This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A computational transition for detecting correlated stochastic block models by low-degree polynomials

Guanyi Chen School of Mathematical Sciences, Peking University.    Jian Ding    Shuyang Gong    Zhangsong Li
Abstract

Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years. In this work, we consider a pair of correlated (sparse) stochastic block models 𝒮(n,λn;k,ϵ;s)\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon;s) that are subsampled from a common parent stochastic block model 𝒮(n,λn;k,ϵ)\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon) with k=O(1)k=O(1) symmetric communities, average degree λ=O(1)\lambda=O(1), divergence parameter ϵ\epsilon, and subsampling probability ss.

For the detection problem of distinguishing this model from a pair of independent Erdős-Rényi graphs with the same edge density 𝒢(n,λsn)\mathcal{G}(n,\tfrac{\lambda s}{n}), we focus on tests based on low-degree polynomials of the entries of the adjacency matrices, and we determine the threshold that separates the easy and hard regimes. More precisely, we show that this class of tests can distinguish these two models if and only if s>min{α,1λϵ2}s>\min\{\sqrt{\alpha},\frac{1}{\lambda\epsilon^{2}}\}, where α0.338\alpha\approx 0.338 is the Otter’s constant and 1λϵ2\frac{1}{\lambda\epsilon^{2}} is the Kesten-Stigum threshold. Our proof of low-degree hardness is based on a conditional variant of the low-degree likelihood calculation.

1 Introduction and main result

In this paper, we consider a pair of correlated sparse stochastic block models with a constant number of symmetric communities, defined as follows. For convenience, denote by Un\operatorname{U}_{n} the collection of unordered pairs (i,j)(i,j) with 1ijn1\leq i\neq j\leq n.

Definition 1.1 (Stochastic block model).

Given an integer n1n\geq 1 and three parameters k,λ>0,ϵ(0,1)k\in\mathbb{N},\lambda>0,\epsilon\in(0,1), we define a random graph GG as follows: (1) sample a labeling σ[k]n={1,,k}n\sigma_{*}\in[k]^{n}=\{1,\ldots,k\}^{n} uniformly at random; (2) for every distinct pair (i,j)Un(i,j)\in\operatorname{U}_{n}, we let Gi,jG_{i,j} be an independent Bernoulli variable such that Gi,j=1G_{i,j}=1 (which represents that there is an undirected edge between ii and jj) with probability (1+(k1)ϵ)λn\frac{(1+(k-1)\epsilon)\lambda}{n} if σ(i)=σ(j)\sigma_{*}(i)=\sigma_{*}(j) and with probability (1ϵ)λn\frac{(1-\epsilon)\lambda}{n} if σ(i)σ(j)\sigma_{*}(i)\neq\sigma_{*}(j). In this case, we say that GG is sampled from a stochastic block model 𝒮(n,λn;k,ϵ)\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon).

Definition 1.2 (Correlated stochastic block models).

Given an integer n1n\geq 1 and four parameters k,λ>0,ϵ,s(0,1)k\in\mathbb{N},\lambda>0,\epsilon,s\in(0,1), for (i,j)Un(i,j)\in\operatorname{U}_{n} let Ji,jJ_{i,j} and Ki,jK_{i,j} be independent Bernoulli variables with parameter ss. In addition, let π\pi_{*} be an independent uniform permutation of [n]={1,,n}[n]=\{1,\dots,n\}. Then, we define a triple of correlated random graphs (G,A,B)(G,A,B) such that GG is sampled from a stochastic block model 𝒮(n,λn;k,ϵ)\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon), and conditioned on the realization of GG (note that we identify a graph with its adjacency matrix),

Ai,j=Gi,jJi,j,Bi,j=Gπ1(i),π1(j)Ki,j.A_{i,j}=G_{i,j}J_{i,j},B_{i,j}=G_{\pi_{*}^{-1}(i),\pi_{*}^{-1}(j)}K_{i,j}\,.

We denote the joint law of (σ,π,G,A,B)(\sigma_{*},\pi_{*},G,A,B) as ,n:=,n,λ;k,ϵ;s\mathbb{P}_{*,n}:=\mathbb{P}_{*,n,\lambda;k,\epsilon;s}, and we denote the marginal law of (A,B)(A,B) as n:=n,λ;k,ϵ;s\mathbb{P}_{n}:=\mathbb{P}_{n,\lambda;k,\epsilon;s}.

Two basic problems regarding correlated stochastic block models are as follows: (1) the detection problem, i.e., testing n\mathbb{P}_{n} against n\mathbb{Q}_{n} where n\mathbb{Q}_{n} is the law of two independent Erdős-Rényi graphs on [n][n] with edge density λsn\tfrac{\lambda s}{n}; (2) the recovery problem, i.e., recovering the latent matching π\pi_{*} and the latent community labeling σ\sigma_{*} from (A,B)n(A,B)\sim\mathbb{P}_{n}. Our focus is on understanding the power and limitations of computationally efficient tests, that is, tests that can be performed by polynomial-time algorithms. In light of the lack of complexity-theoretic tools to prove computational hardness of average-case problems such as the one under consideration (where the input is random), currently the leading approaches for demonstrating hardness are based on either average-case reductions which formally relate different average-case problems to each other (see, e.g., [16, 15] and references therein) or based on unconditional lower bounds against restricted classes of algorithms (see e.g. [7, 38]).

Our main result establishes a sharp computational transition for algorithms restricted to low-degree polynomial tests. This is a powerful class of tests that include statistics such as small subgraph counts. It is by now well-established that these low-degree tests are useful proxies for computationally efficient tests, in the sense that the best-known polynomial-time algorithms for a wide variety of high-dimensional testing problems are captured by the low-degree class; see e.g. [47, 53].

Theorem 1.3 (Computational detection threshold for low-degree polynomials).

With the observation of a pair of random graphs (A,B)(A,B) sampled from either n\mathbb{P}_{n} or n\mathbb{Q}_{n}, we have the following (below degree-ω(1)\omega(1) means that degree tends to infinity as nn\to\infty).

(1) When s>1λϵ2s>\tfrac{1}{\lambda\epsilon^{2}} or s>αs>\sqrt{\alpha} where (throughout the paper) α0.338\alpha\approx 0.338 is the Otter’s constant, there is an algorithm 𝖠𝗅𝗀\mathsf{Alg} based on degree-ω(1)\omega(1) polynomials that successfully distinguishes n\mathbb{P}_{n} and n\mathbb{Q}_{n} in the sense that (we write 𝖠𝗅𝗀\mathsf{Alg} outputs n\mathbb{P}_{n}/n\mathbb{Q}_{n} if 𝖠𝗅𝗀\mathsf{Alg} decides the sample is from n\mathbb{P}_{n}/n\mathbb{Q}_{n})

n(𝖠𝗅𝗀 outputs n)+n(𝖠𝗅𝗀 outputs n)=o(1).{}\mathbb{P}_{n}(\mathsf{Alg}\mbox{ outputs }\mathbb{Q}_{n})+\mathbb{Q}_{n}(\mathsf{Alg}\mbox{ outputs }\mathbb{P}_{n})=o(1)\,. (1.1)

In addition, this algorithm has running time n2+o(1)n^{2+o(1)}.

(2) When s<min{α,1λϵ2}s<\min\{\sqrt{\alpha},\frac{1}{\lambda\epsilon^{2}}\}, there is evidence suggesting that all algorithms based on degree-O(logn)O(\log n) polynomials fail to distinguish n\mathbb{P}_{n} and n\mathbb{Q}_{n}.

Remark 1.4.

α\sqrt{\alpha} and 1λϵ2\tfrac{1}{\lambda\epsilon^{2}} emerge from the threshold of two different inference tasks, where the first is the threshold to detect correlation between a pair of Erdős-Rényi graphs [30] and the latter is the Kesten-Stigum threshold to distinguish block models from Erdős-Rényi graphs [62]. Our result suggests that if neither correlation nor blocking can be tested by efficient algorithms, then no information useful for distinguishing n\mathbb{P}_{n} and n\mathbb{Q}_{n} can be aggregated by efficient algorithms.

1.1 Backgrounds and related works

     Community detection. Introduced in [46], the stochastic block model is a canonical probabilistic generative model for networks with community structure and as a result has received extensive attention over the past decades. In particular, it serves as an essential benchmark for studying the behavior of clustering algorithms on average-case networks (see, e.g., [78, 12, 74]). In the past few decades, extensive efforts have been dedicated toward understanding the statistical and computational limits of various inference tasks for this model, including exact community recovery in the logarithmic degree region [2, 1] and community detection/weak community recovery in the constant degree region. Since the latter case is closely related to our work, we next review progress on this front, largely driven by a seminal paper in statistical physics [26] where the authors predicted that: (1) for all kk\in\mathbb{N}, it is possible to use efficient algorithms to detect communities better than random if ϵ2λ>1\epsilon^{2}\lambda>1; (2) for k4k\leq 4 it is information theoretically impossible to detect better than random if ϵ>0\epsilon>0 and ϵ2λ<1\epsilon^{2}\lambda<1; (3) for k5k\geq 5, it is information theoretically possible to detect better than random for some ϵ>0\epsilon>0 with ϵ2λ<1\epsilon^{2}\lambda<1, but not in a computationally efficient way (that is to say, statistical-computational gap emerges for k5k\geq 5).

The threshold ϵ2λ<1\epsilon^{2}\lambda<1, known as the Kesten-Stigum (KS) threshold, represents a natural threshold for the trade off between noise and signals. It was first discovered in the context of the broadcast process on trees in [51]. Recent advancements have verified (1) by analyzing related algorithms based on non-backtracking or self-avoiding walks [60, 63, 13, 18, 3, 4]. Moreover, the information-theoretic aspects of (2) and (3) were established in a series of works [8, 4, 19, 64, 65]. Regarding the computational aspect of (3), compelling evidence was provided in [49] suggesting the emergence of a statistical-computational gap.

Correlated random graphs. Graph matching (also known as graph alignment) refers to finding the vertex correspondence between two graphs such that the total number of common edges is maximized. It plays an essential role in various applied fields such as computational biology [77, 79], social networking [67, 68], computer vision [11, 21] and natural language processing [44]. From a theoretical perspective, perhaps the most widely studied model is the correlated Erdős-Rényi graph model [71], where the observations are two Erdős-Rényi graphs with correlated pairs of edges through a latent vertex bijection π\pi_{*}.

Recent research has focused on two important and entangling issues for this model: the information threshold (i.e., the statistical threshold) and the computational phase transition. On the one hand, collective efforts from the community have led to rather satisfying understanding on information thresholds for the problem of correlation detection and vertex matching [23, 22, 45, 41, 82, 81, 28, 29]. On the other hand, in extensive works including [71, 85, 54, 50, 37, 75, 9, 33, 35, 36, 14, 24, 25, 66, 40, 41, 55, 56, 58, 42, 59, 31, 32], substantial progress on algorithms were achieved and the state-of-the-art can be summarized as follows: in the sparse regime, efficient matching algorithms are available when the correlation exceeds the square root of Otter’s constant (which is approximately 0.338) [41, 42, 58, 59]; in the dense regime, efficient matching algorithms exist as long as the correlation exceeds an arbitrarily small constant [31, 32]. Roughly speaking, the separation between the sparse and dense regimes mentioned above depends on whether the average degree grows polynomially or sub-polynomially. In addition, while proving the hardness of typical instances of the graph matching problem remains challenging even under the assumption of PNP\operatorname{P}\neq\operatorname{NP}, evidence based on the analysis of a specific class known as low-degree polynomials from [30] indicates that the state-of-the-art algorithms may essentially capture the correct computational thresholds.

Correlated stochastic block models. The study of correlated stochastic block models originated in [69], serving as a framework to understand the interplay between community recovery and graph matching. Previous results on this model focus mainly on the logarithmic degree region, where their interest is to study the interplay between the exact community recovery and the exact graph matching [73, 43, 83, 84]. It has been shown that in this regime there are indeed subtle interactions between these two inference tasks, since one can recover the community (although not necessarily by efficient algorithms) even when neither the exact community recovery in a single graph nor the exact matching recovery in Erdős-Rényi graphs is possible.

In this work, however, we are interested in the related detection problem where the average degree is a constant. The goal of our work is to understand how side information in the form of multiple correlated stochastic block models affects the threshold given by single-community detection or correlation detection. As shown by Theorem 1.3, somewhat surprisingly, it seems that such side information cannot be exploited by efficient algorithms in this particular region.

Low-degree tests. Our hardness result is based on the study of a specific class of algorithms known as low-degree polynomials. Somewhat informally, the idea is to study degree-DD multivariate polynomials in the input variables whose real-valued output separates (see Definition 2.1) samples from the planted and null distributions. The idea to study this class of tests emerged from the line of works [10, 49, 48, 47]; see also [53] for a survey. Tests of degree O(logn)O(\log n) are generally taken as a proxy for polynomial-time tests, as they capture many leading algorithmic approaches such as spectral methods, approximate message passing and small subgraph counts.

There is now a standard method for obtaining low-degree testing bounds based on the low-degree likelihood ratio (see [47, Section 2.3]), which boils down to finding an orthonormal basis of polynomials with respect to the null distribution and computing the expectations of these basis polynomials under the planted distribution. However, our setting is more subtle because the second moment of the low-degree likelihood ratio diverges due to some rare “bad” events under the planted distribution. We therefore need to carry out a conditional low-degree argument in which the planted distribution is conditioned on some “good” event.

Conditional low-degree arguments of this kind have appeared before in a few instances [5, 20, 27, 30], but our argument differs in a technical level. Prior works [5, 20] chose to condition on an event that would seem to make direct computations with the orthogonal polynomials rather complicated; to overcome this, they bounded the conditional low-degree likelihood ratio in an indirect way by first relating it to a certain “low-overlap” second moment (also called the Franz-Parisi criterion in [5]). In addition, in [27] the authors overcame this issue by conditioning on an event that only involves a small part of the variables and then bounding the conditional expectation by its first moment. However, in this problem we do not know how to apply these two approaches as dealing with a random permutation that involves all nn coordinates seems of substantial and novel challenge. In contrast, our approach is based on [30], where the idea was to carefully analyze conditional expectations and use sophisticated cancellations under the conditioning. Still, compared to [30], this work provides an approach that we believe is more robust and overcomes several technical issues that arise in this specific setting (see Section 1.2 for further discussions).

1.2 Our contributions

While the hardness aspect of the present work can be viewed as a follow-up work of [30], we do think that we have overcome significant challenges in this particular setting, as we elaborate next.

(1) In prior works, the failure of direct low-degree likelihood calculations is typically due to an event that occurs with vanishing probability; specifically, in [30] this “bad” event is the emergence of graphs with atypical high edge density. However, in our setting the low-degree likelihood calculation blows up due to two conceptually different events: one is the occurrence of dense subgraphs and the other is the occurrence of small cycles. Worse still, the later event occurs with positive probability. A possible approach to address this challenge is to develop an analog of the small subgraph conditioning method for this context. To be more precise, we need to carefully count small cycles in the graph and account for their influence on the low-degree likelihood ratio. Consequently, rather than conditioning on a typical event with probability 1o(1)1-o(1) (as in [5, 20, 27, 30]), we need to condition on an event with positive probability, which will make the calculation of conditional probabilities and expectations even more complicated.

(2) Although it is tempting to directly work with the conditional measure discussed in (1), calculating the conditional expectation seems of substantial challenge. The techniques developed in [30] rely on the independence between edges in the unconditioned model (in the parent graph). However, in our setting even in the parent graph the edges are correlated due to the latent community labelling, and the conditioning further affects the measure over this labeling. To address this, instead of working directly with the conditional measure, we need to work with a carefully designed measure that is statistically indistinguishable from the conditional measure, yet simplifies the computation of conditional expectations.

(3) From a technical standpoint, the work refines several estimates developed in [30]. Specifically, the methods in [30] involve several combinatorial estimates on enumerations of graphs with certain properties, which only required some relatively coarse bounds due to the simplicity of the conditioned event. However, in this work, the event we condition on is more involved for aforementioned reasons. As a result, such enumeration estimates in this work become substantially more delicate, which presents a significant technical challenge in our proof. See Appendix A for a more detailed discussion on how these estimates are handled.

1.3 Notations

In this subsection, we record a list of notations that we shall use throughout the paper. Recall that n,n\mathbb{P}_{n},\mathbb{Q}_{n} are two probability measures on pairs of random graphs on [n]={1,,n}[n]=\{1,\ldots,n\}. Denote 𝔖n\mathfrak{S}_{n} the set of permutations over [n][n] and denote μ\mu the uniform distribution on 𝔖n\mathfrak{S}_{n}. We will use the following notation conventions on graphs.

  • Labeled graphs. Denote by 𝒦n\mathcal{K}_{n} the complete graph with vertex set [n][n] and edge set Un\operatorname{U}_{n}. For any graph HH, let V(H)V(H) denote the vertex set of HH and let E(H)E(H) denote the edge set of HH. We say HH is a subgraph of GG, denoted by HGH\subset G, if V(H)V(G)V(H)\subset V(G) and E(H)E(G)E(H)\subset E(G). Define the excess of the graph τ(H)=|E(H)||V(H)|\tau(H)=|E(H)|-|V(H)|.

  • Induced subgraphs. For a graph H=(V,E)H=(V,E) and a subset AVA\subset V, define HA=(A,EA)H_{A}=(A,E_{A}) to be the induced subgraph of HH in AA, and define HA=(V,EA)H_{\setminus A}=(V,E_{\setminus A}) to be the subgraph of HH obtained by deleting all edges within AA. Note that EAEA=EE_{A}\cup E_{\setminus A}=E.

  • Isolated vertices. For uV(H)u\in V(H), we say uu is an isolated vertex of HH, if there is no edge in E(H)E(H) incident to uu. Denote (H)\mathcal{I}(H) the set of isolated vertices of HH. For two graphs H,SH,S, we denote HSH\ltimes S if HSH\subset S and (S)(H)\mathcal{I}(S)\subset\mathcal{I}(H), and we denote HSH\Subset S if HSH\subset S and (H)=\mathcal{I}(H)=\emptyset. For any graph H𝒦nH\subset\mathcal{K}_{n}, let H~\widetilde{H} be the subgraph of HH induced by V(H)(H)V(H)\setminus\mathcal{I}(H).

  • Graph intersections and unions. For H,S𝒦nH,S\subset\mathcal{K}_{n}, denote by HSH\cap S the graph with vertex set given by V(H)V(S)V(H)\cap V(S) and edge set given by E(H)E(S)E(H)\cap E(S). Denote by SHS\cup H the graph with vertex set given by V(H)V(S)V(H)\cup V(S) and edge set E(H)E(S)E(H)\cup E(S). In addition, denote SHS\Cap H, SHS\mathbin{\setminus\mkern-5.0mu\setminus}H and S

    H
    S\mathbin{\text{\raisebox{0.86108pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}H
    the graph induced by the edge set E(S)E(H)E(S)\cap E(H), E(S)E(H)E(S)\setminus E(H) and E(S)E(H)E(S)\triangle E(H), respectively.

  • Paths. We say a subgraph H𝒦nH\subset\mathcal{K}_{n} is a path with endpoints u,vu,v (possibly with u=vu=v), if there exist distinct w1,,wmu,vw_{1},\ldots,w_{m}\neq u,v such that V(H)={u,v,w1,,wm}V(H)=\{u,v,w_{1},\ldots,w_{m}\} and E(H)={(u,w1),(w1,w2),(wm,v)}E(H)=\{(u,w_{1}),(w_{1},w_{2})\ldots,(w_{m},v)\}. We say HH is a simple path if its endpoints uvu\neq v. Denote EndP(P)\operatorname{EndP}(P) as the set of endpoints of a path PP.

  • Cycles and independent cycles. We say a subgraph HH is an mm-cycle if V(H)={v1,,vm}V(H)=\{v_{1},\ldots,v_{m}\} and E(H)={(v1,v2),,(vm1,vm),(vm,v1)}E(H)=\{(v_{1},v_{2}),\ldots,(v_{m-1},v_{m}),(v_{m},v_{1})\}. For a subgraph KHK\subset H, we say KK is an independent mm-cycle of HH, if KK is an mm-cycle and no edge in E(H)E(K)E(H)\setminus E(K) is incident to V(K)V(K). Denote by 𝙲m(H)\mathtt{C}_{m}(H) the set of mm-cycles of HH and denote by 𝒞m(H)\mathcal{C}_{m}(H) the set of independent mm-cycles of HH. For HSH\subset S, we define m(S,H)\mathfrak{C}_{m}(S,H) to be the set of independent mm-cycles in SS whose vertex set is disjoint from V(H)V(H). Define (S,H)=m3m(S,H)\mathfrak{C}(S,H)=\cup_{m\geq 3}\mathfrak{C}_{m}(S,H).

  • Leaves. A vertex uV(H)u\in V(H) is called a leaf of HH, if the degree of uu in HH is 11; denote (H)\mathcal{L}(H) as the set of leaves of HH.

  • Graph isomorphisms and unlabeled graphs. Two graphs HH and HH^{\prime} are isomorphic, denoted by HHH\cong H^{\prime}, if there exists a bijection π:V(H)V(H)\pi:V(H)\to V(H^{\prime}) such that (π(u),π(v))E(H)(\pi(u),\pi(v))\in E(H^{\prime}) if and only if (u,v)E(H)(u,v)\in E(H). Denote by \mathcal{H} the isomorphism class of graphs; it is customary to refer to these isomorphic classes as unlabeled graphs. Let Aut(H)\operatorname{Aut}(H) be the number of automorphisms of HH (graph isomorphisms to itself).

For two real numbers aa and bb, we let ab=max{a,b}a\vee b=\max\{a,b\} and ab=min{a,b}a\wedge b=\min\{a,b\}. We use standard asymptotic notations: for two sequences ana_{n} and bnb_{n} of positive numbers, we write an=O(bn)a_{n}=O(b_{n}), if an<Cbna_{n}<Cb_{n} for an absolute constant CC and for all nn; we write an=Ω(bn)a_{n}=\Omega(b_{n}), if bn=O(an)b_{n}=O(a_{n}); we write an=Θ(bn)a_{n}=\Theta(b_{n}), if an=O(bn)a_{n}=O(b_{n}) and an=Ω(bn)a_{n}=\Omega(b_{n}); we write an=o(bn)a_{n}=o(b_{n}) or bn=ω(an)b_{n}=\omega(a_{n}), if an/bn0a_{n}/b_{n}\to 0 as nn\to\infty. In addition, we write anbna_{n}\circeq b_{n} if an=[1+o(1)]bna_{n}=[1+o(1)]b_{n}. For a set 𝖠\mathsf{A}, we will use both #𝖠\#\mathsf{A} and |𝖠||\mathsf{A}| to denote its cardinality. For two probability measures \mathbb{P} and \mathbb{Q}, we denote the total variation distance between them by TV(,)\operatorname{TV}(\mathbb{P},\mathbb{Q}).

1.4 Organization of this paper

The rest of this paper is organized as follows. In Section 2 we rigorously state the low-degree framework for the detection problem under consideration. In Section 3 we propose an algorithm for detection and give a theoretical guarantee when s>min{α,1λϵ2}s>\min\{\sqrt{\alpha},\frac{1}{\lambda\epsilon^{2}}\}, which implies Part (1) of Theorem 1.3. In Section 4 we prove low-degree hardness for detection when s<min{α,1λϵ2}s<\min\{\sqrt{\alpha},\frac{1}{\lambda\epsilon^{2}}\}, which implies Part (2) of Theorem 1.3. Several technical results are postponed to the appendices to ensure a smooth flow of presentation.

2 The low-degree polynomial framework

Inspired by the sum-of-squares hierarchy, the low-degree polynomial method offers a promising framework for establishing computational lower bounds in high-dimensional inference problems. This approach focuses primarily on analyzing algorithms that evaluate collections of polynomials with moderate degrees. The exploration of this category of algorithms is driven by research in high-dimensional hypothesis testing problems [10, 49, 48, 47], with an extensive overview provided in [53]. This low-degree framework has subsequently been extended to study random optimization and constraint satisfaction problems.

The approach of low-degree polynomials is appealing partly because it has yielded tight hardness results for a wide range of problems. Prominent examples include detection and recovery problems such as planted clique, planted dense subgraph, community detection, sparse-PCA and tensor-PCA (see [49, 48, 47, 53, 76, 27, 6, 57, 34, 5, 61, 27, 52]), optimization problems such as maximal independent sets in sparse random graphs [39, 80], and constraint satisfaction problems such as random kk-SAT [17]. In the remaining of this paper, we will focus on applying this framework in the context of detection for correlated stochastic block models.

More precisely, to probe the computational threshold for testing between two sequences of probability measures n\mathbb{P}_{n} and n\mathbb{Q}_{n}, we focus on low-degree polynomial algorithms (see, e.g., [47, 53, 30]). Let [A,B]D\mathbb{R}[A,B]_{\leq D} denote the set of multivariate polynomials in the entries of (A,B)(A,B) with degree at most DD. With a slight abuse of notation, we will often say “a polynomial” to mean a sequence of polynomials f=fn[A,B]Df=f_{n}\in\mathbb{R}[A,B]_{\leq D}, one for each problem size nn; the degree D=DnD=D_{n} of such a polynomial may scale with nn. To study the power of a polynomial in testing n\mathbb{P}_{n} against n\mathbb{Q}_{n}, we consider the following notions of strong separation and weak separation defined in [5, Definition 1.6].

Definition 2.1.

Let f[A,B]Df\in\mathbb{R}[A,B]_{\leq D} be a polynomial.

  • We say ff strongly separates n\mathbb{P}_{n} and n\mathbb{Q}_{n} if as nn\to\infty

    max{Varn(f(A,B)),Varn(f(A,B))}=o(|𝔼n[f(A,B)]𝔼n[f(A,B)]|);\sqrt{\max\big{\{}\operatorname{Var}_{\mathbb{P}_{n}}(f(A,B)),\operatorname{Var}_{\mathbb{Q}_{n}}(f(A,B))\big{\}}}=o\big{(}\big{|}\mathbb{E}_{\mathbb{P}_{n}}[f(A,B)]-\mathbb{E}_{\mathbb{Q}_{n}}[f(A,B)]\big{|}\big{)}\,;
  • We say ff weakly separates n\mathbb{P}_{n} and n\mathbb{Q}_{n} if as nn\to\infty

    max{Varn(f(A,B)),Varn(f(A,B))}=O(|𝔼n[f(A,B)]𝔼n[f(A,B)]|).\sqrt{\max\big{\{}\operatorname{Var}_{\mathbb{P}_{n}}(f(A,B)),\operatorname{Var}_{\mathbb{Q}_{n}}(f(A,B))\big{\}}}=O\big{(}\big{|}\mathbb{E}_{\mathbb{P}_{n}}[f(A,B)]-\mathbb{E}_{\mathbb{Q}_{n}}[f(A,B)]\big{|}\big{)}\,.

See [5] for a detailed discussion of why these conditions are natural for hypothesis testing. In particular, according to Chebyshev’s inequality, strong separation implies that we can threshold f(A,B)f(A,B) to test n\mathbb{P}_{n} against n\mathbb{Q}_{n} with vanishing type I and type II errors (i.e., (1.1) holds). Our first result confirms the existence of a low-degree polynomial that achieves strong separation in the “easy” region.

Theorem 2.2.

Suppose that we observe a pair of random graphs (A,B)(A,B) sampled from either n\mathbb{P}_{n} or n\mathbb{Q}_{n} with s>α1λϵ2s>\sqrt{\alpha}\wedge\frac{1}{\lambda\epsilon^{2}}. Then for any ω(1)Dno(lognloglogn)\omega(1)\leq D_{n}\leq o\big{(}\frac{\log n}{\log\log n}\big{)} there exists a degree-DnD_{n} polynomial that strongly separates n\mathbb{P}_{n} and n\mathbb{Q}_{n}. In addition, there exists an algorithm based on this polynomial that runs in time n2+o(1)n^{2+o(1)} and successfully distinguishes n\mathbb{P}_{n} from n\mathbb{Q}_{n} in the sense of (1.1).

