This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Deep Look into the Dagum Family of Isotropic
Covariance Functions

Abstract

The Dagum family of isotropic covariance functions has two parameters that allow for decoupling of the fractal dimension and Hurst effect for Gaussian random fields that are stationary and isotropic over Euclidean spaces.

Sufficient conditions that allow for positive definiteness in d\mathbb{R}^{d} of the Dagum family have been proposed on the basis of the fact that the Dagum family allows for complete monotonicity under some parameter restrictions.

The spectral properties of the Dagum family have been inspected to a very limited extent only, and this paper gives insight into this direction. Specifically, we study finite and asymptotic properties of the isotropic spectral density (intended as the Hankel transform) of the Dagum model. Also, we establish some closed forms expressions for the Dagum spectral density in terms of the Fox–Wright functions. Finally, we provide asymptotic properties for such a class of spectral densities.

keywords:
Hankel Transforms; Mellin–Barnes Transforms; Spectral Theory; Positive Definite.
\authornames

T. FAOUZI ET AL

\authorone

[University of Bio Bio]Tarik Faouzi \authortwo[KU &\& Trinity College Dublin]Emilio Porcu \authorthree[University of Bio Bio]Igor Kondrashuk \authorfour[Mälardalen University]Anatoliy Malyarenko

\addressone

Department of Statistics, University of Bio Bio, Concepción, Chile \emailone[email protected] \addresstwoDepartment of Mathematics, Khalifa University at Abu Dhabi, &\& School of Computer Science and Statistics, Trinity College Dublin \emailtwo[email protected] \addressthree Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Av. Andres Bello 720, Casilla 447, Chillán, Chile. \emailthree[email protected] \addressfourDivision of Mathematics and Physics, Mälardalen University, Box 883, 721 23 Västerås, Sweden \emailfour[email protected]

\ams

60G6044A15

1 Introduction

Isotropic covariance functions have a long history that can be traced back to [14] and [26]. The mathematical machinery that allows to implement isotropic covariance functions is based on positive definite functions, that are radially symmetric over dd-dimensional Euclidean spaces. In particular, the characterization of the radial part of radially symmetric positive definite functions was provided in the tour de force by [20]. There is a rich catalogue of isotropic covariance functions that are obtained by composing a given parametric family of functions defined on the positive real line with the Euclidean norm in a dd-dimensional Euclidean space [5]. What makes them interesting is that some parameters have a corresponding interpretation in terms of geometric properties of Gaussian random fields. For instance, the Matérn family has a parameter that allows to verify the mean square differentiability of its corresponding Gaussian random field, in concert with its fractal dimension.

The Dagum parametric family of functions was originally proposed by [15] as a new family of isotropic covariance functions associated with Gaussian random fields that are weakly stationary and isotropic over dd-dimensional Euclidean spaces. Sufficient conditions for positive definiteness in 3\mathbb{R}^{3} have been provided by [17] on the basis of a criterion of the Pólya type [8]. Later, [13] have shown that the Dagum family allows for decoupling fractal dimension and Hurst effect, allowing to avoid self-similar random fields, and consequently all the issues that are related to the estimation of fractal dimension and long memory parameters under self similarity [10].

Positive definiteness of a given radial function over all dd-dimensional Euclidean spaces is equivalent to complete monotonicity of its radial part [20]. [3] have proved sufficient conditions for complete monotonicity of the Dagum class. Some necessary conditions have also been provided therein, but unfortunately these do not match with the sufficient ones. Hence, a complete characterization for the Dagum function is, up to date, still elusive.

A wealth of applications in applied branches of science has shown how the Dagum family can be used to model temporal or spatial phenomena where local properties (fractal dimension) and global ones (Hurst effect) are decoupled, and we refer the reader to [21], with the references therein.

Positive definiteness of a radially symmetric function in a dd-dimensional Euclidean space, for a given dimension dd, is equivalent to its Hankel transform, called radial spectral density, being nonnegative and integrable [5]. The radial spectral density is often not available in closed form, with the notable exception of the Matérn model [22]. A big effort in this direction was provided by [12] with the Generalized Cauchy model, being also a decoupler of fractal dimension and Hurst effect.

Radial spectral densities are fundamental to spatial statistics. On the one hand, knowing at least local and global properties of a radial spectral density allows, by application of Tauberian theorems [22], to inspect the properties of the associated Gaussian field in terms of mean square differentiability, fractal dimension, Hurst effect, and reproducing kernel Hilbert spaces [18]. On the other hand, the radial spectral density covers a fundamental part of statistical inference for Gaussian fields under infill asymptotics [4, 22]. Finally, radial spectral densities are fundamental to inspect the so called screening effect, which in turns plays an important role in spatial prediction, and we refer the reader to [24] as well as to the recent work by [19].

An expression for the radial spectral density associated with the Dagum family has been elusive so far. A first attempt being made by [11], who showed that such a spectral density admits a series expansion that is absolutely convergent.

This paper provides some insights in this direction. After providing background material in Section 2, Section 3 provides the main results, which are classified into three parts: we start by deriving series expansions associated with the isotropic spectral density of the Dagum class. We then provide a closed form expression, in terms of the Fox–Wright functions, for such a class of isotropic spectral densities. Finally, we provide local and global asymptotic identities. Proofs are lengthy and technical: for a neater exposition, we deferred them to the Appendix. Section 4 concludes the paper with a short discussion.

2 Background Material

2.1 Positive Definite Radial Functions

We denote by {Z(𝐬),𝐬d}\{Z(\mathbf{s}),\mathbf{s}\in\mathbb{R}^{d}\} a centred Gaussian random field in d\mathbb{R}^{d}, with the stationary covariance function C:dC:\mathbb{R}^{d}\to\mathbb{R}. We consider the class Φd\Phi_{d} of continuous mappings ϕ:[0,)\phi:[0,\infty)\to\mathbb{R} with ϕ(0)=1\phi(0)=1, such that

cov(Z(𝐬),Z(𝐬))=C(𝐬𝐬)=ϕ(𝐬𝐬),{\rm cov}\left(Z(\mathbf{s}),Z(\mathbf{s}^{\prime})\right)=C(\mathbf{s}^{\prime}-\mathbf{s})=\phi(\|\mathbf{s}^{\prime}-\mathbf{s}\|),

with 𝐬,𝐬d\mathbf{s},\mathbf{s}^{\prime}\in\mathbb{R}^{d}, and \|\cdot\| denoting the Euclidean norm. Gaussian fields with such covariance functions are called weakly stationary and isotropic. The function CC is called isotropic or radially symmetric, and the function ϕ\phi its radial part.

[20] characterized the class Φd\Phi_{d} as being scale mixtures of the characteristic functions of random vectors uniformly distributed on the spherical shell of d\mathbb{R}^{d}:

ϕ(r)=0Ωd(rξ)F(dξ),r0,\phi(r)=\int_{0}^{\infty}\Omega_{d}(r\xi)F(\mathrm{d}\xi),\qquad r\geq 0,

with Ωd(r)=r(d2)/2J(d2)/2(r)\Omega_{d}(r)=r^{-(d-2)/2}J_{(d-2)/2}(r) and JνJ_{\nu} a Bessel function of order ν\nu. Here, FF is a probability measure. The function ϕ\phi is the uniquely determined characteristic function of a random vector, 𝐗\mathbf{X}, such that 𝐗=𝐔R\mathbf{X}=\mathbf{U}\cdot R, where equality is intended in the distributional sense, where 𝐔\mathbf{U} is uniformly distributed over the spherical shell of d\mathbb{R}^{d}, RR is a nonnegative random variable with probability distribution, FF, and where 𝐔\mathbf{U} and RR are independent.

[5] describes the properties of the measures, FF, termed the Schoenberg measures there, and shows the existence of projection operators that map the elements of Φd\Phi_{d} onto the elements of Φd\Phi_{d^{\prime}}, for ddd^{\prime}\neq d. Throughout, we adopt their illustrative name and will call the function FF associated with ϕ\phi a Schoenberg measure. The derivative of FF is called the isotropic spectral density. If ϕ\phi is absolutely integrable, then the Fourier inversion (the Hankel transform) becomes possible. The Fourier transforms of radial versions of the members of Φd\Phi_{d}, for a given dd, have a simple expression, as reported in [23] and [27]. For a member ϕ\phi of the family Φd\Phi_{d}, we define its isotropic spectral density as

ϕ^(z)=z1d/2(2π)d/20ud/2Jd/21(uz)ϕ(u)du,z0.\widehat{\phi}(z)=\frac{z^{1-d/2}}{(2\pi)^{d/2}}\int_{0}^{\infty}u^{d/2}J_{d/2-1}(uz)\phi(u)\,{\rm d}u,\qquad z\geq 0.

