This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Faber-Krahn inequality
for mixed local and nonlocal operators

Stefano Biagi Serena Dipierro Enrico Valdinoci  and  Eugenio Vecchi Dipartimento di Matematica
Politecnico di Milano
Via Bonardi 9, 20133 Milano, Italy
[email protected] Department of Mathematics and Statistics
University of Western Australia
35 Stirling Highway, WA 6009 Crawley, Australia
[email protected] Department of Mathematics and Statistics
University of Western Australia
35 Stirling Highway, WA 6009 Crawley, Australia
[email protected] Dipartimento di Matematica
Università degli Studi di Bologna
Piazza di Porta San Donato 5, 40126 Bologna, Italy
[email protected]
(Date: December 20, 2024)
Abstract.

We consider the first Dirichlet eigenvalue problem for a mixed local/nonlocal elliptic operator and we establish a quantitative Faber-Krahn inequality. More precisely, we show that balls minimize the first eigenvalue among sets of given volume and we provide a stability result for sets that almost attain the minimum.

Key words and phrases:
Operators of mixed order, first eigenvalue, shape optimization, isoperimetric inequality, Faber-Krahn inequality, quantitative results, stability.
2020 Mathematics Subject Classification:
49Q10, 35R11, 47A75, 49R05
The authors are members of INdAM. S. Biagi is partially supported by the INdAM-GNAMPA project Metodi topologici per problemi al contorno associati a certe classi di equazioni alle derivate parziali. S. Dipierro and E. Valdinoci are members of AustMS. S. Dipierro is supported by the Australian Research Council DECRA DE180100957 “PDEs, free boundaries and applications”. E. Valdinoci is supported by the Australian Laureate Fellowship FL190100081 “Minimal surfaces, free boundaries and partial differential equations”. E. Vecchi is partially supported by the INdAM-GNAMPA project Convergenze variazionali per funzionali e operatori dipendenti da campi vettoriali.

1. Introduction

At the end of the XIX century, relying on explicit calculations on suitable domains, John William Strutt, 3rd Baron Rayleigh, conjectured that the ball is the minimizer of the first Dirichlet eigenvalue among the domains of a given volume, see [52]. The confirmation of this conjecture entails a number of interesting physical consequences, such as:

  • among all drums of a given surface, the circular drum produces the lowest voice,

  • among all the regions of a given volume with the boundary maintained at a constant (say, zero) temperature, the one which dissipates heat at the slowest possible rate is the sphere.

Also, the statement with equal volume constraints gives as a byproduct the one with equal perimeter constraint (thanks to the scaling property of the first eigenvalue and the isoperimetric inequality). In this sense, the first attempt to prove Lord Rayleigh’s conjecture dates back to 1918, when Richard Courant established the above claim with equal perimeter constraint, see [19]. Then, using rearrangement methods and the variational characterization of eigenvalues, the original conjecture with volume constraint was established independently by Georg Faber and Edgar Krahn, see [33, 47, 48]. See also [40, Chapter 2] and [44]. We refer to [20] for similar results in the context of composite membranes.

Given that balls are actually established to be the unique minimizers for the first eigenvalue under volume constraint (hence if the first eigenvalue is equal to that of the corresponding ball, then the domain must necessarily be a ball), an intense research activity focused on quantitative versions of the Faber-Krahn inequality: roughly speaking, if the eigenvalue is “close to the one of the ball”, can one deduce that the domain is also “close to a ball”? Classical results in this direction have been obtained by Wolfhard Hansen and Nikolai Nadirashvili in [39] and Antonios Melas in [49], and sharp bounds in terms of the so called Fraenkel asymmetry have been obtained recently by Lorenzo Brasco, Guido De Philippis and Bozhidar Velichkov in [12]. See also [2] for some stability results in space forms.

The goal of this paper is to obtain a Faber-Krahn inequality and a quantitative version of it for an elliptic operator of mixed order. More specifically, for the sake of simplicity, we will focus on operators obtained by the superposition of a classical and a fractional Laplacian, namely of operators of the form

:=Δ+(Δ)s,\mathcal{L}:=-\Delta+(-\Delta)^{s},

with s(0,1)s\in(0,1) and

(Δ)su(x):=12n2u(x)u(x+y)u(xy)|y|n+2s𝑑y.(-\Delta)^{s}u(x):=\frac{1}{2}\int_{\mathbb{R}^{n}}\frac{2u(x)-u(x+y)-u(x-y)}{|y|^{n+2s}}\,dy.

Operators of this type present interesting mathematical questions, especially due to the lack of scale invariance and in view of the combination of local and nonlocal behaviors, see [41, 42, 5, 22, 10, 18, 3, 17, 4, 53, 16, 23, 32, 24, 8, 7, 29, 15, 1, 14, 21, 45]. Moreover, they possess a concrete interest in applications since they model diffusion patterns with different time scales (loosely speaking, the higher order operator leading the diffusion for small times and the lower order operator becoming predominant for large times) and they arise in bi-modal power-law distribution processes, see [51]. Further applications arise in the theory of optimal searching strategies, biomathematics and animal foraging, see [30, 31] and the references therein. See also [11] for further applications.

In our setting, given a bounded open subset Ω\Omega of n\mathbb{R}^{n}, we consider the first Dirichlet eigenvalue λ(Ω)\lambda_{\mathcal{L}}(\Omega) (see Section 3 for a detailed presentation) and we characterize the optimal set by the following result:

Theorem 1.1 (Faber-Krahn inequality for λ(Ω)\lambda_{\mathcal{L}}(\Omega)).

Let Ωn\Omega\subseteq\mathbb{R}^{n} be a bounded open set with boundary Ω\partial\Omega of class C1C^{1}. Let m:=|Ω|(0,)m:=|\Omega|\in(0,\infty), and let B(m)B^{(m)} be any Euclidean ball with volume mm. Then,

(1.1) λ(Ω)λ(B(m)).\lambda_{\mathcal{L}}(\Omega)\geq\lambda_{\mathcal{L}}(B^{(m)}).

Moreover, if the equality holds in (1.1), then Ω\Omega is a ball.

A related Faber-Krahn inequality has been recently obtained for radially symmetric, nonnegative and continuous kernels with compact support in [46]. With this respect, the case treated here of singular kernels seems to be new to the best of our knowledge. Additionally, and more importantly, we establish a stability result for inequality (1.1):

Theorem 1.2 (Quantitative Faber-Krahn inequality for λ(Ω)\lambda_{\mathcal{L}}(\Omega)).

Let s(0,1/2)s\in(0,1/2). Let Ωn\Omega\subset\mathbb{R}^{n} be an open, bounded and uniformly convex set with boundary Ω\partial\Omega of class C3C^{3}.

Then, there exists ε0>0\varepsilon_{0}>0 with the following property: if BnB\subseteq\mathbb{R}^{n} is a ball with |B|=|Ω||B|=|\Omega| and

(1.2) λ(Ω)(1+ε)λ(B),for some 0<ε<ε0,\lambda_{\mathcal{L}}(\Omega)\leq(1+\varepsilon)\lambda_{\mathcal{L}}(B),\quad\textrm{for some }0<\varepsilon<\varepsilon_{0},

then there exist two balls B(1)B^{(1)}, B(2)nB^{(2)}\subset\mathbb{R}^{n} such that B(1)ΩB(2)B^{(1)}\subseteq\Omega\subseteq B^{(2)} and

(1.3) |B(1)|(1Cε12n)|Ω|,|B^{(1)}|\geq\left(1-C\varepsilon^{\frac{1}{2n}}\right)|\Omega|,

and

(1.4) |Ω|(1Cε1n(n+1))|B(2)|,|\Omega|\geq\left(1-C\varepsilon^{\frac{1}{n(n+1)}}\right)|B^{(2)}|,

where C>0C>0 is a structural constant.

The proof of Theorem 1.1 is based on the definition of principal eigenvalue of \mathcal{L} and on the Polya-Szegö inequality.

The proof of Theorem 1.2 is more involved and requires some delicate geometric arguments. For this, a careful analysis of the superlevel sets of the principal eigenfunction is needed, combined with the use of a Bonnesen-type inequality, which is a strengthening of the classical isoperimetric inequality.

We stress that, while in Theorem 1.1 we only require the boundary of Ω\Omega to be C1C^{1}, in Theorem 1.2 we need to ask that the boundary of Ω\Omega is of class C3C^{3}. This is due to the fact that, in order to prove Theorem 1.2, we have to use the Faber-Krahn inequality in (1.1) for the superlevel sets of the principal eigenfunction and we are able to prove that these sets are convex and with boundary of class C1C^{1} under the condition that Ω\Omega has a C3C^{3}-boundary, see the forthcoming Lemma 3.7.

The rest of this paper is organized as follows. In Section 2 we introduce the basic notation and the setting in which we work, and we provide some regularity results and an Hopf-type lemma for the operator \mathcal{L}. In Section 3 we introduce the notion of principal Dirichlet eigenvalue for \mathcal{L} and we give some regularity results for the associated eigenfunction. Section 3 also contains a result (namely, Lemma 3.7) that proves the convexity of the superlevel sets of the first eigenfunction near the boundary of a convex domain: this result, based on a detailed use of the Inverse Function Theorem, highlights an interesting technical difference with respect to the classical case where one can exploit the convexity of all the level sets of the Dirichlet principal eigenfunction, due to its concavity as a function (which is unknown in the fractional case, see [43]).

Section 4 contains the proofs of Theorems 1.1 and 1.2. The paper finishes with a couple of appendices: in the first one, we discuss the optimality of a geometric lemma needed in the proof of Theorem 1.2, while in the second we prove Theorem 2.8.

2. Basic notions and preliminary results

In this section we properly introduce the relevant definitions and notation which shall be used throughout the rest of the paper. Moreover, we review/establish some regularity results concerning our operator =Δ+(Δ)s\mathcal{L}=-\Delta+(-\Delta)^{s}.

Let Ωn\Omega\subseteq\mathbb{R}^{n} be a bounded open set with boundary Ω\partial\Omega of class C1C^{1}. We then consider the space 𝕏(Ω)\mathbb{X}(\Omega) defined as follows:

𝕏(Ω):={uH1(n):u0 a.e. on nΩ}.\mathbb{X}(\Omega):=\big{\{}u\in H^{1}(\mathbb{R}^{n}):\,\text{$u\equiv 0$ a.e.\,on $\mathbb{R}^{n}\setminus\Omega$}\big{\}}.

In view of the regularity of Ω\partial\Omega, it is well-known that 𝕏(Ω)\mathbb{X}(\Omega) can be naturally identified with H01(Ω)H_{0}^{1}(\Omega); more precisely, we have (see, e.g., [13, Prop. 9.18])

(2.1) u𝕏(Ω)u|ΩH01(Ω)anduH01(Ω)u𝟏Ω𝕏(Ω),\text{$u\in\mathbb{X}(\Omega)\,\,\Longrightarrow\,\,u|_{\Omega}\in H_{0}^{1}(\Omega)$}\quad\text{and}\quad\text{$u\in H_{0}^{1}(\Omega)\,\,\Longrightarrow\,\,u\cdot\mathbf{1}_{\Omega}\in\mathbb{X}(\Omega)$},

where 𝟏Ω\mathbf{1}_{\Omega} denotes the indicator function of Ω\Omega. Throughout what follows, we tacitly identify a function uH01(Ω)u\in H_{0}^{1}(\Omega) with its “zero-extension” u^=u𝟏Ω𝕏(Ω)\widehat{u}=u\cdot\mathbf{1}_{\Omega}\in\mathbb{X}(\Omega).

We then observe that, as a consequence of (2.1), the set 𝕏(Ω)\mathbb{X}(\Omega) is endowed with a structure of real Hilbert space by the scalar product

u,v𝕏(Ω):=Ωu,v𝑑x.\langle u,v\rangle_{\mathbb{X}(\Omega)}:=\int_{\Omega}\langle\nabla u,\nabla v\rangle\,dx.

The norm associated with this scalar product is

u𝕏(Ω):=(Ω|u|2𝑑x)1/2,\|u\|_{\mathbb{X}(\Omega)}:=\big{(}\int_{\Omega}|\nabla u|^{2}\,dx\big{)}^{1/2},

and the (linear) map 0:H01(Ω)𝕏(Ω)\mathcal{E}_{0}:H_{0}^{1}(\Omega)\to\mathbb{X}(\Omega) defined by

0(u):=u𝟏Ω\mathcal{E}_{0}(u):=u\cdot\mathbf{1}_{\Omega}

turns out to be a bijective isometry between H01(Ω)H_{0}^{1}(\Omega) and 𝕏(Ω)\mathbb{X}(\Omega).

Let s(0,1)s\in(0,1). On the space 𝕏(Ω)\mathbb{X}(\Omega), we consider the bilinear form

Ω,s(u,v):=Ωu,v𝑑x+2n(u(x)u(y))(v(x)v(y))|xy|n+2s𝑑x𝑑y;\mathcal{B}_{\Omega,s}(u,v):=\int_{\Omega}\langle\nabla u,\nabla v\rangle\,dx+\iint_{\mathbb{R}^{2n}}\frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+2s}}\,dx\,dy;

moreover, for every u𝕏(Ω)u\in\mathbb{X}(\Omega) we define

(2.2) 𝒟Ω,s(u):=Ω,s(u,u).\mathcal{D}_{\Omega,s}(u):=\mathcal{B}_{\Omega,s}(u,u).
Remark 2.1.

We explicitly notice that Ω,s\mathcal{B}_{\Omega,s} is well-defined on 𝕏(Ω)\mathbb{X}(\Omega) in view of the following facts: given any u,v𝕏(Ω)u,v\in\mathbb{X}(\Omega), by Hölder’s inequality we have

(2.3) 2n|u(x)u(y)||v(x)v(y)||xy|n+2s𝑑x𝑑y[u]s[v]s,\iint_{\mathbb{R}^{2n}}\frac{|u(x)-u(y)|\cdot|v(x)-v(y)|}{|x-y|^{n+2s}}\,dx\,dy\leq[u]_{s}\cdot[v]_{s},

where we have used the notation

[f]s:=(2n|f(x)f(y)|2|xy|n+2s𝑑x𝑑y)1/2for all fH1(n).[f]_{s}:=\bigg{(}\iint_{\mathbb{R}^{2n}}\frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy\bigg{)}^{1/2}\qquad\text{for all\leavevmode\nobreak\ $f\in H^{1}(\mathbb{R}^{n})$}.

Furthermore, for every fH1(n)f\in H^{1}(\mathbb{R}^{n}) one has (see, e.g., [26, Proposition 2.2])

(2.4) [f]scn,sfH1(n).[f]_{s}\leq c_{n,s}\,\|f\|_{H^{1}(\mathbb{R}^{n})}.

Gathering together (2.3) and (2.4), we then get

|Ω,s(u,v)|cn,s2uH1(n)vH1(n)<.|\mathcal{B}_{\Omega,s}(u,v)|\leq c_{n,s}^{2}\,\|u\|_{H^{1}(\mathbb{R}^{n})}\cdot\|v\|_{H^{1}(\mathbb{R}^{n})}<\infty.

Using the bilinear form Ω,s\mathcal{B}_{\Omega,s}, we can give the following definition.

Definition 2.2.

Let fL2(Ω)f\in L^{2}(\Omega). We say that a function u:nu:\mathbb{R}^{n}\to\mathbb{R} is a weak solution of the \mathcal{L}-Dirichlet problem

(D)f{u=fin Ω,u0in nΩ,(\mathrm{D})_{f}\qquad\quad\begin{cases}\mathcal{L}u=f&\text{in $\Omega$},\\ u\equiv 0&\text{in $\mathbb{R}^{n}\setminus\Omega$},\end{cases}

if it satisfies the following properties:

  1. (1)

    u𝕏(Ω)u\in\mathbb{X}(\Omega);

  2. (2)

    for every test function φC0(Ω)\varphi\in C_{0}^{\infty}(\Omega), one has

    Ω,s(u,φ)=Ωfφ𝑑x.\mathcal{B}_{\Omega,s}(u,\varphi)=\int_{\Omega}f\varphi\,dx.
Remark 2.3.

Let fL2(Ω)f\in L^{2}(\Omega) and u𝕏(Ω)u\in\mathbb{X}(\Omega). Since C0(Ω)C_{0}^{\infty}(\Omega) is dense in 𝕏(Ω)\mathbb{X}(\Omega), we see that uu is a weak solution of (D)f(\mathrm{D})_{f} if and only if

Ω,s(u,v)=Ωfv𝑑xfor every v𝕏(Ω).\mathcal{B}_{\Omega,s}(u,v)=\int_{\Omega}f\,v\,dx\qquad\text{for every $v\in\mathbb{X}(\Omega)$}.

Then, by applying the Lax-Milgram Theorem to the bilinear form Ω,s\mathcal{B}_{\Omega,s}, one can prove the following existence result (see, e.g., [7, Theorem. 1.1]).

Theorem 2.4.

For every fL2(Ω)f\in L^{2}(\Omega), there exists a unique weak solution uf𝕏(Ω)u_{f}\in\mathbb{X}(\Omega) of (D)f(\mathrm{D})_{f}, further satisfying the ‘a-priori’ estimate

uf𝕏(Ω)𝐜0fL2(Ω).\|u_{f}\|_{\mathbb{X}(\Omega)}\leq\mathbf{c}_{0}\,\|f\|_{L^{2}(\Omega)}.

Here, 𝐜0>0\mathbf{c}_{0}>0 is a constant independent of ff.

Since we aim at proving some global regularity results for ufu_{f}, it is convenient to fix also the definition of classical solution of problem (D)f(\mathrm{D})_{f}. For this, we recall the notation Cb(n):=C(n)L(n)C_{b}(\mathbb{R}^{n}):=C(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n}).

Definition 2.5.

Let f:Ωf:\Omega\to\mathbb{R}. We say that a function u:nu:\mathbb{R}^{n}\to\mathbb{R} is a classical solution of (D)f(\mathrm{D})_{f} if it satisfies the following properties:

  1. (1)

    uCb(n)C2(Ω)u\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\Omega);

  2. (2)

    u0u\equiv 0 pointwise in nΩ\mathbb{R}^{n}\setminus\Omega;

  3. (3)

    u(x)=f(x)\mathcal{L}u(x)=f(x) pointwise for every xΩx\in\Omega.

Remark 2.6.

(1)  We explicitly observe that, if uCb(n)C2(Ω)u\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\Omega) it is possible to compute u(x)\mathcal{L}u(x) pointwise for every xΩx\in\Omega. Indeed, we have

(Δ)su(x)=12nu(x+z)+u(xz)2u(x)|z|n+2s𝑑z,(-\Delta)^{s}u(x)=-\frac{1}{2}\int_{\mathbb{R}^{n}}\frac{u(x+z)+u(x-z)-2u(x)}{|z|^{n+2s}}\,dz,

and the regularity of uu ensures that the “second-order” different quotient

znu(x+z)+u(xz)2u(x)|z|n+2sz\ni\mathbb{R}^{n}\mapsto\frac{u(x+z)+u(x-z)-2u(x)}{|z|^{n+2s}}

is in L1(n)L^{1}(\mathbb{R}^{n}). To be more precise, for every xnx\in\mathbb{R}^{n} we have

|u(x+z)+u(xz)2u(x)||z|n+2s\displaystyle\frac{|u(x+z)+u(x-z)-2u(x)|}{|z|^{n+2s}}
cn(uC2(B(x,ρx))|z|n+2s2𝟏B(0,ρx)+uL(n)|z|n+2s𝟏nB(0,ρx)),\displaystyle\quad\leq c_{n}\bigg{(}\frac{\|u\|_{C^{2}(B(x,\rho_{x}))}}{|z|^{n+2s-2}}\cdot\mathbf{1}_{B(0,\rho_{x})}+\frac{\|u\|_{L^{\infty}(\mathbb{R}^{n})}}{|z|^{n+2s}}\cdot\mathbf{1}_{\mathbb{R}^{n}\setminus B(0,\rho_{x})}\bigg{)},

where cn>0c_{n}>0 is a suitable constant and ρx>0\rho_{x}>0 is such that B(x,ρx)ΩB(x,\rho_{x})\Subset\Omega.

(2)  Assume that fL2(Ω)f\in L^{2}(\Omega), and let uf𝕏(Ω)u_{f}\in\mathbb{X}(\Omega) be the (unique) weak solution of (D)f(\mathrm{D})_{f}, according to Theorem 2.4. If we further assume that ufCb(n)C2(Ω)u_{f}\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\Omega), we can compute

uf(x)=Δuf(x)+(Δ)suf(x)pointwise for every xΩ.\mathcal{L}u_{f}(x)=-\Delta u_{f}(x)+(-\Delta)^{s}u_{f}(x)\quad\text{pointwise for every $x\in\Omega$}.