We now focus on the “hard” region and hope to give evidence on computational hardness for this problem. While it is perhaps most natural to provide evidence that no low-degree polynomial achieves strong-separation for n\mathbb{P}_{n} and n\mathbb{Q}_{n} in this region, this approach runs into several technical problems. In order to address this, we instead provide evidence on a modified testing problem, whose computational complexity is no more than the original problem. To this end, we first present a couple of lemmas as a preparation.

Lemma 2.3.

Assume that an algorithm 𝒜\mathcal{A} can distinguish two probability measures n\mathbb{P}_{n} and n\mathbb{Q}_{n} with probability 1o(1)1-o(1) (i.e., in the sense of (1.1)). Then for any positive constant c>0c>0 and any sequence of events n\mathcal{E}_{n} such that n(n)c\mathbb{P}_{n}(\mathcal{E}_{n})\geq c, the algorithm 𝒜\mathcal{A} can distinguish n(n)\mathbb{P}_{n}(\cdot\mid\mathcal{E}_{n}) and n\mathbb{Q}_{n} with probability 1o(1)1-o(1).

Proof.

Suppose that we use the convention that 𝒜\mathcal{A} outputs 0 if it decides the sample is from n\mathbb{Q}_{n} and outputs 1 if it decides the sample is from n\mathbb{P}_{n}. Then,

n(𝒜(input)=0)=o(1),n(𝒜(input)=0)=1o(1).{}\mathbb{P}_{n}\big{(}\mathcal{A}(\mbox{input})=0\big{)}=o(1),\quad\mathbb{Q}_{n}\big{(}\mathcal{A}(\mbox{input})=0\big{)}=1-o(1)\,. (2.1)

This shows that

n(𝒜(input)=0n)n(𝒜(input)=0)n(n)=o(1),\mathbb{P}_{n}\big{(}\mathcal{A}(\mbox{input})=0\mid\mathcal{E}_{n}\big{)}\leq\frac{\mathbb{P}_{n}(\mathcal{A}(\mbox{input})=0)}{\mathbb{P}_{n}(\mathcal{E}_{n})}=o(1)\,,

which yields the desired result. ∎

Lemma 2.4.

Assume that an algorithm 𝒜\mathcal{A} can distinguish two probability measures n\mathbb{P}_{n} and n\mathbb{Q}_{n} with probability 1o(1)1-o(1) (i.e., in the sense of (1.1)). Then for any sequence of probability measures n\mathbb{P}_{n}^{\prime} such that TV(n,n)=o(1)\operatorname{TV}(\mathbb{P}_{n},\mathbb{P}_{n}^{\prime})=o(1), the algorithm 𝒜\mathcal{A} can distinguish n\mathbb{P}_{n}^{\prime} and n\mathbb{Q}_{n} with probability 1o(1)1-o(1).

Proof.

By (2.1), we have that

n(𝒜(input)=0)n(𝒜(input)=0)+TV(n,n)=o(1),\mathbb{P}_{n}^{\prime}\big{(}\mathcal{A}(\mbox{input})=0\big{)}\leq\mathbb{P}_{n}(\mathcal{A}(\mbox{input})=0)+\operatorname{TV}(\mathbb{P}_{n},\mathbb{P}^{\prime}_{n})=o(1)\,,

which yields the desired result. ∎

Now we can state our result in the “hard” region as follows.

Theorem 2.5.

Suppose that we observe a pair of random graphs (A,B)(A,B) sampled from either n\mathbb{P}_{n} or n\mathbb{Q}_{n} with s<α1λϵ2s<\sqrt{\alpha}\wedge\frac{1}{\lambda\epsilon^{2}}. Then there exists a sequence of events n\mathcal{E}_{n} and a sequence of probability measures n\mathbb{P}_{n}^{\prime} such that the following hold:

  1. (1)

    n(n)c\mathbb{P}_{n}(\mathcal{E}_{n})\geq c for some absolute constant c=c(λ,k,ϵ)>0c=c(\lambda,k,\epsilon)>0.

  2. (2)

    TV(n(n),n)0\operatorname{TV}(\mathbb{P}_{n}(\cdot\mid\mathcal{E}_{n}),\mathbb{P}_{n}^{\prime})\to 0 as nn\to\infty.

  3. (3)

    There is no degree-O(logn)O(\log n) polynomial that can strongly separate n\mathbb{P}_{n}^{\prime} and n\mathbb{Q}_{n}.

Proof of Theorem 1.3.

Part (1) of Theorem 1.3 follows from Theorem 2.2; Part (2) of Theorem 1.3 follows by combining Theorem 2.5 with Lemmas 2.3 and 2.4. ∎

In the subsequent sections of this paper, we will keep the values of n,λ,k,ϵn,\lambda,k,\epsilon and ss fixed, and for the sake of simplicity we will omit subscripts involving these parameters without further specification. In particular, we will simply denote ,n,n,n,Un,n,n\mathbb{P}_{*,n},\mathbb{P}_{n},\mathbb{Q}_{n},\operatorname{U}_{n},\mathbb{P}^{\prime}_{n},\mathcal{E}_{n} as ,,,U,,\mathbb{P}_{*},\mathbb{P},\mathbb{Q},\operatorname{U},\mathbb{P}^{\prime},\mathcal{E}.

3 Correlation detection via counting trees

In this section we prove Theorem 2.2. From [62, 49], the results hold when s>1λϵ2s>\frac{1}{\lambda\epsilon^{2}} since we can distinguish \mathbb{P} and \mathbb{Q} by simply using one graph AA. It remains to deal with the case 1λϵ2s>α\frac{1}{\lambda\epsilon^{2}}\geq s>\sqrt{\alpha}. As we shall see the following polynomials will play a vital role in our proof.

Definition 3.1.

For two graphs S1,S2𝒦nS_{1},S_{2}\subset\mathcal{K}_{n}, define the polynomial ϕS1,S2\phi_{S_{1},S_{2}} associated with S1,S2S_{1},S_{2} by

ϕS1,S2({Ai,j},{Bi,j})=(λsn(1λsn))|E(S1)|+|E(S2)|2(i,j)E(S1)A¯i,j(i,j)E(S2)B¯i,j,{}\phi_{S_{1},S_{2}}\big{(}\{A_{i,j}\},\{B_{i,j}\}\big{)}=\big{(}\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})\big{)}^{-\frac{|E(S_{1})|+|E(S_{2})|}{2}}\prod_{(i,j)\in E(S_{1})}\bar{A}_{i,j}\prod_{(i,j)\in E(S_{2})}\bar{B}_{i,j}\,, (3.1)

where A¯i,j=Ai,jλsn,B¯i,j=Bi,jλsn\bar{A}_{i,j}=A_{i,j}-\tfrac{\lambda s}{n},\bar{B}_{i,j}=B_{i,j}-\tfrac{\lambda s}{n} for all (i,j)U(i,j)\in\operatorname{U}. In particular, ϕ,1\phi_{\emptyset,\emptyset}\equiv 1.

As implied by [58, 30], it is straightforward that {ϕS1,S2:S1,S2𝒦n}\{\phi_{S_{1},S_{2}}:S_{1},S_{2}\Subset\mathcal{K}_{n}\} is an orthonormal basis under the measure \mathbb{Q} in the sense that

𝔼[ϕS1,S2ϕS1,S2]=𝟏{(S1,S2)=(S1,S2)}.{}\mathbb{E}_{\mathbb{Q}}\big{[}\phi_{S_{1},S_{2}}\phi_{S_{1}^{\prime},S_{2}^{\prime}}\big{]}=\mathbf{1}_{\{(S_{1},S_{2})=(S_{1}^{\prime},S_{2}^{\prime})\}}\,. (3.2)

Next, denote by 𝒯=𝒯n\mathcal{T}=\mathcal{T}_{\aleph_{n}} the set of all unlabeled trees with =n\aleph=\aleph_{n} edges, where

ω(1)no(lognloglogn).{}\omega(1)\leq\aleph_{n}\leq o\Big{(}\frac{\log n}{\log\log n}\Big{)}\,. (3.3)

It was known in [70] that

limn|𝒯n|1n=1α,{}\lim_{n\longrightarrow\infty}|\mathcal{T}_{\aleph_{n}}|^{\frac{1}{\aleph_{n}}}=\tfrac{1}{\alpha}\,, (3.4)

where we recall that α0.338\alpha\approx 0.338 is the Otter’s constant. Define

f𝒯(A,B)=𝐇𝒯sAut(𝐇)(n1)!n!S1,S2𝐇ϕS1,S2(A,B).{}f_{\mathcal{T}}(A,B)=\sum_{\mathbf{H}\in\mathcal{T}}\frac{s^{\aleph}\operatorname{Aut}(\mathbf{H})(n-\aleph-1)!}{n!}\sum_{S_{1},S_{2}\cong\mathbf{H}}\phi_{S_{1},S_{2}}(A,B)\,. (3.5)

We will show that strong separation is possible via tree counting under the assumption 1λϵ2>s>α\tfrac{1}{\lambda\epsilon^{2}}>s>\sqrt{\alpha}, as incorporated in the following proposition.

Proposition 3.2.

Assume that 1λϵ2>s>α\tfrac{1}{\lambda\epsilon^{2}}>s>\sqrt{\alpha}. We have the following results:

  • (1)

    Var[f𝒯](𝔼[f𝒯])2=o(1)\frac{\operatorname{Var}_{\mathbb{Q}}[f_{\mathcal{T}}]}{(\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}])^{2}}=o(1) and 𝔼[f𝒯]=0\mathbb{E}_{\mathbb{Q}}[f_{\mathcal{T}}]=0;

  • (2)

    Var[f𝒯](𝔼[f𝒯])2=o(1)\frac{\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}]}{(\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}])^{2}}=o(1).

Thus, f𝒯f_{\mathcal{T}} strongly separates \mathbb{P} and \mathbb{Q}.

Remark 3.3.

As discussed in Definition 2.1, Proposition 3.2 implies that the testing error satisfies

(f𝒯(A,B)τ)+(f𝒯(A,B)τ)=o(1),\mathbb{Q}(f_{\mathcal{T}}(A,B)\geq\tau)+\mathbb{P}(f_{\mathcal{T}}(A,B)\leq\tau)=o(1)\,,

where the threshold τ\tau is chosen as τ=C𝔼[f𝒯(A,B)]\tau=C\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}(A,B)] for any fixed constant 0<C<10<C<1. In addition, the statistics f𝒯f_{\mathcal{T}} can be approximated in n2+o(1)n^{2+o(1)} time by color coding, as incorporated in [58, Algorithm 1]. We omit further details here since the proof of the validity of this approximation algorithm remains basically unchanged.

The rest of this section is devoted to the proof of Proposition 3.2 (which then yields Theorem 2.2 in light of Remark 3.3).

3.1 Estimation of the first moment

In this section, we will provide a uniform bound on 𝔼[ϕS1,S2]\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}], which will lead to the proof of Item (1) in Proposition 3.2. For 𝐇𝒯\mathbf{H}\in\mathcal{T}, define

a𝐇=sAut(𝐇)(n1)!n!{}a_{\mathbf{H}}=\frac{s^{\aleph}\operatorname{Aut}(\mathbf{H})(n-\aleph-1)!}{n!} (3.6)

for notational convenience.

Lemma 3.4.

We have uniformly for all S1,S2𝐇𝒯S_{1},S_{2}\cong\mathbf{H}\in\mathcal{T}

𝔼[ϕS1,S2]\displaystyle\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}] s(π(S1)=S2)=a𝐇.\displaystyle\circeq s^{\aleph}\cdot\mathbb{P}(\pi_{*}(S_{1})=S_{2})=a_{\mathbf{H}}\,. (3.7)

The proof of this lemma is incorporated in Appendix C.1. Now we estimate Var[f𝒯]\operatorname{Var}_{\mathbb{Q}}[f_{\mathcal{T}}] and 𝔼[f𝒯]\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}] assuming Lemma 3.4.

Lemma 3.5.

We have the following estimates:

  • (1)

    𝔼[f𝒯]=0\mathbb{E}_{\mathbb{Q}}[f_{\mathcal{T}}]=0 and Var[f𝒯]=s2|𝒯|\operatorname{Var}_{\mathbb{Q}}[f_{\mathcal{T}}]=s^{2\aleph}|\mathcal{T}|;

  • (2)

    𝔼[f𝒯]s2|𝒯|\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]\circeq s^{2\aleph}|\mathcal{T}|.

Proof.

For Item (1), clearly we have 𝔼[f𝒯]=0\mathbb{E}_{\mathbb{Q}}[f_{\mathcal{T}}]=0. Recalling (3.2) and (3.5), we have

Var[f𝒯]\displaystyle\operatorname{Var}_{\mathbb{Q}}[f_{\mathcal{T}}] =(3.2),(3.5),(3.6)𝐇𝒯S1,S2𝐇a𝐇2\displaystyle\overset{\eqref{eq-standard-orthogonal},\eqref{eq-def-f-T},\eqref{eq-def-a-H}}{=}\sum_{\mathbf{H}\in\mathcal{T}}\sum_{S_{1},S_{2}\cong\mathbf{H}}a_{\mathbf{H}}^{2}
=𝐇𝒯a𝐇2#{S𝒦n:S𝐇}2=𝐇𝒯s2=s2|𝒯|.\displaystyle=\sum_{\mathbf{H}\in\mathcal{T}}a_{\mathbf{H}}^{2}\cdot\#\{S\subset\mathcal{K}_{n}:S\cong\mathbf{H}\}^{2}=\sum_{\mathbf{H}\in\mathcal{T}}s^{2\aleph}=s^{2\aleph}|\mathcal{T}|\,.

As for Item (2), by applying Lemma 3.4 we have

𝔼[f𝒯]\displaystyle\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}] 𝐇𝒯S1,S2𝐇a𝐇2=s2|𝒯|.\displaystyle\circeq\sum_{\mathbf{H}\in\mathcal{T}}\sum_{S_{1},S_{2}\cong\mathbf{H}}a_{\mathbf{H}}^{2}=s^{2\aleph}|\mathcal{T}|\,.\qed

Recall our assumption that s>αs>\sqrt{\alpha} and (3.4). By Lemma 3.5, we have shown that

Var[f𝒯](𝔼[f𝒯])2=o(1).\displaystyle\frac{\operatorname{Var}_{\mathbb{Q}}[f_{\mathcal{T}}]}{(\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}])^{2}}=o(1)\,.

3.2 Estimation of the second moment

The purpose of this subsection is to show Item (2) of Proposition 3.2. Recall (3.5) and (3.6). A direct computation shows that

Var[f𝒯]\displaystyle\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}] =𝐇,𝐈𝒯S1,S2𝐇T1,T2𝐈a𝐇a𝐈(𝔼[ϕS1,S2ϕT1,T2]𝔼[ϕS1,S2]𝔼[ϕT1,T2]).\displaystyle=\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{S_{1},S_{2}\cong\mathbf{H}}\sum_{T_{1},T_{2}\cong\mathbf{I}}a_{\mathbf{H}}a_{\mathbf{I}}\big{(}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]-\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}]\big{)}\,.

Now we estimate 𝔼[ϕS1,S2ϕT1,T2]\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}], where S1,S2𝐇S_{1},S_{2}\cong\mathbf{H} and T1,T2𝐈T_{1},T_{2}\cong\mathbf{I}. For 𝐇,𝐈𝒯\mathbf{H},\mathbf{I}\in\mathcal{T} (note that (𝐇)=(𝐈)=\mathcal{I}(\mathbf{H})=\mathcal{I}(\mathbf{I})=\emptyset), define

𝖱𝐇,𝐈={(S1,S2;T1,T2):S1,S2𝐇,T1,T2𝐈}{}\mathsf{R}_{\mathbf{H},\mathbf{I}}=\big{\{}(S_{1},S_{2};T_{1},T_{2}):S_{1},S_{2}\cong\mathbf{H},T_{1},T_{2}\cong\mathbf{I}\big{\}} (3.8)

and define the set of its “principal elements”

𝖱𝐇,𝐈={(S1,S2;T1,T2)𝖱𝐇,𝐈:V(S1)V(T1)=V(S2)V(T2)=}.{}\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}=\big{\{}(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}:V(S_{1})\cap V(T_{1})=V(S_{2})\cap V(T_{2})=\emptyset\big{\}}\,. (3.9)
Lemma 3.6.

(1) For all (S1,S2;T1,T2)𝖱𝐇,𝐈𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}\setminus\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}} and for all h>1h>1 we have

|𝔼[ϕS1,S2ϕT1,T2]|\displaystyle\big{|}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]\big{|}\leq\ O(1)h2𝟏{(S1,S2)=(T1,T2)}\displaystyle O(1)\cdot h^{2\aleph}\mathbf{1}_{\{(S_{1},S_{2})=(T_{1},T_{2})\}}
+[1+o(1)]n0.5(|V(S1)V(T1)|+|V(S2)V(T2)|)0.8.\displaystyle+[1+o(1)]\cdot n^{-0.5(|V(S_{1})\triangle V(T_{1})|+|V(S_{2})\triangle V(T_{2})|)-0.8}\,.

(2) For (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}}, we have

𝔼[ϕS1,S2ϕT1,T2]𝔼[ϕS1,S2]𝔼[ϕT1,T2](1+𝟏{𝐇𝐈}).\displaystyle\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]\circeq\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}]\big{(}1+\mathbf{1}_{\{\mathbf{H}\cong\mathbf{I}\}}\big{)}\,.

The proof of Lemma 3.6 is incorporated in Appendix C.2. Now we use Lemma 3.6 to estimate Var[f𝒯]\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}]. Recall that

Var[f𝒯]\displaystyle\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}] =𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈a𝐇a𝐈(𝔼[ϕS1,S2ϕT1,T2]𝔼[ϕS1,S2]𝔼[ϕT1,T2])\displaystyle=\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}}a_{\mathbf{H}}a_{\mathbf{I}}(\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]-\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}])
=𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈a𝐇a𝐈𝔼[ϕS1,S2ϕT1,T2]\displaystyle=\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}}a_{\mathbf{H}}a_{\mathbf{I}}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}] (3.10)
+𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈𝖱𝐇,𝐈a𝐇a𝐈𝔼[ϕS1,S2ϕT1,T2]\displaystyle+\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}\setminus\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}}a_{\mathbf{H}}a_{\mathbf{I}}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}] (3.11)
𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈a𝐇a𝐈𝔼[ϕS1,S2]𝔼[ϕT1,T2].\displaystyle-\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}}a_{\mathbf{H}}a_{\mathbf{I}}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}]\,. (3.12)

By Item (2) in Lemma 3.6, we have

(3.10)\displaystyle\eqref{eq-part-1-var-Pb}\circeq\ 𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈a𝐇a𝐈𝔼[ϕS1,S2]𝔼[ϕT1,T2]\displaystyle\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}}a_{\mathbf{H}}a_{\mathbf{I}}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}] (3.13)
+𝐇𝒯(S1,S2;T1,T2)𝖱𝐇,𝐇a𝐇2𝔼[ϕS1,S2]𝔼[ϕT1,T2].\displaystyle+\sum_{\mathbf{H}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}^{*}_{\mathbf{H},\mathbf{H}}}a_{\mathbf{H}}^{2}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}]\,. (3.14)

We first deal with (3.13) using the fact that

#𝖱𝐇,𝐈=n!(n22)!Aut(𝐇)2n!(n22)!Aut(𝐈)2.{}\#\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}}=\frac{n!}{(n-2\aleph-2)!\operatorname{Aut}(\mathbf{H})^{2}}\cdot\frac{n!}{(n-2\aleph-2)!\operatorname{Aut}(\mathbf{I})^{2}}\,. (3.15)

Applying Lemma 3.5 we have

(3.13)\displaystyle\eqref{eq-part-1.1-var-Pb} (3.7)𝐇,𝐈𝒯a𝐇a𝐈#𝖱𝐇,𝐈s2Aut(𝐇)Aut(𝐈)((n1)!)2(n!)2\displaystyle\overset{\eqref{eq-first-moment-phi-S}}{\circeq}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\cdot\#\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}}\cdot\frac{s^{2\aleph}\operatorname{Aut}(\mathbf{H})\operatorname{Aut}(\mathbf{I})((n-\aleph-1)!)^{2}}{(n!)^{2}}
=(3.15)𝐇,𝐈𝒯a𝐇a𝐈s2((n1)!)2((n22)!)2Aut(𝐇)Aut(𝐈)\displaystyle\overset{\eqref{eq-card-R-H,I^*}}{=}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\cdot\frac{s^{2\aleph}((n-\aleph-1)!)^{2}}{((n-2\aleph-2)!)^{2}\operatorname{Aut}(\mathbf{H})\operatorname{Aut}(\mathbf{I})}
=(3.6)𝐇,𝐈𝒯s4(((n1)!)2n!(n22)!)2(3.3)s4|𝒯|2Lemma3.5,(2)𝔼[f𝒯]2.\displaystyle\overset{\eqref{eq-def-a-H}}{=}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}s^{4\aleph}\Big{(}\frac{((n-\aleph-1)!)^{2}}{n!(n-2\aleph-2)!}\Big{)}^{2}\overset{\eqref{eq-choice-K}}{\circeq}s^{4\aleph}|\mathcal{T}|^{2}\overset{\text{Lemma}~{}\ref{lem-first-moment-P},\text{(2)}}{\circeq}\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,. (3.16)

Similarly, by applying Lemma 3.5 we see that

(3.14)s4|𝒯|=o(1)𝔼[f𝒯]2.\displaystyle\eqref{eq-part-1.2-var-Pb}\circeq s^{4\aleph}|\mathcal{T}|=o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,. (3.17)

Thus, we get that

(3.10)𝔼[f𝒯]2.\eqref{eq-part-1-var-Pb}\circeq\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,. (3.18)

Next we estimate (3.12) (for convenience below we use (3.12) to denote the term therein without the minus sign). Note that

#𝖱𝐇,𝐈=(n!)2((n1)!)2Aut(𝐇)2(n!)2((n1)!)2Aut(𝐈)2.{}\#\mathsf{R}_{\mathbf{H},\mathbf{I}}=\frac{(n!)^{2}}{((n-\aleph-1)!)^{2}\operatorname{Aut}(\mathbf{H})^{2}}\cdot\frac{(n!)^{2}}{((n-\aleph-1)!)^{2}\operatorname{Aut}(\mathbf{I})^{2}}\,. (3.19)

Combined with Lemma 3.5, it yields that

(3.12)\displaystyle\eqref{eq-part-3-var-Pb} (3.7)𝐇,𝐈𝒯a𝐇a𝐈#𝖱𝐇,𝐈s2Aut(𝐇)Aut(𝐈)((n1)!)2(n!)2\displaystyle\overset{\eqref{eq-first-moment-phi-S}}{\circeq}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\cdot\#\mathsf{R}_{\mathbf{H},\mathbf{I}}\cdot\frac{s^{2\aleph}\operatorname{Aut}(\mathbf{H})\operatorname{Aut}(\mathbf{I})((n-\aleph-1)!)^{2}}{(n!)^{2}}
=(3.19)𝐇,𝐈𝒯a𝐇a𝐈s2(n!)2((n1)!)2Aut(𝐇)Aut(𝐈)\displaystyle\overset{\eqref{eq-card-R-H,I}}{=}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\cdot\frac{s^{2\aleph}(n!)^{2}}{((n-\aleph-1)!)^{2}\operatorname{Aut}(\mathbf{H})\operatorname{Aut}(\mathbf{I})}
(3.6)𝐇,𝐈𝒯s4=s4|𝒯|2Lemma3.5,(2)𝔼[f𝒯]2.\displaystyle\overset{\eqref{eq-def-a-H}}{\circeq}\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}s^{4\aleph}=s^{4\aleph}|\mathcal{T}|^{2}\overset{\text{Lemma}~{}\ref{lem-first-moment-P},\text{(2)}}{\circeq}\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,. (3.20)

Finally we deal with (3.11). Denote γs=(12+s22α)1/2>1\gamma_{s}=\big{(}\frac{1}{2}+\frac{s^{2}}{2\alpha}\big{)}^{1/2}>1. Applying Item (1) of Lemma 3.6 with h=γsh=\gamma_{s} we have

|(3.11)|\displaystyle|\eqref{eq-part-2-var-Pb}| [1+o(1)](𝐇𝒯(S1,S2;T1,T2)𝖱𝐇,𝐇𝖱𝐇,𝐇a𝐇2𝟏{(S1,S2)=(T1,T2)}γs2\displaystyle\leq\ [1+o(1)]\cdot\Bigg{(}\sum_{\mathbf{H}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{H}}\setminus\mathsf{R}_{\mathbf{H},\mathbf{H}}^{*}}a_{\mathbf{H}}^{2}\mathbf{1}_{\{(S_{1},S_{2})=(T_{1},T_{2})\}}\gamma_{s}^{2\aleph}
+𝐇,𝐈𝒯(S1,S2;T1,T2)𝖱𝐇,𝐈𝖱𝐇,𝐈a𝐇a𝐈n0.5(|V(S1)V(T1)|+|V(S2)V(T2)|)0.8)\displaystyle+\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}\sum_{(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}\setminus\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}}a_{\mathbf{H}}a_{\mathbf{I}}n^{-0.5(|V(S_{1})\triangle V(T_{1})|+|V(S_{2})\triangle V(T_{2})|)-0.8}\Bigg{)}
\displaystyle\leq\ [1+o(1)](𝐇𝒯a𝐇2γs2(n!)2((n1)!Aut(𝐇))2+𝐇,𝐈𝒯a𝐇a𝐈(i,j)(+1,+1)|𝖱𝐇,𝐈(i,j)|ni+j+0.8),\displaystyle[1+o(1)]\cdot\Bigg{(}\sum_{\mathbf{H}\in\mathcal{T}}\frac{a_{\mathbf{H}}^{2}\gamma_{s}^{2\aleph}(n!)^{2}}{((n-\aleph-1)!\operatorname{Aut(\mathbf{H}))^{2}}}+\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\sum_{(i,j)\neq(\aleph+1,\aleph+1)}\frac{|\mathsf{R}_{\mathbf{H},\mathbf{I}}^{(i,j)}|}{n^{i+j+0.8}}\Bigg{)}\,, (3.21)

where 𝖱𝐇,𝐈(i,j)\mathsf{R}_{\mathbf{H},\mathbf{I}}^{(i,j)} is the collection of (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}} such that |V(S1)V(T1)|=+1i|V(S_{1})\cap V(T_{1})|=\aleph+1-i and |V(S2)V(T2)|=+1j|V(S_{2})\cap V(T_{2})|=\aleph+1-j. We know from direct enumeration that

#𝖱𝐇,𝐈(i,j)\displaystyle\#\mathsf{R}_{\mathbf{H},\mathbf{I}}^{(i,j)} =1(Aut(𝐇)Aut(𝐈))2n!(+1)!(+1i)(n1i)!i!n!(+1)!(+1j)(n1j)!j!\displaystyle=\frac{1}{(\operatorname{Aut}(\mathbf{H})\operatorname{Aut}(\mathbf{I}))^{2}}\cdot\frac{n!(\aleph+1)!\binom{\aleph+1}{i}}{(n-\aleph-1-i)!i!}\cdot\frac{n!(\aleph+1)!\binom{\aleph+1}{j}}{(n-\aleph-1-j)!j!}
(2(+1))+1n2+2+i+j(3.3)n2+2.1+i+j,\displaystyle\leq(2(\aleph+1))^{\aleph+1}n^{2\aleph+2+i+j}\overset{\eqref{eq-choice-K}}{\leq}n^{2\aleph+2.1+i+j}\,,

and we have the bound (recall (3.6))

a𝐇[1+o(1)](+1)!sn+1(3.3)[1+o(1)]n0.9s,\displaystyle a_{\mathbf{H}}\leq[1+o(1)]\cdot\frac{(\aleph+1)!s^{\aleph}}{n^{\aleph+1}}\overset{\eqref{eq-choice-K}}{\leq}[1+o(1)]\cdot n^{-\aleph-0.9}s^{\aleph}\,,

where in the first inequality we used the crude bound that Aut(H)(+1)!\operatorname{Aut}(H)\leq(\aleph+1)! and in the last inequality we used (+1)!=no(1)(\aleph+1)!=n^{o(1)}. Hence, we have

𝐇,𝐈𝒯a𝐇a𝐈(i,j)(+1,+1)nij0.8|𝖱𝐇,𝐈(i,j)|𝐇,𝐈𝒯n0.5s2|𝒯|2n0.5s422\displaystyle\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}a_{\mathbf{H}}a_{\mathbf{I}}\sum_{(i,j)\neq(\aleph+1,\aleph+1)}n^{-i-j-0.8}\big{|}\mathsf{R}_{\mathbf{H},\mathbf{I}}^{(i,j)}\big{|}\leq\sum_{\mathbf{H},\mathbf{I}\in\mathcal{T}}n^{-0.5}s^{2\aleph}\leq|\mathcal{T}|^{2}n^{-0.5}s^{4\aleph}2^{2\aleph}
\displaystyle\leq\ [1+o(1)]n0.522𝔼[f𝒯]2=(3.3)o(1)𝔼[f𝒯]2,\displaystyle[1+o(1)]\cdot n^{-0.5}2^{2\aleph}\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\overset{\eqref{eq-choice-K}}{=}o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,, (3.22)

where in the second inequality we used the fact that s2>α>14s^{2}>\alpha>\frac{1}{4} and the third equality follows from Item (2) of Lemma 3.5. In addition, we have

𝐇𝒯a𝐇2γs2(n!)2((n1)!Aut(𝐇))2(3.6)[1+o(1)]|𝒯|s2γs2\displaystyle\sum_{\mathbf{H}\in\mathcal{T}}\frac{a_{\mathbf{H}}^{2}\gamma_{s}^{2\aleph}(n!)^{2}}{((n-\aleph-1)!\operatorname{Aut}(\mathbf{H}))^{2}}\overset{\eqref{eq-def-a-H}}{\leq}\ [1+o(1)]\cdot|\mathcal{T}|s^{2\aleph}\gamma_{s}^{2\aleph}
=s2>α,(3.4)\displaystyle\overset{s^{2}>\alpha,\eqref{eq-num-trees}}{=} o(1)(|𝒯|s2)2=o(1)(𝔼[f𝒯])2.\displaystyle o(1)\cdot(|\mathcal{T}|s^{2\aleph})^{2}=o(1)\cdot(\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}])^{2}\,. (3.23)

Combined with (3.21) and (3.22), it gives that

(3.11)=o(1)𝔼[f𝒯]2.{}\eqref{eq-part-2-var-Pb}=o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,. (3.24)

Plugging (3.18), (3.20) and (3.24) into the decomposition formula for Var[f𝒯]\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}], we get that

Var[f𝒯]\displaystyle\operatorname{Var}_{\mathbb{P}}[f_{\mathcal{T}}] =[1+o(1)]𝔼[f𝒯]2+o(1)𝔼[f𝒯]2[1+o(1)]𝔼[f𝒯]2+o(1)𝔼[f𝒯]2\displaystyle=[1+o(1)]\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}+o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}-[1+o(1)]\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}+o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}
=o(1)𝔼[f𝒯]2,\displaystyle=o(1)\cdot\mathbb{E}_{\mathbb{P}}[f_{\mathcal{T}}]^{2}\,,

which yields Item (2) of Lemma 3.2.

