This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A discrete uniformization theorem for decorated piecewise Euclidean metrics on surfaces

Xu Xu, Chao Zheng School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, P.R.China [email protected] School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R. China [email protected]
Abstract.

In this paper, we introduce a new discretization of the Gaussian curvature on surfaces, which is defined as the quotient of the angle defect and the area of some dual cell of a weighted triangulation at the conic singularity. A discrete uniformization theorem for this discrete Gaussian curvature is established on surfaces with non-positive Euler number. The main tools are Bobenko-Lutz’s discrete conformal theory for decorated piecewise Euclidean metrics on surfaces and variational principles with constraints.

Key words and phrases:
Discrete uniformization theorem; Decorated piecewise Euclidean metrics; Discrete Gaussian curvature; Variational principle
MSC (2020): 52C26

1. Introduction

Bobenko-Lutz [2] recently introduced the decorated piecewise Euclidean metrics on surfaces. Suppose SS is a connected closed surface and VV is a finite non-empty subset of SS, we call (S,V)(S,V) a marked surface. A piecewise Euclidean metric (PE metric) distSdist_{S} on the marked surface (S,V)(S,V) is a flat cone metric with the conic singularities contained in VV. A decoration on a PE surface (S,V,distS)(S,V,dist_{S}) is a choice of circle of radius ri0r_{i}\geq 0 at each point iVi\in V. These circles in the decoration are called vertex-circles. We denote a decorated PE surface by (S,V,distS,r)(S,V,dist_{S},r) and call the pair (distS,r)(dist_{S},r) a decorated PE metric. In this paper, we focus on the case that ri>0r_{i}>0 for all iVi\in V and each pair of vertex-circles is separated.

For a PE surface (S,V,distS)(S,V,dist_{S}), denote θi\theta_{i} as the cone angle at iVi\in V. The angle defect

(1) W:V(,2π),Wi=2πθi,W:V\rightarrow(-\infty,2\pi),\quad W_{i}=2\pi-\theta_{i},

is used to describe the conic singularities of the PE metric. Let 𝒯=(V,E,F)\mathcal{T}={(V,E,F)} be a triangulation of (S,V)(S,V), where V,E,FV,E,F are the sets of vertices, edges and faces respectively. The triangulation 𝒯\mathcal{T} for a PE surface (S,V,distS)(S,V,dist_{S}) is a geodesic triangulation if the edges are geodesics in the PE metric distSdist_{S}. We use one index to denote a vertex (such as ii), two indices to denote an edge (such as {ij}\{ij\}) and three indices to denote a face (such as {ijk}\{ijk\}) in the triangulation 𝒯\mathcal{T}. For any decorated geodesic triangle {ijk}F\{ijk\}\in F, there is a unique circle CijkC_{ijk} simultaneously orthogonal to the three vertex-circles at the vertices i,j,ki,j,k [10]. We call this circle CijkC_{ijk} as the face-circle of the decorated geodesic triangle {ijk}\{ijk\} and denote its center by cijkc_{ijk} and radius by rijkr_{ijk}. The center cijkc_{ijk} of the face-circle CijkC_{ijk} of the decorated geodesic triangle {ijk}\{ijk\} is the geometric center introduced by Glickenstein [9] and Glickenstein-Thomas [11] for general discrete conformal structures on surfaces. Denote αijk\alpha_{ij}^{k} as the interior intersection angle of the face-circle CijkC_{ijk} and the edge {ij}\{ij\}. Please refer to Figure 1 (left) for the angle αijk\alpha_{ij}^{k}. The edge {ij}\{ij\}, shared by two adjacent decorated triangles {ijk}\{ijk\} and {ijl}\{ijl\}, is called weighted Delaunay if

(2) αijk+αijlπ.\alpha_{ij}^{k}+\alpha_{ij}^{l}\leq\pi.

The triangulation 𝒯\mathcal{T} is called weighted Delaunay in the decorated PE metric (distS,r)(dist_{S},r) if every edge in the triangulation is weighted Delaunay. Connecting the center cijkc_{ijk} with the vertices i,j,ki,j,k by geodesics produces a cellular decomposition of the decorated triangle {ijk}\{ijk\}. Denote AijkA_{i}^{jk} as the sum of the signed area of the two triangles adjacent to ii in the cellular decomposition of the decorated triangle {ijk}\{ijk\}. The area of the triangle with the vertices ii, jj, cijkc_{ijk} is positive if it is on the same side of the edge {ij}\{ij\} as the decorated triangle {ijk}\{ijk\}, otherwise it is negative (or zero if cijkc_{ijk} lies in {ij}\{ij\}). Please refer to the shaded domain in Figure 1 (left) for AijkA_{i}^{jk}. Gluing these cells of all decorated triangles isometrically along edges in pairs leads a cellular decomposition of the decorated PE surface (S,V,distS,r)(S,V,dist_{S},r). Set

Ai={ijk}FAijk.A_{i}=\sum_{\{ijk\}\in F}A_{i}^{jk}.

Please refer to Figure 1 (right) for AiA_{i}.

\begin{overpic}[scale={0.4}]{figure_0.pdf} \put(15.0,15.0){$i$} \put(80.5,15.0){$j$} \put(48.5,74.0){$k$} \put(10.0,26.0){$r_{i}$} \put(46.0,35.0){$c_{ijk}$} \put(30.0,55.0){$\alpha_{ik}^{j}$} \put(20.0,30.0){$\alpha_{ik}^{j}$} \put(27.0,12.5){$\alpha_{ij}^{k}$} \put(63.0,12.5){$\alpha_{ij}^{k}$} \end{overpic}
\begin{overpic}[scale={0.6}]{figure_3.pdf} \put(48.0,42.0){$i$} \put(92.0,44.0){$j$} \put(74.0,90.0){$k$} \put(74.0,57.0){$c_{ijk}$} \end{overpic}
Figure 1. Domain of the signed area AijkA_{i}^{jk} in a decorated triangle {ijk}\{ijk\} (left) and domain of the area AiA_{i} in a decorated PE surface (right)
Definition 1.1.

Suppose (S,V,distS,r)(S,V,dist_{S},r) is a decorated PE surface and 𝒯\mathcal{T} is a weighted Delaunay triangulation of (S,V,distS,r)(S,V,dist_{S},r). The discrete Gaussian curvature KiK_{i} at the vertex iVi\in V is the quotient of the angle defect WiW_{i} and the area AiA_{i} of the dual cell at the vertex iVi\in V, i.e.,

(3) Ki=WiAi.K_{i}=\frac{W_{i}}{A_{i}}.
Remark 1.2.

In the literature, the discrete curvature is usually defined by the angle defect WW in (1). However, the angle defect WW is scaling invariant and does not approximate the smooth Gaussian curvature pointwisely on smooth surfaces as the triangulations of the surface become finer and finer. This is supported by the discussions in [3, 7]. For the discrete Gaussian curvature KK in (3), it scales by a factor 1u2\frac{1}{u^{2}} upon a global rescaling of the decorated PE metric by a factor uu. This property is paralleling to that of the smooth Gaussian curvature on surfaces. On the other hand, the definition of the discrete Gaussian curvature KiK_{i} coincides with the original definition of the Gaussian curvature on smooth surfaces. This implies that the discrete Gaussian curvature KiK_{i} is a good candidate as a discretization of the smooth Gaussian curvature on surfaces.

Remark 1.3.

According to Definition 1.1, the discrete Gaussian curvature KiK_{i} defined by (3) seems to depend on the choice of weighted Delaunay triangulations of the decorated PE surface (S,V,distS,r)(S,V,dist_{S},r). We will show that KiK_{i} is an intrinsic geometric invariant of the decorated PE surface (S,V,distS,r)(S,V,dist_{S},r) in the sense that it is independent of the weighted Delaunay triangulations of (S,V,distS,r)(S,V,dist_{S},r). Note that the angle defect WiW_{i} defined by (1) is an intrinsic geometric invariant of a decorated PE surface, we just need to prove that AiA_{i} is independent of the choice of weighted Delaunay triangulations. This is true by Lemma 2.8.

Remark 1.4.

The weighted Delaunay triangulation is a natural generalization of the classical Delaunay triangulation. When the weighted Delaunay triangulation is reduced to the classical Delaunay triangulation, i.e. ri=0r_{i}=0 for all iVi\in V, the area AiA_{i} is exactly twice the area of the Voronoi cell at the vertex ii. Thus the area AiA_{i} is a generalization of the area of the Voronoi cell at the vertex ii. As a result, the discrete Gaussian curvature in Definition 1.1 generalizes Kouřimská’s definition of discrete Gaussian curvature in [17, 16].

The discrete Yamabe problem for a decorated PE metric (distS,r)(dist_{S},r) on (S,V)(S,V) asks if there exists a discrete conformal equivalent decorated PE metric on (S,V)(S,V) with constant discrete Gaussian curvature. The following discrete uniformization theorem solves this problem affirmatively for the discrete Gaussian curvature KK in Definition 1.1.

Theorem 1.5.

For any decorated PE metric (distS,r)(dist_{S},r) on a marked surface (S,V)(S,V) with Euler number χ(S)0\chi(S)\leq 0, there is a discrete conformal equivalent decorated PE metric with constant discrete Gaussian curvature KK.

By the relationships of the discrete Gaussian curvature KK and the classical discrete Gaussian curvature WW, the case χ(S)=0\chi(S)=0 in Theorem 1.5 is covered by Bobenko-Lutz’s work [2]. Therefore, we just need to prove the case χ(S)<0\chi(S)<0 in Theorem 1.5.

Remark 1.6.

The discrete Yamabe problem on surfaces for different types of discrete conformal structures with respect to the classical discrete Gaussian curvature WW has been extensively studied in the literature. For Thurston’s circle packings on surfaces, the solution of discrete Yamabe problem gives rise to the famous Koebe-Andreev-Thurston Theorem. See also the work of Beardon-Stephenson [1] for the discrete uniformization theorems for circle packings on surfaces. For the vertex scalings introduced by Luo [18] on surfaces, Gu-Luo-Sun-Wu [13], Gu-Guo-Luo-Sun-Wu [12], Springborn [23] and Izmestiev-Prosanov-Wu [15] give nice answers to this problem in different background geometries. Recently, Bobenko-Lutz [2] established the discrete conformal theory for decorated PE metrics and prove the corresponding discrete uniformization theorem. Since Bobenko-Lutz’s discrete conformal theory of decorated PE metrics also applies to the Euclidean vertex scalings and thus generalizes Gu-Luo-Sun-Wu’s result [13] and Springborn’s result [23], Theorem 1.5 also generalizes Kouřimská’s results in [17, 16]. It should be mentioned that Kouřimská [17, 16] constructed counterexamples to the uniqueness of PE metrics with constant discrete Gaussian curvatures. We conjecture that the decorated PE metric with constant discrete Gaussian curvature KK in Theorem 1.5 is not unique.

The main tools for the proof of Theorem 1.5 are Bobenko-Lutz’s discrete conformal theory for decorated PE metrics on surfaces [2] and variational principles with constraints. The main ideas of the paper come from reading of Bobenko-Lutz [2] and Kouřimská [17, 16].

The paper is organized as follows. In Section 2, we briefly recall Bobenko-Lutz’s discrete conformal theory for decorated PE metrics on surfaces. Then we show that AiA_{i} is independent of the choice of weighted Delaunay triangulations, i.e., Lemma 2.8. We also give some notations and a variational characterization of the area AijkA_{i}^{jk}. In this section, we also extend the energy function \mathcal{E} and the area function AtotA_{tot}. In Section 3, we translate Theorem 1.5 into an optimization problem with constraints, i.e., Lemma 3.2. Using the classical result from calculus, i.e., Theorem 3.3, we translate Lemma 3.2 into Theorem 3.4. By analysing the limit behaviour of sequences of discrete conformal factors, we get an asymptotic expression of the function \mathcal{E}, i.e., Lemma 3.12. In the end, we prove Theorem 3.4.

Acknowledgements
The first author thanks Professor Feng Luo for his invitation to the workshop “Discrete and Computational Geometry, Shape Analysis, and Applications” taking place at Rutgers University, New Brunswick from May 19th to May 21st, 2023. The first author also thanks Carl O. R. Lutz for helpful communications during the workshop.

