This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Daniil Klyuev 22institutetext: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 22email: [email protected]

A different approach to positive traces on generalized qq-Weyl algebras

Daniil Klyuev
Abstract

Positive twisted traces are mathematical objects that could be useful in computing certain parameters of superconformal field theories. The case when π’œ\mathcal{A} is a qq-Weyl algebra and ρ\rho is a certain antilinear automorphism of π’œ\mathcal{A} was considered inΒ K . Here we consider more general choices of ρ\rho. In particular, we show that for ρ\rho corresponding to a standard Schur index of a four-dimensional gauge theory a positive trace is unique.

1 Introduction

Let π’œ\mathcal{A} be a generalized qq-Weyl algebra, it is generated by u,v,Z,Zβˆ’1u,v,Z,Z^{-1} with relations Z​u​Zβˆ’1=q2​uZuZ^{-1}=q^{2}u, Z​v​Zβˆ’1=qβˆ’2​vZvZ^{-1}=q^{-2}v, u​v=P​(qβˆ’1​Z)uv=P(q^{-1}Z), v​u=P​(q​Z)vu=P(qZ), where PP is a Laurent polynomial. Let ρ\rho be a conjugation on π’œ\mathcal{A}. We are interested in positive traces on π’œ\mathcal{A}. We assume that 0<q<10<q<1.

Positive traces are defined as follows. Let π’œ\mathcal{A} be a noncommutative algebra over β„‚\mathbb{C}, ρ\rho be an antilinear automorphism of π’œ\mathcal{A}. Let g=ρ2g=\rho^{2}. We say that a linear map T:π’œβ†’β„‚T\colon\mathcal{A}\to\mathbb{C} is a gg-twisted trace if T​(a​b)=T​(b​g​(a))T(ab)=T(bg(a)) for all a,bβˆˆπ’œa,b\in\mathcal{A}. A gg-twisted trace is positive if T​(a​ρ​(a))>0T(a\rho(a))>0 for all nonzero aβˆˆπ’œa\in\mathcal{A}.

Positive traces for qq-Weyl algebras appear in the study of the Coulomb branch of 4-dimensional superconformal field theoriesΒ DG ; GT .

We will consider gg-twisted traces for automorphisms gg such that g​(Z)=Zg(Z)=Z. In this case we have T​(Z​a​Zβˆ’1)=T​(a)T(ZaZ^{-1})=T(a) for all aβˆˆπ’œa\in\mathcal{A}. This means that TT is zero for any expression uk​R​(z)u^{k}R(z) and vk​R​(z)v^{k}R(z), where RR is a Laurent polynomial and kk is a positive integer. Hence TT is uniquely defined by its values on Laurent polynomials.

More precisely, we will consider g=gkg=g_{k} such that g​(Z)=Zg(Z)=Z, g​(u)=qk​Zβˆ’k​ug(u)=q^{k}Z^{-k}u, g​(v)=qk​Zk​vg(v)=q^{k}Z^{k}v for some integer kk.

We will identify a trace TT on π’œ\mathcal{A} with its restriction to ℂ​[Z,Zβˆ’1]βŠ‚π’œ\mathbb{C}[Z,Z^{-1}]\subset\mathcal{A} below.

2 Traces via formal integral

Let PP be a Laurent polynomial that has nn nonzero roots. For simplicity, we will consider the case when PP has no roots with absolute value qΒ±1q^{\pm 1}, but we expect that our methods could be modified to work in the general case.

Similarly toΒ K , T:ℂ​[Z,Zβˆ’1]β†’β„‚T\colon\mathbb{C}[Z,Z^{-1}]\to\mathbb{C} is a gkg_{k}-twisted trace if and only if T​(u​v​R​(qβˆ’1​Z)βˆ’v​R​(Z)​qk​Zβˆ’k​u)=0T(uvR(q^{-1}Z)-vR(Z)q^{k}Z^{-k}u)=0 for all Rβˆˆβ„‚β€‹[z,zβˆ’1]R\in\mathbb{C}[z,z^{-1}]. We have

v​R​(Z)​qk​Zβˆ’k​u=v​u​R​(q​Z)​Zβˆ’k=P​(q​Z)​R​(q​Z)​Zβˆ’k.vR(Z)q^{k}Z^{-k}u=vuR(qZ)Z^{-k}=P(qZ)R(qZ)Z^{-k}.