Then, a standard integration-by-parts argument shows that ufu_{f} is also a classical solution of (D)f(\mathrm{D})_{f}. Conversely, if uCb(n)C2(Ω)u\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\Omega) is a classical solution of (D)f(\mathrm{D})_{f} such that uH1(n)u\in H^{1}(\mathbb{R}^{n}), then uu is also a weak solution of (D)f(\mathrm{D})_{f}.

The first regularity result that we aim to prove is a global C1,αC^{1,\alpha}-regularity theorem, which relies on the W2,pW^{2,p}-theory for \mathcal{L} developed by Bensoussan and Lions [6].

Theorem 2.7.

Let fL(Ω)f\in L^{\infty}(\Omega) and let uf𝕏(Ω)u_{f}\in\mathbb{X}(\Omega) denote the unique weak solution of (D)f(\mathrm{D})_{f}. Moreover, let us assume that Ω\partial\Omega is of class C1,1C^{1,1}. Then,

(2.5) ufC1,β(Ω¯)for some β(0,1).u_{f}\in C^{1,\beta}(\overline{\Omega})\quad\text{for some $\beta\in(0,1)$}.
Proof.

Note that fLp(Ω)f\in L^{p}(\Omega) for every p2p\geq 2. We111For instance, in the most delicate case s[1/2,1)s\in[1/2,1), one can use the setting in [35] with j(x,ξ):=ξj(x,\xi):=\xi, m(x,ξ):=1m(x,\xi):=1, π(dξ):=|ξ|n2sdξ\pi(d\xi):=|\xi|^{-n-2s}\,d\xi, j¯(ξ):=ξ\overline{j}(\xi):=\xi, γ:=2s+ϵ\gamma:=2s+\epsilon (with ϵ>0\epsilon>0 conveniently small), θ:=0\theta:=0, γ1:=γ\gamma_{1}:=\gamma and λ1(ξ):=|ξ|γ\lambda_{1}(\xi):=|\xi|^{\gamma}. Alternatively to [35], one can use [6, Theorem 3.2.3]. utilize [35, Theorem 3.1.22] to obtain W2,pW^{2,p}-regularity for some p>np>n. By combining this with the Sobolev embedding theorem, we obtain (2.5). ∎

Furthermore, we recall that the C2,αC^{2,\alpha}-regularity of ufu_{f} when fCα(Ω¯)f\in C^{\alpha}(\overline{\Omega}) can be deduced by applying [35, Theorem 3.1.12]. We refer to Appendix B for an explicit proof.

Theorem 2.8.

Let s(0,1/2)s\in(0,1/2) and α(0,1)\alpha\in(0,1). Suppose that Ω\partial\Omega is of class C2,αC^{2,\alpha}. If fCα(Ω¯)f\in C^{\alpha}(\overline{\Omega}) and if uf𝕏(Ω)u_{f}\in\mathbb{X}(\Omega) denotes the unique weak solution of (D)f(\mathrm{D})_{f} (according to Theorem 2.4), then

ufCb(n)C2,α(Ω¯).u_{f}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}).

In particular, ufu_{f} is a classical solution of (D)f(\mathrm{D})_{f}.

We also recall that a regularity result up to the boundary for eigenfunctions of mixed operators has been recently obtained in [25] for radially symmetric, nonnegative and continuous kernels with compact support.

We close this section by stating, for future reference, the following Hopf-type lemma for our operator \mathcal{L}. Similar statements for this type of operators have been proved in [35, Theorem 3.1.5], but with the additional assumption that s(0,1/2)s\in(0,1/2).

Theorem 2.9.

Let c0c_{0}\in\mathbb{R} and ε¯(0,1)\overline{\varepsilon}\in(0,1). Let uCb(n)C2(Ω¯)u\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\overline{\Omega}) be such that

(2.6) u0pointwise in Ω.\mathcal{L}u\geq 0\quad\text{pointwise in $\Omega$}.

Let ξΩ\xi\in\partial\Omega. Assume that u=c0u=c_{0} on Bε¯(ξ)ΩB_{\overline{\varepsilon}}(\xi)\cap\partial\Omega and that uc0u\geq c_{0} in n\mathbb{R}^{n}. Suppose also that uc0u\not\equiv c_{0} and that Bε¯(ξ)ΩB_{\overline{\varepsilon}}(\xi)\cap\partial\Omega is of class C2C^{2}. Finally, let ν\nu be the outer unit normal to Ω\partial\Omega at ξ\xi. Then,

(2.7) νu(ξ)<0.\partial_{\nu}u(\xi)<0.
Proof.

Without loss of generality, we suppose that c0=0c_{0}=0 and that ξ\xi coincides with the origin. In particular,

(2.8) u(0)=0.u(0)=0.

Also, by the regularity of Bε¯(ξ)ΩB_{\overline{\varepsilon}}(\xi)\cap\partial\Omega, we suppose that there exists ρ0>0\rho_{0}>0 such that Bρ0(ρ0en)ΩB_{\rho_{0}}(\rho_{0}e_{n})\subseteq\Omega touches the boundary of Ω\Omega at the origin. We remark that, by assumption, there exists a point pnp\in\mathbb{R}^{n} such that u(p)>0u(p)>0, and therefore, by continuity, there exists a ball BnB\subset\mathbb{R}^{n} such that u>0u>0 in BB. In light of this and (2.8), we can find ε0(0,ε¯/4)\varepsilon_{0}\in(0,\overline{\varepsilon}/4) sufficiently small such that

BnBε for all ε(0,ε0].\text{$B\subset\mathbb{R}^{n}\setminus B_{\varepsilon}$ for all\leavevmode\nobreak\ $\varepsilon\in(0,\varepsilon_{0}]$}.

Now, we claim that there exists ρ(0,ρ0]\rho\in(0,\rho_{0}] such that

(2.9) (Δ)su0 in Bρ(ρen).(-\Delta)^{s}u\leq 0\quad{\mbox{ in }}B_{\rho}(\rho e_{n}).

To prove this, we suppose by contradiction that for every kk\in\mathbb{N} there exists

pkB1/k(en/k)Ωp_{k}\in B_{1/k}(e_{n}/k)\subseteq\Omega

such that (Δ)su(pk)>0(-\Delta)^{s}u(p_{k})>0. This implies that, for every ε(0,ε0]\varepsilon\in(0,\varepsilon_{0}],

(2.10) 0lim infk+n2u(pk)u(pk+y)u(pky)|y|n+2s𝑑y=lim infk+(Bε2u(pk)u(pk+y)u(pky)|y|n+2sdy+nBε2u(pk)u(pk+y)u(pky)|y|n+2sdy).\begin{split}0&\leq\,\liminf_{k\to+\infty}\int_{\mathbb{R}^{n}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy\\ &=\,\liminf_{k\to+\infty}\Bigg{(}\int_{B_{\varepsilon}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy\\ &\qquad\qquad\qquad+\int_{\mathbb{R}^{n}\setminus B_{\varepsilon}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy\Bigg{)}.\end{split}

Notice that pk0p_{k}\to 0 as k+k\to+\infty, and therefore, by the Dominated Convergence Theorem, one sees that

limk+nBε2u(pk)u(pk+y)u(pky)|y|n+2s𝑑y=nBε2u(0)u(y)u(y)|y|n+2s𝑑y=nBεu(y)+u(y)|y|n+2s𝑑yBu(y)+u(y)|y|n+2s𝑑yBu(y)|y|n+2s𝑑yc,\begin{split}&\lim_{k\to+\infty}\int_{\mathbb{R}^{n}\setminus B_{\varepsilon}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy\\ &\qquad=\int_{\mathbb{R}^{n}\setminus B_{\varepsilon}}\frac{2u(0)-u(y)-u(-y)}{|y|^{n+2s}}\,dy=-\int_{\mathbb{R}^{n}\setminus B_{\varepsilon}}\frac{u(y)+u(-y)}{|y|^{n+2s}}\,dy\\ &\qquad\leq-\int_{B}\frac{u(y)+u(-y)}{|y|^{n+2s}}\,dy\leq-\int_{B}\frac{u(y)}{|y|^{n+2s}}\,dy\leq-c,\end{split}

for some c>0c>0 independent of ε\varepsilon. Plugging this information into (2.10), we obtain that, for every ε(0,ε0]\varepsilon\in(0,\varepsilon_{0}],

(2.11) clim infk+Bε2u(pk)u(pk+y)u(pky)|y|n+2s𝑑y.c\leq\liminf_{k\to+\infty}\int_{B_{\varepsilon}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy.

Now we claim that there exists u~C1,1(B2ε)\widetilde{u}\in C^{1,1}(B_{2\varepsilon}) such that

(2.12) u~=u\widetilde{u}=u in B2εΩB_{2\varepsilon}\cap\Omega and u~u\widetilde{u}\leq u in B2εΩB_{2\varepsilon}\setminus\Omega.

To this end, we consider a C2C^{2}-diffeomorphism Φ\Phi such that

  • (a)

    B2εΦ(BC0ε)B_{2\varepsilon}\subseteq\Phi(B_{C_{0}\varepsilon}) for a suitable C0>0C_{0}>0;

  • (b)

    B2εΩΦ(BC0ε{xn>0})ΩB_{2\varepsilon}\cap\Omega\subseteq\Phi(B_{C_{0}\varepsilon}\cap\{x_{n}>0\})\subseteq\Omega;

  • (c)

    B2εΩΦ(BC0ε{xn>0})nΩB_{2\varepsilon}\setminus\Omega\subseteq\Phi(B_{C_{0}\varepsilon}\setminus\{x_{n}>0\})\subseteq\mathbb{R}^{n}\setminus\Omega.

Possibly reducing ε\varepsilon we can also assume that

Φ(BC0ε)Bε¯/2.\Phi(B_{C_{0}\varepsilon})\subseteq B_{\overline{\varepsilon}/2}.

For all xBC0εx\in B_{C_{0}\varepsilon} we define U(x):=u(Φ(x))U(x):=u(\Phi(x)) and we notice that UU is a C1,1C^{1,1} function in BC0ε{xn0}B_{C_{0}\varepsilon}\cap\{x_{n}\geq 0\} and U=0U=0 along {xn=0}\{x_{n}=0\}. Thus, we define

U~(x):={U(x,xn) if xn>0,U(x,xn) if xn0.\widetilde{U}(x):=\begin{cases}U(x^{\prime},x_{n})&{\mbox{ if }}x_{n}>0,\\ -U(x^{\prime},-x_{n})&{\mbox{ if }}x_{n}\leq 0.\end{cases}

We observe that U~\widetilde{U} is continuous across {xn=0}\{x_{n}=0\} and that

U~(x)={U(x,xn) if xn>0,U(x,xn) if xn<0.\nabla\widetilde{U}(x)=\begin{cases}\nabla U(x^{\prime},x_{n})&{\mbox{ if }}x_{n}>0,\\ \nabla U(x^{\prime},-x_{n})&{\mbox{ if }}x_{n}<0.\end{cases}

This gives that U~\widetilde{U} is a C1C^{1} function in BC0εB_{C_{0}\varepsilon}. Moreover, we claim that

(2.13) U~\widetilde{U} is a C1,1C^{1,1} function in BC0εB_{C_{0}\varepsilon}.

To check this, it suffices to consider x=(x,xn)x=(x^{\prime},x_{n}) and y=(y,yn)y=(y^{\prime},y_{n}) with xn>0>ynx_{n}>0>y_{n} and observe that

|U~(x)U~(y)|\displaystyle|\nabla\widetilde{U}(x)-\nabla\widetilde{U}(y)| =\displaystyle= |U(x,xn)U(y,yn)|\displaystyle|\nabla U(x^{\prime},x_{n})-\nabla U(y^{\prime},-y_{n})|
\displaystyle\leq |U(x,xn)U(x,0)|+|U(x,0)U(y,0)|\displaystyle|\nabla U(x^{\prime},x_{n})-\nabla U(x^{\prime},0)|+|\nabla U(x^{\prime},0)-\nabla U(y^{\prime},0)|
+|U(y,0)U(y,yn)|\displaystyle\qquad\qquad+|\nabla U(y^{\prime},0)-\nabla U(y^{\prime},-y_{n})|
\displaystyle\leq UC1,1(BC0ε{xn0})(xn+|xy|yn)\displaystyle\|U\|_{C^{1,1}(B_{C_{0}\varepsilon}\cap\{x_{n}\geq 0\})}\Big{(}x_{n}+|x^{\prime}-y^{\prime}|-y_{n}\Big{)}
\displaystyle\leq 2UC1,1(BC0ε{xn0})|xy|,\displaystyle 2\|U\|_{C^{1,1}(B_{C_{0}\varepsilon}\cap\{x_{n}\geq 0\})}|x-y|,

thus establishing (2.13).

Hence, for every xB2εx\in B_{2\varepsilon} we define u~(x):=U~(Φ1(x))\widetilde{u}(x):=\widetilde{U}(\Phi^{-1}(x)) and we infer from (2.13) that u~C1,1(B2ε)\widetilde{u}\in C^{1,1}(B_{2\varepsilon}). Furthermore, if xB2εΩx\in B_{2\varepsilon}\cap\Omega, then

Φ1(x)BC0ε{xn>0}\Phi^{-1}(x)\in B_{C_{0}\varepsilon}\cap\{x_{n}>0\}

and, as a result, we have that u~(x)=U~(Φ1(x))=U(Φ1(x))=u(x)\widetilde{u}(x)=\widetilde{U}(\Phi^{-1}(x))=U(\Phi^{-1}(x))=u(x). If instead xB2εΩx\in B_{2\varepsilon}\setminus\Omega, then Φ1(x)BC0ε{xn0}\Phi^{-1}(x)\in B_{C_{0}\varepsilon}\cap\{x_{n}\leq 0\}. Hence, letting

(y,yn):=Φ1(x)(y^{\prime},y_{n}):=\Phi^{-1}(x)

and using that u0u\geq 0, we get in this case that

u~(x)\displaystyle\widetilde{u}(x) =U~(Φ1(x))=U~(y,yn)=U(y,yn)0\displaystyle=\widetilde{U}(\Phi^{-1}(x))=\widetilde{U}(y^{\prime},y_{n})=-U(y^{\prime},-y_{n})\leq 0
U(y,yn)=U(Φ1(x))=u(x).\displaystyle\leq U(y^{\prime},y_{n})=U(\Phi^{-1}(x))=u(x).

These observations complete the proof of (2.12).

By (2.12) it follows that

2u(pk)u(pk+y)u(pky)2u~(pk)u~(pk+y)u~(pky).2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)\leq 2\widetilde{u}(p_{k})-\widetilde{u}(p_{k}+y)-\widetilde{u}(p_{k}-y).

Hence, if yBεy\in B_{\varepsilon},

2u(pk)u(pk+y)u(pky)u~C1,1(B2ε)|y|22u(p_{k})-u(p_{k}+y)-u(p_{k}-y)\leq\|\widetilde{u}\|_{C^{1,1}(B_{2\varepsilon})}|y|^{2}

and accordingly

Bε2u(pk)u(pk+y)u(pky)|y|n+2s𝑑y\displaystyle\int_{B_{\varepsilon}}\frac{2u(p_{k})-u(p_{k}+y)-u(p_{k}-y)}{|y|^{n+2s}}\,dy \displaystyle\leq Bεu~C1,1(B2ε)|y|2n2s𝑑y\displaystyle\int_{B_{\varepsilon}}\|\widetilde{u}\|_{C^{1,1}(B_{2\varepsilon})}|y|^{2-n-2s}\,dy
\displaystyle\leq Cu~C1,1(B2ε)ε22s.\displaystyle C\,\|\widetilde{u}\|_{C^{1,1}(B_{2\varepsilon})}\varepsilon^{2-2s}.

This and (2.11) entail that cCu~C1,1(B2ε)ε22sc\leq C\,\|\widetilde{u}\|_{C^{1,1}(B_{2\varepsilon})}\varepsilon^{2-2s}, and we thereby obtain a contradiction by choosing ε\varepsilon conveniently small. This completes the proof of (2.9).

From (2.6) and (2.9) we deduce that there exists ρ>0\rho>0 such that

0u=Δu+(Δ)suΔu in Bρ(ρen).\text{$0\leq\mathcal{L}u=-\Delta u+(-\Delta)^{s}u\leq-\Delta u$ in\leavevmode\nobreak\ $B_{\rho}(\rho e_{n})$}.

Moreover, we have u>0u>0 in Bρ(ρen)B_{\rho}(\rho e_{n}). Indeed, if there exists a point qBρ(ρen)q\in B_{\rho}(\rho e_{n}) such that u(q)=0u(q)=0, then by the Maximum Principle (see [7, Theorem 1.4]) we would have that u0u\equiv 0 in n\mathbb{R}^{n}, which would contradict our hypothesis. As a consequence, we are in the position of applying the Hopf Lemma for the classical Laplacian (see e.g. [36, Lemma 3.4]) thus obtaining the desired result in (2.7). ∎

Remark 2.10.

We stress that

(2.14) the assumption in Theorem 2.9 that u(ξ)u(x) for all xncannot be weakened by assuming that u(ξ)u(x) for all xΩ¯.\begin{split}&{\mbox{the assumption in Theorem\leavevmode\nobreak\ \ref{thm:Hopf} that $u(\xi)\leq u(x)$ for all\leavevmode\nobreak\ $x\in\mathbb{R}^{n}$}}\\ &{\mbox{cannot be weakened by assuming that\leavevmode\nobreak\ $u(\xi)\leq u(x)$ for all\leavevmode\nobreak\ $x\in\overline{\Omega}$.}}\end{split}

As a counterexample, let uu be the minimizer of

11|u(x)|2𝑑x+2|u(x)u(y)|2|xy|1+2s𝑑x𝑑y\int_{-1}^{1}|\nabla u(x)|^{2}\,dx+\iint_{\mathbb{R}^{2}}\frac{|u(x)-u(y)|^{2}}{|x-y|^{1+2s}}\,dx\,dy

among the functions in H01()H^{1}_{0}(\mathbb{R}) such that u=u0u=u_{0} outside (1,1)(-1,1), for a given smooth function u0u_{0} such that

χ(4,3)(3,4)u0χ(5,2)(2,5).\chi_{(-4,-3)\cup(3,4)}\leq u_{0}\leq\chi_{(-5,-2)\cup(2,5)}.

By the Sobolev Embedding Theorem, we know that uu is continuous in \mathbb{R} and, in view of its minimality property, it satisfies u=0{\mathcal{L}}u=0 in (1,1)(-1,1). Thus, let ξ[1,1]\xi\in[-1,1] be such that u(ξ)=min[1,1]uu(\xi)=\min_{[-1,1]}u. We claim that

(2.15) ξ(1,1).\xi\in(-1,1).

Indeed, if not, we would have that u0u\geq 0 in [1,1][-1,1]. Since u0u\leq 0 outside (1,1)(-1,1) we know from the weak maximum principle (see e.g. [7, Theorem 1.2]) that

u0 in [1,1],\text{$u\leq 0$ in\leavevmode\nobreak\ $[-1,1]$},

and consequently uu vanishes identically in [1,1][-1,1]. In particular, the origin would provide an interior maximum for uu. Accordingly, by the strong maximum principle (see e.g. [7, Theorem 1.4]), we gather that uu vanishes identically in \mathbb{R}. Since this is a contradiction with the values of uu in (4,3)(3,4)(-4,-3)\cup(3,4), the proof of (2.15) is completed. Now, from (2.15), we deduce that

(2.16) u(ξ)=0.u^{\prime}(\xi)=0.

We also take δ>0\delta>0 such that Ω:=(ξ,ξ+δ)(1,1)\Omega:=(\xi,\xi+\delta)\subset(-1,1). By construction, we have that ξ\xi is a minimizing point for uu in Ω¯\overline{\Omega} and that u=0{\mathcal{L}}u=0 in Ω\Omega. Thus, equation (2.16) proves the observation in (2.14).

3. The principal Dirichlet eigenvalue for \mathcal{L}

In this section we introduce the notion of principal Dirichlet eigenvalue for \mathcal{L}, and we prove some regularity results for the associated eigenfunctions. In what follows, we tacitly inherit all the assumptions and notation introduced so far; in particular, s(0,1)s\in(0,1) and Ωn\Omega\subseteq\mathbb{R}^{n} is a bounded open set with C1C^{1} boundary.

To begin with, we give the following definition.

Definition 3.1.

We define the principal Dirichlet eigenvalue of \mathcal{L} in Ω\Omega as

(3.1) λ(Ω):=inf{𝒟Ω,s(u)uL2(Ω)2:u𝕏(Ω){0}}[0,),\lambda_{\mathcal{L}}(\Omega):=\inf\bigg{\{}\frac{\mathcal{D}_{\Omega,s}(u)}{\|u\|^{2}_{L^{2}(\Omega)}}:\,u\in\mathbb{X}(\Omega)\setminus\{0\}\bigg{\}}\in[0,\infty),

where 𝒟Ω,s\mathcal{D}_{\Omega,s} is the quadratic form defined in (2.2).