2. Preliminaries on decorated PE surfaces

2.1. Discrete conformal equivalence and Bobenko-Lutz’s discrete conformal theory

In this subsection, we briefly recall Bobenko-Lutz’s discrete conformal theory for decorated PE metrics on surfaces. Please refer to Bobenko-Lutz’s original work [2] for more details on this. The PE metric distSdist_{S} on a PE surface with a geodesic triangulation defines a length map l:E>0l:E\rightarrow\mathbb{R}_{>0} such that lij,lik,ljkl_{ij},l_{ik},l_{jk} satisfy the triangle inequalities for any triangle {ijk}F\{ijk\}\in F. Conversely, given a function l:E>0l:E\rightarrow\mathbb{R}_{>0} satisfying the triangle inequalities for any face {ijk}F\{ijk\}\in F, one can construct a PE metric on a triangulated surface by isometrically gluing Euclidean triangles along edges in pairs. Therefore, we use l:E>0l:E\rightarrow\mathbb{R}_{>0} to denote a PE metric and use (l,r)(l,r) to denote a decorated PE metric on a triangulated surface (S,V,𝒯)(S,V,\mathcal{T}).

Definition 2.1 ([2], Proposition 2.2).

Let 𝒯\mathcal{T} be a triangulation of a marked surface (S,V)(S,V). Two decorated PE metrics (l,r)(l,r) and (l~,r~)(\widetilde{l},\widetilde{r}) on (S,V,𝒯)(S,V,\mathcal{T}) are discrete conformal equivalent if and only if there exists a discrete conformal factor uVu\in\mathbb{R}^{V} such that

(4) r~i=euiri,\widetilde{r}_{i}=e^{u_{i}}r_{i},
(5) l~ij2=(e2uieui+uj)ri2+(e2ujeui+uj)rj2+eui+ujlij2\widetilde{l}_{ij}^{2}=(e^{2u_{i}}-e^{u_{i}+u_{j}})r^{2}_{i}+(e^{2u_{j}}-e^{u_{i}+u_{j}})r^{2}_{j}+e^{u_{i}+u_{j}}l_{ij}^{2}

for all {ij}E\{ij\}\in E.

Remark 2.2.

Note that the inversive distance

(6) Iij=lij2ri2rj22rirjI_{ij}=\frac{l^{2}_{ij}-r^{2}_{i}-r^{2}_{j}}{2r_{i}r_{j}}

between two vertex-circles is invariant under Möbius transformations [6]. Combining (4) and (5) gives I=I~I=\widetilde{I}. Since each pair of vertex-circles is required to be separated, we have I>1I>1. Therefore, Definition 2.1 can be regarded as a special case of the inversive distance circle packings introduced by Bowers-Stephenson [4]. One can refer to [5, 14, 19, 24, 25] for more properties of the inversive distance circle packings on triangulated surfaces.

In general, the existence of decorated PE metrics with constant discrete Gaussian curvatures on triangulated surfaces can not be guaranteed if the triangulation is fixed. In the following, we work with a generalization of the discrete conformal equivalence in Definition 2.1, introduced by Bobenko-Lutz [2], which allows the triangulation of the marked surface to be changed under the weighted Delaunay condition.

Definition 2.3 ([2], Definition 4.11).

Two decorated PE metrics (distS,r)(dist_{S},r) and (dist~S,r~)(\widetilde{dist}_{S},\widetilde{r}) on the marked surface (S,V)(S,V) are discrete conformal equivalent if there is a sequence of triangulated decorated PE surfaces (𝒯0,l0,r0),,(𝒯N,lN,rN)(\mathcal{T}^{0},l^{0},r^{0}),...,(\mathcal{T}^{N},l^{N},r^{N}) such that

(i):

the decorated PE metric of (𝒯0,l0,r0)(\mathcal{T}^{0},l^{0},r^{0}) is (distS,r)(dist_{S},r) and the decorated PE metric of (𝒯N,lN,rN)(\mathcal{T}^{N},l^{N},r^{N}) is (dist~S,r~)(\widetilde{dist}_{S},\widetilde{r}),

(ii):

each 𝒯n\mathcal{T}^{n} is a weighted Delaunay triangulation of the decorated PE surface (𝒯n,ln,rn)(\mathcal{T}^{n},l^{n},r^{n}),

(iii):

if 𝒯n=𝒯n+1\mathcal{T}^{n}=\mathcal{T}^{n+1}, then there is a discrete conformal factor uVu\in\mathbb{R}^{V} such that (𝒯n,ln,rn)(\mathcal{T}^{n},l^{n},r^{n}) and (𝒯n+1,ln+1,rn+1)(\mathcal{T}^{n+1},l^{n+1},r^{n+1}) are related by (4) and (5),

(iv):

if 𝒯n𝒯n+1\mathcal{T}^{n}\neq\mathcal{T}^{n+1}, then 𝒯n\mathcal{T}^{n} and 𝒯n+1\mathcal{T}^{n+1} are two different weighted Delaunay triangulations of the same decorated PE surface.

Definition 2.3 defines an equivalence relationship for decorated PE metrics on a marked surface. The equivalence class of a decorated PE metric (distS,r)(dist_{S},r) on (S,V)(S,V) is also called as the discrete conformal class of (distS,r)(dist_{S},r) and denoted by 𝒟(distS,r)\mathcal{D}(dist_{S},r).

Lemma 2.4 ([2]).

The discrete conformal class 𝒟(distS,r)\mathcal{D}(dist_{S},r) of a decorated PE metric (distS,r)(dist_{S},r) on the marked surface (S,V)(S,V) is parameterized by V={u:V}\mathbb{R}^{V}=\{u:V\rightarrow\mathbb{R}\}.

For simplicity, for any (dist~S,r~)𝒟(distS,r)(\widetilde{dist}_{S},\widetilde{r})\in\mathcal{D}(dist_{S},r), we denote it by (distS(u),r(u))(dist_{S}(u),r(u)) for some uVu\in\mathbb{R}^{V}. Set

𝒞𝒯(distS,r)={uV|𝒯is a weighted Delaunay triangulation of(S,V,distS(u),r(u))}.\mathcal{C}_{\mathcal{T}}(dist_{S},r)=\{u\in\mathbb{R}^{V}|\ \mathcal{T}\ \text{is a weighted Delaunay triangulation of}\ (S,V,dist_{S}(u),r(u))\}.

For any decorated PE surface, there exists a unique complete hyperbolic surface Σg\Sigma_{g}, i.e., the hyperbolic surface induced by any triangular refinement of its unique weighted Delaunay tessellation. It is homeomorphic to S\VS\backslash V and called as the fundamental discrete conformal invariant of the decorated PE metric (distS,r)(dist_{S},r). The decoration of Σg\Sigma_{g} is denoted by ω:=eh\omega:=e^{h} and here the height hh is related to uu by dhi=duidh_{i}=-du_{i}. The canonical weighted Delaunay tessellation 𝒯\mathcal{T} of Σg\Sigma_{g} is denoted by 𝒯Σgω\mathcal{T}_{\Sigma_{g}}^{\omega}. Bobenko-Lutz [2] defined the following set

𝒟𝒯(Σg)={ω>0V|𝒯refines𝒯Σgω}\mathcal{D}_{\mathcal{T}}(\Sigma_{g})=\{\omega\in\mathbb{R}_{>0}^{V}|\mathcal{T}\ \text{refines}\ \mathcal{T}_{\Sigma_{g}}^{\omega}\}

and proved the following proposition.

Proposition 2.5 ([2], Proposition 4.3).

Given a complete hyperbolic surface with ends Σg\Sigma_{g}.

(1):

Each 𝒟𝒯n(Σg)\mathcal{D}_{\mathcal{T}_{n}}(\Sigma_{g}) is either empty or the intersection of >0V\mathbb{R}^{V}_{>0} with a closed polyhedral cone.

(2):

There is only a finite number of geodesic tessellations 𝒯1,,𝒯N\mathcal{T}_{1},...,\mathcal{T}_{N} of Σg\Sigma_{g} such that 𝒟𝒯n(Σg)\mathcal{D}_{\mathcal{T}_{n}}(\Sigma_{g}) (n=1,,N)(n=1,...,N) is non-empty. In particular, >0V=n=1N𝒟𝒯n(Σg)\mathbb{R}^{V}_{>0}=\bigcup_{n=1}^{N}\mathcal{D}_{\mathcal{T}_{n}}(\Sigma_{g}).

Let PP be the polyhedral cusp corresponding to the triangulated surface (S,V,𝒯)(S,V,\mathcal{T}) with fundamental discrete conformal invariant Σg\Sigma_{g}. The polyhedral cusp is convex if and only if 𝒯\mathcal{T} is a weighted Delaunay triangulation. The set of all heights hh of convex polyhedral cusps over the triangulated hyperbolic surface (Σg,𝒯)(\Sigma_{g},\mathcal{T}) is denoted by 𝒫𝒯(Σg)V\mathcal{P}_{\mathcal{T}}(\Sigma_{g})\subseteq\mathbb{R}^{V}.

Proposition 2.6 ([2], Proposition 4.9).

Given a decorated PE metric (distS,r)(dist_{S},r) on the marked surface (S,V)(S,V). Then 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r), 𝒫𝒯(Σg)\mathcal{P}_{\mathcal{T}}(\Sigma_{g}) and 𝒟𝒯(Σg)\mathcal{D}_{\mathcal{T}}(\Sigma_{g}) are homeomorphic.

Combining Proposition 2.5 and Proposition 2.6 gives the following result.

Lemma 2.7 ([2]).

The set

J={𝒯|𝒞𝒯(distS,r)has non-empty interior inV}J=\{\mathcal{T}|\mathcal{C}_{\mathcal{T}}(dist_{S},r)\ \text{has non-empty interior in}\ \mathbb{R}^{V}\}

is a finite set, V=𝒯iJ𝒞𝒯i(distS,r)\mathbb{R}^{V}=\cup_{\mathcal{T}_{i}\in J}\mathcal{C}_{\mathcal{T}_{i}}(dist_{S},r), and each 𝒞𝒯i(distS,r)\mathcal{C}_{\mathcal{T}_{i}}(dist_{S},r) is homeomorphic to a polyhedral cone (with its apex removed) and its interior is homeomorphic to V\mathbb{R}^{V}.

2.2. A decorated triangle

Denote rijr_{ij} as half of the distance of the two intersection points of the face-circle CijkC_{ijk} and the edge {ij}\{ij\}. Denote hijkh_{ij}^{k} as the signed distance of the center cijkc_{ijk} to the edge {ij}\{ij\}, which is defined to be positive if the center is on the same side of the line determined by {ij}\{ij\} as the triangle {ijk}\{ijk\} and negative otherwise (or zero if the center is on the line). Note that hijkh_{ij}^{k} is symmetric in the indices ii and jj. By Figure 3, we have

(7) hijk=rijcotαijk.h_{ij}^{k}=r_{ij}\cot\alpha_{ij}^{k}.

Since rij>0r_{ij}>0 and αijk(0,π)\alpha_{ij}^{k}\in(0,\pi), if hijk<0h_{ij}^{k}<0, then αijk(π2,π)\alpha_{ij}^{k}\in(\frac{\pi}{2},\pi). The equality (7) implies that (2) is equivalent to

(8) hijk+hijl0h_{ij}^{k}+h_{ij}^{l}\geq 0

for any adjacent triangles {ijk}\{ijk\} and {ijl}\{ijl\} sharing a common edge {ij}\{ij\}. Therefore, the equality (8) also characterizes a weighted Delaunay triangulation 𝒯\mathcal{T} for a decorated PE metric (l,r)(l,r) on (S,V)(S,V). Due to this fact, the equality (8) is usually used to define the weighted Delaunay triangulations of decorated PE surfaces. See [5, 8] and others for example. Then AijkA_{i}^{jk} can be written as

(9) Aijk=12lijhijk+12lkihkij.A_{i}^{jk}=\frac{1}{2}l_{ij}h_{ij}^{k}+\frac{1}{2}l_{ki}h_{ki}^{j}.

Since hijk,hkijh_{ij}^{k},h_{ki}^{j} are the signed distances, thus AijkA_{i}^{jk} is an algebraic sum of the area of triangles, i.e. a signed area.

Lemma 2.8.

The area AiA_{i} is independent of the choice of weighted Delaunay triangulations of a decorated PE surface.

Proof.

Suppose a decorated quadrilateral {ijlk}\{ijlk\} is in a face of the weighted Delaunay tessellation of a decorated PE surface, then there exist two weighted Delaunay triangulations 𝒯1\mathcal{T}_{1} and 𝒯2\mathcal{T}_{2} of the decorated PE surface with an edge {jk}\{jk\} in 𝒯1\mathcal{T}_{1} flipped to another edge {il}\{il\} in 𝒯2\mathcal{T}_{2}. Please refer to Figure 2. We just need to prove the signed area AijkA^{jk}_{i} in 𝒯1\mathcal{T}_{1} is equal to the signed area Aikl+AijlA_{i}^{kl}+A_{i}^{jl} in 𝒯2\mathcal{T}_{2}. In 𝒯1\mathcal{T}_{1}, the signed area at the vertex ii in {ijlk}\{ijlk\} is Aijk=12lkihkij+12lijhijkA_{i}^{jk}=\frac{1}{2}l_{ki}h_{ki}^{j}+\frac{1}{2}l_{ij}h_{ij}^{k}. In 𝒯2\mathcal{T}_{2}, the signed area at the vertex ii in {ijlk}\{ijlk\} is

Aikl+Aijl\displaystyle A_{i}^{kl}+A_{i}^{jl} =12lkihkil+12lilhilk+12lijhijl+12lilhilj\displaystyle=\frac{1}{2}l_{ki}h_{ki}^{l}+\frac{1}{2}l_{il}h_{il}^{k}+\frac{1}{2}l_{ij}h_{ij}^{l}+\frac{1}{2}l_{il}h_{il}^{j}
=12lkihkil+12lijhijl+12lil(hilk+hilj).\displaystyle=\frac{1}{2}l_{ki}h_{ki}^{l}+\frac{1}{2}l_{ij}h_{ij}^{l}+\frac{1}{2}l_{il}(h_{il}^{k}+h_{il}^{j}).

