This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Conjecture about spectral distances between cycles, paths and certain trees

Alireza Abdollahi Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran; and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran [email protected]  and  Niloufar Zakeri Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran [email protected]
Abstract.

We confirm the following conjecture which has been proposed in [Linear Algebra and its Applications, 436 (2012), No. 5, 1425-1435.]:

0.945limnσ(Pn,Zn)=limnσ(Wn,Zn)=12limnσ(Pn,Wn);limnσ(C2n,Z2n)=2,0.945\approx\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{1}{2}\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},W_{n});\ \displaystyle\lim_{n\longrightarrow\infty}\sigma(C_{2n},Z_{2n})=2,

where σ(G1,G2)=i=1n|λi(G1)λi(G2)|\sigma(G_{1},G_{2})=\sum_{i=1}^{n}|\lambda_{i}(G_{1})-\lambda_{i}(G_{2})| is the spectral distance between nn vertex non-isomorphic graphs G1G_{1} and G2G_{2} with adjacency spectra λ1(Gi)λ2(Gi)λn(Gi)\lambda_{1}(G_{i})\geq\lambda_{2}(G_{i})\geq\cdots\geq\lambda_{n}(G_{i}) for i=1,2i=1,2, and PnP_{n} and CnC_{n} denote the path and cycle on nn vertices, respectively; ZnZ_{n} denotes the coalescence of Pn2P_{n-2} and P3P_{3} on one of the vertices of degree 1 of Pn2P_{n-2} and the vertex of degree 22 of P3P_{3}; and WnW_{n} denotes the coalescence of Zn2Z_{n-2} and P3P_{3} on the vertex of degree 1 of Zn2Z_{n-2} which is adjacent to a vertex of degree 22 and the vertex of degree 22 of P3P_{3}.

Key words and phrases:
Adjacency spectra of graphs; Spectral distance of graphs; Path; Cycle
2010 Mathematics Subject Classification:
05C50; 05C31

1. Introduction and Results

All graphs considered here are simple, that is finite and undirected without loops and multiple edges. By the eigenvalues of GG, we mean those of its adjacency matrix.

In [4], the following conjecture has been proposed:

0.945limnσ(Pn,Zn)=limnσ(Wn,Zn)=12limnσ(Pn,Wn);limnσ(C2n,Z2n)=2,0.945\approx\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{1}{2}\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},W_{n});\ \displaystyle\lim_{n\longrightarrow\infty}\sigma(C_{2n},Z_{2n})=2,

where σ(G1,G2)=i=1n|λi(G1)λi(G2)|\sigma(G_{1},G_{2})=\sum_{i=1}^{n}|\lambda_{i}(G_{1})-\lambda_{i}(G_{2})| is the spectral distance between nn vertex non-isomorphic graphs G1G_{1} and G2G_{2} with adjacency spectra λ1(Gi)λ2(Gi)λn(Gi)\lambda_{1}(G_{i})\geq\lambda_{2}(G_{i})\geq\cdots\geq\lambda_{n}(G_{i}) for i=1,2i=1,2. In this paper we completely prove the conjecture.
The spectral distance between graphs is studied based on different matrix representations of graphs and norms in many papers for example see [1, 3, 5, 6].

Let us first introduce some notations.

The coalescence of two graphs GG and HH is obtained by identifying a vertex uu of GG with a vertex vv of HH; ZnZ_{n} denotes the coalescence of Pn2P_{n-2} and P3P_{3} on one of the vertices of degree 1 of Pn2P_{n-2} and the vertex of degree 22 of P3P_{3}; and WnW_{n} denotes the coalescence of Zn2Z_{n-2} and P3P_{3} on the vertex of degree 1 of Zn2Z_{n-2} which is adjacent to a vertex of degree 22 and the vertex of degree 22 of P3P_{3}. They are depicted in Figure 1 (Their spectra can be found in [2], p. 77).

Our main result is as follows.