Remark 3.2.

Before proceeding we list, for a future reference, some simple properties of λ()\lambda_{\mathcal{L}}(\cdot) which easily follow from its very definition.

  1. (1)

    For every x0nx_{0}\in\mathbb{R}^{n}, one has

    λ(Ω)=λ(x0+Ω).\lambda_{\mathcal{L}}(\Omega)=\lambda_{\mathcal{L}}(x_{0}+\Omega).
  2. (2)

    For every t>0t>0, one has

    • (i)

      t2sλ(Ω)λ(tΩ)t2λ(Ω)t^{-2s}\lambda_{\mathcal{L}}(\Omega)\leq\lambda_{\mathcal{L}}(t\Omega)\leq t^{-2}\lambda_{\mathcal{L}}(\Omega) if 0<t10<t\leq 1;

    • (ii)

      t2λ(Ω)λ(tΩ)t2sλ(Ω)t^{-2}\lambda_{\mathcal{L}}(\Omega)\leq\lambda_{\mathcal{L}}(t\Omega)\leq t^{-2s}\lambda_{\mathcal{L}}(\Omega) if t>1t>1.

  3. (3)

    Let λ1(Ω)\lambda_{1}(\Omega) be the principal Dirichlet eigenvalue of Δ-\Delta in Ω\Omega, i.e.,

    λ1(Ω):=inf{Ω|u|2𝑑xuL2(Ω)2:uH01(Ω){0}}.\lambda_{1}(\Omega):=\inf\bigg{\{}\frac{\int_{\Omega}|\nabla u|^{2}\,dx}{\|u\|^{2}_{L^{2}(\Omega)}}:\,u\in H_{0}^{1}(\Omega)\setminus\{0\}\bigg{\}}.

    Then, one has the bound

    λ(Ω)λ1(Ω)>0.\lambda_{\mathcal{L}}(\Omega)\geq\lambda_{1}(\Omega)>0.
  4. (4)

    There exists a positive constant c=c(Ω)>0c=c(\Omega)>0 such that

    λ(Ω)cλ1(Ω).\lambda_{\mathcal{L}}(\Omega)\leq c\,\lambda_{1}(\Omega).

Then, by using standard arguments of the Calculus of Variations (see, e.g., the approach in [54, Proposition 9]), it is possible to prove the following result.

Theorem 3.3.

The infimum in (3.1) is achieved. More precisely, there exists a unique u0𝕏(Ω){0}u_{0}\in\mathbb{X}(\Omega)\setminus\{0\} such that:

  1. (1)

    u0L2(Ω)=1\|u_{0}\|_{L^{2}(\Omega)}=1 and λ(Ω)=𝒟Ω,s(u0)\lambda_{\mathcal{L}}(\Omega)=\mathcal{D}_{\Omega,s}(u_{0});

  2. (2)

    u00u_{0}\geq 0 a.e. in Ω\Omega.

Furthermore, u0u_{0} is a weak solution of the following problem

(3.2) {u=λ(Ω)uin Ω,u0in nΩ,\begin{cases}\mathcal{L}u=\lambda_{\mathcal{L}}(\Omega)u&\text{in $\Omega$},\\ u\equiv 0&\text{in $\mathbb{R}^{n}\setminus\Omega$},\end{cases}

namely

(3.3) Ωu0,v𝑑x+2n(u0(x)u0(y))(v(x)v(y))|xy|n+2s𝑑x𝑑y=λ(Ω)nu0v𝑑xfor every v𝕏(Ω).\begin{split}\int_{\Omega}\langle\nabla u_{0},\nabla v\rangle\,dx&+\iint_{\mathbb{R}^{2n}}\frac{(u_{0}(x)-u_{0}(y))(v(x)-v(y))}{|x-y|^{n+2s}}\,dx\,dy\\ &=\lambda_{\mathcal{L}}(\Omega)\int_{\mathbb{R}^{n}}u_{0}v\,dx\qquad\quad\text{for every $v\in\mathbb{X}(\Omega)$}.\end{split}
Definition 3.4.

We refer to u0u_{0} given by Theorem 3.3 as the principal eigenfunction of \mathcal{L} (in Ω\Omega).

We devote the rest of this section to prove some regularity properties of u0u_{0}. To begin with, we establish the following global boundedness result.

Theorem 3.5.

The principal eigenfunction u0u_{0} is globally bounded on Ω\Omega.

The proof of Theorem 3.5 relies on the classical method by Stampacchia, and is essentially analogous to that of [7, Theorem 4.7] (see also [28, 55]). However, we present it here with all the details for the sake of completeness.

Proof of Theorem 3.5.

To begin with, we arbitrarily fix δ>0\delta>0 and we set

u~0:=δu0.\widetilde{u}_{0}:=\sqrt{\delta}\,u_{0}.

Moreover, for every kk\in\mathbb{N}, we define Ck:=12kC_{k}:=1-2^{-k} and

vk:=u~0Ck,wk:=(vk)+:=max{vk,0},Uk:=wkL2(Ω)2.v_{k}:=\widetilde{u}_{0}-C_{k},\quad w_{k}:=(v_{k})_{+}:=\max\{v_{k},0\},\quad U_{k}:=\|w_{k}\|_{L^{2}(\Omega)}^{2}.

We explicitly point out that, in view of these definitions, one has

  • (a)

    u~0L2(Ω)2=δu0L2(Ω)2=δ\|\widetilde{u}_{0}\|^{2}_{L^{2}(\Omega)}=\delta\,\|u_{0}\|^{2}_{L^{2}(\Omega)}=\delta;

  • (b)

    w0=v0=u~0w_{0}=v_{0}=\widetilde{u}_{0} (since C0=0C_{0}=0);

  • (c)

    vkvk+1v_{k}\geq v_{k+1} and wkwk+1w_{k}\geq w_{k+1} (since Ck<Ck+1C_{k}<C_{k+1}).

We now observe that, since u0𝕏(Ω)H1(n)u_{0}\in\mathbb{X}(\Omega)\subseteq H^{1}(\mathbb{R}^{n}), we have vkHloc1(n)v_{k}\in H^{1}_{\mathrm{loc}}(\mathbb{R}^{n}); furthermore, since u~0=δu00\widetilde{u}_{0}=\sqrt{\delta}\,u_{0}\equiv 0 a.e. in nΩ\mathbb{R}^{n}\setminus\Omega, one also has

vk=u~0Ck=Ck<0on nΩ,v_{k}=\widetilde{u}_{0}-C_{k}=-C_{k}<0\quad\text{on $\mathbb{R}^{n}\setminus\Omega$},

and thus wk=(vk)+𝕏(Ω)w_{k}=(v_{k})_{+}\in\mathbb{X}(\Omega) (remind that Ω\Omega is bounded). We are then entitled to use the function wkw_{k} as a test function in (3.3), obtaining

(3.4) Ωu~0,wk𝑑x+2n(u~0(x)u~0(y))(wk(x)wk(y))|xy|n+2s𝑑x𝑑y=λ(Ω)Ωu~0wk𝑑x.\begin{split}\int_{\Omega}\langle\nabla\widetilde{u}_{0},\nabla w_{k}\rangle\,dx&+\iint_{\mathbb{R}^{2n}}\frac{(\widetilde{u}_{0}(x)-\widetilde{u}_{0}(y))(w_{k}(x)-w_{k}(y))}{|x-y|^{n+2s}}\,dx\,dy\\ &=\lambda_{\mathcal{L}}(\Omega)\,\int_{\Omega}\widetilde{u}_{0}w_{k}\,dx.\end{split}

To proceed further we notice that, for a.e. x,ynx,y\in\mathbb{R}^{n}, one has

(3.5) |wk(x)wk(y)|2=|(vk)+(x)(vk)+(y)|2((vk)+(x)(vk)+(y))(vk(x)vk(y))=(wk(x)wk(y))(u~0(x)u~0(y)).\begin{split}|w_{k}(x)-w_{k}(y)|^{2}&=|(v_{k})_{+}(x)-(v_{k})_{+}(y)|^{2}\\[5.69046pt] &\leq((v_{k})_{+}(x)-(v_{k})_{+}(y))(v_{k}(x)-v_{k}(y))\\[5.69046pt] &=(w_{k}(x)-w_{k}(y))(\widetilde{u}_{0}(x)-\widetilde{u}_{0}(y)).\end{split}

Moreover, taking into account the definition of wkw_{k}, we get

(3.6) Ωu~0,wk𝑑x=Ω{u~0>Ck}u~0,vk𝑑x=Ω|wk(x)|2𝑑x.\int_{\Omega}\langle\nabla\widetilde{u}_{0},\nabla w_{k}\rangle\,dx=\int_{\Omega\cap\{\widetilde{u}_{0}>C_{k}\}}\langle\nabla\widetilde{u}_{0},\nabla v_{k}\rangle\,dx=\int_{\Omega}|\nabla w_{k}(x)|^{2}\,dx.

Gathering together (3.4), (3.5) and (3.6), we obtain

(3.7) Ω|wk(x)|2𝑑xλ(Ω)Ωu~0wk𝑑x.\int_{\Omega}|\nabla w_{k}(x)|^{2}\,dx\leq\lambda_{\mathcal{L}}(\Omega)\,\int_{\Omega}\widetilde{u}_{0}w_{k}\,dx.

We then claim that, for every k1k\geq 1, one has

(3.8) u~0<2kwk1on {wk>0}.\widetilde{u}_{0}<2^{k}w_{k-1}\quad\text{on $\{w_{k}>0\}$}.

Indeed, if x{wk>0}x\in\{w_{k}>0\}, we have u~0(x)>Ck>Ck1\widetilde{u}_{0}(x)>C_{k}>C_{k-1}; as a consequence,

2kwk1(x)\displaystyle 2^{k}w_{k-1}(x) (2k1)wk1(x)=(2k1)(u~0(x)Ck1)\displaystyle\geq(2^{k}-1)w_{k-1}(x)=(2^{k}-1)(\widetilde{u}_{0}(x)-C_{k-1})
=u~0(x)+(2k2)(u~0(x)Ck)>u~0(x),\displaystyle=\widetilde{u}_{0}(x)+(2^{k}-2)\big{(}\widetilde{u}_{0}(x)-C_{k}\big{)}>\widetilde{u}_{0}(x),

which is exactly the claimed (3.8). By combining (3.8) with (3.7), and taking into account that wkwk1w_{k}\leq w_{k-1} a.e. in n\mathbb{R}^{n}, for every k1k\geq 1 we get

(3.9) Ω|wk(x)|2𝑑xλ(Ω){wk>0}u~0wk𝑑x2kλ(Ω){wk>0}wk1wk𝑑x2kλ(Ω)Ωwk12𝑑x=2kλ(Ω)wk1L2(Ω)2=2kλ(Ω)Uk1.\begin{split}&\int_{\Omega}|\nabla w_{k}(x)|^{2}\,dx\leq\lambda_{\mathcal{L}}(\Omega)\,\int_{\{w_{k}>0\}}\widetilde{u}_{0}w_{k}\,dx\\[2.84544pt] &\qquad\leq 2^{k}\cdot\lambda_{\mathcal{L}}(\Omega)\,\int_{\{w_{k}>0\}}w_{k-1}w_{k}\,dx\\[2.84544pt] &\qquad\leq 2^{k}\cdot\lambda_{\mathcal{L}}(\Omega)\,\int_{\Omega}w_{k-1}^{2}\,dx=2^{k}\cdot\lambda_{\mathcal{L}}(\Omega)\,\|w_{k-1}\|^{2}_{L^{2}(\Omega)}\\[2.84544pt] &\qquad=2^{k}\cdot\lambda_{\mathcal{L}}(\Omega)\,U_{k-1}.\end{split}

We now turn to estimate from below the left-hand side of (3.9). To this end we first observe that, owing to the very definition of wkw_{k}, we have

{wk>0}={u~0>Ck}{wk1>2k} for all k1.\{w_{k}>0\}=\{\widetilde{u}_{0}>C_{k}\}\subseteq\{w_{k-1}>{2^{-k}}\}\qquad{\mbox{ for all }}k\geq 1.

As a consequence, we obtain

(3.10) Uk1=Ωwk12𝑑x{wk1>2k}wk12𝑑x22k|{wk1>2k}|22k|{wk>0}|.\begin{split}U_{k-1}&=\int_{\Omega}w_{k-1}^{2}\,dx\geq\int_{\{w_{k-1}>2^{-k}\}}w_{k-1}^{2}\,dx\\[4.26773pt] &\geq 2^{-2k}\,\big{|}\{w_{k-1}>2^{-k}\}\big{|}\geq 2^{-2k}\big{|}\{w_{k}>0\}|.\end{split}

Using the Hölder inequality (with exponents 2/22^{*}/2 and n/2n/2, being 2:=2nn22^{*}:=\frac{2n}{n-2} the Sobolev exponent), jointly with the Sobolev inequality, from (3.9)-(3.10) we obtain the following estimate for every k1k\geq 1

(3.11) Uk=wkL2(Ω)2(Ωwk2𝑑x)2/2|{wk>0}|2/n𝐜SΩ|wk|2𝑑x|{wk>0}|2/n𝐜S(2kλ(Ω)Uk1)(22kUk1)2/n=𝐜(21+4/n)k1Uk11+2/n,\begin{split}U_{k}&=\|w_{k}\|^{2}_{L^{2}(\Omega)}\leq\bigg{(}\int_{\Omega}w_{k}^{2^{*}}\,dx\bigg{)}^{2/{2^{*}}}\,\big{|}\{w_{k}>0\}\big{|}^{2/n}\\[2.84544pt] &\leq\mathbf{c}_{S}\,\int_{\Omega}|\nabla w_{k}|^{2}\,dx\cdot\big{|}\{w_{k}>0\}\big{|}^{2/n}\\[2.84544pt] &\leq\mathbf{c}_{S}\,\big{(}2^{k}\,\lambda_{\mathcal{L}}(\Omega)U_{k-1}\big{)}\,\big{(}2^{2k}U_{k-1}\big{)}^{2/n}\\[5.69046pt] &=\mathbf{c}^{\prime}\,\big{(}2^{1+4/n}\big{)}^{k-1}\,U_{k-1}^{1+2/n},\end{split}

where 𝐜S\mathbf{c}_{S} is the Sobolev constant and 𝐜:=21+4/n𝐜Sλ(Ω)\mathbf{c}^{\prime}:=2^{1+4/n}\,\mathbf{c}_{S}\,\lambda_{\mathcal{L}}(\Omega).

With estimate (3.11) at hand, we are finally ready to complete the proof. Indeed, since 2/n>02/n>0 and

η:=21+4/n>1,\eta:=2^{1+4/n}>1,

we deduce from [37, Lemma 7.1] that Uk0U_{k}\to 0 as kk\to\infty, provided that

U0=u~0L2(Ω)2=δ<(𝐜)n/2ηn2/4.U_{0}=\|\widetilde{u}_{0}\|^{2}_{L^{2}(\Omega)}=\delta<(\mathbf{c}^{\prime})^{-n/2}\,\eta^{-n^{2}/4}.

As a consequence, if δ>0\delta>0 is small enough, we obtain

0=limkUk=limkΩ(u~0Ck)+2𝑑x=Ω(u~01)+2𝑑x.0=\lim_{k\to\infty}U_{k}=\lim_{k\to\infty}\int_{\Omega}(\widetilde{u}_{0}-C_{k})_{+}^{2}\,dx=\int_{\Omega}(\widetilde{u}_{0}-1)_{+}^{2}\,dx.

Bearing in mind that u~0=δu0\widetilde{u}_{0}=\sqrt{\delta}\,u_{0} (and u00u_{0}\geq 0), we then get

0u01δa.e. in Ω,0\leq u_{0}\leq\frac{1}{\sqrt{\delta}}\qquad\text{a.e.\,in $\Omega$},

from which we conclude that u0L(Ω)u_{0}\in L^{\infty}(\Omega). ∎

Now, if Ω\partial\Omega is sufficiently regular, by combining Theorem 3.5 with Theorems 2.7-2.8 we obtain the next key result.

Theorem 3.6.

Let s(0,1)s\in(0,1) and α(0,1)\alpha\in(0,1) be such that

α+2s<1.\alpha+2s<1.

Let us suppose that Ω\partial\Omega is of class C2,αC^{2,\alpha}. Denoting by u0𝕏(Ω)u_{0}\in\mathbb{X}(\Omega) the principal eigenfunction of \mathcal{L} in Ω\Omega (according to Theorem 3.3), we have

u0Cb(n)C2,α(Ω¯).u_{0}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}).

Moreover, u0u_{0} is a classical solution of (3.2), that is,

(3.12) {u0=λ(Ω)u0pointwise in Ω,u00in nΩ.\begin{cases}\mathcal{L}u_{0}=\lambda_{\mathcal{L}}(\Omega)u_{0}&\text{pointwise in $\Omega$},\\ u_{0}\equiv 0&\text{in $\mathbb{R}^{n}\setminus\Omega$}.\end{cases}

Furthermore, u0u_{0} satisfies the following additional properties:

  1. (1)

    u0>0u_{0}>0 pointwise in Ω\Omega;

  2. (2)

    denoting by ν\nu the external unit normal to Ω\partial\Omega, we have

    (3.13) νu(ξ)<0 for all ξΩ.\partial_{\nu}u(\xi)<0\quad{\mbox{ for all }}\xi\in\partial\Omega.
Proof.

First of all we observe that, setting f:=λ(Ω)u0f:=\lambda_{\mathcal{L}}(\Omega)\,u_{0}, from Theorem 3.5 we infer that fL(Ω)f\in L^{\infty}(\Omega); as a consequence, since u0u_{0} is the (unique) weak solution of

(Df){u=fin Ω,u0in nΩ,(\mathrm{D}_{f})\qquad\quad\begin{cases}\mathcal{L}u=f&\text{in $\Omega$},\\ u\equiv 0&\text{in $\mathbb{R}^{n}\setminus\Omega$},\end{cases}

(and Ω\partial\Omega is of class C2,αC^{2,\alpha}), we deduce from Theorem 2.7 that

u0C1,β(Ω¯) for every β(0,1).\text{$u_{0}\in C^{1,\beta}(\overline{\Omega})$ for every $\beta\in(0,1)$}.

In particular, fCα(Ω¯)f\in C^{\alpha}(\overline{\Omega}). In view of this fact, and taking into account our assumptions on ss and on Ω\partial\Omega, we can apply Theorem 2.8 to u0u_{0}: therefore,

u0Cb(n)C2,α(Ω¯),u_{0}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}),

and u0u_{0} is a classical solution of (Df)(\mathrm{D}_{f}), that is, u0u_{0} satisfies (3.12). To complete the proof, we now turn to prove the validity of properties (1)-(2).

(1)  Since u0u_{0} satisfies (3.12) and u00u_{0}\geq 0 in Ω\Omega, we have

(3.14) u0=λ(Ω)u00 pointwise in Ω and u00 on nΩ;\text{$\mathcal{L}u_{0}=\lambda_{\mathcal{L}}(\Omega)u_{0}\geq 0$ pointwise in $\Omega$ and $u_{0}\equiv 0$ on $\mathbb{R}^{n}\setminus\Omega$};

hence, we can invoke the Strong Maximum Principle for \mathcal{L} in [7, Theorem 1.4], ensuring that either u00u_{0}\equiv 0 in n\mathbb{R}^{n} or u0>0u_{0}>0 in Ω\Omega. On the other hand, since u00u_{0}\not\equiv 0, we conclude that u0>0u_{0}>0 in Ω\Omega, as desired.

(2)  Since u0>0u_{0}>0 in Ω\Omega and u00u_{0}\equiv 0 on Ω\partial\Omega, by (3.14) we derive that

  • (a)

    u00\mathcal{L}u_{0}\geq 0 pointwise in Ω\Omega;

  • (b)

    u0(ξ)=minΩu0=0u_{0}(\xi)=\min_{\partial\Omega}u_{0}=0 for every ξΩ\xi\in\partial\Omega.

As a consequence, taking into account that u0C1(Ω¯)u_{0}\in C^{1}(\overline{\Omega}) and Ω\partial\Omega is of class C2,αC^{2,\alpha}, we are entitled to apply the Hopf-type Theorem 2.9, obtaining that

νu0(ξ)<0 for all ξΩ.\partial_{\nu}u_{0}(\xi)<0\qquad{\mbox{ for all }}\xi\in\partial\Omega.

This is precisely the desired (3.13), and the proof is complete. ∎

We want to stress that one can get almost everywhere positivity of u0u_{0} by means of the strong maximum principle for weak solutions proved in [14, 9].

Finally, by exploiting Theorem 3.6, we can prove Lemma 3.7 below. We stress that in the purely local regime, the following lemma has been proved in [57] without any restriction on δ\delta. On the contrary, the same property is not known to hold in the purely fractional case. As a matter of fact, convexity and superharmonicity properties for fractional eigenfunctions can reserve surprisingly severe difficulties, see e.g. [43].