Since 𝒯1\mathcal{T}_{1} and 𝒯2\mathcal{T}_{2} are two weighted Delaunay triangulations of the same decorated PE metric on (S,V)(S,V), then hilk+hilj=0h_{il}^{k}+h_{il}^{j}=0 by (8). One can also refer to [2] (Proposition 3.4) for this. Moreover, hkil=hkijh_{ki}^{l}=h_{ki}^{j} and hijl=hijkh_{ij}^{l}=h_{ij}^{k}. Then Aikl+Aijl=AijkA_{i}^{kl}+A_{i}^{jl}=A_{i}^{jk}.

\begin{overpic}[scale={0.6}]{figure_2.pdf} \put(4.0,20.0){$i$} \put(41.5,20.0){$l$} \put(23.0,41.0){$k$} \put(17.0,2.0){$j$} \put(3.5,24.5){$r_{i}$} \put(14.0,17.0){$h_{ij}^{k}$} \put(16.5,27.0){$h_{ki}^{j}$} \put(23.5,19.0){$c_{ijk}$} \par\put(56.5,20.0){$i$} \put(94.0,20.0){$l$} \put(75.0,41.0){$k$} \put(69.0,2.0){$j$} \put(56.0,24.5){$r_{i}$} \put(76.0,19.0){$c_{ijk}$} \put(66.5,17.0){$h_{ij}^{l}$} \put(69.0,27.0){$h_{ki}^{l}$} \put(76.0,21.0){$h_{il}^{j}$} \end{overpic}
Figure 2. Weighted Delaunay triangulation 𝒯1\mathcal{T}_{1} (left) and weighted Delaunay triangulation 𝒯2\mathcal{T}_{2} (right).

Q.E.D.

Denote cijc_{ij} as the center of the edge {ij}\{ij\}, which is obtained by projecting the center cijkc_{ijk} to the line determined by {ij}\{ij\}. Denote dijd_{ij} as the signed distance of cijc_{ij} to the vertex ii, which is positive if cijc_{ij} is on the same side of ii as jj along the line determined by {ij}\{ij\} and negative otherwise (or zero if cijc_{ij} is the same as ii). In general, dijdjid_{ij}\neq d_{ji}. Since the face-circle CijkC_{ijk} is orthogonal to the vertex-circle at the vertex jj, we have

(10) rijk2+rj2=djk2+(hjki)2=dji2+(hijk)2.r_{ijk}^{2}+r_{j}^{2}=d_{jk}^{2}+(h^{i}_{jk})^{2}=d_{ji}^{2}+(h^{k}_{ij})^{2}.

Please refer to Figure 3 for this. Moreover, we have the following explicit expressions of dijd_{ij} and hijkh_{ij}^{k} due to Glickenstein [9], i.e.,

(11) dij=ri2+rirjIijlij,d_{ij}=\frac{r_{i}^{2}+r_{i}r_{j}I_{ij}}{l_{ij}},

and

(12) hijk=dikdijcosθjkisinθjki,h_{ij}^{k}=\frac{d_{ik}-d_{ij}\cos\theta_{jk}^{i}}{\sin\theta_{jk}^{i}},

where θjki\theta^{i}_{jk} is the inner angle of the triangle {ijk}\{ijk\} at the vertex ii. The equality (11) implies that dijd_{ij}\in\mathbb{R} is independent of the existence of the center cijkc_{ijk}. Since each pair of vertex-circles is required to be separated, then I>1I>1. This implies

drs>0,{r,s}{i,j,k}.d_{rs}>0,\ \ \forall\{r,s\}\subseteq\{i,j,k\}.
\begin{overpic}[scale={0.4}]{figure_1.pdf} \put(15.0,15.0){$i$} \put(80.5,15.0){$j$} \put(48.5,74.0){$k$} \put(30.0,55.0){$\alpha_{ik}^{j}$} \put(20.0,30.0){$\alpha_{ik}^{j}$} \put(37.5,27.0){$\alpha_{ij}^{k}$} \put(27.0,12.5){$\alpha_{ij}^{k}$} \put(63.0,12.5){$\alpha_{ij}^{k}$} \put(10.0,25.0){$r_{i}$} \put(46.0,25.0){$h_{ij}^{k}$} \put(36.0,40.0){$h_{ki}^{j}$} \put(53.0,43.5){$h_{jk}^{i}$} \put(31.0,21.0){$d_{ij}$} \put(45.0,36.0){$c_{ijk}$} \put(44.0,16.0){$c_{ij}$} \put(34.0,16.0){$r_{ij}$} \put(26.0,42.0){$c_{ik}$} \put(66.0,46.0){$c_{jk}$} \end{overpic}
Figure 3. Dates for a decorated triangle {ijk}F\{ijk\}\in F

The following lemma gives some useful formulas.

Lemma 2.9 ([14, 24, 25]).

Let {ijk}\{ijk\} be a decorated triangle with the edge lengths lij,ljk,lkil_{ij},l_{jk},l_{ki} defined by (5). If the decorated triangle {ijk}\{ijk\} is non-degenerate, then

(13) θjkiuj=θkijui=hijklij,θjkiui=θjkiujθjkiuk,\frac{\partial\theta_{jk}^{i}}{\partial u_{j}}=\frac{\partial\theta_{ki}^{j}}{\partial u_{i}}=\frac{h_{ij}^{k}}{l_{ij}},\ \ \ \frac{\partial\theta_{jk}^{i}}{\partial u_{i}}=-\frac{\partial\theta_{jk}^{i}}{\partial u_{j}}-\frac{\partial\theta_{jk}^{i}}{\partial u_{k}},

where

(14) hijk=ri2rj2rk22Aijklij[κk2(1Ik2)+κjκkγi+κiκkγj]=ri2rj2rk22Aijklijκkhkh_{ij}^{k}=\frac{r_{i}^{2}r_{j}^{2}r_{k}^{2}}{2A_{ijk}l_{ij}}[\kappa_{k}^{2}(1-I_{k}^{2})+\kappa_{j}\kappa_{k}\gamma_{i}+\kappa_{i}\kappa_{k}\gamma_{j}]=\frac{r_{i}^{2}r_{j}^{2}r_{k}^{2}}{2A_{ijk}l_{ij}}\kappa_{k}h_{k}

with Aijk=12lijljksinθkijA_{ijk}=\frac{1}{2}l_{ij}l_{jk}\sin\theta_{ki}^{j}, γi=Ijk+IijIki\gamma_{i}=I_{jk}+I_{ij}I_{ki}κi:=ri1\kappa_{i}:=r_{i}^{-1} and

(15) hi=κi(1Ijk2)+κjγk+κkγj.\displaystyle h_{i}=\kappa_{i}(1-I_{jk}^{2})+\kappa_{j}\gamma_{k}+\kappa_{k}\gamma_{j}.

As a direct application of Lemma 2.9, we have the following result.

Lemma 2.10.

The area Aijk(u)A_{ijk}(u) of each decorated triangle {ijk}F\{ijk\}\in F is an analytic function with

(16) Aijkui=Aijk.\frac{\partial A_{ijk}}{\partial u_{i}}=A_{i}^{jk}.
Proof.

By (14), we have

hijk=dikdijcosθjkisinθjki,hkij=dijdikcosθjkisinθjki.h^{k}_{ij}=\frac{d_{ik}-d_{ij}\cos\theta_{jk}^{i}}{\sin\theta_{jk}^{i}},\quad h_{ki}^{j}=\frac{d_{ij}-d_{ik}\cos\theta_{jk}^{i}}{\sin\theta_{jk}^{i}}.

Direct calculations give

(17) hkij=dijsinθjkihijkcosθjki.h_{ki}^{j}=d_{ij}\sin\theta_{jk}^{i}-h^{k}_{ij}\cos\theta_{jk}^{i}.

Combining (5), (6) and (11), it is easy to check that

(18) lijui=dij.\frac{\partial l_{ij}}{\partial u_{i}}=d_{ij}.

Differentiating Aijk=12lijljksinθkijA_{ijk}=\frac{1}{2}l_{ij}l_{jk}\sin\theta_{ki}^{j} with respect to uiu_{i} gives

Aijkui\displaystyle\frac{\partial A_{ijk}}{\partial u_{i}} =12lijuiljksinθkij+12lijljkcosθkijθkijui\displaystyle=\frac{1}{2}\frac{\partial l_{ij}}{\partial u_{i}}l_{jk}\sin\theta_{ki}^{j}+\frac{1}{2}l_{ij}l_{jk}\cos\theta_{ki}^{j}\frac{\partial\theta_{ki}^{j}}{\partial u_{i}}
=12dijljksinθkij+12lijljkcosθkijhijklij\displaystyle=\frac{1}{2}d_{ij}l_{jk}\sin\theta_{ki}^{j}+\frac{1}{2}l_{ij}l_{jk}\cos\theta_{ki}^{j}\frac{h^{k}_{ij}}{l_{ij}}
=12dijlkisinθjki+12ljkcosθkijhijk\displaystyle=\frac{1}{2}d_{ij}l_{ki}\sin\theta_{jk}^{i}+\frac{1}{2}l_{jk}\cos\theta_{ki}^{j}h^{k}_{ij}
=12dijlkisinθjki+12(lijlkicosθjki)hijk\displaystyle=\frac{1}{2}d_{ij}l_{ki}\sin\theta_{jk}^{i}+\frac{1}{2}(l_{ij}-l_{ki}\cos\theta_{jk}^{i})h^{k}_{ij}
=12lki(dijsinθjkihijkcosθjki)+12lijhijk\displaystyle=\frac{1}{2}l_{ki}(d_{ij}\sin\theta_{jk}^{i}-h^{k}_{ij}\cos\theta_{jk}^{i})+\frac{1}{2}l_{ij}h^{k}_{ij}
=12lkihkij+12lijhijk\displaystyle=\frac{1}{2}l_{ki}h_{ki}^{j}+\frac{1}{2}l_{ij}h_{ij}^{k}
=Aijk,\displaystyle=A_{i}^{jk},

where the second equality uses (18) and (13), the third equality uses the sine laws and the penultimate line uses (17). Q.E.D.

Remark 2.11.

One can refer to Glickenstein [9] for a nice geometric explanation of the result in Lemma 2.10.

