This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A duality approach to a price formation MFG model

Yuri Ashrafyan Tigran Bakaryan Diogo Gomes  and  Julian Gutierrez
Abstract.

We study the connection between the Aubry-Mather theory and a mean-field game (MFG) price-formation model. We introduce a framework for Mather measures that is suited for constrained time-dependent problems in {\mathbb{R}}. Then, we propose a variational problem on a space of measures, from which we obtain a duality relation involving the MFG problem examined in [35].

Key words and phrases:
Mean Field Games; Price formation; Common noise; ADD Keywords
King Abdullah University of Science and Technology (KAUST), CEMSE Division, Thuwal 23955-6900. Saudi Arabia. e-mail: [email protected]
The authors were partially supported by KAUST baseline funds and KAUST OSR-CRG2017-3452.

1. introduction

This paper studies the connection between Aubry-Mather theory and certain mean-field games (MFG) that model price formation. More precisely, we consider the MFG system

{ut(t,x)+H(x,ϖ(t)+ux(t,x))=0(t,x)[0,T]×mt(t,x)(Hp(x,ϖ(t)+ux(t,x))m(t,x))x=0(t,x)[0,T]×Hp(x,ϖ(t)+ux(t,x))m(t,x)𝑑x=Q(t)t[0,T],\begin{cases}-u_{t}(t,x)+H(x,\varpi(t)+u_{x}(t,x))=0&\quad(t,x)\in[0,T]\times{\mathbb{R}}\\ m_{t}(t,x)-\big{(}H_{p}(x,\varpi(t)+u_{x}(t,x))m(t,x)\big{)}_{x}=0&\quad(t,x)\in[0,T]\times{\mathbb{R}}\\ -\int_{{\mathbb{R}}}H_{p}(x,\varpi(t)+u_{x}(t,x))m(t,x)dx=Q(t)&\quad t\in[0,T]\end{cases}, (1.1)

subject to initial-terminal conditions

{u(T,x)=uT(x)m(0,x)=m0(x)x,\begin{cases}u(T,x)=u_{T}(x)\\ m(0,x)=m_{0}(x)\end{cases}\quad x\in{\mathbb{R}}, (1.2)

where QQ, uTu_{T}, and m0m_{0} are given functions, m0m_{0} is a probability measure on {\mathbb{R}}, and the triplet (u,m,ϖ)(u,m,\varpi) is the unknown. Here, the state of a typical agent is the variable xx\in{\mathbb{R}} and represents the assets of that agent. The distribution of assets in the population of the agents at time tt is encoded in the probability measure m(,t)m(\cdot,t). The agents change their assets by trading at a price ϖ(t)\varpi(t). The trading is subject to a balance condition encoded in the third equation in (1.1). This integral constraint that guarantees supply Q(t)Q(t) meets demand is represented by the term on the left-hand side of that condition.

As introduced in [35], uu is the value function of an agent who trades a commodity with supply QQ and price ϖ\varpi. The function uu is characterized by the first equation in (1.1) and the terminal condition in (1.2). Each agent selects their trading rate in order to minimize a given cost functional (see (1.7) below). The optimal control selection is Hp(x,ϖ(t)+ux(t,x))-H_{p}(x,\varpi(t)+u_{x}(t,x)). Under this optimal control, the density mm describing the population of agents evolves according to the second equation in (1.1) and the initial condition in (1.2). The third equation in (1.1), which we refer to as the balance condition, is an integral constraint that guarantees supply meets demand.

Remark 1.1.

The notion of solutions of (1.1) and (1.2) we consider is the following: uC([0,T]×)u\in C([0,T]\times{\mathbb{R}}) solves the first equation in the viscosity sense, mC([0,T],𝒫())m\in C([0,T],{\mathcal{P}}({\mathbb{R}})) solves the second equation in the distributional sense, and ϖC([0,T])\varpi\in C([0,T]).

The system (1.1) and (1.2) corresponds to the case ϵ=0\epsilon=0 studied in [35]. Under Assumptions 4, 6 and 7 (see Section 2), the authors used a fixed-point argument and the vanishing viscosity method to prove the existence of a solution (u,m,ϖ)(u,m,\varpi), where uu is Lipschitz and semiconcave in xx, and differentiable mm-almost everywhere, mC([0,T],𝒫())m\in C([0,T],{\mathcal{P}}({\mathbb{R}})) w.r.t. the 11-Wasserstein distance, and ϖW1,1([0,T])\varpi\in W^{1,1}([0,T]). Furthermore, under Assumption 8, they obtained uniqueness of solutions, further differentiability of uu in xx for every xx, and the boundedness of uxxu_{xx} and mm.

The connection between Hamilton-Jacobi equations and Aubtry-Mather theory is now well established; see, for example, [41], [18, 19, 20, 21], [16, 17, 5], or [45]. In particular, several generalizations of Aubry-Mather theory were developed to address problems like diffusions and study second-order Hamilton-Jacobi equations [29, 30]. In particular, duality methods, since the pioneering papers in [40] and [23] have been explored in multiple contexts, see for example [36]. Of great interest are the applications to the selection problem in the vanishing discount case, [31], [44] [34] and [33] and to the large time behavior of Hamilton-Jacobi equations [9], [37]. Recently applications of Aubry-Mather theory were developed for MFGs in [12] to study long-time behavior, and in [11], where the authors construct Mather measures to prove the existence of solutions for ergodic first-order MFG systems with state constraints.

The prototype MFG system corresponds to an optimal control problem for an agent who optimizes a cost function that depends on the aggregate behavior of other agents encoded in the population distribution mm. In [35], the optimal control setting of the MFG system (1.1) and (1.2) corresponds to an agent interacting with the population through the price. At the same time, the balance condition between demand and supply is satisfied. This type of interaction arises in price formation models, where the commodity price being traded is an endogenous rather than an exogenous variable.

Price formation models were studied previously in [3] and [46] in the contex of revenue maximization by a producer. Earlier price models in the context of mean-field games include [8, 7, 42, 6] and [39]. Applications to electricity markets were examined in [43, 1, 22] and [14]. Price models with a market clearing condition were introduced in [35], [2], [32], [47] and [26]. The former work addresses a model for solar renewable energy certificate markets. Finally, [27] examines the effect of a major player.

The variational problem that we consider is a relaxed version of the Lagrangian formulation introduced in [35] to derive (1.1) and (1.2). We prove a duality formula (Theorem 1.3) between solutions of the MFG system and minimizers of a variational problem in the set of generalized Mather measures. For that, we begin by introducing the Legendre transform, LL, of HH; that is,

L(x,v)=supp{pvH(x,p)}.L(x,v)=\sup_{p\in{\mathbb{R}}}\left\{-pv-H(x,p)\right\}. (1.3)

Our variational problem is

infμ(m0)0T2L(x,v)+vuT(x)dμ(t,x,v),\inf_{\mu\in\mathcal{H}(m_{0})}\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)+vu^{\prime}_{T}(x)~{}d\mu(t,x,v), (1.4)

where (m0)\mathcal{H}(m_{0}) is the set of admissible measures. These measures are Radon positive measures on [0,T]×2[0,T]\times{\mathbb{R}}^{2} that satisfy the following three conditions. First, the moment condition

[0,T]×2(|x|ζ1+|v|ζ2)𝑑μ(t,x,v)<,\int_{[0,T]\times{\mathbb{R}}^{2}}(|x|^{\zeta_{1}}+|v|^{\zeta_{2}})d\mu(t,x,v)<\infty,

where ζ1\zeta_{1} and ζ2\zeta_{2} depend on the growth of the Hamiltonian in Assumption 2 and satisfy condition 3.1. Second, for some probability measure ν\nu on {\mathbb{R}}, the Radon measure verifies

[0,T]×2φt(t,x)+vφx(t,x)dμ(t,x,v)=φ(T,x)𝑑νφ(0,x)𝑑m0\int_{[0,T]\times{\mathbb{R}}^{2}}\varphi_{t}(t,x)+v\varphi_{x}(t,x)d\mu(t,x,v)=\int_{{\mathbb{R}}}\varphi(T,x)d\nu-\int_{{\mathbb{R}}}\varphi(0,x)dm_{0} (1.5)

for all suitable test functions φ\varphi. We refer to the previous as the holonomy condition, as it is motivated by the holonomy condition introduced in [41]. Lastly, the admissible measures satisfy the following balance condition

[0,T]×2η(t)(vQ(t))𝑑μ(t,x,v)=0\int_{[0,T]\times{\mathbb{R}}^{2}}\eta(t)(v-Q(t))d\mu(t,x,v)=0

for all η\eta continuous. If uTC1()u_{T}\in C^{1}({\mathbb{R}}) with uTu^{\prime}_{T} bounded (see Assumption 3), the holonomy condition applied to φ(t,x)=uT(x)\varphi(t,x)=u_{T}(x) (see (3.3)) provides the identity

[0,T]×2vuT(x)𝑑μ(t,x,v)=uT(x)𝑑νuT(x)𝑑m0.\int_{[0,T]\times{\mathbb{R}}^{2}}vu^{\prime}_{T}(x)d\mu(t,x,v)=\int_{{\mathbb{R}}}u_{T}(x)d\nu-\int_{{\mathbb{R}}}u_{T}(x)dm_{0}.

Using the previous identity, the variational problem (1.4) is equivalent to

infν𝒫()μ(m0,ν)0T2L(x,v)𝑑μ(t,x,v)+uT(x)𝑑ν(x),\inf_{\begin{subarray}{c}\nu\in{\mathcal{P}}({\mathbb{R}})\\ \mu\in\mathcal{H}(m_{0},\nu)\end{subarray}}\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)~{}d\mu(t,x,v)+\int_{{\mathbb{R}}}u_{T}(x)d\nu(x), (1.6)

where (m0,ν)\mathcal{H}(m_{0},\nu) is the set of measures that satisfy the moment condition, the holonomy condition for some probability measure ν\nu on {\mathbb{R}}, and the balance condition. The difference between (1.6) and (1.4) is the term uT(x)𝑑m0-\int_{{\mathbb{R}}}u_{T}(x)dm_{0}, which is independent of μ\mu.

The motivation for this relaxed problem is as follows. In [35], each agent selects a control variable α\alpha aiming to solve

infα𝒜0TL(x(t),α(t))+ϖ(t)α(t)dt+uT(x(T)),\inf_{\alpha\in\mathcal{A}}\int_{0}^{T}L(x(t),\alpha(t))+\varpi(t)\alpha(t)dt+u_{T}(x(T)), (1.7)

where x˙(t)=α(t)\dot{x}(t)=\alpha(t), and 𝒜\mathcal{A}, the set of bounded measurable functions, is the set of admissible controls. The price ϖ\varpi is chosen so that the aggregate supply meets the demand. Here, following Mather’s theory (see for example [31]), we introduced a relaxed version of problem (1.7). This relaxation is problem (1.6). The key idea is that each optimal trajectory tx(t)t\mapsto x^{*}(t) with optimal control tα(t)t\mapsto\alpha^{*}(t) solving (1.7) defines the measure dμ(t,x,v)=dt×dδx(t)×dδα(t)d\mu^{*}(t,x,v)=dt\times d_{\delta_{x^{*}(t)}}\times d_{\delta_{\alpha^{*}(t)}}. This measure is supported on the path t(x(t),α(t))t\mapsto(x^{*}(t),\alpha^{*}(t)) and satisfies (1.5). Accordingly, the function in (1.7) becomes

0T2L(x,v)+ϖvdμ(t,x,v)+uT(x)𝑑ν(x)\displaystyle\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)+\varpi v~{}d\mu^{*}(t,x,v)+\int_{{\mathbb{R}}}u_{T}(x)d\nu^{*}(x)

where dν=δx(T)d\nu^{*}=\delta_{x^{*}(T)}; that is, the variational cost for the measure equals the variational cost for the optimal trajectory.

Our first result for the variational problem on measures (1.6) is a duality formula between minimizing measures and Hamilton-Jacobi equations that involves the following function. Let h:𝒫()×𝒫(){+}h:\mathcal{P}({\mathbb{R}})\times\mathcal{P}({\mathbb{R}})\to{\mathbb{R}}\cup\{+\infty\} be

h(m0,ν)={infμ(m0,ν)ΩL(x,v)+vuT(x)dμ(t,x,v),if (m0,ν),+if (m0,ν)=.h(m_{0},\nu)=\begin{cases}\displaystyle\inf_{\begin{subarray}{c}\mu\in\mathcal{H}(m_{0},\nu)\end{subarray}}\int_{\Omega}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v),&\text{if }\mathcal{H}(m_{0},\nu)\neq\emptyset,\\ +\infty&\text{if }\mathcal{H}(m_{0},\nu)=\emptyset.\end{cases} (1.8)

The main assumptions on LL and uTu_{T} are stated in Section 2, after which, in Section 3, we develop a framework of Mather measures suitable for the MFG system (1.1) and (1.2). Finally, in that section, we prove the following theorem.

Theorem 1.2.

Let hh be given by (1.8) and let ζ\zeta satisfy (2.1). Suppose Assumptions 1-4 hold. Assume that νT𝒫()\nu_{T}\in\mathcal{P}({\mathbb{R}}) is such that (m0,νT)\mathcal{H}(m_{0},\nu_{T})\neq\emptyset. Then,

h(m0,νT)=infφ,ηsup(t,x)(\displaystyle h(m_{0},\nu_{T})=-\inf_{\begin{subarray}{c}\varphi,\eta\end{subarray}}\sup_{(t,x)}\bigg{(} φ(0,x)𝑑m0(x)+φ(T,x)𝑑νT(x)\displaystyle-\int_{\mathbb{R}}\varphi(0,x)dm_{0}(x)+\int_{\mathbb{R}}\varphi(T,x)d\nu_{T}(x)
+T(φt+Qη+H(x,φx+η+uT))),\displaystyle+T\big{(}-\varphi_{t}+Q\eta+H(x,\varphi_{x}+\eta+u^{\prime}_{T})\big{)}\bigg{)},

where (t,x)[0,T]×(t,x)\in[0,T]\times{\mathbb{R}}, φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}) and ηC([0,T])\eta\in C([0,T]).

The previous result is proved in Section 3 using Fenchel-Rockafellar’s duality theorem.

Next, in Section 4, we establish additional results for the MFG system (1.1) and (1.2). In particular, in Proposition 4.2, we prove that ϖ\varpi solving (1.1) and (1.2) is Lipschitz continuous. This result was stated but not proved in [35]. Here, we give the full details of the proof.

Finally, in Section 5, we establish our main result, which is summarized in the following theorem.

Theorem 1.3.

Let (u,m,ϖ)(u,m,\varpi) solve (1.1) and (1.2). Suppose that Assumptions 1-8 hold. Then,

(u(0,x)uT(x))𝑑m0(x)0TQ(t)ϖ(t)𝑑t=infμ(m0)ΩL(x,v)+vuT(x)dμ(t,x,v).\int_{{\mathbb{R}}}\left(u(0,x)-u_{T}(x)\right)dm_{0}(x)-\int_{0}^{T}Q(t)\varpi(t)dt=\inf_{\begin{subarray}{c}\mu\in\mathcal{H}(m_{0})\end{subarray}}\int_{\Omega}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v).

In the previous theorem, the value of (1.4) is characterized by the solution of the MFG system (1.1) and (1.2). Although mm does not appear explicitly on the right-hand side of the previous expression, it determines the balance condition for the MFG. Notice that for this minimization problem, uTu_{T} is fixed, whereas the terminal measure νT\nu_{T} is varying (see Section 3).

2. Assumptions

Here, we present the main assumptions used in this paper. First, we consider the usual convexity assumption on the Hamiltonian, HH, for which we require the strongest form of this property.

Assumption 1.

For all xx\in{\mathbb{R}}, the map pH(x,p)p\mapsto H(x,p) is uniformly convex; that is, there exists a constant κ>0\kappa>0 such that Hpp(x,p)κH_{pp}(x,p)\geqslant\kappa for all (x,p)2(x,p)\in{\mathbb{R}}^{2}.

The previous assumption guarantees not only convexity but also coercivity of HH in the pp variable (see [4], Corollary 11.17). Hence, the Legendre transform of HH, given by (1.3), is well-defined, and it is convex and coercive in the second argument ([10], Theorem A.2.6).

The following four assumptions are used in Section 3 to establish duality results. The following growth conditions for HH and the regularity for uTu_{T} and QQ are required used when we apply Fenchel-Rockafellar’s theorem.

Assumption 2.

There exists γ11\gamma_{1}\geqslant 1, γ2>1\gamma_{2}>1, a positive constant CC, and non-negative constants C1C_{1} and C2C_{2} such that, for all (x,p)2(x,p)\in{\mathbb{R}}^{2},

{C2|x|γ1+|p|γ2Cγ2CH(x,p)C1|x|γ1+|p|γ2Cγ2+C,|Hx(x,p)|C(|p|γ2+1),|Hp(x,p)|C(|p|γ21+1).\begin{cases}-C_{2}|x|^{\gamma_{1}}+\dfrac{|p|^{\gamma_{2}}}{C\gamma_{2}}-C\leqslant H(x,p)\leqslant-C_{1}|x|^{\gamma_{1}}+\dfrac{|p|^{\gamma_{2}}C}{\gamma_{2}}+C,\\ |H_{x}(x,p)|\leqslant C(|p|^{\gamma_{2}}+1),\\ |H_{p}(x,p)|\leqslant C(|p|^{\gamma_{2}-1}+1).\end{cases}
Remark 2.1.

Under Assumption 1, the Lagrangian, LL, defined by (1.3), satisfies (see [10], Theorem A.2.6)

v=Hp(x,p) if and only if p=Lv(x,v).v=-H_{p}(x,p)\mbox{ if and only if }p=-L_{v}(x,v).

Furthermore, Assumption 2 implies a growth condition on LL; that is,

C1|x|γ1+|v|γ2γ2Cγ2/γ2CL(x,v)C2|x|γ1+|v|γ2Cγ2/γ2γ2+C,C_{1}|x|^{\gamma_{1}}+\dfrac{|v|^{\gamma_{2}^{\prime}}}{\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}}-C\leqslant L(x,v)\leqslant C_{2}|x|^{\gamma_{1}}+\dfrac{|v|^{\gamma_{2}^{\prime}}C^{\gamma_{2}^{\prime}/\gamma_{2}}}{\gamma_{2}^{\prime}}+C, (2.1)

where 1/γ2+1/γ2=11/\gamma_{2}+1/\gamma_{2}^{\prime}=1. To see this, note that the first condition in Assumption 2 bounds the Legendre transform of HH between the one of the functions

pC1|x|γ1+|p|γ2Cγ2+CandpC2|x|γ1+|p|γ2Cγ2C.p\mapsto-C_{1}|x|^{\gamma_{1}}+\dfrac{|p|^{\gamma_{2}}C}{\gamma_{2}}+C\quad\mbox{and}\quad p\mapsto-C_{2}|x|^{\gamma_{1}}+\dfrac{|p|^{\gamma_{2}}}{C\gamma_{2}}-C.

Their transforms are the lower and upper bounds in (2.1), respectively.

Assumption 3.

The terminal cost satisfies uTC1()u_{T}\in C^{1}({\mathbb{R}}), and |uT|C|u^{\prime}_{T}|\leqslant C for some C>0C>0.

For the supply, we assume it is a smooth function of time.

Assumption 4.

The supply function, QQ, is C([0,T])C^{\infty}([0,T]).

The existence of generalized measures minimizing our variational problem (1.4) relies on the moment estimates that we impose for the initial distribution (see Proposition 5.2).

Assumption 5.

The initial density, m0m_{0}, is a probability measure in {\mathbb{R}}, and it has a finite absolute moment of order γ>γ1\gamma>\gamma_{1}; that is,

|x|γm0(x)dx<+.\int_{{\mathbb{R}}}|x|^{\gamma}m_{0}(x){\rm d}x<+\infty.

Following [35], we guarantee the solvability of (1.1) and (1.2) by considering, together with Assumption 4, the following conditions.

Assumption 6.

The Hamiltonian HH is separable; that is,

H(x,p)=(p)V(x),H(x,p)=\mathcal{H}(p)-V(x),

where VC2()V\in C^{2}({\mathbb{R}}) is bounded from below and |pp|,|ppp|C|\mathcal{H}_{pp}|,|\mathcal{H}_{ppp}|\leqslant C for some constant C>0C>0.

Remark 2.2.

Under the previous assumption, LL, defined by (1.3), is separable as well; that is

L(x,v)=(v)+V(x),L(x,v)=\mathcal{L}(v)+V(x),

where \mathcal{L} is the Legendre transform of \mathcal{H}. Recalling that the Legendre transform is an involutive transformation, in case that \mathcal{L} is uniformly convex, we have vvκ\mathcal{L}_{vv}\geqslant\kappa^{\prime} for some κ>0\kappa^{\prime}>0. Hence, ([10], Corollary A. 2.7)

pp1κ.\mathcal{H}_{pp}\leqslant\frac{1}{\kappa^{\prime}}.

Furthermore, under Assumption 1, we obtain κ<pp1/κ\kappa<\mathcal{H}_{pp}\leqslant 1/\kappa^{\prime}. By abuse of notation, we set =H\mathcal{H}=H and =L\mathcal{L}=L when Assumption 6 holds.

Assumption 7.

The potential VV, the terminal cost uTu_{T}, the initial density function m0m_{0} are C2()C^{2}({\mathbb{R}}) functions and VV, uTu_{T} are globally Lipschitz. Furthermore, there exists a constant C>0C>0 such that

|V′′|C,|uT′′|C,|m0′′|C.|V^{\prime\prime}|\leqslant C,\quad|u_{T}^{\prime\prime}|\leqslant C,\quad|m_{0}^{\prime\prime}|\leqslant C.

The following condition guarantees the uniqueness of solutions of (1.1) and (1.2).

Assumption 8.

The potential VV and the terminal cost uTu_{T} are convex.

Remark 2.3.