The classes Φd\Phi_{d} are nested, with the inclusion relation Φ1Φ2Φ\Phi_{1}\supset\Phi_{2}\supset\ldots\supset\Phi_{\infty} being strict, and where Φ:=d1Φd\Phi_{\infty}:=\bigcap_{d\geq 1}\Phi_{d} is the class of mappings ϕ\phi whose radial version is positive definite on all dd-dimensional Euclidean spaces.

2.2 Parametric Families of Isotropic Covariance Functions

The Generalized Cauchy family of members of Φ\Phi_{\infty} [9] is defined as:

𝒞δ,λ(r)=(1+rδ)λ/δ,r0,{\cal C}_{\delta,\lambda}(r)=\left(1+r^{\delta}\right)^{-\lambda/\delta},\qquad r\geq 0, (1)

where the conditions δ(0,2]\delta\in(0,2] and λ>0\lambda>0 are necessary and sufficient for 𝒞δ,λ{\cal C}_{\delta,\lambda} to belong to the class Φ\Phi_{\infty}. The parameter δ\delta is crucial for the differentiability at the origin and, as a consequence, for the degree of differentiability of the associated sample paths. Specifically, for δ=2\delta=2, they are infinitely differentiable and they are not differentiable for δ(0,2)\delta\in(0,2).

For a Gaussian random field in d\mathbb{R}^{d} with isotropic covariance function 𝒞δ,λ(){\cal C}_{\delta,\lambda}(\|\cdot\|), the sample paths have fractal dimension D=d+1δ/2D=d+1-\delta/2 for δ(0,2)\delta\in(0,2) and, if λ(0,d]\lambda\in(0,d], the long memory parameter or Hurst coefficient is identically equal to H=1λ/2H=1-\lambda/2. Thus, DD and HH may vary independently of each other [9, 12]. [6] and [12] have shown that the isotropic spectral density, 𝒞^δ,λ\widehat{{\cal C}}_{\delta,\lambda} of the Generalized Cauchy covariance function is identically equal to

𝒞^δ,λ(z)=zd2d/21πd/2+1Im0𝒦(d2)/2(t)(1+exp(iπδ2)(t/z)δ)λ/δtd/2dt,z0,\widehat{{\cal C}}_{\delta,\lambda}(z)=-\frac{z^{-d}}{2^{d/2-1}\pi^{d/2+1}}\mathrm{Im}\int_{0}^{\infty}\frac{{\cal K}_{(d-2)/2}(t)}{(1+\exp(i\frac{\pi\delta}{2})(t/z)^{\delta})^{\lambda/\delta}}t^{d/2}\,\mathrm{d}t,\qquad z\geq 0,

for λ>0\lambda>0 and δ(0,2)\delta\in(0,2).

The Dagum family 𝒟λ,δ:[0,){\cal D}_{\lambda,\delta}:[0,\infty)\to\mathbb{R} is defined as

𝒟λ,δ(r)=1(rδ1+rδ)λ,r0.{\cal D}_{\lambda,\delta}(r)=1-\left(\frac{r^{\delta}}{1+r^{\delta}}\right)^{\lambda},\qquad r\geq 0. (2)

[15] and subsequently [17] show that 𝒟λ,δ{\cal D}_{\lambda,\delta} belongs to the class Φ3\Phi_{3} provided δ<(7λ)/(1+5λ)\delta<(7-\lambda)/(1+5\lambda) and λ<7\lambda<7. [3] have shown that 𝒟λ,δΦ{\cal D}_{\lambda,\delta}\in\Phi_{\infty} if and only if the function 𝒜δ,λ{\cal A}_{\delta,\lambda}, defined as

𝒜δ,λ(r)=rδλ1(1+rδ)λ+1,r0,{\cal A}_{\delta,\lambda}(r)=\frac{r^{\delta\lambda-1}}{\left(1+r^{\delta}\right)^{\lambda+1}},\qquad r\geq 0,

belongs to Φ\Phi_{\infty}. In particular, sufficient conditions for 𝒟λ,δΦ{\cal D}_{\lambda,\delta}\in\Phi_{\infty} become δλ1\delta\lambda\leq 1 and β1\beta\leq 1. Also, for δ=1/λ\delta=1/\lambda we have 𝒟λ,1/λΦ{\cal D}_{\lambda,1/\lambda}\in\Phi_{\infty} if and only if δ1\delta\leq 1.

To simplify notation, throughout we shall write 𝒟λ,δ(𝒓){\cal D}_{\lambda,\delta}(\boldsymbol{r}) for 𝒟λ,δ𝒓{\cal D}_{\lambda,\delta}\circ\|\boldsymbol{r}\|, 𝒓d\boldsymbol{r}\in\mathbb{R}^{d}, with \circ denoting composition. Similar notation will be used for 𝒞δ,λ(𝒓){\cal C}_{\delta,\lambda}(\boldsymbol{r}), 𝒓d\boldsymbol{r}\in\mathbb{R}^{d}. Analogously, we use 𝒟^δ,λ(𝒛)\widehat{{\cal D}}_{\delta,\lambda}(\boldsymbol{z}) for 𝒟^δ,λ(𝒛)\widehat{{\cal D}}_{\delta,\lambda}(\|\boldsymbol{z}\|), 𝒛d\boldsymbol{z}\in\mathbb{R}^{d}, and sometimes we shall make use of the notation zz for 𝒛\|\boldsymbol{z}\|. Similar notation will be used for the isotropic spectral density C^δ,λ\widehat{C}_{\delta,\lambda}.

2.3 Fractal Dimensions and the Hurst effect

The local properties of a time series or a surface of d\mathbb{R}^{d} are identified through the so-called fractal dimension, DD, which is a roughness measure with range [d,d+1)[d,d+1), and with higher values indicating rougher surfaces. The long memory in time series or spatial data is associated with power law correlations, and often referred to as the Hurst effect. Long memory dependence is characterized by the HH parameter. Local and global properties of a Gaussian random field have an intimate connection with its associated isotropic covariance function. In particular, if, for some α(0,2]\alpha\in(0,2], the radial part φΦd\varphi\in\Phi_{d} satisfies

limr0φ(r)rα=1,\lim_{r\to 0}\frac{\varphi(r)}{r^{\alpha}}=1, (3)

then the realizations of the Gaussian random field have fractal dimension D=d+1α/2D=d+1-\alpha/2, with probability 11. Thus, estimation of α\alpha is linked with that of the fractal dimension DD. Conversely, if for some β(0,1)\beta\in(0,1),

limrφ(r)rβ=1,\lim_{r\to\infty}\varphi(r)r^{\beta}=1, (4)

then the Gaussian random field is said to have long memory, with Hurst coefficient H=1β/2H=1-\beta/2. For H(1/2,1)H\in(1/2,1) or H(0,1/2)H\in(0,1/2) the correlation is said to be respectively persistent or anti-persistent. In general, DD and HH are independent of each other, but under the assumption of self-affinity they find an intimate connection in the well-known linear relationship D+H=d+1D+H=d+1 . The Cauchy model behaves like (3) for α=δ(0,2]\alpha=\delta\in(0,2] and like (4) for β=λ(0,1)\beta=\lambda\in(0,1). For the reparameterized version 𝒟λ,δ/λ{\cal D}_{\lambda,\delta/\lambda}, we have exactly the same result. For both models the local and global behaviour parameters may be estimated independently.

For δ(0,2)\delta\in(0,2), the Dagum covariance function can be rewritten as

𝒟λ,δ(𝒓)=1(1+1/𝒓δ)λ,𝒓d.{\cal D}_{\lambda,\delta}(\boldsymbol{r})=1-(1+1/\|\boldsymbol{r}\|^{\delta})^{-\lambda},\qquad\boldsymbol{r}\in\mathbb{R}^{d}.

When 𝒓\|\boldsymbol{r}\| is large, the Dagum covariance function has the following asymptotic behavior

𝒟λ,δ(𝒓)λ𝒓δ,forδ(0,1).{\cal D}_{\lambda,\delta}(\boldsymbol{r})\sim\lambda\|\boldsymbol{r}\|^{-\delta},\quad\text{for}\quad\delta\in(0,1).

Hence, under these parameter restrictions, a Gaussian random field has long memory with Hurst coefficient H=1δ/2H=1-\delta/2 with δ(0,1)\delta\in(0,1).