Theorem 1.1.
  1. (1)

    limnσ(C2n,Z2n)=2.\displaystyle\lim_{n\longrightarrow\infty}\sigma(C_{2n},Z_{2n})=2.

  2. (2)

    limnσ(Pn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

  3. (3)

    limnσ(Wn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

  4. (4)

    limnσ(Pn,Zn)=limnσ(Wn,Zn)=12limnσ(Pn,Wn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{1}{2}\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},W_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

Refer to caption
Figure 1. Graphs ZnZ_{n} and WnW_{n}.

2. Proof of the conjecture

To prove the following results, we need the Table 1.

Graph Eigenvalues
PnP_{n} 2cos(kπn+1),k=1,,n2\cos(\frac{k\pi}{n+1}),k=1,\ldots,n
CnC_{n} 2cos(2kπn),k=1,,n2\cos(\frac{2k\pi}{n}),k=1,\ldots,n
ZnZ_{n} 0,2cos((2k1)π2n2),k=1,,n10,2\cos(\frac{(2k-1)\pi}{2n-2}),k=1,\ldots,n-1
WnW_{n} 2,0,0,2,2cos(kπn3),k=1,,n42,0,0,-2,2\cos(\frac{k\pi}{n-3}),k=1,\ldots,n-4
Table 1. Some specific graphs and their spectra

Proof of Theorem 1.1.

  1. (1)

    Let n2n\geq 2. By Table 1,

    λ1(C2n)>λk(C2n)=λk+1(C2n)>λk+2(C2n)=λk+3(C2n)>λ2n(C2n),k=2,4,6,,2n4.\lambda_{1}(C_{2n})>\lambda_{k}(C_{2n})=\lambda_{k+1}(C_{2n})>\lambda_{k+2}(C_{2n})=\lambda_{k+3}(C_{2n})>\lambda_{2n}(C_{2n}),\ \ k=2,4,6,\ldots,2n-4.

    Assume that nn is odd. We have

    λk(C2n)>λk(Z2n)>λk+1(Z2n)>λk+1(C2n),k=1,3,5,,2n1.\lambda_{k}(C_{2n})>\lambda_{k}(Z_{2n})>\lambda_{k+1}(Z_{2n})>\lambda_{k+1}(C_{2n}),\ \ k=1,3,5,\ldots,2n-1.

    If nn is even, then λk(C2n)=λk(Z2n)\lambda_{k}(C_{2n})=\lambda_{k}(Z_{2n}) for k=n,n+1k=n,n+1 and the other eigenvalues are the same as the case that nn is odd.

    Since C2nC_{2n} and Z2nZ_{2n} are bipartite, by using the above (in)equalities, we have

    σ(C2n,Z2n)\displaystyle\sigma(C_{2n},Z_{2n}) =\displaystyle= 2(λ1(C2n)λ1(Z2n))+k=22n1|λk(C2n)λk(Z2n)|\displaystyle 2(\lambda_{1}(C_{2n})-\lambda_{1}(Z_{2n}))+\displaystyle\sum_{k=2}^{2n-1}|\lambda_{k}(C_{2n})-\lambda_{k}(Z_{2n})|
    =\displaystyle= 2(λ1(C2n)λ1(Z2n))+k=2k is even2n2λk(Z2n)λk(C2n)+λk+1(C2n)λk+1(Z2n)\displaystyle 2(\lambda_{1}(C_{2n})-\lambda_{1}(Z_{2n}))+\displaystyle\sum_{{k=2}\;{\text{, $k$ is even}\;}}^{2n-2}\lambda_{k}(Z_{2n})-\lambda_{k}(C_{2n})+\lambda_{k+1}(C_{2n})-\lambda_{k+1}(Z_{2n})
    =\displaystyle= 2(λ1(C2n)λ1(Z2n))+2k=2n1(1)kλk(Z2n)\displaystyle 2(\lambda_{1}(C_{2n})-\lambda_{1}(Z_{2n}))+2\displaystyle\sum_{k=2}^{n-1}(-1)^{k}\lambda_{k}(Z_{2n})
    =\displaystyle= 2λ1(C2n)+2k=1n1(1)kλk(Z2n)\displaystyle 2\lambda_{1}(C_{2n})+2\displaystyle\sum_{k=1}^{n-1}(-1)^{k}\lambda_{k}(Z_{2n})
    =\displaystyle= 4+4k=1n1(1)kcos((2k1)π4n2).\displaystyle 4+4\displaystyle\sum_{k=1}^{n-1}(-1)^{k}\cos(\frac{(2k-1)\pi}{4n-2}).