Hence TT is a twisted trace if and only if

T​(P​(qβˆ’1​Z)​R​(qβˆ’1​Z)βˆ’P​(q​Z)​R​(q​Z)​Zβˆ’k)=0T(P(q^{-1}Z)R(q^{-1}Z)-P(qZ)R(qZ)Z^{-k})=0

for all Laurent polynomials RR.

2.1 Properties of the vector space of formal power series.

Let V=ℂ​[[z,zβˆ’1]]V=\mathbb{C}[[z,z^{-1}]] be the linear space of two-sided formal power series βˆ‘i=βˆ’βˆžβˆžai​zi\sum_{i=-\infty}^{\infty}a_{i}z^{i}. Note that VV is a ℂ​[z]\mathbb{C}[z]-module. Let C​TCT be the constant term map βˆ‘ai​zi↦a0\sum a_{i}z_{i}\mapsto a_{0}.

For a nonzero Laurent polynomial PP let Prβˆ’1βˆˆβ„‚β€‹((z))P_{r}^{-1}\in\mathbb{C}((z)) be its inverse in Laurent series and Plβˆ’1βˆˆβ„‚β€‹((zβˆ’1))P_{l}^{-1}\in\mathbb{C}((z^{-1})) be its inverse in Laurent series in the opposite direction.

Lemma 1

The map w​(z)↦w​(z)​P​(z)w(z)\mapsto w(z)P(z) is surjective and has kernel of dimension nn. Moreover, if PP has distinct roots Ξ±1,…,Ξ±k\alpha_{1},\ldots,\alpha_{k} with multiplicity m1,…,mkm_{1},\ldots,m_{k} respectively, then the kernel is linearly spanned by the elements fi,j=βˆ‘lβˆˆβ„€l​(lβˆ’1)​⋯​(lβˆ’i)​αjβˆ’l​zlf_{i,j}=\sum_{l\in\mathbb{Z}}l(l-1)\cdots(l-i)\alpha_{j}^{-l}z^{l}, where j=1,…,kj=1,\ldots,k, i=0,…,mjβˆ’1i=0,\ldots,m_{j}-1.

Proof

Let w=βˆ‘ai​ziw=\sum a_{i}z^{i} be an element of VV. Let w+=βˆ‘iβ‰₯0ai​ziw_{+}=\sum_{i\geq 0}a_{i}z^{i}, wβˆ’=βˆ‘i<0ai​ziw_{-}=\sum_{i<0}a_{i}z^{i}. Then w+=(w+​Prβˆ’1)​Pw_{+}=(w_{+}P_{r}^{-1})P and wβˆ’=(wβˆ’β€‹Plβˆ’1)​Pw_{-}=(w_{-}P_{l}^{-1})P, so that w=(w+​Prβˆ’1+wβˆ’β€‹Plβˆ’1)​Pw=(w_{+}P_{r}^{-1}+w_{-}P_{l}^{-1})P. This proves surjectivity.

We turn to the statement on the dimension of the kernel. Using the surjectivity and induction on nn it is enough to consider the case P=zβˆ’aP=z-a for aβˆˆβ„‚Γ—a\in\mathbb{C}^{\times}. In this case direct computation gives that the kernel is one-dimensional and spanned by βˆ‘aβˆ’i​zi\sum a^{-i}z^{i}.

It is not hard to see that the nn elements in the statement of the theorem belong to the kernel and are linearly independent, hence they span the kernel.

