn, it follows from (24) that 𝒒1(D;3)\boldsymbol{q}\in\mathbb{P}_{1}(D;\mathbb{R}^{3}), which together with the fact 𝒙𝒒\boldsymbol{x}^{\intercal}\boldsymbol{q} is linear implies 𝒒𝑹𝑴\boldsymbol{q}\in\boldsymbol{RM}. Thus (22) follows from the fact that the dimensions on two sides of (22) coincide.

By Lemma 3.1, the sum in (23) is a direct sum. Thus the decomposition (23) follows. ∎

3.4. Polynomial complexes in two dimensions

We have similar polynomial complexes in two dimensions. Here we collect some which will appear as the trace complex on face FF of a polyhedron. Let 𝒏\boldsymbol{n} be a normal vector of FF. For 𝒙F\boldsymbol{x}\in F, denote by 𝒙=𝒏×𝒙\boldsymbol{x}^{\bot}=\boldsymbol{n}\times\boldsymbol{x}. Set 𝑹𝑻:=0(F;2)+𝒙0(F)\boldsymbol{RT}:=\mathbb{P}_{0}(F;\mathbb{R}^{2})+\boldsymbol{x}\mathbb{P}_{0}(F). For a scalar function vv,

π1v:=v(0,0)+𝒙Fv(0,0).\pi_{1}v:=v(0,0)+\boldsymbol{x}\cdot\nabla_{F}v(0,0).

Again, here without loss of generality, we assume (0,0)F(0,0)\in F and in general the 𝒙\boldsymbol{x} in the results presented below can be replaced by 𝒙𝒙c\boldsymbol{x}-\boldsymbol{x}_{c} with an arbitrary 𝒙cF\boldsymbol{x}_{c}\in F.

The following divdiv\operatorname{div}\operatorname{div} polynomial complexes has been established in [12]:

(25) 𝑹𝑻k+1(F;2)symcurlF𝒙k(F;𝕊)divFdivF𝝉𝒙k2(F)𝒙𝒙v0,\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.4514pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\crcr}}}\ignorespaces{\hbox{\kern-10.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{RT}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.72917pt\raise 6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 34.4514pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 34.4514pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k+1}(F;\mathbb{R}^{2})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.04437pt\raise 7.83607pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{\operatorname{sym}\operatorname{curl}_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 115.59578pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.45107pt\raise-6.22913pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 10.4514pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 115.59578pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k}(F;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 157.32347pt\raise 7.83607pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{\operatorname{div}_{F}{\operatorname{div}}_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 184.97905pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 94.53763pt\raise-6.92357pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.20139pt\hbox{$\scriptstyle{\boldsymbol{\tau}\cdot\boldsymbol{x}^{\bot}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 91.59578pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 184.97905pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k-2}(F)\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 235.69563pt\raise 1.72218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 250.69563pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 163.04515pt\raise-6.65968pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9375pt\hbox{$\scriptstyle{\boldsymbol{x}\boldsymbol{x}^{\intercal}v}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 160.97905pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 250.69563pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 232.9734pt\raise-6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\supset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 226.69563pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces,

which implies the following decomposition

  • k+2(F;2)=(k+1(F;𝕊)𝒙)𝑹𝑻.\mathbb{P}_{k+2}(F;\mathbb{R}^{2})=(\mathbb{P}_{k+1}(F;\mathbb{S})\cdot\boldsymbol{x}^{\bot})\oplus\boldsymbol{RT}.

  • k(F;𝕊)=symcurlFk+1(F;2)k2(F)𝒙𝒙.\displaystyle\mathbb{P}_{k}(F;\mathbb{S})=\operatorname{sym}\operatorname{curl}_{F}\,\mathbb{P}_{k+1}(F;\mathbb{R}^{2})\oplus\mathbb{P}_{k-2}(F)\boldsymbol{x}\boldsymbol{x}^{\intercal}.

  • divFdivF:k2(F)𝒙𝒙k2(F)\operatorname{div}_{F}\operatorname{div}_{F}:\mathbb{P}_{k-2}(F)\boldsymbol{x}\boldsymbol{x}^{\intercal}\to\mathbb{P}_{k-2}(F) is a bijection.

The following two dimensional Hessian polynomial complex and its Koszul complex can be also found in [12, Section 3.1]

(26) 1(F)k+2(F)F2π1k(F;𝕊)rotF𝒙𝝉𝒙k1(F;2)sym(𝒙𝒗)0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.60141pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\crcr}}}\ignorespaces{\hbox{\kern-15.60141pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{P}_{1}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.87918pt\raise 6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.60141pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.60141pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k+2}(F)\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 88.32632pt\raise 8.44162pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.35277pt\hbox{$\scriptstyle{\nabla_{F}^{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 107.80688pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.60634pt\raise-6.87357pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8625pt\hbox{$\scriptstyle{\pi_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 15.60143pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 107.80688pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k}(F;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 154.39432pt\raise 7.5583pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.46945pt\hbox{$\scriptstyle{\operatorname*{rot}_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 177.19016pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 85.33173pt\raise-6.27774pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.55556pt\hbox{$\scriptstyle{\boldsymbol{x}\cdot\boldsymbol{\tau}\cdot\boldsymbol{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 83.80688pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 177.19016pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\;\mathbb{P}_{k-1}(F;\mathbb{R}^{2})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 240.84564pt\raise 1.72218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 255.84564pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 148.00102pt\raise-8.22218pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\operatorname{sym}(\boldsymbol{x}^{\perp}\boldsymbol{v})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 153.19016pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 255.84564pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 238.12341pt\raise-6.74586pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\supset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 231.84564pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

The implied decompositions are

  • k+2(F)=(𝒙k(F;𝕊)𝒙)1(F).\mathbb{P}_{k+2}(F)=(\boldsymbol{x}\cdot\mathbb{P}_{k}(F;\mathbb{S})\cdot\boldsymbol{x})\oplus\mathbb{P}_{1}(F).

  • k(F;𝕊)=F2k+2(F)sym(𝒙k1(F;2)).\displaystyle\mathbb{P}_{k}(F;\mathbb{S})=\nabla_{F}^{2}\,\mathbb{P}_{k+2}(F)\oplus\operatorname{sym}(\boldsymbol{x}^{\perp}\mathbb{P}_{k-1}(F;\mathbb{R}^{2})).

  • rotF:sym(𝒙k1(F;2))k1(F;2)\operatorname*{rot}_{F}:\operatorname{sym}(\boldsymbol{x}^{\perp}\mathbb{P}_{k-1}(F;\mathbb{R}^{2}))\to\mathbb{P}_{k-1}(F;\mathbb{R}^{2}) is a bijection.

4. Traces and Bubble Complexes

Besides the decomposition of polynomial spaces, another key of our construction is the characterization of the trace operator. We first derive a symmetric form of Green’s identity for the inc\operatorname{inc} operator from which we define two traces. We show the traces of spaces in the elasticity complex form two complexes on each face and will call them trace complexes. On the other hand, the kernel of traces in the polynomial space are called bubble function spaces which also form a complex and is called the bubble complexes. We also present several bubble complexes on each face.

When define and study the traces, we consider smooth enough functions not in the most general Sobolev spaces setting. The precise Sobolev spaces for the traces of the inc\operatorname{inc} operator are not easy to identity and not necessary as the shape function is polynomial which is smooth inside one element.

4.1. Green’s identity

Consider 𝝈,𝝉𝑯2(K;𝕊)\boldsymbol{\sigma},\boldsymbol{\tau}\in\boldsymbol{H}^{2}(K;\mathbb{S}). By the symbolical symmetry, we expect the following symmetric form of Green’s identity

(×𝝈×,𝝉)K(×𝝉×,𝝈)K=(tr1(𝝈),tr2(𝝉))K(tr1(𝝉),tr2(𝝈))K,(\nabla\times\boldsymbol{\sigma}\times\nabla,\boldsymbol{\tau})_{K}-(\nabla\times\boldsymbol{\tau}\times\nabla,\boldsymbol{\sigma})_{K}=({\rm tr}_{1}(\boldsymbol{\sigma}),{\rm tr}_{2}(\boldsymbol{\tau}))_{\partial K}-({\rm tr}_{1}(\boldsymbol{\tau}),{\rm tr}_{2}(\boldsymbol{\sigma}))_{\partial K},

which belongs to a class of second Green’s identities. For the scalar Laplacian operator, it reads as: for u,vH2(K)u,v\in H^{2}(K),

(Δu,v)K+(Δv,u)K=(tr1(u),tr2(v))K(tr1(v),tr2(u))K.-(\Delta u,v)_{K}+(\Delta v,u)_{K}=({\rm tr}_{1}(u),{\rm tr}_{2}(v))_{\partial K}-({\rm tr}_{1}(v),{\rm tr}_{2}(u))_{\partial K}.

where tr1(u)=u{\rm tr}_{1}(u)=u is the Dirichlet trace and tr2(v)=nv{\rm tr}_{2}(v)=\partial_{n}v is the Neumann trace. For the curl\operatorname{curl} operator, we have a similar formula: for 𝒖,𝒗𝑯2(K)\boldsymbol{u},\boldsymbol{v}\in\boldsymbol{H}^{2}(K),

(××𝒖,𝒗)K(××𝒗,𝒖)K=(tr1(𝒖),tr2(𝒗))K+(tr1(𝒗),tr2(𝒖))K.(\nabla\times\nabla\times\boldsymbol{u},\boldsymbol{v})_{K}-(\nabla\times\nabla\times\boldsymbol{v},\boldsymbol{u})_{K}=-({\rm tr}_{1}(\boldsymbol{u}),{\rm tr}_{2}(\boldsymbol{v}))_{\partial K}+({\rm tr}_{1}(\boldsymbol{v}),{\rm tr}_{2}(\boldsymbol{u}))_{\partial K}.

where tr1(𝒖)=(𝒏×𝒖)×𝒏{\rm tr}_{1}(\boldsymbol{u})=(\boldsymbol{n}\times\boldsymbol{u})\times\boldsymbol{n} is the tangential component of 𝒖\boldsymbol{u} (Dirichlet type) and tr2(𝒖)=𝒏×(×𝒖){\rm tr}_{2}(\boldsymbol{u})=\boldsymbol{n}\times(\nabla\times\boldsymbol{u}) is the Neumann type trace.

As 𝝈\boldsymbol{\sigma} is symmetric, (×𝝈)=𝝈×(\nabla\times\boldsymbol{\sigma})^{\intercal}=-\boldsymbol{\sigma}\times\nabla. Therefore (×(),()×)(\nabla\times(\cdot),(\cdot)\times\nabla) is a symmetric bilinear form on 𝑯1(K,𝕊)\boldsymbol{H}^{1}(K,\mathbb{S}), i.e.,

(×𝝈,𝝉×)K=(×𝝉,𝝈×)K.(\nabla\times\boldsymbol{\sigma},\boldsymbol{\tau}\times\nabla)_{K}=(\nabla\times\boldsymbol{\tau},\boldsymbol{\sigma}\times\nabla)_{K}.