Lemma 3.7.

Let s(0,1/2)s\in(0,1/2) and let us suppose that Ω\Omega is uniformly convex, and that Ω\partial\Omega is of class C3C^{3}. Then, denoting by u0u_{0} the principal eigenfunction of \mathcal{L} in Ω\Omega, there exists δ0>0\delta_{0}>0 such that, for every fixed δ(0,δ0)\delta\in(0,\delta_{0}), the set

Ωδ:={xΩ:u0(x)>δ}is convex.\Omega_{\delta}:=\big{\{}x\in\Omega:\,u_{0}(x)>\delta\big{\}}\quad\text{is convex}.

Moreover, Ωδ\partial\Omega_{\delta} is of class C1C^{1}.

Proof.

We split the proof into three steps.

Step I. In this first step we prove that, if δ>0\delta>0 is sufficiently small, the superlevel set Ωδ\Omega_{\delta} can be realized as a suitable “deformation” of Ω\Omega. To this end we first notice that, owing to the assumptions on Ω\Omega, Theorem 3.6 ensures that

  • (a)

    u0Cb(n)C2,α(Ω¯)u_{0}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}), for every α(0,1)\alpha\in(0,1) such that α+2s<1\alpha+2s<1, and u0u_{0} is a classical solution of (3.2);

  • (b)

    u0>0u_{0}>0 pointwise in Ω\Omega;

  • (c)

    νu0(ξ)<0\partial_{\nu}u_{0}(\xi)<0 for every ξΩ\xi\in\partial\Omega.

Moreover, since u00u_{0}\equiv 0 on Ω\partial\Omega, we have

either u0=|u0|ν or u0=|u0|ν pointwise in Ω.\text{either $\nabla u_{0}=|\nabla u_{0}|\nu$ or $\nabla u_{0}=-|\nabla u_{0}|\nu$ pointwise in $\partial\Omega$}.

Now, since property (c) implies that u0,ν<0\langle\nabla u_{0},\nu\rangle<0 on Ω\partial\Omega, we get

(3.15) u0(ξ)=|u0(ξ)|ν(ξ) for all ξΩ;\nabla u_{0}(\xi)=-|\nabla u_{0}(\xi)|\nu(\xi)\qquad{\mbox{ for all }}\xi\in\partial\Omega;

as a consequence, since u0C2,α(Ω¯)u_{0}\in C^{2,\alpha}(\overline{\Omega}), again by property (c) we have

(3.16) 0>a:=maxΩνuu0(ξ),ν(ξ)|u0(ξ)| for all ξΩ.0>-a:=\max_{\partial\Omega}\partial_{\nu}u\geq\langle\nabla u_{0}(\xi),\nu(\xi)\geq-|\nabla u_{0}(\xi)|\quad{\mbox{ for all }}\xi\in\partial\Omega.

Hence, it is possible to find some d0>0d_{0}>0 such that

(3.17) |u0|a2on Ω0:={xΩ:d(x,Ω)<d0}.|\nabla u_{0}|\geq\frac{a}{2}\quad\text{on $\Omega_{0}:=\big{\{}x\in\Omega:\,d(x,\partial\Omega)<d_{0}\big{\}}$}.

Furthermore, bearing in mind that Ω\partial\Omega is of class C3C^{3}, by possibly shrinking d0d_{0} we can also suppose that (see, e.g., [36, Section 14.6])

  • (i)

    d():=d(,Ω)d(\cdot):=d(\cdot,\partial\Omega) is of class C3C^{3} on Ω0\Omega_{0};

  • (ii)

    for every xΩ0x\in\Omega_{0} there exists a unique ξΩ\xi\in\partial\Omega such that

    xξ=d(x)ν(ξ).x-\xi=-d(x)\,\nu(\xi).

For a fixed ξΩ\xi\in\partial\Omega, we then consider the function

F(t):=u0(ξtν(ξ)) for 0t<d0.F(t):=u_{0}\big{(}\xi-t\nu(\xi)\big{)}\qquad{\mbox{ for }}0\leq t<d_{0}.

Since u0u_{0} is of class C2,αC^{2,\alpha} on Ω¯\overline{\Omega}, by (3.15)-(3.16) we have

F(t)\displaystyle F^{\prime}(t) =u0(ξtν(ξ)),ν(ξ)\displaystyle=-\langle\nabla u_{0}\big{(}\xi-t\nu(\xi)\big{)},\nu(\xi)\rangle
=u0(ξ),ν(ξ)[u0(ξtν(ξ))u0(ξ),ν(ξ)]\displaystyle=-\langle\nabla u_{0}(\xi),\nu(\xi)\rangle-\big{[}\langle\nabla u_{0}\big{(}\xi-t\nu(\xi)\big{)}-\nabla u_{0}(\xi),\nu(\xi)\rangle\big{]}
=|u0(ξ)|tuC2(Ω¯)atuC2(Ω¯);\displaystyle=|\nabla u_{0}(\xi)|-t\|u\|_{C^{2}(\overline{\Omega})}\geq a-t\|u\|_{C^{2}(\overline{\Omega})};

as a consequence, again by shrinking d0d_{0} if necessary, we obtain

(3.18) F(t)a2 for all 0t<d0.F^{\prime}(t)\geq\frac{a}{2}\qquad{\mbox{ for all }}0\leq t<d_{0}.

In particular, FF is strictly increasing on [0,d0)[0,d_{0}), and

(3.19) F(t)=F(t)F(0)ta2 for all 0t<d0.F(t)=F(t)-F(0)\geq\frac{ta}{2}\qquad{\mbox{ for all }}0\leq t<d_{0}.

To proceed further, we consider the set 𝒪:={xΩ:d(x,Ω)>d0/2}Ω\mathcal{O}:=\big{\{}x\in\Omega:\,d(x,\partial\Omega)>d_{0}/2\big{\}}\subseteq\Omega and we notice that, since u0>0u_{0}>0 in Ω\Omega, we have

(3.20) c0:=inf𝒪u0>0.c_{0}:=\inf_{\mathcal{O}}u_{0}>0.

Hence, we define

(3.21) δ0:=12min{c0,ad04}>0.\delta_{0}:=\frac{1}{2}\,\min\Big{\{}c_{0},\frac{ad_{0}}{4}\Big{\}}>0.

Taking into account (3.19), it is immediate to see that, for every δ[0,δ0)\delta\in[0,\delta_{0}), there exists a unique point t=t(ξ,δ)[0,d0)t=t(\xi,\delta)\in[0,d_{0}) such that

F(t(ξ,δ))=u0(ξt(ξ,δ)ν(ξ))=δ;F\big{(}t(\xi,\delta)\big{)}=u_{0}\big{(}\xi-t(\xi,\delta)\nu(\xi)\big{)}=\delta;

then, we set

𝒱δ:={ξtν(ξ):ξΩ, 0tt(ξ,δ)},Oδ:=Ω𝒱δ,\mathcal{V}_{\delta}:=\big{\{}\xi-t\nu(\xi):\,\xi\in\partial\Omega,\,0\leq t\leq t(\xi,\delta)\big{\}},\quad O_{\delta}:=\Omega\setminus\mathcal{V}_{\delta},

see Figure 1.

Refer to caption
Figure 1. The construction of OδO_{\delta}

Before proceeding we highlight, for future reference, the following fact: since F(0)=0F(0)=0 and FF is strictly increasing on [0,d0)[0,d_{0}), we have

(3.22) t(ξ,0)=0for every ξΩ.t(\xi,0)=0\quad\text{for every $\xi\in\partial\Omega$}.

We now turn to prove that, if 0<δ<δ00<\delta<\delta_{0}, one has

(3.23) Oδ=Ωδ={xΩ:u0(x)>δ}.O_{\delta}=\Omega_{\delta}=\big{\{}x\in\Omega:\,u_{0}(x)>\delta\big{\}}.

To this end we first observe that, by the very definition of t(ξ,δ)t(\xi,\delta), we have u0δu_{0}\equiv\delta on Oδ\partial O_{\delta}; moreover, since FF is strictly increasing on (0,d0)(0,d_{0}), one also has

u0(ξtν(ξ))=F(t)F(t(ξ,δ))=δ for all 0tt(ξ,δ),u_{0}\big{(}\xi-t\nu(\xi)\big{)}=F(t)\leq F\big{(}t(\xi,\delta)\big{)}=\delta\qquad{\mbox{ for all }}0\leq t\leq t(\xi,\delta),

and thus u0δu_{0}\leq\delta out of OδO_{\delta}. Finally, we show that

u(x)>δfor every xOδ.u(x)>\delta\quad\text{for every $x\in O_{\delta}$}.

Let then xOδx\in O_{\delta} be fixed. If x𝒪0x\in\mathcal{O}_{0}, by (3.20)-(3.21) we have

u0(x)c0>δ0>δ.u_{0}(x)\geq c_{0}>\delta_{0}>\delta.

If, instead, x𝒪0x\notin\mathcal{O}_{0}, one has d(x)=d(x,Ω)d0/2d(x)=d(x,\partial\Omega)\leq d_{0}/2, and thus xΩ0x\in\Omega_{0}. By property (ii) of Ω0\Omega_{0}, we know that there exists a unique ξΩ\xi\in\partial\Omega such that

x=ξd(x)ν(ξ);x=\xi-d(x)\nu(\xi);

on the other hand, since xOδ=Ω𝒱δx\in O_{\delta}=\Omega\setminus\mathcal{V}_{\delta}, we necessarily have

d0>d(x)>t(ξ,δ).d_{0}>d(x)>t(\xi,\delta).

This, together with the strict monotonicity of FF on (0,d0)(0,d_{0}), implies that

u0(x)=u0(ξd(x)ν(ξ))=F(d(x))>F(t(ξ,δ))=δ,u_{0}(x)=u_{0}\big{(}\xi-d(x)\nu(\xi)\big{)}=F(d(x))>F(t(\xi,\delta))=\delta,

and completes the proof of (3.23).

Step II. We now turn to prove that, if δ0>0\delta_{0}>0 is as in Step I and δ(0,δ0)\delta\in(0,\delta_{0}), the boundary of Ωδ\partial\Omega_{\delta} is of class C1C^{1}. To this end we observe that, by crucially exploiting identity (3.23) and the very definition of OδO_{\delta}, one has

(3.24) Ωδ=Oδ={ξt(ξ,δ)ν(ξ):ξΩ}{xΩ:d(x)<d0}.\partial\Omega_{\delta}=\partial O_{\delta}=\big{\{}\xi-t(\xi,\delta)\nu(\xi):\,\xi\in\partial\Omega\big{\}}\subseteq\{x\in\Omega:\,d(x)<d_{0}\}.

This, together with (3.17), shows that

|u0|0 on Ωδ,\text{$|\nabla u_{0}|\neq 0$ on $\partial\Omega_{\delta}$},

and thus Ωδ\partial\Omega_{\delta} is of class C1C^{1} (actually, it is of class C2,αC^{2,\alpha}).

Step III. In this last step we prove that, if δ(0,δ0)\delta\in(0,\delta_{0}) (where δ0\delta_{0} is as in Step I), the set Ωδ\Omega_{\delta} is convex. As in Step II, we use in crucial way identity (3.23).

To begin with, we consider a covering of Ω\partial\Omega of finitely many small open balls

{B(i)}i{1,,N}\{B^{(i)}\}_{i\in\{1,\dots,N\}}

such that for every i{1,,N}{i\in\{1,\dots,N\}} we can write 2B(i)Ω2B^{(i)}\cap\partial\Omega as a graph in some coordinate direction (where 2B(i)2B^{(i)} is the concentric ball of B(i)B^{(i)} with twice the radius of B(i)B^{(i)}). For δ>0\delta>0 sufficiently small, we can suppose that

ΩδB(1)B(N).\partial\Omega_{\delta}\subset B^{(1)}\cup\cdots\cup B^{(N)}.

In this setting, it suffices to check that B(i)ΩδB^{(i)}\cap\partial\Omega_{\delta} can locally be written as a graph of a convex function for all i{1,,N}{i\in\{1,\dots,N\}}. Without loss of generality, we argue for i=1i=1 and assume that

2B(1)Ω={xn=γ(x)}2B^{(1)}\cap\partial\Omega=\{x_{n}=\gamma(x^{\prime})\}

for some γC2(n1)\gamma\in C^{2}(\mathbb{R}^{n-1}) satisfying

(3.25) D2γa0Id(for some a0>0).D^{2}\gamma\geq a_{0}\,{\rm Id}\qquad(\text{for some $a_{0}>0$}).

Thus, by (3.24), in this chart Ωδ\partial\Omega_{\delta} can be locally parameterized by

(3.26) (x,γ(x))t(x,γ(x),δ)ν(x,γ(x))=(xt(x,γ(x),δ)ν(x,γ(x)),γ(x)t(x,γ(x),δ)νn(x,γ(x))),\begin{split}&(x^{\prime},\gamma(x^{\prime}))-t(x^{\prime},\gamma(x^{\prime}),\delta)\nu(x^{\prime},\gamma(x^{\prime}))\\ =\,&\Big{(}x^{\prime}-t(x^{\prime},\gamma(x^{\prime}),\delta)\nu^{\prime}(x^{\prime},\gamma(x^{\prime})),\,\gamma(x^{\prime})-t(x^{\prime},\gamma(x^{\prime}),\delta)\nu_{n}(x^{\prime},\gamma(x^{\prime}))\Big{)},\end{split}

where we used the notation ν=(ν,νn)n1×\nu=(\nu^{\prime},\nu_{n})\in\mathbb{R}^{n-1}\times\mathbb{R} and xx^{\prime} belongs to a domain of n1\mathbb{R}^{n-1}. We now introduce the function

(x,t)G(x,δ,t):=u((x,γ(x))tν(x,γ(x)))δ.(x^{\prime},t)\longmapsto G(x^{\prime},\delta,t):=u\big{(}(x^{\prime},\gamma(x^{\prime}))-t\nu(x^{\prime},\gamma(x^{\prime}))\big{)}-\delta.

Let also g(x,δ):=t(x,γ(x),δ)g(x^{\prime},\delta):=t(x^{\prime},\gamma(x^{\prime}),\delta). We notice that, as in (3.18), for |t||t| small enough,

tG(x,δ,t)=u((x,γ(x))tν(x,γ(x)))ν(x,γ(x))a2.\partial_{t}G(x^{\prime},\delta,t)=-\nabla u\big{(}(x^{\prime},\gamma(x^{\prime}))-t\nu(x^{\prime},\gamma(x^{\prime}))\big{)}\cdot\nu(x^{\prime},\gamma(x^{\prime}))\geq\frac{a}{2}.

Also GG is locally a C2C^{2} function and G(x,δ,g(x,δ))=0G\big{(}x^{\prime},\delta,g(x^{\prime},\delta)\big{)}=0. As a consequence, we find that gg is locally a C2C^{2} function. We also observe that, by (3.26), the set Ωδ\partial\Omega_{\delta} can be locally parameterized by

(3.27) (xg(x,δ)ν(x,γ(x)),γ(x)g(x,δ)νn(x,γ(x))).\Big{(}x^{\prime}-g(x^{\prime},\delta)\nu^{\prime}(x^{\prime},\gamma(x^{\prime})),\,\gamma(x^{\prime})-g(x^{\prime},\delta)\nu_{n}(x^{\prime},\gamma(x^{\prime}))\Big{)}.

Now we set

H(x,δ):=(xg(x,δ)ν(x,γ(x)),δ).H(x^{\prime},\delta):=\Big{(}x^{\prime}-g(x^{\prime},\delta)\nu^{\prime}(x^{\prime},\gamma(x^{\prime})),\,\delta\Big{)}.

Observe that HH is locally a C2C^{2} function. Moreover, by (3.22) we have

(3.28) g(x,0)=t(x,γ(x),0)=0g(x^{\prime},0)=t(x^{\prime},\gamma(x^{\prime}),0)=0

and, up to a rotation, we can focus our analysis at a point x0x_{0}^{\prime} for which

(3.29) ν(x0,γ(x0))=en.\nu(x_{0}^{\prime},\gamma(x^{\prime}_{0}))=-e_{n}.

Therefore

(3.30) the Jacobian matrix of HH at (x0,0)(x^{\prime}_{0},0) is the identity

and we can exploit the Inverse Function Theorem, denote by II the inverse function of HH in the vicinity of (x0,0)(x^{\prime}_{0},0) and have that II is also a C2C^{2} function. Using the notation H=(H,Hn)H=(H^{\prime},H_{n}) and I=(I,In)I=(I^{\prime},I_{n}), we have that H(I(y,ε))=(y,ε)H(I(y^{\prime},\varepsilon))=(y^{\prime},\varepsilon) and thus

In(y,ε)=Hn(I(y,ε))=ε.I_{n}(y^{\prime},\varepsilon)=H_{n}(I(y^{\prime},\varepsilon))=\varepsilon.

Additionally,

xg(x,δ)ν(x,γ(x))=H(I(y,ε))=yx^{\prime}-g(x^{\prime},\delta)\nu^{\prime}(x^{\prime},\gamma(x^{\prime}))=H^{\prime}(I(y^{\prime},\varepsilon))=y^{\prime}

and

I(y,δ)=I(xg(x,δ)ν(x,γ(x)),δ)=I(H(x,δ))=x.I^{\prime}(y^{\prime},\delta)=I^{\prime}\big{(}x^{\prime}-g(x^{\prime},\delta)\nu^{\prime}(x^{\prime},\gamma(x^{\prime})),\delta\big{)}=I^{\prime}(H(x^{\prime},\delta))=x^{\prime}.

Accordingly, recalling (3.27), we can locally parameterize Ωδ\partial\Omega_{\delta} as

(y,γ(I(y,δ))g(I(y,δ),δ)νn(I(y,δ),γ(I(y,δ))))=(y,γ(I(y,δ))η(y,δ)),\begin{split}&\Big{(}y^{\prime},\,\gamma(I^{\prime}(y^{\prime},\delta))-g(I^{\prime}(y^{\prime},\delta),\delta)\,\nu_{n}(I^{\prime}(y^{\prime},\delta),\gamma(I^{\prime}(y^{\prime},\delta)))\Big{)}\\ =\,&\Big{(}y^{\prime},\,\gamma(I^{\prime}(y^{\prime},\delta))-\eta(y^{\prime},\delta)\Big{)},\end{split}

with

η(y,δ):=g(I(y,δ),δ)νn(I(y,δ),γ(I(y,δ))).\eta(y^{\prime},\delta):=g(I^{\prime}(y^{\prime},\delta),\delta)\;\nu_{n}(I^{\prime}(y^{\prime},\delta),\gamma(I^{\prime}(y^{\prime},\delta))).

For this reason, to complete the proof of the convexity property of Ωδ\partial\Omega_{\delta}, it suffices to check the convexity of the function

(3.31) yΓ(y,δ):=γ(I(y,δ))η(y,δ)y^{\prime}\longmapsto\Gamma(y^{\prime},\delta):=\gamma(I^{\prime}(y^{\prime},\delta))-\eta(y^{\prime},\delta)

that describes its graph. To this end, we remark that, for each ii, j{1,,n1}j\in\{1,\dots,n-1\},

δij=yiyj=yiHj(I(y,ε),ε)==1n1Hjx(I(x,ε),ε)Iyi(y,ε)\displaystyle\delta_{ij}=\frac{\partial}{\partial y_{i}^{\prime}}y^{\prime}_{j}=\frac{\partial}{\partial y_{i}^{\prime}}H_{j}(I^{\prime}(y^{\prime},\varepsilon),\varepsilon)=\sum_{\ell=1}^{n-1}\frac{\partial H_{j}}{\partial x_{\ell}^{\prime}}(I^{\prime}(x^{\prime},\varepsilon),\varepsilon)\,\frac{\partial I_{\ell}}{\partial y_{i}^{\prime}}(y^{\prime},\varepsilon)

that is

Id=Hx(I(y,ε),ε)Iy(y,ε).{\rm Id}=\frac{\partial H^{\prime}}{\partial x^{\prime}}(I^{\prime}(y^{\prime},\varepsilon),\varepsilon)\,\frac{\partial I^{\prime}}{\partial y^{\prime}}(y^{\prime},\varepsilon).

Setting y0:=H(x0,0)y^{\prime}_{0}:=H^{\prime}(x^{\prime}_{0},0), we thus deduce from (3.30) that

Iy(y0,0)=Id.\frac{\partial I^{\prime}}{\partial y^{\prime}}(y^{\prime}_{0},0)={\rm Id}.