2.2 Growth condition on traces.

Let T:ℂ​[z,zβˆ’1]β†’β„‚T\colon\mathbb{C}[z,z^{-1}]\to\mathbb{C} be a trace. Let T​(zi)=ciT(z^{i})=c_{i}. Define an element ww of ℂ​[[z,zβˆ’1]]\mathbb{C}[[z,z^{-1}]] by w=βˆ‘ci​zβˆ’iw=\sum c_{i}z^{-i}. Then T​(R​(z))=C​T​(R​(z)​w​(z))T(R(z))=CT(R(z)w(z)) for any Laurent polynomial RR.

Let TT be a positive trace with respect to a conjugation ρ\rho such that ρ​(Z)=Zβˆ’1\rho(Z)=Z^{-1}. Assume that T​(1)=1T(1)=1, so that c0=1c_{0}=1.

Lemma 2

For all integers kk we have |T​(zk)|<1\lvert T(z^{k})\rvert<1. Hence |ci|<1\lvert c_{i}\rvert<1 for all iβ‰ 0i\neq 0.

Proof

Consider an element a=1+α​Zka=1+\alpha Z^{k}. By positivity of TT we have T​(a​ρ​(a))>0T(a\rho(a))>0. Note that

a​ρ​(a)=(1+α​Zk)​(1+α¯​Zβˆ’k)=1+|Ξ±|2+α​Zk+α¯​Zβˆ’k.a\rho(a)=(1+\alpha Z^{k})(1+\overline{\alpha}Z^{-k})=1+\lvert\alpha\rvert^{2}+\alpha Z^{k}+\overline{\alpha}Z^{-k}.

Hence

T​(a​ρ​(a))=1+|Ξ±|2+α​T​(zk)+α¯​T​(zβˆ’k).T(a\rho(a))=1+\lvert\alpha\rvert^{2}+\alpha T(z^{k})+\overline{\alpha}T(z^{-k}).

Since this expression is positive for all Ξ±\alpha, we get |T​(zk)|<1\lvert T(z^{k})\rvert<1.

Assume that ρ2=gl\rho^{2}=g_{l}, so that TT is a positive glg_{l}-twisted trace.

Theorem 2.1

The element w​(z)w(z) coincides with the Laurent expansion of a function f​(z)f(z) holomorphic on a neighborhood of the circle |z|=1\lvert z\rvert=1. The function f​(z)​P​(q​z)f(z)P(qz) can be analytically continued to a meromorphic function on β„‚Γ—\mathbb{C}^{\times} holomorphic on 1<|z|<qβˆ’21<\lvert z\rvert<q^{-2}.

Proof

For all Laurent polynomials RR we have

T​(P​(q​z)​R​(q​z)βˆ’zl​P​(qβˆ’1​z)​R​(qβˆ’1​z))=0.T\big{(}P(qz)R(qz)-z^{l}P(q^{-1}z)R(q^{-1}z)\big{)}=0.

Hence

C​T​(P​(q​z)​R​(q​z)​w​(z))=C​T​(zl​P​(qβˆ’1​z)​R​(qβˆ’1​z)​w​(z)).CT\big{(}P(qz)R(qz)w(z)\big{)}=CT\big{(}z^{l}P(q^{-1}z)R(q^{-1}z)w(z)\big{)}.

It follows that

C​T​(P​(z)​R​(z)​w​(qβˆ’1​z))=C​T​(ql​zl​P​(z)​R​(z)​w​(q​z)),CT\big{(}P(z)R(z)w(q^{-1}z)\big{)}=CT\big{(}q^{l}z^{l}P(z)R(z)w(qz)\big{)},

hence

C​T​(R​(z)​(P​(z)​w​(qβˆ’1​z)βˆ’ql​zl​P​(z)​w​(q​z)))=0.CT\bigg{(}R(z)\big{(}P(z)w(q^{-1}z)-q^{l}z^{l}P(z)w(qz)\big{)}\bigg{)}=0.