Applying integration by parts, we have

(27) (×𝝈,𝝉×)K=(×𝝈×,𝝉)K+(×𝝈,𝝉×𝒏)K,\displaystyle(\nabla\times\boldsymbol{\sigma},\boldsymbol{\tau}\times\nabla)_{K}=(\nabla\times\boldsymbol{\sigma}\times\nabla,\boldsymbol{\tau})_{K}+(\nabla\times\boldsymbol{\sigma},\boldsymbol{\tau}\times\boldsymbol{n})_{\partial K},
(28) (×𝝉,𝝈×)K=(×𝝉×,𝝈)K+(×𝝉,𝝈×𝒏)K.\displaystyle(\nabla\times\boldsymbol{\tau},\boldsymbol{\sigma}\times\nabla)_{K}=(\nabla\times\boldsymbol{\tau}\times\nabla,\boldsymbol{\sigma})_{K}+(\nabla\times\boldsymbol{\tau},\boldsymbol{\sigma}\times\boldsymbol{n})_{\partial K}.

The difference between (27) and (28) implies the first symmetric Green’s identity

(×𝝈×,𝝉)K(𝝈,×𝝉×)K=(𝝈×𝒏,×𝝉)K(×𝝈,𝝉×𝒏)K.(\nabla\times\boldsymbol{\sigma}\times\nabla,\boldsymbol{\tau})_{K}-(\boldsymbol{\sigma},\nabla\times\boldsymbol{\tau}\times\nabla)_{K}=(\boldsymbol{\sigma}\times\boldsymbol{n},\nabla\times\boldsymbol{\tau})_{\partial K}-(\nabla\times\boldsymbol{\sigma},\boldsymbol{\tau}\times\boldsymbol{n})_{\partial K}.

But in this form, the trace 𝝈×𝒏\boldsymbol{\sigma}\times\boldsymbol{n} and ×𝝈\nabla\times\boldsymbol{\sigma} are still linearly dependent.

We further expand the boundary term into tangential and normal parts

(𝝈×𝒏,×𝝉)K=(𝒏×𝝈×𝒏,𝒏×(×𝝉))K+(𝒏𝝈×𝒏,𝒏(×𝝉))K.(\boldsymbol{\sigma}\times\boldsymbol{n},\nabla\times\boldsymbol{\tau})_{\partial K}=(\boldsymbol{n}\times\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau}))_{\partial K}+(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau}))_{\partial K}.

Recall that, on one face FKF\in\partial K, 𝒏(×𝝉)=FΠF𝝉=F(𝒏×𝝉)\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau})=\nabla_{F}^{\bot}\cdot\Pi_{F}\boldsymbol{\tau}=-\nabla_{F}\cdot(\boldsymbol{n}\times\boldsymbol{\tau}). Then integration by parts on face FF, we get

(𝒏𝝈×𝒏,F(𝒏×𝝉))F\displaystyle(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\nabla_{F}\cdot(\boldsymbol{n}\times\boldsymbol{\tau}))_{F} =(F(𝒏𝝈×𝒏),𝒏×𝝉)F\displaystyle=-(\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n}),\boldsymbol{n}\times\boldsymbol{\tau})_{F}
+eF(𝒏𝝈×𝒏,𝒏F,e(𝒏×𝝉))e\displaystyle\quad+\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{n}_{F,e}\cdot(\boldsymbol{n}\times\boldsymbol{\tau}))_{e}
=(F(𝒏𝝈ΠF),𝒏×𝝉×𝒏)F\displaystyle=(\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\ \Pi_{F}),\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n})_{F}
eF(𝒏𝝈×𝒏,𝒕F,e𝝉)e,\displaystyle\quad-\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau})_{e},

where recall that 𝒕F,e=𝒏×𝒏F,e\boldsymbol{t}_{F,e}=\boldsymbol{n}\times\boldsymbol{n}_{F,e}. Therefore we can write the boundary term as

(𝝈×𝒏,×𝝉)K\displaystyle(\boldsymbol{\sigma}\times\boldsymbol{n},\nabla\times\boldsymbol{\tau})_{\partial K} =(𝒏×𝝈×𝒏,𝒏×(×𝝉))K\displaystyle=(\boldsymbol{n}\times\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau}))_{\partial K}
F(K)(F(𝒏𝝈ΠF),𝒏×𝝉×𝒏)F\displaystyle-\sum_{F\in\mathcal{F}(K)}(\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\ \Pi_{F}),\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n})_{F}
+F(K)eF(𝒏𝝈×𝒏,𝒕e𝝉)e,\displaystyle\quad+\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{t}_{e}\cdot\boldsymbol{\tau})_{e},

and by symmetry

(𝝉×𝒏,×𝝈)K\displaystyle(\boldsymbol{\tau}\times\boldsymbol{n},\nabla\times\boldsymbol{\sigma})_{\partial K} =(𝒏×𝝉×𝒏,𝒏×(×𝝈))K\displaystyle=(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n},\boldsymbol{n}\times(\nabla\times\boldsymbol{\sigma}))_{\partial K}
F(K)(F(𝒏𝝉ΠF),𝒏×𝝈×𝒏)F\displaystyle-\sum_{F\in\mathcal{F}(K)}(\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\ \Pi_{F}),\boldsymbol{n}\times\boldsymbol{\sigma}\times\boldsymbol{n})_{F}
+F(K)eF(𝒏𝝉×𝒏,𝒕e𝝈)e.\displaystyle\quad+\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\times\boldsymbol{n},\boldsymbol{t}_{e}\cdot\boldsymbol{\sigma})_{e}.

The difference of these two terms suggests us to define

tr1(𝝉)\displaystyle{\rm tr}_{1}(\boldsymbol{\tau}) :=𝒏×𝝉×𝒏,\displaystyle:=\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n},
tr~2(𝝉)\displaystyle\widetilde{{\rm tr}}_{2}(\boldsymbol{\tau}) :=𝒏×(×𝝉)ΠF+F(𝒏𝝉ΠF).\displaystyle:=\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau})\Pi_{F}+\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\ \Pi_{F}).

We can simplify the trace tr~2(𝝉)\widetilde{{\rm tr}}_{2}(\boldsymbol{\tau}) as follows. Apply ΠF()ΠF\Pi_{F}(\cdot)\Pi_{F} to the tangential trace of ×𝝉\nabla\times\boldsymbol{\tau} cf. (9) to get

(29) ΠF(𝒏×(×𝝉))ΠF=F(𝒏𝝉ΠF)ΠFn𝝉ΠF.\Pi_{F}(\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau}))\Pi_{F}=\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\Pi_{F})-\Pi_{F}\partial_{n}\boldsymbol{\tau}\Pi_{F}.

Because tr~2(𝝉)\widetilde{{\rm tr}}_{2}(\boldsymbol{\tau}) is integrated on the face with a tangential symmetric matrix 𝒏×𝝈×𝒏\boldsymbol{n}\times\boldsymbol{\sigma}\times\boldsymbol{n}, it can be further simplified to symtr~2(𝝉)\operatorname{sym}\widetilde{{\rm tr}}_{2}(\boldsymbol{\tau}). Therefore we define

(30) tr2(𝝉):=symtr~2(𝝉)=2defF(𝒏𝝉ΠF)ΠFn𝝉ΠF,{\rm tr}_{2}(\boldsymbol{\tau}):=\operatorname{sym}\widetilde{{\rm tr}}_{2}(\boldsymbol{\tau})=2{\rm def}_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\,\Pi_{F})-\Pi_{F}\partial_{n}\,\boldsymbol{\tau}\,\Pi_{F},

which is a symmetric matrix on each face. Such trace has been identified in [4].

We present another form of tr2{\rm tr}_{2} which is obtained by taking the transpose of the second term in tr~2(𝝉)\widetilde{\rm tr}_{2}(\boldsymbol{\tau}) and more useful than (30).

Lemma 4.1.

For any sufficiently smooth and symmetric tensor 𝛕\boldsymbol{\tau}, it holds

(31) tr2(𝝉)\displaystyle{\rm tr}_{2}(\boldsymbol{\tau}) =𝒏×(×𝝉)ΠF+(ΠF𝝉𝒏)F\displaystyle=\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau})\Pi_{F}+(\Pi_{F}\boldsymbol{\tau}\cdot\boldsymbol{n})\nabla_{F}
(32) =ΠF(𝝉×)×𝒏+F(𝒏𝝉ΠF).\displaystyle=\Pi_{F}(\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n}+\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\ \Pi_{F}).
Proof.

We take the transpose of (29) and use the symmetry of 𝝉\boldsymbol{\tau} to get

(33) ΠF((𝝉×)×𝒏)ΠF=(ΠF𝝉𝒏)FΠFn𝝉ΠF.\Pi_{F}((\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n})\Pi_{F}=(\Pi_{F}\boldsymbol{\tau}\cdot\boldsymbol{n})\nabla_{F}-\Pi_{F}\partial_{n}\boldsymbol{\tau}\Pi_{F}.

The difference of (33) and (29) implies

ΠF(𝒏×(×𝝉))ΠF+(ΠF𝝉𝒏)F=ΠF((𝝉×)×𝒏)ΠF+F(𝒏𝝉ΠF).\Pi_{F}(\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau}))\Pi_{F}+(\Pi_{F}\boldsymbol{\tau}\cdot\boldsymbol{n})\nabla_{F}=\Pi_{F}((\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n})\Pi_{F}+\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\Pi_{F}).

As tr2(𝝉)=symtr~2(𝝉){\rm tr}_{2}(\boldsymbol{\tau})=\operatorname{sym}\widetilde{\rm tr}_{2}(\boldsymbol{\tau}), we obtain (31). As 𝝉\boldsymbol{\tau} is symmetric, taking transpose, we obtain (32). ∎

We are in the position to summarize the symmetric form of Green’s identity.

Theorem 4.2 (Symmetric Green’s identity for the inc\operatorname{inc} operator).

Let KK be a polyhedron, and let 𝛔,𝛕𝐇2(K;𝕊)\boldsymbol{\sigma},\boldsymbol{\tau}\in\boldsymbol{H}^{2}(K;\mathbb{S}). Then we have

(×𝝈×,𝝉)K(𝝈,×𝝉×)K\displaystyle(\nabla\times\boldsymbol{\sigma}\times\nabla,\boldsymbol{\tau})_{K}-(\boldsymbol{\sigma},\nabla\times\boldsymbol{\tau}\times\nabla)_{K} =(tr1(𝝈),tr2(𝝉))K(tr2(𝝈),tr1(𝝉))K\displaystyle=({\rm tr}_{1}(\boldsymbol{\sigma}),{\rm tr}_{2}(\boldsymbol{\tau}))_{\partial K}-({\rm tr}_{2}(\boldsymbol{\sigma}),{\rm tr}_{1}(\boldsymbol{\tau}))_{\partial K}
+F(K)eF(𝒏𝝈×𝒏,𝒕F,e𝝉)e\displaystyle\quad+\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau})_{e}
(34) F(K)eF(𝒕F,e𝝈,𝒏𝝉×𝒏)e.\displaystyle\quad-\sum_{F\in\mathcal{F}(K)}\sum_{e\in\partial F}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\sigma},\boldsymbol{n}\cdot\boldsymbol{\tau}\times\boldsymbol{n})_{e}.

As both 𝝈\boldsymbol{\sigma} and 𝝉\boldsymbol{\tau} are symmetric, by taking transpose of the boundary terms, we can get another equivalent version of Green’s identity. For example, the edge term can be (𝒏×𝝈𝒏,𝝉𝒕F,e)e-(\boldsymbol{n}\times\boldsymbol{\sigma}\cdot\boldsymbol{n},\boldsymbol{\tau}\cdot\boldsymbol{t}_{F,e})_{e}.