2.3. The extended energy function and the extended area function

There exists a geometric relationship between the decorated triangle {ijk}\{ijk\} and the geometry of hyperbolic polyhedra in 33-dimensional hyperbolic space. Specially, there is a generalized hyperbolic tetrahedra in 3\mathbb{H}^{3} with one ideal vertex and three hyper-ideal vertices corresponding to a decorated triangle {ijk}\{ijk\}. Please refer to [2] for more details on this fact. Springborn [22] found the following explicit formula for the truncated volume Vol(ijk)\mathrm{Vol}(ijk) of this generalized hyperbolic tetrahedra

(19) 2Vol(ijk)=\displaystyle 2\mathrm{Vol}(ijk)= 𝕃(θjki)+𝕃(θkij)+𝕃(θijk)\displaystyle\mathbb{L}(\theta_{jk}^{i})+\mathbb{L}(\theta_{ki}^{j})+\mathbb{L}(\theta_{ij}^{k})
+𝕃(π+αkij+αijkθjki2)+𝕃(π+αkijαijkθjki2)\displaystyle+\mathbb{L}(\frac{\pi+\alpha_{ki}^{j}+\alpha_{ij}^{k}-\theta_{jk}^{i}}{2})+\mathbb{L}(\frac{\pi+\alpha_{ki}^{j}-\alpha_{ij}^{k}-\theta_{jk}^{i}}{2})
+𝕃(παkij+αijkθjki2)+𝕃(παkijαijkθjki2)\displaystyle+\mathbb{L}(\frac{\pi-\alpha_{ki}^{j}+\alpha_{ij}^{k}-\theta_{jk}^{i}}{2})+\mathbb{L}(\frac{\pi-\alpha_{ki}^{j}-\alpha_{ij}^{k}-\theta_{jk}^{i}}{2})
+𝕃(π+αjki+αijkθkij2)+𝕃(π+αjkiαijkθkij2)\displaystyle+\mathbb{L}(\frac{\pi+\alpha_{jk}^{i}+\alpha_{ij}^{k}-\theta_{ki}^{j}}{2})+\mathbb{L}(\frac{\pi+\alpha_{jk}^{i}-\alpha_{ij}^{k}-\theta_{ki}^{j}}{2})
+𝕃(παjki+αijkθkij2)+𝕃(παjkiαijkθkij2)\displaystyle+\mathbb{L}(\frac{\pi-\alpha_{jk}^{i}+\alpha_{ij}^{k}-\theta_{ki}^{j}}{2})+\mathbb{L}(\frac{\pi-\alpha_{jk}^{i}-\alpha_{ij}^{k}-\theta_{ki}^{j}}{2})
+𝕃(π+αjki+αkijθijk2)+𝕃(π+αjkiαkijθijk2)\displaystyle+\mathbb{L}(\frac{\pi+\alpha_{jk}^{i}+\alpha_{ki}^{j}-\theta_{ij}^{k}}{2})+\mathbb{L}(\frac{\pi+\alpha_{jk}^{i}-\alpha_{ki}^{j}-\theta_{ij}^{k}}{2})
+𝕃(παjki+αkijθijk2)+𝕃(παjkiαkijθijk2),\displaystyle+\mathbb{L}(\frac{\pi-\alpha_{jk}^{i}+\alpha_{ki}^{j}-\theta_{ij}^{k}}{2})+\mathbb{L}(\frac{\pi-\alpha_{jk}^{i}-\alpha_{ki}^{j}-\theta_{ij}^{k}}{2}),

where

(20) 𝕃(x)=0xlog|2sin(t)|dt\mathbb{L}(x)=-\int_{0}^{x}\log|2\sin(t)|dt

is Milnor’s Lobachevsky function. Milnor’s Lobachevsky function is bounded, odd, π\pi-periodic and smooth except at integer multiples of π\pi. Please refer to [20, 21] for more information on Milnor’s Lobachevsky function 𝕃(x)\mathbb{L}(x).

Set

(21) Fijk(ui,uj,uk)=\displaystyle F_{ijk}(u_{i},u_{j},u_{k})= 2Vol(ijk)+θjkiui+θkijuj+θijkuk\displaystyle-2\mathrm{Vol}(ijk)+\theta_{jk}^{i}u_{i}+\theta_{ki}^{j}u_{j}+\theta_{ij}^{k}u_{k}
+(π2αijk)λij+(π2αkij)λki+(π2αjki)λjk,\displaystyle+(\frac{\pi}{2}-\alpha_{ij}^{k})\lambda_{ij}+(\frac{\pi}{2}-\alpha_{ki}^{j})\lambda_{ki}+(\frac{\pi}{2}-\alpha_{jk}^{i})\lambda_{jk},

where coshλij=Iij\cosh\lambda_{ij}=I_{ij}. Then Fijk=(θjki,θkij,θijk)\nabla F_{ijk}=(\theta_{jk}^{i},\theta_{ki}^{j},\theta_{ij}^{k}) and

(22) Fijk((ui,uj,uk)+c(1,1,1))=Fijk(ui,uj,uk)+cπF_{ijk}((u_{i},u_{j},u_{k})+c(1,1,1))=F_{ijk}(u_{i},u_{j},u_{k})+c\pi

for cc\in\mathbb{R}. Furthermore, on a decorated PE surface (S,V,l,r)(S,V,l,r) with a weighted Delaunay triangulation 𝒯\mathcal{T}, Bobenko-Lutz [2] defined the following function

(23) 𝒯(u)={ijk}FFijk(ui,uj,uk)=2Vol(Ph)+iVθiui+{ij}E𝒯(παij)λij,\mathcal{H}_{\mathcal{T}}(u)=\sum_{\{ijk\}\in F}F_{ijk}(u_{i},u_{j},u_{k})=-2\mathrm{Vol}(P_{h})+\sum_{i\in V}\theta_{i}u_{i}+\sum_{\{ij\}\in E_{\mathcal{T}}}(\pi-\alpha_{ij})\lambda_{ij},

where PhP_{h} is the convex polyhedral cusp defined by the heights hVh\in\mathbb{R}^{V}, θi={ijk}F𝒯θjki\theta_{i}=\sum_{\{ijk\}\in F_{\mathcal{T}}}\theta^{i}_{jk} and αij=αijk+αijl\alpha_{ij}=\alpha_{ij}^{k}+\alpha_{ij}^{l}. Note that the function 𝒯(u)\mathcal{H}_{\mathcal{T}}(u) defined by (23) differs from its original definition in [2] (Equation 4-9) by some constant. By (22), for cc\in\mathbb{R}, we have

𝒯(u+c𝟏)=𝒯(u)+c|F|π.\mathcal{H}_{\mathcal{T}}(u+c\mathbf{1})=\mathcal{H}_{\mathcal{T}}(u)+c|F|\pi.

Using the function 𝒯\mathcal{H}_{\mathcal{T}}, we define the following energy function

𝒯(u)=𝒯(u)+2πiVui,\mathcal{E}_{\mathcal{T}}(u)=-\mathcal{H}_{\mathcal{T}}(u)+2\pi\sum_{i\in V}u_{i},

which is well-defined on 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r) with ui𝒯=2π{ijk}F𝒯θjki=Wi\nabla_{u_{i}}\mathcal{E}_{\mathcal{T}}=2\pi-\sum_{\{ijk\}\in F_{\mathcal{T}}}\theta^{i}_{jk}=W_{i}. Moreover, for cc\in\mathbb{R}, we have

(24) 𝒯(u+c𝟏)=\displaystyle\mathcal{E}_{\mathcal{T}}(u+c\mathbf{1})= 𝒯(u+c𝟏)+2πiV(ui+c)\displaystyle-\mathcal{H}_{\mathcal{T}}(u+c\mathbf{1})+2\pi\sum_{i\in V}(u_{i}+c)
=\displaystyle= 𝒯(u)c|F|π+2πiVui+2c|V|π\displaystyle-\mathcal{H}_{\mathcal{T}}(u)-c|F|\pi+2\pi\sum_{i\in V}u_{i}+2c|V|\pi
=\displaystyle= 𝒯(u)+2cπχ(S),\displaystyle\mathcal{E}_{\mathcal{T}}(u)+2c\pi\chi(S),

where 2|V||F|=2χ(S)2|V|-|F|=2\chi(S) is used in the last line.

Theorem 2.12 ([2], Proposition 4.13).

For a discrete conformal factor uVu\in\mathbb{R}^{V}, let 𝒯\mathcal{T} be a weighted Delaunay triangulation of the decorated PE surface (S,V,distS(u),r(u))(S,V,dist_{S}(u),r(u)). The map

(25) :V\displaystyle\mathcal{H}:\ \mathbb{R}^{V} ,\displaystyle\rightarrow\mathbb{R},
u\displaystyle u 𝒯(u)\displaystyle\mapsto\mathcal{H}_{\mathcal{T}}(u)

is well-defined, concave, and twice continuously differentiable over V\mathbb{R}^{V}.

Therefore, the function 𝒯(u)\mathcal{E}_{\mathcal{T}}(u) defined on 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r) can be extended to be

(26) (u)=(u)+2πiVui={ijk}FFijk(ui,uj,uk)+2πiVui\mathcal{E}(u)=-\mathcal{H}(u)+2\pi\sum_{i\in V}u_{i}=-\sum_{\{ijk\}\in F}F_{ijk}(u_{i},u_{j},u_{k})+2\pi\sum_{i\in V}u_{i}

defined on V\mathbb{R}^{V}.

Definition 2.13.

Suppose (S,V,𝒯)(S,V,\mathcal{T}) is a triangulated surface with a decorated PE metric (l,r)(l,r). The area function Atot𝒯A^{\mathcal{T}}_{tot} on (S,V,𝒯)(S,V,\mathcal{T}) is defined to be

Atot𝒯:𝒞𝒯(distS,r),Atot𝒯(u)={ijk}FAijk(u).A^{\mathcal{T}}_{tot}:\ \mathcal{C}_{\mathcal{T}}(dist_{S},r)\rightarrow\mathbb{R},\\ \quad\ A^{\mathcal{T}}_{tot}(u)=\sum_{\{ijk\}\in F}A_{ijk}(u).

By Lemma 2.10, we have the following result.

Corollary 2.14.

The function Atot𝒯A^{\mathcal{T}}_{tot} is an analytic function with

(27) Atot𝒯ui=Ai.\frac{\partial A^{\mathcal{T}}_{tot}}{\partial u_{i}}=A_{i}.

Lemma 2.8 and Corollary 2.14 imply the following result, which shows the function Atot𝒯A^{\mathcal{T}}_{tot} defined on 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r) can be extended.

Theorem 2.15.

For a discrete conformal factor uVu\in\mathbb{R}^{V}, let 𝒯\mathcal{T} be a weighted Delaunay triangulation of the decorated PE surface (S,V,distS(u),r(u))(S,V,dist_{S}(u),r(u)). The map

(28) Atot:V\displaystyle A_{tot}:\ \mathbb{R}^{V} ,\displaystyle\rightarrow\mathbb{R},
u\displaystyle u Atot𝒯(u)\displaystyle\mapsto A^{\mathcal{T}}_{tot}(u)

is well-defined and once differentiable.

Proof.

By Corollary 2.14, the function AtotA_{tot} is once differentiable in the interior of any 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r). At the boundary of 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r), the weighted triangulations induce the same weighted Delaunay tessellation. The conclusion follows from Lemma 2.8. Q.E.D.

3. The proof of Theorem 1.5

3.1. Variational principles with constraints

In this subsection, we translate Theorem 1.5 into an optimization problem with inequality constraints by variational principles, which involves the function \mathcal{E} defined by (26).

Proposition 3.1.

The set

𝒜={uV|Atot(u)1}.\mathcal{A}=\{u\in\mathbb{R}^{V}|A_{tot}(u)\leq 1\}.

is an unbounded closed subset of V\mathbb{R}^{V}.

Proof.

By Theorem 2.15, the set 𝒜\mathcal{A} is a closed subset of V\mathbb{R}^{V}. Since Aijk((ui,uj,uk)+(c,c,c))=e2cAijk(ui,uj,uk)A_{ijk}((u_{i},u_{j},u_{k})+(c,c,c))=e^{2c}A_{ijk}(u_{i},u_{j},u_{k}), thus Atot(u+c𝟏)=e2cAtot(u)A_{tot}(u+c\mathbf{1})=e^{2c}A_{tot}(u). Then Atot(u+c𝟏)=e2cAtot(u)1A_{tot}(u+c\mathbf{1})=e^{2c}A_{tot}(u)\leq 1 is equivalent to c12logAtot(u)c\leq-\frac{1}{2}\log A_{tot}(u). This implies that the ray {u+c𝟏|c12logAtot(u)}\{u+c\mathbf{1}|c\leq-\frac{1}{2}\log A_{tot}(u)\} stays in the set 𝒜\mathcal{A}. Hence the set 𝒜\mathcal{A} is unbounded. Q.E.D.

According to Proposition 3.1, we have following result.

Lemma 3.2.

If χ(S)<0\chi(S)<0 and the function (u)\mathcal{E}(u) attains a minimum in the set 𝒜\mathcal{A}, then the minimum value point of (u)\mathcal{E}(u) lies at the boundary of 𝒜\mathcal{A}, i.e.,

𝒜={uV|Atot(u)=1}.\partial\mathcal{A}=\{u\in\mathbb{R}^{V}|A_{tot}(u)=1\}.

Furthermore, there exists a decorated PE metric with constant discrete Gaussian curvature KK in the discrete conformal class.

Proof.

Suppose the function (u)\mathcal{E}(u) attains a minimum at u𝒜u\in\mathcal{A}. Taking c0=12logAtot(u)c_{0}=-\frac{1}{2}\log A_{tot}(u), then c00c_{0}\geq 0 by Atot(u)1A_{tot}(u)\leq 1. By the proof of Proposition 3.1, u+c0𝟏𝒜u+c_{0}\mathbf{1}\in\mathcal{A}. Hence, by the additive property of the function \mathcal{E} in (24), we have

(u)(u+c0𝟏)=(u)+2c0πχ(S).\mathcal{E}(u)\leq\mathcal{E}(u+c_{0}\mathbf{1})=\mathcal{E}(u)+2c_{0}\pi\chi(S).