Assume the Hamiltonian, HH, satisfies Assumption 6, with a potential, VV, satisfying Assumption 7. For Assumption 2 to hold, VV has to satisfy CLip(V)C\geqslant\mbox{Lip}(V) and the growth condition

C1|x|γ1KV(x)C2|x|γ1+KC_{1}|x|^{\gamma_{1}}-K\leqslant V(x)\leqslant C_{2}|x|^{\gamma_{1}}+K (2.2)

for some K>0K>0, whereas \mathcal{H} has to satisfy |p(p)|C(|p|γ21+1)|\mathcal{H}_{p}(p)|\leqslant C(|p|^{\gamma_{2}-1}+1) and the growth condition

|p|γ2Cγ2CH(p)|p|γ2Cγ2+C.\dfrac{|p|^{\gamma_{2}}}{C\gamma_{2}}-C\leqslant H(p)\leqslant\dfrac{|p|^{\gamma_{2}}C}{\gamma_{2}}+C.

For instance, the Hamiltonian

H(x,p)=(1+|p|2)γ22V(x)H(x,p)=\left(1+|p|^{2}\right)^{\frac{\gamma_{2}}{2}}-V(x)

satisfies all the assumptions above if VV is a globally Lipschitz function that satisfies (2.2).

3. Duality results

This section considers generalized holonomic measures for time-dependent problems in {\mathbb{R}} that are compatible with the integral constraint imposed by the balance condition. We use this formulation to prove Theorem 1.2 and for the proof of Theorem 1.3 in Section 5.

Fix T>0T>0. For γ11\gamma_{1}\geqslant 1 and γ2>1\gamma_{2}>1 (see Assumption 2), let ζ=(ζ1,ζ2)\zeta=(\zeta_{1},\zeta_{2}), where

0<ζ1γ1,and1<ζ2<γ2.0<\zeta_{1}\leqslant\gamma_{1},\quad\mbox{and}\quad 1<\zeta_{2}<\gamma^{\prime}_{2}. (3.1)

Let Ω=[0,T]××\Omega=[0,T]\times{\mathbb{R}}\times{\mathbb{R}}. Let (Ω)\mathcal{R}(\Omega) be the set of signed Radon measures on Ω\Omega, +(Ω)\mathcal{R}^{+}(\Omega) be the subset of non-negative elements of (Ω)\mathcal{R}(\Omega) ([24], page 212 and 222 or [15], Definition 1.9), and 𝒫(){\mathcal{P}}({\mathbb{R}}) be the set of probability measures on {\mathbb{R}}. We define

1={μ+(Ω):Ω(|x|ζ1+|v|ζ2)𝑑μ(t,x,v)<}.\displaystyle\mathcal{H}_{1}=\left\{\mu\in\mathcal{R}^{+}(\Omega):~{}\int_{\Omega}(|x|^{\zeta_{1}}+|v|^{\zeta_{2}})d\mu(t,x,v)<\infty\right\}. (3.2)

This set is determined by the growth conditions for the Hamiltonian, as in Assumption 2. Next, let

Λ([0,T]×)={φC1([0,T]×):φt,φxL([0,T]×)}.\Lambda([0,T]\times{\mathbb{R}})=\left\{\varphi\in C^{1}([0,T]\times{\mathbb{R}}):~{}\varphi_{t},~{}\varphi_{x}\in L^{\infty}([0,T]\times{\mathbb{R}})\right\}.

Notice that elements of Λ([0,T]×)\Lambda([0,T]\times{\mathbb{R}}) are globally Lipschitz continuous functions. This set corresponds to the set of test functions for the holonomy condition, which we define next. Given m0,ν𝒫()m_{0},~{}\nu\in{\mathcal{P}}({\mathbb{R}}), let

2(m0,ν)={μ+(Ω):Ωφt(t,x)+vφx(t,x)dμ(t,x,v)=φ(T,x)𝑑νφ(0,x)𝑑m0φΛ([0,T]×)}.\mathcal{H}_{2}(m_{0},\nu)=\left\{\mu\in\mathcal{R}^{+}(\Omega):~{}\begin{matrix}\int_{\Omega}\varphi_{t}(t,x)+v\varphi_{x}(t,x)d\mu(t,x,v)\\ =\int_{{\mathbb{R}}}\varphi(T,x)d\nu-\int_{{\mathbb{R}}}\varphi(0,x)dm_{0}\end{matrix}~{}\forall\varphi\in\Lambda([0,T]\times{\mathbb{R}})\right\}. (3.3)

As mentioned in the Introduction, we refer to the condition defining the set 2(m0,ν)\mathcal{H}_{2}(m_{0},\nu) as the holonomy condition. For a given ν𝒫()\nu\in{\mathcal{P}}({\mathbb{R}}), the set 2(m0,ν)\mathcal{H}_{2}(m_{0},\nu) may be empty. Nevertheless, as we show in Remark 3.2, there are probability measures satisfying 2(m0,ν)\mathcal{H}_{2}(m_{0},\nu)\neq\emptyset. In case m0m_{0} satisfies a moment hypothesis (see Assumption 5), the identity that defines the holonomy condition is well-defined even if the terms are not finite.

Corresponding to the balance condition in (1.1), we set

3={μ+(Ω):Ωη(t)(vQ(t))𝑑μ(t,x,v)=0,ηC([0,T])}.\displaystyle\mathcal{H}_{3}=\left\{\mu\in\mathcal{R}^{+}(\Omega):~{}\int_{\Omega}\eta(t)(v-Q(t))d\mu(t,x,v)=0,\quad\forall\eta\in C([0,T])\right\}. (3.4)

Finally, we define

(m0,ν):=12(m0,ν)3,and(m0)=ν𝒫()(m0,ν).\mathcal{H}(m_{0},\nu):=\mathcal{H}_{1}\cap\mathcal{H}_{2}(m_{0},\nu)\cap\mathcal{H}_{3},\quad\mbox{and}\quad\mathcal{H}(m_{0})=\bigcup_{\nu\in{\mathcal{P}}({\mathbb{R}})}\mathcal{H}(m_{0},\nu).
Remark 3.1.

For any μ(m0)\mu\in\mathcal{H}(m_{0}) there exists a unique ν𝒫()\nu\in{\mathcal{P}}({\mathbb{R}}) such that μ(m0,ν)\mu\in\mathcal{H}(m_{0},\nu). To see this, let μ(m0,ν)(m0,ν~)\mu\in\mathcal{H}(m_{0},\nu)\cap\mathcal{H}(m_{0},\tilde{\nu}). Let φCc1()\varphi\in C^{1}_{c}({\mathbb{R}}). Then, φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}), and (3.3) holds for both ν\nu and ν~\tilde{\nu}, from which we obtain

φ(x)𝑑ν(x)φ(x)𝑑m0(x)=φ(x)𝑑ν~(x)φ(x)𝑑m0(x);\int_{{\mathbb{R}}}\varphi(x)d\nu(x)-\int_{{\mathbb{R}}}\varphi(x)dm_{0}(x)=\int_{{\mathbb{R}}}\varphi(x)d\tilde{\nu}(x)-\int_{{\mathbb{R}}}\varphi(x)dm_{0}(x);

that is, φ𝑑ν=φ𝑑ν~\int_{{\mathbb{R}}}\varphi d\nu=\int_{{\mathbb{R}}}\varphi d\tilde{\nu} for any φCc1()\varphi\in C^{1}_{c}({\mathbb{R}}). Hence, ν=ν~\nu=\tilde{\nu} ([24], Theorem 7.2). We denote the unique measure ν\nu such that μ(m0,ν)\mu\in\mathcal{H}(m_{0},\nu) as νμ\nu^{\mu}.

Remark 3.2.

If Assumptions 4 and 5 hold, (m0)\mathcal{H}(m_{0}) is not empty. To see this, let X¯(t)=0tQ(s)𝑑s\overline{X}(t)=\int_{0}^{t}Q(s)ds. Define ν𝒫()\nu\in{\mathcal{P}}({\mathbb{R}}) by

f(x)𝑑ν(x)=f(x+X¯(T))𝑑m0(x)\int_{{\mathbb{R}}}f(x)d\nu(x)=\int_{{\mathbb{R}}}f(x+\overline{X}(T))dm_{0}(x) (3.5)

for all fCc()f\in C_{c}({\mathbb{R}}), and define μ+(Ω)\mu\in\mathcal{R}^{+}(\Omega) by

Ωψ(t,x,v)𝑑μ(t,x,v)=0Tψ(t,x+X¯(t),Q(t))𝑑m0(x)𝑑t\int_{\Omega}\psi(t,x,v)d\mu(t,x,v)=\int_{0}^{T}\int_{{\mathbb{R}}}\psi(t,x+\overline{X}(t),Q(t))dm_{0}(x)dt (3.6)

for all ψCc(Ω)\psi\in C_{c}(\Omega). Next, we use the following cut-off function

θ(x)={1x(1,1)ϑ(x)(2,2)(1,1)0x(2,2),\theta(x)=\begin{cases}1\quad&x\in(-1,1)\\ \vartheta(x)\quad&(-2,2)\setminus(-1,1)\\ 0\quad&x\in{\mathbb{R}}\setminus(-2,2),\end{cases}

where ϑ\vartheta is chosen such that θC1()\theta\in C^{1}({\mathbb{R}}), 0θ10\leqslant\theta\leqslant 1, and θC1()c||\theta||_{C^{1}({\mathbb{R}})}\leqslant c. Let

hn(x,v)=θ(2xn)θ(2vn)(|x|ζ1+|v|ζ2) and gn=𝟙n(x)𝟙n(v)(|x|ζ1+|v|ζ2),h_{n}(x,v)=\theta\left(\frac{2x}{n}\right)\theta\left(\frac{2v}{n}\right)\left(|x|^{\zeta_{1}}+|v|^{\zeta_{2}}\right)\mbox{ and }g_{n}=\mathds{1}_{n}(x)\mathds{1}_{n}(v)\left(|x|^{\zeta_{1}}+|v|^{\zeta_{2}}\right),

where 𝟙n\mathds{1}_{n} is the characteristic function of the interval [n,n][-n,n]. gng_{n} is a sequence of measurable functions that satisfy 0gn(x,v)|x|ζ1+|v|ζ20\leqslant g_{n}(x,v)\leqslant|x|^{\zeta_{1}}+|v|^{\zeta_{2}} and gn2(x,v)|x|ζ1+|v|ζ2g_{\frac{n}{2}}(x,v)\to|x|^{\zeta_{1}}+|v|^{\zeta_{2}} pointwise for (x,y)2(x,y)\in{\mathbb{R}}^{2}. Although the functions gng_{n} are not continuous, they are Borel-measurable, and hence their integral w.r.t. μ\mu is well-defined. Note that gn2(x,v)hn(x,v)gn(x,v)g_{\frac{n}{2}}(x,v)\leqslant h_{n}(x,v)\leqslant g_{n}(x,v) and hnCc(Ω)h_{n}\in C_{c}(\Omega). Then,

Ωgn2(x,v)𝑑μ(t,x,v)\displaystyle\int_{\Omega}g_{\frac{n}{2}}(x,v)d\mu(t,x,v) Ωhn(x,v)𝑑μ(t,x,v)\displaystyle\leqslant\int_{\Omega}h_{n}(x,v)d\mu(t,x,v)
=0Thn(x+X¯(t),Q(t))𝑑m0(x)𝑑t\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}}h_{n}(x+\overline{X}(t),Q(t))dm_{0}(x)dt
0Tgn(x+X¯(t),Q(t))𝑑m0(x)𝑑t\displaystyle\leqslant\int_{0}^{T}\int_{{\mathbb{R}}}g_{n}(x+\overline{X}(t),Q(t))dm_{0}(x)dt
0T|x+X¯(t)|ζ1+|Q(t)|ζ2dm0(x)dt\displaystyle\leqslant\int_{0}^{T}\int_{{\mathbb{R}}}|x+\overline{X}(t)|^{\zeta_{1}}+|Q(t)|^{\zeta_{2}}dm_{0}(x)dt
0T2ζ11(|x|ζ1+|X¯(t)|ζ1)+|Q(t)|ζ2dm0(x)dt\displaystyle\leqslant\int_{0}^{T}\int_{\mathbb{R}}2^{\zeta_{1}-1}\left(|x|^{\zeta_{1}}+|\overline{X}(t)|^{\zeta_{1}}\right)+|Q(t)|^{\zeta_{2}}dm_{0}(x)dt
=2ζ11(T|x|ζ1𝑑m0(x)+X¯Lζ1([0,T])ζ1)+QLζ2([0,T])ζ2\displaystyle=2^{\zeta_{1}-1}\left(T\int_{\mathbb{R}}|x|^{\zeta_{1}}dm_{0}(x)+\|\overline{X}\|^{\zeta_{1}}_{L^{\zeta_{1}}([0,T])}\right)+\|Q\|^{\zeta_{2}}_{L^{\zeta_{2}}([0,T])}
2ζ11T(|x|ζ1𝑑m0(x)+Tζ1Qζ1)+TQζ2\displaystyle\leqslant 2^{\zeta_{1}-1}T\left(\int_{\mathbb{R}}|x|^{\zeta_{1}}dm_{0}(x)+T^{\zeta_{1}}\|Q\|_{\infty}^{\zeta_{1}}\right)+T\|Q\|^{\zeta_{2}}_{\infty}
=C(ζ1,ζ2,T,m0,Q),\displaystyle=C(\zeta_{1},\zeta_{2},T,m_{0},Q),

where C(ζ1,ζ2,T,m0,Q)C(\zeta_{1},\zeta_{2},T,m_{0},Q) is finite by Assumptions 4 and 5. Using the previous inequality and the Monotone Convergence Theorem, we conclude that μ\mu satisfies (3.2). Therefore, for any φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}), we have

Ω|φt(t,x)|+|v||φx(t,x)|dμ(t,x,v)<,|φ(T,x+X¯(T))|𝑑m0(x)+|φ(0,x)|𝑑m0(x)<.\begin{split}\int_{\Omega}|\varphi_{t}(t,x)|+|v||\varphi_{x}(t,x)|d\mu(t,x,v)<\infty,\\ \int_{{\mathbb{R}}}|\varphi(T,x+\overline{X}(T))|dm_{0}(x)+\int_{{\mathbb{R}}}|\varphi(0,x)|dm_{0}(x)<\infty.\end{split} (3.7)

Denote M¯=maxt[0,T]|X¯(t)|\overline{M}=\max\limits_{t\in[0,T]}|\overline{X}(t)| and let ϕn(t,x,v)=φn(t,x)θ(vn)\phi^{n}(t,x,v)=\varphi^{n}(t,x)\theta\left(\frac{v}{n}\right), where φn(t,x)=φ(t,x)θ(xn)\varphi^{n}(t,x)=\varphi(t,x)\theta\left(\frac{x}{n}\right). Because φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}), from the definitions of ϕn\phi^{n}, φn\varphi^{n}, and θ\theta, we have

max(t,x)[0,T]×|φn(t,x)|=max(t,x)[0,T]×|φ(t,x)θ(xn)|Cn,\displaystyle\max_{(t,x)\in[0,T]\times{\mathbb{R}}}|\varphi^{n}(t,x)|=\max_{(t,x)\in[0,T]\times{\mathbb{R}}}\left|\varphi(t,x)\theta\left(\tfrac{x}{n}\right)\right|\leqslant Cn, (3.8)
max(t,x,v)Ω|ϕtn(t,x,v)|max(t,x)Ω|φtn(t,x)|=max(t,x)[0,T]×|φt(t,x)θ(xn)|C,\displaystyle\max_{(t,x,v)\in\Omega}|\phi^{n}_{t}(t,x,v)|\leqslant\max_{(t,x)\in\Omega}|\varphi^{n}_{t}(t,x)|=\max_{(t,x)\in[0,T]\times{\mathbb{R}}}\left|\varphi_{t}(t,x)\theta\left(\tfrac{x}{n}\right)\right|\leqslant C,
ϕxnC(Ω)max(t,x)[0,T]×|φxn(t,x)|=max(t,x)[0,T]×|φx(t,x)θ(xn)+1nφ(t,x)θ(xn)|C.\displaystyle||\phi^{n}_{x}||_{C(\Omega)}\leqslant\max_{(t,x)\in[0,T]\times{\mathbb{R}}}|\varphi^{n}_{x}(t,x)|=\max_{(t,x)\in[0,T]\times{\mathbb{R}}}\left|\varphi_{x}(t,x)\theta\left(\tfrac{x}{n}\right)+\tfrac{1}{n}\varphi(t,x)\theta^{\prime}\left(\tfrac{x}{n}\right)\right|\leqslant C.

Relying on these estimates from Assumption 5, we have

|0Tn<|x|<2nn<|v|<2nϕtn+vϕxndμ(t,x,v)|\displaystyle\left|\int_{0}^{T}\int_{n<|x|<2n}\int_{n<|v|<2n}\phi^{n}_{t}+v\phi^{n}_{x}d\mu(t,x,v)\right|
0Tn<|x|<2nn<|v|<2nC(|v|+1)𝑑μ(t,x,v)\displaystyle\leqslant\int_{0}^{T}\int_{n<|x|<2n}\int_{n<|v|<2n}C(|v|+1)d\mu(t,x,v)
ΩC(|v|+1)(θ(2xn3)+θ(2xn+3))(θ(2vn3)+θ(2vn+3))𝑑μ(t,x,v)\displaystyle\leqslant\int_{\Omega}C(|v|+1)\left(\theta\left(\frac{2x}{n}-3\right)+\theta\left(\frac{2x}{n}+3\right)\right)\left(\theta\left(\frac{2v}{n}-3\right)+\theta\left(\frac{2v}{n}+3\right)\right)d\mu(t,x,v)
0T2C(|Q(t)|+1)(θ(2(x+X¯(t))n3)+θ(2(x+X¯(t))n+3))𝑑m0(x)\displaystyle\leqslant\int_{0}^{T}\int_{{\mathbb{R}}}2C(|Q(t)|+1)\left(\theta\left(\frac{2(x+\overline{X}(t))}{n}-3\right)+\theta\left(\frac{2(x+\overline{X}(t))}{n}+3\right)\right)dm_{0}(x)
TCn2M¯<|x|<52n+M¯𝑑m0(x)=o(1).\displaystyle\leqslant TC\int_{\frac{n}{2}-\overline{M}<|x|<\frac{5}{2}n+\overline{M}}dm_{0}(x)=o(1). (3.9)

Furthermore, Assumption 5 with (3.8) implies that

|(n2nX¯(T)+2nX¯(T)n)φn(T,x+X¯(T))dm0(x)|\displaystyle\left|\left(\int_{n}^{2n-\overline{X}(T)}+\int_{-2n-\overline{X}(T)}^{-n}\right)\varphi^{n}(T,x+\overline{X}(T))dm_{0}(x)\right|
nM¯<|x|<2n+M¯|φn(T,x+X¯(T))|𝑑m0(x)CnM¯<|x|<2n+M¯|x|𝑑m0(x)=o(1),\displaystyle\leqslant\int_{n-\overline{M}<|x|<2n+\overline{M}}\left|\varphi^{n}(T,x+\overline{X}(T))\right|dm_{0}(x)\leqslant C\int_{n-\overline{M}<|x|<2n+\overline{M}}|x|dm_{0}(x)=o(1),
|n<|x|<2nφn(0,x)𝑑m0(x)|Cn<|x|<2n|x|𝑑m0(x)=o(1),\displaystyle\left|\int_{n<|x|<2n}\varphi^{n}(0,x)dm_{0}(x)\right|\leqslant C\int_{n<|x|<2n}|x|dm_{0}(x)=o(1), (3.10)

where o(1)0o(1)\to 0 when nn\to\infty. Note that ϕnCc(Ω)\phi^{n}\in C_{c}(\Omega) and supp(ϕn)=[0,T]×[2n,2n]2\operatorname{supp}(\phi^{n})=[0,T]\times[-2n,2n]^{2}. Consequently, for all nn0n\geqslant n_{0}, where n0n_{0} satisfies Qn01\frac{\|Q\|_{\infty}}{n_{0}}\leqslant 1, by (3.6), we have

0T2n2n2n2nϕtn(t,x,v)+vϕxn(t,x,v)dμ(t,x,v)\displaystyle\int_{0}^{T}\int_{-2n}^{2n}\int_{-2n}^{2n}\phi^{n}_{t}(t,x,v)+v\phi^{n}_{x}(t,x,v)d\mu(t,x,v)
=0Tϕtn(t,x+X¯(t),Q(t))+Q(t)ϕxn(t,x+X¯(t),Q(t))dm0(x)dt\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}}\phi^{n}_{t}(t,x+\overline{X}(t),Q(t))+Q(t)\phi^{n}_{x}(t,x+\overline{X}(t),Q(t))dm_{0}(x){\rm d}t
=0Tθ(Q(t)n)(φtn(t,x+X¯(t))+Q(t)φn(t,x+X¯(t)))𝑑m0(x)𝑑t\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}}\theta\left(\frac{Q(t)}{n}\right)\left(\varphi^{n}_{t}(t,x+\overline{X}(t))+Q(t)\varphi^{n}(t,x+\overline{X}(t))\right)dm_{0}(x)dt
=0Tddtφn(t,x+X¯(t))𝑑m0(x)𝑑t\displaystyle=\int_{{\mathbb{R}}}\int_{0}^{T}\frac{d}{dt}\varphi^{n}(t,x+\overline{X}(t))dm_{0}(x)dt
=2nX¯(T)2nX¯(T)φn(T,x+X¯(T))𝑑m0(x)2n2nφn(0,x)𝑑m0(x).\displaystyle=\int_{-2n-\overline{X}(T)}^{2n-\overline{X}(T)}\varphi^{n}(T,x+\overline{X}(T))dm_{0}(x)-\int_{-2n}^{2n}\varphi^{n}(0,x)dm_{0}(x). (3.11)

On the other hand, (3.2) and (3.2), yield

0Tn<|x|<2nn<|x|<2nϕtn(t,x)+vϕxn(t,x)dμ(t,x,v)\displaystyle\int_{0}^{T}\int_{n<|x|<2n}\int_{n<|x|<2n}\phi^{n}_{t}(t,x)+v\phi^{n}_{x}(t,x)d\mu(t,x,v)
(n2nX¯(T)+2nX¯(T)n)φn(T,x+X¯(T))dm0(x)+n<|x|<2nφn(0,x)𝑑m0(x)=o(1).\displaystyle-\left(\int_{n}^{2n-\overline{X}(T)}+\int_{-2n-\overline{X}(T)}^{-n}\right)\varphi^{n}(T,x+\overline{X}(T))dm_{0}(x)+\int_{n<|x|<2n}\varphi^{n}(0,x)dm_{0}(x)=o(1).