Since this holds for any Laurent polynomial RR, we get

P​(z)​w​(qβˆ’1​z)=ql​zl​P​(z)​w​(q​z).P(z)w(q^{-1}z)=q^{l}z^{l}P(z)w(qz). (1)

Hence w​(qβˆ’1​z)βˆ’ql​zl​w​(q​z)w(q^{-1}z)-q^{l}z^{l}w(qz) belongs to the kernel of multiplication by P​(z)P(z). Using LemmaΒ 1, we get

w​(qβˆ’1​z)βˆ’ql​zl​w​(q​z)=βˆ‘i,jri,j​fi,j.w(q^{-1}z)-q^{l}z^{l}w(qz)=\sum_{i,j}r_{i,j}f_{i,j}.

We note that the coefficients on the left-hand side have growth at most qβˆ’Nq^{-N} when NN tends to +∞+\infty. On the right-hand side the coefficients have growth |Ξ±j|N​Na\lvert\alpha_{j}\rvert^{N}N^{a}, where Ξ±j\alpha_{j} is a root with the largest absolute value such that fi,jβ‰ 0f_{i,j}\neq 0 for some ii and aa is a nonnegative integer. In fact, aa is the largest number such that for some kk we have fa,kβ‰ 0f_{a,k}\neq 0 and |Ξ±k|=|Ξ±j|\lvert\alpha_{k}\rvert=\lvert\alpha_{j}\rvert. Since there are no roots with absolute value qβˆ’1q^{-1}, the right-hand side grows as Ξ±N​Na\alpha^{N}N^{a}, where |Ξ±|<qβˆ’1\lvert\alpha\rvert<q^{-1}. Using that the coefficient of zNz^{N} in w​(qβˆ’1​z)βˆ’ql​zl​w​(q​z)w(q^{-1}z)-q^{l}z^{l}w(qz) equals to qβˆ’N​cN+O​(qN)q^{-N}c_{N}+O(q^{N}), we get that cN=O​(ΞΊ+N​Na)c_{N}=O(\kappa_{+}^{N}N^{a}), where 0<ΞΊ+<10<\kappa_{+}<1. Similarly, cβˆ’N=ΞΊβˆ’N​Nbc_{-N}=\kappa_{-}^{N}N^{b}, where 0<ΞΊβˆ’<10<\kappa_{-}<1 and bb is a nonnegative integer. This proves the first statement.

We turn to the second statement. Consider the expansion P​(q​z)​w​(z)P(qz)w(z) for the function P​(q​z)​f​(z)P(qz)f(z) in a neighborhood of the circle |z|=1\lvert z\rvert=1. The coefficients of P​(q​z)​w​(z)P(qz)w(z) decay exponentially in the negative direction by the reasoning above. It follows fromΒ (1) that P​(q​z)​w​(z)=s​q2​l​zl​P​(q​z)​w​(q2​z)P(qz)w(z)=sq^{2l}z^{l}P(qz)w(q^{2}z). Using LemmaΒ 2 again, we see that the coefficients of zNz^{N} in P​(q​z)​w​(z)P(qz)w(z) is O​(q2​N​κ+N​Na)O(q^{2N}\kappa_{+}^{N}N^{a}) when NN tends to +∞+\infty. It follows that P​(q​z)​w​(z)P(qz)w(z) gives a function holomorphic in the annulus r1<|z|<r2r_{1}<\lvert z\rvert<r_{2}, where r1<1<qβˆ’2<r2r_{1}<1<q^{-2}<r_{2}. Hence f​(z)f(z) can be analytically continued to a meromorphic function in the annulus r1<|z|<r2r_{1}<\lvert z\rvert<r_{2}. UsingΒ (1) again, we see that f​(z)f(z) can be analytically continued to a meromorphic function on β„‚Γ—\mathbb{C}^{\times}.