4 Low-degree hardness for the detection problem

In this section we prove Theorem 2.5. Throughout this section, we fix a small constant δ(0,0.1)\delta\in(0,0.1) and assume that

sαδ and ϵ2λs1δ.s\leq\sqrt{\alpha}-\delta\mbox{ and }\epsilon^{2}\lambda s\leq 1-\delta\,.

We also choose a sufficiently large constant N=N(k,λ,δ,ϵ,s)2/δN=N(k,\lambda,\delta,\epsilon,s)\geq 2/\delta such that

(αδ)(1+ϵNk)αδ/2;10k(1δ)N<(1δ/2)N;\displaystyle(\sqrt{\alpha}-\delta)(1+\epsilon^{N}k)\leq\sqrt{\alpha}-\delta/2\,;\quad 10k(1-\delta)^{N}<(1-\delta/2)^{N}\,; (4.1)
(αδ/2)(1+(1δ/2)N)2αδ/4;(1δ/2)N(N+1)1.\displaystyle(\sqrt{\alpha}-\delta/2)(1+(1-\delta/2)^{N})^{2}\leq\sqrt{\alpha}-\delta/4\,;\quad(1-\delta/2)^{N}(N+1)\leq 1\,.

Furthermore, we fix a sequence DnD_{n} such that DnClognD_{n}\leq C\log n for some universal constant C>0C>0. Without loss of generality, we assume Dn2log2nD_{n}\geq 2\log_{2}n in the following proof. For the sake of brevity, we will only work with some fixed nn throughout the analysis, and we simply denote DnD_{n} as DD. While our main interest is to analyze the behavior for sufficiently large nn, most of our arguments hold for all nn, and we will explicitly point out in lemma-statements and proofs when we need the assumption that nn is sufficiently large.

4.1 Truncation on admissible graphs

As previously suggested, it is crucial to work with a suitably truncated version of \mathbb{P} rather than \mathbb{P} itself. It turns out that an appropriate truncation is to control both the edge densities of subgraphs and the number of small cycles in the parent graph GG, as explained in the following definition.

Definition 4.1.

Denote λ~=λ1\tilde{\lambda}=\lambda\vee 1. Given a graph H=H(V,E)H=H(V,E), define

Φ(H)=(2λ~2k2nD50)|V(H)|(1000λ~20k20D50n)|E(H)|.\Phi(H)=\Big{(}\frac{2\tilde{\lambda}^{2}k^{2}n}{D^{50}}\Big{)}^{|V(H)|}\Big{(}\frac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\Big{)}^{|E(H)|}\,. (4.2)

Then we say the graph HH is bad if Φ(H)<(logn)1\Phi(H)<(\log n)^{-1}, and we say a graph HH is self-bad if HH is bad and Φ(H)<Φ(K)\Phi(H)<\Phi(K) for all KHK\subset H. Furthermore, we say that a graph HH is admissible if it contains no bad subgraph and 𝙲j(H)=\mathtt{C}_{j}(H)=\emptyset for jNj\leq N; we say HH is inadmissible otherwise. Denote =(1)(2)\mathcal{E}=\mathcal{E}^{(1)}\cap\mathcal{E}^{(2)}, where (1)\mathcal{E}^{(1)} is the event that GG does not contain any bad subgraph with no more than D3D^{3} vertices, and (2)\mathcal{E}^{(2)} is the event that GG does not contain any cycles with length at most NN.

Lemma 4.2.

There exists a universal constant c(0,1)c\in(0,1) such that for any permutation π𝔖n\pi\in\mathfrak{S}_{n}, it holds that (π=π)c\mathbb{P}_{*}(\mathcal{E}\mid\pi_{*}=\pi)\geq c. Therefore, we have ()c\mathbb{P}_{*}(\mathcal{E})\geq c.

Proof.

Note that GG is a stochastic block model with average degree λ=O(1)\lambda=O(1), and GG is independent of π\pi_{*}. Hence it suffices to show that with positive probability such a stochastic block model contains no “undesirable” subgraph (as described when defining \mathcal{E}). To this end, it suffices to prove the following two items:

  • (1)

    With probability 1o(1)1-o(1), GG does not contain a subgraph HH such that |V(H)|D3|V(H)|\leq D^{3} and Φ(H)<(logn)1\Phi(H)<(\log n)^{-1}.

  • (2)

    With probability at least cc, GG contains no cycle with length no more than NN.

Denoting by Cl(G)C_{l}(G) the number of ll-cycles in GG, it was known in [62, Theorem 3.1] that

(C3(G),,CN(G))(Pois(c3),,Pois(cN)),{}\Big{(}C_{3}(G),\ldots,C_{N}(G)\Big{)}\Longrightarrow\Big{(}\operatorname{Pois}(c_{3}),\ldots,\operatorname{Pois}(c_{N})\Big{)}\,, (4.3)

where {Pois(cj):3jN}\{\operatorname{Pois}(c_{j}):3\leq j\leq N\} are independent Poisson variables with parameters (1+(k1)ϵj)λj2j\frac{(1+(k-1)\epsilon^{j})\lambda^{j}}{2j}. Thus, we have Item (2) holds. We now verify Item (1) via a union bound. For each 1jD31\leq j\leq D^{3}, define

κ(j)=min{j0:(2k2λ~2nD50)j(1000k20λ~20D50n)j<(logn)1}.{}\kappa(j)=\min\Big{\{}j^{\prime}\geq 0:\big{(}\tfrac{2k^{2}\tilde{\lambda}^{2}n}{D^{50}}\big{)}^{j}\big{(}\tfrac{1000k^{20}\tilde{\lambda}^{20}D^{50}}{n}\big{)}^{j^{\prime}}<(\log n)^{-1}\Big{\}}\,. (4.4)

A simple calculation yields κ(j)>j\kappa(j)>j. In order to prove Item (1), it suffices to upper-bound the probability (by o(1)o(1)) that there exists W[n]W\subset[n] with |W|=jD3|W|=j\leq D^{3} and |E(GW)|κ(j)|E(G_{W})|\geq\kappa(j). By a union bound, the aforementioned probability is upper-bounded by

j=1D3W[n],|W|=j(|E(GW)|κ(j))j=1D3(nj)(𝐁((j2),kλn)κ(j)),\displaystyle{}\sum_{j=1}^{D^{3}}\sum_{W\subset[n],|W|=j}\mathbb{P}_{*}\Big{(}|E(G_{W})|\geq\kappa(j)\Big{)}\leq\sum_{j=1}^{D^{3}}\binom{n}{j}\mathbb{P}\Big{(}\mathbf{B}\Big{(}\binom{j}{2},\frac{k\lambda}{n}\Big{)}\geq\kappa(j)\Big{)}\,, (4.5)

where 𝐁((j2),kλn)\mathbf{B}\big{(}\binom{j}{2},\frac{k\lambda}{n}\big{)} is a binomial variable with parameters ((j2),kλn)\big{(}\binom{j}{2},\frac{k\lambda}{n}\big{)}, and the inequality holds since this binomial variable stochastically dominates |E(GW)||E(G_{W})| for any W[n]W\subset[n] with |W|=j|W|=j. For jD3j\leq D^{3}, we have (j2)kλ/n=o(1)\binom{j}{2}k\lambda/n=o(1) and thus by Poisson approximation we get that

(nj)(𝐁((j2),kλn)κ(j))\displaystyle{}\binom{n}{j}\mathbb{P}\Big{(}\mathbf{B}\Big{(}\binom{j}{2},\frac{k\lambda}{n}\Big{)}\geq\kappa(j)\Big{)} njj!(j2λk/n)κ(j)(κ(j))!njκ(j)(10λk)κ(j)jκ(j)j\displaystyle\leq\frac{n^{j}}{j!}\cdot\frac{(j^{2}\lambda k/n)^{\kappa(j)}}{(\kappa(j))!}\leq n^{j-\kappa(j)}(10\lambda k)^{\kappa(j)}j^{\kappa(j)-j}
2j(2λ~2k2nD50)j(1000λ~20k20D50n)κ(j)(4.4)2j(logn)1,\displaystyle\leq 2^{-j}\big{(}\tfrac{2\tilde{\lambda}^{2}k^{2}n}{D^{50}}\big{)}^{j}\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{\kappa(j)}\overset{\eqref{eq-def-E(k)}}{\leq}2^{-j}(\log n)^{-1}\,, (4.6)

where the third inequality follows from the fact that λ~λ,κ(j)>j\tilde{\lambda}\geq\lambda,\kappa(j)>j and jD3j\leq D^{3}. Plugging this estimation into (4.5), we get that the right-hand side of (4.5) is further bounded by

(logn)1j=1D32j=o(1).\displaystyle{}(\log n)^{-1}\sum_{j=1}^{D^{3}}2^{-j}=o(1)\,. (4.7)

This gives Item (1), thereby completing the proof of the lemma. ∎

We now construct n\mathbb{P}_{n}^{\prime} that satisfies Item (2) of Theorem 2.5. Recall the definition of “good event” \mathcal{E} in Definition 4.1.

Definition 4.3.

List all self-bad subgraphs of 𝒦n\mathcal{K}_{n} with at most D3D^{3} vertices and all cycles of 𝒦n\mathcal{K}_{n} with lengths at most NN in an arbitrary but prefixed order (B1,,B𝙼)(B_{1},\ldots,B_{\mathtt{M}}). Define a stochastic block model with “bad graphs” removed as follows: (1) sample G𝒮(n,λn;k,ϵ)G\sim\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon); (2) for each 𝟷𝚒𝙼\mathtt{1}\leq\mathtt{i}\leq\mathtt{M} such that B𝚒GB_{\mathtt{i}}\subset G, we independently uniformly remove one edge in B𝚒B_{\mathtt{i}}. The unremoved edges in GG constitute a graph GG^{\prime}, which is the output of our modified stochastic block model. Clearly, from this definition GG^{\prime} does not contain any cycle of length at most NN nor any bad subgraph with at most D3D^{3} vertices. Conditioned on GG^{\prime} and π\pi_{*}, we define

Ai,j=Gi,jJi,j,Bi,j=Gπ1(i),π1(j)Ki,j,A^{\prime}_{i,j}=G^{\prime}_{i,j}J^{\prime}_{i,j},B^{\prime}_{i,j}=G^{\prime}_{\pi_{*}^{-1}(i),\pi_{*}^{-1}(j)}K^{\prime}_{i,j}\,,

where JJ^{\prime} and KK^{\prime} are independent Bernoulli variables with parameter ss. Let =,n\mathbb{P}_{*}^{\prime}=\mathbb{P}^{\prime}_{*,n} be the law of (σ,π,G,G,A,B)(\sigma_{*},\pi_{*},G,G^{\prime},A^{\prime},B^{\prime}) and denote =n\mathbb{P}^{\prime}=\mathbb{P}_{n}^{\prime} the marginal law of (A,B)(A^{\prime},B^{\prime}).

Lemma 4.4.

We have TV(,())=o(1)\operatorname{TV}(\mathbb{P}^{\prime},\mathbb{P}(\cdot\mid\mathcal{E}))=o(1).

The proof of Lemma 4.4 is incorporated in Appendix C.3.

4.2 Reduction to admissible polynomials

The goal of this and the next subsection is to prove Item (3) in Theorem 2.5, i.e., there is no degree-DD polynomial that can strongly separate \mathbb{P}^{\prime} and \mathbb{Q}. As implied by [5], it suffices to show

LD2:=supdeg(f)D{𝔼[f]𝔼[f2]}=O(1).{}\|L^{\prime}_{\leq D}\|^{2}:=\sup_{\operatorname{deg}(f)\leq D}\Bigg{\{}\frac{\mathbb{E}_{\mathbb{P}^{\prime}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^{2}]}}\Bigg{\}}=O(1)\,. (4.8)

Recall (3.1). Denote 𝒫D\mathcal{P}_{D} as the set of real polynomials on {0,1}2|U|\{0,1\}^{2|\!\operatorname{U}\!|} with degree no more than DD, and recall from (3.2) that

𝒪D={ϕS1,S2:S1,S2𝒦n,|E(S1)|+|E(S2)|D}\mathcal{O}_{D}=\{\phi_{S_{1},S_{2}}:S_{1},S_{2}\Subset\mathcal{K}_{n},|E(S_{1})|+|E(S_{2})|\leq D\} (4.9)

is an orthonormal basis for 𝒫D\mathcal{P}_{D} (under the measure \mathbb{Q}). Now we say a polynomial ϕS1,S2𝒪D\phi_{S_{1},S_{2}}\in\mathcal{O}_{D} is admissible if both S1S_{1} and S2S_{2} are admissible graphs. Furthermore, we define 𝒪D𝒪D\mathcal{O}_{D}^{\prime}\subset\mathcal{O}_{D} as the set of admissible polynomials in 𝒪D\mathcal{O}_{D}, and define 𝒫D𝒫D\mathcal{P}_{D}^{\prime}\subset\mathcal{P}_{D} as the linear subspace spanned by polynomials in 𝒪D\mathcal{O}_{D}^{\prime}.

Intuitively, due to the absence of inadmissible graphs under the law \mathbb{P}^{\prime}, only admissible polynomials are relevant in polynomial-based algorithms. Therefore, it is plausible to establish our results by restricting to polynomials in 𝒫D\mathcal{P}_{D}^{\prime}. The following proposition as well as its consequence as in (4.10) formalizes this intuition.

Proposition 4.5.

The following holds for some absolute constant cc. For any f𝒫Df\in\mathcal{P}_{D}, there exists some f𝒫Df^{\prime}\in\mathcal{P}_{D}^{\prime} such that 𝔼[(f)2]c𝔼[f2]\mathbb{E}_{\mathbb{Q}}[(f^{\prime})^{2}]\leq c\cdot\mathbb{E}_{\mathbb{Q}}[f^{2}] and f=ff^{\prime}=f a.s. under both \mathbb{P}_{*}^{\prime} and \mathbb{P}^{\prime}.

Provided with Proposition 4.5, we immediately get that

supf𝒫D{𝔼[f]𝔼[f2]}O(1)supf𝒫D{𝔼[f]𝔼[f2]}.\sup_{f\in\mathcal{P}_{D}}\Bigg{\{}\frac{\mathbb{E}_{\mathbb{P}^{\prime}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^{2}]}}\Bigg{\}}\leq O(1)\cdot\sup_{f\in\mathcal{P}_{D}^{\prime}}\Bigg{\{}\frac{\mathbb{E}_{\mathbb{P}^{\prime}}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}}[f^{2}]}}\Bigg{\}}\,. (4.10)

Thus, we successfully reduce the optimization problem over 𝒫D\mathcal{P}_{D} to that over 𝒫D\mathcal{P}_{D}^{\prime} (up to a multiplicative constant factor, which is not material).

Now we turn to the proof of Proposition 4.5. For variables X{A,B}X\in\{A,B\} (meaning that Xi,j=Ai,jX_{i,j}=A_{i,j} or Xi,j=Bi,jX_{i,j}=B_{i,j} for all (i,j)U(i,j)\in\operatorname{U}), denote for each subgraph SS that

ψS({Xi,j}(i,j)U)=(i,j)E(S)(Xi,jλsn)λsn(1λsn).\psi_{S}(\{X_{i,j}\}_{(i,j)\in\operatorname{U}})=\prod_{(i,j)\in E(S)}\frac{(X_{i,j}-\tfrac{\lambda s}{n})}{\sqrt{\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})}}\,. (4.11)

Recalling the definition of ϕS1,S2\phi_{S_{1},S_{2}}, we can write it as follows:

ϕS1,S2(A,B)=(i,j)E(S1)(Ai,jλsn)λsn(1λsn)(i,j)E(S2)(Bi,jλsn)λsn(1λsn)=ψS1(A)ψS2(B).\phi_{S_{1},S_{2}}(A,B)=\prod_{(i,j)\in E(S_{1})}\frac{(A_{i,j}-\tfrac{\lambda s}{n})}{\sqrt{\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})}}\prod_{(i,j)\in E(S_{2})}\frac{(B_{i,j}-\tfrac{\lambda s}{n})}{\sqrt{\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})}}=\psi_{S_{1}}(A)\psi_{S_{2}}(B)\,. (4.12)

In light of this, we next analyze the polynomial ψS(X)\psi_{S}(X) (with S𝒦nS\Subset\mathcal{K}_{n}) via the following expansion:

ψS(X)=KS(λs/n1λs/n)|E(S)||E(K)|(i,j)E(K)Xi,jλsn(1λsn),\psi_{S}(X)=\sum_{K\Subset S}\left(-\frac{\sqrt{\lambda s/n}}{\sqrt{1-\lambda s/n}}\right)^{|E(S)|-|E(K)|}\prod_{(i,j)\in E(K)}\frac{X_{i,j}}{\sqrt{\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})}}\,,

where the summation is taken over all subgraphs of SS without isolated vertices (there are 2|E(S)|2^{|E(S)|} many of them). We define the “inadmissible-part-removed” version of ψS(X)\psi_{S}(X) by

ψ^S(X)=KSK is admissible(λs/n1λs/n)|E(S)||E(K)|(i,j)E(K)Xi,jλsn(1λsn),\hat{\psi}_{S}(X)=\sum_{\begin{subarray}{c}K\Subset S\\ K\text{ is admissible}\end{subarray}}\left(-\frac{\sqrt{\lambda s/n}}{\sqrt{1-\lambda s/n}}\right)^{|E(S)|-|E(K)|}\prod_{(i,j)\in E(K)}\frac{X_{i,j}}{\sqrt{\tfrac{\lambda s}{n}(1-\tfrac{\lambda s}{n})}}\,, (4.13)

and obviously we have that ψS(A)ψ^S(A)=ψS(B)ψ^S(B)=0\psi_{S}(A)-\hat{\psi}_{S}(A)=\psi_{S}(B)-\hat{\psi}_{S}(B)=0 a.s. under both \mathbb{P}_{*}^{\prime} and \mathbb{P}^{\prime}. Although it is temping and natural to use the preceding reduction, in the actual proof later we need to employ some further structure, for which we introduce the following definitions.

Definition 4.6.

For S𝒦nS\Subset\mathcal{K}_{n}, denote 𝖢𝗒𝖼𝗅𝖾(S)=j=3NC𝙲j(S)C\mathsf{Cycle}(S)=\cup_{j=3}^{N}\cup_{C\in\mathtt{C}_{j}(S)}C. Define

𝖣(S)={,if S is admissible,argmax𝖢𝗒𝖼𝗅𝖾(S)HS{Φ(H)},if S is inadmissible,{}\mathsf{D}(S)=\begin{cases}\emptyset,&\text{if }S\mbox{ is admissible}\,,\\ \arg\max_{\mathsf{Cycle}(S)\subset H\subset S}\{\Phi(H)\},&\text{if }S\mbox{ is inadmissible}\,,\end{cases} (4.14)

(if there are multiple choices of 𝖣(S)\mathsf{D}(S) we choose 𝖣(S)\mathsf{D}(S) that minimize |V(𝖣(S))||V(\mathsf{D}(S))|). We also define

𝒜(S)={HS:S𝖣(S)H,H𝖣(S) is admissible}.{}\mathcal{A}(S)=\{H\Subset S:S\setminus\mathsf{D}(S)\subset H,H\cap\mathsf{D}(S)\text{ is admissible}\}\,. (4.15)

We also define the polynomial (recall (4.11) and (4.13))

ψS({Xi,j}(i,j)U)=ψS𝖣(S)({Xi,j}(i,j)U)ψ^𝖣(S)({Xi,j}(i,j)U).\psi^{\prime}_{S}(\{X_{i,j}\}_{(i,j)\in\operatorname{U}})=\psi_{S\setminus\mathsf{D}(S)}(\{X_{i,j}\}_{(i,j)\in\operatorname{U}})\cdot\hat{\psi}_{\mathsf{D}(S)}(\{X_{i,j}\}_{(i,j)\in\operatorname{U}})\,. (4.16)

Moreover, we define

ϕS1,S2(A,B)=ψS1(A)ψS2(B),S1,S2𝒦n.\phi^{\prime}_{S_{1},S_{2}}(A,B)=\psi^{\prime}_{S_{1}}(A)\psi^{\prime}_{S_{2}}(B)\,,\forall S_{1},S_{2}\subset\mathcal{K}_{n}\,. (4.17)

Then it holds that ϕS1,S2(A,B)=ϕS1,S2(A,B)\phi^{\prime}_{S_{1},S_{2}}(A,B)=\phi_{S_{1},S_{2}}(A,B) a.s. under both \mathbb{P}_{*}^{\prime} and \mathbb{P}^{\prime}.

Lemma 4.7.

For any inadmissible graph S𝒦nS\Subset\mathcal{K}_{n} and any H𝒜(S)H\in\mathcal{A}(S), it holds that HH itself is admissible and Φ(H)Φ(S)\Phi(H)\geq\Phi(S). Furthermore, any ψS\psi^{\prime}_{S} is a linear combination of {ψH:H𝒜(S)}\{\psi_{H}:H\in\mathcal{A}(S)\}. As a result, ϕS1,S2𝒫D\phi^{\prime}_{S_{1},S_{2}}\in\mathcal{P}_{D}^{\prime} for any S1,S2𝒦n with |E(S1)|+|E(S2)|DS_{1},S_{2}\Subset\mathcal{K}_{n}\text{ with }|E(S_{1})|+|E(S_{2})|\leq D.

Proof.

The proof of Lemma 4.7 is essentially identical to [30, Lemma 3.6], where the crucial input is that Φ(H)\Phi(H) is a log-submodular function, i.e., we have Φ(HS)Φ(HS)Φ(H)Φ(S)\Phi(H\cup S)\Phi(H\Cap S)\leq\Phi(H)\Phi(S) (see Item (2) of Lemma A.1). We omit further details here due to the high similarity. ∎

Lemma 4.8.

For all H𝒜(S)H\in\mathcal{A}(S), we have (S)V(H)\mathcal{L}(S)\subset V(H) and 𝒞j(S)H\mathcal{C}_{j}(S)\subset H for j>Nj>N.

Proof.

Note that it suffices to show that (S)V(𝖣(S))=\mathcal{L}(S)\cap V(\mathsf{D}(S))=\emptyset and V(𝒞j(S))V(𝖣(S))=V(\mathcal{C}_{j}(S))\cap V(\mathsf{D}(S))=\emptyset for j>Nj>N. Suppose on the contrary that u(S)V(𝖣(S))u\in\mathcal{L}(S)\cap V(\mathsf{D}(S)). Then we can define 𝖣(S)\mathsf{D}^{\prime}(S) as the subgraph of 𝖣(S)\mathsf{D}(S) induced by V(𝖣(S)){u}V(\mathsf{D}(S))\setminus\{u\}. Clearly we have |V(𝖣(S))|=|V(𝖣(S))|1|V(\mathsf{D}^{\prime}(S))|=|V(\mathsf{D}(S))|-1 and |E(𝖣(S))||E(𝖣(S))|1|E(\mathsf{D}^{\prime}(S))|\geq|E(\mathsf{D}(S))|-1, which yields that Φ(𝖣(S))<Φ(𝖣(S))\Phi(\mathsf{D}^{\prime}(S))<\Phi(\mathsf{D}(S)), contradicting with (4.14). This shows that (S)V(𝖣(S))=\mathcal{L}(S)\cap V(\mathsf{D}(S))=\emptyset. We can prove V(𝒞j(S))V(𝖣(S))=V(\mathcal{C}_{j}(S))\cap V(\mathsf{D}(S))=\emptyset similarly (by considering the subgraph induced by V(𝖣(S))V(𝒞j(S))V(\mathsf{D}(S))\setminus V(\mathcal{C}_{j}(S))). ∎

We now elaborate on the polynomials ψS(X)\psi^{\prime}_{S}(X) more carefully. Write

ψS(X)=H𝒜(S)ΛS(H)ψH(X),{}\psi^{\prime}_{S}(X)=\sum_{H\in\mathcal{A}(S)}\Lambda_{S}(H)\psi_{H}(X)\,, (4.18)

where (same as [30, Equation (3.13)])

ΛS(H)=(λ/n1λ/n)|E(S)||E(H)|J:J𝒜(S),HJ(1)|E(S)||E(J)|.{}\Lambda_{S}(H)=\Bigg{(}\frac{\sqrt{\lambda/n}}{\sqrt{1-\lambda/n}}\Bigg{)}^{|E(S)|-|E(H)|}\sum_{J:J\in\mathcal{A}(S),H\Subset J}(-1)^{|E(S)|-|E(J)|}\,. (4.19)

Similar to [30, Equation (3.14)], we can show that

|ΛS(H)|(4λ/n)|E(S)||E(H)|.{}|\Lambda_{S}(H)|\leq(4\sqrt{\lambda/n})^{|E(S)|-|E(H)|}\,. (4.20)

With these estimates in hand, we are now ready to prove Proposition 4.5.

Proof of Proposition 4.5.