Therefore, (3.2) with the definitions of ϕn\phi^{n}, φn\varphi^{n}, θ\theta implies

0Tnnnnφt(t,x)+vφx(t,x)dμ(t,x,v)=nnφ(T,x+X¯(T))𝑑m0(x)nnφ(0,x)𝑑m0(x)+o(1).\begin{split}\int_{0}^{T}\int_{-n}^{n}\int_{-n}^{n}\varphi_{t}(t,x)&+v\varphi_{x}(t,x)d\mu(t,x,v)\\ &=\int_{-n}^{n}\varphi(T,x+\overline{X}(T))dm_{0}(x)-\int_{-n}^{n}\varphi(0,x)dm_{0}(x)+o(1).\end{split} (3.12)

With similar arguments, by using (3.5), we prove that

nnφ(T,x+X¯(T))𝑑m0(x)nnφ(0,x)𝑑m0(x)=nnφ(T,x)𝑑ν(x)nnφ(0,x)𝑑m0(x)+o(1).\begin{split}\int_{-n}^{n}\varphi(T,x+\overline{X}(T))dm_{0}(x)&-\int_{-n}^{n}\varphi(0,x)dm_{0}(x)\\ &=\int_{-n}^{n}\varphi(T,x)d\nu(x)-\int_{-n}^{n}\varphi(0,x)dm_{0}(x)+o(1).\end{split} (3.13)

Combining (3.12) and (3.13), we obtain

0Tnnnnφt(t,x)+vφx(t,x)dμ(t,x,v)=nnφ(T,x)𝑑ν(x)nnφ(0,x)𝑑m0(x)+o(1).\begin{split}\int_{0}^{T}\int_{-n}^{n}\int_{-n}^{n}\varphi_{t}(t,x)&+v\varphi_{x}(t,x)d\mu(t,x,v)\\ &=\int_{-n}^{n}\varphi(T,x)d\nu(x)-\int_{-n}^{n}\varphi(0,x)dm_{0}(x)+o(1).\end{split}

Letting nn\to\infty in the preceding identity and using (3.7), we conclude that μ\mu satisfies (3.3).

Lastly, proceeding as before, we prove that μ\mu verifies (3.4). Hence, μ(m0,ν)\mu\in\mathcal{H}(m_{0},\nu) and, therefore, (m0)\mathcal{H}(m_{0})\neq\emptyset.

The minimization in (1.4) is an infinite-dimensional optimization problem. To study the connection between solutions of (1.1) and the dual problem of (1.4), we compute the dual problem using Fenchel-Rockafellar’s theorem ([48], Theorem 1.9.):

Theorem 3.3.

Let EE be a normed vector space and let EE^{*} be its topological dual space. Let ff and gg be convex functions on EE with values in {+}{\mathbb{R}}\cup\{+\infty\}. Denote by ff^{*} and gg^{*} the Legendre-Fenchel transforms of ff and gg, respectively, defined by

f(x)=supxE(x,xf(x)),g(x)=supxE(x,xg(x)).f^{*}(x^{*})=\sup_{x\in E}\left(\left\langle x^{*},x\right\rangle-f(x)\right),\quad g^{*}(x^{*})=\sup_{x\in E}\left(\left\langle x^{*},x\right\rangle-g(x)\right).

Assume there exists x0Ex_{0}\in E such that f(x0),g(x0)<+f(x_{0}),~{}g(x_{0})<+\infty, and ff is continuous at x0x_{0}. Then

infxEf(x)+g(x)=maxyEf(y)g(y).\inf_{x\in E}f(x)+g(x)=\max_{y\in E^{*}}-f^{*}(-y)-g^{*}(y). (3.14)

In the previous result, it is part of the theorem that the supremum in the right-hand side of (3.14) is a maximum.

Now, we introduce the definitions we need to apply Theorem 3.3. Recall that Ω=[0,T]××\Omega=[0,T]\times{\mathbb{R}}\times{\mathbb{R}}, and let ζ=(ζ1,ζ2)\zeta=(\zeta_{1},\zeta_{2}) according to (3.1). Consider the normed vector space

Cζ(Ω):=\displaystyle C_{\zeta}(\Omega):= {ϕC(Ω):ϕζ:=supΩ|ϕ(t,x,v)1+|x|ζ1+|v|ζ2|<,\displaystyle\left\{\phi\in C(\Omega):~{}\|\phi\|_{\zeta}:=\sup_{\Omega}\left|\frac{\phi(t,x,v)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\right|<\infty,\right. (3.15)
lim|x|,|v|ϕ(t,x,v)1+|x|ζ1+|v|ζ2=0uniformly for t[0,T]}.\displaystyle\left.~{}\lim_{|x|,|v|\to\infty}\frac{\phi(t,x,v)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}=0~{}\mbox{uniformly for }t\in[0,T]\right\}.
Remark 3.4.

Let ζ\zeta satisfy (3.1). The dual of (Cζ(Ω),ζ)\left(C_{\zeta}(\Omega),\|\cdot\|_{\zeta}\right) is

𝒰ζ={μ(Ω):Ω(1+|x|ζ1+|v|ζ2)d|μ|(t,x,v)<}.\displaystyle\mathcal{U}^{\zeta}=\left\{\mu\in\mathcal{R}(\Omega):~{}\int_{\Omega}(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})d|\mu|(t,x,v)<\infty\right\}.

To see this, let

C0(Ω):={ψC(Ω):lim|x|,|v|ψ(t,x,v)=0,uniformly for t[0,T]}.C_{0}(\Omega):=\left\{\psi\in C(\Omega):~{}\lim_{|x|,|v|\to\infty}\psi(t,x,v)=0,~{}\mbox{uniformly for }t\in[0,T]\right\}.

From the Riesz Representation Theorem ([24], Theorem 7.17), we have that

C0(Ω) and (Ω) are isomorphic.C_{0}(\Omega)^{*}\mbox{ and }\mathcal{R}(\Omega)\mbox{ are isomorphic}. (3.16)

Define Φ:C0(Ω)Cζ(Ω)\Phi:C_{0}(\Omega)\to C_{\zeta}(\Omega) by Φ(ψ)=ϕ:=(1+|x|ζ1+|v|ζ2)ψ\Phi(\psi)=\phi:=(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})\psi. Then Φ\Phi is a linear isometry since Φ(ψ)ζ=ψ\|\Phi(\psi)\|_{\zeta}=\|\psi\|_{\infty}. Now, given fCζ(Ω)f\in C_{\zeta}(\Omega)^{*}, define FC0(Ω)F\in C_{0}(\Omega)^{*} by F=fΦF=f\circ\Phi. Using (3.16), there exists μ~(Ω)\tilde{\mu}\in\mathcal{R}(\Omega) such that

F,ψ=Ωψ(t,x,v)𝑑μ~(t,x,v)\langle F,\psi\rangle=\int_{\Omega}\psi(t,x,v)~{}d\tilde{\mu}(t,x,v)

for all ψC0(Ω)\psi\in C_{0}(\Omega). Given ϕCζ(Ω)\phi\in C_{\zeta}(\Omega), let ψ=Φ1(ϕ)=ϕ1+|x|ζ1+|v|ζ2C0(Ω)\psi=\Phi^{-1}(\phi)=\frac{\phi}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\in C_{0}(\Omega). Then

f,ϕ=F,ψ=Ωϕ(t,x,v)dμ~(t,x,v)1+|x|ζ1+|v|ζ2.\langle f,\phi\rangle=\langle F,\psi\rangle=\int_{\Omega}\phi(t,x,v)~{}\frac{d\tilde{\mu}(t,x,v)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}.

Hence, because (x,v)11+|x|ζ1+|v|ζ2(x,v)\mapsto\frac{1}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}} is continuous and bounded, the measure dμ(t,x,v):=11+|x|ζ1+|v|ζ2dμ~(t,x,v)d\mu(t,x,v):=\frac{1}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}d\tilde{\mu}(t,x,v) is a Borel measure finite on compact sets. Therefore ([24], Theorem 7.8), μ\mu is a Radon measure on Ω\Omega. Notice that any Hahn, and therefore, Jordan decomposition of μ~\tilde{\mu} ([24], Theorem 3.4) provides a corresponding decomposition for μ\mu, from which we obtain that d|μ|=11+|x|ζ1+|v|ζ2d|μ~|d|\mu|=\frac{1}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}d|\tilde{\mu}|. Therefore,

Ω(1+|x|ζ1+|v|ζ2)d|μ|(t,x,v)=Ωd|μ~|(t,x,v)<.\int_{\Omega}(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})d|\mu|(t,x,v)=\int_{\Omega}d|\tilde{\mu}|(t,x,v)<\infty.

On the other hand, any μ𝒰ζ\mu\in\mathcal{U}^{\zeta} defines a linear map on Cζ(Ω)C_{\zeta}(\Omega) by

ϕΩϕ(t,x,v)d|μ|.\phi\mapsto\int_{\Omega}\phi(t,x,v)d|\mu|.

From the following inequality

|Ω(1+|x|ζ1+|v|ζ2)ϕ(t,x,v)1+|x|ζ1+|v|ζ2d|μ||ϕζΩ(1+|x|ζ1+|v|ζ2)d|μ|,\left|\int_{\Omega}(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})\dfrac{\phi(t,x,v)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}d|\mu|\right|\leqslant\|\phi\|_{\zeta}\int_{\Omega}(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})d|\mu|,

we see that this linear map is also bounded. Hence, we conclude that Cζ(Ω)C_{\zeta}(\Omega)^{*} and 𝒰ζ(Ω)\mathcal{U}^{\zeta}(\Omega) are isomorphic. It can be proved that they are isometrically isomorphic (see [24], Theorem 7.17).

Define (see Remark 3.4)

𝒰1={μ𝒰ζ:μ0,Ω𝑑μ=T}.\displaystyle\mathcal{U}_{1}=\left\{\mu\in\mathcal{U}^{\zeta}:~{}\mu\geqslant 0,~{}\int_{\Omega}d\mu=T\right\}. (3.17)

Notice that 𝒰1\mathcal{U}_{1} is the set of non-negative Radon measures that satisfy (3.2) and for which (3.3) holds for φ(t,x)=t\varphi(t,x)=t. Now, we define an operator related to the left-hand side of (3.3). Take vv\in{\mathbb{R}}. Define, Av:C1([0,T]×)Cζ(Ω)A^{v}:~{}C^{1}([0,T]\times{\mathbb{R}})\to C_{\zeta}(\Omega) by

φAvφ=φtvφx.\varphi\mapsto A^{v}\varphi=-\varphi_{t}-v\varphi_{x}.

Indeed, because φt,φxC([0,T]×)\varphi_{t},~{}\varphi_{x}\in C([0,T]\times{\mathbb{R}}), and

|Avφ|1+|x|ζ1+|v|ζ2φC11+|v|1+|x|ζ1+|v|ζ2φC1(1+supv|v|1+|v|ζ2)CφC1,\frac{|A^{v}\varphi|}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\leqslant\|\varphi\|_{C^{1}}\frac{1+|v|}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\leqslant\|\varphi\|_{C^{1}}\left(1+\sup_{v\in{\mathbb{R}}}\frac{|v|}{1+|v|^{\zeta_{2}}}\right)\leqslant C\|\varphi\|_{C^{1}},

we have AvφCζ(Ω)A^{v}\varphi\in C_{\zeta}(\Omega) and AvA^{v} is bounded. Therefore, AvA^{v} is a linear and bounded map. We use this map to define the following sets. Let 𝒞Cζ(Ω)\mathcal{C}\subset C_{\zeta}(\Omega) be the closed subspace

𝒞=clζ{ϕCζ(Ω):ϕ(t,x,v)=Avφ(t,x)(vQ(t))η(t) for some \displaystyle\mathcal{C}=\mbox{cl}_{\|\cdot\|_{\zeta}}\left\{\phi\in C_{\zeta}(\Omega):~{}\phi(t,x,v)=A^{v}\varphi(t,x)-(v-Q(t))\eta(t)~{}\mbox{ for some }\right. (3.18)
φΛ([0,T]×),ηC([0,T])},\displaystyle\left.\varphi\in\Lambda([0,T]\times{\mathbb{R}}),~{}\eta\in C([0,T])\right\},

where QQ satisfies Assumption 4, and clζ\mbox{cl}_{\|\cdot\|_{\zeta}} denotes the closure with respect to ζ\|\cdot\|_{\zeta}. Notice that 𝒞\mathcal{C} is convex because AvA^{v} is linear.

Given a linear and bounded operator B:C([0,T]×)B:C([0,T]\times{\mathbb{R}})\to{\mathbb{R}}, let

𝒰2(B)=clweak{μ𝒰ζ:ΩAvφ𝑑μ(t,x,v)=Bφ,φΛ([0,T]×)},\displaystyle\mathcal{U}_{2}(B)=\mbox{cl}_{\mbox{{\tiny weak}}}\left\{\mu\in\mathcal{U}^{\zeta}:~{}\int_{\Omega}A^{v}\varphi d\mu(t,x,v)=B\varphi,~{}\forall\varphi\in\Lambda([0,T]\times{\mathbb{R}})\right\}, (3.19)

where clweak\mbox{cl}_{\mbox{{\tiny weak}}} denotes the closure with respect to weak convergence of measures ([15], Definition 1.31.). The choice of the operator BB determines whether 𝒰2(B)\mathcal{U}_{2}(B)\neq\emptyset. For instance, given νT𝒫()\nu_{T}\in\mathcal{P}({\mathbb{R}}), for the operators

Bφ=φ(0,x)𝑑m0(x)φ(T,x)𝑑νT(x),B\varphi=\int_{\mathbb{R}}\varphi(0,x)dm_{0}(x)-\int_{\mathbb{R}}\varphi(T,x)d\nu_{T}(x), (3.20)

and AvA^{v} as before, (3.19) corresponds to (3.3), and Remark 3.2 shows that 𝒰2(B)\mathcal{U}_{2}(B)\neq\emptyset. Analogously, (see (3.4)) we define

𝒰3=clweak{μ𝒰ζ:Ωη(t)(vQ(t))𝑑μ(t,x,v)=0,ηC([0,T])}.\displaystyle\mathcal{U}_{3}=\mbox{cl}_{\mbox{{\tiny weak}}}\left\{\mu\in\mathcal{U}^{\zeta}:~{}\int_{\Omega}\eta(t)(v-Q(t))~{}d\mu(t,x,v)=0,~{}\forall\eta\in C([0,T])\right\}. (3.21)
Remark 3.5.

Let BB as in (3.20). If m0,ν𝒫()m_{0},\nu\in{\mathcal{P}}({\mathbb{R}}) are such that (m0,ν)\mathcal{H}(m_{0},\nu)\neq\emptyset, then

(m0,ν)=𝒰1𝒰2(B)𝒰3.\mathcal{H}(m_{0},\nu)=\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}.

To see this, notice that (3.17), (3.19), and (3.21) imply 𝒰1𝒰2(B)𝒰3(m0,ν)\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}\subset\mathcal{H}(m_{0},\nu). For the opposite inclusion, let μ(m0,ν)\mu\in\mathcal{H}(m_{0},\nu) and let A={(t,x,v)Ω:1<|x|ζ1+|v|ζ2}A=\left\{(t,x,v)\in\Omega:~{}1<|x|^{\zeta_{1}}+|v|^{\zeta_{2}}\right\}. We have that |μ|=μ|\mu|=\mu because μ0\mu\geqslant 0. Writing Ω𝑑μ=A𝑑μ+Ac𝑑μ\int_{\Omega}d\mu=\int_{A}d\mu+\int_{A^{c}}d\mu, where AcA^{c} denotes the complement of the set AA, we see that

A𝑑μA|x|ζ1+|v|ζ2dμΩ|x|ζ1+|v|ζ2dμ<,\int_{A}d\mu\leqslant\int_{A}|x|^{\zeta_{1}}+|v|^{\zeta_{2}}d\mu\leqslant\int_{\Omega}|x|^{\zeta_{1}}+|v|^{\zeta_{2}}d\mu<\infty,

and Ac𝑑μ\int_{A^{c}}d\mu is finite because AcA^{c} is compact and μ\mu is a Radon measure. Hence, μ𝒰ζ\mu\in\mathcal{U}^{\zeta}. Moreover, since μ\mu satisfies (3.3) and (3.4), we have that μ𝒰2(B)𝒰3\mu\in\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}. Using φ(t,x)=t\varphi(t,x)=t in (3.3), we obtain that μ𝒰1\mu\in\mathcal{U}_{1}. Therefore μ𝒰1𝒰2(B)𝒰3\mu\in\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}.

Now, we introduce the functionals we will use in the context of the Fenchel-Rockafellar theorem. Define f:Cζ(Ω){+}f:C_{\zeta}(\Omega)\to{\mathbb{R}}\cup\{+\infty\} by

f(ϕ)=Tsup(t,x,v)Ω(ϕ(t,x,v)L(x,v)vuT(x)).\displaystyle f(\phi)=T\sup_{(t,x,v)\in\Omega}\left(\phi(t,x,v)-L(x,v)-vu^{\prime}_{T}(x)\right). (3.22)

Since ff is the supremum of affine functions, ff is convex. The following result proves continuity for this map.

Lemma 3.6.

Let ζ\zeta satisfy (3.1). Under Assumptions 1-3, the map ff is continuous on Cζ(Ω)C_{\zeta}(\Omega).

Proof.

Let (ϕn)n,ϕCζ(Ω)(\phi_{n})_{n\in{\mathbb{N}}},\phi\in C_{\zeta}(\Omega) be such that limnϕnϕζ=0\lim_{n}\|\phi_{n}-\phi\|_{\zeta}=0. The first condition in (3.15) and the convergence of ϕn\phi_{n} guarantees the existence of C>0C>0 such that ϕnζ,ϕζC\|\phi_{n}\|_{\zeta},\|\phi\|_{\zeta}\leqslant C for all nn; that is,

|ϕn(t,x,v)|,|ϕ(t,x,v)|C(1+|x|ζ1+|v|ζ2)for all (t,x,v)Ω,n.|\phi_{n}(t,x,v)|,|\phi(t,x,v)|\leqslant C(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})\quad\mbox{for all }(t,x,v)\in\Omega,~{}n\in{\mathbb{N}}.

Let α>C\alpha>C. By Assumption 2, using (2.1) (see Remark 2.1), we have

C1|x|γ1+|v|γ2γ2Cγ2/γ2CL(x,v),for all(x,v)2.C_{1}|x|^{\gamma_{1}}+\dfrac{|v|^{\gamma_{2}^{\prime}}}{\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}}-C\leqslant L(x,v),\quad\text{for all}\quad(x,v)\in{\mathbb{R}}^{2}.

Adding the term vuT(x)vu^{\prime}_{T}(x) to both sides of the previous inequality, we get

1γ2Cγ2/γ2(γ2Cγ2/γ2C1|x|γ1+|v|γ2+vuT(x)γ2Cγ2/γ2C1+|x|ζ1+|v|ζ2)L(x,v)+vuT(x)1+|x|ζ1+|v|ζ2\dfrac{1}{\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}}\left(\dfrac{\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}C_{1}|x|^{\gamma_{1}}+|v|^{\gamma_{2}^{\prime}}+vu_{T}^{\prime}(x)-\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}C}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\right)\leqslant\frac{L(x,v)+vu^{\prime}_{T}(x)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}

for all (x,v)2(x,v)\in{\mathbb{R}}^{2}. By Assumption 3, uTu^{\prime}_{T} is bounded. Hence, according to (3.1), the left-hand side of the previous expression goes to ++\infty when |x|,|v|+|x|,|v|\to+\infty. Hence, we can find r>0r>0 such that |x|,|v|r|x|,|v|\geqslant r implies

L(x,v)+vuT(x)1+|x|ζ1+|v|ζ2α.-\frac{L(x,v)+vu^{\prime}_{T}(x)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}\leqslant-\alpha.

Let (x,v)([r,r]2)c(x,v)\in([-r,r]^{2})^{c}, where AcA^{c} denotes the complement of the set AA, and let t[0,T]t\in[0,T]. Using the previous bound, we have

ϕn(t,x,v)L(x,v)vuT(x)\displaystyle\phi_{n}(t,x,v)-L(x,v)-vu^{\prime}_{T}(x) ϕn(t,x,v)α(1+|x|ζ1+|v|ζ2)\displaystyle\leqslant\phi_{n}(t,x,v)-\alpha(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})
(Cα)(1+|x|ζ1+|v|ζ2)\displaystyle\leqslant(C-\alpha)(1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}})
<0,\displaystyle<0,

for nn\in{\mathbb{N}}. Hence,

f(ϕn)=Tsup(t,x,v)[0,T]×[r,r]2(ϕn(t,x,v)L(x,v)vuT(x)),f(\phi_{n})=T\sup_{(t,x,v)\in[0,T]\times[-r,r]^{2}}\left(\phi_{n}(t,x,v)-L(x,v)-vu^{\prime}_{T}(x)\right),

and the same holds for ϕ\phi. Because the convergence on Cζ(Ω)C_{\zeta}(\Omega) implies uniform convergence on [0,T]×[r,r]2[0,T]\times[-r,r]^{2}, we obtain

f(ϕn)f(ϕ).f(\phi_{n})\to f(\phi).\qed
Proposition 3.7.

Let ζ\zeta satisfy (3.1). Suppose that Assumptions 1-3 hold. Let μ𝒰ζ\mu\in\mathcal{U}^{\zeta}. If μ0\mu\ngeq 0 then f(μ)=+f^{*}(\mu)=+\infty.