3 The positivity condition

Consider the antilinear automorphism ρ\rho such that ρ​(Z)=Zβˆ’1\rho(Z)=Z^{-1}, ρ​(u)=Zk​qk​v\rho(u)=Z^{k}q^{k}v, ρ​(v)=Zβˆ’k​qk​u\rho(v)=Z^{-k}q^{k}u. Similarly toΒ K ρ\rho is well-defined when P​(z)=P¯​(zβˆ’1)P(z)=\overline{P}(z^{-1}). We have ρ2=g2​k\rho^{2}=g_{2k}. Since we have a full classification for the case k=0k=0, assume that kβ‰ 0k\neq 0. The case when k=n2k=\frac{n}{2} is of particular interest, since it corresponds to the β€œstandard” Schur index of a four-dimensionall gauge theoryΒ G .

As inΒ K , Lemma 3.2, it is enough to check the positivity condition T​(a​ρ​(a))>0T(a\rho(a))>0 when aβˆˆβ„‚β€‹[Z,Zβˆ’1]a\in\mathbb{C}[Z,Z^{-1}] or a∈u​ℂ​[Z,Zβˆ’1]a\in u\mathbb{C}[Z,Z^{-1}]. The first condition translates to T​(R​(z)​R¯​(zβˆ’1))>0T(R(z)\overline{R}(z^{-1}))>0 for all nonzero Laurent polynomials RR, whereas the second one translates to

T​(u​R​(q​Z)​Zk​qk​v​R¯​(q​Zβˆ’1))>0,T(uR(qZ)Z^{k}q^{k}v\overline{R}(qZ^{-1}))>0,

which is equivalent to

T(zkP(qβˆ’1z)R(qβˆ’1z)RΒ―(qzβˆ’1)>0.T(z^{k}P(q^{-1}z)R(q^{-1}z)\overline{R}(qz^{-1})>0.

Reasoning as inΒ K , Theorem 3.3, this is equivalent to w​(z)w(z) and zk​P​(z)​w​(q​z)z^{k}P(z)w(qz) being nonnegative on the unit circle |z|=1\lvert z\rvert=1.

FromΒ (1) we have

w​(qβˆ’1​z)=q2​k​z2​k​w​(q​z).w(q^{-1}z)=q^{2k}z^{2k}w(qz). (2)

Let ϑ​(z)=Ο‘11​(log⁑z2​π​i)\vartheta(z)=\vartheta_{11}(\frac{\log z}{2\pi i}), where Ο‘11\vartheta_{11} is a Jacobi theta function for period Ο„=log⁑qπ​i\tau=\frac{\log q}{\pi i}. Hence ϑ​(1)=0\vartheta(1)=0. It is well-known that any meromorphic function satisfyingΒ (2) can be expressed as w=c​zlβ€‹βˆiϑ​(zΞ±i)∏jϑ​(zΞ²j)w=cz^{l}\frac{\prod_{i}\vartheta(\frac{z}{\alpha_{i}})}{\prod_{j}\vartheta(\frac{z}{\beta_{j}})}, where Ξ±1,…,Ξ±N\alpha_{1},\ldots,\alpha_{N} and Ξ²1,…,Ξ²M\beta_{1},\ldots,\beta_{M} are the zeroes and poles of ww. Since w​(z)​P​(q​z)w(z)P(qz) is holomorphic on 1<|z|<qβˆ’21<\lvert z\rvert<q^{-2}, elements q​β1,…,q​βMq\beta_{1},\ldots,q\beta_{M} are roots of PP. Moreover, in order to cancel out poles, q​β1,…,q​βMq\beta_{1},\ldots,q\beta_{M} should satisfy q<|q​βi|<qβˆ’1q<\lvert q\beta_{i}\rvert<q^{-1}. Hence we can assume that MM equals to the number of zeroes of PP in the annulus q<|z|<qβˆ’1q<\lvert z\rvert<q^{-1}.

We have ϑ​(q2​z)=qβˆ’1​zβˆ’1​ϑ​(z)\vartheta(q^{2}z)=q^{-1}z^{-1}\vartheta(z). In particular, multiplying Ξ±1\alpha_{1} or Ξ²1\beta_{1} by a power of q2q^{2}, we can assume that l=0l=0. Also

ϑ​(q2​zΞ±)=qβˆ’1​α​zβˆ’1​ϑ​(zΞ±).\vartheta(q^{2}\frac{z}{\alpha})=q^{-1}\alpha z^{-1}\vartheta(\frac{z}{\alpha}).