For any f𝒫Df\in\mathcal{P}_{D}, we can write f=ϕS1,S2𝒪DCS1,S2ϕS1,S2f=\sum_{\phi_{S_{1},S_{2}}\in\mathcal{O}_{D}}C_{S_{1},S_{2}}\phi_{S_{1},S_{2}} since 𝒪D\mathcal{O}_{D} is an orthonormal basis for 𝒫D\mathcal{P}_{D} (as we mentioned at the beginning of this subsection) and we define f=ϕS1,S2𝒪DCS1,S2ϕS1,S2f^{\prime}=\sum_{\phi_{S_{1},S_{2}}\in\mathcal{O}_{D}}C_{S_{1},S_{2}}\phi^{\prime}_{S_{1},S_{2}}. Then it is clear that f(A,B)=f(A,B)f^{\prime}(A,B)=f(A,B) a.s. under \mathbb{P}_{*}^{\prime}, and that f𝒫Df^{\prime}\in\mathcal{P}_{D}^{\prime} from Lemma 4.7. Now we show that 𝔼[(f)2]O(1)𝔼[f2]\mathbb{E}_{\mathbb{Q}}[(f^{\prime})^{2}]\leq O(1)\cdot\mathbb{E}_{\mathbb{Q}}[f^{2}]. For simplicity, we define

(H1,H2)={(S1,S2):S1,S2𝒦n,|E(S1)|+|E(S2)|D,H1𝒜(S1),H2𝒜(S2)}.\displaystyle\mathcal{R}(H_{1},H_{2})=\{(S_{1},S_{2}):S_{1},S_{2}\Subset\mathcal{K}_{n},|E(S_{1})|+|E(S_{2})|\leq D,H_{1}\in\mathcal{A}(S_{1}),H_{2}\in\mathcal{A}(S_{2})\}\,.

Recalling (4.17) and (4.18), we have that

ϕS1,S2(A,B)\displaystyle\phi^{\prime}_{S_{1},S_{2}}(A,B) =(H1𝒜(S1)ΛS1(H1)ψH1(A))(H2𝒜(S2)ΛS2(H2)ψH2(B))\displaystyle=\Big{(}\sum_{H_{1}\in\mathcal{A}(S_{1})}\Lambda_{S_{1}}(H_{1})\psi_{H_{1}}(A)\Big{)}\cdot\Big{(}\sum_{H_{2}\in\mathcal{A}(S_{2})}\Lambda_{S_{2}}(H_{2})\psi_{H_{2}}(B)\Big{)}
=(4.12)H1𝒜(S1),H2𝒜(S2)ΛS1(H1)ΛS2(H2)ϕH1,H2(A,B).\displaystyle\overset{\eqref{eq-decomposition-of-phi-into-psi's}}{=}\sum_{H_{1}\in\mathcal{A}(S_{1}),H_{2}\in\mathcal{A}(S_{2})}\Lambda_{S_{1}}(H_{1})\Lambda_{S_{2}}(H_{2})\phi_{H_{1},H_{2}}(A,B)\,. (4.21)

Thus, ff^{\prime} can also be written as (recall (4.9))

f\displaystyle f^{\prime} =S1,S2𝒦n|E(S1)|+|E(S2)|DCS1,S2(H1𝒜(S1),H2𝒜(S2)ΛS1(H1)ΛS2(H2)ϕH1,H2(A,B))\displaystyle=\sum_{\begin{subarray}{c}S_{1},S_{2}\Subset\mathcal{K}_{n}\\ |E(S_{1})|+|E(S_{2})|\leq D\end{subarray}}C_{S_{1},S_{2}}\Big{(}\sum_{H_{1}\in\mathcal{A}(S_{1}),H_{2}\in\mathcal{A}(S_{2})}\Lambda_{S_{1}}(H_{1})\Lambda_{S_{2}}(H_{2})\phi_{H_{1},H_{2}}(A,B)\Big{)}
=H1,H2admissible((S1,S2)(H1,H2)CS1,S2ΛS1(H1)ΛS2(H2))ϕH1,H2(A,B).\displaystyle=\sum_{\begin{subarray}{c}H_{1},H_{2}\operatorname{admissible}\end{subarray}}\Bigg{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}C_{S_{1},S_{2}}\Lambda_{S_{1}}(H_{1})\Lambda_{S_{2}}(H_{2})\Bigg{)}\phi_{H_{1},H_{2}}(A,B)\,.

Therefore, by (3.2), we have that 𝔼[(f)2]\mathbb{E}_{\mathbb{Q}}[(f^{\prime})^{2}] is upper-bounded by

H1,H2admissible((S1,S2)(H1,H2)CS1,S2ΛS1(H1)ΛS2(H2))2\displaystyle\sum_{\begin{subarray}{c}H_{1},H_{2}\operatorname{admissible}\end{subarray}}\Bigg{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}C_{S_{1},S_{2}}\Lambda_{S_{1}}(H_{1})\Lambda_{S_{2}}(H_{2})\Bigg{)}^{2}
(4.20)\displaystyle\stackrel{{\scriptstyle\eqref{eq-est-of-Lambda}}}{{\leq}} H1,H2admissible((S1,S2)(H1,H2)(16λn)12(|E(S1)|+|E(S2)||E(H1)||E(H2)|)|CS1,S2|)2.\displaystyle\sum_{\begin{subarray}{c}H_{1},H_{2}\operatorname{admissible}\\ \end{subarray}}\Bigg{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}\big{(}\tfrac{16\lambda}{n}\big{)}^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(H_{1})|-|E(H_{2})|)}|C_{S_{1},S_{2}}|\Bigg{)}^{2}\,.
\displaystyle\leq H1,H2admissible((S1,S2)(H1,H2)D40(τ(S1)+τ(S2)τ(H1)τ(H2))CS1,S22)\displaystyle\sum_{\begin{subarray}{c}H_{1},H_{2}\operatorname{admissible}\end{subarray}}\Big{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}D^{-40(\tau(S_{1})+\tau(S_{2})-\tau(H_{1})-\tau(H_{2}))}C^{2}_{S_{1},S_{2}}\Big{)}
×((S1,S2)(H1,H2)(16λn)(|E(S1)|+|E(S2)||E(H1)||E(H2)|)D40(τ(S1)+τ(S2)τ(H1)τ(H2))),\displaystyle\times\Big{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}\big{(}\tfrac{16\lambda}{n}\big{)}^{(|E(S_{1})|+|E(S_{2})|-|E(H_{1})|-|E(H_{2})|)}D^{40(\tau(S_{1})+\tau(S_{2})-\tau(H_{1})-\tau(H_{2}))}\Big{)}\,, (4.22)

where the last inequality follows from Cauchy-Schwartz inequality.

Next we upper-bound the right-hand side of (4.22). To this end, we first show that

the last bracket in (4.22) is uniformly bounded by O(1)\mbox{the last bracket in \eqref{eq-last-bracket} is uniformly bounded by }O(1) (4.23)

for any two admissible graphs H1,H2H_{1},H_{2}. Note that using Lemmas 4.7 and A.2 (note that HSH\ltimes S since (S)=\mathcal{I}(S)=\emptyset), we have

τ(S)τ(H) and Φ(H)Φ(S) for H𝒜(S).\tau(S)\geq\tau(H)\mbox{ and }\Phi(H)\geq\Phi(S)\mbox{ for }H\in\mathcal{A}(S)\,. (4.24)

Thus,

S𝒦n:|E(S)|DH𝒜(S)(16λn)|E(S)||E(H)|D40(τ(S)τ(H))l,m=02D(16λn)l+mD40lENUMl,m,\displaystyle\sum_{\begin{subarray}{c}S\Subset\mathcal{K}_{n}:|E(S)|\leq D\\ H\in\mathcal{A}(S)\end{subarray}}\big{(}\tfrac{16\lambda}{n}\big{)}^{|E(S)|-|E(H)|}D^{40(\tau(S)-\tau(H))}\leq\sum_{l,m=0}^{2D}\big{(}\tfrac{16\lambda}{n}\big{)}^{l+m}D^{40l}\cdot\mathrm{ENUM}_{l,m}\,, (4.25)

where

ENUMl,m=#{S𝒦n:H𝒜(S),|E(S)||E(H)|=l+m,|V(S)||V(H)|=m}.\displaystyle\mathrm{ENUM}_{l,m}=\#\big{\{}S\Subset\mathcal{K}_{n}:H\in\mathcal{A}(S),|E(S)|-|E(H)|=l+m,|V(S)|-|V(H)|=m\big{\}}\,.

In light of (4.24), in order for ENUMl,m0\mathrm{ENUM}_{l,m}\neq 0, we must have (2λ~2k2nD50)m(1000λ~20k20D50n)l+m1\big{(}\tfrac{2\tilde{\lambda}^{2}k^{2}n}{D^{50}}\big{)}^{m}\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{l+m}\leq 1. In addition, by Lemma 4.8 we have (S)V(H)\mathcal{L}(S)\subset V(H) and 𝒞j(S)H\mathcal{C}_{j}(S)\subset H for any H𝒜(S)H\in\mathcal{A}(S) and j>Nj>N. Thus, using Lemma A.7 (note that S𝒦nS\Subset\mathcal{K}_{n} and HSH\subset S imply that HSH\ltimes S), we have

ENUMl,mp3,,pN0(2D)4lnmj=3N1pj!=O(1)(2D)4lnm.\displaystyle\mathrm{ENUM}_{l,m}\leq\sum_{p_{3},\ldots,p_{N}\geq 0}(2D)^{4l}n^{m}\prod_{j=3}^{N}\frac{1}{p_{j}!}=O(1)\cdot(2D)^{4l}n^{m}\,.

Plugging this estimation into (4.25), we obtain that (4.25) is bounded by O(1)O(1) times

l,m=02D(16λn)l+mD40l(2D)4lnm𝟏{(2λ~2k2n/D50)m(1000λ~20k20D50/n)l+m1}\displaystyle\sum_{l,m=0}^{2D}\big{(}\tfrac{16\lambda}{n}\big{)}^{l+m}D^{40l}\cdot(2D)^{4l}n^{m}\cdot\mathbf{1}_{\{(2\tilde{\lambda}^{2}k^{2}n/D^{50})^{m}(1000\tilde{\lambda}^{20}k^{20}D^{50}/n)^{l+m}\leq 1\}}
\displaystyle\leq\ l,m=02D(16λ)m(256D44λn)l𝟏{(2000λ~2k2)m(1000λ~20k20D50/n)l1}λ~λl,m=02D2lkm=O(1).\displaystyle\sum_{l,m=0}^{2D}(16\lambda)^{m}\big{(}\tfrac{256D^{44}\lambda}{n}\big{)}^{l}\mathbf{1}_{\{(2000\tilde{\lambda}^{2}k^{2})^{m}(1000\tilde{\lambda}^{20}k^{20}D^{50}/n)^{l}\leq 1\}}\overset{\tilde{\lambda}\geq\lambda}{\leq}\sum_{l,m=0}^{2D}2^{-l}k^{-m}=O(1)\,.

Putting together the inequality (4.25)=O(1)\eqref{eq-bound-second-bracket}=O(1) with respect to H1H_{1} and H2H_{2} verifies (4.23), since the last bracket in (4.22) is upper-bounded by the product of these two sums. Therefore, we get that 𝔼[(f)2]\mathbb{E}_{\mathbb{Q}}[(f^{\prime})^{2}] is upper-bounded by O(1)O(1) times

H1,H2admissible((S1,S2)(H1,H2)D40(τ(S1)+τ(S2)τ(H1)τ(H2))CS1,S22)\displaystyle\sum_{H_{1},H_{2}\operatorname{admissible}}\Big{(}\sum_{(S_{1},S_{2})\in\mathcal{R}(H_{1},H_{2})}{D}^{-40(\tau(S_{1})+\tau(S_{2})-\tau(H_{1})-\tau(H_{2}))}C^{2}_{S_{1},S_{2}}\Big{)}
=\displaystyle= S1,S2𝒦n|E(S1)|+|E(S2)|DCS1,S22H1𝒜(S1),H2𝒜(S2)D40((τ(S1)+τ(S2)τ(H1)τ(H2)).\displaystyle\sum_{\begin{subarray}{c}S_{1},S_{2}\Subset\mathcal{K}_{n}\\ |E(S_{1})|+|E(S_{2})|\leq D\end{subarray}}C^{2}_{S_{1},S_{2}}\sum_{H_{1}\in\mathcal{A}(S_{1}),H_{2}\in\mathcal{A}(S_{2})}{D}^{-40((\tau(S_{1})+\tau(S_{2})-\tau(H_{1})-\tau(H_{2}))}\,.

In addition, for any fixed S1,S2S_{1},S_{2} such that |E(S1)|D|E(S_{1})|\leq D and |E(S2)|D|E(S_{2})|\leq D, by (4.24)

H1𝒜(S1),H2𝒜(S2)D40((τ(S1)+τ(S2)τ(H1)τ(H2))\displaystyle\ \sum_{H_{1}\in\mathcal{A}(S_{1}),H_{2}\in\mathcal{A}(S_{2})}{D}^{-40((\tau(S_{1})+\tau(S_{2})-\tau(H_{1})-\tau(H_{2}))}
\displaystyle\leq k1=0|E(S1)|k2=0|E(S2)|D40(k1+k2)#{(H1,H2):Hi𝒜(Si),τ(Hi)=τ(Si)ki for i=1,2}\displaystyle\ \sum_{k_{1}=0}^{|E(S_{1})|}\sum_{k_{2}=0}^{|E(S_{2})|}D^{-40(k_{1}+k_{2})}\cdot\#\big{\{}(H_{1},H_{2}):H_{i}\in\mathcal{A}(S_{i}),\tau(H_{i})=\tau(S_{i})-k_{i}\mbox{ for }i=1,2\big{\}}
\displaystyle\leq k1=0Dk2=0DD40(k1+k2)D15(k1+k2)2,\displaystyle\ \sum_{k_{1}=0}^{D}\sum_{k_{2}=0}^{D}D^{-40(k_{1}+k_{2})}\cdot D^{15(k_{1}+k_{2})}\leq 2\,,

where the second inequality follows from Lemma A.8 and the last one comes from the fact that D100D\geq 100. Hence, we have 𝔼[(f)2]O(1)S1,S2CS1,S22=O(1)𝔼[f2]\mathbb{E}_{\mathbb{Q}}[(f^{\prime})^{2}]\leq O(1)\cdot\sum_{S_{1},S_{2}}C_{S_{1},S_{2}}^{2}=O(1)\cdot\mathbb{E}_{\mathbb{Q}}[f^{2}], which completes the proof of Proposition 4.5. ∎

4.3 Bounds on \mathbb{P}^{\prime}-moments

To bound the right-hand side of (4.10), we need the following estimation of 𝔼[ϕS1,S2]\mathbb{E}_{\mathbb{P}^{\prime}}[\phi_{S_{1},S_{2}}]. For HSH\subset S, we define 𝙽(S,H)\mathtt{N}(S,H) to be

𝙽(S,H)\displaystyle\mathtt{N}(S,H) =(D28n0.1)12(|(S)V(H)|+τ(S)τ(H))(1δ2)|E(S)||E(H)|.\displaystyle=\big{(}\tfrac{D^{28}}{n^{0.1}}\big{)}^{\frac{1}{2}(|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H))}(1-\tfrac{\delta}{2})^{|E(S)|-|E(H)|}\,. (4.26)
Proposition 4.9.

For all admissible S1,S2𝒦nS_{1},S_{2}\Subset\mathcal{K}_{n} with |E(S1)|,|E(S2)|D|E(S_{1})|,|E(S_{2})|\leq D, we have that |𝔼[ϕS1,S2]|\big{|}\mathbb{E}_{\mathbb{P}^{\prime}}[\phi_{S_{1},S_{2}}]\big{|} is bounded by O(1)O(1) times (note that in the summation below H1,H2H_{1},H_{2} may have isolated vertices)

H1S1,H2S2H1H2(αδ2)|E(H1)|Aut(H1)n|V(H1)|2|(S1,H1)|+|(S2,H2)|𝙽(S1,H1)𝙽(S2,H2)n12(|V(S1)|+|V(S2)||V(H1)||V(H2)|).\displaystyle{}\sum_{\begin{subarray}{c}H_{1}\subset S_{1},H_{2}\subset S_{2}\\ H_{1}\cong H_{2}\end{subarray}}\frac{(\sqrt{\alpha}-\tfrac{\delta}{2})^{|E(H_{1})|}\operatorname{Aut}(H_{1})}{n^{|V(H_{1})|}}*\frac{2^{|\mathfrak{C}(S_{1},H_{1})|+|\mathfrak{C}(S_{2},H_{2})|}\mathtt{N}(S_{1},H_{1})\mathtt{N}(S_{2},H_{2})}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-|V(H_{1})|-|V(H_{2})|)}}\,. (4.27)

For each deterministic permutation π𝔖n\pi\in\mathfrak{S}_{n} and each labeling σ[k]n\sigma\in[k]^{n}, we denote σ,π=(σ=σ,π=π)\mathbb{P}_{\sigma,\pi}^{\prime}=\mathbb{P}^{\prime}(\cdot\mid\sigma_{*}=\sigma,\pi_{*}=\pi), π=(π=π)\mathbb{P}_{\pi}^{\prime}=\mathbb{P}^{\prime}(\cdot\mid\pi_{*}=\pi) and σ=(σ=σ)\mathbb{P}_{\sigma}^{\prime}=\mathbb{P}^{\prime}(\cdot\mid\sigma_{*}=\sigma) respectively. It is clear that

|𝔼[ϕS1,S2]|=|1n!π𝔖n𝔼π[ϕS1,S2]|1n!π𝔖n|𝔼π[ϕS1,S2]|.\displaystyle\ \big{|}\mathbb{E}_{\mathbb{P}^{\prime}}[\phi_{S_{1},S_{2}}]\big{|}=\Big{|}\frac{1}{n!}\sum_{\pi\in\mathfrak{S}_{n}}\mathbb{E}_{\mathbb{P}^{\prime}_{\pi}}[\phi_{S_{1},S_{2}}]\Big{|}\leq\frac{1}{n!}\sum_{\pi\in\mathfrak{S}_{n}}\big{|}\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[\phi_{S_{1},S_{2}}]\big{|}\,. (4.28)

For HSH\subset S, we define

𝙼(S,H)=(D8n0.1)12(|(S)V(H)|+τ(S)τ(H))(1δ2)|E(S)||E(H)|.{}\mathtt{M}(S,H)=\big{(}\tfrac{D^{8}}{n^{0.1}}\big{)}^{\frac{1}{2}(|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H))}(1-\tfrac{\delta}{2})^{|E(S)|-|E(H)|}\,. (4.29)

Then we proceed to provide a delicate estimate on |𝔼π[ϕS1,S2]||\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[\phi_{S_{1},S_{2}}]|, as in the next lemma.

Lemma 4.10.

For any admissible S1,S2𝒦nS_{1},S_{2}\Subset\mathcal{K}_{n} with at most DD edges and for any permutation π\pi on [n][n], denote H1=S1π1(S2)H_{1}=S_{1}\cap\pi^{-1}(S_{2}) and H2=π(S1)S2H_{2}=\pi(S_{1})\cap S_{2}. We have that |𝔼π[ϕS1,S2]|\big{|}\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[\phi_{S_{1},S_{2}}]\big{|} is bounded by O(1)O(1) times

(αδ2)|E(H1)|H1K1S1H2K2S2𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H1)𝙼(K2,H2)n12(|V(S1)|+|V(S2)||V(H1)||V(H2)|).\displaystyle(\sqrt{\alpha}-\tfrac{\delta}{2})^{|E(H_{1})|}\sum_{H_{1}\ltimes K_{1}\subset S_{1}}\sum_{H_{2}\ltimes K_{2}\subset S_{2}}\frac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H_{1})\mathtt{M}(K_{2},H_{2})}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-|V(H_{1})|-|V(H_{2})|)}}\,. (4.30)

The proof of Lemma 4.10 is the most technical part of this paper and we postpone it to Appendix B. Now we can finish the proof of Proposition 4.9.

Proof of Proposition 4.9..

Note that we have

μ({π:S1π1(S2)=H1})[1+o(1)]Aut(H1)n|V(H1)|.{}\mu\big{(}\{\pi:S_{1}\cap\pi^{-1}(S_{2})=H_{1}\}\big{)}\leq[1+o(1)]\cdot\operatorname{Aut}(H_{1})n^{-|V(H_{1})|}\,. (4.31)

Combined with Lemma 4.10, it yields that the right-hand side of (4.28) is bounded by (up to a O(1)O(1) factor)

H1,H2:H1H2H1S1,H2S2Aut(H1)(αδ2)|E(H1)|n|V(H1)|𝙿(S1,H1)𝙿(S2,H2)n12(|V(S1)|+|V(S2)||V(H1)||V(H2)|),\displaystyle\sum_{\begin{subarray}{c}H_{1},H_{2}:H_{1}\cong H_{2}\\ H_{1}\subset S_{1},H_{2}\subset S_{2}\end{subarray}}\frac{\operatorname{Aut}(H_{1})(\sqrt{\alpha}-\tfrac{\delta}{2})^{|E(H_{1})|}}{n^{|V(H_{1})|}}*\frac{\mathtt{P}(S_{1},H_{1})\mathtt{P}(S_{2},H_{2})}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-|V(H_{1})|-|V(H_{2})|)}}\,, (4.32)

where (recall (4.29))

𝙿(S,H)=HKS𝙼(S,K)𝙼(K,H).{}\mathtt{P}(S,H)=\sum_{H\ltimes K\subset S}\mathtt{M}(S,K)\mathtt{M}(K,H)\,. (4.33)

We claim that we have the following estimation, with its proof incorporated in Appendix C.4.

Claim 4.11.

We have 𝙿(S,H)[1+o(1)]2|(S,H)|𝙽(S,H)\mathtt{P}(S,H)\leq[1+o(1)]\cdot 2^{|\mathfrak{C}(S,H)|}\mathtt{N}(S,H).

Note that the estimate as in (4.27) will be obvious if we plug Claim 4.11 into (4.32). ∎

Now we can finally complete our proof of Item (3) of Theorem 2.5.

Proof of Item (3), Theorem 2.5..

Recall Definition 3.1 and (4.8). Note that 𝒪D\mathcal{O}_{D} is an orthonormal basis under \mathbb{Q}. As incorporated in [30, Equation (3.18)], we get from the standard results that

LD2=ϕS1,S2𝒪D(𝔼[ϕS1,S2])2.{}\|L^{\prime}_{\leq D}\|^{2}=\sum_{\phi_{S_{1},S_{2}}\in\mathcal{O}_{D}^{\prime}}\big{(}\mathbb{E}_{\mathbb{P}^{\prime}}[\phi_{S_{1},S_{2}}]\big{)}^{2}\,. (4.34)

Recall (4.33). By Proposition 4.9 and Cauchy-Schwartz inequality, LD2\|L^{\prime}_{\leq D}\|^{2} is upper-bounded by O(1)O(1) times

ϕS1,S2𝒪D(H1S1,H2S2H1H2n0.02|(H1)|𝙽(S1,H1)𝙽(S2,H2))×\displaystyle\sum_{\phi_{S_{1},S_{2}}\in\mathcal{O}^{\prime}_{D}}\Big{(}\sum_{\begin{subarray}{c}H_{1}\subset S_{1},H_{2}\subset S_{2}\\ H_{1}\cong H_{2}\end{subarray}}n^{0.02|\mathcal{I}(H_{1})|}\mathtt{N}(S_{1},H_{1})\mathtt{N}(S_{2},H_{2})\Big{)}\times (4.35)
(H1S1,H2S2H1H2(αδ2)2|E(H1)|Aut(H1)2n2|V(H1)|+0.02|(H1)|4|(S1,H1)|+|(S2,H2)|𝙽(S1,H1)𝙽(S2,H2)n(|V(S1)|+|V(S2)||V(H1)||V(H2)|)).\displaystyle\Big{(}\sum_{\begin{subarray}{c}H_{1}\subset S_{1},H_{2}\subset S_{2}\\ H_{1}\cong H_{2}\end{subarray}}\frac{(\sqrt{\alpha}-\tfrac{\delta}{2})^{2|E(H_{1})|}\operatorname{Aut}(H_{1})^{2}}{n^{2|V(H_{1})|+0.02|\mathcal{I}(H_{1})|}}\cdot\frac{4^{|\mathfrak{C}(S_{1},H_{1})|+|\mathfrak{C}(S_{2},H_{2})|}\mathtt{N}(S_{1},H_{1})\mathtt{N}(S_{2},H_{2})}{n^{(|V(S_{1})|+|V(S_{2})|-|V(H_{1})|-|V(H_{2})|)}}\Big{)}\,.

We firstly bound the bracket in (4.35)\eqref{eq-L-leq-D-relaxation-1.2}. Note that for all HSH\subset S, we have |(S)V(H)||V(S)||V(H)||\mathcal{L}(S)\setminus V(H)|\leq|V(S)|-|V(H)|, and thus |E(S)||E(H)||(S)V(H)|+τ(S)τ(H)|E(S)|-|E(H)|\geq|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H). In addition, HSH\ltimes S provided with S𝒦nS\Subset\mathcal{K}_{n}. Thus, from Lemma A.3 we see that |(S)V(H)|+τ(S)τ(H)|(H)|/2|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)\geq|\mathcal{I}(H)|/2, since all isolated vertices of HH must be endpoints of paths in the decomposition of E(S)E(H)E(S)\setminus E(H) in Lemma A.3. Thus, for any fixed admissible S𝒦nS\Subset\mathcal{K}_{n}, we have that H:HSn0.01|(H)|𝙽(S,H)\sum_{H:H\subset S}n^{0.01|\mathcal{I}(H)|}\mathtt{N}(S,H) is bounded by (recall (4.26))

m0lmr/20n0.01r(1δ2)l(D14n0.05)m#{HS:H is admissible,|(H)|=r,\displaystyle\sum_{m\geq 0}\sum_{l\geq m\geq r/2\geq 0}n^{0.01r}(1-\tfrac{\delta}{2})^{l}\big{(}\tfrac{D^{14}}{n^{0.05}}\big{)}^{m}*\#\Big{\{}H\ltimes S:H\mbox{ is admissible},|\mathcal{I}(H)|=r,
|E(S)||E(H)|=l,|(S)V(H)|+τ(S)τ(H)=m}\displaystyle|E(S)|-|E(H)|=l,|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)=m\Big{\}}
\displaystyle\leq\ j=N+1Dqj0(|𝒞j(S)|qj)(1δ2)jqjmr/20n0.01r(D14n0.05)mD8m\displaystyle\prod_{j=N+1}^{D}\sum_{q_{j}\geq 0}\binom{|\mathcal{C}_{j}(S)|}{q_{j}}(1-\tfrac{\delta}{2})^{jq_{j}}\sum_{m\geq r/2\geq 0}n^{0.01r}\big{(}\tfrac{D^{14}}{n^{0.05}}\big{)}^{m}D^{8m}
\displaystyle\leq\ [1+o(1)]j=N+1D(1+(1δ2)j)|𝒞j(S)|[1+o(1)](1+(1δ2)N)|(S,H)|+|(H)|+2|E(H)|,\displaystyle[1+o(1)]\cdot\prod_{j=N+1}^{D}(1+(1-\tfrac{\delta}{2})^{j})^{|\mathcal{C}_{j}(S)|}\leq[1+o(1)]\cdot(1+(1-\tfrac{\delta}{2})^{N})^{|\mathfrak{C}(S,H)|+|\mathcal{I}(H)|+2|E(H)|}\,,

where the first inequality follows from Lemma A.10 and the last inequality follows from

j=N+1D|𝒞j(S)||𝒞(S)||(S,H)|+|V(H)||(S,H)|+|(H)|+2|E(H)|.\displaystyle\sum_{j=N+1}^{D}|\mathcal{C}_{j}(S)|\leq|\mathcal{C}(S)|\leq|\mathfrak{C}(S,H)|+|V(H)|\leq|\mathfrak{C}(S,H)|+|\mathcal{I}(H)|+2|E(H)|\,.