A notable fact is the following:

[0,)d𝒟λ,δ(𝒓)dd𝒓=πd/22d1Γ(d/2)0rd1(11(1/rδ+1)λ)dr.\int_{[0,\infty)^{d}}{\cal D}_{\lambda,\delta}(\boldsymbol{r})\text{d}^{d}\boldsymbol{r}=\frac{\pi^{d/2}}{2^{d-1}\Gamma(d/2)}\int_{0}^{\infty}r^{d-1}\left(1-\frac{1}{(1/r^{\delta}+1)^{\lambda}}\right)\text{d}r. (5)

Furthermore,

rd1𝒟λ,δ(𝒓)rdδ1,r,with𝒓=r.r^{d-1}{\cal D}_{\lambda,\delta}(\boldsymbol{r})\sim r^{d-\delta-1},\qquad r\to\infty,\quad\text{with}\quad\|\boldsymbol{r}\|=r.

The above implies that the integral (5) is finite if δ>d\delta>d. An alternative way to see this is to notice that Equation (24) of this paper proves that

d𝒟λ,δ(r)dd𝒓\displaystyle\int_{\mathbb{R}^{d}}{\cal D}_{\lambda,\delta}(r)\text{d}^{d}\boldsymbol{r} =πd/2Γ(1+d/2)0rd1(11(1/rδ+1)λ)dr\displaystyle=\frac{\pi^{d/2}}{\Gamma(1+d/2)}\int_{0}^{\infty}r^{d-1}\left(1-\frac{1}{(1/r^{\delta}+1)^{\lambda}}\right)\text{d}r
=πd/2Γ(1+d/2)B(d/δ+λ,d/δ)δ.\displaystyle=\frac{\pi^{d/2}}{\Gamma(1+d/2)}\frac{{\rm B}(d/\delta+\lambda,-d/\delta)}{\delta}.

3 Theoretical Results

3.1 Isotropic Spectral Density of the Dagum Covariance Function

This subsection aims to compute the isotropic spectral density associated with the Dagum class in d\mathbb{R}^{d}, for a given positive integer dd, when δ>d\delta>d. The spectral density of Dagum class can be written as

𝒟^δ,λ(𝒛)=1(2π)ddei𝒛𝒓𝒟λ,δ(𝒓)d𝒓,\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})=\frac{1}{(2\pi)^{d}}\int_{\mathbb{R}^{d}}e^{-i\boldsymbol{z}\cdot\boldsymbol{r}}{\cal D}_{\lambda,\delta}(\boldsymbol{r})\,\mathrm{d}\boldsymbol{r},

with ii denoting the imaginary unit. [11] showed that when λ=k2+\lambda=k\in 2\mathbb{Z}_{+} is an integer, the Dagum spectral density can be written as

𝒟^δ,k(𝒛)=h=0k1(1)khChk𝒞^δ,kh(𝒛),𝒛d,\widehat{\cal D}_{\delta,k}(\boldsymbol{z})=-\displaystyle\sum_{h=0}^{k-1}(-1)^{k-h}\text{C}_{h}^{k}\widehat{\cal C}_{\delta,k-h}(\boldsymbol{z}),\qquad\boldsymbol{z}\in\mathbb{R}^{d},

where 𝒞^δ,kh\widehat{\cal C}_{\delta,k-h} is a generalized Cauchy isotropic spectral density associated with the generalized Cauchy function, 𝒞δ,kh{\cal C}_{\delta,k-h} as defined at (1).

We start by extending this result for any λ>0\lambda>0 and for d=1d=1.

Theorem 3.1

For d=1d=1 and δ>1\delta>1, the Dagum isotropic spectral density D^δ,λ\widehat{D}_{\delta,\lambda} has the following explicit form:

𝒟^δ,λ(z)=1πIm0[1eiδλπ/2rδλ(1+eiπ/2rδ)λ]ezrdr.\widehat{\cal D}_{\delta,\lambda}(z)=-\frac{1}{\pi}\mathrm{Im}\int_{0}^{\infty}\left[1-\frac{e^{i\delta\lambda\pi/2}r^{\delta\lambda}}{(1+e^{i\pi/2}r^{\delta})^{\lambda}}\right]e^{-zr}\,\mathrm{d}r.

To extend this result to d\mathbb{R}^{d}, for d>1d>1, we start by considering the case δd\delta\leq d, δλ(0,2)\delta\lambda\in(0,2) and d>1d>1.
We can show the following.

Theorem 3.2

For d>1d>1, δ(0,2)\delta\in(0,2), and δλ(0,2]\delta\lambda\in(0,2], the Dagum isotropic spectral density D^δ,λ\widehat{D}_{\delta,\lambda} is given by

𝒟^δ,λ(𝒛)=z1d22d21πd2+1Im0Kd21(zt)(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)td/2dt,\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})=-\frac{z^{1-\frac{d}{2}}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(zt)\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)t^{d/2}\,\mathrm{d}t, (6)

with z=𝐳.z=\|\boldsymbol{z}\|.

Albeit Theorems 3.1 and 3.2 provide some insight into understanding the isotropic spectral density associated with the Dagum covariance function, it might be desirable to have an explicit expression for such spectral densities. The following subsection attacks this problem.

3.2 Dagum spectral density expressed as Fox–Wright function

We start by defining the Fox–Wright function [7, 25] Ψqp{}_{p}\Psi_{q}, through the identity

pΨq[(a1,A1),,(ap,Ap)(b1,B1),,(bq,Bq);z]=k=0(1)kΓ(a1+kA1)Γ(ap+kAp)k!Γ(b1+kB1)Γ(bq+kBq)zk._{p}\Psi_{q}\Big{[}\begin{matrix}(a_{1},A_{1})&,\cdots,&(a_{p},A_{p})\\ (b_{1},B_{1})&,\cdots,&(b_{q},B_{q})\end{matrix};-z\Big{]}=\sum_{k=0}^{\infty}\frac{(-1)^{k}\Gamma(a_{1}+kA_{1})\cdots\Gamma(a_{p}+kA_{p})}{k!\Gamma(b_{1}+kB_{1})\cdots\Gamma(b_{q}+kB_{q})}z^{k}. (7)

It turns out that this class of special functions is intimately related to the Dagum spectral density. We formally state this fact below.

Theorem 3.3

Let dd be a positive integer, 𝐳d\boldsymbol{z}\in\mathbb{R}^{d} and z=𝐳z=\|\boldsymbol{z}\|. Let 𝒟λ,δ{\cal D}_{\lambda,\delta} be the Dagum class as defined at (2). For δ(0,2)\delta\in(0,2) and δλ(0,2)\delta\lambda\in(0,2), the isotropic spectral density 𝒟λ,δ{\cal D}_{\lambda,\delta} in d\mathbb{R}^{d}, is given by

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =δ(d)(𝒛)πd/2zdΓ(λ)2Ψ1[(λ,1)(d/2,δ/2)(0,δ/2);(z2)δ]\displaystyle=\delta^{(d)}(\boldsymbol{z})-\frac{\pi^{-d/2}z^{-d}}{\Gamma(\lambda)}\,_{2}\Psi_{1}\Big{[}\begin{matrix}(\lambda,1)&(d/2,-\delta/2)\\ &(0,\delta/2)\end{matrix};-\left(\frac{z}{2}\right)^{\delta}\Big{]} (8)
12dπd/21Γ(λ)2δ2Ψ1[(λ+d/δ,2/δ)(d/δ,2/δ)(d/2,1);(z2)2].\displaystyle-\frac{1}{2^{d}\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\frac{2}{\delta}\,_{2}\Psi_{1}\Big{[}\begin{matrix}(\lambda+d/\delta,2/\delta)&(-d/\delta,-2/\delta)\\ &(d/2,1)\end{matrix};-\left(\frac{z}{2}\right)^{2}\Big{]}.

where δ(d)(𝐳)=(2π)dlimϵ0k=1d(1ϵξϵ(zk))\delta^{(d)}(\boldsymbol{z})=(2\pi)^{-d}\underset{\epsilon\to 0}{\lim}\prod_{k=1}^{d}(\frac{1}{\epsilon}\xi_{\epsilon}(z_{k})), with ξϵ\xi_{\epsilon} being the unit impulse function, and Ψ12{}_{2}\Psi_{1} is the Fox–Wright function given by equation (7).

3.3 Asymptotic Properties of Dagum Spectral Density

We finish with some theoretical resuls relating to the asymptotic behaviour of the Dagum isotropic spectral density.

Theorem 3.4

For all δ(0,2)\delta\in(0,2) and δλ(0,2]\delta\lambda\in(0,2], the low frequency limit of the spectral density 𝒟^δ,λ\widehat{\cal D}_{\delta,\lambda} is given by

  1. 1.