This implies c00c_{0}\leq 0 by χ(S)<0\chi(S)<0. Then c0=0c_{0}=0 and Atot(u)=1A_{tot}(u)=1. Therefore, the minimum value point of (u)\mathcal{E}(u) lies in the set 𝒜={uV|Atot(u)=1}\partial\mathcal{A}=\{u\in\mathbb{R}^{V}|A_{tot}(u)=1\}. The conclusion follows from the following claim.
Claim : Up to scaling, the decorated PE metrics with constant discrete Gaussian curvature KK in the discrete conformal class are in one-to-one correspondence with the critical points of the function (u)\mathcal{E}(u) under the constraint Atot(u)=1A_{tot}(u)=1.

We use the method of Lagrange multipliers to prove this claim. Set

G(u,μ)=(u)μ(Atot(u)1),G(u,\mu)=\mathcal{E}(u)-\mu(A_{tot}(u)-1),

where μ\mu\in\mathbb{R} is a Lagrange multiplier. If uu is a critical point of the function \mathcal{E} under the constraint Atot(u)=1A_{tot}(u)=1, then by (27) and the fact ui=Wi\nabla_{u_{i}}\mathcal{E}=W_{i}, we have

0=G(u,μ)ui=(u)uiμAtot(u)ui=WiμAi.0=\frac{\partial G(u,\mu)}{\partial u_{i}}=\frac{\partial\mathcal{E}(u)}{\partial u_{i}}-\mu\frac{\partial A_{tot}(u)}{\partial u_{i}}=W_{i}-\mu A_{i}.

This implies

Wi=μAi.W_{i}=\mu A_{i}.

Since the anger defect WW defined by (1) satisfies the following discrete Gauss-Bonnet formula

iVWi=2πχ(S),\sum_{i\in V}W_{i}=2\pi\chi(S),

we have

2πχ(S)=iVWi=μiVAi=μAtot=μ.2\pi\chi(S)=\sum_{i\in V}W_{i}=\mu\sum_{i\in V}A_{i}=\mu A_{tot}=\mu.

under the constraint Atot(u)=1A_{tot}(u)=1. Therefore, the discrete Gaussian curvature

Ki=WiAi=2πχ(S)K_{i}=\frac{W_{i}}{A_{i}}=2\pi\chi(S)

for any iVi\in V. Q.E.D.

3.2. Reduction to Theorem 3.4

By Lemma 3.2, we just need to prove that the function (u)\mathcal{E}(u) attains the minimum in the set 𝒜\mathcal{A}. Recall the following classical result from calculus.

Theorem 3.3.

Let AmA\subseteq\mathbb{R}^{m} be a closed set and f:Af:A\rightarrow\mathbb{R} be a continuous function. If every unbounded sequence {un}n\{u_{n}\}_{n\in\mathbb{N}} in AA has a subsequence {unk}k\{u_{n_{k}}\}_{k\in\mathbb{N}} such that limk+f(unk)=+\lim_{k\rightarrow+\infty}f(u_{n_{k}})=+\infty, then ff attains a minimum in AA.

One can refer to [16] (Section 4.1) for a proof of Theorem 3.3. The majority of the conditions in Theorem 3.3 is satisfied, including the set 𝒜\mathcal{A} is a closed subset of V\mathbb{R}^{V} by Proposition 3.1 and the function \mathcal{E} is continuous by Theorem 2.12. To prove Theorem 1.5, we just need to prove the following theorem.

Theorem 3.4.

If χ(S)<0\chi(S)<0 and {un}n\{u_{n}\}_{n\in\mathbb{N}} is an unbounded sequence in 𝒜\mathcal{A}, then there exists a subsequence {unk}k\{u_{n_{k}}\}_{k\in\mathbb{N}} of {un}n\{u_{n}\}_{n\in\mathbb{N}} such that limk+(unk)=+\lim_{k\rightarrow+\infty}\mathcal{E}(u_{n_{k}})=+\infty.

3.3. Behaviour of sequences of discrete conformal factors

Let {un}n\{u_{n}\}_{n\in\mathbb{N}} be an unbounded sequence in V\mathbb{R}^{V}. Denote its coordinate sequence at jVj\in V by {uj,n}n\{u_{j,n}\}_{n\in\mathbb{N}}. Motivated by [17], we call the sequence {un}n\{u_{n}\}_{n\in\mathbb{N}} with the following properties as a “good” sequence.

(1):

It lies in one cell 𝒞𝒯(distS,r)\mathcal{C}_{\mathcal{T}}(dist_{S},r) of V\mathbb{R}^{V};

(2):

There exists a vertex iVi^{*}\in V such that ui,nuj,nu_{i^{*},n}\leq u_{j,n} for all jVj\in V and nn\in\mathbb{N};

(3):

Each coordinate sequence {uj,n}n\{u_{j,n}\}_{n\in\mathbb{N}} either converges, diverges properly to ++\infty, or diverges properly to -\infty;

(4):

For any jVj\in V, the sequence {uj,nui,n}n\{u_{j,n}-u_{i^{*},n}\}_{n\in\mathbb{N}} either converges or diverges properly to ++\infty.

By Lemma 2.7, it is obvious that every sequence of discrete conformal factors in V\mathbb{R}^{V} possesses a “good” subsequence. Hence, the “good” sequence could be chosen without loss of generality.

In the following arguments, we use the following notations

(29) lijn=ri,n2+rj,n2+2Iijri,nrj,n,l^{n}_{ij}=\sqrt{r^{2}_{i,n}+r^{2}_{j,n}+2I_{ij}r_{i,n}r_{j,n}},
(30) ri,n=eui,nri,r_{i,n}=e^{u_{i,n}}r_{i},
(31) (lijn)2=(e2ui,neui,n+uj,n)ri2+(e2uj,neui,n+uj,n)rj2+eui,n+uj,nlij2.(l^{n}_{ij})^{2}=(e^{2u_{i,n}}-e^{u_{i,n}+u_{j,n}})r^{2}_{i}+(e^{2u_{j,n}}-e^{u_{i,n}+u_{j,n}})r^{2}_{j}+e^{{u_{i,n}+u_{j,n}}}l_{ij}^{2}.

For a decorated triangle {ijk}F\{ijk\}\in F in (S,V,𝒯)(S,V,\mathcal{T}), set

(32) 𝒞ijk={(ui,uj,uk)3|u𝒞𝒯(distS,r)}.\mathcal{C}_{ijk}=\{(u_{i},u_{j},u_{k})\in\mathbb{R}^{3}|u\in\mathcal{C}_{\mathcal{T}}(dist_{S},r)\}.

Let (ui,n,uj,n,uk,n)n(u_{i,n},u_{j,n},u_{k,n})_{n\in\mathbb{N}} be a coordinate sequence in 𝒞ijk\mathcal{C}_{ijk}. Then the edge lengths lijn,ljkn,lkinl^{n}_{ij},l^{n}_{jk},l^{n}_{ki} satisfy the triangle inequalities for all nn\in\mathbb{N}.

Lemma 3.5.

There exists no sequence in 𝒞ijk\mathcal{C}_{ijk} such that as n+n\rightarrow+\infty,

ur,n+,us,n+,ut,nC,u_{r,n}\rightarrow+\infty,\quad u_{s,n}\rightarrow+\infty,\quad u_{t,n}\leq C,

where {r,s,t}={i,j,k}\{r,s,t\}=\{i,j,k\} and CC is a constant.

Proof.

Without loss of generality, we assume limui,n=+\lim u_{i,n}=+\infty, limuj,n=+\lim u_{j,n}=+\infty and the sequence uk,nC1u_{k,n}\leq C_{1}. The equality (30) implies limri,n=+\lim r_{i,n}=+\infty, limrj,n=+\lim r_{j,n}=+\infty and the sequence rk,nC2r_{k,n}\leq C_{2}. Here C1,C2C_{1},C_{2} are constants. By (29), we have

(ljkn+lkin)2=\displaystyle(l^{n}_{jk}+l^{n}_{ki})^{2}= ri,n2+rj,n2+2rk,n2+2Ijkrj,nrk,n+2Ikirk,nri,n\displaystyle r^{2}_{i,n}+r^{2}_{j,n}+2r^{2}_{k,n}+2I_{jk}r_{j,n}r_{k,n}+2I_{ki}r_{k,n}r_{i,n}
+2(rj,n2+rk,n2+2Ijkrj,nrk,n)(rk,n2+ri,n2+2Ikirk,nri,n).\displaystyle+2\sqrt{(r^{2}_{j,n}+r^{2}_{k,n}+2I_{jk}r_{j,n}r_{k,n})(r^{2}_{k,n}+r^{2}_{i,n}+2I_{ki}r_{k,n}r_{i,n})}.

Note that Iij>1I_{ij}>1, then

limrk,n2+Ijkrj,nrk,n+Ikirk,nri,n+(rj,n2+rk,n2+2Ijkrj,nrk,n)(rk,n2+ri,n2+2Ikirk,nri,n)Iijri,nrj,n<1.\lim\frac{r^{2}_{k,n}+I_{jk}r_{j,n}r_{k,n}+I_{ki}r_{k,n}r_{i,n}+\sqrt{(r^{2}_{j,n}+r^{2}_{k,n}+2I_{jk}r_{j,n}r_{k,n})(r^{2}_{k,n}+r^{2}_{i,n}+2I_{ki}r_{k,n}r_{i,n})}}{I_{ij}r_{i,n}r_{j,n}}<1.

Therefore, there exists nn\in\mathbb{N} such that (ln)ij2=ri,n2+rj,n2+2Iijri,nrj,n>(ljkn+lkin)2(l^{n})^{2}_{ij}=r^{2}_{i,n}+r^{2}_{j,n}+2I_{ij}r_{i,n}r_{j,n}>(l^{n}_{jk}+l^{n}_{ki})^{2}, i.e., lijn>ljkn+lkinl^{n}_{ij}>l^{n}_{jk}+l^{n}_{ki}. This contradicts the triangle inequality lijn<ljkn+lkinl^{n}_{ij}<l^{n}_{jk}+l^{n}_{ki}. Q.E.D.

Combining Lemma 3.5 and the connectivity of the triangulation 𝒯\mathcal{T}, we have the following result.

Corollary 3.6.

For a discrete conformal factor uVu\in\mathbb{R}^{V}, let 𝒯\mathcal{T} be a weighted Delaunay triangulation of the decorated PE surface (S,V,distS(u),r(u))(S,V,dist_{S}(u),r(u)). For any decorated triangle {ijk}F\{ijk\}\in F in 𝒯\mathcal{T}, at least two of the three sequences (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}}, (uj,nui,n)n(u_{j,n}-u_{i^{*},n})_{n\in\mathbb{N}}, (uk,nui,n)n(u_{k,n}-u_{i^{*},n})_{n\in\mathbb{N}} converge.

To characterize the function Fijk(ui,uj,uk)F_{ijk}(u_{i},u_{j},u_{k}) in (21), we need the following lemmas.

Lemma 3.7.

Assume that the sequence (ui,n)n(u_{i,n})_{n\in\mathbb{N}} diverges properly to ++\infty and the sequences (uj,n)n(u_{j,n})_{n\in\mathbb{N}} and (uk,n)n(u_{k,n})_{n\in\mathbb{N}} converge. Then the sequence (θjki,n)n(\theta^{i,n}_{jk})_{n\in\mathbb{N}} converges to zero. Furthermore, if the sequences (θkij,n)n(\theta^{j,n}_{ki})_{n\in\mathbb{N}} and (θijk,n)n(\theta^{k,n}_{ij})_{n\in\mathbb{N}} converge to non-zero constants, then

(1):

the sequences (hjki,n)n(h_{jk}^{i,n})_{n\in\mathbb{N}}, (hkij,n)n(h_{ki}^{j,n})_{n\in\mathbb{N}} and (hijk,n)n(h_{ij}^{k,n})_{n\in\mathbb{N}} converge;

(2):

the sequences (αjki,n)n(\alpha^{i,n}_{jk})_{n\in\mathbb{N}}, (αkij,n)n(\alpha^{j,n}_{ki})_{n\in\mathbb{N}} and (αijk,n)n(\alpha^{k,n}_{ij})_{n\in\mathbb{N}} converge.

Proof.

By the assumption, we have limri,n=+\lim r_{i,n}=+\infty, limrj,n=c1\lim r_{j,n}=c_{1} and limrk,n=c2\lim r_{k,n}=c_{2}, where c1,c2c_{1},c_{2} are positive constants. The equality (29) implies

(33) limlijnri,n=1,limlkinri,n=1,limljkn=c3,\lim\frac{l_{ij}^{n}}{r_{i,n}}=1,\ \lim\frac{l_{ki}^{n}}{r_{i,n}}=1,\ \lim l_{jk}^{n}=c_{3},

where c3c_{3} is a positive constant. By the cosine law, we have

limcosθjki,n=lim(ljkn)2+(lijn)2+(lkin)22lijnlkin=1.\lim\cos\theta^{i,n}_{jk}=\lim\frac{-(l_{jk}^{n})^{2}+(l_{ij}^{n})^{2}+(l_{ki}^{n})^{2}}{2l_{ij}^{n}l_{ki}^{n}}=1.