When the domain Ω\Omega is decomposed into a polyhedral mesh, for piecewise smooth function to be in 𝑯(inc,Ω;𝕊)\boldsymbol{H}(\operatorname{inc},\Omega;\mathbb{S}), the edge terms across different elements should be canceled.

Remark 4.3.

We note that tr1(𝛕)\operatorname*{tr}_{1}(\boldsymbol{\tau}) is independent of the choice of the direction of normal vectors but tr2(𝛕)\operatorname*{tr}_{2}(\boldsymbol{\tau}) is an odd function of 𝐧\boldsymbol{n} in the sense that tr2(𝛕;𝐧)=tr2(𝛕;𝐧)\operatorname*{tr}_{2}(\boldsymbol{\tau};-\boldsymbol{n})=-\operatorname*{tr}_{2}(\boldsymbol{\tau};\boldsymbol{n}). Therefore if tr1(𝛕)\operatorname*{tr}_{1}(\boldsymbol{\tau}) and |tr2(𝛕)||\operatorname*{tr}_{2}(\boldsymbol{\tau})| are single valued on face FF, the face terms will be canceled out when integrated over a mesh of the domain Ω\Omega.

The edge vector 𝐭F,e\boldsymbol{t}_{F,e} in (34) is the orientation of edge ee induced by the outwards normal vector 𝐧K\boldsymbol{n}_{\partial K} of the face FF with respect to KK. Therefore, for an interior face F=KKF=K\cap K^{\prime}, 𝐭F(K),e=𝐭F(K),e\boldsymbol{t}_{F(K),e}=-\boldsymbol{t}_{F(K^{\prime}),e}, where F(K)F(K) means F(K)F\in\mathcal{F}(K) with normal vector 𝐧K\boldsymbol{n}_{\partial K}.

A sufficient condition for the cancelation of edge terms is to impose the continuity of 𝛕e\boldsymbol{\tau}\mid_{e}, which implies 𝛕(δ)\boldsymbol{\tau}(\delta) is also continuous at vertices. Those observation will be helpful when designing degree of freedoms for finite elements.

Most discussion in Remark 4.3 can be found in [4] but the Green’s identity (34) and the form of tr2(𝝉)\operatorname*{tr}_{2}(\boldsymbol{\tau}) cf. (31) seems new. When the domain is smooth, the edge jump will be replaced by a curvature term, cf. [1, Theorem 3.16], where a different Green’s formula on smooth domains is derived.

4.2. Trace complexes

For a vector 𝒗3\boldsymbol{v}\in\mathbb{R}^{3}, define the tangential trace and the normal trace as

tr1(𝒗):=𝒗×𝒏,tr2(𝒗):=𝒗𝒏.{\rm tr}_{1}(\boldsymbol{v}):=\boldsymbol{v}\times\boldsymbol{n},\quad{\rm tr}_{2}(\boldsymbol{v}):=\boldsymbol{v}\cdot\boldsymbol{n}.

For a smooth and symmetric tensor 𝝈𝑯(div,K;𝕊)\boldsymbol{\sigma}\in\boldsymbol{H}(\operatorname{div},K;\mathbb{S}) define the normal-normal trace and the normal-tangential trace as

tr1(𝝈):=𝒏𝝈𝒏,tr2(𝝈):=𝒏×𝝈𝒏.{\rm tr}_{1}(\boldsymbol{\sigma}):=\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n},\quad{\rm tr}_{2}(\boldsymbol{\sigma}):=\boldsymbol{n}\times\boldsymbol{\sigma}\cdot\boldsymbol{n}.

Then we will have the following trace complexes

(35) 𝒂×𝒙+𝒃tr1𝒗tr1def𝝉tr1inc𝝈tr1divpaF𝒙F+𝒃F𝒗×𝒏symcurlF𝒏×𝝉×𝒏divFdivF𝒏𝝈𝒏0,\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 21.10364pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-18.42421pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{a}\times\boldsymbol{x}+\boldsymbol{b}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.43666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.92888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.48672pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.99371pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.99371pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{v}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.59671pt\raise-19.43666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.59671pt\raise-30.04pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 77.96536pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{def}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 107.86993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 107.86993pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\tau}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.0557pt\raise-19.43666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.0557pt\raise-30.04pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 134.04938pt\raise 5.33751pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.33751pt\hbox{$\scriptstyle{\operatorname{inc}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 164.80174pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 164.80174pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\boldsymbol{\sigma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 170.6588pt\raise-19.43666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 170.6588pt\raise-31.42888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 184.9713pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 209.29599pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 209.29599pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{p}$}}}}}}}{\hbox{\kern-21.10364pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{a_{F}\boldsymbol{x}_{F}+\boldsymbol{b}_{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.07613pt\raise-33.84964pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 45.10364pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 45.10364pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{v}\times\boldsymbol{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 68.7748pt\raise-32.75943pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{\operatorname{sym}\operatorname{curl}_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 94.08978pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 94.08978pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 126.20166pt\raise-32.75943pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.74722pt\hbox{$\scriptstyle{\mathrm{div}_{F}{\mathrm{div}}_{F}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 156.0216pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 156.0216pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 189.7352pt\raise-38.87332pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 209.31161pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 209.31161pt\raise-38.87332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array},

and

(36) 𝒂×𝒙+𝒃tr2𝒗tr2def𝝉tr2inc𝝈tr2divp𝒂F𝒙F+bF𝒗𝒏F2tr2(𝝉)F𝒏𝝈×𝒏0.\begin{array}[]{c}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 23.60362pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-18.42421pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{a}\times\boldsymbol{x}+\boldsymbol{b}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.72221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.48672pt\raise 5.02368pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.9937pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.9937pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{v}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.5967pt\raise-19.72221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.5967pt\raise-32.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 74.42113pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{def}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 100.78146pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 100.78146pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{\tau}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 105.96722pt\raise-19.72221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 105.96722pt\raise-28.94444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 125.91669pt\raise 5.33751pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.33751pt\hbox{$\scriptstyle{\operatorname{inc}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 155.62483pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 155.62483pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\boldsymbol{\sigma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 161.48189pt\raise-19.72221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50835pt\hbox{$\scriptstyle{\operatorname*{tr}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 161.48189pt\raise-30.61111pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 177.0444pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{div}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 202.6191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 202.6191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{p}$}}}}}}}{\hbox{\kern-23.60362pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{a}_{F}\cdot\boldsymbol{x}_{F}+b_{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 23.07611pt\raise-34.42076pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\subset}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 47.60362pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 47.60362pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{v}\cdot\boldsymbol{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 74.30139pt\raise-32.725pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.35277pt\hbox{$\scriptstyle{\nabla_{F}^{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 91.58977pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 91.58977pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\rm tr}_{2}(\boldsymbol{\tau})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 125.27177pt\raise-32.675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.40277pt\hbox{$\scriptstyle{\nabla_{F}^{\bot}\cdot}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 144.34468pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.34468pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 181.8083pt\raise-39.44444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 202.63472pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 202.63472pt\raise-39.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{array}.

In (35) and (36), we present the concrete form instead of Sobolev spaces as we will work mostly on polynomial functions which are smooth enough to define the trace point-wisely.

Lemma 4.4.

For any sufficiently smooth vector function 𝐯\boldsymbol{v}, we have

(37) 𝒏×(def𝒗)×𝒏\displaystyle\boldsymbol{n}\times(\operatorname{def}\boldsymbol{v})\times\boldsymbol{n} =symcurlF(𝒗×𝒏),\displaystyle=\operatorname{sym}\operatorname{curl}_{F}(\boldsymbol{v}\times\boldsymbol{n}),
(38) tr2(def𝒗)\displaystyle{\rm tr}_{2}(\operatorname{def}\boldsymbol{v}) =F2(𝒗𝒏).\displaystyle=\nabla_{F}^{2}(\boldsymbol{v}\cdot\boldsymbol{n}).
Proof.

Using our notation, the first identity (37) is straightforward:

𝒏×(𝒗)×𝒏=F𝒗×𝒏=(curlF𝒗×𝒏).\boldsymbol{n}\times(\nabla\boldsymbol{v})\times\boldsymbol{n}=\nabla_{F}^{\bot}\boldsymbol{v}\times\boldsymbol{n}=(\operatorname{curl}_{F}\boldsymbol{v}\times\boldsymbol{n})^{\intercal}.

Then apply the sym\operatorname{sym} operator to get (37).

Let 𝝉=def𝒗\boldsymbol{\tau}=\operatorname{def}\boldsymbol{v}. Using (33) and ×𝒗=0\nabla\times\nabla\boldsymbol{v}=0, it follows that

tr2(𝝉)\displaystyle{\rm tr}_{2}(\boldsymbol{\tau}) =ΠF(𝝉×)×𝒏+F(𝒏𝝉ΠF)\displaystyle=\Pi_{F}(\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n}+\nabla_{F}(\boldsymbol{n}\cdot\boldsymbol{\tau}\ \Pi_{F})
=12ΠF(𝒗×)×𝒏+12F(n(ΠF𝒗)+F(𝒗𝒏))\displaystyle=\frac{1}{2}\Pi_{F}(\nabla\boldsymbol{v}\times\nabla)\times\boldsymbol{n}+\frac{1}{2}\nabla_{F}(\partial_{n}(\Pi_{F}\boldsymbol{v})+\nabla_{F}(\boldsymbol{v}\cdot\boldsymbol{n}))
=12F(F(𝒗𝒏)nΠF𝒗)+12F(n(ΠF𝒗)+F(𝒗𝒏))\displaystyle=\frac{1}{2}\nabla_{F}\big{(}\nabla_{F}(\boldsymbol{v}\cdot\boldsymbol{n})-\partial_{n}\Pi_{F}\boldsymbol{v}\big{)}+\frac{1}{2}\nabla_{F}(\partial_{n}(\Pi_{F}\boldsymbol{v})+\nabla_{F}(\boldsymbol{v}\cdot\boldsymbol{n}))
=F2(𝒗𝒏),\displaystyle=\nabla_{F}^{2}(\boldsymbol{v}\cdot\boldsymbol{n}),

as required. ∎

We then verify the second block.

Lemma 4.5.

For any sufficiently smooth and symmetric tensor 𝛕\boldsymbol{\tau}, it holds that

(39) 𝒏(×𝝉×)𝒏\displaystyle\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau}\times\nabla)\cdot\boldsymbol{n} =divFdivF(𝒏×𝝉×𝒏),\displaystyle=\operatorname{div}_{F}\operatorname{div}_{F}(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n}),
(40) 𝒏(×𝝉×)×𝒏\displaystyle\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n} =Ftr2(𝝉).\displaystyle=\nabla_{F}^{\bot}\cdot{\rm tr}_{2}(\boldsymbol{\tau}).
Proof.

The first identity is from direct computation

𝒏(×𝝉×)𝒏=FΠF𝝉ΠFF=divFdivF(𝒏×𝝉×𝒏).\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau}\times\nabla)\cdot\boldsymbol{n}=\nabla_{F}^{\bot}\cdot\,\Pi_{F}\,\boldsymbol{\tau}\,\Pi_{F}\cdot\nabla_{F}^{\bot}=\operatorname{div}_{F}\operatorname{div}_{F}(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n}).