Thus, we have that

(4.35)[1+o(1)](1+(1δ/2)N)i=1,2(|(Si,Hi)|+|(Hi)|+2|E(Hi)|).\displaystyle\eqref{eq-L-leq-D-relaxation-1.2}\leq[1+o(1)]\cdot\big{(}1+(1-\delta/2)^{N}\big{)}^{\sum_{i=1,2}(|\mathfrak{C}(S_{i},H_{i})|+|\mathcal{I}(H_{i})|+2|E(H_{i})|)}\,. (4.36)

Recall (4.1), (4.34) and Proposition 4.9. By (4.36) and (4.1) (which helps us bounding (1δ/2)N(1-\delta/2)^{N}), we get that LD2\|L^{\prime}_{\leq D}\|^{2} is bounded by O(1)O(1) times (denoted by 𝙽~(S,H)=8|(S,H)|𝙽(S,H)n(|V(S)||V(H)|)\widetilde{\mathtt{N}}(S,H)=\frac{8^{|\mathfrak{C}(S,H)|}\mathtt{N}(S,H)}{n^{(|V(S)|-|V(H)|)}})

(S1,S2):ϕS1,S2𝒪DH1S1,H2S2H1H2(αδ4)2|E(H1)|Aut(H1)2n2|V(H1)|+0.01|(H1)|𝙽~(S1,H1)𝙽~(S2,H2)\displaystyle\sum_{(S_{1},S_{2}):\phi_{S_{1},S_{2}}\in\mathcal{O}_{D}^{\prime}}\sum_{\begin{subarray}{c}H_{1}\subset S_{1},H_{2}\subset S_{2}\\ H_{1}\cong H_{2}\end{subarray}}\frac{(\sqrt{\alpha}-\tfrac{\delta}{4})^{2|E(H_{1})|}\operatorname{Aut}(H_{1})^{2}}{n^{2|V(H_{1})|+0.01|\mathcal{I}(H_{1})|}}\cdot\widetilde{\mathtt{N}}(S_{1},H_{1})\widetilde{\mathtt{N}}(S_{2},H_{2})
=\displaystyle=\ H1H2,H1,H2 admissible|E(H1)|+|E(H2)|D(αδ4)2|E(H1)|Aut(H1)2n2|V(H1)|+0.01|(H1)|(S1,S2):S1,S2𝒦nH1S1,H2S2𝙽~(S1,H1)𝙽~(S2,H2).\displaystyle\sum_{\begin{subarray}{c}H_{1}\cong H_{2},H_{1},H_{2}\text{ admissible}\\ |E(H_{1})|+|E(H_{2})|\leq D\end{subarray}}\frac{(\sqrt{\alpha}-\tfrac{\delta}{4})^{2|E(H_{1})|}\mathrm{Aut}(H_{1})^{2}}{n^{2|V(H_{1})|+0.01|\mathcal{I}(H_{1})|}}\cdot\sum_{\begin{subarray}{c}(S_{1},S_{2}):S_{1},S_{2}\Subset\mathcal{K}_{n}\\ H_{1}\subset S_{1},H_{2}\subset S_{2}\end{subarray}}\widetilde{\mathtt{N}}(S_{1},H_{1})\widetilde{\mathtt{N}}(S_{2},H_{2})\,.

Recall that we use H~1\widetilde{H}_{1} to denote the subgraph of H1H_{1} obtained by removing all the vertices in (H1)\mathcal{I}(H_{1}). For |V(H1)||V(S1)|2D|V(H_{1})|\leq|V(S_{1})|\leq 2D, we have Aut(H1)=Aut(H~1)|(H1)|!(2D)|(H1)|Aut(H~1)\operatorname{Aut}(H_{1})=\operatorname{Aut}(\widetilde{H}_{1})\cdot|\mathcal{I}(H_{1})|!\leq(2D)^{|\mathcal{I}(H_{1})|}\operatorname{Aut}(\widetilde{H}_{1}). Thus, we have that

H1H2,H1,H2 admissible|E(H1)|+|E(H2)|D(αδ4)2|E(H1)|Aut(H1)2n2|V(H1)|+0.01|(H1)|\displaystyle\sum_{\begin{subarray}{c}H_{1}\cong H_{2},H_{1},H_{2}\text{ admissible}\\ |E(H_{1})|+|E(H_{2})|\leq D\end{subarray}}\frac{(\sqrt{\alpha}-\tfrac{\delta}{4})^{2|E(H_{1})|}\mathrm{Aut}(H_{1})^{2}}{n^{2|V(H_{1})|+0.01|\mathcal{I}(H_{1})|}}
\displaystyle\leq\ |E(𝐇)|D,(𝐇)=𝐇 is admissiblej0(H1,H2):H~1H~2𝐇|(H1)|=|(H2)|=jn0.01jAut(𝐇)2(2D)2j(αδ4)2|E(𝐇)|n2(|V(𝐇)|+j)\displaystyle\sum_{\begin{subarray}{c}|E(\mathbf{H})|\leq D,\mathcal{I}(\mathbf{H})=\emptyset\\ \mathbf{H}\textup{ is admissible}\end{subarray}}\sum_{j\geq 0}\ \sum_{\begin{subarray}{c}(H_{1},H_{2}):\widetilde{H}_{1}\cong\widetilde{H}_{2}\cong\mathbf{H}\\ |\mathcal{I}(H_{1})|=|\mathcal{I}(H_{2})|=j\end{subarray}}n^{-0.01j}\cdot\frac{\mathrm{Aut}(\mathbf{H})^{2}(2D)^{2j}(\sqrt{\alpha}-\tfrac{\delta}{4})^{2|E(\mathbf{H})|}}{n^{2(|V(\mathbf{H})|+j)}}
\displaystyle\circeq\ |E(𝐇)|D,(𝐇)=𝐇 is admissible(αδ4)2|E(𝐇)|O(1),\displaystyle\sum_{\begin{subarray}{c}|E(\mathbf{H})|\leq D,\mathcal{I}(\mathbf{H})=\emptyset\\ \mathbf{H}\textup{ is admissible}\end{subarray}}(\sqrt{\alpha}-\tfrac{\delta}{4})^{2|E(\mathbf{H})|}\leq O(1)\,,

where the \circeq follows from #{H𝒦n:H~𝐇,|(H)|=j}n|V(𝐇)|+jAut(𝐇)\#\{H\subset\mathcal{K}_{n}:\widetilde{H}\cong\mathbf{H},|\mathcal{I}(H)|=j\}\circeq\frac{n^{|V(\mathbf{H})|+j}}{\operatorname{Aut}(\mathbf{H})} and the last inequality follows from [30, Lemma A.3]. In order to complete the proof of Item (3), (in light of the preceding two displays) it remains to show that

(S1,S2):S1,S2𝒦nH1S1,H2S2𝙽~(S1;H1)𝙽~(S2;H2)=O(1).{}\sum_{\begin{subarray}{c}(S_{1},S_{2}):S_{1},S_{2}\Subset\mathcal{K}_{n}\\ H_{1}\subset S_{1},H_{2}\subset S_{2}\end{subarray}}\widetilde{\mathtt{N}}(S_{1};H_{1})\widetilde{\mathtt{N}}(S_{2};H_{2})=O(1)\,. (4.37)

From (4.26), we have

𝙽~(S;H)=(D14n0.05)|(S)V(H)|+(τ(S)τ(H))8|(S,H)|(1δ2)|E(S)||E(H)|n(|V(S)||V(H)|).\displaystyle\widetilde{\mathtt{N}}(S;H)=\frac{\big{(}\tfrac{D^{14}}{n^{0.05}}\big{)}^{|\mathcal{L}(S)\setminus V(H)|+(\tau(S)-\tau(H))}8^{|\mathfrak{C}(S,H)|}(1-\tfrac{\delta}{2})^{|E(S)|-|E(H)|}}{n^{(|V(S)|-|V(H)|)}}\,.

Since SS contains no isolated vertex, we have |V(S)||V(H)|2(|E(S)||E(H)|)|V(S)|-|V(H)|\leq 2(|E(S)|-|E(H)|). Then HS𝒦n𝙽~(S;H)\sum_{H\subset S\Subset\mathcal{K}_{n}}\widetilde{\mathtt{N}}(S;H) is further bounded by

r,m,p,q0,mpqq2p(D14n0.05)m8r(1δ/2)pnq#{S admissible:HS𝒦n,(S,H)=r,\displaystyle\sum_{\begin{subarray}{c}r,m,p,q\geq 0,m\geq p-q\\ q\leq 2p\end{subarray}}\frac{\big{(}\tfrac{D^{14}}{n^{0.05}}\big{)}^{m}8^{r}(1-\delta/2)^{p}}{n^{q}}*\#\Big{\{}S\mbox{ admissible}:H\subset S\Subset\mathcal{K}_{n},\mathfrak{C}(S,H)=r,
|(S)V(H)|+τ(S)τ(H)=m,|E(S)||E(H)|=p,|V(S)||V(H)|=q}\displaystyle|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)=m,|E(S)|-|E(H)|=p,|V(S)|-|V(H)|=q\Big{\}}
=\displaystyle= r,m,p,q0,mpqq2p(D14n0.05)m8r(1δ/2)pnqcN+1,,cD:cN+1++cD=rCount(cN+1,,cD),\displaystyle\sum_{\begin{subarray}{c}r,m,p,q\geq 0,m\geq p-q\\ q\leq 2p\end{subarray}}\frac{\big{(}\tfrac{D^{14}}{n^{0.05}}\big{)}^{m}8^{r}(1-\delta/2)^{p}}{n^{q}}\sum_{\begin{subarray}{c}c_{N+1},\ldots,c_{D}:\\ c_{N+1}+\cdots+c_{D}=r\end{subarray}}\operatorname{Count}(c_{N+1},\ldots,c_{D})\,, (4.38)

where Count(cN+1,,cD)\operatorname{Count}(c_{N+1},\ldots,c_{D}) equals to

#{\displaystyle\#\Big{\{} S admissible:HS;|l(S,H)|=cl,lN;|(S)V(H)|+τ(S)τ(H)=m,\displaystyle S\mbox{ admissible}\!:H\subset S;|\mathfrak{C}_{l}(S,H)|=c_{l},l\geq N;|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)=m,
|E(S)||E(H)|=p,|V(S)||V(H)|=q}.\displaystyle|E(S)|-|E(H)|=p,|V(S)|-|V(H)|=q\Big{\}}\,.

In addition, by Lemma A.9 (i.e., (A.7)), we have that (noting that S𝒦nS\Subset\mathcal{K}_{n}, and together with HSH\subset S imply that HSH\ltimes S)

Count(cN+1,,cD)(2D)3mnqplclpj=N+1Djpjl=ND1pl!.\displaystyle\operatorname{Count}(c_{N+1},\ldots,c_{D})\leq(2D)^{3m}n^{q}\sum_{\begin{subarray}{c}p_{l}\geq c_{l}\\ p\geq\sum_{j=N+1}^{D}jp_{j}\end{subarray}}\prod_{l=N}^{D}\frac{1}{p_{l}!}\,. (4.39)

Plugging (4.39) into (4.38), we get that (4.38) is bounded by

cN+1,,cD0plclm,p,q0,mpqpl=N+1Dlpl,q2p(1δ/2)p8cN+1++cD(8D17n0.05)ml=N+1D1pl!\displaystyle\sum_{c_{N+1},\ldots,c_{D}\geq 0}\sum_{p_{l}\geq c_{l}}\sum_{\begin{subarray}{c}m,p,q\geq 0,m\geq p-q\\ p\geq\sum_{l=N+1}^{D}lp_{l},q\leq 2p\end{subarray}}(1-\delta/2)^{p}8^{c_{N+1}+\ldots+c_{D}}\Big{(}\frac{8D^{17}}{n^{0.05}}\Big{)}^{m}\prod_{l=N+1}^{D}\frac{1}{p_{l}!}
=\displaystyle=\ plcl0 for N+1lDpl=N+1Dlpl(1δ/2)p8cN+1++cDl=N+1D1pl!0q2pm(pq)0(8D17n0.05)m\displaystyle\sum_{\begin{subarray}{c}p_{l}\geq c_{l}\geq 0\text{ for }N+1\leq l\leq D\\ p\geq\sum_{l=N+1}^{D}lp_{l}\end{subarray}}(1-\delta/2)^{p}8^{c_{N+1}+\ldots+c_{D}}\prod_{l=N+1}^{D}\frac{1}{p_{l}!}\sum_{\begin{subarray}{c}0\leq q\leq 2p\\ m\geq(p-q)\vee 0\end{subarray}}\Big{(}\frac{8D^{17}}{n^{0.05}}\Big{)}^{m}
\displaystyle\leq\ [1+o(1)]plcl0 for N+1lD8cN+1++cDl=N+1D1pl!pl=N+1Dlpl(2p+1)(1δ/2)p\displaystyle[1+o(1)]\sum_{\begin{subarray}{c}p_{l}\geq c_{l}\geq 0\text{ for }N+1\leq l\leq D\end{subarray}}8^{c_{N+1}+\ldots+c_{D}}\prod_{l=N+1}^{D}\frac{1}{p_{l}!}\sum_{p\geq\sum_{l=N+1}^{D}lp_{l}}(2p+1)(1-\delta/2)^{p}
\displaystyle\leq\ O(1)pl0 for N+1lD(l=N+1Dlpl+1)l=N+1D(1δ/2)lplpl!clpl8cN+1++cD\displaystyle O(1)\cdot\sum_{\begin{subarray}{c}p_{l}\geq 0\text{ for }N+1\leq l\leq D\end{subarray}}\Big{(}\sum_{l=N+1}^{D}lp_{l}+1\Big{)}\prod_{l=N+1}^{D}\frac{(1-\delta/2)^{lp_{l}}}{p_{l}!}\sum_{c_{l}\leq p_{l}}8^{c_{N+1}+\ldots+c_{D}}
\displaystyle\leq\ O(1)pN+1,,pD0(l=N+1Dlpl+1)l=N+1D(10(1δ2)l)plpl!\displaystyle O(1)\cdot\sum_{p_{N+1},\ldots,p_{D}\geq 0}\Big{(}\sum_{l=N+1}^{D}lp_{l}+1\Big{)}\prod_{l=N+1}^{D}\frac{(10(1-\frac{\delta}{2})^{l})^{p_{l}}}{p_{l}!}
\displaystyle\leq\ O(1)pN+1,,pD0l=N+1Dlpl(10(1δ2)l)plpl!=O(1)eO(1)=O(1).\displaystyle O(1)\cdot\sum_{p_{N+1},\ldots,p_{D}\geq 0}\prod_{l=N+1}^{D}\frac{lp_{l}(10(1-\frac{\delta}{2})^{l})^{p_{l}}}{p_{l}!}=O(1)\cdot e^{O(1)}=O(1)\,.

Thus, we have verified (4.37) as desired. ∎

Acknowledgement. J. Ding is partially supported by by National Key R&\&D program of China (No. 2023YFA1010103), NSFC Key Program Project No. 12231002 and an Xplorer prize.

Appendix A Preliminaries on graphs

Lemma A.1.

Let S,T𝒦nS,T\subset\mathcal{K}_{n}. Recall that ST𝒦nS\Cap T\Subset\mathcal{K}_{n} is defined as edge-induced graphs of 𝒦n\mathcal{K}_{n}. We have the following properties:

  1. (i)

    |V(ST)|+|V(ST)||V(S)|+|V(T)|,|E(ST)|+|E(ST)|=|E(S)|+|E(T)||V(S\cup T)|+|V(S\Cap T)|\leq|V(S)|+|V(T)|,|E(S\cup T)|+|E(S\Cap T)|=|E(S)|+|E(T)|.

  2. (ii)

    τ(ST)+τ(ST)τ(S)+τ(T)\tau(S\cup T)+\tau(S\Cap T)\geq\tau(S)+\tau(T) and Φ(ST)Φ(ST)Φ(S)Φ(T)\Phi(S\cup T)\Phi(S\Cap T)\leq\Phi(S)\Phi(T).

  3. (iii)

    |𝙲j(ST)|+|𝙲j(ST)||𝙲j(S)|+|𝙲j(T)||\mathtt{C}_{j}(S\cup T)|+|\mathtt{C}_{j}(S\cap T)|\geq|\mathtt{C}_{j}(S)|+|\mathtt{C}_{j}(T)|.

  4. (iv)

    If STS\subset T, SS is self-bad and V(S)=V(T)V(S)=V(T), then TT is self-bad.

  5. (v)

    If SS and TT are both self-bad, then STS\cup T is self-bad.

Proof.

By definition, we have V(ST)=V(S)V(T)V(S\cup T)=V(S)\cup V(T), E(ST)=E(S)E(T)E(S\cup T)=E(S)\cup E(T) and E(ST)=E(S)E(T)E(S\Cap T)=E(S)\cap E(T). In addition, we have V(ST)V(S)V(T)V(S\Cap T)\subset V(S)\cap V(T); this is because for any iV(ST)i\in V(S\Cap T), there exists some jj such that (i,j)E(ST)(i,j)\in E(S\Cap T) and thus iV(S)V(T)i\in V(S)\cap V(T). Therefore, (i) follows from the inclusion-exclusion formula. Provided with (i), (ii) follows directly from (4.2).

For (iii), since |𝙲j(S)|=C𝙲j(𝒦n)𝟏{CS}|\mathtt{C}_{j}(S)|=\sum_{C\in\mathtt{C}_{j}(\mathcal{K}_{n})}\mathbf{1}_{\{C\subset S\}}, it suffices to show that

𝟏{CS}+𝟏{CT}𝟏{CST}+𝟏{CST},\mathbf{1}_{\{C\subset S\}}+\mathbf{1}_{\{C\subset T\}}\leq\mathbf{1}_{\{C\subset S\cap T\}}+\mathbf{1}_{\{C\subset S\cup T\}}\,,

which can be verified directly.

For (iv), since clearly TT is bad, it remains to show that Φ(K)Φ(T)\Phi(K)\geq\Phi(T) for all KTK\subset T. Denoting V=V(K)V(T)=V(S)V=V(K)\subset V(T)=V(S) and recalling the definition of TV,SVT_{V},S_{V} in the notation section, we have

Φ(K)\displaystyle\Phi(K) Φ(TV)=Φ(SV)(1000λ~20k20D50n)|E(TV)||E(SV)|\displaystyle\geq\Phi(T_{V})=\Phi(S_{V})\cdot\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{|E(T_{V})|-|E(S_{V})|}
Φ(SV)(1000λ~20k20D50n)|E(T)||E(S)|Φ(S)(1000λ~20k20D50n)|E(T)||E(S)|=Φ(T),\displaystyle\geq\Phi(S_{V})\cdot\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{|E(T)|-|E(S)|}\geq\Phi(S)\cdot\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{|E(T)|-|E(S)|}=\Phi(T)\,,

where the first inequality follows from KTVK\subset T_{V}, the second inequality follows from the fact that |E(T)||E(TV)|=|E(TV)||E(SV)|=|E(S)||E(SV)||E(T)|-|E(T_{V})|=|E(T_{\setminus V})|\geq|E(S_{\setminus V})|=|E(S)|-|E(S_{V})|, the third inequality follows from the assumption that SS is self-bad, and the last equality follows from V(S)=V(T)V(S)=V(T). Thus, TT is also self-bad.

Finally, for (v), first note that

Φ(ST)Φ(S)Φ(T)/Φ(ST)Φ(S),\Phi(S\cup T)\leq\Phi(S)\Phi(T)/\Phi(S\Cap T)\leq\Phi(S)\,,

where the first inequality follows from (ii) and the second inequality follows from the assumption that TT is self-bad. This implies that STS\cup T is bad. It remains to show that Φ(ST)Φ(K)\Phi(S\cup T)\leq\Phi(K) for all KSTK\subset S\cup T. Applying (ii) and the assumption that TT is self-bad, we have

Φ(KT)Φ(T)Φ(K)/Φ(KT)Φ(K).\Phi(K\cup T)\leq\Phi(T)\Phi(K)/\Phi(K\Cap T)\leq\Phi(K)\,.

Again, applying (ii) and the assumption that SS is self-bad, we have

Φ(ST)Φ(S)Φ(KT)/Φ(S(KT))Φ(KT).\Phi(S\cup T)\leq\Phi(S)\Phi(K\cup T)/\Phi(S\Cap(K\cup T))\leq\Phi(K\cup T)\,.

Combining the preceding two inequalities yields Φ(K)Φ(KT)Φ(ST)\Phi(K)\geq\Phi(K\cup T)\geq\Phi(S\cup T). ∎

The next few lemmas prove some properties for subgraphs of SS.

Lemma A.2.

For HSH\ltimes S, we have |(S)V(H)|2(τ(H)τ(S))|\mathcal{L}(S)\setminus V(H)|\geq 2(\tau(H)-\tau(S)). In particular, for HSH\ltimes S such that (S)V(H)\mathcal{L}(S)\subset V(H), we have τ(H)τ(S)\tau(H)\leq\tau(S).

Proof.

Without loss of generality, we may assume that SS contains no isolated vertex. Clearly we have V(S)V(H)V(SH)V(S)\setminus V(H)\subset V(S\mathbin{\setminus\mkern-5.0mu\setminus}H) from HSH\ltimes S. We now construct a bipartite graph (𝐕1,𝐕2,𝐄)(\mathbf{V}_{1},\mathbf{V}_{2},\mathbf{E}) as follows: denote 𝐕1=V(SH)\mathbf{V}_{1}=V(S\mathbin{\setminus\mkern-5.0mu\setminus}H) and 𝐕2=E(S)E(H)\mathbf{V}_{2}=E(S)\setminus E(H) (note that each vertex in 𝐕2\mathbf{V}_{2} is an edge in the graph SS) and connect (v,u)𝐕1×𝐕2(v,u)\in\mathbf{V}_{1}\times\mathbf{V}_{2} (that is, let (v,u)𝐄(v,u)\in\mathbf{E}) if and only if vv is incident to the edge uu. We derive the desired inequality by calculating |𝐄||\mathbf{E}| in two different ways. On the one hand, clearly each u𝐕2u\in\mathbf{V}_{2} is connected to exactly two endpoints of uu and thus |𝐄|=2|𝐕2|=2(|E(S)||E(H)|)|\mathbf{E}|=2|\mathbf{V}_{2}|=2(|E(S)|-|E(H)|). On the other hand, each v(S)V(H)v\in\mathcal{L}(S)\setminus V(H) is connected to at least one element in 𝐕2\mathbf{V}_{2}, and each v(V(S)V(H))((S)V(H))v\in(V(S)\setminus V(H))\setminus(\mathcal{L}(S)\setminus V(H)) is connected to at least two elements in 𝐕2\mathbf{V}_{2}. Thus, we have

|𝐄|2|V(S)V(H)||(S)V(H)|=2(|V(S)||V(H)|)|(S)V(H)|,\displaystyle|\mathbf{E}|\geq 2|V(S)\setminus V(H)|-|\mathcal{L}(S)\setminus V(H)|=2(|V(S)|-|V(H)|)-|\mathcal{L}(S)\setminus V(H)|\,,

which yields that |(S)V(H)|2(τ(H)τ(S))|\mathcal{L}(S)\setminus V(H)|\geq 2(\tau(H)-\tau(S)) (recall that |𝐄|=2(|E(S)||E(H)|)|\mathbf{E}|=2(|E(S)|-|E(H)|)). ∎

Lemma A.3.

For HSH\subset S, we can decompose E(S)E(H)E(S)\setminus E(H) into 𝚖\mathtt{m} cycles C𝟷,,C𝚖{C}_{\mathtt{1}},\ldots,{C}_{\mathtt{m}} and 𝚝\mathtt{t} paths P𝟷,,P𝚝{P}_{\mathtt{1}},\ldots,{P}_{\mathtt{t}} for some 𝚖,𝚝0\mathtt{m},\mathtt{t}\geq 0 such that the following hold.

  1. (1)

    C𝟷,,C𝚖{C}_{\mathtt{1}},\ldots,{C}_{\mathtt{m}} are vertex-disjoint (i.e., V(C𝚒)V(C𝚓)=V(C_{\mathtt{i}})\cap V(C_{\mathtt{j}})=\emptyset for all 𝚒𝚓\mathtt{i}\neq\mathtt{j}) and V(C𝚒)V(H)=V(C_{\mathtt{i}})\cap V(H)=\emptyset for all 1𝚒𝚖1\leq\mathtt{i}\leq\mathtt{m}.

  2. (2)

    EndP(P𝚓)V(H)(𝚒=1𝚖V(C𝚒))(𝚔=1𝚓1V(P𝚔))(S)\operatorname{EndP}({P}_{\mathtt{j}})\subset V(H)\cup(\cup_{\mathtt{i}=1}^{\mathtt{m}}V(C_{\mathtt{i}}))\cup(\cup_{\mathtt{k}=1}^{\mathtt{j}-1}V(P_{\mathtt{k}}))\cup\mathcal{L}(S) for 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t}.

  3. (3)

    (V(P𝚓)EndP(P𝚓))(V(H)(𝚒=1𝚖V(C𝚒))(𝚔=1𝚓1V(P𝚔))(S))=\big{(}V(P_{\mathtt{j}})\setminus\operatorname{EndP}(P_{\mathtt{j}})\big{)}\cap\big{(}V(H)\cup(\cup_{\mathtt{i}=1}^{\mathtt{m}}V(C_{\mathtt{i}}))\cup(\cup_{\mathtt{k}=1}^{\mathtt{j}-1}V(P_{\mathtt{k}}))\cup\mathcal{L}(S)\big{)}=\emptyset for 𝟷𝚓𝚝\mathtt{1}\leq\mathtt{j}\leq\mathtt{t}.

  4. (4)

    𝚝=|(S)V(H)|+τ(S)τ(H)\mathtt{t}=|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H).

Proof.

We prove our lemma when (S)V(H)\mathcal{L}(S)\subset V(H) first. If SS can be decomposed into connected components S=S1S2SrS=S_{1}\sqcup S_{2}\ldots\sqcup S_{r} and HSi=HiH\cap S_{i}=H_{i}, then it suffices to show the results for each (Hi,Si)(H_{i},S_{i}) since (Si)V(Hi)\mathcal{L}(S_{i})\subset V(H_{i}). Thus, we may assume without loss of generality that SS is connected. We initialize 𝒫=𝒞=\mathcal{P}=\mathcal{C}=\emptyset and perform the following procedure until 𝒫𝒞¯:=(P𝒫P)(C𝒞C)\overline{\mathcal{P}\cup\mathcal{C}}:=(\cup_{P\in\mathcal{P}}P)\cup(\cup_{C\in\mathcal{C}}C) contains all edges in E(S)E(H)E(S)\setminus E(H).

(1) As long as there exists a cycle CC such that V(C)V(S)(V(H)V(𝒞))V(C)\subset V(S)\setminus(V(H)\cup V(\mathcal{C})), we update 𝒞\mathcal{C} by adding CC to it.