It follows that

w​(q2​z)=w​(z)β€‹βˆi(qβˆ’1​αi​zβˆ’1)∏j(qβˆ’1​βj​zβˆ’1)=w​(z)​qβˆ’N+M​zMβˆ’Nβ€‹βˆiΞ±i∏jΞ²j.w(q^{2}z)=w(z)\frac{\prod_{i}(q^{-1}\alpha_{i}z^{-1})}{\prod_{j}(q^{-1}\beta_{j}z^{-1})}=w(z)q^{-N+M}z^{M-N}\frac{\prod_{i}\alpha_{i}}{\prod_{j}\beta_{j}}.

Comparing withΒ (2) we get N=Mβˆ’2​kN=M-2k, ∏iΞ±i=∏jΞ²j​qβˆ’N+M\prod_{i}\alpha_{i}=\prod_{j}\beta_{j}q^{-N+M}. Since P​(z)=P¯​(zβˆ’1)P(z)=\overline{P}(z^{-1}) the product ∏jΞ²j\prod_{j}\beta_{j} has absolute value qβˆ’Mq^{-M}. Multiplying ZZ by a complex number with absolute value one if necessary, we can assume that ∏jΞ²j=qβˆ’M\prod_{j}\beta_{j}=q^{-M}. We get a classification similar toΒ K : possible ww are parametrized by nβˆ’2​kn-2k parameters Ξ±i\alpha_{i} with fixed product qNq^{N}, and cc. Note that for k=M2k=\frac{M}{2} we have no numerator and the function ww is unique up to scaling.

Similarly toΒ K , Section 3.2 the denominator of ww is positive on S1S^{1} and q​S1qS^{1}. Also reasoning similarly toΒ K , Section 3.2, we see that when cc is positive and Ξ±1,…,Ξ±N\alpha_{1},\ldots,\alpha_{N} are divided into pairs Ξ±i\alpha_{i} and Ξ±j=q2​αiβˆ’1Β―\alpha_{j}=q^{2}\overline{\alpha_{i}^{-1}}, the numerator is positive on S1S^{1} and q​S1qS^{1}. It follows that the cone of positive traces has maximal possible real dimension N=Mβˆ’2​kN=M-2k (one if N=0N=0).

Hence we obtain the following

Theorem 3.1

Let π’œ\mathcal{A}, ρ\rho be as above. Then the dimension of the cone of positive traces is N=Mβˆ’2​kN=M-2k, one if N=0N=0, and there are no positive traces if N<0N<0. In particular, when k=n2k=\frac{n}{2}, a positive trace exists if and only if all roots of PP belong to the annulus q<|z|<qβˆ’1q<\lvert z\rvert<q^{-1}, and if it is exists, it is unique up to scaling.

In particular, we confirm a conjecture of Gaiotto and TeschnerΒ GT in the case of abelian gauge theories: if AA is a KK-theoretic Coulomb branch and ρ\rho corresponds to the β€œstandard” Schur index, then the positive trace on AA, if it exists, is unique up to scaling.

Acknowledgements.
I would like to thank the organizers of the LT-15 conference for the opportunity to listen to interesting talks, give a talk and write this contribution. I am thankful to Davide Gaiotto for explaining to me the physical meaning of different choices of the conjugation ρ\rho.

References

  • (1) M.Β Dedushenko and D.Β Gaiotto, β€œAlgebras, traces, and boundary correlators in 𝒩\mathcal{N} = 4 SYM,” JHEP 12, 050 (2021)
  • (2) D. Gaiotto, personal correspondence.
  • (3) D. Gaiotto, J. Teschner, β€œSchur Quantization and Complex Chern-Simons theory”, arXiv:2406.09171 [hep-th]
  • (4) D. Klyuev, β€œTwisted Traces and Positive Forms on Generalized q-Weyl Algebras”, SIGMA, 18 (2022), 009, 28 pp.