    𝒟^δ,λ(𝒛)2δλΓ(d/2δ/2)πd2Γ(δ/2)zδd\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})\sim\frac{2^{-\delta}\lambda\Gamma(d/2-\delta/2)}{\pi^{\frac{d}{2}}\Gamma(\delta/2)}z^{\delta-d}  if δ(d22,d)\delta\in(\frac{d-2}{2},d), z0z\to 0;

  2. 2.

    𝒟^δ,λ(𝒛)1δπd22d1Γ(d/2)Γ(d/δ)Γ(d/δ+λ)Γ(λ)\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})\sim\frac{1}{\delta\pi^{\frac{d}{2}}2^{d-1}\Gamma(d/2)}\frac{\Gamma(-\mathrm{d}/\delta)\Gamma(d/\delta+\lambda)}{\Gamma(\lambda)}   if  δ(d,2)\delta\in(d,2), z0z\to 0.

Theorem 3.5

For 0<δ<20<\delta<2, and 0<δλ20<\delta\lambda\leq 2 when zz\to\infty,

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) (9)
2δλzdδλπd2Γ(λ)3Ψ2[(λ,1)(δλ/2+1,δ/2)((δλ+d)/2,δ/2)(δλ/2,δ/2)(1δλ/2,δ/2);(2z)δ]\displaystyle\quad\sim\frac{2^{\delta\lambda}z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}}\Gamma(\lambda)}\,_{3}\Psi_{2}\Big{[}\begin{matrix}(\lambda,1)&(\delta\lambda/2+1,\delta/2)&((\delta\lambda+d)/2,\delta/2)\\ &(\delta\lambda/2,\delta/2)&(1-\delta\lambda/2,-\delta/2)\end{matrix};-\left(\frac{2}{z}\right)^{\delta}\Big{]}
2δλ1λδzdδλπd2Γ(d/2+λδ/2)Γ(1λδ/2).\displaystyle\quad\sim\frac{2^{\delta\lambda-1}\lambda\delta z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}}}\frac{\Gamma(d/2+\lambda\delta/2)}{\Gamma(1-\lambda\delta/2)}.

4 Conclusion

We have obtained the expressions for the isotropic spectral density related to the Dagum family. Our results can now be used in research related to (a) best optimal unbiased linear prediction (kriging) under infill asymptotics when using the Dagum family. This in turn relies on equivalence of Gaussian measures and on the ratio between the correct and the misspecified spectral density [4]. While the Matérn covariance function has been already studied under this setting [28], the characterization of equivalence of Gaussian measures under the Dagum family has been elusive so far. Also, (b) knowing the form of the spectral density will be crucial to obtain the space-time spectral densities associated with covariance functions having a dynamical support depending on a Dagum radius, as detailed by [16].

Acknowledgements

Partial support was provided by FONDECYT grant 1130647, Chile for Emilio Porcu and by Millennium Science Initiative of the Ministry of Economy, Development, and Tourism, grant ”Millenium Nucleus Center for the Discovery of Structures in Complex Data” for Emilio Porcu. Partial support was provided by by FONDECYT grant 11200749, Chile for Tarik Faouzi and by grant Diubb 2020525 IF/R from the university of Bio Bio for Tarik Faouzi. Igor Kondrashuk was supported in part by Fondecyt (Chile) Grants Nos. 1121030, by DIUBB (Chile) Grants Nos. GI 172409/C and 181409 3/R.

Appendix A Proofs

Proof A.1 (Proof of Theorem 3.1)
𝒟^δ,λ(z)=1πRe0ei|z|t(1tδλ(1+tδ)λ)dt.\widehat{\cal D}_{\delta,\lambda}(z)=\frac{1}{\pi}\mathrm{Re}\int_{0}^{\infty}e^{i|z|t}\left(1-\frac{t^{\delta\lambda}}{(1+t^{\delta})^{\lambda}}\right)\,\mathrm{d}t.

Let f(t;z)=ei|z|t(1tδλ(1+tδ)λ)f(t;z)=e^{i|z|t}\left(1-\frac{t^{\delta\lambda}}{(1+t^{\delta})^{\lambda}}\right), and consider Dξ={t;|t|ξ,Re(t)>0,Im(t)>0}D_{\xi}=\{t\in\mathbb{C};|t|\leq\xi,\mathrm{Re}(t)>0,\mathrm{Im}(t)>0\}. Then, for δ(0,2)\delta\in(0,2) and δλ(0,2)\delta\lambda\in(0,2), ff is an analytic function on DξD_{\xi}. By the Cauchy integral formula,

Dξf(t;z)dt=0,\oint\limits_{\partial D_{\xi}}f(t;z)\,\mathrm{d}t=0,

where Dξ\partial D_{\xi} is a boundary of DξD_{\xi}, the union of three components: the line segment L1L_{1} along the real axis from 0 to ξ\xi, the arc CξC_{\xi} of the circle |t|=ξ|t|=\xi from ξ\xi to iξi\xi, and the line segment L2L_{2} along the imaginary axis from iξi\xi to 0.

Next, for any tt on the arc Cξ={t;|t|=ξ}C_{\xi}=\{t\in\mathbb{C};|t|=\xi\}, there is a phase φ[0,π/2]\varphi\in[0,\pi/2] such that t=ξeiφt=\xi\leavevmode\nobreak\ e^{i\varphi}. Then

f(t;z)\displaystyle f(t;z) =f(ξeiφ;z)\displaystyle=f(\xi\leavevmode\nobreak\ e^{i\varphi};z)
=ei|z|ξeiφ(1[ξδeiδφ1+ξδeiδφ]λ).\displaystyle=e^{i|z|\xi\leavevmode\nobreak\ e^{i\varphi}}\left(1-\Big{[}\frac{\xi^{\delta}e^{i\delta\varphi}}{1+\xi^{\delta}e^{i\delta\varphi}}\Big{]}^{\lambda}\right).

The last term of the above equality can be expressed as

1[ξδeiδφ(1+ξδeiδφ)]λ=1j=0(1)jΓ(λ+j)Γ(λ)(ξδeiδφ)j,1-\Big{[}\frac{\xi^{\delta}e^{i\delta\varphi}}{(1+\xi^{\delta}e^{i\delta\varphi})}\Big{]}^{\lambda}=1-\sum_{j=0}^{\infty}(-1)^{j}\frac{\Gamma(\lambda+j)}{\Gamma(\lambda)}(\xi^{-\delta}e^{-i\delta\varphi})^{j},

then

Dξf(t)dt=j=1(1)jΓ(λ+j)Γ(λ)ξjδ0π/2eiδφjei|z|ξeiφdφ.\oint\limits_{\partial D_{\xi}}f(t)\,\mathrm{d}t=-\sum_{j=1}^{\infty}(-1)^{j}\frac{\Gamma(\lambda+j)}{\Gamma(\lambda)}\xi^{-j\delta}\int_{0}^{\pi/2}e^{-i\delta\varphi j}e^{i|z|\xi e^{i\varphi}}\,\mathrm{d}\varphi. (10)

The integral presented in Equation (10) is expressed as

0π/2eiδφjei|z|ξeiφdφ=\displaystyle\int_{0}^{\pi/2}e^{-i\delta\varphi j}e^{i|z|\xi e^{i\varphi}}\,\mathrm{d}\varphi= 1i0π/2ei(jδ+1)φei|z|ξeiφdeiφ\displaystyle\frac{1}{i}\int_{0}^{\pi/2}e^{-i(j\delta+1)\varphi}e^{i|z|\xi e^{i\varphi}}\,\mathrm{d}e^{i\varphi}
=\displaystyle= 1iC1ei|z|ξωω(jδ+1)dω=(|z|ξ)jδiC|z|ξeiuu(jδ+1)du,\displaystyle\frac{1}{i}\int_{C_{1}}e^{i|z|\xi\omega}\omega^{-(j\delta+1)}\,\mathrm{d}\omega=\frac{(|z|\xi)^{j\delta}}{i}\int_{C_{|z|\xi}}e^{iu}u^{-(j\delta+1)}\,\mathrm{d}u,

where C1C_{1} is an arc of the circle |ω|=1|\omega|=1 from 11 to ii and C|z|ξC_{|z|\xi} is an arc of the circle |u|=|z|ξ|u|=|z|\xi from |z|ξ|z|\xi to i|z|ξi|z|\xi.

Then,

limξDξf(t;z)dt=limξL1f(t;x)dt+limξL2f(t;z)dt\displaystyle\underset{\xi\to\infty}{\lim}\oint\limits_{\partial D_{\xi}}f(t;z)\,\mathrm{d}t=\underset{\xi\to\infty}{\lim}\int\limits_{L_{1}}f(t;x)\,\mathrm{d}t+\underset{\xi\to\infty}{\lim}\int\limits_{L_{2}}f(t;z)\,\mathrm{d}t
+ij=1(1)jΓ(λ+j)Γ(λ)|z|jδlimξC|z|ξeiuu(jδ+1)du=0.\displaystyle+i\sum_{j=1}^{\infty}(-1)^{j}\frac{\Gamma(\lambda+j)}{\Gamma(\lambda)}|z|^{j\delta}\underset{\xi\to\infty}{\lim}\int_{C_{|z|\xi}}e^{iu}u^{-(j\delta+1)}\,\mathrm{d}u=0.