(2) After Step (1) is finished, as long as E(S)E(H)E(𝒫𝒞¯)E(S)\setminus E(H)\not\subset E(\overline{\mathcal{P}\cup\mathcal{C}}), we may construct a path PS(H𝒫𝒞¯)P\subset S\mathbin{\setminus\mkern-5.0mu\setminus}(H\cup\overline{\mathcal{P}\cup\mathcal{C}}) such that V(P)(V(𝒫)V(H)V(𝒞))=EndP(P)V(P)\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))=\operatorname{EndP}(P) as follows (here we slightly abuse the notation by V(𝒫)=V(P𝒫P)V(\mathcal{P})=V(\cup_{P\in\mathcal{P}}P), and we will do the same for 𝒞\mathcal{C} and for EE). First, choose an arbitrary edge 𝚎=(𝚞0,𝚟0)E(S(H𝒫𝒞¯))\mathtt{e}=(\mathtt{u}_{0},\mathtt{v}_{0})\in E(S\mathbin{\setminus\mkern-5.0mu\setminus}(H\cup\overline{\mathcal{P}\cup\mathcal{C}})). Then, starting from P(1)={𝚎}P^{(1)}=\{\mathtt{e}\}, for i1i\geq 1 we replace P(i)P^{(i)} by P(i+1)=P(i){𝚏}P^{(i+1)}\overset{\triangle}{=}P^{(i)}\cup\{\mathtt{f}\} whenever there exists an edge 𝚏E(S(H𝒫𝒞¯))\mathtt{f}\in E(S\mathbin{\setminus\mkern-5.0mu\setminus}(H\cup\overline{\mathcal{P}\cup\mathcal{C}})) incident to EndP(P(i))\operatorname{EndP}(P^{(i)}) such that V(P(i){𝚏})(V(𝒫)V(H)V(𝒞))EndP(P(i){𝚏})V(P^{(i)}\cup\{\mathtt{f}\})\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))\subset\operatorname{EndP}(P^{(i)}\cup\{\mathtt{f}\}) (see the left-hand side of Figure 1 for an illustration). Clearly this sub-procedure will stop at some point and we suppose that it yields a path PP with endpoints u,vu,v. We claim u,vV(𝒫)V(𝒞)V(H)u,v\in V(\mathcal{P})\cup V(\mathcal{C})\cup V(H). Since Step (i) was completed, PP is not a cycle disjoint with V(H)V(𝒞)V(H)\cup V(\mathcal{C}). Thus, when |EndP(P)|=1|\operatorname{EndP}(P)|=1 we have V(P)(V(𝒫)V(H)V(𝒞))EndP(P)\emptyset\neq V(P)\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))\subset\operatorname{EndP}(P), and as a result u=vV(𝒫)V(H)V(𝒞)u=v\in V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}). When |EndP(P)|=2|\operatorname{EndP}(P)|=2, we prove our claim by contradiction, for which we suppose uV(𝒫)V(H)V(𝒞)u\notin V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}). Then we have u(S)u\notin\mathcal{L}(S) since (S)V(H)\mathcal{L}(S)\subset V(H). Thus, there exists wV(S)w\in V(S) such that (u,w)E(S)E(P)(u,w)\in E(S)\setminus E(P). If wV(P){v}w\in V(P)\setminus\{v\}, by V(P)(V(𝒫)V(H)V(𝒞))EndP(P)V(P)\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))\subset\operatorname{EndP}(P) we have wV(𝒫)V(H)V(𝒞)w\not\in V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}). In this case, PP contains a cycle disjoint with V(H)V(𝒞)V(H)\cup V(\mathcal{C}), which contradicts to (i). Thus, wV(P){v}w\not\in V(P)\setminus\{v\}. But in this case, the sub-procedure for producing PP would not have stopped at uu (as it should extend ww at least; see the right-hand side of Figure 1 for an illustration); this implies that uu is not an endpoint of PP, arriving at a contradiction. Therefore, we have that uV(𝒫)V(H)V(𝒞)u\in V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}). By symmetry we know u,vV(𝒫)V(H)V(𝒞)u,v\in V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}). Hence

V(P)(V(𝒫)V(H)V(𝒞))EndP(P)V(P)(V(𝒫)V(H)V(𝒞)),V(P)\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))\subset\operatorname{EndP}(P)\subset V(P)\cap(V(\mathcal{P})\cup V(H)\cup V(\mathcal{C}))\,,

which yields that PP satisfies our conditions. Therefore, we can update 𝒫\mathcal{P} by putting PP in it.

Refer to caption
Figure 1: Construction of Paths

When the procedure stops, we obtain the following:

𝒞={C1,,C𝚖} and 𝒫={P1,,P𝚝}.\mathcal{C}=\{{C}_{1},\ldots,{C}_{\mathtt{m}}\}\mbox{ and }\mathcal{P}=\{{P}_{1},\ldots,{P}_{\mathtt{t}}\}\,. (A.1)

Now we verify this choice of 𝒞,𝒫\mathcal{C},\mathcal{P} satisfies (1)–(4). (1), (2) and (3) are straightforward by our procedure. For (4), note that we may track the update of τ(H𝒫𝒞¯)\tau(H\cup\overline{\mathcal{P}\cup\mathcal{C}}) through our whole procedure when performing an update resulted from adding C𝚒C_{\mathtt{i}} or P𝚓P_{\mathtt{j}}: τ(H𝒫𝒞¯)\tau(H\cup\overline{\mathcal{P}\cup\mathcal{C}}) remains unchanged in each update from C𝚒C_{\mathtt{i}}, and τ(H𝒫𝒞¯)\tau(H\cup\overline{\mathcal{P}\cup\mathcal{C}}) increases by 1 in each update from P𝚓P_{\mathtt{j}}. Therefore, the total increase of τ(H𝒫𝒞¯)\tau(H\cup\overline{\mathcal{P}\cup\mathcal{C}}) through our whole procedure is 𝚝\mathtt{t}, which proves (4).

For general cases, we finish our proof by applying the preceding proof to HleafSH_{\operatorname{leaf}}\subset S such that E(Hleaf)=E(H)E(H_{\operatorname{leaf}})=E(H) and V(Hleaf)=V(H)(S)V(H_{\operatorname{leaf}})=V(H)\cup\mathcal{L}(S). ∎

Corollary A.4.

For HSH\subset S, we can decompose E(S)E(H)E(S)\setminus E(H) into 𝚖\mathtt{m} cycles C𝟷,,C𝚖{C}_{\mathtt{1}},\ldots,{C}_{\mathtt{m}} and 𝚝\mathtt{t} paths P𝟷,,P𝚝{P}_{\mathtt{1}},\ldots,{P}_{\mathtt{t}} for some 𝚖,𝚝0\mathtt{m},\mathtt{t}\geq 0 such that the following hold.

  1. (1)

    C𝟷,,C𝚖{C}_{\mathtt{1}},\ldots,{C}_{\mathtt{m}} are independent cycles in SS.

  2. (2)

    V(P𝚓)(V(H)(𝚒=1𝚖V(C𝚒))(𝚔𝚓V(P𝚔))(S))=EndP(P𝚓)V(P_{\mathtt{j}})\cap\big{(}V(H)\cup(\cup_{\mathtt{i}=1}^{\mathtt{m}}V(C_{\mathtt{i}}))\cup(\cup_{\mathtt{k}\neq\mathtt{j}}V(P_{\mathtt{k}}))\cup\mathcal{L}(S)\big{)}=\operatorname{EndP}(P_{\mathtt{j}}) for 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t}.

  3. (3)

    𝚝5(|(S)V(H)|+τ(S)τ(H))\mathtt{t}\leq 5(|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)).

Proof.

We prove our corollary when (S)V(H)\mathcal{L}(S)\subset V(H) first. Using Lemma A.3, we can decompose E(S)E(H)E(S)\setminus E(H) into 𝚖\mathtt{m}^{\prime} cycles and 𝚝=τ(S)τ(H)\mathtt{t}^{\prime}=\tau(S)-\tau(H) paths satisfying (1)–(4) in Lemma A.3. Denote 𝙸={𝟷𝚒𝚖:C𝚒𝒞(S)}\mathtt{I}=\{\mathtt{1}\leq\mathtt{i}\leq\mathtt{m}^{\prime}:C_{\mathtt{i}}\not\in\mathcal{C}(S)\}. For each 𝚒𝙸\mathtt{i}\in\mathtt{I}, writing

X𝚒=#(V(C𝚒)(𝚓=1𝚝EndP(P𝚓))),X_{\mathtt{i}}=\#\big{(}V(C_{\mathtt{i}})\cap(\cup_{\mathtt{j}=1}^{\mathtt{t}^{\prime}}\operatorname{EndP}(P_{\mathtt{j}}))\big{)}\,,

we then have 𝚒𝙸Xi2𝚝\sum_{\mathtt{i}\in\mathtt{I}}X_{i}\leq 2\mathtt{t}^{\prime}. Thus, we can decompose {C𝚒:𝚒𝙸}\{C_{\mathtt{i}}:\mathtt{i}\in\mathtt{I}\} into at most 2𝚝2\mathtt{t}^{\prime} paths P~1,,P~2𝚝\widetilde{P}_{1},\ldots,\widetilde{P}_{2\mathtt{t}^{\prime}}, with their endpoints in 𝚓=1𝚝EndP(P𝚓)\cup_{\mathtt{j}=1}^{\mathtt{t}^{\prime}}\operatorname{EndP}(P_{\mathtt{j}}). Now set 𝒞={C𝚒:𝚒𝙸}\mathcal{C}=\{C_{\mathtt{i}}:\mathtt{i}\not\in\mathtt{I}\} and initialize 𝒫={P~1,,P~2𝚝}\mathcal{P}=\{\widetilde{P}_{1},\ldots,\widetilde{P}_{2\mathtt{t}^{\prime}}\}. Next for 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t}^{\prime}, we perform the following procedure: (a) for each uEndP(P𝚓)IntP(𝒫)u\in\operatorname{EndP}(P_{\mathtt{j}})\cap\operatorname{IntP}(\mathcal{P}) where IntP(𝒫)=(P𝒫V(P))(p𝒫EndP(P))\operatorname{IntP}(\mathcal{P})=\big{(}\cup_{P\in\mathcal{P}}V(P)\big{)}\setminus\big{(}\cup_{p\in\mathcal{P}}\operatorname{EndP}(P)\big{)}, we find Pu𝒫P^{u}\in\mathcal{P} such that uV(Pu)u\in V(P^{u}) and break PuP^{u} at uu into two sub-paths Pu(1)P^{u}(1), Pu(2)P^{u}(2); (b) we update 𝒫\mathcal{P} by removing PuP^{u} and adding Pu(1),Pu(2)P^{u}(1),P^{u}(2) for each uEndP(P𝚓)EndP(𝒫)u\in\operatorname{EndP}(P_{\mathtt{j}})\setminus\operatorname{EndP}(\mathcal{P}); (c) we update 𝒫\mathcal{P} by adding P𝗃P_{\mathsf{j}}. Since |EndP(P𝚓)|2|\operatorname{EndP}(P_{\mathtt{j}})|\leq 2, the whole procedure for each 𝚓\mathtt{j} increases |𝒫||\mathcal{P}| by 33 at most.

After completing the aforementioned procedures for 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t}^{\prime}, we finally obtain 𝒫={P𝟷,,P𝚝}\mathcal{P}=\{P_{\mathtt{1}},\ldots,P_{\mathtt{t}}\}. From our construction, we see that 𝒫\mathcal{P} satisfies (1) and (2). As for (3), it holds since |𝒫|2𝚝+3𝚝=5𝚝|\mathcal{P}|\leq 2\mathtt{t}^{\prime}+3\mathtt{t}^{\prime}=5\mathtt{t}^{\prime}. This completes our proof when (S)V(H)\mathcal{L}(S)\subset V(H).

For general cases, we complete our proof by applying the preceding proof to HleafSH_{\operatorname{leaf}}\subset S such that E(Hleaf)=E(H)E(H_{\operatorname{leaf}})=E(H) and V(Hleaf)=V(H)(S)V(H_{\operatorname{leaf}})=V(H)\cup\mathcal{L}(S). ∎

Remark A.5.

Note that in the special case where (S)V(H)\mathcal{L}(S)\subset V(H), we may further require that for each uEndP(P𝚓)V(H)u\in\operatorname{EndP}(P_{\mathtt{j}})\setminus V(H), there are at least 33 different P𝚒P_{\mathtt{i}}’s having uu as endpoints. Otherwise, uu is exactly the endpoint of two paths P𝚒,P𝚓P_{\mathtt{i}},P_{\mathtt{j}}, and we can merge P𝚒P_{\mathtt{i}} and P𝚓P_{\mathtt{j}} into a longer path.

The next few lemmas deal with enumerations of specific graphs, which will take advantage of previous results in this section.

Lemma A.6.

Given a vertex set 𝖠\mathsf{A} with |𝖠|D|\mathsf{A}|\leq D, we have

#{(C𝟷,,C𝚖;P𝟷,,P𝚝):C𝚒’s are vertex disjoint cycles also vertex disjoint from 𝖠,\displaystyle\#\Big{\{}(C_{\mathtt{1}},\ldots,C_{\mathtt{m}};P_{\mathtt{1}},\ldots,P_{\mathtt{t}}):C_{\mathtt{i}}\text{'s are vertex disjoint cycles also vertex disjoint from }\mathsf{A},
P𝚓’s are paths;#((𝚒V(C𝚒))(𝚓V(P𝚓)))2D;#{𝚒:|V(C𝚒)|=x}=px,|E(P𝚓)|=q𝚓}\displaystyle P_{\mathtt{j}}\text{'s are paths};\#\big{(}(\cup_{\mathtt{i}}V(C_{\mathtt{i}}))\cup(\cup_{\mathtt{j}}V(P_{\mathtt{j}}))\big{)}\leq 2D;\#\{\mathtt{i}:|V(C_{\mathtt{i}})|=x\}=p_{x},|E(P_{\mathtt{j}})|=q_{\mathtt{j}}\Big{\}}
(2D)2𝚝xnxpxpx!𝚓=1𝚝nq𝚓1.\displaystyle\leq(2D)^{2\mathtt{t}}\prod_{x}\frac{n^{xp_{x}}}{p_{x}!}\prod_{\mathtt{j}=1}^{\mathtt{t}}n^{q_{\mathtt{j}}-1}\,.
Proof.

Clearly, the enumeration of {C𝟷,,C𝚖}\{C_{\mathtt{1}},\ldots,C_{\mathtt{m}}\} is bounded by xnxpxpx!\prod_{x}\frac{n^{xp_{x}}}{p_{x}!}. In addition, given {C𝟷,,C𝚖,P𝟷,,P𝚓1}\{C_{\mathtt{1}},\ldots,C_{\mathtt{m}},P_{\mathtt{1}},\ldots,P_{\mathtt{j}-1}\}, we have at most (2D)2(2D)^{2} choices for the possible endpoints of P𝚓P_{\mathtt{j}} (Here we use the bound on #((𝚒V(C𝚒))(𝚓V(P𝚓)))\#\big{(}(\cup_{\mathtt{i}}V(C_{\mathtt{i}}))\cup(\cup_{\mathtt{j}}V(P_{\mathtt{j}}))\big{)}), and at most nq𝚓1n^{q_{\mathtt{j}}-1} choices for V(P𝚓)EndP(P𝚓)V(P_{\mathtt{j}})\setminus\operatorname{EndP}(P_{\mathtt{j}}). Thus, given {C𝟷,,C𝚖}\{C_{\mathtt{1}},\ldots,C_{\mathtt{m}}\}, the enumeration of {P𝟷,,P𝚝}\{P_{\mathtt{1}},\ldots,P_{\mathtt{t}}\} is bounded by

𝚓=1𝚝(2D)2nq𝚓1=(2D)2𝚝nq1++q𝚝𝚝,\displaystyle\prod_{\mathtt{j}=1}^{\mathtt{t}}(2D)^{2}n^{q_{\mathtt{j}}-1}=(2D)^{2\mathtt{t}}n^{q_{1}+\ldots+q_{\mathtt{t}}-\mathtt{t}}\,,

and the desired result follows from the multiplication principle. ∎

Lemma A.7.

For H𝒦nH\subset\mathcal{K}_{n} with |E(H)|D|E(H)|\leq D, we have

#{\displaystyle\#\Big{\{} S:HS,|E(S)|D,|E(S)||E(H)|=+κ,τ(S)τ(H)=;\displaystyle S:H\ltimes S,|E(S)|\leq D,|E(S)|-|E(H)|=\ell+\kappa,\tau(S)-\tau(H)=\ell; (A.2)
(S)V(H),j>N𝒞j(S)H}(2D)4nκ3p3++NpNκ+lj=3N1pj!.\displaystyle\mathcal{L}(S)\subset V(H),\cup_{j>N}\mathcal{C}_{j}(S)\subset H\Big{\}}\leq(2D)^{4\ell}n^{\kappa}\sum_{3p_{3}+\ldots+Np_{N}\leq\kappa+l}\prod_{j=3}^{N}\frac{1}{p_{j}!}\,.
Proof.

Take SS as an element in the set of (A.2). Using Lemma A.3, we can write (for some 𝚖0\mathtt{m}\geq 0)

SH=(𝚒=1𝚖C𝚒)(𝚓=1P𝚓),S\mathbin{\setminus\mkern-5.0mu\setminus}H=\big{(}\sqcup_{\mathtt{i}=1}^{\mathtt{m}}C_{\mathtt{i}}\big{)}\bigsqcup\big{(}\sqcup_{\mathtt{j}=1}^{\ell}P_{\mathtt{j}}\big{)}\,,

where {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} is a collection of disjoint cycles and {P𝚓:1𝚓}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\ell\} is a collection of paths satisfying (1)–(4) in Lemma A.3. In addition, since V(𝒞j(S))V(H)V(\mathcal{C}_{j}(S))\subset V(H) for all j>Nj>N, for each C𝚒C_{\mathtt{i}} with |V(C𝚒)|>N|V(C_{\mathtt{i}})|>N, from Item (3) in Lemma A.3 there must exist P𝚓P_{\mathtt{j}} such that End(P𝚓)V(C𝚒)\operatorname{End}(P_{\mathtt{j}})\cap V(C_{\mathtt{i}})\neq\emptyset (since independent cycles with length at least N+1N+1 are contained in HH). This yields that

#{𝚒:|V(C𝚒)|>N}2.{}\#\big{\{}\mathtt{i}:|V(C_{\mathtt{i}})|>N\big{\}}\leq 2\ell\,. (A.3)

We are now ready to prove (A.2) by bounding the enumeration of {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} and {P𝚓:1𝚓}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\ell\}. To this end, we assume px=#{𝚒:|V(C𝚒)|=x}p_{x}=\#\{\mathtt{i}:|V(C_{\mathtt{i}})|=x\} and q𝚓=|E(P𝚓)|q_{\mathtt{j}}=|E(P_{\mathtt{j}})|. Then we have

i=3κipi+𝚓=1q𝚓=|E(SH)|=+κ.{}\sum_{i=3}^{\kappa}ip_{i}+\sum_{\mathtt{j}=1}^{\ell}q_{\mathtt{j}}=|E(S\mathbin{\setminus\mkern-5.0mu\setminus}H)|=\ell+\kappa\,. (A.4)

We first fix p3,,pκp_{3},\ldots,p_{\kappa} and q𝟷,,qq_{\mathtt{1}},\ldots,q_{\ell}. Applying Lemma A.6 with 𝖠=V(H)\mathsf{A}=V(H) we get that the enumeration of {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} and {P𝚓:1𝚓}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\ell\} is bounded by

(2D)2nq1++q+3p3++κpκi=3κ1pi!=(2D)2nκi=3N1pi!,(2D)^{2\ell}n^{q_{1}+\ldots+q_{\ell}+3p_{3}+\ldots+\kappa p_{\kappa}-\ell}\prod_{i=3}^{\kappa}\frac{1}{p_{i}!}=(2D)^{2\ell}n^{\kappa}\prod_{i=3}^{N}\frac{1}{p_{i}!}\,, (A.5)

We next bound the enumeration on p3,,pκp_{3},\ldots,p_{\kappa} and q1,,qq_{1},\ldots,q_{\ell} satisfying (A.3) and (A.4). Note that

#{(pN+1,,pκ,q1,,q):pN+1++pκ2,q1++q+κ}\displaystyle\#\big{\{}(p_{N+1},\ldots,p_{\kappa},q_{1},\ldots,q_{\ell}):p_{N+1}+\ldots+p_{\kappa}\leq 2\ell,q_{1}+\ldots+q_{\ell}\leq\ell+\kappa\big{\}}
κ2(+κ)(2D)2,\displaystyle\leq\kappa^{2\ell}\cdot(\ell+\kappa)^{\ell}\leq(2D)^{2\ell}\,,

where the last inequality follows from κ,|E(S)|D\kappa,\ell\leq|E(S)|\leq D. Combined with (A.5), this completes the proof of the lemma. ∎

Lemma A.8.

For S𝒦nS\subset\mathcal{K}_{n} with |E(S)|D|E(S)|\leq D, we have

#{\displaystyle\#\Big{\{} H:HS,𝙲j(H)= for jN;τ(S)τ(H)=,\displaystyle H:H\ltimes S,\mathtt{C}_{j}(H)=\emptyset\mbox{ for }j\leq N;\tau(S)-\tau(H)=\ell, (A.6)
(S)(j>NV(𝒞j(S)))V(H)}2D15.\displaystyle\mathcal{L}(S)\cup(\cup_{j>N}V(\mathcal{C}_{j}(S)))\subset V(H)\Big{\}}\leq 2D^{15\ell}\,.
Proof.

Take HH as an element in the set of (A.6). Using Corollary A.4, we have SHS\mathbin{\setminus\mkern-5.0mu\setminus}H can be written as (for some 𝚖,𝚝0\mathtt{m},\mathtt{t}\geq 0)

SH=(𝚒=1𝚖C𝚒)(𝚓=1𝚝P𝚓),S\mathbin{\setminus\mkern-5.0mu\setminus}H=\big{(}\sqcup_{\mathtt{i}=1}^{\mathtt{m}}C_{\mathtt{i}}\big{)}\bigsqcup\big{(}\sqcup_{\mathtt{j}=1}^{\mathtt{t}}P_{\mathtt{j}}\big{)}\,,

where {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} is a collection of independent cycles of SS and {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\} is a collection of paths satisfying (1)–(3) in Corollary A.4. Thus, in order to bound the enumeration of HH it suffices to bound the enumeration of {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} and {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\}. In addition, since for any valid HH we have 𝙲j(H)=\mathtt{C}_{j}(H)=\emptyset for jNj\leq N and j>NV(𝒞j(S))V(H)\cup_{j>N}V(\mathcal{C}_{j}(S))\subset V(H), the choice of {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} is fixed given {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\}. Thus, it suffices to upper-bound the total enumeration of {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\}. Given 𝚝5(τ(S)τ(H))=5\mathtt{t}\leq 5(\tau(S)-\tau(H))=5\ell, for each 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t}, the enumeration of EndP(P𝚓)\operatorname{EndP}(P_{\mathtt{j}}) is bounded by D2D^{2}. In addition, given EndP(P𝚓)\operatorname{EndP}(P_{\mathtt{j}}), since (by (2) in Corollary A.4) the vertices in V(P𝚓)EndP(P𝚓)V(P_{\mathtt{j}})\setminus\operatorname{EndP}(P_{\mathtt{j}}) have exactly degree 22 in SS, the enumeration of P𝚓P_{\mathtt{j}} is bounded by DD (since once you choose the vertex right after the starting point of P𝚓P_{\mathtt{j}}, the whole path is determined). Thus, the total enumeration of {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\} is bounded by

𝚝5D3𝚝2D15,\sum_{\mathtt{t}\leq 5\ell}D^{3\mathtt{t}}\leq 2D^{15\ell}\,,

finishing the proof of the lemma. ∎

Lemma A.9.

For H𝒦nH\subset\mathcal{K}_{n}, we have (below we write 𝔓={(pN+1,,pD):i=N+1Dpip,plcl for all N+1lD}\mathfrak{P}=\{(p_{N+1},\ldots,p_{D}):\sum_{i=N+1}^{D}p_{i}\leq p,p_{l}\geq c_{l}\text{ for all }N+1\leq l\leq D\})

#{S admissible:HS;|l(S,H)|=cl for l>N;|(S)V(H)|+τ(S)τ(H)=m;\displaystyle\#\Big{\{}S\mbox{ admissible}\!:H\ltimes S;|\mathfrak{C}_{l}(S,H)|=c_{l}\mbox{ for }l>N;|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)=m;
|E(S)||E(H)|=p,|V(S)||V(H)|=q,|E(S)|D}(2D)3mnq(pN+1,,pD)𝔓j=N+1D1pj!.\displaystyle|E(S)|-|E(H)|=p,|V(S)|-|V(H)|=q,|E(S)|\leq D\Big{\}}\leq(2D)^{3m}n^{q}\sum_{(p_{N+1},\ldots,p_{D})\in\mathfrak{P}}\prod_{j=N+1}^{D}\frac{1}{p_{j}!}\,. (A.7)
Proof.

Take SS as an element in the set of (A.7). By Lemma A.3, we can decompose SHS\mathbin{\setminus\mkern-5.0mu\setminus}H as

SH=(𝚒=1𝚝C𝚒)(𝚓=1mP𝚓),S\mathbin{\setminus\mkern-5.0mu\setminus}H=\big{(}\sqcup_{\mathtt{i}=1}^{\mathtt{t}}C_{\mathtt{i}}\big{)}\bigsqcup\big{(}\sqcup_{\mathtt{j}=1}^{m}P_{\mathtt{j}}\big{)}\,,

where {C𝚒:1𝚒𝚝}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{t}\} is a collection of disjoint cycles and {P𝚓:1𝚓m}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq m\} is a collection of paths satisfying (1)–(4) in Lemma A.3. In addition, we have |V(C𝚒)|>N|V(C_{\mathtt{i}})|>N for 1𝚒𝚝1\leq\mathtt{i}\leq\mathtt{t} since SS is admissible. As before, it suffices to bound the enumeration of {C𝚒:1𝚒𝚝}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{t}\} and {P𝚓:1𝚓m}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq m\}. To this end, we assume px=#{𝚒:|V(C𝚒)|=x}p_{x}=\#\{\mathtt{i}:|V(C_{\mathtt{i}})|=x\} and q𝚓=|E(P𝚓)|q_{\mathtt{j}}=|E(P_{\mathtt{j}})|. Then we have

i=N+1Dipi+𝚓=1mq𝚓=|E(S)||E(H)|=p and pici for N+1iD.{}\sum_{i=N+1}^{D}ip_{i}+\sum_{\mathtt{j}=1}^{m}q_{\mathtt{j}}=|E(S)|-|E(H)|=p\mbox{ and }p_{i}\geq c_{i}\mbox{ for }N+1\leq i\leq D\,. (A.8)

Thus, any valid choice of pN+1,,pDp_{N+1},\ldots,p_{D} and q1,,qmq_{1},\ldots,q_{m} satisfies that j=1mqjp\sum_{j=1}^{m}q_{j}\leq p, implying that the enumeration of valid q1,,qmq_{1},\ldots,q_{m} is bounded by (2D)m(2D)^{m}. For each valid q1,,qmq_{1},\ldots,q_{m}, we fix pN+1,,pDp_{N+1},\ldots,p_{D} such that (A.8) holds. Clearly, we have (pN+1,,pD)𝔓(p_{N+1},\ldots,p_{D})\in\mathfrak{P}. We now bound the enumeration of SS provided with fixed pN+1,,pDp_{N+1},\ldots,p_{D} and q1,,qmq_{1},\ldots,q_{m}. Noting that |(S)V(H)|=mp+q|\mathcal{L}(S)\setminus V(H)|=m-p+q, we have at most nmp+qn^{m-p+q} choices for (S)V(H)\mathcal{L}(S)\setminus V(H). Given (S)V(H)\mathcal{L}(S)\setminus V(H), applying Lemma A.6 with 𝖠=V(H)((S)V(H))\mathsf{A}=V(H)\cup(\mathcal{L}(S)\setminus V(H)) we get that the enumeration of {C𝚒:1𝚒𝚝}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{t}\} and {P𝚓:1𝚓m}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq m\} is bounded by

(2D)2mnq1++qm+(N+1)pN+1++DpDmi=N+1D1pi!.\displaystyle(2D)^{2m}n^{q_{1}+\ldots+q_{m}+(N+1)p_{N+1}+\ldots+Dp_{D}-m}\prod_{i=N+1}^{D}\frac{1}{p_{i}!}\,.

Thus, (given pN+1,,pDp_{N+1},\ldots,p_{D} and q𝟷,,qmq_{\mathtt{1}},\ldots,q_{m}) the total enumeration of {C𝚒:1𝚒𝚝}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{t}\} and {P𝚓:1𝚓m}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq m\} is bounded by

(2D)2mnmp+q+q1++qm+(N+1)pN+1++DpDmi=N+1D1pi!=(2D)2mnqi=N+1D1pi!.\displaystyle(2D)^{2m}n^{m-p+q+q_{1}+\ldots+q_{m}+(N+1)p_{N+1}+\ldots+Dp_{D}-m}\prod_{i=N+1}^{D}\frac{1}{p_{i}!}=(2D)^{2m}n^{q}\prod_{i=N+1}^{D}\frac{1}{p_{i}!}\,.