Proof.

Let μ𝒰ζ\mu\in\mathcal{U}^{\zeta} be such that μ0\mu\ngeq 0. Regarding μ\mu as a linear map, by Remark 3.4, there exists ϕCζ(Ω)\phi\in C_{\zeta}(\Omega) such that 0ϕ0\leqslant\phi and Ωϕ(t,x,v)𝑑μ<0\int_{\Omega}\phi(t,x,v)d\mu<0. Let ϕn=nϕ\phi_{n}=-n\phi, for nn\in{\mathbb{N}}. Thus, the sequence (ϕn)n(\phi_{n})_{n\in{\mathbb{N}}} in Cζ(Ω)C_{\zeta}(\Omega) satisfies

ϕn0andΩϕn𝑑μ+.\phi_{n}\leqslant 0\quad\mbox{and}\quad\int_{\Omega}\phi_{n}d\mu\to+\infty. (3.23)

Let ϕ~n=ϕn+vuT\tilde{\phi}_{n}=\phi_{n}+vu^{\prime}_{T}, for nn\in{\mathbb{N}}. By Assumption 3, we have vuTCζ(Ω)vu^{\prime}_{T}\in C_{\zeta}(\Omega). Therefore, ϕ~nCζ(Ω)\tilde{\phi}_{n}\in C_{\zeta}(\Omega) for nn\in{\mathbb{N}}. Moreover, Ωϕ~n𝑑μ+\int_{\Omega}\tilde{\phi}_{n}d\mu\to+\infty as well. From (3.22) we get

f(ϕ~n)=Tsup(t,x,v)Ω(ϕnL).f(\tilde{\phi}_{n})=T\sup_{(t,x,v)\in\Omega}\left(\phi_{n}-L\right).

By Assumption 2, using (2.1) (see Remark 2.1) and the first condition in (3.23), we get

ϕn(t,x,v)L(x,v)C1|x|γ1|v|γ2γ2Cγ2/γ2+CC.\phi_{n}(t,x,v)-L(x,v)\leqslant-C_{1}|x|^{\gamma_{1}}-\dfrac{|v|^{\gamma_{2}^{\prime}}}{\gamma_{2}^{\prime}C^{\gamma_{2}^{\prime}/\gamma_{2}}}+C\leqslant C.

Thus, f(ϕ~n)TCf(\tilde{\phi}_{n})\leqslant TC. Hence, we conclude that

+=limnΩϕ~n𝑑μTClimnΩϕ~n𝑑μf(ϕ~n)f(μ).+\infty=\lim_{n}\int_{\Omega}\tilde{\phi}_{n}d\mu-TC\leqslant\lim_{n}\int_{\Omega}\tilde{\phi}_{n}d\mu-f(\tilde{\phi}_{n})\leqslant f^{*}(\mu).\qed
Proposition 3.8.

Let ζ\zeta satisfy (3.1). Suppose that Assumptions 1-3 hold. Let μ𝒰ζ\mu\in\mathcal{U}^{\zeta}. If μ0\mu\geqslant 0, then

f(μ)ΩL+vuTdμ+supψCζ(Ω)(Ωψ𝑑μTsupΩψ).f^{*}(\mu)\geqslant\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu+\sup_{\psi\in C_{\zeta}(\Omega)}\left(\int_{\Omega}\psi d\mu-T\sup_{\Omega}\psi\right).
Proof.

From (2.1), we can add a constant CC to LL and assume that 0L0\leqslant L. Using Remark 2.1, let LnL_{n} be a sequence in Cζ(Ω)C_{\zeta}(\Omega) such that 0LnLn+1L0\leqslant L_{n}\leqslant L_{n+1}\leqslant L and LnLL_{n}\to L pointwise. Fix nn\in{\mathbb{N}}, ϕCζ(Ω)\phi\in C_{\zeta}(\Omega) and let ψ=ϕvuTLnCζ(Ω)\psi=\phi-vu^{\prime}_{T}-L_{n}\in C_{\zeta}(\Omega). Then

Ωϕ𝑑μf(ϕ)\displaystyle\int_{\Omega}\phi d\mu-f(\phi) =Ω(ψ+Ln+vuT)𝑑μTsupΩ(ψ+LnL)\displaystyle=\int_{\Omega}\left(\psi+L_{n}+vu^{\prime}_{T}\right)d\mu-T\sup_{\Omega}\left(\psi+L_{n}-L\right)
Ω(ψ+Ln+vuT)𝑑μTsupΩψ.\displaystyle\geqslant\int_{\Omega}\left(\psi+L_{n}+vu^{\prime}_{T}\right)d\mu-T\sup_{\Omega}\psi.

By the Monotone Convergence Theorem, we have ΩLn𝑑μΩL𝑑μ\int_{\Omega}L_{n}d\mu\to\int_{\Omega}Ld\mu. Therefore,

f(μ)=supϕCζ(Ω)Ωϕ𝑑μf(ϕ)\displaystyle f^{*}(\mu)=\sup_{\phi\in C_{\zeta}(\Omega)}\int_{\Omega}\phi d\mu-f(\phi) ΩL+vuTdμ+supψCζ(Ω)(Ωψ𝑑μTsupΩψ).\displaystyle\geqslant\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu+\sup_{\psi\in C_{\zeta}(\Omega)}\left(\int_{\Omega}\psi~{}d\mu-T\sup_{\Omega}\psi\right).\qed
Proposition 3.9.

Let ζ\zeta satisfy (3.1). Suppose that Assumptions 1-3 hold. Let ff be as in (3.22) and let ff^{*} be its Legendre transform; that is,

f(μ)=supϕCζ(Ω)(Ωϕ𝑑μf(ϕ)).f^{*}(\mu)=\sup_{\phi\in C_{\zeta}(\Omega)}\left(\int_{\Omega}\phi~{}d\mu-f(\phi)\right).

Then,

f(μ)={ΩL+vuTdμμ𝒰1+otherwise.f^{*}(\mu)=\begin{cases}\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu&\mu\in\mathcal{U}_{1}\\ +\infty&\mbox{otherwise}\end{cases}.
Proof.

By Proposition 3.7, if μ0\mu\ngeq 0 then f(μ)=+f^{*}(\mu)=+\infty. Let μ0\mu\geqslant 0. If μ𝒰1\mu\not\in\mathcal{U}_{1}, by definition, Ω𝑑μT\int_{\Omega}d\mu\neq T (see (3.17)). Define ϕα=α+vuTCCζ(Ω)\phi_{\alpha}=\alpha+vu^{\prime}_{T}-C\in C_{\zeta}(\Omega), where α\alpha\in{\mathbb{R}} and CC is given by Assumption 2. Then, by (2.1), we obtain

f(ϕα)=TsupΩ(αCL)Tα.f(\phi_{\alpha})=T\sup_{\Omega}\left(\alpha-C-L\right)\leqslant T\alpha.

Adding αΩ𝑑μ\alpha\int_{\Omega}d\mu and rearranging the previous expression, we get

αΩ𝑑μTααΩ𝑑μf(ϕα),\alpha\int_{\Omega}d\mu-T\alpha\leqslant\alpha\int_{\Omega}d\mu-f(\phi_{\alpha}),

which implies that

(Ω𝑑μT)supααsupαΩα𝑑μf(ϕα)f(μ).\left(\int_{\Omega}d\mu-T\right)\sup_{\alpha\in{\mathbb{R}}}\alpha\leqslant\sup_{\alpha\in{\mathbb{R}}}\int_{\Omega}\alpha d\mu-f(\phi_{\alpha})\leqslant f^{*}(\mu).

From the preceding inequality, we conclude that f(μ)=+f^{*}(\mu)=+\infty. On the other hand, if μ𝒰1\mu\in\mathcal{U}_{1}, by definition, Ω𝑑μ=T\int_{\Omega}d\mu=T. For any ϕCζ(Ω)\phi\in C_{\zeta}(\Omega), we have

ΩϕLvuTdμΩsupΩ(ϕLvuT)dμ=TsupΩ(ϕLvuT)=f(ϕ).\int_{\Omega}\phi-L-vu^{\prime}_{T}~{}d\mu\leqslant\int_{\Omega}\sup_{\Omega}\left(\phi-L-vu^{\prime}_{T}\right)~{}d\mu=T\sup_{\Omega}\left(\phi-L-vu^{\prime}_{T}\right)=f(\phi).

Rearranging the previous inequality, we obtain

Ωϕ𝑑μf(ϕ)ΩL+vuTdμ,\int_{\Omega}\phi d\mu-f(\phi)\leqslant\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu,

and we conclude that f(μ)ΩL+vuTdμf^{*}(\mu)\leqslant\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu. Finally, we take ψ0\psi\equiv 0 in Proposition 3.8 to obtain f(μ)ΩL+vuTdμf^{*}(\mu)\geqslant\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu. The result follows. ∎

Now, we define the second functional we use in the Fenchel-Rockafellar theorem. Recall the definition of 𝒞\mathcal{C} in (3.18). Fix (see (3.19) and (3.21))

μ¯𝒰2(B)𝒰3.\overline{\mu}\in\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}. (3.24)

Define g:Cζ(Ω){+}g:C_{\zeta}(\Omega)\to{\mathbb{R}}\cup\{+\infty\} as

g(ϕ)={Ωϕ𝑑μ¯,ϕ𝒞+,otherwise.g(\phi)=\begin{cases}\displaystyle-\int_{\Omega}\phi d\overline{\mu},&\phi\in\mathcal{C}\\ +\infty,&\mbox{otherwise}.\end{cases} (3.25)
Proposition 3.10.

Let ζ\zeta satisfy (3.1). Suppose that Assumption 4 holds. Assume that B:C([0,T]×)B:C([0,T]\times{\mathbb{R}})\to{\mathbb{R}} is a linear and bounded operator such that 𝒰2(B)𝒰3\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}\neq\emptyset. Then

g(μ)={0,μ𝒰2(B)𝒰3+,otherwise.g^{*}(\mu)=\begin{cases}0,&-\mu\in\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}\\ +\infty,&\mbox{otherwise}.\end{cases}
Proof.

Let μ𝒰ζ\mu\in\mathcal{U}^{\zeta} and define μ^=μ+μ¯(Ω)\hat{\mu}=\mu+\overline{\mu}~{}\in\mathcal{R}(\Omega).

Assume that μ𝒰2(B)𝒰3-\mu\in\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}. Then, μ^\hat{\mu} satisfies

ΩAvφ(vQ(t))η(t)dμ^=0\int_{\Omega}A^{v}\varphi-(v-Q(t))\eta(t)~{}d\hat{\mu}=0

for all φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}) and ηC([0,T])\eta\in C([0,T]). Because μ^\hat{\mu} defines a linear and bounded functional on Cζ(Ω)C_{\zeta}(\Omega) (see Section 3.4), the continuity under ζ\|\cdot\|_{\zeta} guarantees that Ωϕ𝑑μ^=0\int_{\Omega}\phi~{}d\hat{\mu}=0 for all ϕ𝒞\phi\in\mathcal{C}; that is, Ωϕ𝑑μ=Ωϕ𝑑μ¯=g(ϕ)\int_{\Omega}\phi~{}d\mu=-\int_{\Omega}\phi~{}d\overline{\mu}=g(\phi) for all ϕ𝒞\phi\in\mathcal{C}. Hence,

g(μ)=supϕCζ(Ω)(Ωϕ𝑑μg(ϕ))=supϕ𝒞(Ωϕ𝑑μg(ϕ))=0.g^{*}(\mu)=\sup_{\phi\in C_{\zeta}(\Omega)}\left(\int_{\Omega}\phi~{}d\mu-g(\phi)\right)=\sup_{\phi\in\mathcal{C}}\left(\int_{\Omega}\phi~{}d\mu-g(\phi)\right)=0.

Now, assume that μ𝒰2(B)𝒰3-\mu\not\in\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}. Then, either μ𝒰2(B)-\mu\not\in\mathcal{U}_{2}(B) or μ𝒰3-\mu\not\in\mathcal{U}_{3}. In the first alternative, there exists φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}) such that

ΩAvφ𝑑μ(x,q,s)Bφ,-\int_{\Omega}A^{v}\varphi d\mu(x,q,s)\neq B\varphi,

we have

ΩAvφ𝑑μ^=ΩAvφ𝑑μ+ΩAvφ𝑑μ¯0.\int_{\Omega}A^{v}\varphi d\hat{\mu}=\int_{\Omega}A^{v}\varphi d\mu+\int_{\Omega}A^{v}\varphi d\overline{\mu}\neq 0.

Define ϕ^=Avφ\hat{\phi}=A^{v}\varphi. Then ϕ^𝒞\hat{\phi}\in\mathcal{C} and satisfies Ωϕ^𝑑μ^0\int_{\Omega}\hat{\phi}~{}d\hat{\mu}\neq 0, and using (3.25), we obtain

supϕCζ(Ω)(Ωϕ𝑑μg(ϕ))=supϕ𝒞(Ωϕ𝑑μg(ϕ))Ωϕ^𝑑μg(ϕ^)=Ωϕ^𝑑μ^.\sup_{\phi\in C_{\zeta}(\Omega)}\left(\int_{\Omega}\phi~{}d\mu-g(\phi)\right)=\sup_{\phi\in\mathcal{C}}\left(\int_{\Omega}\phi~{}d\mu-g(\phi)\right)\geqslant\int_{\Omega}\hat{\phi}~{}d\mu-g(\hat{\phi})=\int_{\Omega}\hat{\phi}~{}d\hat{\mu}.

Let αn=nsgn(Ωϕ^𝑑μ^)\alpha_{n}=n~{}\mbox{sgn}\left(\int_{\Omega}\hat{\phi}~{}d\hat{\mu}\right), where sgn()\mbox{sgn}(\cdot) denotes the sign function, and ϕ^n=αnAvφ\hat{\phi}_{n}=\alpha_{n}A^{v}\varphi, for nn\in{\mathbb{N}}. Because αnφ\alpha_{n}\varphi is a sequence in Λ([0,T]×)\Lambda([0,T]\times{\mathbb{R}}), ϕ^n\hat{\phi}_{n} is a sequence in 𝒞\mathcal{C}. Furthermore, the previous inequality implies

g(μ)nsgn(Ωϕ^𝑑μ^)Ωϕ^𝑑μ^g^{*}(\mu)\geqslant n~{}\mbox{sgn}\left(\int_{\Omega}\hat{\phi}~{}d\hat{\mu}\right)\int_{\Omega}\hat{\phi}~{}d\hat{\mu}

for all nn\in{\mathbb{N}}. Hence g(μ)=+g^{*}(\mu)=+\infty.

In the second alternative, there exists ηC([0,T])\eta\in C([0,T]) such that

Ωη(t)(vQ(t))𝑑μ0,\int_{\Omega}\eta(t)(v-Q(t))~{}d\mu\neq 0,

we have

Ωη(vQ)φ𝑑μ^=Ωη(vQ)φ𝑑μ0.\int_{\Omega}\eta(v-Q)\varphi d\hat{\mu}=\int_{\Omega}\eta(v-Q)\varphi d\mu\neq 0.

Define ϕ^=(vQ)η\hat{\phi}=-(v-Q)\eta. Then ϕ^𝒞\hat{\phi}\in\mathcal{C} and satisfies Ωϕ^𝑑μ^0\int_{\Omega}\hat{\phi}~{}d\hat{\mu}\neq 0. Proceeding as before, we obtain g(μ)=+g^{*}(\mu)=+\infty. ∎

Theorem 3.11.

Let ζ\zeta satisfy (3.1). Suppose that Assumptions 1-4 hold. Assume that B:C([0,T]×)B:C([0,T]\times{\mathbb{R}})\to{\mathbb{R}} is a linear and bounded operator such that 𝒰2(B)𝒰3\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}\neq\emptyset. Then

infφ,η(Tsup(t,x)(φt+Qη+H(x,φx+η+uT))Bφ)=maxμ(ΩL+vuTdμ),\displaystyle\inf_{\begin{subarray}{c}\varphi,\eta\end{subarray}}\left(T\sup_{(t,x)}\bigg{(}-\varphi_{t}+Q\eta+H(x,\varphi_{x}+\eta+u^{\prime}_{T})\bigg{)}-B\varphi\right)=\max_{\mu}\left(-\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu\right),

where the supremum is taken over (t,x)[0,T]×(t,x)\in[0,T]\times{\mathbb{R}}, the infimum is taken over φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}), ηC([0,T])\eta\in C([0,T]), and the maximum is taken on μ𝒰1𝒰2(B)𝒰3\mu\in\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}.

Proof.

Recall that ff is convex, and by Lemma 3.6, ff is continuous on Cζ(Ω)C_{\zeta}(\Omega). By definition, gg is convex. Therefore, to use Theorem 3.3, we need to find ϕCζ(Ω)\phi\in C_{\zeta}(\Omega) such that f(ϕ),g(ϕ)<+f(\phi),g(\phi)<+\infty. Take φ(t,x)=CtuT(x)\varphi(t,x)=Ct-u_{T}(x), where CC is given by Assumption 2. Then ϕ=Avφ=C+vuT𝒞\phi=A^{v}\varphi=-C+vu^{\prime}_{T}\in\mathcal{C}. By Assumption 2 and (2.1), we have

f(ϕ)0.f(\phi)\leqslant 0.

From the definition of gg (see (3.25)),

g(ϕ)=Bφ,g(\phi)=-B\varphi,

and by Assumption 3, BφB\varphi is finite. Hence, relying on the duality relation between Cζ(Ω)C_{\zeta}(\Omega) and 𝒰ζ\mathcal{U}^{\zeta} (see Remark 3.4), we apply Theorem 3.3 to get

infϕCζ(Ω)(f(ϕ)+g(ϕ))=maxμ𝒰ζ(f(μ)g(μ))=maxμ𝒰ζ(f(μ)g(μ)).\inf_{\phi\in C_{\zeta}(\Omega)}\left(f(\phi)+g(\phi)\right)=\max_{\mu\in\mathcal{U}^{\zeta}}\left(-f^{*}(-\mu)-g^{*}(\mu)\right)=\max_{\mu\in\mathcal{U}^{\zeta}}\left(-f^{*}(\mu)-g^{*}(-\mu)\right).

From Proposition 3.9 and Proposition 3.10, it follows that

maxμ𝒰ζ(f(μ)g(μ))=maxμ𝒰1𝒰2(B)𝒰3(ΩL+vuTdμ).\max_{\mu\in\mathcal{U}^{\zeta}}\left(-f^{*}(\mu)-g^{*}(-\mu)\right)=\max_{\mu\in\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}}\left(-\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu\right).

By (3.25),

infϕCζ(Ω)(f(ϕ)+g(ϕ))=infϕ𝒞(TsupΩ(ϕLvuT)Ωϕ𝑑μ¯),\inf_{\phi\in C_{\zeta}(\Omega)}\left(f(\phi)+g(\phi)\right)=\inf_{\phi\in\mathcal{C}}\left(T\sup_{\Omega}\left(\phi-L-vu^{\prime}_{T}\right)-\int_{\Omega}\phi d\overline{\mu}\right),

and using the definition of 𝒞\mathcal{C} in (3.18), the selection of μ¯\overline{\mu} in (3.24), and the definition of the Legendre transform (1.3), we obtain

infϕ𝒞(TsupΩ(ϕLvuT)Ωϕ𝑑μ¯)\displaystyle\inf_{\phi\in\mathcal{C}}\left(T\sup_{\Omega}\left(\phi-L-vu^{\prime}_{T}\right)-\int_{\Omega}\phi d\overline{\mu}\right)
=\displaystyle= infφΛ([0,T]×)ηC([0,T])(TsupΩ(Avφ(vQ)ηLvuT)ΩAvφ(vQ)ηdμ¯)\displaystyle\inf_{\begin{subarray}{c}\varphi\in\Lambda([0,T]\times{\mathbb{R}})\\ \eta\in C([0,T])\end{subarray}}\left(T\sup_{\Omega}\left(A^{v}\varphi-(v-Q)\eta-L-vu^{\prime}_{T}\right)-\int_{\Omega}A^{v}\varphi-(v-Q)\eta~{}d\overline{\mu}\right)
=\displaystyle= infφΛ([0,T]×)ηC([0,T])(TsupΩ(φt+Qηv(φx+η+uT)L)Bφ)\displaystyle\inf_{\begin{subarray}{c}\varphi\in\Lambda([0,T]\times{\mathbb{R}})\\ \eta\in C([0,T])\end{subarray}}\left(T\sup_{\Omega}\left(-\varphi_{t}+Q\eta-v(\varphi_{x}+\eta+u^{\prime}_{T})-L\right)-B\varphi\right)
=\displaystyle= infφΛ([0,T]×)ηC([0,T])(Tsup(t,x)[0,T]×(φt+Qη+supv(v(φx+η+uT)L))Bφ)\displaystyle\inf_{\begin{subarray}{c}\varphi\in\Lambda([0,T]\times{\mathbb{R}})\\ \eta\in C([0,T])\end{subarray}}\left(T\sup_{(t,x)\in[0,T]\times{\mathbb{R}}}\left(-\varphi_{t}+Q\eta+\sup_{v\in{\mathbb{R}}}\left(-v(\varphi_{x}+\eta+u^{\prime}_{T})-L\right)\right)-B\varphi\right)
=\displaystyle= infφΛ([0,T]×)ηC([0,T])(Tsup(t,x)[0,T]×(φt+Qη+H(x,φx+η+uT))Bφ).\displaystyle\inf_{\begin{subarray}{c}\varphi\in\Lambda([0,T]\times{\mathbb{R}})\\ \eta\in C([0,T])\end{subarray}}\left(T\sup_{(t,x)\in[0,T]\times{\mathbb{R}}}\bigg{(}-\varphi_{t}+Q\eta+H(x,\varphi_{x}+\eta+u^{\prime}_{T})\bigg{)}-B\varphi\right).

The result follows. ∎

Now, we use the duality result from Theorem 3.11 to prove Theorem 1.2.

Proof of Theorem 1.2.