However, we may state that

limξC|z|ξeiuu(jδ+1)du=0.\underset{\xi\to\infty}{\lim}\int_{C_{|z|\xi}}e^{iu}u^{-(j\delta+1)}\,\mathrm{d}u=0. (11)

Finally,

limξL1f(t;x)dt=limξL2f(t;z)dt.\underset{\xi\to\infty}{\lim}\int\limits_{L_{1}}f(t;x)\,\mathrm{d}t=-\underset{\xi\to\infty}{\lim}\int\limits_{L_{2}}f(t;z)\,\mathrm{d}t.

The last result implies

𝒟^δ,λ(z)\displaystyle\widehat{\cal D}_{\delta,\lambda}(z) =1πRe0[1rδλ(1+rδ)λ]ei|z|rdr\displaystyle=\frac{1}{\pi}\mathrm{Re}\int_{0}^{\infty}\left[1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}\right]e^{i|z|r}\,\mathrm{d}r
=1πIm0[1eiδλπ/2rδλ(1+eiπ/2rδ)λ]e|z|rdr.\displaystyle=-\frac{1}{\pi}\mathrm{Im}\int_{0}^{\infty}\left[1-\frac{e^{i\delta\lambda\pi/2}r^{\delta\lambda}}{(1+e^{i\pi/2}r^{\delta})^{\lambda}}\right]e^{-|z|r}\,\mathrm{d}r.
Proof A.2 (Proof of Theorem 3.2)

With 𝐳=z\|\boldsymbol{z}\|=z, we write,

dei𝒓𝒛(z1d22d21πd2+1Im0Kd21(zt)(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)td/2dt)d𝒛\displaystyle\int_{\mathbb{R}^{d}}e^{i\boldsymbol{r}\boldsymbol{z}}\left(-\frac{z^{1-\frac{d}{2}}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(zt)\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)t^{d/2}\,\mathrm{d}t\right)\,\mathrm{d}\boldsymbol{z}
=(2π)d2r1d20Jd21(rz)zd2(z1d22d21πd2+1Im0Kd21(zt)\displaystyle=(2\pi)^{\frac{d}{2}}r^{1-\frac{d}{2}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(rz)z^{\frac{d}{2}}\left(-\frac{z^{1-\frac{d}{2}}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(zt)\right.
×(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)td/2dt)dz\displaystyle\quad\times\left.\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)t^{d/2}\,\mathrm{d}t\right)\,\mathrm{d}z
=2r1d2πIm0(1eiπδλ/2tδλ(1+eiπδ/2tδ)λ)td/20zKd21(zt)Jd21(zr)dz\displaystyle=-\frac{2r^{1-\frac{d}{2}}}{\pi}\mathrm{Im}\int_{0}^{\infty}\left(1-\frac{e^{i\pi\delta\lambda/2}t^{\delta\lambda}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)t^{d/2}\int_{0}^{\infty}zK_{\frac{d}{2}-1}(zt)J_{\frac{d}{2}-1}(zr)\leavevmode\nobreak\ \mathrm{d}z
=1iπ(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)t(r2+t2)dt.\displaystyle=-\frac{1}{i\pi}\int_{-\infty}^{\infty}\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)\frac{t}{(r^{2}+t^{2})}\mathrm{d}t.

When δ(0,2)\delta\in(0,2) and δλ(0,2)\delta\lambda\in(0,2), the last integral is expressed as

1iπ(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)t(r2+t2)dt=1rδλ(1+rδ)λ.-\frac{1}{i\pi}\int_{-\infty}^{\infty}\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)\frac{t}{(r^{2}+t^{2})}\,\mathrm{d}t=1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}.
Proof A.3 (Proof of Theorem 3.3)

To find the explicit form of the Dagum spectral density, we use the Mellin–Barnes transform [2] defined through the identity

1(1+x)δ=12iπ1Γ(δ)ΛxuΓ(u)Γ(δ+u)du,\displaystyle\frac{1}{(1+x)^{\delta}}=\frac{1}{2i\pi}\frac{1}{\Gamma(\delta)}\oint_{\Lambda}\leavevmode\nobreak\ x^{u}\Gamma(-u)\Gamma(\delta+u)\,\text{d}u, (12)

here Γ()\Gamma(\cdot) denotes the Gamma function. This representation is valid for any xx\in\mathbb{R}. The contour Λ\Lambda contains the vertical line which passes between left and right poles in the complex plane uu from negative to positive imaginary infinity, and should be closed to the left in case x>1x>1, and to the right complex infinity if 0<x<1.0<x<1.

Applying Equation (12), we obtain

𝒟^δ,λ(𝒛)=\displaystyle\widehat{{\cal D}}_{\delta,\lambda}(\boldsymbol{z})= 1(2π)d[dei𝒓𝒛d𝒓12iπ1Γ(λ)dei𝒓𝒛ΛΓ(u)Γ(u+λ)ruδdud𝒓]\displaystyle\frac{1}{(2\pi)^{d}}\left[\int_{\mathbb{R}^{d}}{\rm e}^{-i\boldsymbol{r}\boldsymbol{z}}\text{d}\boldsymbol{r}-\frac{1}{2i\pi}\frac{1}{\Gamma(\lambda)}\int_{\mathbb{R}^{d}}{\rm e}^{-i\boldsymbol{r}\boldsymbol{z}}\oint_{\Lambda}\Gamma(-u)\Gamma(u+\lambda)r^{-u\delta}\text{d}u\leavevmode\nobreak\ \text{d}\boldsymbol{r}\right]
=\displaystyle= 1(2π)d[dei𝒓𝒛d𝒓12iπ1Γ(λ)ΛΓ(u)Γ(u+λ)dei𝒓𝒛ruδd𝒓du]\displaystyle\frac{1}{(2\pi)^{d}}\left[\int_{\mathbb{R}^{d}}{\rm e}^{-i\boldsymbol{r}\boldsymbol{z}}\text{d}\boldsymbol{r}-\frac{1}{2i\pi}\frac{1}{\Gamma(\lambda)}\oint_{\Lambda}\Gamma(-u)\Gamma(u+\lambda)\int_{\mathbb{R}^{d}}{\rm e}^{-i\boldsymbol{r}\boldsymbol{z}}r^{-u\delta}\text{d}\boldsymbol{r}\leavevmode\nobreak\ \text{d}u\right]

We now invoke the well known relationship [1],

dei𝒙𝒛𝒓uδd𝒓=2duδπd/2Γ(d/2uδ/2)Γ(uδ/2)𝒛duδ.\displaystyle\int_{\mathbb{R}^{d}}{\rm e}^{i\boldsymbol{x}\boldsymbol{z}}\|\boldsymbol{r}\|^{-u\delta}\text{d}\boldsymbol{r}=\frac{2^{d-u\delta}\pi^{d/2}\Gamma(d/2-u\delta/2)}{\Gamma(u\delta/2)\|\boldsymbol{z}\|^{d-u\delta}}.

Hence,

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =δ(d)(𝒛)1(2π)d1Γ(λ)12πiΛ2duδπd/2Γ(d/2uδ/2)Γ(u)Γ(u+λ)Γ(uδ/2)1zduδdu\displaystyle=\delta^{(d)}(\boldsymbol{z})-\frac{1}{(2\pi)^{d}}\frac{1}{\Gamma(\lambda)}\frac{1}{2\pi i}\oint_{\Lambda}\leavevmode\nobreak\ \frac{2^{d-u\delta}\pi^{d/2}\Gamma(d/2-u\delta/2)\Gamma(-u)\Gamma\left(u+\lambda\right)}{\Gamma(u\delta/2)}\frac{1}{{z}^{d-u\delta}}\text{d}u (13)
=δ(d)(𝒛)zdπd/212πi1Γ(λ)ΛΓ(u)Γ(u+λ)Γ(d/2uδ/2)Γ(uδ/2)(z2)uδdu.\displaystyle=\delta^{(d)}(\boldsymbol{z})-\frac{z^{-d}}{\pi^{d/2}}\frac{1}{2\pi i}\frac{1}{\Gamma(\lambda)}\oint_{\Lambda}\frac{\Gamma(-u)\Gamma(u+\lambda)\Gamma(d/2-u\delta/2)}{\Gamma(u\delta/2)}\left(\frac{z}{2}\right)^{u\delta}\text{d}u.