    Since limnk=1n1(1)kcos((2k1)π4n2)=12,\displaystyle\lim_{n\rightarrow\infty}\displaystyle\sum_{k=1}^{n-1}(-1)^{k}\cos(\frac{(2k-1)\pi}{4n-2})=\frac{-1}{2}, we have

    limnσ(C2n,Z2n)=2.\lim_{n\rightarrow\infty}\sigma(C_{2n},Z_{2n})=2.
  2. (2)

    Let n4n\geq 4 and an:=σ(Pn,Zn)a_{n}:=\sigma(P_{n},Z_{n}). We prove

    limna4n+1=limna4n+2=limna4n+3=limna4n=882+2ππ,\displaystyle\lim_{n\longrightarrow\infty}a_{4n+1}=\displaystyle\lim_{n\longrightarrow\infty}a_{4n+2}=\displaystyle\lim_{n\longrightarrow\infty}a_{4n+3}=\displaystyle\lim_{n\longrightarrow\infty}a_{4n}=\frac{8-8\sqrt{2}+2\pi}{\pi},

    which follows that ana_{n} is convergent to 882+2ππ\frac{8-8\sqrt{2}+2\pi}{\pi}.

    Suppose that λ1(Pn)λn(Pn)\lambda_{1}(P_{n})\geq\cdots\geq\lambda_{n}(P_{n}) and λ1(Zn)λn(Zn)\lambda_{1}(Z_{n})\geq\cdots\geq\lambda_{n}(Z_{n}) are the eigenvalues of PnP_{n} and ZnZ_{n}, respectively. If n1(mod4)n\equiv 1\pmod{4}, then

    λk(Zn)>λk(Pn),k=1,,n14,\lambda_{k}(Z_{n})>\lambda_{k}(P_{n}),\ \ \ k=1,\ldots,\frac{n-1}{4},
    λk(Zn)<λk(Pn),k=n+34,,n12,\lambda_{k}(Z_{n})<\lambda_{k}(P_{n}),\ \ \ k=\frac{n+3}{4},\ldots,\frac{n-1}{2},

    and

    λn+12(Zn)=λn+12(Pn).\lambda_{\frac{n+1}{2}}(Z_{n})=\lambda_{\frac{n+1}{2}}(P_{n}).

    Thus, by Table 1 and the bipartiteness of PnP_{n} and ZnZ_{n}, we have

    σ(Pn,Zn)\displaystyle\sigma(P_{n},Z_{n}) =\displaystyle= 2(k=1n14(λk(Zn)λk(Pn))+k=n+34n12(λk(Pn)λk(Zn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{\frac{n-1}{4}}(\lambda_{k}(Z_{n})-\lambda_{k}(P_{n}))+\displaystyle\sum_{k=\frac{n+3}{4}}^{\frac{n-1}{2}}(\lambda_{k}(P_{n})-\lambda_{k}(Z_{n}))\big{)}
    =\displaystyle= 4(k=1n14(cos((2k1)π2n2)cos(kπn+1))+k=n+34n12(cos(kπn+1)cos((2k1)π2n2))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{\frac{n-1}{4}}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{k\pi}{n+1}))+\displaystyle\sum_{k=\frac{n+3}{4}}^{\frac{n-1}{2}}(\cos(\frac{k\pi}{n+1})-\cos(\frac{(2k-1)\pi}{2n-2}))\big{)}.