Let BB be given by (3.20) and consider the set 𝒰2(B)\mathcal{U}_{2}(B) according to (3.19). By assumption, (m0,νT)\mathcal{H}(m_{0},\nu_{T})\neq\emptyset, from which (1.8) and Remark 3.5 imply

h(m0,νT)=infμ(m0,νT)ΩL+vuTdμ=infμ𝒰1𝒰2(B)𝒰3ΩL+vuTdμ.h(m_{0},\nu_{T})=\inf_{\begin{subarray}{c}\mu\in\mathcal{H}(m_{0},\nu_{T})\end{subarray}}\int_{\Omega}L+vu_{T}^{\prime}d\mu=\inf_{\mu\in\mathcal{U}_{1}\cap\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}}\int_{\Omega}L+vu^{\prime}_{T}~{}d\mu.

In particular, 𝒰2(B)𝒰3\mathcal{U}_{2}(B)\cap\mathcal{U}_{3}\neq\emptyset. The conclusion follows by invoking Theorem 3.11 and the previous equality. ∎

4. Preliminary results on MFG

Here, we consider approximations of Lipschitz continuous solutions of the Hamilton-Jacobi equation in (1.1). We provide a commutation lemma, which states that the approximated solutions are sub-solutions of an approximate Hamilton-Jacobi equation. Then, we improve the result in [35], where the authors proved that ϖ\varpi solving (1.1) and (1.2) satisfies ϖW1,1([0,T])\varpi\in W^{1,1}([0,T]). A better result can be established as ϖ\varpi is Lipschitz continuous, as we prove here. This result, in turn, enables the use of the commutation lemma.

4.1. A commutation lemma

The commutation lemmas presented in [37] and [45] are applied to a Hamilton-Jacobi equation where the state variable is constrained to the dd-dimensional torus; that is, periodic boundary conditions. Here, we present a version of this lemma that is valid for the non-periodic case and takes into account the dependence of the Hamilton-Jacobi equation on the price variable.

We start by introducing smooth approximations to the solutions of (1.1). Let ρ,θCc(;[0,))\rho,\theta\in C^{\infty}_{c}({\mathbb{R}};[0,\infty)) be symmetric standard mollifiers, i.e.

suppρ,suppθ[1,1],ρ(t)=ρ(t),θ(x)=θ(x),andρL1()=θL1()=1.\operatorname{supp}\rho,\operatorname{supp}\theta\subset[-1,1],~{}\rho(t)=\rho(-t),~{}\theta(x)=\theta(-x),~{}\mbox{and}~{}\|\rho\|_{L^{1}({\mathbb{R}})}=\|\theta\|_{L^{1}({\mathbb{R}})}=1.

For 0<α<T0<\alpha<T, set ρα(t):=α1ρ(α1t),t\rho^{\alpha}(t):=\alpha^{-1}\rho(\alpha^{-1}t),\,t\in{\mathbb{R}} and θα(x):=α1θ(α1x),x\theta^{\alpha}(x):=\alpha^{-1}\theta(\alpha^{-1}x),\,x\in{\mathbb{R}}. Then, we have that ραL1()=θαL1()=1\|\rho^{\alpha}\|_{L^{1}({\mathbb{R}})}=\|\theta^{\alpha}\|_{L^{1}({\mathbb{R}})}=1, and

0ρα(s)θα(y)|y|𝑑y𝑑s,0ρα(s)θα(y)s𝑑y𝑑sα.\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)|y|~{}dyds,~{}\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)s~{}dyds\leqslant\alpha. (4.1)

For wC([α,T]×)w\in C([\alpha,T]\times{\mathbb{R}}), define wαC([α,T]×)w^{\alpha}\in C^{\infty}([\alpha,T]\times{\mathbb{R}}) as

wα(t,x)=0ρα(s)θα(y)w(ts,xy)𝑑y𝑑s,(t,x)[α,T]×.w^{\alpha}(t,x)=\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)w(t-s,x-y)dyds,\quad(t,x)\in[\alpha,T]\times{\mathbb{R}}. (4.2)
Lemma 4.1.

Suppose that Assumptions 1 and 2 hold. Let (w,m,ϖ)(w,m,\varpi) solve (1.1) (see Remark 1.1). Assume further that ww is Lipschitz in xx and ϖ\varpi is Lipschitz. Let wαw^{\alpha} be defined as in (4.2). Then, there exists C>0C^{\prime}>0 depending on ϖ\varpi, HH and the Lipschitz constants of ww and ϖ\varpi such that

wtα+H(x,ϖ+wxα)Cα,for all(t,x)[α,T]×.-w^{\alpha}_{t}+H(x,\varpi+w^{\alpha}_{x})\leqslant C^{\prime}\alpha,\quad\mbox{for all}\quad(t,x)\in[\alpha,T]\times{\mathbb{R}}. (4.3)
Proof.

To obtain the desired inequality, we write the left-hand side of (4.3) as a convolution between ραθα\rho^{\alpha}\theta^{\alpha} and the left-hand side of the first equation in (1.1). Thus, for the first term, we have

wtα(t,x)=0ρα(s)θα(y)(wt(ts,xy))𝑑y𝑑s.-w^{\alpha}_{t}(t,x)=\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)(-w_{t}(t-s,x-y))dyds. (4.4)

For the second term, by Jensen’s inequality ([28], Theorem 204), we have

H(x,ϖ(t)+wxα(t,x))\displaystyle H(x,\varpi(t)+w^{\alpha}_{x}(t,x)) =H(x,0ρα(s)θα(y)(ϖ(t)+wx(ts,xy))𝑑y𝑑s)\displaystyle=H\left(x,\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)(\varpi(t)+w_{x}(t-s,x-y))dyds\right)
0ρα(s)θα(y)H(x,ϖ(t)+wx(ts,xy))𝑑y𝑑s.\displaystyle\leqslant\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)H(x,\varpi(t)+w_{x}(t-s,x-y))dyds. (4.5)

Let t[α,T]t\in[\alpha,T], s[0,α]s\in[0,\alpha], x,yx,y\in{\mathbb{R}}, and

q(t,x;s,y):=H(x,ϖ(t)+wx(ts,xy))H(xy,ϖ(ts)+wx(ts,xy)).q(t,x;s,y):=H\big{(}x,\varpi(t)+w_{x}(t-s,x-y)\big{)}-H\big{(}x-y,\varpi(t-s)+w_{x}(t-s,x-y)\big{)}.

Using Assumption 2 and the Lipschitz continuity of ww and ϖ\varpi, we get

|q(t,x;s,y)|\displaystyle|q(t,x;s,y)| |H(x,ϖ(t)+wx(ts,xy))H(x,ϖ(ts)+wx(ts,xy))|\displaystyle\leqslant\left|H\big{(}x,\varpi(t)+w_{x}(t-s,x-y))-H(x,\varpi(t-s)+w_{x}(t-s,x-y)\big{)}\right|
+|H(x,ϖ(ts)+wx(ts,xy))H(xy,ϖ(ts)+wx(ts,xy))|\displaystyle+\left|H\big{(}x,\varpi(t-s)+w_{x}(t-s,x-y))-H(x-y,\varpi(t-s)+w_{x}(t-s,x-y)\big{)}\right|
C|ϖ(t)ϖ(ts)|(|ϖ(ts)+wx(ts,xy)|γ21+1)\displaystyle\leqslant C|\varpi(t)-\varpi(t-s)|\left(\left|\varpi(t-s)+w_{x}(t-s,x-y)\right|^{\gamma_{2}-1}+1\right)
+C|y|(|ϖ(ts)+wx(ts,xy)|γ2+1)\displaystyle+C|y|\big{(}\left|\varpi(t-s)+w_{x}(t-s,x-y)\right|^{\gamma_{2}}+1\big{)}
Cs(|ϖ(ts)+wx(ts,xy)|γ21+1)\displaystyle\leqslant C^{\prime}s\left(\left|\varpi(t-s)+w_{x}(t-s,x-y)\right|^{\gamma_{2}-1}+1\right)
+C|y|(|ϖ(ts)+wx(ts,xy)|γ2+1)\displaystyle+C|y|\big{(}\left|\varpi(t-s)+w_{x}(t-s,x-y)\right|^{\gamma_{2}}+1\big{)}
C(s+|y|),\displaystyle\leqslant C^{\prime}(s+|y|),

where CC^{\prime} depends on ϖ\varpi, γ2\gamma_{2}, and the Lipschitz constants of ww and ϖ\varpi. From the previous inequality and (4.1), we obtain

0ρα(s)θα(y)q(t,x;s,y)𝑑y𝑑s\displaystyle\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)q(t,x;s,y)dyds 0ρα(s)θα(y)C(s+|y|)𝑑y𝑑sCα.\displaystyle\leqslant\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)C^{\prime}(s+|y|)dyds\leqslant C^{\prime}\alpha. (4.6)

Then, from (4.1) and (4.6), we have

H(x,ϖ(t)+wxα(t,x))\displaystyle H(x,\varpi(t)+w^{\alpha}_{x}(t,x))
0ρα(s)θα(y)H(xy,ϖ(ts)+wx(ts,xy))𝑑y𝑑s+Cα.\displaystyle\leqslant\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)H(x-y,\varpi(t-s)+w_{x}(t-s,x-y))dyds+C^{\prime}\alpha.

Using the preceding inequality and (4.4), we get

wtα+H(x,ϖ+wxα)\displaystyle-w^{\alpha}_{t}+H(x,\varpi+w^{\alpha}_{x})
0ρα(s)θα(y)(wt(ts,xy)+H(xy,ϖ(ts)+wx(ts,xy)))𝑑y𝑑s\displaystyle\leqslant\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)\big{(}-w_{t}(t-s,x-y)+H(x-y,\varpi(t-s)+w_{x}(t-s,x-y))\big{)}dyds
+Cα,\displaystyle\quad+C^{\prime}\alpha,

which implies (4.3). ∎

4.2. Lipschitz continuity of the price

We begin by recalling the following techniques and results from [35] if Assumptions 4, 6, and 7 hold. Firstly, to prove the existence of a solution (u,m,ϖ)(u,m,\varpi) of (1.1) and (1.2), the authors used the vanishing viscosity method, which relies on the following regularized version of (1.1)

{ut(t,x)+H(x,ϖ(t)+ux(t,x))=ϵuxxmt(t,x)(Hp(x,ϖ(t)+ux(t,x))m(t,x))x=ϵmxx(t,x)Hp(x,ϖ(t)+ux(t,x))m(t,x)𝑑x=Q(t)(t,x)[0,T]×,\begin{cases}-u_{t}(t,x)+H(x,\varpi(t)+u_{x}(t,x))=\epsilon u_{xx}\\ m_{t}(t,x)-\big{(}H_{p}(x,\varpi(t)+u_{x}(t,x))m(t,x)\big{)}_{x}=\epsilon m_{xx}(t,x)\\ -\int_{{\mathbb{R}}}H_{p}(x,\varpi(t)+u_{x}(t,x))m(t,x)dx=Q(t)\end{cases}\quad(t,x)\in[0,T]\times{\mathbb{R}}, (4.7)

subject to (1.2), where ϵ>0\epsilon>0. Secondly, the proof of existence of a solution (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) of (4.7) and (1.2) uses a fixed-point argument. This argument shows that (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) satisfies

ϖϵ˙=Q˙Hpp(x,ϖϵ+uxϵ)Hx(x,ϖϵ+uxϵ)mϵ+ϵHppp(x,ϖϵ+uxϵ)(uxxϵ)2mϵdxHpp(x,ϖϵ+uxϵ)mϵ𝑑x,\dot{\varpi^{\epsilon}}=\frac{-\dot{Q}-\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})H_{x}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}+\epsilon H_{ppp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})(u^{\epsilon}_{xx})^{2}m^{\epsilon}~{}dx}{\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}~{}dx}, (4.8)

and ϖϵ(0)\varpi^{\epsilon}(0) is determined by

Hp(x,ϖϵ(0)+uϵ(0,x))m0(x)𝑑x=Q(0).\int_{{\mathbb{R}}}H_{p}(x,\varpi^{\epsilon}(0)+u^{\epsilon}(0,x))m_{0}(x)~{}dx=-Q(0).

Using (4.8), we can deduce the Lipschitz continuity of ϖ\varpi, where (u,m,ϖ)(u,m,\varpi) solves (1.1) and (1.2), as we show next.

Proposition 4.2.

Suppose that Assumptions 1, 4, 6 and 7 hold. Then, there exists a solution (u,m,ϖ)(u,m,\varpi) of (1.1) and (1.2) such that ϖ\varpi is Lipschitz continuous.

Proof.

The existence of a solution (u,m,ϖ)(u,m,\varpi) of (1.1) and (1.2) is guaranteed by Theorem 1 in [35]. We aim to prove that ϖ\varpi, obtained in [35], is Lipschitz. To obtain this solution, the authors considered, for ϵ>0\epsilon>0, solutions (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) of (4.7) and (1.2) that satisfy (4.8). Extracting a sub-sequence if necessary, it is guaranteed that ϖϵϖ\varpi^{\epsilon}\to\varpi uniformly. To prove that ϖ\varpi is Lipschitz, we consider the right-hand side of (4.8). By Assumption 1, we have

t1Hpp(x,ϖϵ+uxϵ)mϵ𝑑x1κfor allt[0,T].\displaystyle t\mapsto\frac{1}{\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}~{}dx}\leqslant\frac{1}{\kappa}\quad\mbox{for all}\quad t\in[0,T]. (4.9)

By Assumptions 6 and 7, |Hx|=|V|Lip(V)|H_{x}|=|V^{\prime}|\leqslant\mbox{Lip}(V), where Lip(V)\mbox{Lip}(V) denotes the Lipschitz constant of VV. Hence, Assumption 6 implies that

tHpp(x,ϖϵ+uxϵ)Hx(s,ϖϵ+uxϵ)mϵ𝑑xLip(V)κfor allt[0,T].\displaystyle t\mapsto\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})H_{x}(s,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}~{}dx\leqslant\tfrac{\mbox{Lip}(V)}{\kappa^{\prime}}\quad\mbox{for all}\quad t\in[0,T]. (4.10)

By Assumption 6 and Assumption 1, we have

0T|Hppp(x,ϖϵ+uxϵ)|(uxxϵ)2mϵ𝑑x𝑑t\displaystyle\int_{0}^{T}\int_{{\mathbb{R}}}|H_{ppp}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})|(u_{xx}^{\epsilon})^{2}m^{\epsilon}dxdt C0T(uxxϵ)2mϵ𝑑x𝑑t\displaystyle\leqslant C\int_{0}^{T}\int_{{\mathbb{R}}}(u_{xx}^{\epsilon})^{2}m^{\epsilon}dxdt
Cκ0THpp(x,ϖϵ+uxϵ)(uxxϵ)2mϵ𝑑x𝑑t.\displaystyle\leqslant\frac{C}{\kappa}\int_{0}^{T}\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})(u_{xx}^{\epsilon})^{2}m^{\epsilon}dxdt. (4.11)

Assumptions 6, 7 and Proposition 5 in [35] guarantee that the term

0THpp(x,ϖϵ+uxϵ)(uxxϵ)2mϵdxdt\int_{0}^{T}\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})(u_{xx}^{\epsilon})^{2}m^{\epsilon}{\rm d}x{\rm d}t (4.12)

has an upper bound that is independent of ϵ\epsilon. Hence, using Assumption 4, (4.9), (4.10) and (4.2), we can write (4.8) as

ϖϵ˙=ϑϵ+ϵϑ1ϵ,\dot{\varpi^{\epsilon}}=\vartheta^{\epsilon}_{\infty}+\epsilon\vartheta_{1}^{\epsilon},

where

ϑϵ=Q˙Hpp(x,ϖϵ+uxϵ)Hx(x,ϖϵ+uxϵ)mϵ𝑑xHpp(x,ϖϵ+uxϵ)mϵ𝑑xL([0,T]),\displaystyle\vartheta_{\infty}^{\epsilon}=\frac{-\dot{Q}-\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})H_{x}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}dx}{\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}~{}dx}\in L^{\infty}([0,T]),
ϑ1ϵ=Hppp(x,ϖϵ+uxϵ)(uxxϵ)2mϵ𝑑xHpp(x,ϖϵ+uxϵ)mϵ𝑑xL1([0,T]),\displaystyle\vartheta_{1}^{\epsilon}=\frac{-\int_{{\mathbb{R}}}H_{ppp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})(u^{\epsilon}_{xx})^{2}m^{\epsilon}~{}dx}{\int_{{\mathbb{R}}}H_{pp}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}~{}dx}\in L^{1}([0,T]),

and they satisfy

ϑ1ϵL1([0,T])CandϑϵL([0,T])C\|\vartheta_{1}^{\epsilon}\|_{L^{1}([0,T])}\leqslant C^{\prime}\quad\mbox{and}\quad\|\vartheta_{\infty}^{\epsilon}\|_{L^{\infty}([0,T])}\leqslant C^{\prime}

for ϵ0\epsilon\to 0, where CC^{\prime} is independent of ϵ\epsilon. Hence, ([25], Proposition 1.202) passing to a sub-sequence, there exists μ([0,T])\mu\in\mathcal{R}([0,T]) such that ϑ1ϵ\vartheta^{\epsilon}_{1} converges in the weak-\star topology to μ\mu; that is,

0Tϑ1ϵη𝑑t0Tη𝑑μfor allηC([0,T]).\int_{0}^{T}\vartheta^{\epsilon}_{1}\eta~{}dt\to\int_{0}^{T}\eta~{}d\mu\quad\mbox{for all}\quad\eta\in C([0,T]). (4.13)

Passing to a further sub-sequence if necessary, ([25], Proposition 2.46) there exists ϑL([0,T])\vartheta_{\infty}\in L^{\infty}([0,T]) such that ϑϵ\vartheta_{\infty}^{\epsilon} converges in the weak-\star topology to ϑ\vartheta_{\infty}; that is,

0Tϑϵη𝑑t0Tϑη𝑑tfor allηL1([0,T]).\int_{0}^{T}\vartheta^{\epsilon}_{\infty}\eta~{}dt\to\int_{0}^{T}\vartheta_{\infty}\eta~{}dt\quad\mbox{for all}\quad\eta\in L^{1}([0,T]). (4.14)

Let ηCc1((0,T))\eta\in C^{1}_{c}((0,T)). By uniform convergence, we have that

0T(ϑϵ+ϵϑ1ϵ)η𝑑t=0Tϖϵ˙η𝑑t=0Tϖϵη˙𝑑t0Tϖη˙𝑑t,\int_{0}^{T}\left(\vartheta^{\epsilon}_{\infty}+\epsilon\vartheta_{1}^{\epsilon}\right)\eta~{}dt=\int_{0}^{T}\dot{\varpi^{\epsilon}}\eta~{}dt=-\int_{0}^{T}\varpi^{\epsilon}\dot{\eta}~{}dt\to-\int_{0}^{T}\varpi\dot{\eta}~{}dt,

and by (4.13) and (4.14), we have that

0T(ϑϵ+ϵϑ1ϵ)η𝑑t0Tϑη𝑑t.\int_{0}^{T}\left(\vartheta^{\epsilon}_{\infty}+\epsilon\vartheta_{1}^{\epsilon}\right)\eta~{}dt\to\int_{0}^{T}\vartheta_{\infty}\eta~{}dt.

Hence, ϖ˙=ϑ\dot{\varpi}=\vartheta_{\infty} in the sense of distributions. Thus, ϖW1,([0,T])\varpi\in W^{1,\infty}([0,T]), which is equivalent to ([15], Theorem 4.5) ϖ\varpi being Lipschitz continuous in [0,T][0,T]. ∎

5. Proof of Theorem 1.3

Here, we use the results from Sections 3 and 4 to prove Theorem 1.3. We divide the proof into two lemmas, Lemma 5.1 and Lemma 5.6.

Lemma 5.1.

Let m0𝒫()m_{0}\in{\mathcal{P}}({\mathbb{R}}). Suppose that Assumptions 1-8 hold. Let (u,m,ϖ)(u,m,\varpi) solve (1.1) and (1.2). Then,

(u(0,x)uT(x))𝑑m0(x)0Tϖ(t)Q(t)𝑑tinfμ(m0)ΩL(x,v)+vuT(x)dμ(t,x,v).\int_{{\mathbb{R}}}\left(u(0,x)-u_{T}(x)\right)dm_{0}(x)-\int_{0}^{T}\varpi(t)Q(t)dt\leqslant\inf_{\begin{subarray}{c}\mu\in\mathcal{H}(m_{0})\end{subarray}}\int_{\Omega}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v).
Proof.

By Assumptions 4, 6, 7, and 8, Theorem 1 in [35] guarantees the existence of a unique (u,m,ϖ)(u,m,\varpi) solving (1.1) and (1.2). Because uu is continuous (see Remark 1.1), let wαw^{\alpha} be the function given by (4.2); that is,

wα(t,x)=0ρα(s)θα(y)u(ts,xy)𝑑y𝑑s,(t,x)[α,T]×.w^{\alpha}(t,x)=\int_{0}^{\infty}\rho^{\alpha}(s)\int_{{\mathbb{R}}}\theta^{\alpha}(y)u(t-s,x-y)dyds,\quad(t,x)\in[\alpha,T]\times{\mathbb{R}}. (5.1)

For (t,x)[0,T]×(t,x)\in[0,T]\times{\mathbb{R}}, set

uα(t,x)=wα(TαTt+α,x)uT(x),u^{\alpha}(t,x)=w^{\alpha}\left(\tfrac{T-\alpha}{T}t+\alpha,x\right)-u_{T}(x),

which is C1([0,T]×)C^{1}([0,T]\times{\mathbb{R}}) due to Assumption 3 and (5.1). By Assumptions 6 and 7, the map xu(t,x)x\mapsto u(t,x) is Lipschitz for 0tT0\leqslant t\leqslant T ([35], Proposition 1), and the Lipschitz constant depends on TT and the estimates for VV and uTu_{T}. Hence, uxu_{x} is bounded independently of tt. Therefore, uxαL([0,T]×)u_{x}^{\alpha}\in L^{\infty}([0,T]\times{\mathbb{R}}) because

uxα(t,x)\displaystyle u_{x}^{\alpha}(t,x) =wxα(TαTt+α,x)uT(x)\displaystyle=w^{\alpha}_{x}\left(\tfrac{T-\alpha}{T}t+\alpha,x\right)-u_{T}^{\prime}(x)
=0ρα(s)θα(y)ux(TαTt+αs,xy)𝑑y𝑑suT(x).\displaystyle=\int_{0}^{\infty}\rho^{\alpha}(s)\int_{\mathbb{R}}\theta^{\alpha}(y)u_{x}\left(\tfrac{T-\alpha}{T}t+\alpha-s,x-y\right)dyds-u_{T}^{\prime}(x).