Combined with preceding discussions on the enumeration for q1,,qmq_{1},\ldots,q_{m} and the requirement for pN+1,,pDp_{N+1},\ldots,p_{D}, this implies the desired bound as in (A.7). ∎

Lemma A.10.

For an admissible SS with |E(S)|D|E(S)|\leq D, we have

#{\displaystyle\#\Big{\{} H:HS,|(S)V(H)|+τ(S)τ(H)=m,\displaystyle H:H\ltimes S,|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H)=m, (A.9)
j(S;H)=mj,N+1jD}D15mj=N+1D(|𝒞j(S)|mj).\displaystyle\mathfrak{C}_{j}(S;H)=m_{j},N+1\leq j\leq D\Big{\}}\leq D^{15m}\prod_{j=N+1}^{D}\binom{|\mathcal{C}_{j}(S)|}{m_{j}}\,.
Proof.

Take HH as an element in the set of (A.9). Using Corollary A.4, we have SHS\mathbin{\setminus\mkern-5.0mu\setminus}H can be written as

SH=(𝚒=1𝚖C𝚒)(𝚓=1𝚝P𝚓),S\mathbin{\setminus\mkern-5.0mu\setminus}H=\big{(}\sqcup_{\mathtt{i}=1}^{\mathtt{m}}C_{\mathtt{i}}\big{)}\sqcup\big{(}\sqcup_{\mathtt{j}=1}^{\mathtt{t}}P_{\mathtt{j}}\big{)}\,,

where {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} is a collection of independent cycles of SS and {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\} is a collection of paths satisfying (1)–(3) in Corollary A.4. In addition, since SS is admissible, we have |V(C𝚒)|N+1|V(C_{\mathtt{i}})|\geq N+1. Thus, the total enumeration of {C𝚒:1𝚒𝚖}\{C_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{m}\} is bounded by j=N+1D(|𝒞j(S)|mj)\prod_{j=N+1}^{D}\binom{|\mathcal{C}_{j}(S)|}{m_{j}}. Following the proof of Lemma A.8, the total enumeration of {P𝚓:1𝚓𝚝}\{P_{\mathtt{j}}:1\leq\mathtt{j}\leq\mathtt{t}\} is bounded by D15mD^{15m} in the following manner: for each 𝚓\mathtt{j}, we first bound the enumeration for EndP(P𝚓)\operatorname{EndP}(P_{\mathtt{j}}) by D2D^{2}, and given this we bound the enumeration for P𝚓P_{\mathtt{j}} by DD, and we finally sum over 𝚓\mathtt{j}. Altogether, this completes the proof of the lemma. ∎

Appendix B Proof of Lemma 4.10

Recall the definition of GG^{\prime} in Definition 4.3. Let G=σ({Ge:eU})\mathcal{F}_{G}^{\prime}=\sigma(\{G_{e}^{\prime}:e\in\operatorname{U}\}) be the σ\sigma-field generated by the edge set of GG^{\prime}. It is important to note that G\mathcal{F}_{G}^{\prime} is independent of π\pi_{*}. The first step of our proof is to condition on G\mathcal{F}_{G}^{\prime}. Clearly we have

𝔼π[AeG]=sGe,𝔼π[BeG]=sGπ1(e),𝔼π[AeBπ(e)G]=s2Ge.\displaystyle\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[A_{e}^{\prime}\mid\mathcal{F}_{G}^{\prime}]=sG_{e}^{\prime}\,,\ \mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[B_{e}^{\prime}\mid\mathcal{F}_{G}^{\prime}]=sG_{\pi^{-1}(e)}^{\prime}\,,\ \mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}[A_{e}^{\prime}B_{\pi(e)}^{\prime}\mid\mathcal{F}_{G}^{\prime}]=s^{2}G_{e}^{\prime}\,.

Thus,

𝔼π[e1E(S1)Ae1λsnλs/ne2E(S2)Be2λsnλs/n]\displaystyle\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}\Bigg{[}\prod_{e_{1}\in E(S_{1})}\frac{A_{e_{1}}^{\prime}-\frac{\lambda s}{n}}{\sqrt{\lambda s/n}}\prod_{e_{2}\in E(S_{2})}\frac{B_{e_{2}}^{\prime}-\frac{\lambda s}{n}}{\sqrt{\lambda s/n}}\Bigg{]}
=\displaystyle= 𝔼π[𝔼π[e1E(S1)Ae1λsnλs/ne2E(S2)Be2λsnλs/nG]]\displaystyle\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}\Bigg{[}\mathbb{E}_{\mathbb{P}_{\pi}^{\prime}}\Big{[}\prod_{e_{1}\in E(S_{1})}\frac{A^{\prime}_{e_{1}}-\frac{\lambda s}{n}}{\sqrt{\lambda s/n}}\prod_{e_{2}\in E(S_{2})}\frac{B^{\prime}_{e_{2}}-\frac{\lambda s}{n}}{\sqrt{\lambda s/n}}\mid\mathcal{F}_{G}^{\prime}\Big{]}\Bigg{]}
=\displaystyle= s12(|E(S1)|+|E(S2)|)𝔼π[e1E(S1)Ge1λnλ/ne2E(π1(S2))Ge2λnλ/n].\displaystyle s^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|)}\cdot\mathbb{E}_{\mathbb{P}^{\prime}_{\pi}}\Bigg{[}\prod_{e_{1}\in E(S_{1})}\frac{G_{e_{1}}^{\prime}-\frac{\lambda}{n}}{\sqrt{\lambda/n}}\prod_{e_{2}\in E(\pi^{-1}(S_{2}))}\frac{G_{e_{2}}^{\prime}-\frac{\lambda}{n}}{\sqrt{\lambda/n}}\Bigg{]}\,. (B.1)

Thus, it suffices to show that for all admissible S1,S2𝒦nS_{1},S_{2}\Subset\mathcal{K}_{n} and H=S1S2H=S_{1}\cap S_{2} we have (note that by replacing S2S_{2} to π1(S2)\pi^{-1}(S_{2}) the right-hand side of (B.1) becomes the left-hand side of (B.2))

s12(|E(S1)|+|E(S2)|)𝔼[e1E(S1)Ge1λnλ/ne2E(S2)Ge2λnλ/n]\displaystyle s^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|)}\cdot\mathbb{E}_{\mathbb{P}^{\prime}_{*}}\Bigg{[}\prod_{e_{1}\in E(S_{1})}\frac{G_{e_{1}}^{\prime}-\frac{\lambda}{n}}{\sqrt{\lambda/n}}\prod_{e_{2}\in E(S_{2})}\frac{G_{e_{2}}^{\prime}-\frac{\lambda}{n}}{\sqrt{\lambda/n}}\Bigg{]}
\displaystyle\leq\ (αδ/2)|E(H)|HK1S1HK2S2𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H)𝙼(K2,H)n12(|V(S1)|+|V(S2)|2|V(H)|).\displaystyle(\sqrt{\alpha}-\delta/2)^{|E(H)|}\sum_{H\ltimes K_{1}\subset S_{1}}\sum_{H\ltimes K_{2}\subset S_{2}}\tfrac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H)\mathtt{M}(K_{2},H)}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}}\,. (B.2)

We estimate the left-hand side of (B.2) by the following two-step arguments. The first step is to deal with the special case S1=S2=HS_{1}=S_{2}=H, where our strategy is to bound the left-hand side of (B.2) by its (slightly modified) first moment under \mathbb{P}_{*}.

Lemma B.1.

For HH admissible with |E(H)|D|E(H)|\leq D we have

s|E(H)|𝔼[eE(H)(Geλn)2λ/n]O(1)(αδ/2)|E(H)|.\displaystyle s^{|E(H)|}\mathbb{E}_{\mathbb{P}_{*}}\Bigg{[}\prod_{e\in E(H)}\frac{(G_{e}-\tfrac{\lambda}{n})^{2}}{\lambda/n}\Bigg{]}\leq\ O(1)\cdot(\sqrt{\alpha}-\delta/2)^{|E(H)|}\,. (B.3)

To show Lemma B.1, we first prove a useful lemma regarding the conditional expectation of a certain product along a path, given its endpoints. Denote

ω(σi,σj)={k1,σi=σj;1,σiσj.{}\omega(\sigma_{i},\sigma_{j})=\begin{cases}k-1,&\sigma_{i}=\sigma_{j}\,;\\ -1,&\sigma_{i}\neq\sigma_{j}\,.\end{cases} (B.4)
Claim B.2.

For a path 𝒫\mathcal{P} with V(𝒫)={v0,,vl}V(\mathcal{P})=\{v_{0},\ldots,v_{l}\} and EndP(𝒫)={v0,vl}\operatorname{EndP}(\mathcal{P})=\{v_{0},v_{l}\}, we have

𝔼σν[i=1l(1+ϵω(σi1,σi))σ0,σl]=1+ϵlω(σ0,σl).\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l}\Big{(}1+\epsilon\omega(\sigma_{i-1},\sigma_{i})\Big{)}\mid\sigma_{0},\sigma_{l}\Big{]}=1+\epsilon^{l}\cdot\omega(\sigma_{0},\sigma_{l})\,. (B.5)
Proof.

By independence, we see that 𝔼σν[iIω(σi1,σi)σ0,σl]=0\mathbb{E}_{\sigma\sim\nu}\big{[}\prod_{i\in I}\omega(\sigma_{i-1},\sigma_{i})\mid\sigma_{0},\sigma_{l}\big{]}=0 if I[l]I\subsetneq[l]. Thus,

𝔼σν[i=1l(1+ϵω(σi1,σi))σ0,σl]=1+ϵl𝔼σν[i=1lω(σi1,σi)σ0,σl].\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l}\Big{(}1+\epsilon\omega(\sigma_{i-1},\sigma_{i})\Big{)}\mid\sigma_{0},\sigma_{l}\Big{]}=1+\epsilon^{l}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l}\omega(\sigma_{i-1},\sigma_{i})\mid\sigma_{0},\sigma_{l}\Big{]}\,.

It remains to prove that

𝔼σν[i=1lω(σi1,σi)σ0,σl]=ω(σ0,σl).\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l}\omega(\sigma_{i-1},\sigma_{i})\mid\sigma_{0},\sigma_{l}\Big{]}=\omega(\sigma_{0},\sigma_{l})\,. (B.6)

We shall show (B.6) by induction. The case l=1l=1 follows immediately. Now we assume that (B.6) holds for ll. Then we have

𝔼σν[i=1l+1ω(σi1,σi)σ0,σl+1]\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l+1}\omega(\sigma_{i-1},\sigma_{i})\mid\sigma_{0},\sigma_{l+1}\Big{]}
=\displaystyle= 𝔼σν[ω(σl,σl+1)𝔼σν[i=1lω(σi1,σi)σ0,σl,σl+1]σ0,σl+1]\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\omega(\sigma_{l},\sigma_{l+1})\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{i=1}^{l}\omega(\sigma_{i-1},\sigma_{i})\mid\sigma_{0},\sigma_{l},\sigma_{l+1}\Big{]}\mid\sigma_{0},\sigma_{l+1}\Big{]}
=\displaystyle= 𝔼σν[ω(σl,σl+1)ω(σ0,σl)σ0,σl+1]=ω(σ0,σl+1),\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\omega(\sigma_{l},\sigma_{l+1})\omega(\sigma_{0},\sigma_{l})\mid\sigma_{0},\sigma_{l+1}\Big{]}=\omega(\sigma_{0},\sigma_{l+1})\,,

which completes the induction procedure. ∎

Based on Claim B.2, we can prove Lemma B.1 by a straightforward calculation, as incorporated in Appendix C.5. Now we estimate the expectation under \mathbb{P}_{*}^{\prime} in a more sophisticated way. Recall that H=S1S2H=S_{1}\cap S_{2}. Firstly, by averaging over the conditioning on community labels we have (we write σ=(σ=σ)\mathbb{P}^{\prime}_{\sigma}=\mathbb{P}^{\prime}_{*}(\cdot\mid\sigma_{*}=\sigma))

s12(|E(S1)|+|E(S2)|)𝔼[eE(S1)E(S2)(Geλn)λ/neE(H)(Geλn)2λ/n]\displaystyle s^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|)}\mathbb{E}_{\mathbb{P}_{*}^{\prime}}\Bigg{[}\prod_{e\in E(S_{1})\triangle E(S_{2})}\frac{\big{(}G_{e}^{\prime}-\tfrac{\lambda}{n}\big{)}}{\sqrt{\lambda/n}}\prod_{e\in E(H)}\frac{\big{(}G_{e}^{\prime}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}
=\displaystyle=\ s12(|E(S1)|+|E(S2)|)𝔼σν{𝔼σ[eE(S1)E(S2)(Geλn)λ/neE(H)(Geλn)2λ/n]}.\displaystyle s^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|)}\mathbb{E}_{\sigma\sim\nu}\Bigg{\{}\mathbb{E}_{\mathbb{P}^{\prime}_{\sigma}}\Bigg{[}\prod_{e\in E(S_{1})\triangle E(S_{2})}\frac{\big{(}G_{e}^{\prime}-\tfrac{\lambda}{n}\big{)}}{\sqrt{\lambda/n}}\prod_{e\in E(H)}\frac{\big{(}G_{e}^{\prime}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}\Bigg{\}}\,. (B.7)

Note that given σ=σ\sigma_{*}=\sigma, we have Gi,jBer((1+ϵω(σi,σj))λn)G_{i,j}\sim\operatorname{Ber}\big{(}\frac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda}{n}\big{)} independently. This motivates us to write the above expression in the centered form as follows:

s12(|E(S1)|+|E(S2)|)(i,j)E(S1)E(S2)(Gi,jλn)λ/n(i,j)E(H)(Gi,jλn)2λ/n\displaystyle s^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|)}\prod_{(i,j)\in E(S_{1})\triangle E(S_{2})}\frac{\big{(}G_{i,j}^{\prime}-\tfrac{\lambda}{n}\big{)}}{\sqrt{\lambda/n}}\prod_{(i,j)\in E(H)}\frac{\big{(}G_{i,j}^{\prime}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}
=\displaystyle= s|E(H)|(i,j)E(S1)E(S2)(Gi,j(1+ϵω(σi,σj))λn+ϵω(σi,σj)λn)λ/ns(i,j)E(H)(Gi,jλn)2λ/n\displaystyle s^{|E(H)|}\prod_{(i,j)\in E(S_{1})\triangle E(S_{2})}\frac{\big{(}G_{i,j}^{\prime}-\tfrac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda}{n}+\tfrac{\epsilon\omega(\sigma_{i},\sigma_{j})\lambda}{n}\big{)}}{\sqrt{\lambda/ns}}\prod_{(i,j)\in E(H)}\frac{\big{(}G_{i,j}^{\prime}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}
=\displaystyle= s|E(H)|HK1S1HK2S2hσ(S1,S2;K1,K2)φσ(K1,K2;H),\displaystyle s^{|E(H)|}\sum_{H\ltimes K_{1}\subset S_{1}}\sum_{H\ltimes K_{2}\subset S_{2}}h_{\sigma}(S_{1},S_{2};K_{1},K_{2})\varphi_{\sigma}(K_{1},K_{2};H)\,,

where

hσ(S1,S2;K1,K2)=(i,j)(E(S1)E(S2))(E(K1)E(K2))ω(σi,σj)ϵ2λsn,\displaystyle h_{\sigma}(S_{1},S_{2};K_{1},K_{2})=\prod_{(i,j)\in(E(S_{1})\cup E(S_{2}))\setminus(E(K_{1})\cup E(K_{2}))}\frac{\omega(\sigma_{i},\sigma_{j})\sqrt{\epsilon^{2}\lambda s}}{\sqrt{n}}\,, (B.8)
φσ(K1,K2;H)=(i,j)(E(K1)E(K2))E(H)(Gi,j(1+ϵω(σi,σj))λn)λ/ns(i,j)E(H)(Gi,jλn)2λ/n.\displaystyle\varphi_{\sigma}(K_{1},K_{2};H)=\prod_{(i,j)\in(E(K_{1})\cup E(K_{2}))\setminus E(H)}\frac{\big{(}{G}_{i,j}^{\prime}-\tfrac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda}{n}\big{)}}{\sqrt{\lambda/ns}}\prod_{(i,j)\in E(H)}\frac{\big{(}G_{i,j}^{\prime}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\,. (B.9)

In conclusion, we can write (B.7) as (note that below the summation is over K1,K2K_{1},K_{2})

(B.7)=\displaystyle\eqref{eq-B.3}= HK1S1HK2S2s|E(H)|𝔼σν{hσ(S1,S2;K1,K2)𝔼σ[φσ(K1,K2;H)]}.\displaystyle\sum_{H\ltimes K_{1}\subset S_{1}}\sum_{H\ltimes K_{2}\subset S_{2}}s^{|E(H)|}\mathbb{E}_{\sigma\sim\nu}\Bigg{\{}h_{\sigma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\sigma}^{\prime}}\Big{[}\varphi_{\sigma}(K_{1},K_{2};H)\Big{]}\Bigg{\}}\,. (B.10)

We now show the following bound on the summand in (B.10).

Lemma B.3.

Recall (4.29). We have

|𝔼σν{hσ(S1,S2;K1,K2)𝔼σ[φσ(K1,K2;H)]}|\displaystyle\Bigg{|}\mathbb{E}_{\sigma\sim\nu}\Big{\{}h_{\sigma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\sigma}^{\prime}}\big{[}\varphi_{\sigma}(K_{1},K_{2};H)\big{]}\Big{\}}\Bigg{|}
\displaystyle\leq\ 𝔼[(i,j)E(H)(Gi,jλn)2λ/n]𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H)𝙼(K2,H)n12(|V(S1)|+|V(S2)|2|V(H)|).\displaystyle\mathbb{E}_{\mathbb{P}_{*}}\Bigg{[}\prod_{(i,j)\in E(H)}\frac{\big{(}G_{i,j}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}\cdot\frac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H)\mathtt{M}(K_{2},H)}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}}\,.

We can now finish the proof of Lemma 4.10.

Proof of Lemma 4.10.

Plugging the estimation of Lemma B.1 into the right-hand side of Lemma B.3, we see that

s|E(H)||𝔼σν{hσ(S1,S2;K1,K2)𝔼σ[φσ(K1,K2;H)]}|\displaystyle s^{|E(H)|}\cdot\Bigg{|}\mathbb{E}_{\sigma\sim\nu}\Big{\{}h_{\sigma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\sigma}^{\prime}}\big{[}\varphi_{\sigma}(K_{1},K_{2};H)\big{]}\Big{\}}\Bigg{|}
\displaystyle\leq\ O(1)(αδ/2)|E(H)|𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H)𝙼(K2,H)n12(|V(S1)|+|V(S2)|2|V(H)|).\displaystyle O(1)\cdot(\sqrt{\alpha}-\delta/2)^{|E(H)|}\cdot\frac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H)\mathtt{M}(K_{2},H)}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}}\,.

Combined with (B.7) and (B.10), this yields (B.2), leading to Lemma 4.10. ∎

The rest of this section is devoted to the proof of Lemma B.3. Recall that H=S1S2H=S_{1}\cap S_{2}. Denote 𝙻=𝙻1𝙻2\mathtt{L}=\mathtt{L}_{1}\cup\mathtt{L}_{2}, where

𝙻1\displaystyle\mathtt{L}_{1} =((S1)V(K1))((S2)V(K2));\displaystyle=\big{(}\mathcal{L}(S_{1})\setminus V(K_{1})\big{)}\cup\big{(}\mathcal{L}(S_{2})\setminus V(K_{2})\big{)}\,; (B.11)
𝙻2\displaystyle\mathtt{L}_{2} =((K1)V(H))((K2)V(H)).\displaystyle=\big{(}\mathcal{L}(K_{1})\setminus V(H)\big{)}\cup\big{(}\mathcal{L}(K_{2})\setminus V(H)\big{)}\,.

In addition, denote

𝚅\displaystyle\mathtt{V} =(V(S1)V(K1))(V(S2)V(K2));\displaystyle=\big{(}V(S_{1})\setminus V(K_{1})\big{)}\cup\big{(}V(S_{2})\setminus V(K_{2})\big{)}\,; (B.12)
𝚆\displaystyle\mathtt{W} =𝙻1(V(K1)V(H))(V(K2)V(H)).\displaystyle=\mathtt{L}_{1}\cup\big{(}V(K_{1})\setminus V(H)\big{)}\cup\big{(}V(K_{2})\setminus V(H)\big{)}\,. (B.13)

We also define

Γ1\displaystyle\Gamma_{1} =|(S1)V(K1)|+|(S2)V(K2)|+τ(S1)τ(K1)+τ(S2)τ(K2);\displaystyle=|\mathcal{L}(S_{1})\setminus V(K_{1})|+|\mathcal{L}(S_{2})\setminus V(K_{2})|+\tau(S_{1})-\tau(K_{1})+\tau(S_{2})-\tau(K_{2})\,; (B.14)
Γ2\displaystyle\Gamma_{2} =|(K1)V(H)|+|(K2)V(H)|+τ(K1)+τ(K2)2τ(H).\displaystyle=|\mathcal{L}(K_{1})\setminus V(H)|+|\mathcal{L}(K_{2})\setminus V(H)|+\tau(K_{1})+\tau(K_{2})-2\tau(H)\,.

For any σ[k]n\sigma\in[k]^{n}, denote by ϰ\varkappa and γ\gamma the restriction of σ\sigma on 𝚅\mathtt{V} and [n]𝚅[n]\setminus\mathtt{V}, respectively. We also write σ=ϰγ\sigma=\varkappa\oplus\gamma. Then

𝔼σν{hσ(S1,S2;K1,K2)𝔼σ[φσ(K1,K2;H)]}\displaystyle\mathbb{E}_{\sigma\sim\nu}\Bigg{\{}h_{\sigma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\sigma}^{\prime}}\Big{[}\varphi_{\sigma}(K_{1},K_{2};H)\Big{]}\Bigg{\}}
=\displaystyle=\ 𝔼γν[n]𝚅𝔼ϰν𝚅{hϰγ(S1,S2;K1,K2)𝔼ϰγ[φϰγ(K1,K2;H)]}.\displaystyle\mathbb{E}_{\gamma\sim\nu_{[n]\setminus\mathtt{V}}}\mathbb{E}_{\varkappa\sim\nu_{\mathtt{V}}}\Bigg{\{}h_{\varkappa\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\varkappa\oplus\gamma}^{\prime}}\Big{[}\varphi_{\varkappa\oplus\gamma}(K_{1},K_{2};H)\Big{]}\Bigg{\}}\,.

Clearly, it suffices to show that for all γ\gamma we have the following estimates:

|𝔼ϰν𝚅{hϰγ(S1,S2;K1,K2)𝔼ϰγ[φϰγ(K1,K2;H)]}|\displaystyle\Bigg{|}\mathbb{E}_{\varkappa\sim\nu_{{}_{\mathtt{V}}}}\Big{\{}h_{\varkappa\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\mathbb{P}_{\varkappa\oplus\gamma}^{\prime}}\big{[}\varphi_{\varkappa\oplus\gamma}(K_{1},K_{2};H)\big{]}\Big{\}}\Bigg{|} (B.15)
\displaystyle\leq 𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H)𝙼(K2,H)n12(|V(S1)|+|V(S2)|2|V(H)|)𝔼γ[(i,j)E(H)(Gi,jλ/n)2λ/n].\displaystyle\frac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H)\mathtt{M}(K_{2},H)}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}}\cdot\mathbb{E}_{\mathbb{P}_{\gamma}}\Big{[}\prod_{(i,j)\in E(H)}\frac{(G_{i,j}-\lambda/n)^{2}}{\lambda/n}\Big{]}\,.

We begin our proof of (B.15) by constructing a probability measure (below par\operatorname{par} is the index of a special element to be defined)

~=~γ on (Ω~,2Ω~), where Ω~={(χ(ϰ))ϰ[k]𝚅{par}:χ(ϰ){0,1}U,ϰ[k]𝚅{par}},\displaystyle\widetilde{\mathbb{P}}=\widetilde{\mathbb{P}}_{\gamma}\mbox{ on }\Big{(}\widetilde{\Omega},2^{\widetilde{\Omega}}\Big{)}\,,\mbox{ where }\widetilde{\Omega}=\Big{\{}\big{(}\chi(\varkappa)\big{)}_{\varkappa\in[k]^{\mathtt{V}}\cup\{\operatorname{par}\}}:\chi(\varkappa)\in\{0,1\}^{\operatorname{U}},\forall\varkappa\in[k]^{\mathtt{V}}\cup\{\operatorname{par}\}\Big{\}}\,,

(we will write ~\widetilde{\mathbb{P}} instead of ~γ\widetilde{\mathbb{P}}_{\gamma} for simplicity when there is no ambiguity) such that for (G(ϰ))ϰ[k]𝚅(G^{\prime}(\varkappa))_{\varkappa\in[k]^{\mathtt{V}}} sampled from ~\widetilde{\mathbb{P}}, we have G(ϰ)ϰγG^{\prime}(\varkappa)\sim\mathbb{P}_{\varkappa\oplus\gamma}^{\prime} for each ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}}. This measure ~γ\widetilde{\mathbb{P}}_{\gamma} is constructed as follows. First we generate a parent graph G(par)G(\operatorname{par}) such that {G(par)i,j}\{G(\operatorname{par})_{i,j}\} is a collection of independent Bernoulli variables which take value 1 with probability (1+ϵω(γi,γj))λn\tfrac{(1+\epsilon\omega(\gamma_{i},\gamma_{j}))\lambda}{n} if i,j[n]𝚅i,j\in[n]\setminus\mathtt{V} and with probability (1+ϵ(k1))λn\tfrac{(1+\epsilon(k-1))\lambda}{n} if i𝚅 or j𝚅i\in\mathtt{V}\mbox{ or }j\in\mathtt{V}. Let {J(ϰ)i,j:ϰ[k]𝚅,(i,j)U}\{J(\varkappa)_{i,j}:\varkappa\in[k]^{\mathtt{V}},(i,j)\in\operatorname{U}\} be a collection of independent Bernoulli variables with parameter 1ϵ1+ϵ(k1)\tfrac{1-\epsilon}{1+\epsilon(k-1)}. Given G(par)G(\operatorname{par}), for each ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} define

G(ϰ)i,j={G(par)i,j,i,j[n]𝚅 or (ϰγ)i=(ϰγ)j;G(par)i,jJ(ϰ)i,j, otherwise.{}G(\varkappa)_{i,j}=\begin{cases}G(\operatorname{par})_{i,j}\,,&i,j\in[n]\setminus\mathtt{V}\mbox{ or }(\varkappa\oplus\gamma)_{i}=(\varkappa\oplus\gamma)_{j}\,;\\ G(\operatorname{par})_{i,j}J(\varkappa)_{i,j}\,,&\mbox{ otherwise}\,.\end{cases} (B.16)

Recall from Definition 4.3 that 𝙱1,,𝙱M\mathtt{B}_{1},\ldots,\mathtt{B}_{M} is the collection of all cycles in 𝒦n\mathcal{K}_{n} with lengths at most NN and all self-bad graphs in 𝒦n\mathcal{K}_{n} with at most D3D^{3} vertices. For each 1iM1\leq i\leq M, if V(𝙱i)[n]𝚅V(\mathtt{B}_{i})\subset[n]\setminus\mathtt{V} and 𝙱iG(par)\mathtt{B}_{i}\subset G(\operatorname{par}), we choose a uniform edge from 𝙱i\mathtt{B}_{i} and delete this edge in each G(ϰ)G(\varkappa); if V(𝙱i)𝚅V(\mathtt{B}_{i})\cap\mathtt{V}\neq\emptyset, for each ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}}, if 𝙱iG(ϰ)\mathtt{B}_{i}\subset G(\varkappa) we independently delete a uniform edge of 𝙱i\mathtt{B}_{i} in G(ϰ)G(\varkappa). The remaining edges of G(ϰ)G(\varkappa) constitute G(ϰ)G^{\prime}(\varkappa) and we let ~\widetilde{\mathbb{P}} to be the joint measure of (G(par),(G(ϰ))ϰ[k]𝚅)\big{(}G(\operatorname{par}),(G^{\prime}(\varkappa))_{\varkappa\in[k]^{\mathtt{V}}}\big{)} (so χ(par)\chi(\mathrm{par}) represents the realization for G(par)G(\mathrm{par}) as hinted earlier). Clearly we have G(ϰ)ϰγG^{\prime}(\varkappa)\sim\mathbb{P}_{\varkappa\oplus\gamma}^{\prime} as we wished. Thus, we can write the left-hand side of (B.15) as

|𝔼~[1k|𝚅|ϰ[k]𝚅hϰγ(S1,S2;K1,K2)φγ;K1,K2;H(G(ϰ))]|,\displaystyle\Bigg{|}\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\frac{1}{k^{|\mathtt{V}|}}\sum_{\varkappa\in[k]^{\mathtt{V}}}h_{\varkappa\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa))\Big{]}\Bigg{|}\,, (B.17)

where for each X{0,1}UX\in\{0,1\}^{\operatorname{U}}, we used φγ;K1,K2;H(X)\varphi_{\gamma;K_{1},K_{2};H}(X) to denote the formula obtained from replacing Gi,jG^{\prime}_{i,j} by Xi,jX_{i,j} and replacing σ\sigma from ϰγ\varkappa\oplus\gamma in (B.9) for an arbitrary ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} (note that φγ;K1,K2;H(X)\varphi_{\gamma;K_{1},K_{2};H}(X) only depends on γ\gamma and the values of XX on 𝙴=E(K1)E(K2)\mathtt{E}=E(K_{1})\cup E(K_{2})). To calculate (B.17), we will condition on

par=σ{G(par)i,j:(i,j)U𝙴}.\displaystyle\mathcal{F}_{\operatorname{par}}=\sigma\Big{\{}G(\operatorname{par})_{i,j}:(i,j)\in\operatorname{U}\setminus\mathtt{E}\Big{\}}\,.