This implies limθjki,n=0\lim\theta^{i,n}_{jk}=0.

Suppose the sequences (θkij,n)n(\theta^{j,n}_{ki})_{n\in\mathbb{N}} and (θijk,n)n(\theta^{k,n}_{ij})_{n\in\mathbb{N}} converge to non-zero constants. Then

(34) limAijknri,n=limlijnljknsinθkij,n2ri,n=c4\lim\frac{A_{ijk}^{n}}{r_{i,n}}=\lim\frac{l^{n}_{ij}l^{n}_{jk}\sin\theta^{j,n}_{ki}}{2r_{i,n}}=c_{4}

for some constant c4>0c_{4}>0.

(1): Since κi=1ri\kappa_{i}=\frac{1}{r_{i}}, then limκi,n=0\lim\kappa_{i,n}=0, limκj,n=1c1\lim\kappa_{j,n}=\frac{1}{c_{1}} and limκk,n=1c2\lim\kappa_{k,n}=\frac{1}{c_{2}}. By (15), we have

limhi,n=\displaystyle\lim h_{i,n}= lim(κi,n(1Ijk2)+κj,nγk+κk,nγj)=c5>0,\displaystyle\lim(\kappa_{i,n}(1-I_{jk}^{2})+\kappa_{j,n}\gamma_{k}+\kappa_{k,n}\gamma_{j})=c_{5}>0,
limhj,n=\displaystyle\lim h_{j,n}= lim(κj,n(1Iki2)+κi,nγk+κk,nγi)=c6,\displaystyle\lim(\kappa_{j,n}(1-I_{ki}^{2})+\kappa_{i,n}\gamma_{k}+\kappa_{k,n}\gamma_{i})=c_{6},
limhk,n=\displaystyle\lim h_{k,n}= lim(κk,n(1Iij2)+κi,nγj+κj,nγi)=c7,\displaystyle\lim(\kappa_{k,n}(1-I_{ij}^{2})+\kappa_{i,n}\gamma_{j}+\kappa_{j,n}\gamma_{i})=c_{7},

where c5,c6,c7c_{5},c_{6},c_{7} are constants. Note that c6,c7c_{6},c_{7} may be non-positive. The equalities (14) and (34) imply

limhjki,n=\displaystyle\lim h_{jk}^{i,n}= limri,n2rj,n2rk,n22Aijknljknκi,nhi,n=c12c22c52c3c4>0,\displaystyle\lim\frac{r_{i,n}^{2}r_{j,n}^{2}r_{k,n}^{2}}{2A^{n}_{ijk}l^{n}_{jk}}\kappa_{i,n}h_{i,n}=\frac{c_{1}^{2}c^{2}_{2}c_{5}}{2c_{3}c_{4}}>0,
limhkij,n=\displaystyle\lim h_{ki}^{j,n}= limri,n2rj,n2rk,n22Aijknlkinκj,nhj,n=c1c22c62c4,\displaystyle\lim\frac{r_{i,n}^{2}r_{j,n}^{2}r_{k,n}^{2}}{2A^{n}_{ijk}l^{n}_{ki}}\kappa_{j,n}h_{j,n}=\frac{c_{1}c^{2}_{2}c_{6}}{2c_{4}},
limhijk,n=\displaystyle\lim h_{ij}^{k,n}= limri,n2rj,n2rk,n22Aijknlijnκk,nhk,n=c12c2c72c4.\displaystyle\lim\frac{r_{i,n}^{2}r_{j,n}^{2}r_{k,n}^{2}}{2A^{n}_{ijk}l^{n}_{ij}}\kappa_{k,n}h_{k,n}=\frac{c_{1}^{2}c_{2}c_{7}}{2c_{4}}.

Hence the sequences (hjki,n)n(h_{jk}^{i,n})_{n\in\mathbb{N}}, (hkij,n)n(h_{ki}^{j,n})_{n\in\mathbb{N}} and (hijk,n)n(h_{ij}^{k,n})_{n\in\mathbb{N}} converge.

(2): The equality (11) implies

(35) limdjkn=limrj,n2+rj,nrk,nIjkljkn=c12+c1c2Ijkc3>0.\lim d^{n}_{jk}=\lim\frac{r_{j,n}^{2}+r_{j,n}r_{k,n}I_{jk}}{l^{n}_{jk}}=\frac{c_{1}^{2}+c_{1}c_{2}I_{jk}}{c_{3}}>0.

By (10), we have

lim(rijkn)2=lim[(djkn)2+(hjki,n)2rj,n2]=c8.\lim(r^{n}_{ijk})^{2}=\lim[(d^{n}_{jk})^{2}+(h^{i,n}_{jk})^{2}-r_{j,n}^{2}]=c_{8}.

where c8c_{8} is a constant. Note that hjki=rijkcosαjkih^{i}_{jk}=r_{ijk}\cos\alpha_{jk}^{i}. Hence,

limcosαjki,n=\displaystyle\lim\cos\alpha_{jk}^{i,n}= limhjki,nrijkn=c12c22c52c3c4c8>0,\displaystyle\lim\frac{h_{jk}^{i,n}}{r^{n}_{ijk}}=\frac{c_{1}^{2}c^{2}_{2}c_{5}}{2c_{3}c_{4}\sqrt{c_{8}}}>0,
limcosαkij,n=\displaystyle\lim\cos\alpha_{ki}^{j,n}= limhkij,nrijkn=c1c22c62c4c8,\displaystyle\lim\frac{h_{ki}^{j,n}}{r^{n}_{ijk}}=\frac{c_{1}c^{2}_{2}c_{6}}{2c_{4}\sqrt{c_{8}}},
limcosαijk,n=\displaystyle\lim\cos\alpha_{ij}^{k,n}= limhijk,nrijkn=c12c2c72c4c8.\displaystyle\lim\frac{h_{ij}^{k,n}}{r^{n}_{ijk}}=\frac{c_{1}^{2}c_{2}c_{7}}{2c_{4}\sqrt{c_{8}}}.

Then the sequences (αjki,n)n(\alpha^{i,n}_{jk})_{n\in\mathbb{N}}, (αkij,n)n(\alpha^{j,n}_{ki})_{n\in\mathbb{N}} and (αijk,n)n(\alpha^{k,n}_{ij})_{n\in\mathbb{N}} converge. Q.E.D.

Lemma 3.8.

Assume that the sequence (ui,n)n(u_{i,n})_{n\in\mathbb{N}} diverges properly to ++\infty and the sequences (uj,n)n(u_{j,n})_{n\in\mathbb{N}} and (uk,n)n(u_{k,n})_{n\in\mathbb{N}} converge. If the sequence (θkij,n)n(\theta^{j,n}_{ki})_{n\in\mathbb{N}} converge to zero, then

limhjki,n=+,limhkij,n=+,limhijk,n=.\lim h^{i,n}_{jk}=+\infty,\ \lim h^{j,n}_{ki}=+\infty,\ \lim h^{k,n}_{ij}=-\infty.
Proof.

Lemma 3.7 shows that limθjki,n=0\lim\theta^{i,n}_{jk}=0, thus lim(θkij,n+θijk,n)=π\lim(\theta^{j,n}_{ki}+\theta^{k,n}_{ij})=\pi. Since limθkij,n=0\lim\theta^{j,n}_{ki}=0, then limθijk,n=π\lim\theta^{k,n}_{ij}=\pi. Then

(36) limAijknri,n=limlijnljknsinθkij,nri,n=0.\lim\frac{A_{ijk}^{n}}{r_{i,n}}=\lim\frac{l^{n}_{ij}l^{n}_{jk}\sin\theta^{j,n}_{ki}}{r_{i,n}}=0.

By the proof of Lemma 3.7, we have

limhjki,n=limri,n2rj,n2rk,n22Aijknljknκi,nhi,n=limri,n2c12c222Aijknc31ri,nc5=+,\lim h_{jk}^{i,n}=\lim\frac{r_{i,n}^{2}r_{j,n}^{2}r_{k,n}^{2}}{2A^{n}_{ijk}l^{n}_{jk}}\kappa_{i,n}h_{i,n}=\lim\frac{r_{i,n}^{2}c_{1}^{2}c_{2}^{2}}{2A^{n}_{ijk}c_{3}}\cdot\frac{1}{r_{i,n}}c_{5}=+\infty,

where (36) is used and c1,c2,c3,c5c_{1},c_{2},c_{3},c_{5} are positive constants. Similar to (35), we have

limdjin=\displaystyle\lim d^{n}_{ji}= limrj,n2+ri,nrj,nIijlijn=c9,\displaystyle\lim\frac{r_{j,n}^{2}+r_{i,n}r_{j,n}I_{ij}}{l^{n}_{ij}}=c_{9},
limdkin=\displaystyle\lim d^{n}_{ki}= limrk,n2+ri,nrk,nIkilkin=c10.\displaystyle\lim\frac{r_{k,n}^{2}+r_{i,n}r_{k,n}I_{ki}}{l^{n}_{ki}}=c_{10}.

Here c9,c10c_{9},c_{10} are positive constants. By (10), we have

(rijkn)2\displaystyle(r^{n}_{ijk})^{2} =(djkn)2+(hjki,n)2rj,n2\displaystyle=(d^{n}_{jk})^{2}+(h^{i,n}_{jk})^{2}-r_{j,n}^{2}
=(djin)2+(hijk,n)2rj,n2\displaystyle=(d^{n}_{ji})^{2}+(h^{k,n}_{ij})^{2}-r_{j,n}^{2}
=(dkin)2+(hkij,n)2rk,n2.\displaystyle=(d^{n}_{ki})^{2}+(h^{j,n}_{ki})^{2}-r_{k,n}^{2}.

This implies limrijkn=+\lim r^{n}_{ijk}=+\infty, lim(hijk,n)2=+\lim(h^{k,n}_{ij})^{2}=+\infty and lim(hkij,n)2=+\lim(h^{j,n}_{ki})^{2}=+\infty. Therefore, we have the following four cases

(i)(i):

limhijk,n=+\lim h^{k,n}_{ij}=+\infty and limhkij,n=+\lim h^{j,n}_{ki}=+\infty;

(ii)(ii):

limhijk,n=\lim h^{k,n}_{ij}=-\infty and limhkij,n=\lim h^{j,n}_{ki}=-\infty;

(iii)(iii):

limhijk,n=+\lim h^{k,n}_{ij}=+\infty and limhkij,n=\lim h^{j,n}_{ki}=-\infty;

(iv)(iv):

limhijk,n=\lim h^{k,n}_{ij}=-\infty and limhkij,n=+\lim h^{j,n}_{ki}=+\infty.

For the case (i)(i), since limhjki,n>0\lim h_{jk}^{i,n}>0, limhijk,n>0\lim h^{k,n}_{ij}>0 and limhkij,n>0\lim h^{j,n}_{ki}>0. This implies that the center cijkc_{ijk} of the face-circle CijkC_{ijk} lies in the interior of the triangle {ijk}\{ijk\} by the definition of hjki,hijk,hkijh_{jk}^{i},h^{k}_{ij},h^{j}_{ki}. However, in this case, limhjki,n,limhijk,n,limhkij,n\lim h_{jk}^{i,n},\lim h^{k,n}_{ij},\lim h^{j,n}_{ki} are bounded. This is a contradiction.

\begin{overpic}[scale={0.8}]{figure_4.pdf} \put(48.0,11.0){$i$} \put(96.0,-2.0){$j$} \put(82.0,-1.0){$k$} \end{overpic}
Figure 4. Domain of the center cijkc_{ijk} in the decorated triangle on surface

Both the cases (ii)(ii) and (iii)(iii) imply dkj<0d_{kj}<0. This contradicts with the fact that drs>0d_{rs}>0 for any {r,s}{i,j,k}\{r,s\}\subseteq\{i,j,k\}. Indeed, the center cijkc_{ijk} lies in the red region in Figure 4 in the case (ii)(ii) and lies in the blue region in Figure 4 in the case (iii)(iii). By projecting the center cijkc_{ijk} to the line determined by {jk}\{jk\}, we have dkj<0d_{kj}<0. This completes the proof. Q.E.D.

Remark 3.9.

Similar to the proof of Lemma 3.8, if the sequence (θijk,n)n(\theta^{k,n}_{ij})_{n\in\mathbb{N}} converges to zero, then limhjki,n=+,limhkij,n=,limhijk,n=+.\lim h^{i,n}_{jk}=+\infty,\ \lim h^{j,n}_{ki}=-\infty,\ \lim h^{k,n}_{ij}=+\infty.