Also, by (3.29), we have that the gradient of γ\gamma at x0x^{\prime}_{0} vanishes. With these items of information, we find that

yiγ(I(y,δ))==1n1γx(I(y,δ))Iyi(y,δ)\displaystyle\frac{\partial}{\partial y_{i}^{\prime}}\gamma(I^{\prime}(y^{\prime},\delta))=\sum_{\ell=1}^{n-1}\frac{\partial\gamma}{\partial x_{\ell}^{\prime}}(I^{\prime}(y^{\prime},\delta))\,\frac{\partial I_{\ell}}{\partial y_{i}^{\prime}}(y^{\prime},\delta)

and

2yiyjγ(I(y,δ))|(y,δ)=(y0,0)=,m=1n12γxxm(I(y0,0))Iyi(y0,0)Imyj(y0,0)=2γyiyj(I(y0,0)).\begin{split}\frac{\partial^{2}}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}\gamma(I^{\prime}(y^{\prime},\delta))\Big{|}_{(y^{\prime},\delta)=(y^{\prime}_{0},0)}\,&=\,\sum_{\ell,m=1}^{n-1}\frac{\partial^{2}\gamma}{\partial x_{\ell}^{\prime}\partial x^{\prime}_{m}}(I^{\prime}(y^{\prime}_{0},0))\,\frac{\partial I_{\ell}}{\partial y_{i}^{\prime}}(y^{\prime}_{0},0)\frac{\partial I_{m}}{\partial y_{j}^{\prime}}(y^{\prime}_{0},0)\\ &=\,\frac{\partial^{2}\gamma}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}(I^{\prime}(y^{\prime}_{0},0)).\end{split}

Besides, owing to (3.28), we have

η(y,0)=g(I(y,0),0)νn(I(y,0),γ(I(y,0)))=0\eta(y^{\prime},0)=g(I^{\prime}(y^{\prime},0),0)\;\nu_{n}(I^{\prime}(y^{\prime},0),\gamma(I^{\prime}(y^{\prime},0)))=0

and therefore

2ηyiyj(y,0)=0.\frac{\partial^{2}\eta}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}(y^{\prime},0)=0.

As a result, recalling the definition of Γ\Gamma in (3.31),

2Γyiyj(y0,0)=2yiyjγ(I(y,δ))|(y,δ)=(y0,0)=2γyiyj(I(y0,0)).\frac{\partial^{2}\Gamma}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}(y^{\prime}_{0},0)=\frac{\partial^{2}}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}\gamma(I^{\prime}(y^{\prime},\delta))\Big{|}_{(y^{\prime},\delta)=(y^{\prime}_{0},0)}=\frac{\partial^{2}\gamma}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}(I^{\prime}(y^{\prime}_{0},0)).

By the uniform convexity of the domain Ω\Omega in (3.25), we obtain that

2Γyiyj(y0,0)a0Id.\frac{\partial^{2}\Gamma}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}(y^{\prime}_{0},0)\geq a_{0}\,{\rm Id}.

This, together with the fact that Γ\Gamma is a C2C^{2} function in (y,δ)(y^{\prime},\delta), gives

2Γyiyja02Id\frac{\partial^{2}\Gamma}{\partial y_{i}^{\prime}\partial y_{j}^{\prime}}\geq\frac{a_{0}}{2}\,{\rm Id}

in a neighborhood of (y0,0)(y^{\prime}_{0},0), and proves that Ωδ\Omega_{\delta} is uniformly convex, as desired. ∎

4. A Faber-Krahn inequality and proofs of Theorems 1.1 and 1.2

This section is devoted to show a quantitative Faber-Krahn inequality for λ(Ω)\lambda_{\mathcal{L}}(\Omega) and in particular to prove Theorems 1.1 and 1.2. In what follows, λ(Ω)\lambda_{\mathcal{L}}(\Omega) denotes the principal Dirichlet eigenvalue of \mathcal{L} (in Ω\Omega), as given by Definition 3.1, and u0u_{0} the corresponding principal eigenfunction (according to Theorem 3.3).

We begin by proving Theorem 1.1.

Proof of Theorem 1.1.

Let B^(m)\widehat{B}^{(m)} be the (unique) Euclidean ball with centre 0 and volume mm. If u0𝕏(Ω){0}u_{0}\in\mathbb{X}(\Omega)\setminus\{0\} is the principal eigenfunction of \mathcal{L} in Ω\Omega, we define

u0:nu_{0}^{\ast}:\mathbb{R}^{n}\to\mathbb{R}

as the (decreasing) Schwarz symmetrization of u0u_{0}. Now, since u0𝕏(Ω)u_{0}\in\mathbb{X}(\Omega), it follows from a well-known theorem by Polya-Szegö that

(4.1) u0𝕏(B^(m))andB^(m)|u0|2𝑑xΩ|u|2𝑑x;u_{0}^{\ast}\in\mathbb{X}(\widehat{B}^{(m)})\qquad\text{and}\qquad\int_{\widehat{B}^{(m)}}|\nabla u_{0}^{\ast}|^{2}\,dx\leq\int_{\Omega}|\nabla u|^{2}\,dx;

furthermore, by [34, Theorem A.1] we also have

(4.2) 2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y.\iint_{\mathbb{R}^{2n}}\frac{|u_{0}^{\ast}(x)-u_{0}^{\ast}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy\leq\iint_{\mathbb{R}^{2n}}\frac{|u_{0}(x)-u_{0}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy.

Gathering together all these facts and recalling (1) in Theorem 3.3, we then get

(4.3) λ(Ω)=𝒟Ω,s(u0)=Ω|u0|2𝑑x+2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑yB^(m)|u0|2𝑑x+2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y=𝒟B^(m),s(u0)λ(B^(m)).\begin{split}\lambda_{\mathcal{L}}(\Omega)&=\mathcal{D}_{\Omega,s}(u_{0})=\int_{\Omega}|\nabla u_{0}|^{2}\,dx+\iint_{\mathbb{R}^{2n}}\frac{|u_{0}(x)-u_{0}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy\\ &\geq\int_{\widehat{B}^{(m)}}|\nabla u_{0}^{\ast}|^{2}\,dx+\iint_{\mathbb{R}^{2n}}\frac{|u_{0}^{\ast}(x)-u_{0}^{\ast}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy\\ &=\mathcal{D}_{\widehat{B}^{(m)},s}\big{(}u_{0}^{\ast}\big{)}\geq\lambda_{\mathcal{L}}(\widehat{B}^{(m)}).\end{split}

From this, reminding that λ()\lambda_{\mathcal{L}}(\cdot) is translation-invariant (see Remark 3.2-(1)), we derive the validity of (1.1) for every Euclidean ball B(m)B^{(m)} with volume mm.

To complete the proof of Theorem 1.1, let us suppose that

λ(Ω)=λ(B(m))\lambda_{\mathcal{L}}(\Omega)=\lambda_{\mathcal{L}}(B^{(m)})

for some (and hence, for every) ball B(m)B^{(m)} with |B(m)|=m|B^{(m)}|=m. By (4.3) we have

Ω|u0|2𝑑x+2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y=λ(Ω)\displaystyle\int_{\Omega}|\nabla u_{0}|^{2}\,dx+\iint_{\mathbb{R}^{2n}}\frac{|u_{0}(x)-u_{0}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy=\lambda_{\mathcal{L}}(\Omega)
=λ(B^(m))=B^(m)|(u0)|2dx+2n|u0(x)u0(y)|2|xy|n+2sdxdy.\displaystyle\qquad=\lambda_{\mathcal{L}}(\widehat{B}^{(m)})=\int_{\widehat{B}^{(m)}}|\nabla(u_{0})^{\ast}|^{2}\,dx+\iint_{\mathbb{R}^{2n}}\frac{|u_{0}^{\ast}(x)-u_{0}^{\ast}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy.

In particular, by (4.1)-(4.2) we get

2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y=2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y.\iint_{\mathbb{R}^{2n}}\frac{|u_{0}(x)-u_{0}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy=\iint_{\mathbb{R}^{2n}}\frac{|u_{0}^{\ast}(x)-u_{0}^{\ast}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy.

We are then entitled to apply once again [34, Theorem A.1], which ensures that u0u_{0} must be proportional to a translate of a symmetric decreasing function. As a consequence of this fact, we immediately deduce that

Ω={xn:u0(x)>0}\Omega=\{x\in\mathbb{R}^{n}:\,u_{0}(x)>0\}

must be a ball (up to a set of zero Lebesgue measure). ∎

Now that we have established Theorem 1.1, we can finally prove the main result of this paper, namely, the quantitative version of inequality (1.1) presented in Theorem 1.2.

The proof of Theorem 1.2 is based on the following technical lemma.

Lemma 4.1.

Let s(0,1/2)s\in(0,1/2). Let Ωn\Omega\subset\mathbb{R}^{n} be bounded open set with boundary Ω\partial\Omega of class C3C^{3}. Let m:=|Ω|m:=|\Omega|, and let B(m)B^{(m)} be any Euclidean ball with volume mm. Moreover, let u0u_{0} be the principal eigenfunction of \mathcal{L} in Ω\Omega, let δ0>0\delta_{0}>0 be as in Lemma 3.7, and let

(4.4) 0<δ<min{12m1/2,δ0}.0<\delta<\min\big{\{}\tfrac{1}{2}\,m^{-1/2},\delta_{0}\big{\}}.

Let also Ωδ:={xΩ:u0(x)>δ}\Omega_{\delta}:=\{x\in\Omega\,:\,u_{0}(x)>\delta\}.

Then, there exists a small ε~>0\widetilde{\varepsilon}>0, only depending on nn and ss, with the following property: if 0<ε<ε~0<\varepsilon<\widetilde{\varepsilon} is such that

(4.5) λ(Ω)(1+ε)λ(B(m)),\lambda_{\mathcal{L}}(\Omega)\leq(1+\varepsilon)\lambda_{\mathcal{L}}(B^{(m)}),

then we have the estimate

|Ωδ|[12nsmax{δ|Ω|1/2,ε}]|Ω|.|\Omega_{\delta}|\geq\left[1-\frac{2n}{s}\cdot\max\{\delta|\Omega|^{1/2},\varepsilon\}\right]\cdot|\Omega|.
Proof.

First of all we observe that, since Ω\partial\Omega is of class C3C^{3}, from Theorem 3.6 we derive that the principal eigenfunction u0u_{0} of \mathcal{L} in Ω\Omega satisfies

u0Cb(n)C2(Ω¯)u_{0}\in C_{b}(\mathbb{R}^{n})\cap C^{2}(\overline{\Omega})

(actually, u0C2,α(Ω¯)u_{0}\in C^{2,\alpha}(\overline{\Omega}) if α+2s<1\alpha+2s<1); moreover, since δ<δ0\delta<\delta_{0}, by Lemma 3.7 we know that Ωδ\partial\Omega_{\delta} is of class C1C^{1}. We then consider the function

v:=(u0δ)+.v:=(u_{0}-\delta)_{+}.

Since u0𝕏(Ω)u_{0}\in\mathbb{X}(\Omega) and u0δu_{0}\leq\delta on nΩδ\mathbb{R}^{n}\setminus\Omega_{\delta}, it is readily seen that v𝕏(Ωδ)𝕏(Ω)v\in\mathbb{X}(\Omega_{\delta})\subseteq\mathbb{X}(\Omega); as a consequence, since u0u_{0} is a weak solution of (3.2), we have

𝒟Ωδ,s(v)\displaystyle\mathcal{D}_{\Omega_{\delta},s}(v) =Ωδ|v|2𝑑x+2n|v(x)v(y)|2|xy|n+2s𝑑x𝑑y\displaystyle=\int_{\Omega_{\delta}}|\nabla v|^{2}\,dx+\iint_{\mathbb{R}^{2n}}\frac{|v(x)-v(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy
=Ωu0,v𝑑x+2n(u0(x)u0(y))(v(x)v(y))|xy|n+2s𝑑x𝑑y\displaystyle=\int_{\Omega}\langle\nabla u_{0},\nabla v\rangle\,dx+\iint_{\mathbb{R}^{2n}}\frac{(u_{0}(x)-u_{0}(y))(v(x)-v(y))}{|x-y|^{n+2s}}\,dx\,dy
=λ(Ω)Ωu0v𝑑x\displaystyle=\lambda_{\mathcal{L}}(\Omega)\int_{\Omega}u_{0}\,v\,dx
=λ(Ω)Ωδ(u0δ)u0𝑑x\displaystyle=\lambda_{\mathcal{L}}(\Omega)\int_{\Omega_{\delta}}(u_{0}-\delta)\,u_{0}\,dx
λ(Ω)(Ωδ(u0δ)2𝑑x)1/2\displaystyle\leq\lambda_{\mathcal{L}}(\Omega)\bigg{(}\int_{\Omega_{\delta}}(u_{0}-\delta)^{2}\,dx\bigg{)}^{1/2}
=λ(Ω)vL2(Ωδ)\displaystyle=\lambda_{\mathcal{L}}(\Omega)\,\|v\|_{L^{2}(\Omega_{\delta})}

where we have used Hölder’s inequality and the fact that u0L2(Ω)=1\|u_{0}\|_{L^{2}(\Omega)}=1.

On the other hand, since u0δu_{0}\leq\delta in ΩΩδ\Omega\setminus\Omega_{\delta} and δ|Ω|1/2<1/2\delta|\Omega|^{1/2}<1/2 (by the choice of δ\delta and the definition of Ωδ\Omega_{\delta}), an application of Minkowski’s inequality gives

vL2(Ωδ)\displaystyle\|v\|_{L^{2}(\Omega_{\delta})} =(Ωδ(u0δ)2𝑑x)1/2(Ωδu02𝑑x)1/2(Ωδδ2𝑑x)1/2\displaystyle=\bigg{(}\int_{\Omega_{\delta}}(u_{0}-\delta)^{2}\,dx\bigg{)}^{1/2}\geq\bigg{(}\int_{\Omega_{\delta}}u_{0}^{2}\,dx\bigg{)}^{1/2}-\bigg{(}\int_{\Omega_{\delta}}\delta^{2}\,dx\bigg{)}^{1/2}
(1ΩΩδδ2)1/2δ|Ω|1/212δ|Ω|1/2.\displaystyle\geq\bigg{(}1-\int_{\Omega\setminus\Omega_{\delta}}\delta^{2}\bigg{)}^{1/2}-\delta|\Omega|^{1/2}\geq 1-2\delta|\Omega|^{1/2}.

Gathering together all these estimates, and reminding (4.5), we obtain

(4.6) λ(Ωδ)𝒟Ωδ,s(v)vL2(Ωδ)2λ(Ω)vL2(Ωδ)λ(Ω)(12δ|Ω|1/2)1(1+ε)λ(B(m))(12δ|Ω|1/2)1.\begin{split}&\lambda_{\mathcal{L}}(\Omega_{\delta})\leq\frac{\mathcal{D}_{\Omega_{\delta},s}(v)}{\|v\|_{L^{2}(\Omega_{\delta})}^{2}}\leq\frac{\lambda_{\mathcal{L}}(\Omega)}{\|v\|_{L^{2}(\Omega_{\delta})}}\leq\lambda_{\mathcal{L}}(\Omega)\big{(}1-2\delta|\Omega|^{1/2}\big{)}^{-1}\\ &\qquad\leq(1+\varepsilon)\lambda_{\mathcal{L}}(B^{(m)})\big{(}1-2\delta|\Omega|^{1/2}\big{)}^{-1}.\end{split}

Using Remark 3.2-(2) and the Faber-Krahn inequality in Theorem 1.1 (notice that we are in the position of applying Theorem 1.1 for the set tΩδt\Omega_{\delta} in light of the regularity result in Lemma 3.7, and notice also that |tΩδ|=|Ω|=m|t\Omega_{\delta}|=|\Omega|=m), we get

(4.7) t2sλ(Ωδ)λ(tΩδ)λ(B(m)),where t:=|Ω|1/n|Ωδ|1/n>1.t^{-2s}\lambda_{\mathcal{L}}(\Omega_{\delta})\geq\lambda_{\mathcal{L}}(t\Omega_{\delta})\geq\lambda_{\mathcal{L}}(B^{(m)}),\qquad\text{where $t:=\frac{|\Omega|^{1/n}}{|\Omega_{\delta}|^{1/n}}>1$}.

By combining (4.6) with (4.7), we then get

(4.8) |Ωδ||Ω|(λ(B(m))λ(Ωδ))n/(2s)[12δ|Ω|1/21+ε]n/(2s).\frac{|\Omega_{\delta}|}{|\Omega|}\geq\bigg{(}\frac{\lambda_{\mathcal{L}}(B^{(m)})}{\lambda_{\mathcal{L}}(\Omega_{\delta})}\bigg{)}^{n/(2s)}\geq\bigg{[}\frac{1-2\delta|\Omega|^{1/2}}{1+\varepsilon}\bigg{]}^{n/(2s)}.

Finally, if ε~>0\widetilde{\varepsilon}>0 is sufficiently small and 0<ε<ε~0<\varepsilon<\widetilde{\varepsilon}, we obtain

[12δ|Ω|1/21+ε]n/(2s)12nsmax{δ|Ω|1/2,ε}.\bigg{[}\frac{1-2\delta|\Omega|^{1/2}}{1+\varepsilon}\bigg{]}^{n/(2s)}\geq 1-\frac{2n}{s}\cdot\max\{\delta|\Omega|^{1/2},\varepsilon\}.

From this and (4.8), we obtain the desired result. ∎

Now we provide a convexity result that turns out to be useful for the proof of Theorem 1.2:

Lemma 4.2.

Let Ωn\Omega\subset\mathbb{R}^{n} be open, bounded and convex. Then, there exists ε^>0\widehat{\varepsilon}>0 with the following property: if there exists a ball BΩB\subseteq\Omega such that

(4.9) |B|(1ε)|Ω|for some 0<ε<ε^,|B|\geq(1-\varepsilon)|\Omega|\qquad\text{for some $0<\varepsilon<\widehat{\varepsilon}$},

then there exists a ball BB_{*}, which is concentric to BB, such that ΩB\Omega\subseteq B_{*} and

(4.10) |Ω|(1Cε2n+1)|B|.|\Omega|\geq\big{(}1-C\varepsilon^{\frac{2}{n+1}}\big{)}|B_{*}|.

Here, the positive constant CC depends only on nn.

Proof.

Up to a translation, we can assume that BB is centered at the origin. We assume that BB has radius RR and we take PΩ¯P\in\overline{\Omega} maximizing the distance to the origin among points in Ω\Omega. Let also δ:=|P|R\delta:=|P|-R. By construction, we have that δ0\delta\geq 0 (since Ω\Omega contains BB) and that Ω\Omega is contained in the ball BB_{*} of radius R+δR+\delta. Since |P|=R+δ|P|=R+\delta, up to a rotation we can suppose that P=(0,,0,R+δ)P=(0,\dots,0,R+\delta). We also consider the convex hull HH of PP and BB. By construction, HH lies in the closure of Ω\Omega. Let KK be the right circular cone obtained by intersecting HH and the halfspace {xnR}\{x_{n}\geq R\}. Notice that the height of the cone KK is equal to δ\delta and we denote by rr the radius of its basis. By triangular similitude (see the triangles PTO\stackrel{{\scriptstyle\triangle}}{{PTO}} and PRQ\stackrel{{\scriptstyle\triangle}}{{PRQ}} in Figure 2 on page 2), we see that

rδ=R(R+δ)2R2.\frac{r}{\delta}=\frac{R}{\sqrt{(R+\delta)^{2}-R^{2}}}.

As a consequence,

(4.11) |ΩB||K|crn1δ=cδ(δR(R+δ)2R2)n1=cδ(δR2δR+δ2)n1=cδn+12(R2R+δ)n1,\begin{split}&|\Omega\setminus B|\geq|K|\geq cr^{n-1}\delta=c\delta\left(\frac{\delta R}{\sqrt{(R+\delta)^{2}-R^{2}}}\right)^{n-1}\\ &\qquad=c\delta\left(\frac{\delta R}{\sqrt{2\delta R+\delta^{2}}}\right)^{n-1}=c\delta^{\frac{n+1}{2}}\left(\frac{R}{\sqrt{2R+\delta}}\right)^{n-1},\end{split}

for some c>0c>0 depending only on nn.

On the other hand, in view of (4.9),

|ΩB|=|Ω||B|ε|Ω|.|\Omega\setminus B|=|\Omega|-|B|\leq\varepsilon|\Omega|.

Combining this and (4.11), we have that

(4.12) cδn+12(R2R+δ)n1ε|Ω|.c\delta^{\frac{n+1}{2}}\left(\frac{R}{\sqrt{2R+\delta}}\right)^{n-1}\leq\varepsilon|\Omega|.

Also, by (4.9) we know that, for ε\varepsilon sufficiently small,

|Ω|2(1ε)|Ω|2|B|=CRn|\Omega|\leq 2(1-\varepsilon)|\Omega|\leq 2|B|=CR^{n}

for some C>0C>0 depending only on nn. From this and (4.12), up to renaming cc we conclude that

(4.13) cδn+12(2R+δ)n12εR.\frac{c\delta^{\frac{n+1}{2}}}{(2R+\delta)^{\frac{n-1}{2}}}\leq\varepsilon R.