For any given value of |z/2|,|z/2|, it is not relevant whether it is smaller or greater than 11. In fact, the contour might be closed to the right complex infinity. The above series is convergent for any values of the variable zz. The functions uΓ(u)u\mapsto\Gamma(-u) and uΓ(d/2uδ/2)u\mapsto\Gamma\left(d/2-u\delta/2\right) contain poles in the complex plane, respectively when u=n-u=-n, and when d/2uδ/2=n,d/2-u\delta/2=-n, n+n\in\mathbb{Z}_{+}. Using this fact and through direct inspection we obtain that the right hand side in (13) matches with (14).

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =δ(d)(𝒛)zdπd/21Γ(λ)n=0(1)nΓ(λ+n)Γ(d/2nδ/2)n!Γ(nδ/2)(z2)nδ\displaystyle=\delta^{(d)}(\boldsymbol{z})-\frac{z^{-d}}{\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\sum_{n=0}^{\infty}\frac{(-1)^{n}\ \Gamma(\lambda+n)\Gamma(d/2-n\delta/2)}{n!\Gamma(n\delta/2)}\left(\frac{z}{2}\right)^{n\delta} (14)
12dπd/21Γ(λ)2δn=0(1)nΓ(λ+(d+2n)/δ)Γ((d+2n)/δ)n!Γ(n+d/2)(z2)2n,\displaystyle-\frac{1}{2^{d}\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\frac{2}{\delta}\sum_{n=0}^{\infty}\frac{(-1)^{n}\Gamma(\lambda+(d+2n)/\delta)\Gamma(-(d+2n)/\delta)}{n!\Gamma(n+d/2)}\left(\frac{z}{2}\right)^{2n},

Next, we invoke the expression of Fox–Wright function as in (7). In particular, using Equations (8) and (7) we obtain a new form of Dagum spectral density:

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =δ(d)(𝒛)πd/2zdΓ(λ)2Ψ1[(λ,1)(d/2,δ/2)(0,δ/2);(z2)δ]\displaystyle=\delta^{(d)}(\boldsymbol{z})-\frac{\pi^{-d/2}z^{-d}}{\Gamma(\lambda)}\,_{2}\Psi_{1}\Big{[}\begin{matrix}(\lambda,1)&(d/2,-\delta/2)\\ &(0,\delta/2)\end{matrix};-\left(\frac{z}{2}\right)^{\delta}\Big{]}
12dπd/21Γ(λ)2δ2Ψ1[(λ+d/δ,2/δ)(d/δ,2/δ)(d/2,1);(z2)2].\displaystyle-\frac{1}{2^{d}\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\frac{2}{\delta}\,_{2}\Psi_{1}\Big{[}\begin{matrix}(\lambda+d/\delta,2/\delta)&(-d/\delta,-2/\delta)\\ &(d/2,1)\end{matrix};-\left(\frac{z}{2}\right)^{2}\Big{]}.

Theorem 3.4 states that the asymptotic z0z\to 0 for this Fourier transform 𝒟^δ,λ(𝒛)\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) of the Dagum correlation function should be a constant when δ>d.\delta>d. When we put z0z\to 0 in (14), we may see that only the Dirac δ\delta function, the n=0n=0 term in the first sum of (14) and the n=0n=0 term in the second sum of (14) remain non-zero if δ>d.\delta>d. However, the n=0n=0 term in the second sum is the constant

12dπd/21Γ(λ)2δΓ(λ+d/δ)Γ(d/δ)Γ(d/2),-\frac{1}{2^{d}\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\frac{2}{\delta}\frac{\Gamma(\lambda+d/\delta)\Gamma(-d/\delta)}{\Gamma(d/2)}, (15)

This is the same constant that stands in the formulation of Theorem 3.4 that states the limit z0z\to 0 is smooth for δ>d\delta>d and the function 𝒟^δ,λ(𝒛)\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) is continuous at z=0z=0 if δ>d.\delta>d. This means the Dirac δ\delta function should be canceled with the n=0n=0 term in the first sum of (14) and for any zz the final form of the spectral density is

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =zdπd/21Γ(λ)n=1(1)nΓ(λ+n)Γ(d/2nδ/2)n!Γ(nδ/2)(z2)nδ\displaystyle=-\frac{z^{-d}}{\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\sum_{n=1}^{\infty}\frac{(-1)^{n}\ \Gamma(\lambda+n)\Gamma(d/2-n\delta/2)}{n!\Gamma(n\delta/2)}\left(\frac{z}{2}\right)^{n\delta} (16)
12dπd/21Γ(λ)2δn=0(1)nΓ(λ+(d+2n)/δ)Γ((d+2n)/δ)n!Γ(n+d/2)(z2)2n,\displaystyle-\frac{1}{2^{d}\pi^{d/2}}\frac{1}{\Gamma(\lambda)}\frac{2}{\delta}\sum_{n=0}^{\infty}\frac{(-1)^{n}\Gamma(\lambda+(d+2n)/\delta)\Gamma(-(d+2n)/\delta)}{n!\Gamma(n+d/2)}\left(\frac{z}{2}\right)^{2n},

This may be only if the n=0n=0 term in the first sum of (14) is interpreted as the Dirac δ\delta function in the the sense of distributions.

Proof A.4 (Proof of Theorem 3.4)

The first point can be proved by direct construction. We have

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =z1d2(2π)d20Jd21(rz)rd2(1rδλ(1+rδ)λ)dr.\displaystyle=\frac{z^{1-\frac{d}{2}}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(rz)r^{\frac{d}{2}}\left(1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}\right)\,\mathrm{d}r. (17)

To find the low frequency behavior of 𝒟^δ,λ(𝐳)\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}), we make use of Equation (17). A change of variable of the type y=rzy=rz shows that

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =zd2(2π)d20Jd21(y)(1(y/z)δλ(1+(y/z)δ)λ)(y/z)d/2dy\displaystyle=\frac{z^{-\frac{d}{2}}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(y)\left(1-\frac{(y/z)^{\delta\lambda}}{(1+(y/z)^{\delta})^{\lambda}}\right)(y/z)^{d/2}\text{d}y (18)
=zd(2π)d20Jd21(y)(1(y/z)δλ(1+(y/z)δ)λ)yd/2dy\displaystyle=\frac{z^{-d}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(y)\left(1-\frac{(y/z)^{\delta\lambda}}{(1+(y/z)^{\delta})^{\lambda}}\right)y^{d/2}\text{d}y

We now invoke the identity

11(1+(z/y)δ)λ=j=1(1)jj!Γ(λ+j)Γ(λ)(z/y)jδλ(z/y)δ,as z0+,\displaystyle 1-\frac{1}{(1+(z/y)^{\delta})^{\lambda}}=-\sum_{j=1}^{\infty}\frac{(-1)^{j}}{j!}\frac{\Gamma(\lambda+j)}{\Gamma(\lambda)}(z/y)^{j\delta}\sim\lambda(z/y)^{\delta},\qquad\hbox{as }z\to 0^{+}, (19)

to obtain

𝒟^δ,λ(𝒛)λzd(2π)d20Jd21(y)(zy)δyd/2dy=λzδd(2π)d20Jd21(y)yd2δdy.\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})\sim\frac{\lambda z^{-d}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(y)\left(\frac{z}{y}\right)^{\delta}y^{d/2}\text{d}y=\frac{\lambda z^{\delta-d}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(y)y^{\frac{d}{2}-\delta}\text{d}y. (20)

Using [29, 14,6.651], we find that if d/21/2<δ<dd/2-1/2<\delta<d

𝒟^δ,λ(𝒛)2d/2δλΓ(d/2δ/2)(2π)d2Γ(δ/2)zδd=2δλΓ(d/2δ/2)πd2Γ(δ/2)zδd.\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})\sim\frac{2^{d/2-\delta}\lambda\Gamma(d/2-\delta/2)}{(2\pi)^{\frac{d}{2}}\Gamma(\delta/2)}z^{\delta-d}=\frac{2^{-\delta}\lambda\Gamma(d/2-\delta/2)}{\pi^{\frac{d}{2}}\Gamma(\delta/2)}z^{\delta-d}. (21)

This result coincides with n=1n=1 term of the first sum of Eqs. (14) and (16). We may conclude this limit z0z\to 0 is singular for the Dagum spectral density if δ<d.\delta<d. The Dagum spectral density is not continuous at the point z=0z=0 under the condition δ<d.\delta<d. The limit z0z\to 0 corresponds to the behaviour of the Dagum correlation function at rr\to\infty and to integrability of its Fourier transformation. In this case the Dagum spectral density is singular at z=0z=0 because the integral of the Fourier transformation is not convergent for z=0z=0 under the condition δ<d.\delta<d.