Consider a star-shaped ss-sided polygon in the marked surface with boundary vertices 1,,s1,\cdots,s ordered cyclically (vs+1=v1v_{s+1}=v_{1}). Please refer to Figure 5. Let iVi\in V be a vertex such that the sequence (ui,n)n(u_{i,n})_{n\in\mathbb{N}} diverges properly to ++\infty and the sequences (uj,n)n(u_{j,n})_{n\in\mathbb{N}} converge for jij\sim i.

\begin{overpic}[scale={0.5}]{figure_5.pdf} \put(74.0,90.0){$j+1$} \put(92.0,44.0){$j$} \put(87.0,14.0){$j-1$} \put(50.0,38.0){$i$} \put(78.0,16.0){$0$} \put(82.0,21.0){$\pi$} \put(85.0,39.0){$0$} \put(85.0,46.0){$\pi$} \put(70.0,82.0){$0$} \put(64.0,86.0){$\pi$} \put(38.0,92.0){$0$} \put(33.0,90.0){$\pi$} \put(35.0,100.0){$s$} \put(6.0,55.0){$0$} \put(5.0,48.0){$\pi$} \put(-4.0,50.0){$1$} \put(18.0,18.0){$0$} \put(23.0,14.0){$\pi$} \put(16.0,8.0){$2$} \put(53.0,4.0){$0$} \put(59.0,5.0){$\pi$} \end{overpic}
Figure 5. A star triangulation of a star-shaped ss-sided polygon
Lemma 3.10.

The sequences of inner angles at the boundary vertices in the triangles of a star-shaped polygon converge to non-zero constants.

Proof.

As limui,n=+\lim u_{i,n}=+\infty and limuj,n=C\lim u_{j,n}=C for jij\sim i. By Lemma 3.7, for any j=1,,sj=1,...,s, we have limθj1,ji,n=0\lim\theta^{i,n}_{j-1,j}=0 and hence lim(θi,jj1,n+θi,j1j,n)=π\lim(\theta^{j-1,n}_{i,j}+\theta^{j,n}_{i,j-1})=\pi. We prove the result by contradiction. Without loss of generality, we assume limθi,jj1,n=π\lim\theta^{j-1,n}_{i,j}=\pi and limθi,j1j,n=0\lim\theta^{j,n}_{i,j-1}=0 in the triangle {i,j1,j}\{i,j-1,j\}. Then for nn large enough, we have

li,j1n<li,jn.l^{n}_{i,j-1}<l^{n}_{i,j}.

By Lemma 3.8, we have limhi,j1j,n=+,limhi,jj1,n=,limhj1,ji,n=+\lim h^{j,n}_{i,j-1}=+\infty,\ \lim h^{j-1,n}_{i,j}=-\infty,\ \lim h^{i,n}_{j-1,j}=+\infty. Since the edge {i,j}\{i,j\} is weighted Delaunay, thus by (8), we have

hi,jj1,n+hi,jj+1,n0.h^{j-1,n}_{i,j}+h^{j+1,n}_{i,j}\geq 0.

This implies limhi,jj+1,n=+\lim h^{j+1,n}_{i,j}=+\infty.

In the triangle {i,j,j+1}\{i,j,j+1\}, suppose the sequences (θi,j+1j,n)n(\theta^{j,n}_{i,j+1})_{n\in\mathbb{N}} and (θi,jj+1,n)n(\theta^{j+1,n}_{i,j})_{n\in\mathbb{N}} converge to non-zero constants. By Lemma 3.7, the sequences (hi,jj+1,n)n(h_{i,j}^{j+1,n})_{n\in\mathbb{N}} and (hi,j+1j,n)n(h_{i,j+1}^{j,n})_{n\in\mathbb{N}} converge. This contradicts limhi,jj+1,n=+\lim h^{j+1,n}_{i,j}=+\infty. Hence the sequences (θi,j+1j,n)n(\theta^{j,n}_{i,j+1})_{n\in\mathbb{N}} or (θi,jj+1,n)n(\theta^{j+1,n}_{i,j})_{n\in\mathbb{N}} converge to zero. By Lemma 3.8 and Remark 3.9, we have limθi,j+1j,n=π\lim\theta^{j,n}_{i,j+1}=\pi, limθi,jj+1,n=0\lim\theta^{j+1,n}_{i,j}=0 and limhi,j+1j,n=\lim h^{j,n}_{i,j+1}=-\infty. Then for nn large enough, we have

li,jn<li,j+1n.l^{n}_{i,j}<l^{n}_{i,j+1}.

Please refer to Figure 5. By induction, for nn large enough, we have

li,j1n<li,jn<li,j+1n<li,j+2n<<li,j1n.l^{n}_{i,j-1}<l^{n}_{i,j}<l^{n}_{i,j+1}<l^{n}_{i,j+2}<...<l^{n}_{i,j-1}.

This is a contradiction. Q.E.D.

Combining (21), Lemma 3.7 and Lemma 3.10, we have the following result.

Corollary 3.11.

Assume that the sequence (ui,n)n(u_{i,n})_{n\in\mathbb{N}} diverges properly to ++\infty and the sequences (uj,n)n(u_{j,n})_{n\in\mathbb{N}} and (uk,n)n(u_{k,n})_{n\in\mathbb{N}} converge. Then the sequence (Fijk(ui,n,uj,n,uk,n))n(F_{ijk}(u_{i,n},u_{j,n},u_{k,n}))_{n\in\mathbb{N}} converges.

Proof.

By the definition of Fijk(ui,uj,uk)F_{ijk}(u_{i},u_{j},u_{k}) in (21), we have

Fijk(ui,n,uj,n,uk,n)=\displaystyle F_{ijk}(u_{i,n},u_{j,n},u_{k,n})= 2Voln(ijk)+θjki,nui,n+θkij,nuj,n+θijk,nuk,n\displaystyle-2\mathrm{Vol}^{n}(ijk)+\theta_{jk}^{i,n}u_{i,n}+\theta_{ki}^{j,n}u_{j,n}+\theta_{ij}^{k,n}u_{k,n}
+(π2αijk,n)λij+(π2αkij,n)λki+(π2αjki,n)λjk.\displaystyle+(\frac{\pi}{2}-\alpha_{ij}^{k,n})\lambda_{ij}+(\frac{\pi}{2}-\alpha_{ki}^{j,n})\lambda_{ki}+(\frac{\pi}{2}-\alpha_{jk}^{i,n})\lambda_{jk}.

Combining Lemma 3.7 and Lemma 3.10 gives that limθjki,n=0\lim\theta^{i,n}_{jk}=0, the sequences (θkij,n)n(\theta^{j,n}_{ki})_{n\in\mathbb{N}} and (θijk,n)n(\theta^{k,n}_{ij})_{n\in\mathbb{N}} converge to non-zero constants and the sequences (αjki,n)n(\alpha^{i,n}_{jk})_{n\in\mathbb{N}}, (αkij,n)n(\alpha^{j,n}_{ki})_{n\in\mathbb{N}} and (αijk,n)n(\alpha^{k,n}_{ij})_{n\in\mathbb{N}} converge. Combining the continuity of Milnor’s Lobachevsky function defined by (20) and the definition of the truncated volume Vol(ijk)\mathrm{Vol}(ijk) defined by (19), we have that the sequence (Voln(ijk))n(\mathrm{Vol}^{n}(ijk))_{n\in\mathbb{N}} converges. Note that λij=arccoshIij\lambda_{ij}=\mathrm{arccosh}I_{ij} keeps invariant. Hence,

limFijk(ui,n,uj,n,uk,n)=limθjki,nui,n+c11\lim F_{ijk}(u_{i,n},u_{j,n},u_{k,n})=\lim\theta_{jk}^{i,n}u_{i,n}+c_{11}

for some constant c11c_{11}. By (30), we have ui,n=logri,nlogriu_{i,n}=\log r_{i,n}-\log r_{i}. Then

limθjki,nui,n=\displaystyle\lim\theta_{jk}^{i,n}u_{i,n}= limsinθjki,n(logri,nlogri)\displaystyle\lim\sin\theta^{i,n}_{jk}(\log r_{i,n}-\log r_{i})
=\displaystyle= lim2Aijknlijnlkinlogri,n\displaystyle\lim\frac{2A_{ijk}^{n}}{l_{ij}^{n}l_{ki}^{n}}\log r_{i,n}
=\displaystyle= 2c4limlogri,nri,n\displaystyle 2c_{4}\lim\frac{\log r_{i,n}}{r_{i,n}}
=\displaystyle= 0,\displaystyle 0,

where the equalities (33) and (34) is used in the second line and limx+1xlogx=0\lim_{x\rightarrow+\infty}\frac{1}{x}\log x=0 is used in the third line. Therefore, limFijk(ui,n,uj,n,uk,n)=c11\lim F_{ijk}(u_{i,n},u_{j,n},u_{k,n})=c_{11}. Q.E.D.

The following lemma gives an asymptotic expression of the function \mathcal{E}.

Lemma 3.12.

There exists a convergent sequence {Dn}n\{D_{n}\}_{n\in\mathbb{N}} such that the function \mathcal{E} satisfies

(un)=Dn+2π(ui,nχ(S)+jV(uj,nui,n)).\mathcal{E}(u_{n})=D_{n}+2\pi\left(u_{i^{*},n}\chi(S)+\sum_{j\in V}(u_{j,n}-u_{i^{*},n})\right).
Proof.

By (26), we have

(un)=\displaystyle\mathcal{E}(u_{n})= {ijk}FFijk(ui,n,uj,n,uk,n)+2πjVuj,n\displaystyle-\sum_{\{ijk\}\in F}F_{ijk}(u_{i,n},u_{j,n},u_{k,n})+2\pi\sum_{j\in V}u_{j,n}
=\displaystyle= {ijk}FFijk((ui,n,uj,n,uk,n)ui,n(1,1,1))π|F|ui,n+2πjVuj,n\displaystyle-\sum_{\{ijk\}\in F}F_{ijk}((u_{i,n},u_{j,n},u_{k,n})-u_{i^{*},n}(1,1,1))-\pi|F|u_{i^{*},n}+2\pi\sum_{j\in V}u_{j,n}
=\displaystyle= Dnπ(2|V|2χ(S))ui,n+2πjVuj,n\displaystyle D_{n}-\pi(2|V|-2\chi(S))u_{i^{*},n}+2\pi\sum_{j\in V}u_{j,n}
=\displaystyle= Dn+2π(ui,nχ(S)+jV(uj,nui,n)),\displaystyle D_{n}+2\pi\left(u_{i^{*},n}\chi(S)+\sum_{j\in V}(u_{j,n}-u_{i^{*},n})\right),

where Dn={ijk}FFijk((ui,n,uj,n,uk,n)ui,n(1,1,1))D_{n}=-\sum_{\{ijk\}\in F}F_{ijk}((u_{i,n},u_{j,n},u_{k,n})-u_{i^{*},n}(1,1,1)), the equation (22) is used in the second line and 2|V||F|=2χ(S)2|V|-|F|=2\chi(S) is used in the third line. The sequence {Dn}n\{D_{n}\}_{n\in\mathbb{N}} converges by Corollary 3.6 and Corollary 3.11. Q.E.D.

The following lemma gives the influence of the sequence (un)n(u_{n})_{n\in\mathbb{N}} on the area AijkA_{ijk} of a decorated triangle {ijk}\{ijk\}.

Lemma 3.13.

For a discrete conformal factor uVu\in\mathbb{R}^{V}, let 𝒯\mathcal{T} be a weighted Delaunay triangulation of the decorated PE surface (S,V,distS(u),r(u))(S,V,dist_{S}(u),r(u)). Assume the sequences (uj,nui,n)n(u_{j,n}-u_{i^{*},n})_{n\in\mathbb{N}}, (uk,nui,n)n(u_{k,n}-u_{i^{*},n})_{n\in\mathbb{N}} converge for {ijk}\{ijk\} in 𝒯\mathcal{T} with edge lengths lijn,ljkn,lkinl_{ij}^{n},l_{jk}^{n},l_{ki}^{n}.

(a):

If (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}} converges, there exists a convergent sequence of real numbers (Cn)n(C_{n})_{n\in\mathbb{N}} such that

(37) logAijkn=Cn+2ui,n.\log A_{ijk}^{n}=C_{n}+2u_{i^{*},n}.
(b):

If (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}} diverges to ++\infty, there exists a convergent sequence of real numbers (Cn)n(C_{n})_{n\in\mathbb{N}} such that

(38) logAijkn=Cn+ui,n+ui,n.\log A_{ijk}^{n}=C_{n}+u_{i,n}+u_{i^{*},n}.
Proof.