Now we claim that

(4.14) δC~R,\delta\leq\widetilde{C}R,

where C~:=2+2n+12c\widetilde{C}:=2+\frac{2^{\frac{n+1}{2}}}{c}. Indeed, suppose by contradiction that δ>C~R\delta>\widetilde{C}R. Then, by (4.13),

1εcδn+12R(2R+δ)n12=cδR(2Rδ+1)n12cδR(2C~+1)n12\displaystyle 1\geq\varepsilon\geq\frac{c\delta^{\frac{n+1}{2}}}{R\,(2R+\delta)^{\frac{n-1}{2}}}=\frac{c\delta}{R\,\left(\frac{2R}{\delta}+1\right)^{\frac{n-1}{2}}}\geq\frac{c\delta}{R\,\left(\frac{2}{\widetilde{C}}+1\right)^{\frac{n-1}{2}}}
cδR(1+1)n12cC~2n122.\displaystyle\qquad\qquad\geq\frac{c\delta}{R\,\left(1+1\right)^{\frac{n-1}{2}}}\geq\frac{c\,\widetilde{C}}{2^{\frac{n-1}{2}}}\geq 2.

This is a contradiction and thus (4.14) is established.

Now, combining (4.13) and (4.14) we find that

c~δn+12Rn12εR,\frac{\widetilde{c}\,\delta^{\frac{n+1}{2}}}{R^{\frac{n-1}{2}}}\leq\varepsilon R,

with c~:=c(2+C~)n12\widetilde{c}:=\frac{c}{(2+\widetilde{C})^{\frac{n-1}{2}}}, and therefore

(4.15) δCε2n+1R\delta\leq C_{\star}\,\varepsilon^{\frac{2}{n+1}}\,R

with C>0C_{\star}>0 depending only on nn.

We also remark that

|B|=|B|(R+δ)nRn|Ω|(R+δ)nRn.|B_{*}|=|B|\frac{(R+\delta)^{n}}{R^{n}}\leq|\Omega|\frac{(R+\delta)^{n}}{R^{n}}.

This and (4.15) entail that

(4.16) |B|(1+Cε2n+1)|Ω|.|B_{*}|\leq\big{(}1+C_{\star}\,\varepsilon^{\frac{2}{n+1}}\big{)}|\Omega|.

It is also useful to point out that, for every t0t\geq 0,

(1+t)(1t)=1t21,(1+t)(1-t)=1-t^{2}\leq 1,

thus we deduce from (4.16) that

|B|(1+Cε2n+1)(1Cε2n+1)|Ω|(1Cε2n+1)|Ω|(1Cε2n+1),|B_{*}|\leq\frac{\big{(}1+C_{\star}\,\varepsilon^{\frac{2}{n+1}}\big{)}\big{(}1-C_{\star}\,\varepsilon^{\frac{2}{n+1}}\big{)}|\Omega|}{\big{(}1-C_{\star}\,\varepsilon^{\frac{2}{n+1}}\big{)}}\leq\frac{|\Omega|}{\big{(}1-C_{\star}\,\varepsilon^{\frac{2}{n+1}}\big{)}},

as desired. ∎

In spite of some comments appeared in the literature, we believe that the exponent in formula (4.10) of Lemma 4.2 is optimal, as remarked in Appendix A.

Proof of Theorem 1.2.

Along the proof, constants depending only on nn, ss and Ω\Omega may change passing from a line to another. Nevertheless, to avoid a cumbersome notation, we will keep the same symbol CC for all of them.

Let u0u^{\ast}_{0} be the decreasing Schwarz symmetrization of the first eigenfunction u0u_{0} (given by Theorem 3.3). We recall from Theorem 3.3 that we can assume u0L2=1\|u_{0}\|_{L^{2}}=1, and hence u0L2=1\|u^{\ast}_{0}\|_{L^{2}}=1 as well. We define the sets

Γ(t):={xΩ:u0(x)=t},\Gamma(t):=\left\{x\in\Omega:u_{0}(x)=t\right\},

and

Γ(t):={xΩ:u0(x)=t}.\Gamma^{\ast}(t):=\left\{x\in\Omega:u^{\ast}_{0}(x)=t\right\}.

We further define T:=supΩu0(0,+)T:=\sup_{\Omega}u_{0}\in(0,+\infty) and the function

ψ(t):=Γ(t)1|u0|𝑑n1, for all t(0,T).\psi(t):=\int_{\Gamma(t)}\dfrac{1}{|\nabla u_{0}|}d\mathcal{H}^{n-1},\quad{\mbox{ for all }}t\in(0,T).

We recall that

(4.17) n1(Γ(t))ψ(t)Γ(t)|u0|𝑑n1,\mathcal{H}^{n-1}(\Gamma(t))\leq\psi(t)\int_{\Gamma(t)}|\nabla u_{0}|\,d\mathcal{H}^{n-1},

and, thanks to the classical isoperimetric inequality,

(4.18) n1(Γ(t))n1(Γ(t)).\mathcal{H}^{n-1}(\Gamma^{\ast}(t))\leq\mathcal{H}^{n-1}(\Gamma(t)).

We also recall that Γ(t)\Gamma(t) is the boundary of the set Ωt:={xΩ:u0(x)>t}\Omega_{t}:=\{x\in\Omega:u_{0}(x)>t\} and Γ(t)\Gamma^{\ast}(t) is the boundary of a ball with volume equal to |Ωt||\Omega_{t}|. Therefore,

(4.19) n1(Γ(t))=n|B1|1/n|Ωt|11/n,for every t[0,T),\mathcal{H}^{n-1}(\Gamma^{\ast}(t))=n\,|B_{1}|^{1/n}\,|\Omega_{t}|^{1-1/n},\quad\textrm{for every }t\in[0,T),

where, as usual, |B1||B_{1}| denotes the nn-dimensional Lebesgue measure of the unit ball.

Now we take ε~\widetilde{\varepsilon} to be as in Lemma 4.1 and ε^\widehat{\varepsilon} as in Lemma 4.2. We also define ε¯:=min{14|Ω|,δ02}\overline{\varepsilon}:=\min\big{\{}\tfrac{1}{4|\Omega|},\delta_{0}^{2}\big{\}}, where δ0\delta_{0} is as in Lemma 3.7. We stress that ε~\widetilde{\varepsilon}, ε^\widehat{\varepsilon} and ε¯\overline{\varepsilon} are small quantities depending only on the structural parameters of the problem and we suppose that the parameter ε0\varepsilon_{0} in the statement of Theorem 1.2 satisfies

(4.20) ε0<min{ε~,ε^2n,ε¯,|Ω|,s216n2|Ω|}.\varepsilon_{0}<\min\left\{\widetilde{\varepsilon},{\widehat{\varepsilon}}^{2n},\overline{\varepsilon},|\Omega|,\frac{s^{2}}{16n^{2}|\Omega|}\right\}.

Step I. We first prove that, if ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and (1.2) is satisfied, then

(4.21) 0T[n1(Γ(t))2n1(Γ(t))2]1ψ(t)𝑑tλ(B)ε.\int_{0}^{T}\left[\mathcal{H}^{n-1}(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\right]\dfrac{1}{\psi(t)}\,dt\leq\lambda_{\mathcal{L}}(B)\varepsilon.

To this aim, we use (4.17) and (4.18) to observe that

Ω|u0|2𝑑x=0TΓ(t)|u0|𝑑n1𝑑t=0Tn1(Γ(t))2dtψ(t)\displaystyle\int_{\Omega}|\nabla u_{0}|^{2}\,dx=\int_{0}^{T}\int_{\Gamma(t)}|\nabla u_{0}|\,d\mathcal{H}^{n-1}\,dt=\int_{0}^{T}\mathcal{H}^{n-1}(\Gamma(t))^{2}\dfrac{dt}{\psi(t)}
0Tn1(Γ(t))2dtψ(t)=B|u0|2𝑑x.\displaystyle\qquad\qquad\geq\int_{0}^{T}\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\dfrac{dt}{\psi(t)}=\int_{B}|\nabla u_{0}^{\ast}|^{2}\,dx.

Consequently, using (1.2) and (4.2), we get that

0T[n1\displaystyle\int_{0}^{T}\bigg{[}\mathcal{H}^{n-1} (Γ(t))2n1(Γ(t))2]1ψ(t)dt=Ω|u0|2dxB|u0|2dx\displaystyle(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\bigg{]}\dfrac{1}{\psi(t)}\,dt=\int_{\Omega}|\nabla u_{0}|^{2}\,dx-\int_{B}|\nabla u_{0}^{\ast}|^{2}\,dx
=λ(Ω)λ(B)+2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y\displaystyle=\lambda_{\mathcal{L}}(\Omega)-\lambda_{\mathcal{L}}(B)+\iint_{\mathbb{R}^{2n}}\dfrac{|u_{0}^{\ast}(x)-u_{0}^{\ast}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy
2n|u0(x)u0(y)|2|xy|n+2s𝑑x𝑑y\displaystyle\qquad\qquad-\iint_{\mathbb{R}^{2n}}\dfrac{|u_{0}(x)-u_{0}(y)|^{2}}{|x-y|^{n+2s}}\,dx\,dy
λ(Ω)λ(B)λ(B)ε,\displaystyle\leq\lambda_{\mathcal{L}}(\Omega)-\lambda_{\mathcal{L}}(B)\leq\lambda_{\mathcal{L}}(B)\varepsilon,

which is precisely (4.21).

Step II. We prove that if ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and (1.2) is satisfied, then there exists a structural constant C>0C>0 and δ>0\delta>0 sufficiently small such that

(4.22) inf0tδ[n1(Γ(t))2n1(Γ(t))2]Cε1/2.\inf_{0\leq t\leq\delta}\left[\mathcal{H}^{n-1}(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\right]\leq C\varepsilon^{1/2}.

For this we take

(4.23) δ:=ε1/2\delta:=\varepsilon^{1/2}

and we point out that, as a consequence of (4.20), the condition in (4.4) is satisfied. This allows us to use Lemma 4.1, yielding that

|ΩΩδ|2n|Ω|smax{ε1/2|Ω|1/2,ε}=2n|Ω|3/2ε1/2s.|\Omega\setminus\Omega_{\delta}|\leq\frac{2n\,|\Omega|}{s}\,\max\big{\{}\varepsilon^{1/2}|\Omega|^{1/2},\varepsilon\big{\}}=\frac{2n\,|\Omega|^{3/2}\,\varepsilon^{1/2}}{s}.

Therefore, because of the above choice for δ\delta and exploiting the Cauchy-Schwarz inequality, we also find that

ε=δ2\displaystyle\varepsilon=\delta^{2} =(0δ𝑑t)2(0δdtψ(t))(0δψ(t)𝑑t)\displaystyle=\left(\int_{0}^{\delta}dt\right)^{2}\leq\left(\int_{0}^{\delta}\tfrac{dt}{\psi(t)}\right)\,\left(\int_{0}^{\delta}\psi(t)\,dt\right)
=(0δdtψ(t))|ΩΩδ|2n|Ω|3/2ε1/2s(0δdtψ(t)),\displaystyle=\left(\int_{0}^{\delta}\tfrac{dt}{\psi(t)}\right)\,|\Omega\setminus\Omega_{\delta}|\leq\frac{2n\,|\Omega|^{3/2}\,\varepsilon^{1/2}}{s}\left(\int_{0}^{\delta}\tfrac{dt}{\psi(t)}\right),

and thus there exists some C>0C>0 such that

(4.24) 0δdtψ(t)Cε1/2,\int_{0}^{\delta}\frac{dt}{\psi(t)}\geq C\varepsilon^{1/2},

Hence, using (4.21) and (4.24), and recalling (4.18), we deduce that

inf0tδ\displaystyle\inf_{0\leq t\leq\delta} [n1(Γ(t))2n1(Γ(t))2]\displaystyle\left[\mathcal{H}^{n-1}(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\right]
inf0tδ[n1(Γ(t))2n1(Γ(t))2]Cε1/20δdtψ(t)\displaystyle{\leq}\,\inf_{0\leq t\leq\delta}\left[\mathcal{H}^{n-1}(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\right]\,C\varepsilon^{-1/2}\int_{0}^{\delta}\dfrac{dt}{\psi(t)}
Cε1/20δ[n1(Γ(t))2n1(Γ(t))2]1ψ(t)𝑑t\displaystyle\leq\,C\varepsilon^{-1/2}\int_{0}^{\delta}\left[\mathcal{H}^{n-1}(\Gamma(t))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(t))^{2}\right]\dfrac{1}{\psi(t)}\,dt
Cε1/2λ(B),\displaystyle{\leq}\,C\varepsilon^{1/2}\lambda_{\mathcal{L}}(B),

which gives (4.22).

We notice that, by the very definition of infimum, and recalling the choice of δ\delta in (4.23), there exists τ[0,δ]=[0,ε1/2]\tau\in[0,\delta]=[0,\varepsilon^{1/2}] such that

(4.25) n1(Γ(τ))2n1(Γ(τ))22Cε1/2,\mathcal{H}^{n-1}(\Gamma(\tau))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))^{2}\leq 2C\varepsilon^{1/2},

for ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) such that (1.2) is satisfied.

Step III. We let ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) such that (1.2) is satisfied, and we take τ[0,δ]\tau\in[0,\delta] such that (4.25) holds true. We prove that there exists a structural constant C>0C>0 such that

(4.26) n1(Ωτ)=n1(Γ(τ))n|B1|1/n|Ωτ|11/n+Cε1/2.\mathcal{H}^{n-1}(\partial\Omega_{\tau})=\mathcal{H}^{n-1}(\Gamma(\tau))\leq n|B_{1}|^{1/n}|\Omega_{\tau}|^{1-1/n}+C\varepsilon^{1/2}.

For this, recalling that (4.18) and (4.19) hold for every t[0,T)t\in[0,T), and using (4.25), we have that

n1(Γ(τ))n1(Γ(τ))=n1(Γ(τ))2n1(Γ(τ))2n1(Γ(τ))+n1(Γ(τ))\displaystyle\mathcal{H}^{n-1}(\Gamma(\tau))-\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))=\,\dfrac{\mathcal{H}^{n-1}(\Gamma(\tau))^{2}-\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))^{2}}{\mathcal{H}^{n-1}(\Gamma(\tau))+\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))}
2Cε1/2n1(Γ(τ))+n1(Γ(τ))2ε1/2n1(Γ(τ))\displaystyle\qquad\quad\leq\,\dfrac{2\,C\varepsilon^{1/2}}{\mathcal{H}^{n-1}(\Gamma(\tau))+\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))}\leq\,\dfrac{2\,\varepsilon^{1/2}}{\mathcal{H}^{n-1}(\Gamma^{\ast}(\tau))}
=2ε1/2n|B1|1/n|Ωτ|11/n.\displaystyle\qquad\quad{=}\,\dfrac{2\,\varepsilon^{1/2}}{n|B_{1}|^{1/n}|\Omega_{\tau}|^{1-1/n}}.

From this, eventually modifying the constant C>0C>0, we further obtain that

(4.27) n1(Γ(τ))n|B1|1/n|Ωτ|11/n+Cε1/2|Ωτ|11/n.\mathcal{H}^{n-1}(\Gamma(\tau))\leq n\,|B_{1}|^{1/n}\,|\Omega_{\tau}|^{1-1/n}+\dfrac{C\,\varepsilon^{1/2}}{|\Omega_{\tau}|^{1-1/n}}.

Furthermore, since τδ=ε1/2\tau\leq\delta=\varepsilon^{1/2}, recalling (4.20), we have that the condition in (4.4) is satisfied, and therefore we can exploit Lemma 4.1. In this way, we obtain that

|Ωτ|11/n[12nsε1/2|Ω|1/2]11/n|Ω|11/n(|Ω|2)11/n,|\Omega_{\tau}|^{1-1/n}\geq\left[1-\frac{2n}{s}\cdot\varepsilon^{1/2}|\Omega|^{1/2}\right]^{1-1/n}\,|\Omega|^{1-1/n}\geq\left(\dfrac{|\Omega|}{2}\right)^{1-1/n},

thanks to (4.20). Plugging this information into (4.27), we obtain (4.26).

Step IV. We are now ready to finish the proof of (1.3). Once this is established, the existence of a ball B2B_{2} for which (1.4) holds follows from the convexity of Ω\Omega and Lemma 4.2 (notice that we are in the position of exploiting Lemma 4.2 thanks to (4.20)).

Hence we focus on the proof of (1.3). We let ρ>0\rho>0 be the inradius of Ωτ\Omega_{\tau} and let us consider the ball B(1)B^{(1)} whose radius is ρ\rho and such that B(1)ΩτB^{(1)}\subseteq\Omega_{\tau}. We recall that the convexity of the set Ωτ\Omega_{\tau} ensures that the following Bonnesen-type inequality holds, see e.g. [27, 38, 50]:

(4.28) (n1(Ωτ)n1(B(1)))n/(n1)|Ωτ||B(1)|[(n1(Ωτ)n1(B(1)))1/(n1)1]n.\left(\dfrac{\mathcal{H}^{n-1}(\partial\Omega_{\tau})}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{n/(n-1)}-\dfrac{|\Omega_{\tau}|}{|B^{(1)}|}\geq\left[\left(\dfrac{\mathcal{H}^{n-1}(\partial\Omega_{\tau})}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{1/(n-1)}-1\right]^{n}.

Also, from (4.26), we have that

n1(Ωτ)n|B1|1/n|Ωτ|11/n+Cε1/2.\mathcal{H}^{n-1}(\partial\Omega_{\tau})\leq n\,|B_{1}|^{1/n}\,|\Omega_{\tau}|^{1-1/n}+C\,\varepsilon^{1/2}.

Therefore,

(4.29) (n1(Ωτ)n1(B(1)))n/(n1)|Ωτ||B(1)|(n|B1|1/n|Ωτ|11/n+Cε1/2n1(B(1)))n/(n1)|Ωτ||B(1)|.\begin{split}&\left(\dfrac{\mathcal{H}^{n-1}(\partial\Omega_{\tau})}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{n/(n-1)}-\dfrac{|\Omega_{\tau}|}{|B^{(1)}|}\leq\\ &\qquad\qquad\left(\dfrac{n\,|B_{1}|^{1/n}\,|\Omega_{\tau}|^{1-1/n}+C\,\varepsilon^{1/2}}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{n/(n-1)}-\dfrac{|\Omega_{\tau}|}{|B^{(1)}|}.\end{split}

Furthermore, using the isoperimetric inequality we see that

|Ωτ|11/nn1(Ωτ)|B1|11/nn1(B1)=|B1|11/nn|B1|=1n|B1|1/n.\frac{|\Omega_{\tau}|^{1-1/n}}{{\mathcal{H}}^{n-1}(\partial\Omega_{\tau})}\leq\frac{|B_{1}|^{1-1/n}}{{\mathcal{H}}^{n-1}(\partial B_{1})}=\frac{|B_{1}|^{1-1/n}}{n\,|B_{1}|}=\frac{1}{n\,|B_{1}|^{1/n}}.

As a result, we obtain that

(4.30) [(n1(Ωτ)n1(B(1)))1/(n1)1]n[(|Ωτ|11/n|B(1)|11/n)1/(n1)1]n=[(|Ωτ||B(1)|)1/n1]n=[|Ωτ|1/n|B(1)|1/n]n|B(1)|.\begin{split}&\left[\left(\dfrac{\mathcal{H}^{n-1}(\partial\Omega_{\tau})}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{1/(n-1)}-1\right]^{n}\geq\left[\left(\dfrac{|\Omega_{\tau}|^{1-1/n}}{|B^{(1)}|^{1-1/n}}\right)^{1/(n-1)}-1\right]^{n}\\ &\qquad\qquad=\left[\left(\dfrac{|\Omega_{\tau}|}{|B^{(1)}|}\right)^{1/n}-1\right]^{n}=\dfrac{\left[|\Omega_{\tau}|^{1/n}-|B^{(1)}|^{1/n}\right]^{n}}{|B^{(1)}|}.\end{split}

Now, combining (4.28), (4.29) and (4.30), we find that

(n|B1|1/n|Ωτ|11/n+Cε1/2n1(B(1)))n/(n1)|Ωτ||B(1)|[|Ωτ|1/n|B(1)|1/n]n|B(1)|.\left(\dfrac{n\,|B_{1}|^{1/n}\,|\Omega_{\tau}|^{1-1/n}+C\,\varepsilon^{1/2}}{\mathcal{H}^{n-1}(\partial B^{(1)})}\right)^{n/(n-1)}-\dfrac{|\Omega_{\tau}|}{|B^{(1)}|}\geq\dfrac{\left[|\Omega_{\tau}|^{1/n}-|B^{(1)}|^{1/n}\right]^{n}}{|B^{(1)}|}.