Furthermore, recalling that uu is a viscosity solution to the first equation in (4.7) with ε=0\varepsilon=0, we have that the first equation in (4.7) with ε=0\varepsilon=0 holds a.e. (t,x)(0,T)×(t,x)\in(0,T)\times{\mathbb{R}}. Using this and the facts that uxL((0,T)×)u_{x}\in L^{\infty}((0,T)\times{\mathbb{R}}) and ϖW1,([0,T])\varpi\in W^{1,\infty}([0,T]), we deduce that utLloc((0,T)×)u_{t}\in L_{loc}^{\infty}((0,T)\times{\mathbb{R}}). Thus, utαL((0,T)×)u_{t}^{\alpha}\in L^{\infty}((0,T)\times{\mathbb{R}}) because

utα(t,x)\displaystyle u_{t}^{\alpha}(t,x) =TαTwtα(TαTt+α,x)\displaystyle=\tfrac{T-\alpha}{T}w^{\alpha}_{t}\left(\tfrac{T-\alpha}{T}t+\alpha,x\right)
=TαT0ρα(s)θα(y)ut(TαTt+αs,xy)𝑑y𝑑s.\displaystyle=\tfrac{T-\alpha}{T}\int_{0}^{\infty}\rho^{\alpha}(s)\int_{\mathbb{R}}\theta^{\alpha}(y)u_{t}\left(\tfrac{T-\alpha}{T}t+\alpha-s,x-y\right)dyds.

Hence, uαΛ([0,T]×)u^{\alpha}\in\Lambda([0,T]\times{\mathbb{R}}). Now, take μ(m0)\mu\in\mathcal{H}(m_{0}) (see Remark 3.2). By (3.3), we have

Ωutα(t,x)+vuxα(t,x)dμ(t,x,v)=uα(T,x)𝑑νμ(x)uα(0,x)𝑑m0(x).\int_{\Omega}u^{\alpha}_{t}(t,x)+vu^{\alpha}_{x}(t,x)d\mu(t,x,v)=\int_{{\mathbb{R}}}u^{\alpha}(T,x)d\nu^{\mu}(x)-\int_{{\mathbb{R}}}u^{\alpha}(0,x)dm_{0}(x). (5.2)

By Assumption 1 and (1.3), using p=ϖ(TαTt+α)+uxα(t,x)+uT(x)p=\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}(t,x)+u_{T}^{\prime}(x), it follows that

vuxα(t,x)\displaystyle-vu^{\alpha}_{x}(t,x) L(x,v)+vuT(x)+vϖ(TαTt+α)\displaystyle\leqslant L(x,v)+vu_{T}^{\prime}(x)+v\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)
+H(x,ϖ(TαTt+α)+uxα(t,x)+uT(x)).\displaystyle\quad+H\big{(}x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}(t,x)+u_{T}^{\prime}(x)\big{)}. (5.3)

Moreover, by the Lipschitz continuity of uu in xx and Proposition 4.2, we apply Lemma 4.1 to ww defined by (5.1) to get

wtα(TαTt+α,x)+H(x,ϖ(TαTt+α)+wxα(TαTt+α,x))Cα,-w^{\alpha}_{t}\left(\tfrac{T-\alpha}{T}t+\alpha,x\right)+H\left(x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+w^{\alpha}_{x}\left(\tfrac{T-\alpha}{T}t+\alpha,x\right)\right)\leqslant C^{\prime}\alpha,

for (t,x)[0,T]×(t,x)\in[0,T]\times{\mathbb{R}}; that is,

TTαutα+H(x,ϖ(TαTt+α)+uxα(t,x)+uT(x))Cα, for (t,x)[0,T]×.-\tfrac{T}{T-\alpha}u^{\alpha}_{t}+H\left(x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}\left(t,x\right)+u_{T}^{\prime}(x)\right)\leqslant C^{\prime}\alpha,\quad\text{ for }(t,x)\in[0,T]\times{\mathbb{R}}. (5.4)

Therefore, by (5.2), (5), (5.4), and using φ=t\varphi=t in (3.2), we have

uα(0,x)𝑑m0(x)uα(T,x)𝑑νμ(x)\displaystyle\int_{{\mathbb{R}}}u^{\alpha}(0,x)dm_{0}(x)-\int_{{\mathbb{R}}}u^{\alpha}(T,x)d\nu^{\mu}(x)
=Ωutα(t,x)vuxα(t,x)dμ(t,x,v)\displaystyle=\int_{\Omega}-u^{\alpha}_{t}(t,x)-vu^{\alpha}_{x}(t,x)d\mu(t,x,v)
Ωutαdμ(t,x,v)+ΩL(x,v)+vuTdμ(t,x,v)\displaystyle\leqslant\int_{\Omega}-u^{\alpha}_{t}d\mu(t,x,v)+\int_{\Omega}L(x,v)+vu_{T}^{\prime}d\mu(t,x,v)
+Ωvϖ(TαTt+α)+H(x,ϖ(TαTt+α)+uxα+uT)dμ(t,x,v)\displaystyle\quad+\int_{\Omega}v\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+H\left(x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}+u_{T}^{\prime}\right)d\mu(t,x,v)
ΩL(x,v)+vuTdμ(t,x,v)+Ωvϖ(TαTt+α)𝑑μ(t,x,v)+(Tα)Cα\displaystyle\leqslant\int_{\Omega}L(x,v)+vu_{T}^{\prime}d\mu(t,x,v)+\int_{\Omega}v\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)d\mu(t,x,v)+(T-\alpha)C^{\prime}\alpha
+ΩH(x,ϖ(TαTt+α)+uxα+uT)TαTH(x,ϖ(TαTt+α)+uxα+uT)dμ(t,x,v).\displaystyle\quad+\int_{\Omega}H\left(x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}+u_{T}^{\prime}\right)-\tfrac{T-\alpha}{T}H\left(x,\varpi\left(\tfrac{T-\alpha}{T}t+\alpha\right)+u^{\alpha}_{x}+u_{T}^{\prime}\right)d\mu(t,x,v).

Taking α0\alpha\to 0 in the previous inequality and using (3.4) with η=ϖ\eta=\varpi, we obtain

(u(0,x)uT(x))𝑑m0(x)ΩL(x,v)+vuTdμ(t,x,v)+ΩQ(t)ϖ(t)𝑑μ(t,x,v).\int_{{\mathbb{R}}}\left(u(0,x)-u_{T}(x)\right)dm_{0}(x)\leqslant\int_{\Omega}L(x,v)+vu_{T}^{\prime}d\mu(t,x,v)+\int_{\Omega}Q(t)\varpi(t)d\mu(t,x,v). (5.5)

Finally, taking φ(t,x)=0tQ(s)ϖ(s)𝑑s\varphi(t,x)=\int_{0}^{t}Q(s)\varpi(s)ds in (3.3), we have

ΩQ(t)ϖ(t)𝑑μ(t,x,v)=0TQ(t)ϖ(t)𝑑t.\int_{\Omega}Q(t)\varpi(t)d\mu(t,x,v)=\int_{0}^{T}Q(t)\varpi(t)dt.

Hence, (5.5) becomes

(u(0,x)uT(x))𝑑m0(x)0TQ(t)ϖ(t)𝑑tΩL(x,v)+vuTdμ(t,x,v).\int_{{\mathbb{R}}}\left(u(0,x)-u_{T}(x)\right)dm_{0}(x)-\int_{0}^{T}Q(t)\varpi(t)dt\leqslant\int_{\Omega}L(x,v)+vu_{T}^{\prime}d\mu(t,x,v).

Since μ(m0)\mu\in\mathcal{H}(m_{0}) is arbitrary, the preceding inequality completes the proof. ∎

For the second part of the proof of Theorem 1.3, we rely on (4.7), the regularized version of (1.1), subject to (1.2). We recall that, if Assumptions 4, 6 and 7 hold, ([35], Theorem 1) there exists a solution (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) of (4.7) and (1.2), where uϵu^{\epsilon} is a viscosity solution of the first equation, Lipschitz and semiconcave in xx, and differentiable mϵm^{\epsilon}-almost everywhere, mϵC([0,T],𝒫())m^{\epsilon}\in C([0,T],{\mathcal{P}}({\mathbb{R}})) w.r.t. the 11-Wasserstein distance, and ϖϵW1,1([0,T])\varpi^{\epsilon}\in W^{1,1}([0,T]) is continuous. Moreover, if ϵ>0\epsilon>0 or ϵ=0\epsilon=0 and Assumption 8 holds, this solution is unique. Using the previous results for the solution of (4.7) when ϵ>0\epsilon>0, we take ϵ0\epsilon\to 0 to exhibit a measure μ(m0)\mu\in\mathcal{H}(m_{0}) for which the inequality

u(0,x)uT(x)dm0(x)0Tϖ(t)Q(t)𝑑t0T2L(x,v)+vuT(x)dμ(t,x,v)\int_{{\mathbb{R}}}u(0,x)-u_{T}(x)dm_{0}(x)-\int_{0}^{T}\varpi(t)Q(t)dt\geqslant\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v)

holds. We begin by establishing the following moment estimate for the probability measures mϵm^{\epsilon} when ϵ>0\epsilon>0.

Proposition 5.2.

Suppose Assumptions 1, 2, 4, 6-8 hold. Assume further that m0m_{0} satisfies Assumption 5. Then, for 0<ϵ<10<\epsilon<1, the solution (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) of (4.7)-(1.2) satisfies

|x|γmϵ(t,x)𝑑x<Cfor almost everyt[0,T],\int_{{\mathbb{R}}}|x|^{\gamma}m^{\epsilon}(t,x)dx<C\quad\mbox{for almost every}~{}t\in[0,T],

where the constant CC is independent of ϵ\epsilon.

Proof.

By Assumptions 6, 7 and 8, there exist a unique solution (uϵ,mϵ,ϖϵ)(u^{\epsilon},m^{\epsilon},\varpi^{\epsilon}) of (4.7) and (1.2) ([35], Theorem 1). Then, by Assumptions 1, 2, 4, 6 and 7, and the bounds on ϖϵ\varpi^{\epsilon} and uxϵu_{x}^{\epsilon} (see Proposition 4.2 and [35], Propositions 1 and 6), we have, for 0<ϵ<10<\epsilon<1,

|Hp(ϖϵ(t)+uxϵ(t,x))|\displaystyle|H_{p}(\varpi^{\epsilon}(t)+u^{\epsilon}_{x}(t,x))| C(|ϖϵ(t)+uxϵ(t,x)|γ21+1)\displaystyle\leqslant C\left(|\varpi^{\epsilon}(t)+u^{\epsilon}_{x}(t,x)|^{\gamma_{2}-1}+1\right)
C(C(γ2)(ϖϵγ21+Lip(uϵ)γ21)+1)\displaystyle\leqslant C\left(C^{\prime}(\gamma_{2})\left(\|\varpi^{\epsilon}\|_{\infty}^{\gamma_{2}-1}+\mbox{Lip}(u^{\epsilon})^{\gamma_{2}-1}\right)+1\right)
C(C(γ2)(ϵγ21C+Lip(uϵ)γ21)+1)\displaystyle\leqslant C\left(C^{\prime}(\gamma_{2})\left(\epsilon^{\gamma_{2}-1}C^{\prime}+\mbox{Lip}(u^{\epsilon})^{\gamma_{2}-1}\right)+1\right)
=C1ϵγ21+C2\displaystyle=C_{1}\epsilon^{\gamma_{2}-1}+C_{2}
C~,\displaystyle\leqslant\tilde{C}, (5.6)

where C(γ2)=max{2γ22,1}C^{\prime}(\gamma_{2})=\max\{2^{\gamma_{2}-2},1\} and Lip(uϵ)\mbox{Lip}(u^{\epsilon}), and therefore C1C_{1}, C2C_{2}, and C~\tilde{C} are independent of ϖϵ\varpi^{\epsilon} and ϵ\epsilon. Furthermore, uϵu^{\epsilon} defines the optimal feedback in a stochastic optimal control problem, for which the optimal trajectory satisfies

dxt=Hp(xt,ϖϵ(t)+uxϵ(t,xt))dt+2ϵdWt,\mathrm{d}\mathrm{x}_{t}=-H_{p}(\mathrm{x}_{t},\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,\mathrm{x}_{t}))\mathrm{d}t+\sqrt{2\epsilon}\mathrm{d}W_{t}, (5.7)

where WtW_{t} is a one-dimensional Brownian motion (see [35]). Using Assumptions 2 and 6, the vector field

(t,x)Hp(x,ϖϵ(t)+uxϵ(t,x))=Hp(ϖϵ(t)+uxϵ(t,x))(t,x)\mapsto H_{p}(x,\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,x))=H_{p}(\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,x))

is bounded and uniformly Lipschitz. Hence, m(t,)=(xt)m(t,\cdot)=\mathcal{L}(\mathrm{x}_{t}), where (x)\mathcal{L}(\mathrm{x}) denotes the law of the random variable x\mathrm{x}, is a weak solution of the second equation in (4.7) ([13], Lemma 4.2.3), and by Assumption 8, this weak solution is unique. Hence mϵ(t,)=(xt)m^{\epsilon}(t,\cdot)=\mathcal{L}(\mathrm{x}_{t}). Writing (5.7) as

xt=x+0tHp(xt,ϖϵ(t)+uxϵ(t,xt))dt+0t2ϵdWt,\mathrm{x}_{t}=x+\int_{0}^{t}-H_{p}(\mathrm{x}_{t},\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,\mathrm{x}_{t}))\mathrm{d}t+\int_{0}^{t}\sqrt{2\epsilon}\mathrm{d}W_{t},

where xx\in{\mathbb{R}}, and using (5), we have, for 0<ϵ<10<\epsilon<1,

|xt|γ\displaystyle|\mathrm{x}_{t}|^{\gamma} 2γ1(|x|γ+2γ1(TγC~γ+2ϵγ|Wt|γ))\displaystyle\leqslant 2^{{}^{\gamma}-1}\left(|x|^{\gamma}+2^{\gamma-1}\left(T^{\gamma}\tilde{C}^{\gamma}+\sqrt{2\epsilon}^{\gamma}|W_{t}|^{\gamma}\right)\right)
2γ1|x|γ+C1+C2|Wt|γ,\displaystyle\leqslant 2^{{}^{\gamma}-1}|x|^{\gamma}+C_{1}^{\prime}+C_{2}^{\prime}|W_{t}|^{\gamma}, (5.8)

where C1C_{1}^{\prime} and C2C_{2}^{\prime} are independent of ϖϵ\varpi^{\epsilon} and ϵ\epsilon. Because WtW_{t} is normally distributed w.r.t. the measure mϵ(t,x)dxm^{\epsilon}(t,x)dx in {\mathbb{R}}, we have

𝔼[|Wt|γ]=|Wt|γmϵ(t,x)𝑑x=(2t)γ/2πΓ(γ+12),{\mathds{E}}[|W_{t}|^{\gamma}]=\int_{{\mathbb{R}}}|W_{t}|^{\gamma}m^{\epsilon}(t,x)dx=\frac{(2t)^{\gamma/2}}{\pi}\Gamma(\tfrac{\gamma+1}{2}),

where Γ()\Gamma(\cdot) denotes the Gamma function. Integrating (5) w.r.t. mϵ(t,x)dxm^{\epsilon}(t,x)dx, using the previous formula, and recalling the initial condition for mϵm^{\epsilon} in (1.2), we obtain that mϵm^{\epsilon} satisfies

|x|γmϵ(t,x)𝑑x\displaystyle\int_{{\mathbb{R}}}|x|^{\gamma}m^{\epsilon}(t,x)dx 2γ1|x|γm0(x)𝑑x+C1+C2(2T)γ/2πΓ(ζ1+12).\displaystyle\leqslant 2^{\gamma-1}\int_{{\mathbb{R}}}|x|^{\gamma}m_{0}(x)dx+C_{1}^{\prime}+C_{2}^{\prime}\frac{(2T)^{\gamma/2}}{\pi}\Gamma(\tfrac{\zeta_{1}+1}{2}).

By Assumption 5, the right-hand side of the previous inequality is bounded independently of ϵ\epsilon, for 0<ϵ<10<\epsilon<1, as stated. ∎

Let t[0,T]t\in[0,T]. Define βtϵ𝒫(2)\beta^{\epsilon}_{t}\in{\mathcal{P}}({\mathbb{R}}^{2}) by

2ψ(x,p)𝑑βtϵ(x,p)=ψ(x,ϖϵ(t)+uxϵ(t,x))mϵ(t,x)dxfor allψCζ¯(2),\int_{{\mathbb{R}}^{2}}\psi(x,p)d\beta^{\epsilon}_{t}(x,p)=\int_{{\mathbb{R}}}\psi(x,\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,x))m^{\epsilon}(t,x){\rm d}x\quad\mbox{for all}~{}\psi\in C_{\bar{\zeta}}({\mathbb{R}}^{2}),

where Cζ(2)={ϕC(2):lim|x|,|v|ϕ(x,v)1+|x|ζ1+|v|ζ2=0}C_{\zeta}({\mathbb{R}}^{2})=\{\phi\in C({\mathbb{R}}^{2}):\lim_{|x|,|v|\to\infty}\frac{\phi(x,v)}{1+|x|^{\zeta_{1}}+|v|^{\zeta_{2}}}=0\} and ζ¯=(γ1,γ2)\bar{\zeta}=(\gamma_{1},\gamma_{2}^{\prime}). Note that the well definiteness of the measure βtϵ\beta^{\epsilon}_{t} is ensured by Proposition 5.2. Relying on the definition of βtϵ\beta^{\epsilon}_{t}, we define μtϵ𝒫(2)\mu^{\epsilon}_{t}\in{\mathcal{P}}({\mathbb{R}}^{2}) by

2ψ(x,Lv(x,v))𝑑μtϵ(x,v)=2ψ(x,p)𝑑βtϵ(x,p)for allψCζ¯(2).\int_{{\mathbb{R}}^{2}}\psi(x,-L_{v}(x,v))d\mu^{\epsilon}_{t}(x,v)=\int_{{\mathbb{R}}^{2}}\psi(x,p)d\beta^{\epsilon}_{t}(x,p)\quad\mbox{for all}~{}\psi\in C_{\bar{\zeta}}({\mathbb{R}}^{2}).

If Assumption 1 holds, the relation v=Hp(x,p)v=-H_{p}(x,p) if and only if p=Lv(x,v)p=-L_{v}(x,v) (see Remark 2.1), implies

2ψ(x,Hp(x,p))𝑑βtϵ(x,p)=2ψ(x,v)𝑑μtϵ(x,v).\int_{{\mathbb{R}}^{2}}\psi(x,-H_{p}(x,p))d\beta^{\epsilon}_{t}(x,p)=\int_{{\mathbb{R}}^{2}}\psi(x,v)d\mu^{\epsilon}_{t}(x,v).

Finally, we define βϵ,μϵ𝒰ζ¯+(Ω)\beta^{\epsilon},\mu^{\epsilon}\in\mathcal{U}^{\bar{\zeta}}\cap\mathcal{R}^{+}(\Omega) by

Ωf(t,x,v)𝑑βϵ(t,x,v)=0T2f(t,x,v)𝑑βtϵ(x,v)dt,\int_{\Omega}f(t,x,v)d\beta^{\epsilon}(t,x,v)=\int_{0}^{T}\int_{{\mathbb{R}}^{2}}f(t,x,v)d\beta^{\epsilon}_{t}(x,v){\rm d}t,

and

Ωf(t,x,v)𝑑μϵ(t,x,v)=0T2f(t,x,v)𝑑μtϵ(x,v)dt,\int_{\Omega}f(t,x,v)d\mu^{\epsilon}(t,x,v)=\int_{0}^{T}\int_{{\mathbb{R}}^{2}}f(t,x,v)d\mu^{\epsilon}_{t}(x,v){\rm d}t, (5.9)

for all fCζ¯(Ω)f\in C_{\bar{\zeta}}(\Omega) (see Remark 3.4). Under Assumptions 1, 2, 4, 6, 7 and 8, the non-negative and finite Radon measures μϵ\mu^{\epsilon} defined by (5.9) have a weak limit in 𝒰ζ¯\mathcal{U}^{\bar{\zeta}} as ϵ0\epsilon\to 0.

We show the existence of a weak limit of the Radon measures μϵ\mu^{\epsilon} defined by (5.9).

Proposition 5.3.

Suppose Assumptions 1, 2, 4-8 hold. Then, there exists μ𝒰ζ¯+(Ω)\mu\in\mathcal{U}^{\bar{\zeta}}\cap\mathcal{R}^{+}(\Omega), where ζ¯=(γ1,γ2)\bar{\zeta}=(\gamma_{1},\gamma_{2}^{\prime}), such that, up to a sub-sequence, the sequence of Radon measures μϵ\mu^{\epsilon} defined by (5.9) weakly converge to μ\mu; that is, for all fCζ¯(Ω)f\in C_{\bar{\zeta}}(\Omega)

Ωf(t,x,v)𝑑μϵ(t,x,v)Ωf(t,x,v)𝑑μ(t,x,v).\begin{split}\int_{\Omega}f(t,x,v)d\mu^{\epsilon}(t,x,v)\to\int_{\Omega}f(t,x,v)d\mu(t,x,v).\end{split} (5.10)
Proof.