Applying (31) to Aijk=12lijljksinθkijA_{ijk}=\frac{1}{2}l_{ij}l_{jk}\sin\theta_{ki}^{j} gives

Aijkn=\displaystyle A^{n}_{ijk}= 12lijnljknsinθkij,n\displaystyle\frac{1}{2}l_{ij}^{n}l_{jk}^{n}\sin\theta_{ki}^{j,n}
=\displaystyle= 12sinθkij,nri2e2ui,n+rj2e2uj,n+(lij2ri2rj2)e(ui,n+uj,n)\displaystyle\frac{1}{2}\sin\theta_{ki}^{j,n}\sqrt{r^{2}_{i}e^{2u_{i,n}}+r^{2}_{j}e^{2u_{j,n}}+(l_{ij}^{2}-r^{2}_{i}-r^{2}_{j})e^{(u_{i,n}+u_{j,n})}}
×rj2e2uj,n+rk2e2uk,n+(ljk2rj2rk2)e(uj,n+uk,n).\displaystyle\times\sqrt{r^{2}_{j}e^{2u_{j,n}}+r^{2}_{k}e^{2u_{k,n}}+(l_{jk}^{2}-r^{2}_{j}-r^{2}_{k})e^{(u_{j,n}+u_{k,n})}}.

Then

logAijkn=\displaystyle\log A^{n}_{ijk}= log(12sinθkij,n)+2ui,n\displaystyle\log(\frac{1}{2}\sin\theta_{ki}^{j,n})+2u_{i^{*},n}
+12log(ri2e2(ui,nui,n)+rj2e2(uj,nui,n)+(lij2ri2rj2)e(ui,nui,n)+(uj,nui,n))\displaystyle+\frac{1}{2}\log(r^{2}_{i}e^{2(u_{i,n}-u_{i^{*},n})}+r^{2}_{j}e^{2(u_{j,n}-u_{i^{*},n})}+(l_{ij}^{2}-r^{2}_{i}-r^{2}_{j})e^{(u_{i,n}-u_{i^{*},n})+(u_{j,n}-u_{i^{*},n})})
+12log(rj2e2(uj,nui,n)+rk2e2(uk,nui,n)+(ljk2rj2rk2)e(uj,nui,n)+(uk,nui,n))\displaystyle+\frac{1}{2}\log(r^{2}_{j}e^{2(u_{j,n}-u_{i^{*},n})}+r^{2}_{k}e^{2(u_{k,n}-u_{i^{*},n})}+(l_{jk}^{2}-r^{2}_{j}-r^{2}_{k})e^{(u_{j,n}-u_{i^{*},n})+(u_{k,n}-u_{i^{*},n})})
=\displaystyle= log(12sinθkij,n)+ui,n+ui,n\displaystyle\log(\frac{1}{2}\sin\theta_{ki}^{j,n})+u_{i,n}+u_{i^{*},n}
+12log(ri2+rj2e2(uj,nui,n)2(ui,nui,n)+(lij2ri2rj2)e(ui,nui,n)+(uj,nui,n))\displaystyle+\frac{1}{2}\log(r^{2}_{i}+r^{2}_{j}e^{2(u_{j,n}-u_{i^{*},n})-2(u_{i,n}-u_{i^{*},n})}+(l_{ij}^{2}-r^{2}_{i}-r^{2}_{j})e^{-(u_{i,n}-u_{i^{*},n})+(u_{j,n}-u_{i^{*},n})})
+12log(rj2e2(uj,nui,n)+rk2e2(uk,nui,n)+(ljk2rj2rk2)e(uj,nui,n)+(uk,nui,n)).\displaystyle+\frac{1}{2}\log(r^{2}_{j}e^{2(u_{j,n}-u_{i^{*},n})}+r^{2}_{k}e^{2(u_{k,n}-u_{i^{*},n})}+(l_{jk}^{2}-r^{2}_{j}-r^{2}_{k})e^{(u_{j,n}-u_{i^{*},n})+(u_{k,n}-u_{i^{*},n})}).

If the sequence (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}} converges, then logAijkn=Cn+2ui,n\log A_{ijk}^{n}=C_{n}+2u_{i^{*},n}. If the sequence (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}} diverges to ++\infty, then the sequence (θkij,n)n(\theta_{ki}^{j,n})_{n\in\mathbb{N}} converges to a non-zero constant in (0,π)(0,\pi) by Lemma 3.10. This implies logAijkn=Cn+ui,n+ui,n\log A_{ijk}^{n}=C_{n}+u_{i,n}+u_{i^{*},n}. In both cases, the sequence (Cn)n(C_{n})_{n\in\mathbb{N}} converges. Q.E.D.

3.4. Proof of Theorem 3.4

Let {un}n\{u_{n}\}_{n\in\mathbb{N}} be an unbounded “good” sequence. Suppose χ(S)<0\chi(S)<0 and {un}n\{u_{n}\}_{n\in\mathbb{N}} is an unbounded sequence in 𝒜\mathcal{A}. Combining χ(S)<0\chi(S)<0 and Lemma 3.12, we just need to prove that limn+ui,n=\lim_{n\rightarrow+\infty}u_{i^{*},n}=-\infty. By the definition of “good” sequence, the sequence (jV(uj,nui,n))n\left(\sum_{j\in V}(u_{j,n}-u_{i^{*},n})\right)_{n\in\mathbb{N}} converges to a finite number or diverges properly to ++\infty.

If (jV(uj,nui,n))n\left(\sum_{j\in V}(u_{j,n}-u_{i^{*},n})\right)_{n\in\mathbb{N}} converges to a finite number, then the sequence (uj,nui,n)n(u_{j,n}-u_{i^{*},n})_{n\in\mathbb{N}} converges for all jVj\in V. Since the sequence {un}n\{u_{n}\}_{n\in\mathbb{N}} lies in 𝒜\mathcal{A}, the area AijkA_{ijk} of each triangle is bounded from above. This implies {ui,n}n\{u_{i^{*},n}\}_{n\in\mathbb{N}} is bounded from above by (37). Then {ui,n}n\{u_{i^{*},n}\}_{n\in\mathbb{N}} converges to a finite number or diverges properly to -\infty. Suppose {ui,n}n\{u_{i^{*},n}\}_{n\in\mathbb{N}} converges to a finite number. Since (uj,nui,n)n(u_{j,n}-u_{i^{*},n})_{n\in\mathbb{N}} converges for all jVj\in V, then {uj,n}n\{u_{j,n}\}_{n\in\mathbb{N}} are bounded for all jVj\in V, which implies {un}n\{u_{n}\}_{n\in\mathbb{N}} is bounded. This contradicts the assumption that {un}n\{u_{n}\}_{n\in\mathbb{N}} is unbounded. Therefore, the sequence {ui,n}n\{u_{i^{*},n}\}_{n\in\mathbb{N}} diverges properly to -\infty.

If (jV(uj,nui,n))n\left(\sum_{j\in V}(u_{j,n}-u_{i^{*},n})\right)_{n\in\mathbb{N}} diverges properly to ++\infty, then there exists at least one vertex iVi\in V such that the sequence (ui,nui,n)n(u_{i,n}-u_{i^{*},n})_{n\in\mathbb{N}} diverges properly to ++\infty. By Corollary 3.6, the sequences (uj,nui,n)n(u_{j,n}-u_{i^{*},n})_{n\in\mathbb{N}} and (uk,nui,n)n(u_{k,n}-u_{i^{*},n})_{n\in\mathbb{N}} converge for jij\sim i and kik\sim i. Since the area AijkA_{ijk} of each triangle is bounded from above, thus ui,n+ui,nCu_{i,n}+u_{i^{*},n}\leq C and uj,n+ui,nCu_{j,n}+u_{i^{*},n}\leq C by (38), where CC is a constant. Then (ui,nui,n)+2ui,nC(u_{i,n}-u_{i^{*},n})+2u_{i^{*},n}\leq C. This implies {ui,n}n\{u_{i^{*},n}\}_{n\in\mathbb{N}} diverges properly to -\infty. Q.E.D.

Remark 3.14.

For the case χ(S)>0\chi(S)>0, Kouřimská [17, 16] gave the existence of PE metrics with constant discrete Gaussian curvatures. However, we can not get similar results. The main difference is that the edge length defined by (5) involves the square term of discrete conformal factors, such as e2uie^{2u_{i}}, while the edge length defined by the vertex scalings only involves the mixed product of the first order terms, i.e., eui+uje^{u_{i}+u_{j}}. Indeed, in this case, we can define the set 𝒜+={uV|Atot(u)1}\mathcal{A}_{+}=\{u\in\mathbb{R}^{V}|A_{tot}(u)\geq 1\}, which is an unbounded closed subset of V\mathbb{R}^{V}. Under the conditions that χ(S)>0\chi(S)>0 and the function (u)\mathcal{E}(u) attains a minimum in the set 𝒜+\mathcal{A}_{+}, Lemma 3.2 still holds. Using Theorem 3.3, we just need to prove Theorem 3.4 under the condition χ(S)>0\chi(S)>0. However, we can not get a good asymptotic expression of the area AijkA_{ijk}. The asymptotic expression of the area AijkA_{ijk} in (38) involves ui,n+ui,nu_{i,n}+u_{i^{*},n}, which is not enough for this case.

References

  • [1] A. Beardon, K. Stephenson, The uniformization theorem for circle packings. Indiana Univ. Math. J. 39 (1990), no. 4, 1383-1425.
  • [2] A. Bobenko, C. Lutz, Decorated discrete conformal maps and convex polyhedral cusps. arXiv:2305.10988v1[math.GT].
  • [3] A. Bobenko, U. Pinkall, B. Springborn, Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19 (2015), no. 4, 2155-2215.
  • [4] P. L. Bowers, K. Stephenson, Uniformizing dessins and Belyĭ maps via circle packing. Mem. Amer. Math. Soc. 170 (2004), no. 805.
  • [5] Y. Chen, Y. Luo, X. Xu, S. Zhang, Bowers-Stephenson’s conjecture on the convergence of inversive distance circle packings to the Riemann mapping, arXiv:2211.07464 [math.MG].
  • [6] H. S. M. Coxeter. Inversive distance. Annali di Matematica, 71(1):73-83, December 1966.
  • [7] H. Ge, X. Xu, A combinatorial Yamabe problem on two and three dimensional manifolds, Calc. Var. Partial Differential Equations 60 (2021), no. 1, 20.
  • [8] D. Glickenstein, A monotonicity property for weighted Delaunay triangulations. Discrete Comput. Geom. 38 (2007), no. 4, 651-664.
  • [9] D. Glickenstein, Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds, J. Differential Geom. 87 (2011), no. 2, 201-237.
  • [10] D. Glickenstein, Geometric triangulations and discrete Laplacians on manifolds, arXiv:math/0508188 [math.MG].
  • [11] D. Glickenstein, J. Thomas, Duality structures and discrete conformal variations of piecewise constant curvature surfaces, Adv. Math. 320 (2017), 250-278.
  • [12] X. D. Gu, R. Guo, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces II, J. Differential Geom. 109 (2018), no. 3, 431-466.
  • [13] X. D. Gu, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces, J. Differential Geom. 109 (2018), no. 2, 223-256.
  • [14] R. Guo, Local rigidity of inversive distance circle packing, Trans. Amer. Math. Soc. 363 (2011) 4757-4776.
  • [15] I. Izmestiev, R. Prosanov, T. Wu, Prescribed curvature problem for discrete conformality on convex spherical cone-metrics, arXiv:2303.11068 [math.MG].
  • [16] H. Kouřimská, Polyhedral surfaces of constant curvature and discrete uniformization. PhD thesis, Technische Universität Berlin, 2020.
  • [17] H. Kouřimská, Discrete Yamabe problem for polyhedral surfaces, Discrete Computational Geometry 70 (2023), 123-153.
  • [18] F. Luo, Combinatorial Yamabe flows on surfaces, Commun. Contemp. Math. 6 (2004), no. 5, 765-780.
  • [19] F. Luo, Rigidity of polyhedral surfaces, III, Geom. Topol. 15 (2011), 2299-2319.
  • [20] J. Milnor, Hyperbolic geometry: The first 150 years, Bull. Amer. Math. Soc. 6 (1982) 9-24.
  • [21] John G. Ratcliffe, Foundations of hyperbolic manifolds. Second edition. Graduate Texts in Mathematics, 149. Springer, New York, 2006. xii+779 pp. ISBN: 978-0387-33197-3; 0-387-33197-2.
  • [22] B. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differential Geom. 78 (2008), no. 2, 333-367.
  • [23] B. Springborn, Ideal hyperbolic polyhedra and discrete uniformization. Discrete Comput. Geom. 64 (2020), no. 1, 63-108.
  • [24] X. Xu, Rigidity of inversive distance circle packings revisited, Adv. Math. 332 (2018), 476-509.
  • [25] X. Xu, A new proof of Bowers-Stephenson conjecture, Math. Res. Lett. 28 (2021), no. 4, 1283-1306.