    By using a simple code (e.g., see 2) in symbolic computational software Maple [7], we have

    Refer to caption
    Figure 2. The Maple code
    limnσ(Pn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    If n3(mod4)n\equiv 3\pmod{4}, then

    λk(Zn)>λk(Pn),k=1,,n34,\lambda_{k}(Z_{n})>\lambda_{k}(P_{n}),\ \ \ k=1,\ldots,\frac{n-3}{4},
    λk(Zn)<λk(Pn),k=n+54,,n12,\lambda_{k}(Z_{n})<\lambda_{k}(P_{n}),\ \ \ k=\frac{n+5}{4},\ldots,\frac{n-1}{2},

    and

    λk(Zn)=λk(Pn),k=n+14,n+12.\lambda_{k}(Z_{n})=\lambda_{k}(P_{n}),\ \ \ k=\frac{n+1}{4},\frac{n+1}{2}.

    It follows from Table 1 and the bipartiteness of PnP_{n} and ZnZ_{n} that

    σ(Pn,Zn)\displaystyle\sigma(P_{n},Z_{n}) =\displaystyle= 2(k=1n34(λk(Zn)λk(Pn))+k=n+54n12(λk(Pn)λk(Zn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{\frac{n-3}{4}}(\lambda_{k}(Z_{n})-\lambda_{k}(P_{n}))+\displaystyle\sum_{k=\frac{n+5}{4}}^{\frac{n-1}{2}}(\lambda_{k}(P_{n})-\lambda_{k}(Z_{n}))\big{)}
    =\displaystyle= 4(k=1n34(cos((2k1)π2n2)cos(kπn+1))+k=n+54n12(cos(kπn+1)cos((2k1)π2n2))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{\frac{n-3}{4}}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{k\pi}{n+1}))+\displaystyle\sum_{k=\frac{n+5}{4}}^{\frac{n-1}{2}}(\cos(\frac{k\pi}{n+1})-\cos(\frac{(2k-1)\pi}{2n-2}))\big{)}.

    By using Maple [7],

    limnσ(Pn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    If

    n={n4n0(mod4),n24n2(mod4),n^{*}=\left\{\begin{array}[]{ll}\frac{n}{4}&n\equiv 0\pmod{4},\\ \\ \frac{n-2}{4}&n\equiv 2\pmod{4},\end{array}\right.

    then

    λk(Zn)>λk(Pn),k=1,,n,\lambda_{k}(Z_{n})>\lambda_{k}(P_{n}),\ \ \ k=1,\ldots,n^{*},

    and

    λk(Zn)<λk(Pn),k=n+1,,n2.\lambda_{k}(Z_{n})<\lambda_{k}(P_{n}),\ \ \ k=n^{*}+1,\ldots,\frac{n}{2}.

    Therefore

    σ(Pn,Zn)\displaystyle\sigma(P_{n},Z_{n}) =\displaystyle= 2(k=1n(λk(Zn)λk(Pn))+k=n+1n2(λk(Pn)λk(Zn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{n^{*}}(\lambda_{k}(Z_{n})-\lambda_{k}(P_{n}))+\displaystyle\sum_{k=n^{*}+1}^{\frac{n}{2}}(\lambda_{k}(P_{n})-\lambda_{k}(Z_{n}))\big{)}
    =\displaystyle= 4(k=1n(cos((2k1)π2n2)cos(kπn+1))+k=n+1n2(cos(kπn+1)cos((2k1)π2n2))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{n^{*}}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{k\pi}{n+1}))+\displaystyle\sum_{k=n^{*}+1}^{\frac{n}{2}}(\cos(\frac{k\pi}{n+1})-\cos(\frac{(2k-1)\pi}{2n-2}))\big{)}.

    In both cases, by using Maple [7], we have

    limnσ(Pn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    Therefore an=σ(Pn,Zn)a_{n}=\sigma(P_{n},Z_{n}) is convergent to 882+2ππ\frac{8-8\sqrt{2}+2\pi}{\pi} .