To prove the second identity, we use the trace representation form (31) and the fact FF=0\nabla_{F}^{\bot}\cdot\nabla_{F}=0 to get

𝒏(×𝝉×)×𝒏=F(𝝉×)×𝒏=Ftr2(𝝉).\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n}=\nabla_{F}^{\bot}\cdot(\boldsymbol{\tau}\times\nabla)\times\boldsymbol{n}=\nabla_{F}^{\bot}\cdot{\rm tr}_{2}(\boldsymbol{\tau}).

4.3. Continuity on edges

In order to construct an H(inc)H(\operatorname{inc})-conforming finite element, the trace complex inspires us to adopt H(divFdivF,F;𝕊)H(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) conforming finite element to discretize 𝒏×𝝉×𝒏\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n}, and 𝑯(rotF,F;𝕊)\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{S})-conforming finite element to discretize tr2(𝝉){\rm tr}_{2}(\boldsymbol{\tau}). The trace for 𝒗F𝑯(rotF,F;𝕊)\boldsymbol{v}_{F}\in\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{S}) is 𝒗F𝒕\boldsymbol{v}_{F}\cdot\boldsymbol{t} on F\partial F. Two trace operators for H(divFdivF,F;𝕊)H(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) are identified in [12, Lemma 2.1] and will be recalled below.

Lemma 4.6 (Green’s identity for the two dimensional divdiv\operatorname{div}\operatorname{div} operator).

Let FF be a polygon, and let 𝛕𝒞2(F;𝕊)\boldsymbol{\tau}\in\mathcal{C}^{2}(F;\mathbb{S}) and vH2(F)v\in H^{2}(F). Then we have

(divFdivF𝝉,v)K\displaystyle(\operatorname{div}_{F}\operatorname{div}_{F}\boldsymbol{\tau},v)_{K} =(𝝉,F2v)Ke(F)δesigne,δ(𝒕F,e𝝉𝒏F,e)(δ)v(δ)\displaystyle=(\boldsymbol{\tau},\nabla^{2}_{F}v)_{K}-\sum_{e\in\mathcal{E}(F)}\sum_{\delta\in\partial e}\operatorname{sign}_{e,\delta}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e})(\delta)v(\delta)
e(F)[(𝒏F,e𝝉𝒏F,e,nF,ev)e\displaystyle\quad-\sum_{e\in\mathcal{E}(F)}\big{[}(\boldsymbol{n}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e},\partial_{n_{F,e}}v)_{e}
(41) (t(𝒕F,e𝝉𝒏F,e)+𝒏F,edivF𝝉,v)e],\displaystyle\qquad\qquad\quad-(\partial_{t}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e})+\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}\boldsymbol{\tau},v)_{e}\big{]},

where

signe,δ:={1, if δ is the end point of e,1, if δ is the start point of e.\operatorname{sign}_{e,\delta}:=\begin{cases}1,&\textrm{ if }\delta\textrm{ is the end point of }e,\\ -1,&\textrm{ if }\delta\textrm{ is the start point of }e.\end{cases}

Based on Green’s identity (41), two traces for H(divFdivF,F;𝕊)H(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) function are

𝒏F,e𝝉𝒏F,e,t(𝒕F,e𝝉𝒏F,e)+𝒏F,edivF𝝉.\boldsymbol{n}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e},\quad\partial_{t}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e})+\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}\boldsymbol{\tau}.
Lemma 4.7.

Let F(K)F\in\mathcal{F}(K), e(F)e\in\mathcal{E}(F), 𝐭\boldsymbol{t} is a direction vector of ee, and 𝐧F,e:=𝐭×𝐧\boldsymbol{n}_{F,e}:=\boldsymbol{t}\times\boldsymbol{n}. For any sufficiently smooth and symmetric tensor 𝛕\boldsymbol{\tau}, we have on edge ee that

(42) 𝒏F,etr1(𝝉)𝒏F,e\displaystyle\boldsymbol{n}_{F,e}\cdot{\rm tr}_{1}(\boldsymbol{\tau})\cdot\boldsymbol{n}_{F,e} =𝒕𝝉𝒕,\displaystyle=-\boldsymbol{t}\cdot\boldsymbol{\tau}\cdot\boldsymbol{t},
(43) t(𝒕tr1(𝝉)𝒏F,e)+𝒏F,edivF(tr1(𝝉))\displaystyle\partial_{t}(\boldsymbol{t}\cdot{\rm tr}_{1}(\boldsymbol{\tau})\cdot\boldsymbol{n}_{F,e})+\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}({\rm tr}_{1}(\boldsymbol{\tau})) =t(𝒏F,e𝝉𝒕)𝒏(×𝝉)𝒕,\displaystyle=\partial_{t}(\boldsymbol{n}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{t})-\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t},
(44) tr2(𝝉)𝒕\displaystyle{\rm tr}_{2}(\boldsymbol{\tau})\cdot\boldsymbol{t} =𝒏×(×𝝉)𝒕+t(ΠF𝝉𝒏).\displaystyle=\boldsymbol{n}\times(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t}+\partial_{t}(\Pi_{F}\boldsymbol{\tau}\cdot\boldsymbol{n}).
Proof.

Let us compute

(45) (𝝉×𝒏)𝒏F,e=((𝝉×𝒏)×𝒏)(𝒏F,e×𝒏)=𝝉𝒕.(\boldsymbol{\tau}\times\boldsymbol{n})\cdot\boldsymbol{n}_{F,e}=((\boldsymbol{\tau}\times\boldsymbol{n})\times\boldsymbol{n})\cdot(\boldsymbol{n}_{F,e}\times\boldsymbol{n})=\boldsymbol{\tau}\cdot\boldsymbol{t}.

Then identity (42) follows. The identity (43) follows from

t(𝒕(𝒏×𝝉×𝒏)𝒏F,e)=t(𝒏F,e𝝉𝒕),\partial_{t}(\boldsymbol{t}\cdot(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n})\cdot\boldsymbol{n}_{F,e})=\partial_{t}(\boldsymbol{n}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{t}),

and using (8) and (45)

𝒏F,edivF(𝒏×𝝉×𝒏)=F(𝒏×𝝉×𝒏)𝒏F,e\displaystyle\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n})=\nabla_{F}\cdot(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n})\cdot\boldsymbol{n}_{F,e}
=\displaystyle= 𝒏×((𝝉×𝒏)𝒏F,e)=𝒏(×𝝉)𝒕.\displaystyle-\boldsymbol{n}\cdot\nabla\times((\boldsymbol{\tau}\times\boldsymbol{n})\cdot\boldsymbol{n}_{F,e})=-\boldsymbol{n}\cdot(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t}.

The identity (44) is a direct consequence of (31). ∎

Those formulae on the edge trace suggests the continuity of 𝝉𝒕\boldsymbol{\tau}\cdot\boldsymbol{t} and (×𝝉)𝒕(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t} on edges. As we mentioned before, in view of Green’s identity (34), it is sufficient to impose the whole tensor 𝝉\boldsymbol{\tau} is continuous on edges. The continuity of (×𝝉)𝒕(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t} is not surprising as ×𝝉×𝑯(div;𝕊)\nabla\times\boldsymbol{\tau}\times\nabla\in\boldsymbol{H}(\operatorname{div};\mathbb{S}) and thus the normal trace ((×𝝉)×)𝒏=(×𝝉)F𝑳2(F;2)((\nabla\times\boldsymbol{\tau})\times\nabla)\cdot\boldsymbol{n}=(\nabla\times\boldsymbol{\tau})\cdot\nabla_{F}^{\bot}\in\boldsymbol{L}^{2}(F;\mathbb{R}^{2}). Namely ×𝝉𝑯(rotF,F;2)\nabla\times\boldsymbol{\tau}\in\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{R}^{2}) and the edge trace of 𝑯(rotF,F;2)\boldsymbol{H}(\operatorname*{rot}_{F},F;\mathbb{R}^{2}) implies the continuity of (×𝝉)𝒕(\nabla\times\boldsymbol{\tau})\cdot\boldsymbol{t}.

4.4. Bubble complexes

We give characterization of bubble functions following [4]. Let KK be a tetrahedron with vertices 𝒙1\boldsymbol{x}_{1}, 𝒙2\boldsymbol{x}_{2}, 𝒙3\boldsymbol{x}_{3} and 𝒙4\boldsymbol{x}_{4}. We label the face opposite to 𝒙i\boldsymbol{x}_{i} as the ii-th face FiF_{i}, and denote by 𝒏i\boldsymbol{n}_{i} the unit outwards normal vector of face FiF_{i}. Set 𝑵i,j:=sym(𝒏k𝒏l)=12(𝒏k𝒏l+𝒏l𝒏k)\boldsymbol{N}_{i,j}:=\operatorname{sym}(\boldsymbol{n}_{k}\boldsymbol{n}_{l}^{\intercal})=\frac{1}{2}(\boldsymbol{n}_{k}\boldsymbol{n}_{l}^{\intercal}+\boldsymbol{n}_{l}\boldsymbol{n}_{k}^{\intercal}), where (ijkl)(ijkl) is a permutation cycle of (1234)(1234). Then it is shown in [8] that the 66 symmetric tensors {𝑵i,j,i,j=1,2,3,4,i<j}\{\boldsymbol{N}_{i,j},i,j=1,2,3,4,i<j\} form a basis of 𝕊\mathbb{S}.

Define a tangential-tangential bubble function space of tensorial polynomials of degree kk as

𝑩K,kt:=k(K;𝕊)ker(tr1).\boldsymbol{B}_{K,k}^{t}:=\mathbb{P}_{k}(K;\mathbb{S})\cap\ker({\rm tr}_{1}).

It is easy to verify tr1(λiλj𝑵i,j)=0\operatorname*{tr}_{1}(\lambda_{i}\lambda_{j}\boldsymbol{N}_{i,j})=0. Since the dimension of 𝑩K,kt\boldsymbol{B}_{K,k}^{t} is k(k21)k(k^{2}-1) (cf. [4, Lemma 6.1]), we have

𝑩K,kt=k2(K){λiλj𝑵i,j}=1i<j4k2(K)λiλj𝑵i,j.\boldsymbol{B}_{K,k}^{t}=\mathbb{P}_{k-2}(K)\otimes\{\lambda_{i}\lambda_{j}\boldsymbol{N}_{i,j}\}=\sum_{1\leq i<j\leq 4}\mathbb{P}_{k-2}(K)\lambda_{i}\lambda_{j}\boldsymbol{N}_{i,j}.

Define an 𝑯(inc,K;𝕊)\boldsymbol{H}(\operatorname{inc},K;\mathbb{S}) bubble function space of polynomials of degree kk as

𝑩K,k:=k(K;𝕊)ker(tr1)ker(tr2)=𝑩K,ktker(tr2).\boldsymbol{B}_{K,k}:=\mathbb{P}_{k}(K;\mathbb{S})\cap\ker({\rm tr}_{1})\cap\ker({\rm tr}_{2})=\boldsymbol{B}_{K,k}^{t}\cap\ker({\rm tr}_{2}).

According to Lemma 6.2 in [4], for any 𝝉𝑩K,k\boldsymbol{\tau}\in\boldsymbol{B}_{K,k}, it holds 𝝉e=𝟎e(K).\boldsymbol{\tau}\mid_{e}=\boldsymbol{0}\quad\forall\leavevmode\nobreak\ e\in\mathcal{E}(K). Thus

𝝉1i<j4λiλj(λkk3(K)+λlk3(K))𝑵i,j.\boldsymbol{\tau}\in\sum_{1\leq i<j\leq 4}\lambda_{i}\lambda_{j}\big{(}\lambda_{k}\mathbb{P}_{k-3}(K)+\lambda_{l}\mathbb{P}_{k-3}(K)\big{)}\boldsymbol{N}_{i,j}.