We now prove the second point. When z0+z\to 0^{+}, the Bessel of the second kind can be expressed asymptotically as

Jν(rz)(rz)ν2νΓ(ν+1).J_{\nu}(rz)\sim\frac{(rz)^{\nu}}{2^{\nu}\Gamma(\nu+1)}. (22)

Thus we may write in this limit

𝒟^δ,λ(𝒛)=z1d2(2π)d20Jd21(rz)rd2(1rδλ(1+rδ)λ)dr\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})=\frac{z^{1-\frac{d}{2}}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}J_{\frac{d}{2}-1}(rz)r^{\frac{d}{2}}\left(1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}\right)\text{d}r
z1d2(2π)d20(rz)d212d21Γ(d/2)rd2(1rδλ(1+rδ)λ)dr\displaystyle\sim\frac{z^{1-\frac{d}{2}}}{(2\pi)^{\frac{d}{2}}}\int_{0}^{\infty}\frac{(rz)^{\frac{d}{2}-1}}{2^{\frac{d}{2}-1}\Gamma(d/2)}r^{\frac{d}{2}}\left(1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}\right)\text{d}r
=1πd22d1Γ(d/2)0rd1(1rδλ(1+rδ)λ)dr.\displaystyle=\frac{1}{\pi^{\frac{d}{2}}2^{d-1}\Gamma(d/2)}\int_{0}^{\infty}r^{d-1}\left(1-\frac{r^{\delta\lambda}}{(1+r^{\delta})^{\lambda}}\right)\text{d}r.

We make a change of variable of the type rδ=ur^{\delta}=u, and we find that, if δ>d\delta>d,

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) 1δπd22d1Γ(d/2)0u(dδ)/δ(1uλ(1+u)λ)du\displaystyle\sim\frac{1}{\delta\pi^{\frac{d}{2}}2^{d-1}\Gamma(d/2)}\int_{0}^{\infty}u^{(d-\delta)/\delta}\left(1-\frac{u^{\lambda}}{(1+u)^{\lambda}}\right)\text{d}u (23)

This integral is a finite constant under the condition δ>d\delta>d and may be found by the change of the variables

τ=u1+uu=τ1τ:\displaystyle\tau=\frac{u}{1+u}\Rightarrow u=\frac{\tau}{1-\tau}:
0u(dδ)/δ(1uλ(1+u)λ)du\displaystyle\int_{0}^{\infty}u^{(d-\delta)/\delta}\left(1-\frac{u^{\lambda}}{(1+u)^{\lambda}}\right)\text{d}u =01τdδ1(1τ)dδ+1(1τλ)dτ\displaystyle=-\int_{0}^{1}\frac{\tau^{\frac{d}{\delta}-1}}{(1-\tau)^{\frac{d}{\delta}+1}}\left(1-\tau^{\lambda}\right)\text{d}\tau
=limε001τdδ1(1τ)dδ+1ε(1τλ)dτ\displaystyle=-\lim_{\varepsilon\to 0}\int_{0}^{1}\frac{\tau^{\frac{d}{\delta}-1}}{(1-\tau)^{\frac{d}{\delta}+1-\varepsilon}}\left(1-\tau^{\lambda}\right)\text{d}\tau
=limε0[B(dδ,dδ+ε)B(dδ+λ,dδ+ε)]\displaystyle=-\lim_{\varepsilon\to 0}\left[{\rm B}\left(\frac{d}{\delta},-\frac{d}{\delta}+\varepsilon\right)-{\rm B}\left(\frac{d}{\delta}+\lambda,-\frac{d}{\delta}+\varepsilon\right)\right]
=limε0[Γ(dδ)Γ(ε)Γ(dδ+λ)Γ(ε+λ)]Γ(dδ+ε)\displaystyle=-\lim_{\varepsilon\to 0}\left[\frac{\Gamma\left(\frac{d}{\delta}\right)}{\Gamma(\varepsilon)}-\frac{\Gamma\left(\frac{d}{\delta}+\lambda\right)}{\Gamma(\varepsilon+\lambda)}\right]\Gamma\left(-\frac{d}{\delta}+\varepsilon\right) (24)
=Γ(dδ+λ)Γ(dδ)Γ(λ).\displaystyle=\frac{\Gamma\left(\frac{d}{\delta}+\lambda\right)\Gamma\left(-\frac{d}{\delta}\right)}{\Gamma(\lambda)}.

Thus, we have

𝒟^δ,λ(𝒛)1δπd22d1Γ(d/2)Γ(d/δ)Γ(d/δ+λ)Γ(λ).\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z})\sim\frac{1}{\delta\pi^{\frac{d}{2}}2^{d-1}\Gamma(d/2)}\frac{\Gamma(-\mathrm{d}/\delta)\Gamma(d/\delta+\lambda)}{\Gamma(\lambda)}.

This result coincides with n=0n=0 term (15) of the second sum of Eqs. (14) and (16). We may conclude this limit z0z\to 0 is smooth for the Dagum spectral density if δ>d.\delta>d. The Dagum spectral density is continuous at the point z=0z=0 under the condition δ>d.\delta>d. The limit z0z\to 0 corresponds to the behaviour of the Dagum correlation function at rr\to\infty and to integrability of its Fourier transformation. In this case the Dagum spectral density is not singular at z=0z=0 because the integral of the Fourier transformation is convergent for z=0z=0 under the condition δ>d.\delta>d.

Proof A.5 (Proof of Theorem 3.5)

To find the high frequency behaviour of the Dagum spectral density, we need to use Equation (6). Indeed, as zz\to\infty, we have

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =z1d22d21πd2+1Im0Kd21(zt)(1tδλeiπδλ/2(1+eiπδ/2tδ)λ)td2dt\displaystyle=-\frac{z^{1-\frac{d}{2}}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(zt)\left(1-\frac{t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}t^{\delta})^{\lambda}}\right)t^{\frac{d}{2}}\,\mathrm{d}t (25)
=zd2d21πd2+1Im0Kd21(t)(1zδλtδλeiπδλ/2(1+eiπδ/2zδtδ)λ)td2dt\displaystyle=-\frac{z^{-d}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(t)\left(1-\frac{z^{-\delta\lambda}t^{\delta\lambda}e^{i\pi\delta\lambda/2}}{(1+e^{i\pi\delta/2}z^{-\delta}t^{\delta})^{\lambda}}\right)t^{\frac{d}{2}}\,\mathrm{d}t
=zd2d21πd2+1Im0Kd21(t)(1+zδeiπδ/2tδ)λtd2dt\displaystyle=\frac{z^{-d}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(t)(1+z^{\delta}e^{-i\pi\delta/2}t^{-\delta})^{-\lambda}t^{\frac{d}{2}}\,\mathrm{d}t
=zd2d21πd2+1Im0Kd21(t)zδλeiπλδ/2tλδ(1+zδeiπδ/2tδ)λtd2dt\displaystyle=\frac{z^{-d}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(t)z^{-\delta\lambda}e^{i\pi\lambda\delta/2}t^{\lambda\delta}(1+z^{-\delta}e^{i\pi\delta/2}t^{\delta})^{-\lambda}t^{\frac{d}{2}}\,\mathrm{d}t
=zd2d21πd2+1Im0Kd21(t)zδλeiπλδ/2tλδk=0(1)kΓ(λ+k)eikπδ/2tkδk!Γ(λ)zkδtd2dt\displaystyle=\frac{z^{-d}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\int_{0}^{\infty}K_{\frac{d}{2}-1}(t)z^{-\delta\lambda}e^{i\pi\lambda\delta/2}t^{\lambda\delta}\sum_{k=0}^{\infty}\frac{(-1)^{k}\Gamma(\lambda+k)e^{ik\pi\delta/2}t^{k\delta}}{k!\Gamma(\lambda)z^{k\delta}}t^{\frac{d}{2}}\,\mathrm{d}t
=zdδλ2d21πd2+1Imk=0(1)kΓ(λ+k)ei(k+λ)πδ/2k!Γ(λ)zkδ0Kd21(t)t(k+λ)δ+d2dt.\displaystyle=\frac{z^{-d-\delta\lambda}}{2^{\frac{d}{2}-1}\pi^{\frac{d}{2}+1}}\mathrm{Im}\sum_{k=0}^{\infty}\frac{(-1)^{k}\Gamma(\lambda+k)e^{i(k+\lambda)\pi\delta/2}}{k!\Gamma(\lambda)z^{k\delta}}\int_{0}^{\infty}K_{\frac{d}{2}-1}(t)t^{(k+\lambda)\delta+\frac{d}{2}}\,\mathrm{d}t.