Recalling that B(1)B^{(1)} has radius ρ\rho, hence |B(1)|=|B1|ρn|B^{(1)}|=|B_{1}|\rho^{n} and

n1(B(1))=n1(B1)ρn1=n|B1|ρn1,\mathcal{H}^{n-1}(\partial B^{(1)})=\mathcal{H}^{n-1}(\partial B_{1})\rho^{n-1}=n|B_{1}|\rho^{n-1},

it thus follows that

(4.31) (|Ωτ|11/n+Cε1/2)n/(n1)|Ωτ|[|Ωτ|1/n|B(1)|1/n]n.\left(|\Omega_{\tau}|^{1-1/n}+C\,\varepsilon^{1/2}\right)^{n/(n-1)}-|\Omega_{\tau}|\geq\left[|\Omega_{\tau}|^{1/n}-|B^{(1)}|^{1/n}\right]^{n}.

We also point out that

(4.32) |Ω|2|Ωτ||Ω|,\dfrac{|\Omega|}{2}\leq|\Omega_{\tau}|\leq|\Omega|,

for sufficiently small τ\tau and therefore

(|Ωτ|11/n+Cε1/2)n/(n1)=|Ωτ|(1+Cε1/2|Ωτ|11/n)n/(n1)\displaystyle\left(|\Omega_{\tau}|^{1-1/n}+C\,\varepsilon^{1/2}\right)^{n/(n-1)}=|\Omega_{\tau}|\left(1+\frac{C\,\varepsilon^{1/2}}{|\Omega_{\tau}|^{1-1/n}}\right)^{n/(n-1)}
|Ωτ|(1+211/nCε1/2|Ω|11/n)n/(n1)|Ωτ|(1+Cε1/2),\displaystyle\qquad\leq|\Omega_{\tau}|\left(1+\frac{2^{1-1/n}C\,\varepsilon^{1/2}}{|\Omega|^{1-1/n}}\right)^{n/(n-1)}\leq|\Omega_{\tau}|\left(1+C\varepsilon^{1/2}\right),

up to renaming CC in the last inequality.

Combining this and (4.31) we gather that

[|Ωτ|1/n|B(1)|1/n]nC|Ωτ|ε1/2.\left[|\Omega_{\tau}|^{1/n}-|B^{(1)}|^{1/n}\right]^{n}\leq C\,|\Omega_{\tau}|\varepsilon^{1/2}.

This, the Bernoulli inequality and (4.32) entail that

|Ωτ|1/n|B(1)|1/nC|Ωτ|1/nε1/(2n),|\Omega_{\tau}|^{1/n}-|B^{(1)}|^{1/n}\ \leq C\,|\Omega_{\tau}|^{1/n}\varepsilon^{1/(2n)},

which gives (1.3). ∎

Appendix A Convex sets, remarks on the literature, and optimality of Lemma 4.2

In the literature, it seems to be suggested (see e.g. the end of Section 2 in [49]) that the result in Lemma 4.2 could be improved, for instance by posing the following natural question:

Problem A.1.

Let ε>0\varepsilon>0. If Ωn\Omega\subset\mathbb{R}^{n} is bounded and convex, contains the unit ball B1B_{1} and

(A.1) |B1|(1ε)|Ω|,|B_{1}|\geq(1-\varepsilon)|\Omega|,

is it true that there exists a ball BB_{*} such that ΩB\Omega\subseteq B_{*} and

(A.2) |Ω|(1Cε)|B||\Omega|\geq(1-C\varepsilon)|B_{*}|

for some constant C>0C>0?

Here we show that the answer to Problem A.1 is negative. We provide two counterexamples, one closely related to the proof of Lemma 4.2, and one in which we additionally assume that the set Ω\Omega is uniformly convex and its boundary is of class CC^{\infty}.

Counterexample 1. Let n2n\geq 2. Let ε>0\varepsilon>0 be small and

δ:=ε2n+1.\delta:=\varepsilon^{\frac{2}{n+1}}.

Let P:=(0,,0,1+δ)P:=(0,\dots,0,1+\delta) and Ω\Omega be the convex hull of B1PB_{1}\cup P, see Figure 2.

Refer to caption
Figure 2. The convex hull of B1PB_{1}\cup P.

We claim that (A.1) holds true. Indeed, considering Figure 2, we have that OR¯=1=OT¯\overline{OR}=1=\overline{OT} and PR¯=δ\overline{PR}=\delta. As a result, we see that OP¯=OR¯+PR¯=1+δ\overline{OP}=\overline{OR}+\overline{PR}=1+\delta and

PT¯=OP¯2RO¯2=(1+δ)21=2δ+δ2[δ,2δ].\overline{PT}=\sqrt{\overline{OP}^{2}-\overline{RO}^{2}}=\sqrt{(1+\delta)^{2}-1}=\sqrt{2\delta+\delta^{2}}\in[\sqrt{\delta},2\sqrt{\delta}].

We also remark that the triangles PTO\stackrel{{\scriptstyle\triangle}}{{PTO}}, and PST\stackrel{{\scriptstyle\triangle}}{{PST}} are similar and accordingly

ST¯PT¯=OT¯OP¯andPS¯PT¯=PT¯OP¯.\frac{\overline{ST}}{\overline{PT}}=\frac{\overline{OT}}{\overline{OP}}\qquad{\mbox{and}}\qquad\frac{\overline{PS}}{\overline{PT}}=\frac{\overline{PT}}{\overline{OP}}.

These identities entail that

ST¯=OT¯PT¯OP¯2δ1+δ4δ\displaystyle{\overline{ST}}=\frac{{\overline{OT}}\;\;{\overline{PT}}}{\overline{OP}}\leq\frac{2{\sqrt{\delta}}}{1+\delta}\leq 4{\sqrt{\delta}}
and PS¯=PT¯2OP¯=2δ+δ21+δ4δ.\displaystyle{\overline{PS}}=\frac{\overline{PT}^{2}}{\overline{OP}}=\frac{2\delta+\delta^{2}}{1+\delta}\leq 4\delta.

As a result, if

𝒬:=P+[4δ,4δ]n1×[4δ,4δ],{\mathcal{Q}}:=P+[-4{\sqrt{\delta}},4{\sqrt{\delta}}]^{n-1}\times[-4\delta,4\delta],

we find that ΩB1𝒬\Omega\setminus B_{1}\subseteq{\mathcal{Q}}.

From this, it follows that

|Ω||B1|+|ΩB1||B1|+|𝒬|=|B1|+(8δ)n1(8δ)\displaystyle|\Omega|\leq|B_{1}|+|\Omega\setminus B_{1}|\leq|B_{1}|+|{\mathcal{Q}}|=|B_{1}|+(8{\sqrt{\delta}})^{n-1}(8\delta)
|B1|(1+Cδn+12)=|B1|(1+Cε)\displaystyle\qquad\qquad\leq|B_{1}|(1+C\delta^{\frac{n+1}{2}})=|B_{1}|(1+C\varepsilon)

for some C>0C>0, which gives (A.1) (up to renaming ε\varepsilon).

Now, consider a ball BB_{*} such that ΩB\Omega\subseteq B_{*}. Since

(0,,0,1+δ)Ω¯ and (0,,0,1)Ω¯,\text{$(0,\dots,0,1+\delta)\in\overline{\Omega}$ and\leavevmode\nobreak\ $(0,\dots,0,-1)\in\overline{\Omega}$},

we have that the diameter of Ω\Omega is at least 2+δ2+\delta, hence the radius of BB_{*} is at least 1+δ21+\frac{\delta}{2} and thus, using (A.1),

|B||B1|(1+δ2)n|B1|(1+δ2)(1+δ2)(1ε)|Ω|=(1+δ2)(1δn+12)|Ω|=(1+δ2+O(δn+12))|Ω|=(1+δ2+O(δ32))|Ω|(1+δ4)|Ω|.\begin{split}&|B_{*}|\geq|B_{1}|\left(1+\frac{\delta}{2}\right)^{n}\geq|B_{1}|\left(1+\frac{\delta}{2}\right)\geq\left(1+\frac{\delta}{2}\right)\left(1-\varepsilon\right)|\Omega|\\ &\qquad=\left(1+\frac{\delta}{2}\right)\left(1-\delta^{\frac{n+1}{2}}\right)|\Omega|=\left(1+\frac{\delta}{2}+O\left(\delta^{\frac{n+1}{2}}\right)\right)|\Omega|\\ &\qquad=\left(1+\frac{\delta}{2}+O\left(\delta^{\frac{3}{2}}\right)\right)|\Omega|\geq\left(1+\frac{\delta}{4}\right)|\Omega|.\end{split}

This yields that (A.2) is not satisfied in this case, since otherwise

1=|Ω||Ω|(1ε)|B||B|/(1+δ4)=(1+δ4)(1δn+12)\displaystyle 1=\frac{|\Omega|}{|\Omega|}\geq\frac{\big{(}1-\varepsilon\big{)}|B_{*}|}{|B_{*}|/\left(1+\frac{\delta}{4}\right)}=\left(1+\frac{\delta}{4}\right)\left(1-\delta^{\frac{n+1}{2}}\right)
=(1+δ4)(1+O(δ32))=1+δ4+O(δ32)1+δ8>1,\displaystyle\qquad\qquad=\left(1+\frac{\delta}{4}\right)\left(1+O\left(\delta^{\frac{3}{2}}\right)\right)=1+\frac{\delta}{4}+O\left(\delta^{\frac{3}{2}}\right)\geq 1+\frac{\delta}{8}>1,

which is a contradiction.

Counterexample 2. For simplicity, we take here n=2n=2 (the case n>2n>2 can be obtained by rotations of the example constructed in a given plane). Let ε>0\varepsilon>0 be small and

δ:=ε23.\delta:=\varepsilon^{\frac{2}{3}}.

We construct here a counterexample of Problem A.1 even under the additional assumption that Ω\Omega is uniformly convex with boundary of class CC^{\infty}. For this, let fC0([1,1],[0,1])f\in C^{\infty}_{0}([-1,1],\,[0,1]) with f(0)=1f(0)=1 and

(π,π]ϑg(ϑ):=1+cδf(ϑδ),(-\pi,\pi]\ni\vartheta\mapsto g(\vartheta):=1+c\delta f\left(\frac{\vartheta}{\sqrt{\delta}}\right),

with

c:=14(1+fC2()).c:=\frac{1}{4(1+\|f\|_{C^{2}(\mathbb{R})})}.

We consider the set

Ω:={(ρcosϑ,ρsinϑ),ϑ(π,π],ρ[0,g(ϑ))}.\Omega:=\Big{\{}(\rho\cos\vartheta,\rho\sin\vartheta),\;\,\vartheta\in(-\pi,\pi],\;\,\rho\in[0,g(\vartheta))\Big{\}}.

We observe that g(ϑ)[1,1+δ]g(\vartheta)\in[1,1+\delta] for all ϑ(π,π]\vartheta\in(-\pi,\pi], hence B1ΩB_{1}\subseteq\Omega, and

(A.3) g(ϑ)=1g(\vartheta)=1 whenever |ϑ|>δ|\vartheta|>\sqrt{\delta}.

We let κ(ϑ)\kappa(\vartheta) be the curvature of Ω\partial\Omega at the point (g(ϑ)cosϑ,g(ϑ)sinϑ)(g(\vartheta)\cos\vartheta,\,g(\vartheta)\sin\vartheta). Then,

κ(ϑ)\displaystyle\kappa(\vartheta) =\displaystyle= 2g˙2(ϑ)g(ϑ)g¨(ϑ)+g2(ϑ)(g˙2(ϑ)+g2(ϑ))32\displaystyle\frac{2\dot{g}^{2}(\vartheta)-g(\vartheta)\,\ddot{g}(\vartheta)+g^{2}(\vartheta)}{\Big{(}\dot{g}^{2}(\vartheta)+g^{2}(\vartheta)\Big{)}^{\frac{3}{2}}}
=\displaystyle= 2c2δf˙2(ϑδ)cg(ϑ)f¨(ϑδ)+g2(ϑ)(c2δf˙2(ϑδ)+g2(ϑ))32.\displaystyle\frac{2c^{2}\delta\dot{f}^{2}\left(\frac{\vartheta}{\sqrt{\delta}}\right)-cg(\vartheta)\,\ddot{f}\left(\frac{\vartheta}{\sqrt{\delta}}\right)+g^{2}(\vartheta)}{\left(c^{2}\delta\dot{f}^{2}\left(\frac{\vartheta}{\sqrt{\delta}}\right)+g^{2}(\vartheta)\right)^{\frac{3}{2}}}.

Hence, if

ξ(ϑ):=cg(ϑ)f¨(ϑδ),\xi(\vartheta):=cg(\vartheta)\,\ddot{f}\left(\frac{\vartheta}{\sqrt{\delta}}\right),

we have that

(A.4) |ξ(ϑ)|c(1+δ)fC2()2cfC2()12|\xi(\vartheta)|\leq c(1+\delta)\,\|f\|_{C^{2}(\mathbb{R})}\leq 2c\,\|f\|_{C^{2}(\mathbb{R})}\leq\frac{1}{2}

and

κ(ϑ)\displaystyle\kappa(\vartheta) =\displaystyle= O(δ)ξ(ϑ)+(1+O(δ))2(O(δ)+(1+O(δ))2)32\displaystyle\frac{O(\delta)-\xi(\vartheta)+(1+O(\delta))^{2}}{\left(O(\delta)+(1+O(\delta))^{2}\right)^{\frac{3}{2}}}
=\displaystyle= 1ξ(ϑ)+O(δ)(1+O(δ))32\displaystyle\frac{1-\xi(\vartheta)+O(\delta)}{\left(1+O(\delta)\right)^{\frac{3}{2}}}
=\displaystyle= 1ξ(ϑ)+O(δ).\displaystyle 1-\xi(\vartheta)+O(\delta).

From this relation and (A.4), we conclude that

κ(ϑ)[14,2],\kappa(\vartheta)\in\left[\frac{1}{4},2\right],

hence Ω\Omega is uniformly convex.

Moreover, using polar coordinates and (A.3),

|ΩB1|\displaystyle|\Omega\setminus B_{1}| =\displaystyle= ππ[1g(ϑ)ρ𝑑ρ]𝑑ϑ\displaystyle\int_{-\pi}^{\pi}\left[\int_{1}^{g(\vartheta)}\rho\,d\rho\right]\,d\vartheta
\displaystyle\leq δδ[11+δ2𝑑ρ]𝑑ϑ\displaystyle\int_{-\sqrt{\delta}}^{\sqrt{\delta}}\left[\int_{1}^{1+\delta}2\,d\rho\right]\,d\vartheta
\displaystyle\leq 4δ32\displaystyle 4\,\delta^{\frac{3}{2}}
=\displaystyle= 4ε,\displaystyle 4\,\varepsilon,

and therefore

|B1||Ω|4ε=(14ε|Ω|)|Ω|,|B_{1}|\geq|\Omega|-4\varepsilon=\left(1-\frac{4\varepsilon}{|\Omega|}\right)|\Omega|,

which shows that (A.1) holds true (up to renaming ε\varepsilon).

Now, consider a ball BB_{*} such that ΩB\Omega\subseteq B_{*}. Since

(1+cδ,0)=(g(0)cos0,g(0)sin0)Ω¯(1+c\delta,0)=(g(0)\cos 0,g(0)\sin 0)\in\overline{\Omega}

and (1,0)=(g(π)cosπ,g(π)sinπ)Ω¯(-1,0)=(g(\pi)\cos\pi,g(\pi)\sin\pi)\in\overline{\Omega}, we have that the diameter of Ω\Omega is at least 2+cδ2+c\delta, hence the radius of BB_{*} is at least 1+cδ21+\frac{c\delta}{2}. Thus, using (A.1),

|B||B1|(1+cδ2)n|B1|(1+cδ2)(1+cδ2)(1ε)|Ω|=(1+cδ2)(1δn+12)|Ω|=(1+cδ2+O(δn+12))|Ω|=(1+cδ2+O(δ32))|Ω|(1+cδ4)|Ω|.\begin{split}&|B_{*}|\geq|B_{1}|\left(1+\frac{c\delta}{2}\right)^{n}\geq|B_{1}|\left(1+\frac{c\delta}{2}\right)\geq\left(1+\frac{c\delta}{2}\right)\left(1-\varepsilon\right)|\Omega|\\ &\qquad=\left(1+\frac{c\delta}{2}\right)\left(1-\delta^{\frac{n+1}{2}}\right)|\Omega|=\left(1+\frac{c\delta}{2}+O\left(\delta^{\frac{n+1}{2}}\right)\right)|\Omega|\\ &\qquad=\left(1+\frac{c\delta}{2}+O\left(\delta^{\frac{3}{2}}\right)\right)|\Omega|\geq\left(1+\frac{c\delta}{4}\right)|\Omega|.\end{split}

This yields that (A.2) is not satisfied in this case, since otherwise

1=|Ω||Ω|(1ε)|B||B|/(1+cδ4)=(1+cδ4)(1δn+12)\displaystyle 1=\frac{|\Omega|}{|\Omega|}\geq\frac{\big{(}1-\varepsilon\big{)}|B_{*}|}{|B_{*}|/\left(1+\frac{c\delta}{4}\right)}=\left(1+\frac{c\delta}{4}\right)\left(1-\delta^{\frac{n+1}{2}}\right)
=(1+cδ4)(1+O(δ32))=1+cδ4+O(δ32)1+cδ8>1,\displaystyle\qquad\qquad=\left(1+\frac{c\delta}{4}\right)\left(1+O\left(\delta^{\frac{3}{2}}\right)\right)=1+\frac{c\delta}{4}+O\left(\delta^{\frac{3}{2}}\right)\geq 1+\frac{c\delta}{8}>1,

which is a contradiction.

Appendix B C2,αC^{2,\alpha}-regularity for s<1/2s<1/2

For completeness, we present here an explicit proof of Theorem 2.8 in the case s(0,1/2)s\in(0,1/2). In this situation the action of the fractional operator is better behaved since it does not produce boundary singularities on functions that are smooth (or even just Lipschitz) up to the boundary and with zero external datum. This fact makes the proof technically easier since it allows one to “reabsorb” the fractional operator into the source term of the equation. For this reason, we thought it could be of some interest, at least for some readers, to find here a self-contained result with its own proof. The precise statement is the following:

Theorem B.1.

Let s(0,1/2)s\in(0,1/2) and α(0,1)\alpha\in(0,1) be such that

(B.1) α+2s<1.\alpha+2s<1.

Suppose that Ω\partial\Omega is of class C2,αC^{2,\alpha}. If fCα(Ω¯)f\in C^{\alpha}(\overline{\Omega}) and if uf𝕏(Ω)u_{f}\in\mathbb{X}(\Omega) denotes the unique weak solution of (D)f(\mathrm{D})_{f} (according to Theorem 2.4), then

ufCb(n)C2,α(Ω¯).u_{f}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}).

In particular, ufu_{f} is a classical solution of (D)f(\mathrm{D})_{f}.

Proof.

We split the proof into different steps.

Step I. We consider the functions space 𝔹(Ω)\mathbb{B}(\Omega) defined as follows:

𝔹(Ω):={uC(n):u0 in nΩ and u|Ω¯C2,α(Ω¯)}Cb(n).\mathbb{B}(\Omega):=\{u\in C(\mathbb{R}^{n}):\,\text{$u\equiv 0$ in $\mathbb{R}^{n}\setminus\Omega$ and $u|_{\overline{\Omega}}\in C^{2,\alpha}(\overline{\Omega})$}\}\subseteq C_{b}(\mathbb{R}^{n}).

Then, we claim that there exists a constant 𝐜=𝐜n,s,α,Ω>0\mathbf{c}=\mathbf{c}_{n,s,\alpha,\Omega}>0 such that

(B.2) (Δ)suCα(Ω¯)𝐜uC1(Ω¯)<u𝔹(Ω).\|(-\Delta)^{s}u\|_{C^{\alpha}(\overline{\Omega})}\leq\mathbf{c}\|u\|_{C^{1}(\overline{\Omega})}<\infty\qquad\forall\,\,u\in\mathbb{B}(\Omega).

In fact, since u𝔹(Ω)u\in\mathbb{B}(\Omega) and since, by assumption (B.1), β:=α+2s(0,1)\beta:=\alpha+2s\in(0,1), it is not difficult to recognize that uCβ(n)u\in C^{\beta}(\mathbb{R}^{n}), and

[u]Cβ(n)diam(Ω)1βuC1(Ω¯).[u]_{C^{\beta}(\mathbb{R}^{n})}\leq\mathrm{diam}(\Omega)^{1-\beta}\|u\|_{C^{1}(\overline{\Omega})}.