Although there is no precise characterization of 𝑩K,k\boldsymbol{B}_{K,k}, it is shown in [4] that the dimension of 𝑩K,k\boldsymbol{B}_{K,k} is k36k2+11kk^{3}-6k^{2}+11k.

Furthermore the bubble polynomials for the elasticity complex with k4k\geq 4 is established in [4, Lemma 7.1] and [24, Lemma 3.2]

(46)

𝟎\autorightarrowbKk3(K;3)\autorightarrowdef𝑩K,k\autorightarrowinc𝑩K,k2n\autorightarrow𝐝𝐢𝐯k3(K;3)/𝑹𝑴\autorightarrow𝟎,\boldsymbol{0}\autorightarrow{$\subset$}{}b_{K}\mathbb{P}_{k-3}(K;\mathbb{R}^{3})\autorightarrow{$\operatorname{def}$}{}\boldsymbol{B}_{K,k}\autorightarrow{$\operatorname{inc}$}{}\boldsymbol{B}_{K,k-2}^{n}\autorightarrow{$\boldsymbol{\operatorname{div}}$}{}\mathbb{P}_{k-3}(K;\mathbb{R}^{3})/\boldsymbol{RM}\autorightarrow{}{}\boldsymbol{0},

where bK=λ1λ2λ3λ4b_{K}=\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4} is the volume bubble polynomial and 𝑩K,kn=k(K;𝕊)𝑯0(div,K;𝕊)\boldsymbol{B}_{K,k}^{n}=\mathbb{P}_{k}(K;\mathbb{S})\cap\boldsymbol{H}_{0}(\operatorname{div},K;\mathbb{S}) is the 𝑯(div;𝕊)\boldsymbol{H}(\operatorname{div};\mathbb{S}) bubble function space and is characterized in [24]

(47) 𝑩K,kn=0i<j3λiλjk2(K)𝑻i,j,k2\boldsymbol{B}_{K,k}^{n}=\sum_{0\leq i<j\leq 3}\lambda_{i}\lambda_{j}\mathbb{P}_{k-2}(K)\boldsymbol{T}_{i,j},\quad k\geq 2

with 𝑻i,j:=𝒕i,j𝒕i,j\boldsymbol{T}_{i,j}:=\boldsymbol{t}_{i,j}\boldsymbol{t}_{i,j}^{\intercal} and 𝒕i,j:=𝒙j𝒙i\boldsymbol{t}_{i,j}:=\boldsymbol{x}_{j}-\boldsymbol{x}_{i}.

Similarly we also have two dimensional bubble complexes on face FF. The bubble function space k(F;𝕊)𝑯0(divFdivF,F;𝕊)\mathbb{P}_{k}(F;\mathbb{S})\cap\boldsymbol{H}_{0}(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S}) is

{𝝉k(F;𝕊):\displaystyle\{\boldsymbol{\tau}\in\mathbb{P}_{k}(F;\mathbb{S}):\, t(𝒕F,e𝝉𝒏F,e)+𝒏F,edivF𝝉=0,\displaystyle\partial_{t}(\boldsymbol{t}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e})+\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}\boldsymbol{\tau}=0,
𝒏F,e𝝉𝒏F,e=0e(F),𝝉(δ)=𝟎δ𝒱(F)}.\displaystyle\boldsymbol{n}_{F,e}\cdot\boldsymbol{\tau}\cdot\boldsymbol{n}_{F,e}=0\;\;\forall\leavevmode\nobreak\ e\in\mathcal{E}(F),\;\;\boldsymbol{\tau}(\delta)=\boldsymbol{0}\;\;\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(F)\}.

We present the results below and a proof of (48) can be found in [12].

(48)

𝟎\autorightarrowbFk2(F;2)\autorightarrowsymcurlFk(F;𝕊)𝑯0(divFdivF,F;𝕊)\autorightarrowdivFdivFk2(F)/1(F)\autorightarrow𝟎,\boldsymbol{0}\autorightarrow{$\subset$}{}b_{F}\mathbb{P}_{k-2}(F;\mathbb{R}^{2})\autorightarrow{$\operatorname{sym}\operatorname{curl}_{F}$}{}\mathbb{P}_{k}(F;\mathbb{S})\cap\boldsymbol{H}_{0}(\operatorname{div}_{F}\operatorname{div}_{F},F;\mathbb{S})\autorightarrow{$\operatorname{div}_{F}\operatorname{div}_{F}$}{}\mathbb{P}_{k-2}(F)/\mathbb{P}_{1}(F)\autorightarrow{}{}\boldsymbol{0},

For the two dimensional Hessian polynomial complex, we have

(49)

𝟎\autorightarrowbF2k5(F)\autorightarrowF2k1(F;𝕊)𝑯0(rotF,F;𝕊)\autorightarrowrotFk2(F;2)/𝑹𝑴\autorightarrow𝟎,\boldsymbol{0}\autorightarrow{$\subset$}{}b_{F}^{2}\mathbb{P}_{k-5}(F)\autorightarrow{$\nabla_{F}^{2}$}{}\mathbb{P}_{k-1}(F;\mathbb{S})\cap\boldsymbol{H}_{0}(\operatorname*{rot}_{F},F;\mathbb{S})\autorightarrow{$\operatorname*{rot}_{F}$}{}\mathbb{P}_{k-2}(F;\mathbb{R}^{2})/\boldsymbol{RM}^{\bot}\autorightarrow{}{}\boldsymbol{0},

which is a rotation of the 2D elasticity bubble complex established in [7].

5. Finite Element Elasticity Complex

In this section we present a finite element elasticity complex. In the complex, the H1H^{1} conforming finite element is the smooth finite element developed by Neilan for the Stokes complex [26]. The 𝑯(div;𝕊)\boldsymbol{H}(\operatorname{div};\mathbb{S})-conforming finite element is the Hu-Zhang element [22, 24]. The missing component is 𝑯(inc;𝕊)\boldsymbol{H}(\operatorname{inc};\mathbb{S})-conforming finite element which is the focus of this section.

5.1. H1H^{1} conforming finite element for vectors

Recall the H1H^{1} conforming finite element for vectors by Neilan in [26]. The space of shape functions is chosen as k+1(K;3)\mathbb{P}_{k+1}(K;\mathbb{R}^{3}) for k+17k+1\geq 7. The degrees of freedom are

(50) 𝒗(δ),𝒗(δ),2𝒗(δ)\displaystyle\boldsymbol{v}(\delta),\nabla\boldsymbol{v}(\delta),\nabla^{2}\boldsymbol{v}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(51) (𝒗,𝒒)e\displaystyle(\boldsymbol{v},\boldsymbol{q})_{e} 𝒒k5(e;3),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-5}(e;\mathbb{R}^{3}),e\in\mathcal{E}(K),
(52) (ni𝒗,𝒒)e\displaystyle(\partial_{n_{i}}\boldsymbol{v},\boldsymbol{q})_{e} 𝒒k4(e;3),e(K),i=1,2,\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(e;\mathbb{R}^{3}),e\in\mathcal{E}(K),i=1,2,
(53) (𝒗,𝒒)F\displaystyle(\boldsymbol{v},\boldsymbol{q})_{F} 𝒒k5(F;3),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-5}(F;\mathbb{R}^{3}),F\in\mathcal{F}(K),
(54) (𝒗,𝒒)K\displaystyle(\boldsymbol{v},\boldsymbol{q})_{K} 𝒒k3(K;3).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-3}(K;\mathbb{R}^{3}).

The Neilan element has extra smoothness at vertices and edges. Note that the normal derivative is only continuous on edges not on faces and thus this element is only in H1H^{1} not H2H^{2}. To construct an H2H^{2}-conforming element on tetrahedron, the degree of polynomial will be higher, i.e. k+19k+1\geq 9; see Zhang [27].

5.2. H(div)H(\operatorname{div}) conforming finite element for symmetric tensors

Recall the 𝑯(div)\boldsymbol{H}(\operatorname{div}) conforming finite element for symmetric tensors in [24]. The space of shape functions is chosen as k2(K;𝕊)\mathbb{P}_{k-2}(K;\mathbb{S}) for k24k-2\geq 4. The degrees of freedom are

(55) 𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(56) (𝒏i𝝉𝒏j,q)e\displaystyle(\boldsymbol{n}_{i}^{\intercal}\boldsymbol{\tau}\boldsymbol{n}_{j},q)_{e} 𝒒k4(e),e(K),i,j=1,2,\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(e),e\in\mathcal{E}(K),i,j=1,2,
(57) (𝒏i𝝉𝒕,q)e\displaystyle(\boldsymbol{n}_{i}^{\intercal}\boldsymbol{\tau}\boldsymbol{t},q)_{e} 𝒒k4(e),e(K),i=1,2,\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(e),e\in\mathcal{E}(K),i=1,2,
(58) (𝝉𝒏,𝒒)F\displaystyle(\boldsymbol{\tau}\boldsymbol{n},\boldsymbol{q})_{F} 𝒒k5(F;3),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-5}(F;\mathbb{R}^{3}),F\in\mathcal{F}(K),
(59) (𝝉,𝒒)K\displaystyle(\boldsymbol{\tau},\boldsymbol{q})_{K} 𝒒k4(K;𝕊).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(K;\mathbb{S}).

The unisovlence can be proved as follows. The boundary degree of freedom (55)-(58) will determine the trace 𝝉𝒏\boldsymbol{\tau}\boldsymbol{n} uniquely by the unisolvence of the Lagrange elements. The interior part will be determined by (59) due to the characterization of 𝑯(div,K;𝕊)\boldsymbol{H}(\operatorname{div},K;\mathbb{S}) bubble function, cf. (47).