  3. (3)

    Let n6n\geq 6 and bn:=σ(Pn,Zn)b_{n}:=\sigma(P_{n},Z_{n}). We prove

    limnb4n+1=limnb4n+2=limnb4n+3=limnb4n=882+2ππ,\displaystyle\lim_{n\longrightarrow\infty}b_{4n+1}=\displaystyle\lim_{n\longrightarrow\infty}b_{4n+2}=\displaystyle\lim_{n\longrightarrow\infty}b_{4n+3}=\displaystyle\lim_{n\longrightarrow\infty}b_{4n}=\frac{8-8\sqrt{2}+2\pi}{\pi},

    which follows that bnb_{n} is convergent to 882+2ππ\frac{8-8\sqrt{2}+2\pi}{\pi}.

    Suppose that λ1(Wn)λn(Wn)\lambda_{1}(W_{n})\geq\cdots\geq\lambda_{n}(W_{n}) and λ1(Zn)λn(Zn)\lambda_{1}(Z_{n})\geq\cdots\geq\lambda_{n}(Z_{n}) are the eigenvalues of WnW_{n} and ZnZ_{n}, respectively. By similar arguments given in part (2), if n1(mod4)n\equiv 1\pmod{4}, then

    σ(Wn,Zn)\displaystyle\sigma(W_{n},Z_{n}) =\displaystyle= 2(k=1n14(λk(Wn)λk(Zn))+k=n+34n12(λk(Zn)λk(Wn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{\frac{n-1}{4}}(\lambda_{k}(W_{n})-\lambda_{k}(Z_{n}))+\displaystyle\sum_{k=\frac{n+3}{4}}^{\frac{n-1}{2}}(\lambda_{k}(Z_{n})-\lambda_{k}(W_{n}))\big{)}
    =\displaystyle= 4(k=1n14(cos((k1)πn3)cos((2k1)π2n2))+k=n+34n12(cos((2k1)π2n2)cos((k1)πn3))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{\frac{n-1}{4}}(\cos(\frac{(k-1)\pi}{n-3})-\cos(\frac{(2k-1)\pi}{2n-2}))+\displaystyle\sum_{k=\frac{n+3}{4}}^{\frac{n-1}{2}}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{(k-1)\pi}{n-3}))\big{)}.

    We have

    σ(Wn,Zn)\displaystyle\sigma(W_{n},Z_{n}) =\displaystyle= 2(k=1n34(λk(Wn)λk(Zn))+k=n+54n12(λk(Zn)λk(Wn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{\frac{n-3}{4}}(\lambda_{k}(W_{n})-\lambda_{k}(Z_{n}))+\displaystyle\sum_{k=\frac{n+5}{4}}^{\frac{n-1}{2}}(\lambda_{k}(Z_{n})-\lambda_{k}(W_{n}))\big{)}
    =\displaystyle= 4(k=1n14(cos((k1)πn3)cos((2k1)π2n2))+k=n+54n12(cos((2k1)π2n2)cos((k1)πn3))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{\frac{n-1}{4}}(\cos(\frac{(k-1)\pi}{n-3})-\cos(\frac{(2k-1)\pi}{2n-2}))+\displaystyle\sum_{k=\frac{n+5}{4}}^{\frac{n-1}{2}}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{(k-1)\pi}{n-3}))\big{)}.

    where n3(mod4)n\equiv 3\pmod{4}. In both cases, by using Maple [7],

    limnσ(Wn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    If

    n={n4n0(mod4),n24n2(mod4),n^{*}=\left\{\begin{array}[]{ll}\frac{n}{4}&n\equiv 0\pmod{4},\\ \\ \frac{n-2}{4}&n\equiv 2\pmod{4},\end{array}\right.

    then

    λk(Wn)>λk(Zn),k=1,,n,\lambda_{k}(W_{n})>\lambda_{k}(Z_{n}),\ \ \ k=1,\ldots,n^{*},
    λk(Wn)<λk(Zn),k=n+1,,n21,\lambda_{k}(W_{n})<\lambda_{k}(Z_{n}),\ \ \ k=n^{*}+1,\ldots,\frac{n}{2}-1,

    and

    λn2(Wn)=λn2(Zn).\lambda_{\frac{n}{2}}(W_{n})=\lambda_{\frac{n}{2}}(Z_{n}).