As a consequence, since one obviously has β=α+2s>2s\beta=\alpha+2s>2s, we are entitled to apply the result in [56, Prop. 2.1.7]: this gives (Δ)suCα(n)(-\Delta)^{s}u\in C^{\alpha}(\mathbb{R}^{n}) and

(B.3) [(Δ)su]Cα(n)c[u]Cβ(n)cdiam(Ω)1βuC1(Ω¯),[(-\Delta)^{s}u]_{C^{\alpha}(\mathbb{R}^{n})}\leq c[u]_{C^{\beta}(\mathbb{R}^{n})}\leq c\,\mathrm{diam}(\Omega)^{1-\beta}\,\|u\|_{C^{1}(\overline{\Omega})},

where c=cn,s,α>0c=c_{n,s,\alpha}>0 is a constant independent of uu. To complete the proof of (B.2), we then turn to estimate the LL^{\infty}-norm of (Δ)su(-\Delta)^{s}u in terms of uC1(Ω¯)\|u\|_{C^{1}(\overline{\Omega})}.

First of all we observe that, on account of (B.3), for every xΩ¯x\in\overline{\Omega} one has

(B.4) |(Δ)su(x)|[(Δ)su]Cα(n)|xx0|α+|(Δ)su(x0)|cdiam(Ω)1+αβuC1(Ω¯)+|(Δ)su(x0)|(setting ρ:=cdiam(Ω)1+αβ)=ρuC1(Ω¯)+|(Δ)su(x0)|,\begin{split}|(-\Delta)^{s}u(x)|&\leq[(-\Delta)^{s}u]_{C^{\alpha}(\mathbb{R}^{n})}\cdot|x-x_{0}|^{\alpha}+|(-\Delta)^{s}u(x_{0})|\\ &\leq c\,\mathrm{diam}(\Omega)^{1+\alpha-\beta}\,\|u\|_{C^{1}(\overline{\Omega})}+|(-\Delta)^{s}u(x_{0})|\\ &(\text{setting $\rho:=c\,\mathrm{diam}(\Omega)^{1+\alpha-\beta}$})\\ &=\rho\,\|u\|_{C^{1}(\overline{\Omega})}+|(-\Delta)^{s}u(x_{0})|,\end{split}

where x0Ωx_{0}\in\Omega is chosen in such a way that

d0:=dist(x0,Ω)=supxΩ(dist(x,Ω)).d_{0}:=\mathrm{dist}(x_{0},\partial\Omega)=\sup_{x\in\Omega}\big{(}\mathrm{dist}(x,\partial\Omega)\big{)}.

On the other hand, since u𝔹(Ω)u\in\mathbb{B}(\Omega) and s<1/2s<1/2, we have the estimate

(B.5) |(Δ)su(x0)|n|u(x0)u(y)||x0y|n+2s𝑑y=n|u(x0)u(x0z)||z|n+2s𝑑z{|z|d0}1|z|n+2s|u(x0τz),z|𝑑z+2uL(n){|z|>d0}1|z|n+2s𝑑znuC1(Ω¯){|z|d0}1|z|n+2s1𝑑z+2uL(n){|z|>d0}1|z|n+2s𝑑z=κ(d012s+d02s)uC1(Ω¯),\begin{split}&|(-\Delta)^{s}u(x_{0})|\leq\int_{\mathbb{R}^{n}}\frac{|u(x_{0})-u(y)|}{|x_{0}-y|^{n+2s}}\,dy=\int_{\mathbb{R}^{n}}\frac{|u(x_{0})-u(x_{0}-z)|}{|z|^{n+2s}}\,dz\\ &\qquad\leq\int_{\{|z|\leq d_{0}\}}\frac{1}{|z|^{n+2s}}\,|\langle\nabla u(x_{0}-\tau z),z\rangle|\,dz\\ &\qquad\qquad+2\|u\|_{L^{\infty}(\mathbb{R}^{n})}\int_{\{|z|>d_{0}\}}\frac{1}{|z|^{n+2s}}\,dz\\ &\qquad\leq\sqrt{n}\|u\|_{C^{1}(\overline{\Omega})}\int_{\{|z|\leq d_{0}\}}\frac{1}{|z|^{n+2s-1}}\,dz\\ &\qquad\qquad+2\|u\|_{L^{\infty}(\mathbb{R}^{n})}\int_{\{|z|>d_{0}\}}\frac{1}{|z|^{n+2s}}\,dz\\[5.69046pt] &\qquad=\kappa(d_{0}^{1-2s}+d_{0}^{-2s})\|u\|_{C^{1}(\overline{\Omega})},\end{split}

where κ=κn,s>0\kappa=\kappa_{n,s}>0 is another constant which does not depend on uu. Gathering together (B.3), (B.4) and (B.5), we finally obtain

(Δ)suCα(Ω¯)\displaystyle\|(-\Delta)^{s}u\|_{C^{\alpha}(\overline{\Omega})} =(Δ)suL(Ω)+[(Δ)su]Cα(Ω¯)\displaystyle=\|(-\Delta)^{s}u\|_{L^{\infty}(\Omega)}+[(-\Delta)^{s}u]_{C^{\alpha}(\overline{\Omega})}
(cdiam(Ω)1β+ρ)uC1(Ω¯)\displaystyle\leq\big{(}c\,\mathrm{diam}(\Omega)^{1-\beta}+\rho\big{)}\|u\|_{C^{1}(\overline{\Omega})}
+κ(d022s+d02s)uC1(Ω¯)\displaystyle\qquad\quad+\kappa\big{(}d_{0}^{2-2s}+d_{0}^{-2s}\big{)}\|u\|_{C^{1}(\overline{\Omega})}
𝐜uC1(Ω¯)\displaystyle\leq\mathbf{c}\,\|u\|_{C^{1}(\overline{\Omega})}

which is exactly the claimed (B.2). We explicitly point out that the constant 𝐜\mathbf{c} only depends on n,s,αn,s,\alpha and Ω\Omega (as the same is true of cc).

Step II. In this second step, we establish the following facts:

  1. (1)

    uCα(Ω¯)\mathcal{L}u\in C^{\alpha}(\overline{\Omega}) for every u𝔹(Ω)u\in\mathbb{B}(\Omega);

  2. (2)

    there exists a constant C=C(n,α,s)>0C=C(n,\alpha,s)>0 such that

    (B.6) uC2,α(Ω¯)C(uCα(Ω¯)+supΩ|u|)for all u𝔹(Ω).\|u\|_{C^{2,\alpha}(\overline{\Omega})}\leq C\,\big{(}\|\mathcal{L}u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)}\qquad\text{for all $u\in\mathbb{B}(\Omega)$}.

As regards assertion (1), it is a direct consequence of (B.2), together with the fact that ΔuCα(Ω¯)\Delta u\in C^{\alpha}(\overline{\Omega}) if u𝔹(Ω)C2,α(Ω¯)u\in\mathbb{B}(\Omega)\subseteq C^{2,\alpha}(\overline{\Omega}). We now turn to prove assertion (2).

To this end we first notice that, since Ω\partial\Omega is of class C2,αC^{2,\alpha}, we are entitled to apply [36, Thm. 6.14]: there exists a constant C=C(n,α)>0C=C(n,\alpha)>0 such that

(B.7) uC2,α(Ω¯)C(ΔuCα(Ω¯)+supΩ|u|),\|u\|_{C^{2,\alpha}(\overline{\Omega})}\leq C\,\big{(}\|\Delta u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)},

for every function uC2,α(Ω¯)u\in C^{2,\alpha}(\overline{\Omega}) satisfying u0u\equiv 0 on Ω\partial\Omega. Then, by combining (B.2) with (B.7), we obtain the following chain of inequalities:

(B.8) uC2,α(Ω¯)C(ΔuCα(Ω¯)+supΩ|u|)=C(u(Δ)suCα(Ω¯)+supΩ|u|)C(uCα(Ω¯)+(Δ)suCα(Ω¯)+supΩ|u|)C(uCα(Ω¯)+uC1(Ω¯)+supΩ|u|),\begin{split}\|u\|_{C^{2,\alpha}(\overline{\Omega})}&\leq C\,\big{(}\|\Delta u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)}\\ &=C\,\big{(}\|\mathcal{L}u-(-\Delta)^{s}u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)}\\ &\leq C\,\big{(}\|\mathcal{L}u\|_{C^{\alpha}(\overline{\Omega})}+\|(-\Delta)^{s}u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)}\\ &\leq C^{\prime}\,\big{(}\|\mathcal{L}u\|_{C^{\alpha}(\overline{\Omega})}+\|u\|_{C^{1}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)},\end{split}

holding true for every u𝔹(Ω)u\in\mathbb{B}(\Omega). Now, owing again to the regularity of Ω\partial\Omega, we can invoke the global interpolation inequality contained in, e.g., [36, Chap. 6]: there exists a constant θ>0\theta>0, independent of uu, such that

uC1(Ω¯)12CuC2,α(Ω¯)+θsupΩ|u|\|u\|_{C^{1}(\overline{\Omega})}\leq\frac{1}{2C^{\prime}}\|u\|_{C^{2,\alpha}(\overline{\Omega})}+\theta\sup_{\Omega}|u|

This, together with (B.8), immediately gives the desired (B.6).

Step III. In this last step, we complete the proof of the theorem by using the so-called method of continuity (see, e.g., [36, Thm. 5.2]). To this end, we first notice that 𝔹(Ω)\mathbb{B}(\Omega) is endowed with a structure of Banach space by the norm

u𝔹(Ω):=uC2,α(Ω¯)u𝔹(Ω).\|u\|_{\mathbb{B}(\Omega)}:=\|u\|_{C^{2,\alpha}(\overline{\Omega})}\qquad\forall\,\,u\in\mathbb{B}(\Omega).

Moreover, for every 0t10\leq t\leq 1 we define

t:=(1t)Δ+t=Δ+t(Δ)s.\mathcal{L}_{t}:=(1-t)\Delta+t\mathcal{L}=\Delta+t(-\Delta)^{s}.

Owing to (1)-(2) in Step II, we derive that t\mathcal{L}_{t} maps 𝔹(Ω)\mathbb{B}(\Omega) into Cα(Ω¯)C^{\alpha}(\overline{\Omega}), and

(B.9) u𝔹(Ω)=uC2,α(Ω¯)C(tuCα(Ω¯)+supΩ|u|),u𝔹(Ω),\begin{split}\|u\|_{\mathbb{B}(\Omega)}&=\|u\|_{C^{2,\alpha}(\overline{\Omega})}\leq C\,\big{(}\|\mathcal{L}_{t}u\|_{C^{\alpha}(\overline{\Omega})}+\sup_{\Omega}|u|\big{)},\quad\forall\,\,u\in\mathbb{B}(\Omega),\end{split}

where C>0C>0 is a suitable constant independent of uu and tt. On the other hand, by carefully scrutinizing the proof of [7, Thm. 4.7], it is easy to see that

(B.10) supΩ|u|=supn|u|κtuL(Ω)κtuCα(Ω¯),\sup_{\Omega}|u|=\sup_{\mathbb{R}^{n}}|u|\leq\kappa\,\|\mathcal{L}_{t}u\|_{L^{\infty}(\Omega)}\leq\kappa\,\|\mathcal{L}_{t}u\|_{C^{\alpha}(\overline{\Omega})},

where κ>0\kappa>0 is another constant independent of uu and tt. Thanks to (B.9)-(B.10), we are then entitled to apply the method of continuity in this setting: indeed,

  • 𝔹(Ω)\mathbb{B}(\Omega) and Cα(Ω¯)C^{\alpha}(\overline{\Omega}) are Banach spaces;

  • 0,1\mathcal{L}_{0},\,\mathcal{L}_{1} are linear and bounded from 𝔹(Ω)\mathbb{B}(\Omega) into Cα(Ω¯)C^{\alpha}(\overline{\Omega}) (see (B.2));

  • there exists a constant C^>0\hat{C}>0 such that

    u𝔹(Ω)C^tCα(Ω¯)for every u𝔹(Ω) and t[0,1],\|u\|_{\mathbb{B}(\Omega)}\leq\hat{C}\|\mathcal{L}_{t}\|_{C^{\alpha}(\overline{\Omega})}\qquad\text{for every $u\in\mathbb{B}(\Omega)$ and $t\in[0,1]$},

As a consequence, since 0=Δ\mathcal{L}_{0}=\Delta is surjective, we deduce that also 1=\mathcal{L}_{1}=\mathcal{L} is surjective: for every fCα(Ω¯)f\in C^{\alpha}(\overline{\Omega}) there exists a (unique) u^f𝔹(Ω)\hat{u}_{f}\in\mathbb{B}(\Omega) such that

(B.11) u^f=fpointwise in Ω.\mathcal{L}\hat{u}_{f}=f\quad\text{pointwise in $\Omega$}.

We explicitly notice that, since u^f𝔹(Ω)\hat{u}_{f}\in\mathbb{B}(\Omega), one has u^fCb(n)C2,α(Ω¯)\hat{u}_{f}\in C_{b}(\mathbb{R}^{n})\cap C^{2,\alpha}(\overline{\Omega}) and u^f0\hat{u}_{f}\equiv 0 on nΩ\mathbb{R}^{n}\setminus\Omega; thus, by (B.11) we derive that u^f\hat{u}_{f} is a classical solution of (D)f(\mathrm{D})_{f}. In view of these facts, to complete the proof we are left to show that

u^f=uf a.e. in n.\text{$\hat{u}_{f}=u_{f}$ a.e.\,in $\mathbb{R}^{n}$}.

To this end we first notice that, since u^fC2,α(Ω¯)\hat{u}_{f}\in C^{2,\alpha}(\overline{\Omega}) and since u^f0\hat{u}_{f}\equiv 0 on Ω\partial\Omega, we surely have u^fH01(Ω)\hat{u}_{f}\in H_{0}^{1}(\Omega); this, together with (2.1), implies that

(B.12) u^f𝕏(Ω).\hat{u}_{f}\in\mathbb{X}(\Omega).

Since u^f\hat{u}_{f} is a classical solution of (D)f(\mathrm{D})_{f}, from (B.12) and Remark 2.6 we infer that u^f\hat{u}_{f} is also a weak solution of problem (D)f(\mathrm{D})_{f}; on the other hand, since ufu_{f} is the unique weak solution this problem, we conclude that u^fuf\hat{u}_{f}\equiv u_{f} a.e. in n\mathbb{R}^{n}, as desired. ∎

Acknowledgments. We would like to thank Professor Lorenzo Brasco for pointing to our attention the paper [2] and for some interesting and pleasant discussions.

References

  • [1] N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal. 53(3) (2021), no. 3, 35770–3601.
  • [2] A.I Ávila, Stability results for the first eigenvalue of the Laplacian on domains in space forms, J. Math. Anal. Appl. 267 (2002), no. 2, 760–774.
  • [3] G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro- differential equations, J. Differential Equations 252 (2012), no. 11, 6012–6060.
  • [4] G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 283–304.
  • [5] G. Barles, C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 3, 567–585.
  • [6] A. Bensoussan, J.L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars, Paris, 1984.
  • [7] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations, DOI: 10.1080/03605302.2021.1998908.
  • [8] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 5, 1611–1641.
  • [9] S. Biagi, D. Mugnai, E. Vecchi, Global boundedness and maximum principle for a Brezis-Oswald approach to mixed local and nonlocal operators, Commun. Contemp. Math., DOI:10.1142/S0219199722500572.
  • [10] I. H. Biswas, E. R. Jakobsen, K. H. Karlsen, Viscosity solutions for a system of integro–PDEs and connections to optimal switching and control of jump-diffusion processes, Appl. Math. Optim. 62 (2010), no. 1, 47–80.
  • [11] D. Blazevski, D. del-Castillo-Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport, Phys. Rev. E87 (2013), 063106.
  • [12] L. Brasco, G. De Philippis, B. Velichkov, Faber-Krahn inequalities in sharp quantitative form, Duke Math. J. 164 (2015), no. 9, 1777–1831.
  • [13] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011.
  • [14] S. Buccheri, J.V. da Silva, L.H. de Miranda, A System of Local/Nonlocal pp-Laplacians: The Eigenvalue Problem and Its Asymptotic Limit as pp\to\infty, preprint, arXiv: 2001.05985
  • [15] X. Cabré, S. Dipierro, E. Valdinoci, The Bernstein technique for integro-differential equations, Arch. Ration. Mech. Anal.
  • [16] X. Cabré, J. Serra, An extension problem for sums of fractional Laplacians and 11-D symmetry of phase transitions, Nonlinear Anal. 137 (2016), 246–265.
  • [17] L. Caffarelli, E. Valdinoci, A priori bounds for solutions of a nonlocal evolution PDE, Analysis and numerics of partial differential equations, 141–163, Springer INdAM Ser., 4, Springer, Milan, 2013.
  • [18] A. Ciomaga, On the strong maximum principle for second-order nonlinear parabolic integro-differential equations, Adv. Differential Equations 17 (2012), no. 7-8, 635–671.
  • [19] R. Courant, Beweis des Satzes, dass von allen homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt, Math. Z. 1 (1918), 321–328.
  • [20] G. Cupini, E. Vecchi, Faber-Krahn and Lieb-type inequalities for the composite membrane problem, Commun. Pure Appl. Anal. 18(5) (2019), 2679–2691.
  • [21] J.V. da Silva, A.M. Salort, A limiting problem for local/non-local pp-Laplacians with concave-convex nonlinearities, Z. Angew. Math. Phys. 71 (2020), Paper No. 191, 27pp.
  • [22] R. de la Llave, E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, 1309–1344.
  • [23] F. del Teso, J. Endal, E. R. Jakobsen, On distributional solutions of local and nonlocal problems of porous medium type, C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1154–1160.
  • [24] F. Dell’Oro, V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Optim. 83 (2021), no. 3, 1877–1917.
  • [25] L. M. Del Pezzo, R. Ferreira, J. D. Rossi, Eigenvalues for a combination between local and nonlocal pp-Laplacians, Fract. Calc. Appl. Anal. 22 (2019), no. 5, 1414–1436.
  • [26] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
  • [27] A. Dinghas, Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger. Math. Nachr. 1 (1948), 284–286.
  • [28] S. Dipierro, M. Medina, I. Peral, E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in n\mathbb{R}^{n}, Manuscripta Math. 153 (2017), no. 1-2, 183–230.
  • [29] S. Dipierro, E. Proietti Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal., DOI: 10.3233/ASY-211718.
  • [30] S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, DOI: 10.4171/AIHPC/57.
  • [31] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A 575 (2021), 126052.
  • [32] S. Dipierro, E. Valdinoci, V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ. 19 (2019), no. 2, 435–462.
  • [33] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. Wiss. München, Math.-Phys. Kl. (1923), 169–172.
  • [34] R.L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407–3430.
  • [35] M.G. Garroni, J.L. Menaldi, Second order elliptic integro-differential problems, Chapman & Hall/CRC Research Notes in Mathematics, 430. Chapman & Hall/CRC, Boca Raton, FL, 2002. xvi+221 pp.
  • [36] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, (2011).
  • [37] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
  • [38] H. Hadwiger, Die isoperimetrische Ungleichung im Raum, Elem. Math. 3 (1948), 25–38.
  • [39] W. Hansen, N. Nadirashvili, Isoperimetric inequalities in potential theory, Potential Anal. 3 (1994), 1–14.
  • [40] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. BirkhäuserVerlag, Basel, 2006.
  • [41] E. R. Jakobsen, K. H. Karlsen, Continuous dependence estimates for viscosity solutions of integro–PDEs, J. Differential Equations 212 (2005), no. 2, 278–318.
  • [42] E. R. Jakobsen, K. H. Karlsen, A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 137–165.
  • [43] M. Kassmann, L. Silvestre On the superharmonicity of the first eigenfunction of the fractional Laplacian for certain exponents, preprint, http://math.uchicago.edu/\simluis/preprints/cfe.pdf
  • [44] S. Kesavan, Some remarks on a result of Talenti, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1988), 453–465.
  • [45] P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, preprint, arXiv:2102.13365
  • [46] D. Goel, K. Sreenadh, On the second eigenvalue of combination between local and nonlocal pp-Laplacian, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4315–4327.
  • [47] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), 97–100.
  • [48] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9, (1926), 1–44.
  • [49] A.D. Melas, The stability of some eigenvalue estimates, J. Differential Geom. 36 (1992), 19–33.
  • [50] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1–29.
  • [51] G. Pagnini, S. Vitali, Should I stay or should I go? Zero-size jumps in random walks for Lévy flights. Fract. Calc. Appl. Anal. 24 (2021), no. 1, 137–167.
  • [52] J.W.S. Rayleigh, The theory of sound, London (1894/96) pp. 339–340 (Edition: Second).
  • [53] X. Ros-Oton, J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations 40 (2015), no. 1, 115–133.
  • [54] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.
  • [55] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), no. 1, 133–154.
  • [56] L.E. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Thesis (Ph.D.)–The University of Texas at Austin (2005), 95 pp.
  • [57] I.M. Singer, B. Wong, S.-T. Yau, S. S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 12 (1985), 319–333.