5.3. H(inc)H(\operatorname{inc}) conforming finite element for symmetric tensors

With previous preparations, we can construct an H(inc)H(\operatorname{inc}) conforming finite element now. Take k(K;𝕊),k6,\mathbb{P}_{k}(K;\mathbb{S}),k\geq 6, as the space of shape functions. The degrees of freedom are

(60) 𝝉(δ),𝝉(δ)\displaystyle\boldsymbol{\tau}(\delta),\nabla\boldsymbol{\tau}(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(61) (×𝝉×)(δ)\displaystyle(\nabla\times\boldsymbol{\tau}\times\nabla)(\delta) δ𝒱(K),\displaystyle\quad\forall\leavevmode\nobreak\ \delta\in\mathcal{V}(K),
(62) (𝝉,𝒒)e\displaystyle(\boldsymbol{\tau},\boldsymbol{q})_{e} 𝒒k4(e;𝕊),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(e;\mathbb{S}),e\in\mathcal{E}(K),
(63) (×𝝉𝒕,𝒒)e\displaystyle(\nabla\times\boldsymbol{\tau}\cdot\boldsymbol{t},\boldsymbol{q})_{e} 𝒒k3(e;3),e(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-3}(e;\mathbb{R}^{3}),e\in\mathcal{E}(K),
(64) (𝒏i(×𝝉×)𝒏j,q)e\displaystyle(\boldsymbol{n}_{i}^{\intercal}(\nabla\times\boldsymbol{\tau}\times\nabla)\boldsymbol{n}_{j},q)_{e} qk4(e),e(K),i,j=1,2,\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-4}(e),e\in\mathcal{E}(K),i,j=1,2,
(65) (𝒏i(×𝝉×)𝒕,q)e\displaystyle(\boldsymbol{n}_{i}^{\intercal}(\nabla\times\boldsymbol{\tau}\times\nabla)\boldsymbol{t},q)_{e} qk4(e),e(K),i=1,2,\displaystyle\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-4}(e),e\in\mathcal{E}(K),i=1,2,
(66) (𝒏×𝝉×𝒏,𝒒)F\displaystyle(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n},\boldsymbol{q})_{F} 𝒒F2k5(F),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\nabla_{F}^{2}\mathbb{P}_{k-5}(F),F\in\mathcal{F}(K),
(67) (𝒏×𝝉×𝒏,𝒒)F\displaystyle(\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n},\boldsymbol{q})_{F} 𝒒sym(𝒙k5(F;2)),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\operatorname{sym}(\boldsymbol{x}^{\perp}\mathbb{P}_{k-5}(F;\mathbb{R}^{2})),F\in\mathcal{F}(K),
(68) (tr2(𝝉),𝒒)F\displaystyle({\rm tr}_{2}(\boldsymbol{\tau}),\boldsymbol{q})_{F} 𝒒symcurlFk5(F;2),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\operatorname{sym}\operatorname{curl}_{F}\mathbb{P}_{k-5}(F;\mathbb{R}^{2}),F\in\mathcal{F}(K),
(69) (tr2(𝝉),𝒒)F\displaystyle({\rm tr}_{2}(\boldsymbol{\tau}),\boldsymbol{q})_{F} 𝒒𝒙𝒙k5(F),F(K),\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\boldsymbol{x}\boldsymbol{x}^{\intercal}\mathbb{P}_{k-5}(F),F\in\mathcal{F}(K),
(70) (𝝉,𝒒)K\displaystyle(\boldsymbol{\tau},\boldsymbol{q})_{K} 𝒒inck4(K;𝕊)sym(k3(K;3)𝒙).\displaystyle\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\operatorname{inc}\mathbb{P}_{k-4}(K;\mathbb{S})\oplus\operatorname{sym}(\mathbb{P}_{k-3}(K;\mathbb{R}^{3})\boldsymbol{x}^{\intercal}).

We first show the trace is uniquely determined by the degree of freedom (60)-(69) on the boundary.

Lemma 5.1.

Let F(K)F\in\mathcal{F}(K) and 𝛕k(K;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(K;\mathbb{S}). If all the degrees of freedom (60)-(69) on face FF vanish, then tr1(𝛕)=𝟎\operatorname*{tr}_{1}(\boldsymbol{\tau})=\boldsymbol{0} and tr2(𝛕)=𝟎{\rm tr}_{2}(\boldsymbol{\tau})=\boldsymbol{0} on face FF.

Proof.

We split our proof into several steps. For the easy of notation, denote by 𝝈=×𝝉×k2(K;𝕊)\boldsymbol{\sigma}=\nabla\times\boldsymbol{\tau}\times\nabla\in\mathbb{P}_{k-2}(K;\mathbb{S}).

Step 1. Traces on edges are vanished. By the vanishing degrees of freedom (60), (62), and (63), 𝝉e=𝟎\boldsymbol{\tau}\mid_{e}=\boldsymbol{0} and (×𝝉𝒕)e=𝟎(\nabla\times\boldsymbol{\tau}\cdot\boldsymbol{t})\mid_{e}=\boldsymbol{0} for any edge e(F)e\in\mathcal{E}(F). Then it follows from (43) and (44) that

(71) 𝒏F,etr1(𝝉)𝒏F,e\displaystyle\boldsymbol{n}_{F,e}\cdot{\rm tr}_{1}(\boldsymbol{\tau})\cdot\boldsymbol{n}_{F,e} =0,\displaystyle=0,
(72) (t(𝒕tr1(𝝉)𝒏F,e)+𝒏F,edivFtr1(𝝉))\displaystyle\big{(}\partial_{t}(\boldsymbol{t}\cdot{\rm tr}_{1}(\boldsymbol{\tau})\cdot\boldsymbol{n}_{F,e})+\boldsymbol{n}_{F,e}\cdot\operatorname{div}_{F}{\rm tr}_{1}(\boldsymbol{\tau})\big{)} =0,\displaystyle=0,
(73) tr2(𝝉)𝒕e\displaystyle{\rm tr}_{2}(\boldsymbol{\tau})\cdot\boldsymbol{t}_{e} =𝟎.\displaystyle=\boldsymbol{0}.

By the vanishing degree of freedom (61), (64), and (65) for 𝝈\boldsymbol{\sigma}, we know all components of 𝝈e\boldsymbol{\sigma}\mid_{e}, except 𝒕𝝈𝒕\boldsymbol{t}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{t}, are zero.

Step 2. tr1(𝛕){\rm tr}_{1}(\boldsymbol{\tau}) is vanished. Applying the Green’s identity (41) for the divFdivF\operatorname{div}_{F}\operatorname{div}_{F} operator, we get from (39), (71)-(72) and (66) that

(𝒏𝝈𝒏,q)F=(divFdivFtr1(𝝉),q)F=(tr1(𝝉),F2q)F=0qk5(F).(\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n},q)_{F}=(\operatorname{div}_{F}\operatorname{div}_{F}{\rm tr}_{1}(\boldsymbol{\tau}),q)_{F}=({\rm tr}_{1}(\boldsymbol{\tau}),\nabla_{F}^{2}q)_{F}=0\quad\forall\leavevmode\nobreak\ q\in\mathbb{P}_{k-5}(F).

As 𝒏𝝈𝒏e=0\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}\mid_{e}=0, we conclude 𝒏𝝈𝒏F=divFdivFtr1(𝝉)=0\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}\mid_{F}=\operatorname{div}_{F}\operatorname{div}_{F}{\rm tr}_{1}(\boldsymbol{\tau})=0.

Since divFdivF(tr1(𝝉))=0\operatorname{div}_{F}\operatorname{div}_{F}({\rm tr}_{1}(\boldsymbol{\tau}))=0 and edge traces of tr1(𝝉){\rm tr}_{1}(\boldsymbol{\tau}) is also vanished, from the bubble complex (48), there exists 𝒗1k2(F;2)\boldsymbol{v}_{1}\in\mathbb{P}_{k-2}(F;\mathbb{R}^{2}) s.t. tr1(𝝉)=symcurlF(bF𝒗1){\rm tr}_{1}(\boldsymbol{\tau})=\operatorname{sym}\operatorname{curl}_{F}(b_{F}\boldsymbol{v}_{1}). Noting that tr1(𝝉)|F=𝟎{\rm tr}_{1}(\boldsymbol{\tau})|_{\partial F}=\boldsymbol{0}, we acquire 𝒗1|F=𝟎\boldsymbol{v}_{1}|_{\partial F}=\boldsymbol{0}. Then there exists 𝒗2k5(F;2)\boldsymbol{v}_{2}\in\mathbb{P}_{k-5}(F;\mathbb{R}^{2}) such that tr1(𝝉)=symcurlF(bF2𝒗2){\rm tr}_{1}(\boldsymbol{\tau})=\operatorname{sym}\operatorname{curl}_{F}(b_{F}^{2}\boldsymbol{v}_{2}). Due to the vanishing degrees of freedom (67), we get from the integration by parts that

(bF2𝒗2,rotF𝒒)F=0𝒒sym(𝒙k5(F;2)).(b_{F}^{2}\boldsymbol{v}_{2},\textrm{rot}_{F}\boldsymbol{q})_{F}=0\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\operatorname{sym}(\boldsymbol{x}^{\perp}\mathbb{P}_{k-5}(F;\mathbb{R}^{2})).

Using the fact rotFsym(𝒙k5(F;2))=k5(F;2)\textrm{rot}_{F}\operatorname{sym}(\boldsymbol{x}^{\perp}\mathbb{P}_{k-5}(F;\mathbb{R}^{2}))=\mathbb{P}_{k-5}(F;\mathbb{R}^{2}), cf. the complex (26), we can chose 𝒒\boldsymbol{q} s.t. rotF𝒒=𝒗2\textrm{rot}_{F}\boldsymbol{q}=\boldsymbol{v}_{2} and conclude 𝒗2=0\boldsymbol{v}_{2}=0. Therefore tr1(𝝉)=𝒏×𝝉×𝒏=𝟎\operatorname*{tr}_{1}(\boldsymbol{\tau})=\boldsymbol{n}\times\boldsymbol{\tau}\times\boldsymbol{n}=\boldsymbol{0}.

Step 3. tr2(𝛕){\rm tr}_{2}(\boldsymbol{\tau}) is vanished. Similarly we obtain from (40), the integration by parts, (73) and (68) that

(𝒏𝝈×𝒏,𝒒)F=(Ftr2(𝝉),𝒒)F=(tr2(𝝉),symcurlF𝒒)F=0𝒒k5(F;2).(\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n},\boldsymbol{q})_{F}=(\nabla_{F}^{\bot}\cdot{\rm tr}_{2}(\boldsymbol{\tau}),\boldsymbol{q})_{F}=({\rm tr}_{2}(\boldsymbol{\tau}),\operatorname{sym}\operatorname{curl}_{F}\boldsymbol{q})_{F}=0\;\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-5}(F;\mathbb{R}^{2}).

Together with 𝒏𝝈×𝒏e=0\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n}\mid_{e}=0, we conclude

𝒏𝝈×𝒏F=Ftr2(𝝉)F=0.\boldsymbol{n}\cdot\boldsymbol{\sigma}\times\boldsymbol{n}\mid_{F}=\nabla_{F}^{\bot}\cdot{\rm tr}_{2}(\boldsymbol{\tau})\mid_{F}=0.

Then by the bubble complex (49), there exists a vk5(F)v\in\mathbb{P}_{k-5}(F) such that tr2(𝝉)=F2(bF2v){\rm tr}_{2}(\boldsymbol{\tau})=\nabla_{F}^{2}(b_{F}^{2}v). Using the fact divFdivF:𝒙𝒙k5(F)k5(F)\operatorname{div}_{F}\operatorname{div}_{F}:\boldsymbol{x}\boldsymbol{x}^{\intercal}\mathbb{P}_{k-5}(F)\to\mathbb{P}_{k-5}(F) is bijective, cf. the complex (25), we can find 𝒒𝒙𝒙k5(F)\boldsymbol{q}\in\boldsymbol{x}\boldsymbol{x}^{\intercal}\mathbb{P}_{k-5}(F) s.t. divFdivF𝒒=v\operatorname{div}_{F}\operatorname{div}_{F}\boldsymbol{q}=v. Now using the vanishing degree of freedom (69), we get

(tr2(𝝉),𝒒)F=(bF2v,divFdivF𝒒)F=(bF2v,v)F=0,({\rm tr}_{2}(\boldsymbol{\tau}),\boldsymbol{q})_{F}=(b_{F}^{2}v,\operatorname{div}_{F}\operatorname{div}_{F}\boldsymbol{q})_{F}=(b_{F}^{2}v,v)_{F}=0,

which means v=0v=0 and consequently tr2(𝝉)=𝟎{\rm tr}_{2}(\boldsymbol{\tau})=\boldsymbol{0}. ∎

Now we are in the position to present the unisolvence.