    Therefore

    σ(Wn,Zn)\displaystyle\sigma(W_{n},Z_{n}) =\displaystyle= 2(k=1n(λk(Wn)λk(Zn))+k=n+1n21(λk(Zn)λk(Wn)))\displaystyle 2\big{(}\displaystyle\sum_{k=1}^{n^{*}}(\lambda_{k}(W_{n})-\lambda_{k}(Z_{n}))+\displaystyle\sum_{k=n^{*}+1}^{\frac{n}{2}-1}(\lambda_{k}(Z_{n})-\lambda_{k}(W_{n}))\big{)}
    =\displaystyle= 4(k=1n(cos((k1)πn3)cos((2k1)π2n2))+k=n+1n21(cos((2k1)π2n2)cos((k1)πn3))).\displaystyle 4\big{(}\displaystyle\sum_{k=1}^{n^{*}}(\cos(\frac{(k-1)\pi}{n-3})-\cos(\frac{(2k-1)\pi}{2n-2}))+\displaystyle\sum_{k=n^{*}+1}^{\frac{n}{2}-1}(\cos(\frac{(2k-1)\pi}{2n-2})-\cos(\frac{(k-1)\pi}{n-3}))\big{)}.

    In both cases, by using Maple [7],

    limnσ(Wn,Zn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    Thus bn=σ(Wn,Zn)b_{n}=\sigma(W_{n},Z_{n}) is convergent to 882+2ππ\frac{8-8\sqrt{2}+2\pi}{\pi}.

  4. (4)

    The eigenvalues of PnP_{n} and WnW_{n} satisfy the same (in)equalities as the eigenvalues of PnP_{n} and ZnZ_{n}. So, by the parts (2) and (3), we obtain

    σ(Pn,Wn)=σ(Pn,Zn)+σ(Wn,Zn).\sigma(P_{n},W_{n})=\sigma(P_{n},Z_{n})+\sigma(W_{n},Z_{n}).

    Since

    limnσ(Pn,Zn)=limnσ(Wn,Zn),\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n}),

    we have

    limnσ(Pn,Zn)=limnσ(Wn,Zn)=12limnσ(Pn,Wn)=882+2ππ0.945.\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},Z_{n})=\displaystyle\lim_{n\longrightarrow\infty}\sigma(W_{n},Z_{n})=\frac{1}{2}\displaystyle\lim_{n\longrightarrow\infty}\sigma(P_{n},W_{n})=\frac{8-8\sqrt{2}+2\pi}{\pi}\approx 0.945.

    This completes the proof. \hfill\Box

Acknowledgments

The research of the first author was in part supported by a grant from School of Mathematics, Institute for Research in Fundamental Sciences (IPM).

References

  • [1] A. Abdollahi, Sh. Janbaz and M. R. Oboudi, Distance between spectra of graphs, Linear Algebra Appl., 466 (2015), 401–408.
  • [2] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, Inc., New York, 1980.
  • [3] K. Ch. Das and S. Sun, Distance between the normalized Laplacian spectra of two graphs, Linear Algebra Appl., 530 (2017), 305–321.
  • [4] I. Jovanović and Z. Stanić, Spectral distances of graphs, Linear Algebra Appl., 436 (2012), No. 5, 1425–1435.
  • [5] I. Jovanović and Z. Stanić, Spectral distances of graphs based on their different matrix representations, Filomat, 28 (2014), No. 4, 723–734.
  • [6] H. Lin, D. Li and K. Ch. Das, Distance between distance spectra of graphs, Linear Multilinear Algebra, 65 (2017), No. 12, 2538–2550.
  • [7] Maple, Computer Algebra System, Numeric Computation Waterloo Maple, www.maplesoft.com/products/maple/