By (5) and Proposition 5.2, we have

0T(1+|x|γ+|Hp(x,ϖϵ(t)+uxϵ(t,x))|γ2+1)mϵ(t,x)dxdt\displaystyle\int_{0}^{T}\int_{{\mathbb{R}}}\left(1+|x|^{\gamma}+|H_{p}(x,\varpi^{\epsilon}(t)+u_{x}^{\epsilon}(t,x))|^{\gamma_{2}^{\prime}+1}\right)m^{\epsilon}(t,x){\rm d}x{\rm d}t
0T(1+|x|γ+C~γ2+1)mϵ(t,x)dxdt\displaystyle\leqslant\int_{0}^{T}\int_{{\mathbb{R}}}\left(1+|x|^{\gamma}+\tilde{C}^{\gamma_{2}^{\prime}+1}\right)m^{\epsilon}(t,x){\rm d}x{\rm d}t
C(1+C~γ2+1).\displaystyle\leqslant C(1+\tilde{C}^{\gamma_{2}^{\prime}+1}).

Using the previous inequality, an argument similar to that in Remark 3.2 shows that the probability measures μϵ\mu^{\epsilon} defined by (5.9) satisfy

Ω(1+|x|γ+|v|γ2+1)𝑑μϵ(t,x,v)\displaystyle\int_{\Omega}\left(1+|x|^{\gamma}+|v|^{\gamma_{2}^{\prime}+1}\right)d\mu^{\epsilon}(t,x,v)
=0T2(1+|x|γ+|v|γ2+1)𝑑μtϵ(x,v)dt\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}^{2}}\left(1+|x|^{\gamma}+|v|^{\gamma_{2}^{\prime}+1}\right)d\mu^{\epsilon}_{t}(x,v){\rm d}t
C(1+C~γ2+1),\displaystyle\leqslant C(1+\tilde{C}^{\gamma_{2}^{\prime}+1}), (5.11)

where CC and C~\tilde{C} are independent of ϵ\epsilon. Hence, μϵ𝒰ζ¯+(Ω)\mu^{\epsilon}\in\mathcal{U}^{\bar{\zeta}}\cap\mathcal{R}^{+}(\Omega), with ζ¯=(γ1,γ2)\bar{\zeta}=(\gamma_{1},\gamma_{2}^{\prime}). Furthermore, (5) implies that the measure νϵ=(1+|x|γ1+|v|γ2)μϵ(t,x,v)\nu^{\epsilon}=\left(1+|x|^{\gamma_{1}}+|v|^{\gamma_{2}^{\prime}}\right)\mu^{\epsilon}(t,x,v) belongs to +(Ω)\mathcal{R}^{+}(\Omega) and

Ω(tα0+|x|α0+|v|α0)𝑑νϵ(t,x,v)<C,\int_{\Omega}\left(t^{\alpha_{0}}+|x|^{\alpha_{0}}+|v|^{\alpha_{0}}\right)d\nu^{\epsilon}(t,x,v)<C,

where 0<α0<min{(γγ1),1γ(γ2+1)(γγ1),γγ2+1,1}0<\alpha_{0}<\min\{(\gamma-\gamma_{1}),\frac{1}{\gamma}(\gamma_{2}^{\prime}+1)(\gamma-\gamma_{1}),\frac{\gamma}{\gamma_{2}^{\prime}+1},1\}. Therefore, as ϵ0\epsilon\to 0, the sequence νϵ\nu^{\epsilon} is tight ([38], Proposition 2.23). Hence, by Prohorov’s Theorem ([38], Theorem 2.29), there exists ν+(Ω)\nu\in\mathcal{R}^{+}(\Omega) such that, up to a sub-sequence, which we still denote by νϵ\nu^{\epsilon}, νϵ\nu^{\epsilon} weakly converges to ν\nu; that is,

Ωψ(t,x,v)𝑑νϵ(t,x,v)Ωψ(t,x,v)𝑑ν(t,x,v)for allψCb(Ω).\int_{\Omega}\psi(t,x,v)d\nu^{\epsilon}(t,x,v)\to\int_{\Omega}\psi(t,x,v)d\nu(t,x,v)\quad\mbox{for all}\quad\psi\in C_{b}(\Omega). (5.12)

Now, taking μ=11+|x|γ1+|v|γ2ν\mu=\frac{1}{1+|x|^{\gamma_{1}}+|v|^{\gamma_{2}^{\prime}}}\nu, we notice that μ𝒰ζ¯+(Ω)\mu\in\mathcal{U}^{\bar{\zeta}}\cap\mathcal{R}^{+}(\Omega). Moreover, recalling the definition of νϵ\nu^{\epsilon} from (5.12), we deduce (5.10). ∎

Next, we show that the weak limit provided by Proposition 5.3 belongs to (m0)\mathcal{H}(m_{0}).

Proposition 5.4.

Suppose Assumptions 1, 2, 4-8 hold. Let μ(Ω)\mu\in\mathcal{R}(\Omega) be such that, up to a sub-sequence, the Radon measures μϵ\mu^{\epsilon} defined by (5.9) weakly converge to μ\mu. Then, μ(m0)\mu\in\mathcal{H}(m_{0}).

Proof.

The existence of μ\mu is given by Proposition 5.3. By (5), we have that μ1\mu\in\mathcal{H}_{1}. Let (u,m,ϖ)(u,m,\varpi) be the solution of (1.1) and (1.2) ([35], Theorem 1) . Let φCc1([0,T]×)\varphi\in C^{1}_{c}([0,T]\times{\mathbb{R}}). Because mm is a weak solution of the second equation in (1.1), we have

0T(φt(t,x)Hp(x,ϖ+ux)φx(t,x))m(t,x)𝑑x\displaystyle\int_{0}^{T}\int_{{\mathbb{R}}}\big{(}\varphi_{t}(t,x)-H_{p}(x,\varpi+u_{x})\varphi_{x}(t,x)\big{)}m(t,x)dx
=φ(T,x)m(T,x)dxφ(0,x)m0(x)dx,\displaystyle=\int_{{\mathbb{R}}}\varphi(T,x)m(T,x){\rm d}x-\int_{{\mathbb{R}}}\varphi(0,x)m_{0}(x){\rm d}x,

and by (5.9)

Ωφt(t,x)+vφx(t,x)dμϵ(t,x,v)\displaystyle\int_{\Omega}\varphi_{t}(t,x)+v\varphi_{x}(t,x)d\mu^{\epsilon}(t,x,v) =0T2φt(t,x)+vφx(t,x)dμtϵ(x,v)dt\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}^{2}}\varphi_{t}(t,x)+v\varphi_{x}(t,x)~{}d\mu^{\epsilon}_{t}(x,v)dt
=0T2φt(t,x)Hp(x,p)φx(t,x)dβtϵ(x,p)dt\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}^{2}}\varphi_{t}(t,x)-H_{p}(x,p)\varphi_{x}(t,x)~{}d\beta^{\epsilon}_{t}(x,p)dt
=0Tφt(t,x)Hp(x,ϖϵ+uxϵ)φx(t,x)mϵ(t,x)dxdt.\displaystyle=\int_{0}^{T}\int_{{\mathbb{R}}}\varphi_{t}(t,x)-H_{p}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})\varphi_{x}(t,x)~{}m^{\epsilon}(t,x)dxdt.

Now, taking into account (5) and arguing as in Remark 3.2, we deduce that the previous two identities also hold for any φΛ([0,T]×)\varphi\in\Lambda([0,T]\times{\mathbb{R}}). Hence, μ2(m0,ν)\mu\in\mathcal{H}_{2}(m_{0},\nu) for ν=m(T,)𝒫()\nu=m(T,\cdot)\in{\mathcal{P}}({\mathbb{R}}). Finally, the third equation in (4.7) gives

Ωη(t)(vQ(t))𝑑μϵ(t,x,v)=0Tη(t)(Hp(x,ϖϵ+uxϵ)Q(t))mϵ(t,x)𝑑x𝑑t=0,\int_{\Omega}\eta(t)(v-Q(t))d\mu^{\epsilon}(t,x,v)=\int_{0}^{T}\int_{{\mathbb{R}}}\eta(t)(-H_{p}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})-Q(t))m^{\epsilon}(t,x)dxdt=0,

for all ηC([0,T])\eta\in C([0,T]), which implies that μ3\mu\in\mathcal{H}_{3}. Therefore, μ(m0)\mu\in\mathcal{H}(m_{0}) as stated. ∎

Next, we prove the following technical lemma.

Lemma 5.5.

Let xn>ynx_{n}>y_{n}, yn+y_{n}\to+\infty and limnxnyn=1\lim\limits_{n\to\infty}\frac{x_{n}}{y_{n}}=1. Suppose that ϕL1()\phi\in L^{1}({\mathbb{R}}) and |x|σϕdx<\int_{{\mathbb{R}}}|x|^{\sigma}\phi{\rm d}x<\infty for some σ>0\sigma>0 . Then,

limn12xnynxnyn+yxn+yϕ(x)dxdy=ϕ(x)dx.\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\phi(x){\rm d}x{\rm d}y=\int_{{\mathbb{R}}}\phi(x){\rm d}x. (5.13)
Proof.

After exchanging the order of the integrals on the left-hand side in (5.13), we have

ynxnyn+yxn+yϕ(x)dxdy=2yn0ϕ(x)ynx+yndydx+0xnynϕ(x)ynxndydx+0xnynϕ(x)x+ynxndydx+xnyn2xnϕ(x)xn+xxndydx=2xn2yn2xnϕ(x)dx+2(ynxn)2yn0ϕ(x)dx+2yn0ϕ(x)xdx02xnϕ(x)xdx.\begin{split}&\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\phi(x){\rm d}x{\rm d}y=\int_{-2y_{n}}^{0}\phi(x)\int_{-y_{n}}^{x+y_{n}}{\rm d}y{\rm d}x\\ &+\int_{0}^{x_{n}-y_{n}}\phi(x)\int_{-y_{n}}^{x_{n}}{\rm d}y{\rm d}x+\int_{0}^{x_{n}-y_{n}}\phi(x)\int_{x+y_{n}}^{x_{n}}{\rm d}y{\rm d}x+\int_{x_{n}-y_{n}}^{2x_{n}}\phi(x)\int_{-x_{n}+x}^{x_{n}}{\rm d}y{\rm d}x\\ &=2x_{n}\int_{-2y_{n}}^{2x_{n}}\phi(x){\rm d}x+2(y_{n}-x_{n})\int_{-2y_{n}}^{0}\phi(x){\rm d}x+\int_{-2y_{n}}^{0}\phi(x)x{\rm d}x-\int_{0}^{2x_{n}}\phi(x)x{\rm d}x.\end{split}

Dividing the proceeding equation by 2xn2x_{n} and letting nn\to\infty, we deduce (5.13). ∎

Now, relying on the previous results, we complete the second part of the proof of Theorem 1.3. This is the content of the following Lemma.

Lemma 5.6.

Suppose Assumptions 1-8 hold. Let (u,m,ϖ)(u,m,\varpi) solve (1.1) and (1.2). Then

(u(0,x)uT(x))𝑑m0(x)0Tϖ(t)Q(t)𝑑tinfμ(m0)0T2L(x,v)+vuT(x)dμ(t,x,v).\int_{{\mathbb{R}}}\left(u(0,x)-u_{T}(x)\right)dm_{0}(x)-\int_{0}^{T}\varpi(t)Q(t)dt\geqslant\inf_{\begin{subarray}{c}\mu\in\mathcal{H}(m_{0})\end{subarray}}\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v).
Proof.

By Assumption 1 and (1.3), the following identity holds

L(x,v)=Hp(x,Lv(x,v))(Lv(x,v))H(x,Lv(x,v)).L(x,v)=H_{p}(x,-L_{v}(x,v))(-L_{v}(x,v))-H(x,-L_{v}(x,v)). (5.14)

Let t[0,T]t\in[0,T]. By Remark 2.1 and (5), we have

L(x,Hp(x,ϖϵ+uxϵ))mϵ(t,x)𝑑x(C2|x|γ1+C)mϵ(t,x)𝑑x,\int_{{\mathbb{R}}}L(x,-H_{p}(x,\varpi^{\epsilon}+u_{x}^{\epsilon}))m^{\epsilon}(t,x)dx\leqslant\int_{{\mathbb{R}}}\left(C_{2}|x|^{\gamma_{1}}+C\right)m^{\epsilon}(t,x)dx,

where CC is independent of xx and ϵ\epsilon. From the previous inequality, Assumption 5 and Proposition 5.2, and an argument similar to that in Remark 3.2, we get that the integral 2L(x,v)𝑑μtϵ(x,v)\int_{{\mathbb{R}}^{2}}L(x,v)d\mu^{\epsilon}_{t}(x,v) exists and is finite. Hence, we integrate both sides of (5.14) w.r.t. μtϵ\mu^{\epsilon}_{t}, and we use the definition of βtϵ\beta_{t}^{\epsilon} to obtain

2L(x,v)𝑑μtϵ(x,v)\displaystyle\int_{{\mathbb{R}}^{2}}L(x,v)d\mu^{\epsilon}_{t}(x,v) =2Hp(x,Lv(x,v))(Lv(x,v))H(x,Lv(x,v))dμtϵ(x,v)\displaystyle=\int_{{\mathbb{R}}^{2}}H_{p}(x,-L_{v}(x,v))(-L_{v}(x,v))-H(x,-L_{v}(x,v))d\mu^{\epsilon}_{t}(x,v)
=2Hp(x,p)pH(x,p)dβtϵ(x,p)\displaystyle=\int_{{\mathbb{R}}^{2}}H_{p}(x,p)p-H(x,p)d\beta^{\epsilon}_{t}(x,p)
=(Hp(x,ϖϵ+uxϵ)(ϖϵ+uxϵ)H(x,ϖϵ+uxϵ))mϵ𝑑x.\displaystyle=\int_{{\mathbb{R}}}\big{(}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})(\varpi^{\epsilon}+u^{\epsilon}_{x})-H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})\big{)}m^{\epsilon}dx. (5.15)

Let a[12,0]a\in[-\frac{1}{2},0] be such that |mε(t,a)|<|m^{\varepsilon}(t,a)|<\infty. By Proposition 5.2 and Assumption 5, we have that |x|mϵ𝑑x<\int_{{\mathbb{R}}}|x|m^{\epsilon}dx<\infty. Rewriting the first momentum of mεm^{\varepsilon}

|x|mϵdx=a0|x|mϵdx+n=0nn+1xmϵdx+na1na|x|mϵ𝑑x<,\int_{{\mathbb{R}}}|x|m^{\epsilon}{\rm d}x=\int_{-a}^{0}|x|m^{\epsilon}{\rm d}x+\sum_{n=0}^{\infty}\int_{n}^{n+1}xm^{\epsilon}{\rm d}x+\int_{-n-a-1}^{-n-a}|x|m^{\epsilon}dx<\infty,

we deduce that there exists N0N_{0} such that for all NN0N\geqslant N_{0}

NN+1xmϵ𝑑x+Na1Na|x|mϵdx=NN+1xmϵ𝑑x+N1N|xa|mϵ(t,xa)dxCN.\int_{N}^{N+1}xm^{\epsilon}dx+\int_{-N-a-1}^{-N-a}|x|m^{\epsilon}{\rm d}x=\int_{N}^{N+1}xm^{\epsilon}dx+\int_{-N-1}^{-N}|x-a|m^{\epsilon}(t,x-a){\rm d}x\leqslant\frac{C}{N}.

The previous estimates with Chebyshev’s inequality imply

|{x[N,N+1]:xmϵ>1N}|NNN+1xmϵdxCN,|{x[N1,N]:|xa|mϵ(t,xa)>1N}|NNa1Na|x|mϵdxCN.\begin{split}\bigg{|}\{x\in[N,N+1]:\quad xm^{\epsilon}>\frac{1}{\sqrt{N}}\}\bigg{|}\leqslant\sqrt{N}\int_{N}^{N+1}xm^{\epsilon}dx\leqslant\frac{C}{\sqrt{N}},\\ \bigg{|}\{x\in[-N-1,-N]:\quad|x-a|m^{\epsilon}(t,x-a)>\frac{1}{\sqrt{N}}\}\bigg{|}\leqslant\sqrt{N}\int_{-N-a-1}^{-N-a}|x|m^{\epsilon}dx\leqslant\frac{C}{\sqrt{N}}.\end{split}

Because a[12,0]a\in[-\frac{1}{2},0], there exists a sequence {xn}\{x_{n}\} such that

xn0,limnxn=+,limnxnmϵ(t,2xn)=limnxnmϵ(t,2xn2a)=0.\begin{split}&x_{n}\geqslant 0,\quad\lim\limits_{n\to\infty}x_{n}=+\infty,\\ &\lim\limits_{n\to\infty}x_{n}m^{\epsilon}(t,2x_{n})=\lim\limits_{n\to\infty}x_{n}m^{\epsilon}(t,-2x_{n}-2a)=0.\\ \end{split} (5.16)

Let yn=xn+ay_{n}=x_{n}+a.

By Assumption 5 follows that there exists σ>0\sigma>0 such that |x|γ1+σm0dx<\int_{{\mathbb{R}}}|x|^{\gamma_{1}+\sigma}m_{0}{\rm d}x<\infty. Then, relying on Proposition 5.2 and using Lemma 5.5, we rewrite (5)

2L(x,v)dμtϵ(x,v)=limn12xnynxnyn+yxn+y(Hp(x,ϖϵ+uxϵ)(ϖϵ+uxϵ)..H(x,ϖϵ+uxϵ))mϵdxdy=limn12xnynxnyn+yxn+yHp(x,ϖϵ+uxϵ)mϵ(uϵuT)x+Hp(x,ϖϵ+uxϵ)(ϖϵ+uT)mϵH(x,ϖϵ+uxϵ)mϵdxdy.\begin{split}&\int_{{\mathbb{R}}^{2}}L(x,v)d\mu^{\epsilon}_{t}(x,v)=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\big{(}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})(\varpi^{\epsilon}+u^{\epsilon}_{x})\big{.}\\ &\big{.}-H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})\big{)}m^{\epsilon}{\rm d}x{\rm d}y=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}\big{(}u^{\epsilon}-u_{T}\big{)}_{x}\\ &+H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}m^{\epsilon}-H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}{\rm d}x{\rm d}y.\end{split} (5.17)

Because HH is separable, uϵ(t,),uTLip()u^{\epsilon}(t,\cdot),u_{T}\in\mbox{Lip}({\mathbb{R}}), from Proposition 5.2, we deduce

limn12xn|ynxnHp(x,ϖϵ+uxϵ)mϵ(uϵuT)|yn+yxn+ydy|limnCxn|x|mϵdx=0.\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{-y_{n}}^{x_{n}}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}\big{(}u^{\epsilon}-u_{T}\big{)}\bigg{|}_{-y_{n}+y}^{x_{n}+y}{\rm d}y\right|\leqslant\lim\limits_{n\to\infty}\frac{C}{x_{n}}\int_{{\mathbb{R}}}|x|m^{\epsilon}{\rm d}x=0.