Theorem 5.2.

The degrees of freedom (60)-(70) are unisolvent for k(K;𝕊)\mathbb{P}_{k}(K;\mathbb{S}).

Proof.

We count the number of degrees of freedom (60)-(70) by the dimension of the sub-simplex

  • 44 vertices: 4×(6+3×6+6)=120;4\times(6+3\times 6+6)=120;

  • 66 edges: 6[6(k3)+3(k2)+3(k3)+2(k3)]=6[14(k3)+3]6[6(k-3)+3(k-2)+3(k-3)+2(k-3)]=6[14(k-3)+3];

  • 44 faces: 4[(k32)3+2(k32)+2(k32)3+(k32)]=4[3(k3)(k4)6];4\big{[}{k-3\choose 2}-3+2{k-3\choose 2}+2{k-3\choose 2}-3+{k-3\choose 2}\big{]}=4\big{[}3(k-3)(k-4)-6\big{]};

  • 11 volume: 6(k13)3(k3)+6+3(k3)=(k1)(k2)(k3)+6=k36k2+11k.6{k-1\choose 3}-3{k\choose 3}+6+3{k\choose 3}=(k-1)(k-2)(k-3)+6=k^{3}-6k^{2}+11k.

The total dimension is k3+6k2+11k+6k^{3}+6k^{2}+11k+6, which agrees with dimk(K;𝕊)\dim\mathbb{P}_{k}(K;\mathbb{S}).

Take any 𝝉k(K;𝕊)\boldsymbol{\tau}\in\mathbb{P}_{k}(K;\mathbb{S}) and suppose all the degrees of freedom (60)-(70) vanish. We are going to prove it is zero.

First of all, by Lemma 5.1, we conclude tr1(𝝉)=𝟎\operatorname*{tr}_{1}(\boldsymbol{\tau})=\boldsymbol{0} and tr2(𝝉)=𝟎{\rm tr}_{2}(\boldsymbol{\tau})=\boldsymbol{0}, which immediately induce (inc𝝉𝒏)|K=𝟎(\operatorname{inc}\boldsymbol{\tau}\cdot\boldsymbol{n})|_{\partial K}=\boldsymbol{0} from (39)-(40). Then it follows from (70) and the Green’s identity (34) that

(inc𝝉,𝒒)K=0𝒒k4(K;𝕊),(\operatorname{inc}\boldsymbol{\tau},\boldsymbol{q})_{K}=0\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\mathbb{P}_{k-4}(K;\mathbb{S}),

which together with the unisolvence of the Hu-Zhang element (cf. (55)-(59)) implies inc𝝉=𝟎\operatorname{inc}\boldsymbol{\tau}=\boldsymbol{0}.

By the complex for bubble function spaces (46), there exists 𝒗k3(K;3)\boldsymbol{v}\in\mathbb{P}_{k-3}(K;\mathbb{R}^{3}) such that 𝝉=def(bK𝒗)\boldsymbol{\tau}=\operatorname{def}(b_{K}\boldsymbol{v}). Due to the vanishing degrees of freedom (70), we get from the integration by parts that

(bF𝒗,div𝒒)F=0𝒒sym(k3(K;3)𝒙).(b_{F}\boldsymbol{v},\operatorname{div}\boldsymbol{q})_{F}=0\quad\forall\leavevmode\nobreak\ \boldsymbol{q}\in\operatorname{sym}(\mathbb{P}_{k-3}(K;\mathbb{R}^{3})\boldsymbol{x}^{\intercal}).

We finish the proof by using the fact divsym(𝒙k3(K;3))=k3(K;3)\operatorname{div}\operatorname{sym}(\boldsymbol{x}\mathbb{P}_{k-3}(K;\mathbb{R}^{3}))=\mathbb{P}_{k-3}(K;\mathbb{R}^{3}), cf. Lemma 3.1 and the complex (20). ∎

5.4. Finite element elasticity complex in three dimensions

For an integer k6k\geq 6, define global finite elements

𝑽h:={𝒗h𝑯1(Ω;3):\displaystyle\boldsymbol{V}_{h}:=\{\boldsymbol{v}_{h}\in\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{3}): 𝒗h|Kk+1(K;3) for each K𝒯h, all the\displaystyle\boldsymbol{v}_{h}|_{K}\in\mathbb{P}_{k+1}(K;\mathbb{R}^{3})\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the }
degrees of freedom (50)-(53) are single-valued},\displaystyle\textrm{ degrees of freedom \eqref{H1femdof1}-\eqref{H1femdof4} are single-valued}\},
𝚺hinc:={𝝉h𝑳2(Ω;𝕊):\displaystyle\boldsymbol{\Sigma}_{h}^{\rm inc}:=\{\boldsymbol{\tau}_{h}\in\boldsymbol{L}^{2}(\Omega;\mathbb{S}): 𝝉h|Kk(K;𝕊) for each K𝒯h, all the\displaystyle\boldsymbol{\tau}_{h}|_{K}\in\mathbb{P}_{k}(K;\mathbb{S})\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the }
degrees of freedom (60)-(69) are single-valued},\displaystyle\textrm{ degrees of freedom \eqref{Hincfem3ddof1}-\eqref{Hincfem3ddof9} are single-valued}\},
𝚺hdiv:={𝝉h𝑯(div,Ω;𝕊):\displaystyle\boldsymbol{\Sigma}_{h}^{\rm div}:=\{\boldsymbol{\tau}_{h}\in\boldsymbol{H}(\operatorname{div},\Omega;\mathbb{S}): 𝝉h|Kk2(K;𝕊) for each K𝒯h, all the\displaystyle\boldsymbol{\tau}_{h}|_{K}\in\mathbb{P}_{k-2}(K;\mathbb{S})\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the }
degrees of freedom (55)-(58) are single-valued},\displaystyle\textrm{ degrees of freedom \eqref{HdivSfemdof1}-\eqref{HdivSfemdof4} are single-valued}\},
𝒬h:={𝒒hL2(Ω;3):\displaystyle\mathcal{Q}_{h}:=\{\boldsymbol{q}_{h}\in L^{2}(\Omega;\mathbb{R}^{3}): 𝒒h|Kk3(K;3) for each K𝒯h}.\displaystyle\boldsymbol{q}_{h}|_{K}\in\mathbb{P}_{k-3}(K;\mathbb{R}^{3})\textrm{ for each }K\in\mathcal{T}_{h}\}.

Thanks to Lemma 5.1 and the fact 𝝉e\boldsymbol{\tau}\mid_{e} and (×𝝉𝒕)e(\nabla\times\boldsymbol{\tau}\cdot\boldsymbol{t})\mid_{e} are single valued, it holds 𝚺hinc𝑯(inc,Ω;𝕊)\boldsymbol{\Sigma}_{h}^{\rm inc}\subset\boldsymbol{H}(\operatorname{inc},\Omega;\mathbb{S}), cf. Remark 4.3.

Counting the dimensions of these spaces, we have

dim𝑽h\displaystyle\dim\boldsymbol{V}_{h} =30#𝒱h+(9k30)#h+32(k3)(k4)#h+12k(k1)(k2)#𝒯h,\displaystyle=30\#\mathcal{V}_{h}+(9k-30)\#\mathcal{E}_{h}+\frac{3}{2}(k-3)(k-4)\#\mathcal{F}_{h}+\frac{1}{2}k(k-1)(k-2)\#\mathcal{T}_{h},
dim𝚺hinc\displaystyle\dim\boldsymbol{\Sigma}_{h}^{\rm inc} =30#𝒱h+(14k39)#h+(3k221k+30)#h\displaystyle=30\#\mathcal{V}_{h}+(14k-39)\#\mathcal{E}_{h}+\left(3k^{2}-21k+30\right)\#\mathcal{F}_{h}
+(k36k2+11k)#𝒯h,\displaystyle\quad+(k^{3}-6k^{2}+11k)\#\mathcal{T}_{h},
dim𝚺hdiv\displaystyle\dim\boldsymbol{\Sigma}_{h}^{\rm div} =6#𝒱h+(5k15)#h+32(k3)(k4)#h\displaystyle=6\#\mathcal{V}_{h}+(5k-15)\#\mathcal{E}_{h}+\frac{3}{2}(k-3)(k-4)\#\mathcal{F}_{h}
+(k1)(k2)(k3)#𝒯h,\displaystyle\quad+(k-1)(k-2)(k-3)\#\mathcal{T}_{h},
dim𝒬h\displaystyle\dim\mathcal{Q}_{h} =12k(k1)(k2)#𝒯h.\displaystyle=\frac{1}{2}k(k-1)(k-2)\#\mathcal{T}_{h}.
Lemma 5.3.

Let 𝛕𝚺hinc\boldsymbol{\tau}\in\boldsymbol{\Sigma}_{h}^{\rm inc} and inc𝛕=𝟎\operatorname{inc}\boldsymbol{\tau}=\boldsymbol{0}. Then there exists 𝐯𝐕h\boldsymbol{v}\in\boldsymbol{V}_{h} satisfying 𝛕=def𝐯\boldsymbol{\tau}=\operatorname{def}\boldsymbol{v}.

Proof.

By the polynomial elasticity complex (14) and the elasticity complex (1), there exists 𝒗=(v1,v2,v3)𝑯1(Ω;3)\boldsymbol{v}=(v_{1},v_{2},v_{3})^{\intercal}\in\boldsymbol{H}^{1}(\Omega;\mathbb{R}^{3}) s.t. 𝝉=def𝒗\boldsymbol{\tau}=\operatorname{def}\boldsymbol{v} and 𝒗|Kk+1(K;3)\boldsymbol{v}|_{K}\in\mathbb{P}_{k+1}(K;\mathbb{R}^{3}) for each K𝒯hK\in\mathcal{T}_{h}. We are going to show such 𝒗𝑽h\boldsymbol{v}\in\boldsymbol{V}_{h} by verifying the continunity of degree of freedoms (50)-(53). As an H1H^{1} element, 𝒗\boldsymbol{v} is continuous at vertices, edges and faces. The focus is on the derivatives of 𝒗\boldsymbol{v}.