Using [29, 6.561,16], we obtain

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =zdδλπd2+1Imk=0(1)k2(k+λ)δΓ(λ+k)Γ(d+(k+λ)δ2)Γ(1+(k+λ)δ2)ei(k+λ)πδ/2k!Γ(λ)zkδ\displaystyle=\frac{z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}+1}}\mathrm{Im}\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{(k+\lambda)\delta}\Gamma(\lambda+k)\Gamma(\frac{d+(k+\lambda)\delta}{2})\Gamma(1+\frac{(k+\lambda)\delta}{2})e^{i(k+\lambda)\pi\delta/2}}{k!\Gamma(\lambda)z^{k\delta}}
=zdδλπd2+1k=0(1)k2(k+λ)δΓ(λ+k)Γ(d+(k+λ)δ2)Γ(1+(k+λ)δ2)sin(k+λ)πδ/2k!Γ(λ)zkδ.\displaystyle=\frac{z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}+1}}\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{(k+\lambda)\delta}\Gamma(\lambda+k)\Gamma(\frac{d+(k+\lambda)\delta}{2})\Gamma(1+\frac{(k+\lambda)\delta}{2})\sin{(k+\lambda)\pi\delta/2}}{k!\Gamma(\lambda)z^{k\delta}}.

We use Euler's formula given by

sin(kδπ/2)=πΓ(kδ/2)Γ(1kδ/2),\sin(k\delta\pi/2)=\frac{\pi}{\Gamma(k\delta/2)\Gamma(1-k\delta/2)},

and we write

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) =2δλzdδλπd2Γ(λ)k=0(1)kΓ(λ+k)Γ(d/2+(k+λ)δ/2)Γ(1+(k+λ)δ/2)k!Γ((k+λ)δ/2)Γ(1(k+λ)δ/2)(2z)kδ\displaystyle=\frac{2^{\delta\lambda}z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}}\Gamma(\lambda)}\sum_{k=0}^{\infty}\frac{(-1)^{k}\Gamma(\lambda+k)\Gamma(d/2+(k+\lambda)\delta/2)\Gamma(1+(k+\lambda)\delta/2)}{k!\Gamma((k+\lambda)\delta/2)\Gamma(1-(k+\lambda)\delta/2)}\left(\frac{2}{z}\right)^{k\delta} (26)
=2δλzdδλπd2Γ(λ)3Ψ2[(λ,1)(δλ/2+1,δ/2)((δλ+d)/2,δ/2)(δλ/2,δ/2)(1δλ/2,δ/2);(2z)δ].\displaystyle=\frac{2^{\delta\lambda}z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}}\Gamma(\lambda)}\,_{3}\Psi_{2}\Big{[}\begin{matrix}(\lambda,1)&(\delta\lambda/2+1,\delta/2)&((\delta\lambda+d)/2,\delta/2)\\ &(\delta\lambda/2,\delta/2)&(1-\delta\lambda/2,-\delta/2)\end{matrix};-\left(\frac{2}{z}\right)^{\delta}\Big{]}.

However, in this limit we should leave only the first term of this sum

𝒟^δ,λ(𝒛)\displaystyle\widehat{\cal D}_{\delta,\lambda}(\boldsymbol{z}) 2δλ1λδzdδλπd2Γ(d/2+λδ/2)Γ(1λδ/2)\displaystyle\sim\frac{2^{\delta\lambda-1}\lambda\delta z^{-d-\delta\lambda}}{\pi^{\frac{d}{2}}}\frac{\Gamma(d/2+\lambda\delta/2)}{\Gamma(1-\lambda\delta/2)} (27)

The proof is completed.

At the end, we would like to comment that the same result for the asymptotic (27) of the spectral density may be found by transforming the integrand of the contour integral (13) to another integrand such that the convergence of the series which arises in the result of the residues calculus when we close the contour of the integral to the left complex infinity becomes obvious because this series would satisfy the standard criteria of convergence. Such a form of the integrand is useful to study the asymptotic of the spectral density at zz\to\infty and would allow us to reproduce the asymptotical result (27).

References

  • [1] Allendes, P., Kniehl, B. A., Kondrashuk, I., Notte-Cuello, E. A. and Rojas-Medar, M. (2013). Solution to Bethe–Salpeter equation via Mellin–Barnes transform. Nuclear Physics B 870, 243–277.
  • [2] Barnes, E. W. (1908). A New Development of the Theory of the Hypergeometric Functions. Proc. London Math. Soc. (2) 6, 141–177.
  • [3] Berg, C., Mateu, J. and Porcu, E. (2008). The Dagum family of isotropic correlation functions. Bernoulli 14, 1134–1149.
  • [4] Bevilacqua, M., Faouzi, T., Furrer, R. and Porcu, E. (2019). Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics. Ann. Statist. 47, 828–856.
  • [5] Daley, D. J. and Porcu, E. (2014). Dimension walks and Schoenberg spectral measures. Proc. Amer. Math. Soc. 142, 1813–1824.
  • [6] Faouzi, T., Porcu, E., Bevilacqua, M. and Kondrashuk, I. (2020). Zastavnyi operators and positive definite radial functions. Statist. Probab. Lett. 157, 108620, 7.
  • [7] Fox, C. (1928). The asymptotic expansion of generalized hypergeometric functions. Proc. London Math. Soc. s2-27, 389–400.
  • [8] Gneiting, T. (2001). Criteria of Pólya type for radial positive definite functions. Proceedings of the American Mathematical Society 129, 2309–2318.
  • [9] Gneiting, T. and Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effects. SIAM Rev. 46, 269–282.
  • [10] Kent, J. T. and Wood, A. T. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. Journal of the Royal Statistical Society. Series B (Methodological) 679–699.
  • [11] Laudani, R., Zhang, D., Faouzi, T., Porcu, E., Ostoja-Starzewski, M. and Chamorro, L. P. (2021). On streamwise velocity spectra models with fractal and long-memory effects. Physics of Fluids 33, 035116.
  • [12] Lim, S. and Teo, L. (2009). Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Stochastic Processes and their Applications 119, 1325–1356.
  • [13] Mateu, J., Porcu, E. and Nicolis, O. (2007). A note on decoupling of local and global behaviours for the Dagum random field. Probabilistic Engineering Mechanics 22, 320–329.
  • [14] Matheron, G. (1963). Principles of geostatistics. Economic geology 58, 1246–1266.
  • [15] Porcu, E. (2004). Geostatistica spazio-temporale: Nuove classi di covarianza, variogramma e densit‘a spettrali. PhD thesis. Universitá Milano Bicocca.
  • [16] Porcu, E., Bevilacqua, M. and Genton, M. G. (2020). Nonseparable, space-time covariance functions with dynamical compact supports. Statist. Sinica 30, 719–739.
  • [17] Porcu, E., Mateu, J., Zini, A. and Pini, R. (2007). Modelling spatio-temporal data: a new variogram and covariance structure proposal. Statistics & probability letters 77, 83–89.
  • [18] Porcu, E. and Stein, M. L. (2012). On some local, global and regularity behaviour of some classes of covariance functions. In Advances and Challenges in Space-time Modelling of Natural Events. ed. E. Porcu, J.-M. Montero, and M. Schlather. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 221–238.
  • [19] Porcu, E., Zastavnyi, V., Bevilacqua, M., Emery, X. et al. (2020). Stein hypothesis and screening effect for covariances with compact support. Electronic Journal of Statistics 14, 2510–2528.
  • [20] Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. Annals of Mathematics 39, 811–841.
  • [21] Shen, L., Ostoja-Starzewski, M. and Porcu, E. (2014). Bernoulli–Euler beams with random field properties under random field loads: fractal and Hurst effects. Archive of Applied Mechanics 84, 1595–1626.
  • [22] Stein, M. L. (1990). Bounds on the efficiency of linear predictions using an incorrect covariance function. The Annals of Statistics 18, 1116–1138.
  • [23] Stein, M. L. (1999). Interpolation of Spatial Data. Some Theory of Kriging. Springer, New York.
  • [24] Stein, M. L. et al. (2002). The screening effect in kriging. Annals of statistics 30, 298–323.
  • [25] Wright, E. M. (1935). The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. s1-10, 286–293.
  • [26] Yaglom, A. M. (1957). Some classes of random fields in n-dimensional space, related to stationary random processes. Theory of Probability & Its Applications 2, 273–320.
  • [27] Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results. Springer, New York.
  • [28] Zhang, H. (2004). Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics. Journal of the American Statistical Association 99, 250–261.
  • [29] Zwillinger, D. (2014). Table of Integrals, Series, and Products. Elsevier Science.