Integrating by parts the first term on the right-hand side in (5.17), using the preceding equality, and the definition of βtϵ\beta^{\epsilon}_{t}, (5.17) becomes

2L(x,v)𝑑μtϵ(x,v)\displaystyle\int_{{\mathbb{R}}^{2}}L(x,v)d\mu^{\epsilon}_{t}(x,v)
=limn12xnynxnyn+yxn+y(Hp(x,ϖϵ+uxϵ)mϵ)x(uϵuT)H(x,ϖϵ+uxϵ)mϵdxdy\displaystyle=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}-\big{(}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}\big{)}_{x}\big{(}u^{\epsilon}-u_{T}\big{)}-H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}{\rm d}x{\rm d}y
+limn12xnynxnyn+yxn+yHp(x,p)(ϖϵ+uT)𝑑βtϵ(x,p)dy.\displaystyle+\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\int_{\mathbb{R}}H_{p}(x,p)\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\beta^{\epsilon}_{t}(x,p){\rm d}y. (5.18)

Next, we prove well definiteness of several integrals. Note that Assumption 5 and the definition of μtϵ\mu^{\epsilon}_{t}, yield

|2v|x|σ(ϖϵ+uT)𝑑μtϵ(x,v)|=|2Hp(x,p)|x|σ(ϖϵ+uT)𝑑βtϵ(x,p)|=|Hp(x,ϖϵ+uxϵ)|x|σ(ϖϵ+uT)mϵdx|C,\begin{split}\left|\int_{{\mathbb{R}}^{2}}v|x|^{\sigma}\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}_{t}(x,v)\right|&=\left|\int_{{\mathbb{R}}^{2}}H_{p}(x,p)|x|^{\sigma}\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\beta^{\epsilon}_{t}(x,p)\right|\\ &=\left|\int_{{\mathbb{R}}}H_{p}(x,\varpi^{\epsilon}+u_{x}^{\epsilon})|x|^{\sigma}\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}m^{\epsilon}{\rm d}x\right|\leqslant C,\end{split}

for γ1<γ1+σ<γ\gamma_{1}<\gamma_{1}+\sigma<\gamma. Relying on the preceding estimate and considering Lemma 5.5, we obtain

limn12xnynxnyn+yxn+yv(ϖϵ+uT)𝑑μtϵ(x,v)=2v(ϖϵ+uT)𝑑μtϵ(x,v).-\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\int_{\mathbb{R}}v\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}_{t}(x,v)=-\int_{{\mathbb{R}}^{2}}v\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}_{t}(x,v). (5.19)

By the second-order energy estimate in (4.12) and using Young’s inequality, we have

0T|uxxϵ||x|γ2mϵdxdt0T(uxxϵ)2mϵ+|x|γmϵdxdtC.\begin{split}\int_{0}^{T}\int_{{\mathbb{R}}}|u_{xx}^{\epsilon}||x|^{\frac{\gamma}{2}}m^{\epsilon}{\rm d}x{\rm d}t\leqslant\int_{0}^{T}\int_{{\mathbb{R}}}(u_{xx}^{\epsilon})^{2}m^{\epsilon}+|x|^{\gamma}m^{\epsilon}{\rm d}x{\rm d}t\leqslant C.\end{split}

Hence, Lemma 5.5 implies that

0T|uxxϵ|mϵdxdt=limn12xn0Tynxnyn+yxn+y|uxxϵ|mϵdxdtC.\begin{split}\int_{0}^{T}\int_{{\mathbb{R}}}|u_{xx}^{\epsilon}|m^{\epsilon}{\rm d}x{\rm d}t=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}|u_{xx}^{\epsilon}|m^{\epsilon}{\rm d}x{\rm d}t\leqslant C.\end{split}

Using the previous estimate and taking into account that uϵLip()u^{\epsilon}\in\mbox{Lip}({\mathbb{R}}) for all t[0,T]t\in[0,T], we get

limn12xn|0Tynxnyn+yxn+ymxϵuxϵdxdydt|limn12xn|0Tynxnmϵ(t,xn+y)uxϵ(t,xn+y)mϵ(t,yn+y)uxϵ(t,yn+y)dydt|+limn12xn0Tynxnyn+yxn+y|uxxϵ|mϵdxdtlimn1xn0Tmϵ|uxϵ|dydt+0T|uxxϵ|mϵdydtC.\begin{split}&\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}m_{x}^{\epsilon}u^{\epsilon}_{x}{\rm d}x{\rm d}y{\rm d}t\right|\leqslant\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{0}^{T}\int_{-y_{n}}^{x_{n}}m^{\epsilon}(t,x_{n}+y)u^{\epsilon}_{x}(t,x_{n}+y)\right.\\ &\left.-m^{\epsilon}(t,-y_{n}+y)u^{\epsilon}_{x}(t,-y_{n}+y){\rm d}y{\rm d}t\bigg{|}\right.+\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}|u_{xx}^{\epsilon}|m^{\epsilon}{\rm d}x{\rm d}t\\ &\leqslant\lim\limits_{n\to\infty}\frac{1}{x_{n}}\int_{0}^{T}\int_{{\mathbb{R}}}m^{\epsilon}|u_{x}^{\epsilon}|{\rm d}y{\rm d}t+\int_{0}^{T}\int_{{\mathbb{R}}}|u_{xx}^{\epsilon}|m^{\epsilon}{\rm d}y{\rm d}t\leqslant C.\end{split} (5.20)

Because |mε(t,a)|<|m^{\varepsilon}(t,a)|<\infty from (5.16), we have

limn12xn|ynxnmxϵuϵ|yn+yxn+ydy|limn12xn|ynxnmxϵ(t,xn+y)uϵ(t,xn+y)dyynxnmxϵ(t,yn+y)uϵ(t,yn+y)dy|=limn12xn|xnyn2xnmxϵ(t,y)uϵ(t,y)dy2ynxnynmxϵ(t,y)uϵ(t,y)dy|limn12xn(mϵ(t,2xn)|uϵ(t,2xn)|+mϵ(t,2yn)|uϵ(t,2yn)|+2mϵ(t,a)|uϵ(t,a)|+2mϵ|uxϵ|dx)=0.\begin{split}&\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}u^{\epsilon}\bigg{|}_{-y_{n}+y}^{x_{n}+y}{\rm d}y\right|\\ &\leqslant\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}(t,x_{n}+y)u^{\epsilon}(t,x_{n}+y){\rm d}y-\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}(t,-y_{n}+y)u^{\epsilon}(t,-y_{n}+y){\rm d}y\right|\\ &=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{x_{n}-y_{n}}^{2x_{n}}m^{\epsilon}_{x}(t,y)u^{\epsilon}(t,y){\rm d}y-\int_{-2y_{n}}^{x_{n}-y_{n}}m^{\epsilon}_{x}(t,y)u^{\epsilon}(t,y){\rm d}y\right|\\ &\leqslant\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left(m^{\epsilon}(t,2x_{n})|u^{\epsilon}(t,2x_{n})|+m^{\epsilon}(t,-2y_{n})|u^{\epsilon}(t,-2y_{n})|+2m^{\epsilon}(t,a)|u^{\epsilon}(t,a)|\right.\\ &+2\int_{{\mathbb{R}}}m^{\epsilon}|u_{x}^{\epsilon}|{\rm d}x)=0.\end{split} (5.21)

Furthermore, (5.20) and (5.21), yield

|limn12xn0Tynxnyn+yxn+ymxxϵuϵdxdydt||limn12xn0Tynxnmxϵuϵ|yn+yxn+ydydt|+|limn12xn0Tynxnyn+yxn+ymxϵuxϵdxdydt|C.\begin{split}\left|\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}m^{\epsilon}_{xx}u^{\epsilon}{\rm d}x{\rm d}y{\rm d}t\right|&\leqslant\left|\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}u^{\epsilon}\bigg{|}_{-y_{n}+y}^{x_{n}+y}{\rm d}y{\rm d}t\right|\\ &+\left|\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}m^{\epsilon}_{x}u^{\epsilon}_{x}{\rm d}x{\rm d}y{\rm d}t\right|\leqslant C.\end{split} (5.22)

Note that (5.20), (5.21) and (5.22) also hold for uTu_{T}.

Because ϖϵC[0,T]\varpi^{\epsilon}\in C[0,T], then H(x,ϖϵ+uxϵ)Lloc([0,T]×)H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})\in L^{\infty}_{loc}([0,T]\times{\mathbb{R}}), which with the regularity of heat equation implies that uxC([0,T]×)u_{x}\in C([0,T]\times{\mathbb{R}}) and uxxLlocp([0,T]×)u_{xx}\in L_{loc}^{p}([0,T]\times{\mathbb{R}}) for every p[1,)p\in[1,\infty). Therefore, the second and the first equation in (4.7) imply

(Hp(x,ϖϵ+uxϵ)mϵ)x(uϵuT)=(ϵmxxϵmtϵ)(uϵuT),\displaystyle-\big{(}H_{p}(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}\big{)}_{x}\big{(}u^{\epsilon}-u_{T}\big{)}=\left(\epsilon m^{\epsilon}_{xx}-m^{\epsilon}_{t}\right)\big{(}u^{\epsilon}-u_{T}\big{)},
H(x,ϖϵ+uxϵ)mϵ=(ϵuxxϵ+utϵ)mϵ.\displaystyle-H(x,\varpi^{\epsilon}+u^{\epsilon}_{x})m^{\epsilon}=-\left(\epsilon u^{\epsilon}_{xx}+u^{\epsilon}_{t}\right)m^{\epsilon}.

Relying on (5.22) and using the preceding identities and the identities in (5.19) after integrating on [0,T][0,T] the equation in (5), we obtain

ΩL(x,v)𝑑μtϵ(x,v)dt=0T2v(ϖϵ+uT)𝑑μtϵ(x,v)dt+limn12xn0Tynxnyn+yxn+ymtϵ(uϵuT)+ϵmxxϵ(uϵuT)utϵmϵϵuxxϵmϵdxdydt=limn12xn0Tynxnyn+yxn+y(mϵ(uϵuT))t+ϵmxxϵ(uϵuT)ϵuxxϵmϵdxdydtΩv(ϖϵ+uT)𝑑μtϵ(x,v)dt.\begin{split}&\int_{\Omega}L(x,v)d\mu^{\epsilon}_{t}(x,v){\rm d}t=-\int_{0}^{T}\int_{{\mathbb{R}}^{2}}v\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}_{t}(x,v){\rm d}t\\ &+\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}-m^{\epsilon}_{t}\big{(}u^{\epsilon}-u_{T}\big{)}+\epsilon m^{\epsilon}_{xx}\big{(}u^{\epsilon}-u_{T}\big{)}-u^{\epsilon}_{t}m^{\epsilon}-\epsilon u^{\epsilon}_{xx}m^{\epsilon}{\rm d}x{\rm d}y{\rm d}t\\ &=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}-\big{(}m^{\epsilon}\big{(}u^{\epsilon}-u_{T}\big{)}\big{)}_{t}+\epsilon m^{\epsilon}_{xx}\big{(}u^{\epsilon}-u_{T}\big{)}-\epsilon u^{\epsilon}_{xx}m^{\epsilon}{\rm d}x{\rm d}y{\rm d}t\\ &-\int_{\Omega}v\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}_{t}(x,v){\rm d}t.\end{split} (5.23)

Taking into account (5.21) and integrating by parts, we have

limn12xn|0Tynxnyn+yxn+ymxxϵuϵuxxϵmϵdxdydt|\displaystyle\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}m^{\epsilon}_{xx}u^{\epsilon}-u^{\epsilon}_{xx}m^{\epsilon}{\rm d}x{\rm d}y{\rm d}t\right|
=limn12xn|0Tynxnmxϵuϵuxϵmϵ|yn+yxn+ydydt|\displaystyle=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left|\int_{0}^{T}\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}u^{\epsilon}-u^{\epsilon}_{x}m^{\epsilon}\bigg{|}_{-y_{n}+y}^{x_{n}+y}{\rm d}y{\rm d}t\right|
limn12xn(|0Tynxnmxϵuϵ|yn+yxn+ydydt|+C0Tmϵdxdt)\displaystyle\leqslant\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\left(\left|\int_{0}^{T}\int_{-y_{n}}^{x_{n}}m^{\epsilon}_{x}u^{\epsilon}\bigg{|}_{-y_{n}+y}^{x_{n}+y}{\rm d}y{\rm d}t\right|+C\int_{0}^{T}\int_{{\mathbb{R}}}m^{\epsilon}{\rm d}x{\rm d}t\right)
=0.\displaystyle=0. (5.24)

Thus, recalling the definition of μϵ\mu^{\epsilon}, (5.9), and by using (5.22), (5) in (5.23), we get

ΩL(x,v)𝑑μϵ(t,x,v)\displaystyle\int_{\Omega}L(x,v)d\mu^{\epsilon}(t,x,v) =limn12xn0Tynxnyn+yxn+y(mϵ(uϵuT))tϵmxxϵuTdxdydt\displaystyle=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}-\left(m^{\epsilon}\left(u^{\epsilon}-u_{T}\right)\right)_{t}-\epsilon m^{\epsilon}_{xx}u_{T}{\rm d}x{\rm d}y{\rm d}t
Ωv(ϖϵ+uT)𝑑μϵ(t,x,v).\displaystyle-\int_{\Omega}v\big{(}\varpi^{\epsilon}+u_{T}^{\prime}\big{)}d\mu^{\epsilon}(t,x,v).

After rearranging the terms in the previous equation, we obtain

ΩL(x,v)+vuTdμϵ(t,x,v)=limn12xn0Tynxnyn+yxn+y(uϵ(0,x)uT(x))m0dxdydt\displaystyle\int_{\Omega}L(x,v)+vu_{T}^{\prime}d\mu^{\epsilon}(t,x,v)=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}\big{(}u^{\epsilon}(0,x)-u_{T}(x)\big{)}m_{0}{\rm d}x{\rm d}y{\rm d}t
ϵlimn12xn0Tynxnyn+yxn+ymxxϵuTdxdydtΩvϖϵ𝑑μϵ(t,x,v).\displaystyle-\epsilon\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}m^{\epsilon}_{xx}u_{T}{\rm d}x{\rm d}y{\rm d}t-\int_{\Omega}v\varpi^{\epsilon}d\mu^{\epsilon}(t,x,v). (5.25)

Now, we pass to the limit in (5) as follows. By Assumptions 1, 4, 6 and 7, Theorem 1 in [35] guarantees the existence of a sequence such that uϵuu^{\epsilon}\to u and ϖϵϖ\varpi^{\epsilon}\to\varpi uniformly, where, for ϖ\varpi, uu solves the first equation in (1.1) in the viscosity sense. Furthermore, by Proposition 4.2, ϖW1,([0,T])\varpi\in W^{1,\infty}([0,T]). Remark 1 implies that L(x,v)+vuT(x)L(x,v)+vu_{T}^{\prime}(x) belongs to Cζ¯(Ω)C_{\bar{\zeta}}(\Omega), therefore extracting a further sub-sequence out of the previous sequence, Proposition 5.3 gives the existence of a weak limit μ𝒰ζ¯(Ω)\mu\in\mathcal{U}^{\bar{\zeta}}\cap\mathcal{R}(\Omega) for μϵ\mu^{\epsilon} and (5.10) holds for L(x,v)+vuT(x)L(x,v)+vu_{T}^{\prime}(x). Using these, by letting ϵ0\epsilon\to 0 in (5), we obtain

0T2L(x,v)+vuT(x)dμ(t,x,v)\displaystyle\int_{0}^{T}\int_{{\mathbb{R}}^{2}}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v) =limn12xn0Tynxnyn+yxn+y(u(0,x)uT(x))m0dxdy\displaystyle=\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}(u(0,x)-u_{T}(x))m_{0}{\rm d}x{\rm d}y
Ωvϖ(t)𝑑μ(t,x,v).\displaystyle-\int_{\Omega}v\varpi(t)d\mu(t,x,v). (5.26)

Furthermore, by Proposition 4.2, ϖW1,([0,T])\varpi\in W^{1,\infty}([0,T]), and by Proposition 5.4 μ(m0)\mu\in\mathcal{H}(m_{0}). In particular, μ3\mu\in\mathcal{H}_{3}. Therefore,

0T2vϖ(t)𝑑μ(t,x,v)=0TQ(t)ϖ(t)dt.\int_{0}^{T}\int_{{\mathbb{R}}^{2}}v\varpi(t)d\mu(t,x,v)=\int_{0}^{T}Q(t)\varpi(t){\rm d}t.

By Assumption 5 and Lemma 5.5, we deduce that

limn12xn0Tynxnyn+yxn+y(u(0,x)uT(x))m0dxdy=0Tu(0,x)uT(x)dm0(x).\lim\limits_{n\to\infty}\frac{1}{2x_{n}}\int_{0}^{T}\int_{-y_{n}}^{x_{n}}\int_{-y_{n}+y}^{x_{n}+y}(u(0,x)-u_{T}(x))m_{0}{\rm d}x{\rm d}y=\int_{0}^{T}\int_{{\mathbb{R}}}u(0,x)-u_{T}(x)dm_{0}(x).

Therefore, from (5), we obtain

ΩL(x,v)+vuT(x)dμ(t,x,v)\displaystyle\int_{\Omega}L(x,v)+vu_{T}^{\prime}(x)d\mu(t,x,v) =u(0,x)uT(x)dm0(x)0TQ(t)ϖ(t)𝑑t,\displaystyle=\int_{{\mathbb{R}}}u(0,x)-u_{T}(x)dm_{0}(x)-\int_{0}^{T}Q(t)\varpi(t)dt,

which completes the proof. ∎

References

  • [1] C. Alasseur, I. Ben Taher, and A. Matoussi. An extended mean field game for storage in smart grids. Journal of Optimization Theory and Applications, 184(2):644–670, 2020.
  • [2] A. Alharbi, T. Bakaryan, R. Cabral, S. Campi, N. Christoffersen, P. Colusso, O. Costa, S. Duisembay, R. Ferreira, D. Gomes, S. Guo, J. Gutierrez, P. Havor, M. Mascherpa, S. Portaro, R. Ricardo de Lima, F. Rodriguez, J. Ruiz, F. Saleh, S. Calum, T. Tada, X. Yang, and Z. Wróblewska. A price model with finitely many agents. Bulletin of the Portuguese Mathematical Society, 2019.
  • [3] T. Basar and R. Srikant. Revenue-maximizing pricing and capacity expansion in a many-users regime. In Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 294–301 vol.1, 2002.
  • [4] H. H. Bauschke, P. L. Combettes, et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer International Publishing, 2 edition, 2017.
  • [5] A. Biryuk and D. Gomes. An introduction to the Aubry-Mather theory. São Paulo J. Math. Sci., 4(1):17–63, 2010.
  • [6] M. Burger, L. A. Caffarelli, P. A. Markowich, and M.-T. Wolfram. On the asymptotic behavior of a Boltzmann-type price formation model. Commun. Math. Sci., 12(7):1353–1361, 2014.
  • [7] L. A. Caffarelli, P. A. Markowich, and J.-F. Pietschmann. On a price formation free boundary model by Lasry and Lions. C. R. Math. Acad. Sci. Paris, 349(11-12):621–624, 2011.
  • [8] L. A. Caffarelli, P. A. Markowich, and M.-T. Wolfram. On a price formation free boundary model by Lasry and Lions: the Neumann problem. C. R. Math. Acad. Sci. Paris, 349(15-16):841–844, 2011.
  • [9] F. Cagnetti, D. Gomes, H. Mitake, and H. Tran. A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians. Ann. Inst. H. Poincaré Anal. Non Linéaire, 32(1):183–200, 2015.
  • [10] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, MA, 2004.
  • [11] Piermarco Cannarsa, Wei Cheng, Cristian Mendico, and Kaizhi Wang. Weak kam approach to first-order mean field games with state constraints, 2020.
  • [12] P. Cardaliaguet. Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl., 3(4):473–488, 2013.
  • [13] P. Cardaliaguet. A short course on mean field games. 2018.
  • [14] B. Djehiche, J. Barreiro-Gomez, and H. Tembine. Price Dynamics for Electricity in Smart Grid Via Mean-Field-Type Games. Dynamic Games and Applications, 10(4):798–818, December 2020.
  • [15] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions, Revised Edition. Textbooks in Mathematics. CRC Press, 2015.
  • [16] L. C. Evans and D. Gomes. Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal., 157(1):1–33, 2001.
  • [17] L. C. Evans and D. Gomes. Effective Hamiltonians and averaging for Hamiltonian dynamics II. Archive for rational mechanics and analysis, 161(4):271–305, 2002.
  • [18] A. Fathi. Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 325(6):649–652, 1997.
  • [19] A. Fathi. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 324(9):1043–1046, 1997.
  • [20] A. Fathi. Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 326:1213–1216, 1998.
  • [21] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math., 327:267–270, 1998.
  • [22] O. Féron, P. Tankov, and L. Tinsi. Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player. Risks, 8(4):1–1, December 2020.
  • [23] W. Fleming and D. Vermes. Convex duality approach to the optimal control of diffusions. SIAM J. Control Optim., 27(5):1136–1155, 1989.
  • [24] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts. Wiley-Interscience, 2 edition, 1999.
  • [25] I. Fonseca and G. Leoni. Modern methods in the calculus of variations: LpL^{p} spaces. Springer Monographs in Mathematics. Springer, New York, 2007.
  • [26] M. Fujii and A. Takahashi. A Mean Field Game Approach to Equilibrium Pricing with Market Clearing Condition. Papers 2003.03035, arXiv.org, March 2020.
  • [27] M. Fujii and A. Takahashi. Equilibrium price formation with a major player and its mean field limit, 2021.
  • [28] G. Pólya G. H. Hardy, J. E. Littlewood. Inequalities. Cambridge University Press, 2 edition, 1934.
  • [29] D. Gomes. A stochastic analogue of Aubry-Mather theory. Nonlinearity, 15(3):581–603, 2002.
  • [30] D. Gomes. Duality principles for fully nonlinear elliptic equations. In Trends in partial differential equations of mathematical physics, volume 61 of Progr. Nonlinear Differential Equations Appl., pages 125–136. Birkhäuser, Basel, 2005.
  • [31] D. Gomes. Generalized Mather problem and selection principles for viscosity solutions and Mather measures. Adv. Calc. Var., 1(3):291–307, 2008.
  • [32] D. Gomes, J. Gutierrez, and R. Ribeiro. A mean field game price model with noise. Math. Eng., 3(4):Paper No. 028, 14, 2021.
  • [33] D. Gomes, H. Mitake, and K. Terai. The selection problem for some first-order stationary mean-field games. Netw. Heterog. Media, 15(4):681–710, 2020.
  • [34] D. Gomes, H. Mitake, and H. Tran. The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases. J. Math. Soc. Japan, 70(1):345–364, 2018.
  • [35] D. Gomes and J. Saúde. A Mean-Field Game Approach to Price Formation. Dyn. Games Appl., 11(1):29–53, 2021.
  • [36] D. Gomes and E. Valdinoci. Duality theory, representation formulas and uniqueness results for viscosity solutions of Hamilton-Jacobi equations. In Dynamics, games and science. II, volume 2 of Springer Proc. Math., pages 361–386. Springer, Heidelberg, 2011.
  • [37] Diogo A. Gomes, Hiroyoshi Mitake, and Hung V. Tran. The large time profile for hamilton–jacobi–bellman equations, 2020.
  • [38] Werner Kirsch. A survey on the method of moments. 2015.
  • [39] A. Lachapelle, J.-M. Lasry, C.-A. Lehalle, and P.-L. Lions. Efficiency of the price formation process in presence of high frequency participants: a mean field game analysis. Mathematics and Financial Economics, 10(3):223–262, 2016.
  • [40] R. M. Lewis and R. B. Vinter. Relaxation of optimal control problems to equivalent convex programs. J. Math. Anal. Appl., 74(2):475–493, 1980.
  • [41] R. Mañé. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity, 5(3):623–638, 1992.
  • [42] P. A. Markowich, N. Matevosyan, J.-F. Pietschmann, and M.-T. Wolfram. On a parabolic free boundary equation modeling price formation. Math. Models Methods Appl. Sci., 19(10):1929–1957, 2009.
  • [43] Anis Matoussi, Clémence Alasseur, and Imen Ben Taher. An extended mean field game for storage in smart grids. 2018.
  • [44] H. Mitake and H. Tran. Selection problems for a discount degenerate viscous Hamilton-Jacobi equation. Adv. Math., 306:684–703, 2017.
  • [45] Hung V. Tran Nam Q. Le, Hiroyoshi Mitake. Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations: VIASM 2016. Lecture Notes in Mathematics 2183. Springer International Publishing, 1 edition, 2017.
  • [46] H. Shen and T. Basar. Pricing under information asymmetry for a large population of users. Telecommun. Syst., 47(1-2):123–136, 2011.
  • [47] A. Shrivats, D. Firoozi, and S. Jaimungal. A Mean-Field Game Approach to Equilibrium Pricing, Optimal Generation, and Trading in Solar Renewable Energy Certificate Markets. Papers 2003.04938, arXiv.org, March 2020.
  • [48] C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.