Due to the additional smoothness of 𝚺hinc\boldsymbol{\Sigma}_{h}^{\rm inc}, (def𝒗)(δ)\nabla(\operatorname{def}\boldsymbol{v})(\delta) is single-valued at each vertex δ𝒱h\delta\in\mathcal{V}_{h}, and (def𝒗)e(\operatorname{def}\boldsymbol{v})\mid_{e} and (×(def𝒗)𝒕)e(\nabla\times(\operatorname{def}\boldsymbol{v})\cdot\boldsymbol{t})\mid_{e} are single-valued on each edge ehe\in\mathcal{E}_{h}. Next we show that 𝒗\nabla\boldsymbol{v} is single-valued on each edge ehe\in\mathcal{E}_{h}. By (3),

t𝒗=(𝒗)𝒕=(def𝒗)𝒕+12mskw(×𝒗)𝒕=(def𝒗)𝒕+12(×𝒗)×𝒕,\partial_{t}\boldsymbol{v}=(\nabla\boldsymbol{v})^{\intercal}\cdot\boldsymbol{t}=(\operatorname{def}\boldsymbol{v})\cdot\boldsymbol{t}+\frac{1}{2}\operatorname{mskw}(\nabla\times\boldsymbol{v})\cdot\boldsymbol{t}=(\operatorname{def}\boldsymbol{v})\cdot\boldsymbol{t}+\frac{1}{2}(\nabla\times\boldsymbol{v})\times\boldsymbol{t},
(74) ×(def𝒗)𝒕=12t(×𝒗)\nabla\times(\operatorname{def}\boldsymbol{v})\cdot\boldsymbol{t}=\frac{1}{2}\partial_{t}(\nabla\times\boldsymbol{v})

on edge ee with the unit tangential vector 𝒕\boldsymbol{t}. Hence (×𝒗)×𝒕(\nabla\times\boldsymbol{v})\times\boldsymbol{t} and t(×𝒗)\partial_{t}(\nabla\times\boldsymbol{v}) are single-valued across ee. Take any face FhiF\in\mathcal{F}_{h}^{i} shared by K1,K2𝒯hK_{1},K_{2}\in\mathcal{T}_{h}, it follows from the single-valued (×𝒗)×𝒕|F(\nabla\times\boldsymbol{v})\times\boldsymbol{t}|_{\partial F} that (×𝒗)|K1(\nabla\times\boldsymbol{v})|_{K_{1}} and (×𝒗)|K2(\nabla\times\boldsymbol{v})|_{K_{2}} coincides with each other at the three vertices of FF. Thus (×𝒗)(δ)(\nabla\times\boldsymbol{v})(\delta) is single-valued at each vertex δ𝒱h\delta\in\mathcal{V}_{h}, which together with the single-valued t(×𝒗)\partial_{t}(\nabla\times\boldsymbol{v}) on h\mathcal{E}_{h} implies that ×𝒗\nabla\times\boldsymbol{v} is single-valued on each edge ehe\in\mathcal{E}_{h}. Since (𝒗)=def𝒗+12mskw(×𝒗)(\nabla\boldsymbol{v})^{\intercal}=\operatorname{def}\boldsymbol{v}+\frac{1}{2}\operatorname{mskw}(\nabla\times\boldsymbol{v}), 𝒗\nabla\boldsymbol{v} is single-valued on each edge ehe\in\mathcal{E}_{h}.

By the identity

ijvk=i((def𝒗)jk)+j((def𝒗)ki)k((def𝒗)ij) for i,j,k=1,2,3,\partial_{ij}v_{k}=\partial_{i}((\operatorname{def}\boldsymbol{v})_{jk})+\partial_{j}((\operatorname{def}\boldsymbol{v})_{ki})-\partial_{k}((\operatorname{def}\boldsymbol{v})_{ij})\quad\textrm{ for }i,j,k=1,2,3,

the tensor 2𝒗(δ)\nabla^{2}\boldsymbol{v}(\delta) is single-valued at each vertex δ𝒱h\delta\in\mathcal{V}_{h} as (def𝒗)(δ)\nabla(\operatorname{def}\boldsymbol{v})(\delta) is single-valued. Therefore 𝒗𝑽h\boldsymbol{v}\in\boldsymbol{V}_{h}. ∎

Theorem 5.4.

The finite element elasticity complex

(75) 𝑹𝑴\autorightarrow𝑽h\autorightarrowdef𝚺hinc\autorightarrowinc𝚺hdiv\autorightarrowdiv𝒬h\autorightarrow0\boldsymbol{RM}\autorightarrow{\subset}{}\boldsymbol{V}_{h}\autorightarrow{\operatorname{def}}{}\boldsymbol{\Sigma}_{h}^{\rm inc}\autorightarrow{\operatorname{inc}}{}\boldsymbol{\Sigma}_{h}^{\rm div}\autorightarrow{{\operatorname{div}}}{}\mathcal{Q}_{h}\autorightarrow{}{}0

is exact.

Proof.

The inclusion def𝑽h𝚺hinc\operatorname{def}\boldsymbol{V}_{h}\subseteq\boldsymbol{\Sigma}_{h}^{\rm inc} follows from (74) and (37)-(38), and inc𝚺hinc𝚺hdiv\operatorname{inc}\boldsymbol{\Sigma}_{h}^{\rm inc}\subseteq\boldsymbol{\Sigma}_{h}^{\operatorname{div}} holds from (39)-(40) and Lemma 5.1. The proof of div𝚺hdiv=𝒬h\operatorname{div}\boldsymbol{\Sigma}_{h}^{\rm\operatorname{div}}=\mathcal{Q}_{h} can be found in [22, 24]. Hence (75) is a complex. And

dim(𝚺hdivker(div))\displaystyle\dim(\boldsymbol{\Sigma}_{h}^{\rm\operatorname{div}}\cap\ker(\operatorname{div})) =dim𝚺hdivdim𝒬h\displaystyle=\dim\boldsymbol{\Sigma}_{h}^{\rm\operatorname{div}}-\dim\mathcal{Q}_{h}
=6#𝒱h+(5k15)#h+32(k3)(k4)#h\displaystyle=6\#\mathcal{V}_{h}+(5k-15)\#\mathcal{E}_{h}+\frac{3}{2}(k-3)(k-4)\#\mathcal{F}_{h}
+12(k1)(k2)(k6)#𝒯h.\displaystyle\quad+\frac{1}{2}(k-1)(k-2)(k-6)\#\mathcal{T}_{h}.

It follows from Lemma 5.3 that def𝑽h=𝚺hincker(inc)\operatorname{def}\boldsymbol{V}_{h}=\boldsymbol{\Sigma}_{h}^{\rm inc}\cap\ker(\operatorname{inc}). Thus

dim(inc𝚺hinc)\displaystyle\dim(\operatorname{inc}\boldsymbol{\Sigma}_{h}^{\operatorname{inc}}) =dim𝚺hincdimdef𝑽h=dim𝚺hincdim𝑽h+6\displaystyle=\dim\boldsymbol{\Sigma}_{h}^{\operatorname{inc}}-\dim\operatorname{def}\boldsymbol{V}_{h}=\dim\boldsymbol{\Sigma}_{h}^{\operatorname{inc}}-\dim\boldsymbol{V}_{h}+6
=(5k9)#h+32(k27k+8)#h\displaystyle=(5k-9)\#\mathcal{E}_{h}+\frac{3}{2}(k^{2}-7k+8)\#\mathcal{F}_{h}
+12(k39k2+20k)#𝒯h+6.\displaystyle\quad+\frac{1}{2}(k^{3}-9k^{2}+20k)\#\mathcal{T}_{h}+6.

Then we get from the Euler’s identity that

dim(𝚺hdivker(div))dim(inc𝚺hinc)\displaystyle\dim(\boldsymbol{\Sigma}_{h}^{\rm\operatorname{div}}\cap\ker(\operatorname{div}))-\dim(\operatorname{inc}\boldsymbol{\Sigma}_{h}^{\operatorname{inc}}) =6#𝒱h6#h+6#h6#𝒯h+6=0.\displaystyle=6\#\mathcal{V}_{h}-6\#\mathcal{E}_{h}+6\#\mathcal{F}_{h}-6\#\mathcal{T}_{h}+6=0.

Therefore 𝚺hdivker(div)=inc𝚺hinc\boldsymbol{\Sigma}_{h}^{\rm\operatorname{div}}\cap\ker(\operatorname{div})=\operatorname{inc}\boldsymbol{\Sigma}_{h}^{\operatorname{inc}}. ∎

References

  • [1] S. Amstutz and N. Van Goethem. Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations. SIAM Journal on Mathematical Analysis, 48(1):320–348, 2016.
  • [2] S. Amstutz and N. Van Goethem. The incompatibility operator: from Riemann’s intrinsic view of geometry to a new model of elasto-plasticity. In Topics in Applied Analysis and Optimisation, pages 33–70. Springer, 2019.
  • [3] D. Arnold, R. Falk, and R. Winther. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American mathematical society, 47(2):281–354, 2010.
  • [4] D. N. Arnold, G. Awanou, and R. Winther. Finite elements for symmetric tensors in three dimensions. Math. Comp., 77(263):1229–1251, 2008.
  • [5] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica, 15:1, 2006.
  • [6] D. N. Arnold and K. Hu. Complexes from complexes. Found. Comput. Math., 2021.
  • [7] D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numerische Mathematik, 92(3):401–419, 2002.
  • [8] L. Chen, J. Hu, and X. Huang. Fast auxiliary space preconditioners for linear elasticity in mixed form. Math. Comp., 87(312):1601–1633, 2018.
  • [9] L. Chen, J. Hu, and X. Huang. Multigrid methods for Hellan–Herrmann–Johnson mixed method of Kirchhoff plate bending problems. Journal of Scientific Computing, 76(2):673–696, 2018.
  • [10] L. Chen, J. Hu, X. Huang, and H. Man. Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems. Science China Mathematics, 61(6):973–992, 2018.
  • [11] L. Chen and X. Huang. Discrete Hessian complexes in three dimensions. arXiv preprint arXiv:2012.10914, 2020.
  • [12] L. Chen and X. Huang. Finite elements for divdiv-conforming symmetric tensors. https://arxiv.org/abs/2005.01271, 2020.
  • [13] L. Chen and X. Huang. Finite elements for divdiv-conforming symmetric tensors in three dimensions. arXiv preprint arXiv:2007.12399, 2020.
  • [14] S. H. Christiansen. On the linearization of Regge calculus. Numerische Mathematik, 119(4):613–640, 2011.
  • [15] S. H. Christiansen, J. Gopalakrishnan, J. Guzmán, and K. Hu. A discrete elasticity complex on three-dimensional Alfeld splits. arXiv preprint arXiv:2009.07744, 2020.
  • [16] S. H. Christiansen, J. Hu, and K. Hu. Nodal finite element de Rham complexes. Numerische Mathematik, 139(2):411–446, 2018.
  • [17] S. H. Christiansen and K. Hu. Finite element systems for vector bundles: elasticity and curvature. arXiv preprint arXiv:1906.09128, 2019.
  • [18] S. H. Christiansen, K. Hu, and E. Sande. Poincaré path integrals for elasticity. J. Math. Pures Appl., 135:83–102, 2020.
  • [19] P. G. Ciarlet. On Korn’s inequality. Chinese Annals of Mathematics, Series B, 31(5):607–618, 2010.
  • [20] M. S. Floater and K. Hu. A characterization of supersmoothness of multivariate splines. Advances in Computational Mathematics, 46(5):1–15, 2020.
  • [21] G. Fu, J. Guzmán, and M. Neilan. Exact smooth piecewise polynomial sequences on Alfeld splits. Mathematics of Computation, 89(323):1059–1091, 2020.
  • [22] J. Hu. Finite element approximations of symmetric tensors on simplicial grids in n\mathbb{R}^{n}: the higher order case. J. Comput. Math., 33(3):283–296, 2015.
  • [23] J. Hu and Y. Liang. Conforming discrete Gradgrad-complexes in three dimensions. Math. Comp., 90(330):1637–1662, 2021.
  • [24] J. Hu and S. Zhang. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math., 58(2):297–307, 2015.
  • [25] P. Kelly. Mechanics lecture notes: An introduction to solid mechanics. Available from http://homepages.engineering.auckland.ac.nz/ pkel015/SolidMechanicsBooks/index.html.
  • [26] M. Neilan. Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comp., 84(295):2059–2081, 2015.
  • [27] S. Zhang. A family of 3d continuously differentiable finite elements on tetrahedral grids. Applied Numerical Mathematics, 59(1):219–233, 2009.