We will argue that unless the realization χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}} satisfies a specific condition, we have that the conditional expectation (below G(par)|𝖠G(\operatorname{par})|_{\mathsf{A}} denotes the restriction of G(par)G(\operatorname{par}) on 𝖠\mathsf{A})

𝔼~[1k|𝚅|ϰ[k]𝚅hϰγ(S1,S2;K1,K2)φγ;K1,K2;H(G(ϰ))G(par)|U𝙴=χ]{}\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\frac{1}{k^{|\mathtt{V}|}}\sum_{\varkappa\in[k]^{\mathtt{V}}}h_{\varkappa\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa))\mid G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi\Big{]} (B.18)

cancels to 0. We need to introduce more notations before presenting our proofs.

Definition B.4.

For χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}}, we define the bad vertex set with respect to χ\chi as

(χ)={\displaystyle\mathcal{B}(\chi)=\Big{\{} u(V(S1)V(S2))V(H):Kχ{𝟷𝙴},uV(K),K is a cycle with\displaystyle u\in(V(S_{1})\cup V(S_{2}))\setminus V(H):\exists K\subset\chi\oplus\{\mathtt{1}_{\mathtt{E}}\},u\in V(K),K\mbox{ is a cycle with}
length at most N or a self-bad graph with at most D3 vertices}.\displaystyle\mbox{length at most }N\mbox{ or a self-bad graph with at most }D^{3}\mbox{ vertices}\Big{\}}\,.

Clearly from this definition we see that (G(par)|U𝙴)\mathcal{B}(G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}) is measurable with respect to par\mathcal{F}_{\operatorname{par}}. Our proof will employ the following estimates. Recall (B.13) and (B.14).

Claim B.5.

For any χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}} such that 𝚆(χ)\mathtt{W}\not\subset\mathcal{B}(\chi), we have (B.18)=0\eqref{eq-conditional-expectation}=0.

Claim B.6.

For any χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}} such that 𝚆(χ)\mathtt{W}\subset\mathcal{B}(\chi) and |(χ)𝚆|=|\mathcal{B}(\chi)\setminus\mathtt{W}|=\ell, we have

|(B.18)|k5Γ1+5l(1δ/2)|E(S1)|+|E(S2)||E(K1)||E(K2)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|)𝔼~[|φγ;K1,K2;H(G(par)|𝙴)|].\displaystyle\big{|}\eqref{eq-conditional-expectation}\big{|}\leq k^{5\Gamma_{1}+5l}\frac{(1-\delta/2)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}\cdot\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\big{|}\varphi_{\gamma;K_{1},K_{2};H}(G(\operatorname{par})|_{\mathtt{E}})\big{|}\Big{]}\,.
Claim B.7.

Suppose that S1,S2𝒦nS_{1},S_{2}\Subset\mathcal{K}_{n} are admissible, H=S1S2H=S_{1}\cap S_{2}, HK1S1,HK2S2H\ltimes K_{1}\subset S_{1},H\ltimes K_{2}\subset S_{2}. For any 𝙱V(S1S2)\mathtt{B}\subset V(S_{1}\cup S_{2}) such that 𝚆𝙱,|𝙱𝚆|=\mathtt{W}\subset\mathtt{B},|\mathtt{B}\setminus\mathtt{W}|=\ell, we have

~((G(par)|U𝙴)=𝙱)n14(τ(K1)+τ(K2)2τ(H))n14|𝙻2|12|𝙻1|14(2000λ~22k22)2N2(Γ1+Γ2)(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|.\displaystyle\widetilde{\mathbb{P}}\Big{(}\mathcal{B}(G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}})=\mathtt{B}\Big{)}\leq\frac{n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H))}n^{-\frac{1}{4}|\mathtt{L}_{2}|-\frac{1}{2}|\mathtt{L}_{1}|-\frac{1}{4}\ell}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2})}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,.

The proofs of Claims B.5, B.6 and B.7 are incorporated in Appendices C.6, C.7 and C.8, respectively. Now we can present the proof of (B.15), thus completing the proof of Lemma B.3.

Proof of (B.15).

Recall (B.17). We can write it as

(B.17)=|𝔼{𝔼~[1k|𝚅|ϰ[k]𝚅hϰγ(S1,S2;K1,K2)φγ;K1,K2;H(G(ϰ))par]}|.\displaystyle\eqref{eq-extreme-technical-relax-1}=\Bigg{|}\mathbb{E}\Bigg{\{}\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\frac{1}{k^{|\mathtt{V}|}}\sum_{\varkappa\in[k]^{\mathtt{V}}}h_{\varkappa\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa))\mid\mathcal{F}_{\operatorname{par}}\Big{]}\Bigg{\}}\Bigg{|}\,.

Combining Claims B.5 and B.6, we see that the above expression is bounded by the product of (1δ/2)|E(S1)|+|E(S2)||E(K1)||E(K2)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|)𝔼~[|φγ,K1,K2,H(G(par)|𝙴)|]\frac{(1-\delta/2)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}\cdot\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\big{|}\varphi_{\gamma,K_{1},K_{2},H}\big{(}G(\operatorname{par})|_{\mathtt{E}}\big{)}\big{|}\Big{]} and the following term:

0𝚆𝙱V(S1S2)|𝙱𝚆|=k5Γ1+5~((G(par)|U𝙴))=𝙱).\displaystyle\sum_{\ell\geq 0}\sum_{\begin{subarray}{c}\mathtt{W}\subset\mathtt{B}\subset V(S_{1}\cup S_{2})\\ |\mathtt{B}\setminus\mathtt{W}|=\ell\end{subarray}}k^{5\Gamma_{1}+5\ell}\cdot\widetilde{\mathbb{P}}\Big{(}\mathcal{B}\big{(}G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}\big{)}\big{)}=\mathtt{B}\Big{)}\,. (B.19)

Since |V(S1)|,|V(S2)|2D|V(S_{1})|,|V(S_{2})|\leq 2D, we have

#{𝙱:𝚆𝙱V(S1S2),|𝙱𝚆|=}(4D).\displaystyle\#\big{\{}\mathtt{B}:\mathtt{W}\subset\mathtt{B}\subset V(S_{1}\cup S_{2}),|\mathtt{B}\setminus\mathtt{W}|=\ell\big{\}}\leq(4D)^{\ell}\,.

Combined with Claim B.7, it yields that

(B.19)\displaystyle\eqref{eq-C.49} 0k5(4D)n14(τ(K1)+τ(K2)2τ(H))n14|𝙻2|12|𝙻1|14(2000λ~22k23)2N2(Γ1+Γ2)(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|\displaystyle\leq\sum_{\ell\geq 0}\frac{k^{5\ell}(4D)^{\ell}n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H))}n^{-\frac{1}{4}|\mathtt{L}_{2}|-\frac{1}{2}|\mathtt{L}_{1}|-\frac{1}{4}\ell}(2000\tilde{\lambda}^{22}k^{23})^{2N^{2}(\Gamma_{1}+\Gamma_{2})}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}
[1+o(1)]n14(τ(K1)+τ(K2)2τ(H))n14|𝙻2|12|𝙻1|(2000λ~22k23)2N2(Γ1+Γ2)(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|.\displaystyle\leq[1+o(1)]\cdot\frac{n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H))}n^{-\frac{1}{4}|\mathtt{L}_{2}|-\frac{1}{2}|\mathtt{L}_{1}|}(2000\tilde{\lambda}^{22}k^{23})^{2N^{2}(\Gamma_{1}+\Gamma_{2})}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,. (B.20)

Since the entries in G(par)G(\operatorname{par}) are stochastically dominated by a family of i.i.d. Bernoulli random variables with parameter (1+ϵk)λn\frac{(1+\epsilon k)\lambda}{n}, we have that 𝔼~γ[|φγ,K1,K2,H(G(par)|𝙴)|]\mathbb{E}_{\widetilde{\mathbb{P}}_{\gamma}}\Big{[}\big{|}\varphi_{\gamma,K_{1},K_{2},H}\big{(}G(\operatorname{par})|_{\mathtt{E}}\big{)}\big{|}\Big{]} is bounded by (note that below we used s1s\leq 1 for simplification)

𝔼~γ[(i,j)E(K1K2)E(H)|G(par)i,j(1+ϵω(γi,γj))λn|λ/ns(i,j)E(H)(G(par)i,jλn)2λ/n]\displaystyle\mathbb{E}_{\widetilde{\mathbb{P}}_{\gamma}}\Bigg{[}\prod_{(i,j)\in E(K_{1}\cup K_{2})\setminus E(H)}\frac{\big{|}G(\operatorname{par})_{i,j}-\frac{(1+\epsilon\omega(\gamma_{i},\gamma_{j}))\lambda}{n}\big{|}}{\sqrt{\lambda/ns}}\prod_{(i,j)\in E(H)}\frac{\big{(}G(\operatorname{par})_{i,j}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}
\displaystyle\leq\ (2kλn)12(|E(K1)|+|E(K2)|2|E(H)|)𝔼~γ[(i,j)E(H)(G(par)i,jλn)2λ/n]\displaystyle\big{(}\tfrac{2k\lambda}{n}\big{)}^{\frac{1}{2}(|E(K_{1})|+|E(K_{2})|-2|E(H)|)}\mathbb{E}_{\widetilde{\mathbb{P}}_{\gamma}}\Bigg{[}\prod_{(i,j)\in E(H)}\frac{\big{(}G(\operatorname{par})_{i,j}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}
=\displaystyle=\ (2kλn)12(|E(K1)|+|E(K2)|2|E(H)|)𝔼γ[(i,j)E(H)(Gi,jλn)2λ/n],\displaystyle\big{(}\tfrac{2k\lambda}{n}\big{)}^{\frac{1}{2}(|E(K_{1})|+|E(K_{2})|-2|E(H)|)}\mathbb{E}_{\mathbb{P}_{\gamma}}\Bigg{[}\prod_{(i,j)\in E(H)}\frac{\big{(}G_{i,j}-\tfrac{\lambda}{n}\big{)}^{2}}{\lambda/n}\Bigg{]}\,, (B.21)

where the equality follows from the fact that the distribution of G(par)G(\operatorname{par}) under ~γ\widetilde{\mathbb{P}}_{\gamma} is equal to the distribution of GG under γ\mathbb{P}_{\gamma}. Plugging (B.21) and (B.20) into the bound surrounding (B.19), we obtain that (B.17) is bounded by the product of 𝔼γ[(i,j)E(H)(Gi,jλn)2λ/n]\mathbb{E}_{\mathbb{P}_{\gamma}}\Big{[}\prod_{(i,j)\in E(H)}\frac{(G_{i,j}-\tfrac{\lambda}{n})^{2}}{\lambda/n}\Big{]} and

(1δ2)|E(S1)|+|E(S2)|2|E(H)|n14(τ(K1)+τ(K2)2τ(H))(2000λ~22k23)2N2(Γ1+Γ2)n12(|E(S1)|+|E(S2)|2|E(H)|)n12|𝙻1|+14|𝙻2|\displaystyle\frac{(1-\tfrac{\delta}{2})^{|E(S_{1})|+|E(S_{2})|-2|E(H)|}n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H))}(2000\tilde{\lambda}^{22}k^{23})^{2N^{2}(\Gamma_{1}+\Gamma_{2})}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-2|E(H)|)}n^{\frac{1}{2}|\mathtt{L}_{1}|+\frac{1}{4}|\mathtt{L}_{2}|}}
=\displaystyle=\ (1δ2)|E(S1)|+|E(S2)|2|E(H)|(2000λ~22k23)2N2(Γ1+Γ2)n12(|V(S1)|+|V(S2)|2|V(H)|)n12Γ1+14Γ2\displaystyle\frac{(1-\tfrac{\delta}{2})^{|E(S_{1})|+|E(S_{2})|-2|E(H)|}(2000\tilde{\lambda}^{22}k^{23})^{2N^{2}(\Gamma_{1}+\Gamma_{2})}}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}n^{\frac{1}{2}\Gamma_{1}+\frac{1}{4}\Gamma_{2}}}
\displaystyle\leq\ 𝙼(S1,K1)𝙼(S2,K2)𝙼(K1,H)𝙼(K2,H)n12(|V(S1)|+|V(S2)|2|V(H)|),\displaystyle\frac{\mathtt{M}(S_{1},K_{1})\mathtt{M}(S_{2},K_{2})\mathtt{M}(K_{1},H)\mathtt{M}(K_{2},H)}{n^{\frac{1}{2}(|V(S_{1})|+|V(S_{2})|-2|V(H)|)}}\,,

where the equality follows from (B.11) and (B.14), and the inequality follows from (4.29). Thus we have shown (B.15). ∎

Appendix C Supplementary proofs

C.1 Proof of Lemma 3.4

We start our proof with some straightforward computations. Recall (B.4). Clearly we have

𝔼σ,π[A¯i,j]=𝔼σ,π[B¯π(i),π(j)]=ω(σi,σj)ϵλsn,\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}\big{]}=\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{B}_{\pi(i),\pi(j)}\big{]}=\tfrac{\omega(\sigma_{i},\sigma_{j})\epsilon\lambda s}{n}\,, (C.1)
𝔼σ,π[A¯i,jB¯π(i),π(j)]=(aω(σi,σj)+b)λs2n=[1+O(n1)](1+ϵω(σi,σj))λs2n,\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}\bar{B}_{\pi(i),\pi(j)}\big{]}=\tfrac{(a\omega(\sigma_{i},\sigma_{j})+b)\lambda s^{2}}{n}=[1+O(n^{-1})]\cdot\tfrac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda s^{2}}{n}\,, (C.2)

where a=ϵ(12λn)=ϵ+O(1n)a=\epsilon(1-\frac{2\lambda}{n})=\epsilon+O(\frac{1}{n}) and b=1λn=1+O(1n)b=1-\frac{\lambda}{n}=1+O(\frac{1}{n}) are introduced for convenience. Then decomposing 𝔼σ,π[ϕS1,S2]\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}[\phi_{S_{1},S_{2}}] into products over edges in the symmetric difference between E(S1)E(S_{1}) and E(π1(S2))E(\pi^{-1}(S_{2})) as well as over edges in their intersection, we can apply (C.1) and (C.2) accordingly and obtain that (below the \circeq is used to account for factors of 1λs/n1-\lambda s/n in the definition of ϕS1,S2\phi_{S_{1},S_{2}})

𝔼σ,π[ϕS1,S2](i,j)E(S1)E(π1(S2))ω(σi,σj)ϵ2λsn(i,j)E(S1)E(π1(S2))s(b+aω(σi,σj)).\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\phi_{S_{1},S_{2}}\big{]}\circeq\prod_{(i,j)\in E(S_{1})\triangle E(\pi^{-1}(S_{2}))}\tfrac{\omega(\sigma_{i},\sigma_{j})\sqrt{\epsilon^{2}\lambda s}}{\sqrt{n}}\prod_{(i,j)\in E(S_{1})\cap E(\pi^{-1}(S_{2}))}s(b+a\omega(\sigma_{i},\sigma_{j}))\,.

Thus, we have

𝔼π[ϕS1,S2]s|S1π1(S2)|(ϵ2λsn)12(|E(S1)|+|E(S2)|2|E(S1)E(π1(S2))|)\displaystyle\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\big{]}\circeq s^{|S_{1}\cap\pi^{-1}(S_{2})|}\big{(}\tfrac{\epsilon^{2}\lambda s}{n}\big{)}^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-2|E(S_{1})\cap E(\pi^{-1}(S_{2}))|)}
𝔼σν[(i,j)E(S1)E(π1(S2))ω(σi,σj)(i,j)E(S1)E(π1(S2))(b+aω(σi,σj))],\displaystyle*\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\prod_{(i,j)\in E(S_{1})\triangle E(\pi^{-1}(S_{2}))}\omega(\sigma_{i},\sigma_{j})\prod_{(i,j)\in E(S_{1})\cap E(\pi^{-1}(S_{2}))}\big{(}b+a\omega(\sigma_{i},\sigma_{j})\big{)}\Bigg{]}\,, (C.3)

where we recall that ν\nu is the uniform distribution on [k]n[k]^{n}. For i,j{0,1}i,j\in\{0,1\}, denote 𝖪i,j=𝖪i,j(S1,S2,π)\mathsf{K}_{i,j}=\mathsf{K}_{i,j}(S_{1},S_{2},\pi) the set of edges which appear ii times in S1S_{1} and appear jj times in π1(S2)\pi^{-1}(S_{2}). Also, define 𝖪s=0i,j1,i+j=s𝖪i,j\mathsf{K}_{s}=\cup_{0\leq i,j\leq 1,i+j=s}\mathsf{K}_{i,j}. Define 𝖫i,j\mathsf{L}_{i,j} and 𝖫s\mathsf{L}_{s} with respect to the vertices in the similar manner. With a slight abuse of notations, we will also use 𝖪s\mathsf{K}_{s} and 𝖪i,j\mathsf{K}_{i,j} to denote their induced graphs.

Lemma C.1.

We have the following.

  • (1)

    Suppose J𝒦nJ\subset\mathcal{K}_{n} and suppose u(J)u\in\mathcal{L}(J) with (u,v)E(J)(u,v)\in E(J). Then for any function ψ\psi measurable with respect to {σi:iV(J){u}}\{\sigma_{i}:i\in V(J)\setminus\{u\}\} we have 𝔼σν[ω(σu,σv)ψ]=0\mathbb{E}_{\sigma\sim\nu}\big{[}\omega(\sigma_{u},\sigma_{v})\cdot\psi\big{]}=0. In particular, for any tree TT we have

    𝔼σν[(i,j)E(T)ω(σi,σj)]=0.\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(T)}\omega(\sigma_{i},\sigma_{j})\Big{]}=0\,. (C.4)
  • (2)

    Define 𝔄={π𝔖n:|𝖫2||E(𝖪2)|+2}\mathfrak{A}=\{\pi\in\mathfrak{S}_{n}:|\mathsf{L}_{2}|\geq|E(\mathsf{K}_{2})|+2\}, then

    𝔼[ϕS1,S2]=𝔼[ϕS1,S2𝟏{π(S1)=S2}]+𝔼[ϕS1,S2𝟏{π(S1)S2}{π𝔄}].\displaystyle\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\big{]}=\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\mathbf{1}_{\{\pi_{*}(S_{1})=S_{2}\}}\big{]}+\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\mathbf{1}_{\{\pi_{*}(S_{1})\neq S_{2}\}\cap\{\pi_{*}\in\mathfrak{A}\}}\big{]}\,.
Proof.

As for Item (1), define σu\sigma_{u} and σu\sigma_{\setminus u} to be the restriction of σ\sigma on {u}\{u\} and on [n]{u}[n]\setminus\{u\}, respectively. Also define νu\nu_{u} and νu\nu_{\setminus u} to be the restriction of ν\nu on {u}\{u\} and on [n]{u}[n]\setminus\{u\}, respectively. Then we have

𝔼σν[ω(σu,σv)ψ]=𝔼σuνu𝔼σuνu[ω(σu,σv)ψ]=𝔼σuνu[ψ𝔼σuνu[ω(σu,σv)]]=0,\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\omega(\sigma_{u},\sigma_{v})\psi\Big{]}=\mathbb{E}_{\sigma_{\setminus u}\sim\nu_{\setminus u}}\mathbb{E}_{\sigma_{u}\sim\nu_{u}}\Big{[}\omega(\sigma_{u},\sigma_{v})\psi\Big{]}=\mathbb{E}_{\sigma_{\setminus u}\sim\nu_{\setminus u}}\Big{[}\psi\mathbb{E}_{\sigma_{u}\sim\nu_{u}}\big{[}\omega(\sigma_{u},\sigma_{v})\big{]}\Big{]}=0\,,

which also immediately implies (C.4). As for Item (2), it suffices to show that (recall (C.3))

𝔼σν[(i,j)E(S1)E(π1(S2))ω(σi,σj)(i,j)E(S1)E(π1(S2))(b+aω(σi,σj))]=0{}\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\prod_{(i,j)\in E(S_{1})\triangle E(\pi^{-1}(S_{2}))}\omega(\sigma_{i},\sigma_{j})\prod_{(i,j)\in E(S_{1})\cap E(\pi^{-1}(S_{2}))}\big{(}b+a\omega(\sigma_{i},\sigma_{j})\big{)}\Bigg{]}=0 (C.5)

for those π𝔄\pi\not\in\mathfrak{A} such that π(S1)S2\pi(S_{1})\neq S_{2}. Expanding the second product in (C.5), we get that proving (C.5) is equivalent to showing that (recall the definition of 𝖪1\mathsf{K}_{1} and 𝖪2\mathsf{K}_{2})

𝔼σν[𝖪𝖪2b|E(𝖪2)||E(𝖪)|(i,j)E(𝖪1)ω(σi,σj)(i,j)E(𝖪)(aω(σi,σj))]\displaystyle\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\sum_{\mathsf{K}^{\prime}\Subset\mathsf{K}_{2}}b^{|E(\mathsf{K}_{2})|-|E(\mathsf{K}^{\prime})|}\prod_{(i,j)\in E(\mathsf{K}_{1})}\omega(\sigma_{i},\sigma_{j})\prod_{(i,j)\in E(\mathsf{K}^{\prime})}\Big{(}a\omega(\sigma_{i},\sigma_{j})\Big{)}\Bigg{]}
=\displaystyle=\ 𝔼σν[𝖪𝖪2b|E(𝖪2)||E(𝖪)|a|E(𝖪)|(i,j)E(𝖪1𝖪)ω(σi,σj)]=0.\displaystyle\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\sum_{\mathsf{K}^{\prime}\Subset\mathsf{K}_{2}}b^{|E(\mathsf{K}_{2})|-|E(\mathsf{K}^{\prime})|}{a}^{|E(\mathsf{K}^{\prime})|}\prod_{(i,j)\in E(\mathsf{K}_{1}\cup\mathsf{K}^{\prime})}\omega(\sigma_{i},\sigma_{j})\Bigg{]}=0\,.

By Item (1), it suffices to prove when π𝔄\pi\not\in\mathfrak{A} and π(S1)S2\pi(S_{1})\neq S_{2} we have (𝖪𝖪1)\mathcal{L}(\mathsf{K}^{\prime}\cup\mathsf{K}_{1})\neq\emptyset for all 𝖪𝖪2\mathsf{K}^{\prime}\Subset\mathsf{K}_{2}. If 𝖪2=\mathsf{K}_{2}=\emptyset, we have |𝖫2|1|\mathsf{L}_{2}|\leq 1 since π𝔄\pi\not\in\mathfrak{A}. Since a tree has at least 22 leaves, there exists u(S1)V(π1(S2))u\in\mathcal{L}(S_{1})\setminus V(\pi^{-1}(S_{2})), and thus u(𝖪𝖪1)u\in\mathcal{L}(\mathsf{K}^{\prime}\cup\mathsf{K}_{1}) for all 𝖪𝖪2\mathsf{K}^{\prime}\Subset\mathsf{K}_{2}. Now suppose 𝖪2\mathsf{K}_{2}\neq\emptyset. Since 𝖪2=S1π1(S2)\mathsf{K}_{2}=S_{1}\cap\pi^{-1}(S_{2}) is a subgraph of the tree S1S_{1}, we have

|𝖫2||V(𝖪2)||E(𝖪2)|+1.{}|\mathsf{L}_{2}|\geq|V(\mathsf{K}_{2})|\geq|E(\mathsf{K}_{2})|+1\,. (C.6)

Also, from π𝔄\pi_{*}\not\in\mathfrak{A} we obtain |𝖫2||E(𝖪2)|+1|\mathsf{L}_{2}|\leq|E(\mathsf{K}_{2})|+1. Therefore, the inequalities in (C.6) must be equalities, showing that 𝖪2\mathsf{K}_{2} is a tree and 𝖫2=V(𝖪2)\mathsf{L}_{2}=V(\mathsf{K}_{2}). Since π(S1)S2\pi(S_{1})\neq S_{2}, S1𝖪2S_{1}\mathbin{\setminus\mkern-5.0mu\setminus}\mathsf{K}_{2} is not empty and contains at least one connected component, which we write as S1S_{1}^{*} (note that S1S_{1}^{*} must be connected to 𝖪2\mathsf{K}_{2} in S1S_{1}). We next prove that |V(S1)V(𝖪2)|1|V(S_{1}^{*})\cap V(\mathsf{K}_{2})|\leq 1. Since S1𝖪2S1S_{1}^{*}\cup\mathsf{K}_{2}\subset S_{1} is connected, it must be a subtree of S1S_{1}. Therefore, it cannot contain any cycle and thus we have |V(S1)V(𝖪2)|1|V(S_{1}^{*})\cap V(\mathsf{K}_{2})|\leq 1: this is because otherwise we have two vertices in V(S1)V(𝖪2)V(S_{1}^{*})\cap V(\mathsf{K}_{2}) which are connected by a path in S1S_{1}^{*} and also a path in 𝖪2\mathsf{K}_{2} (and clearly these two paths are edge disjoint), forming a cycle and leading to a contradiction. Now, since S1S_{1}^{*} is a tree and |V(S1)V(𝖪2)|1|V(S_{1}^{*})\cap V(\mathsf{K}_{2})|\leq 1, there exists at least one leaf in S1S_{1}^{*} which does not belong to 𝖪2\mathsf{K}_{2}. Therefore, this leaf remains a leaf in 𝖪1𝖪\mathsf{K}_{1}\cup\mathsf{K}^{\prime} for all 𝖪𝖪2\mathsf{K}^{\prime}\Subset\mathsf{K}_{2}, which proves the desired result. ∎

Lemma C.2.

For m0m\geq 0 denote Overlapm={π𝔖n:|E(𝖪2)|=m,|𝖫2|m+2𝟏{m=0}}\operatorname{Overlap}_{m}=\{\pi\in\mathfrak{S}_{n}:|E(\mathsf{K}_{2})|=\aleph-m,|\mathsf{L}_{2}|\geq\aleph-m+2-\mathbf{1}_{\{m=0\}}\}. We have for m1m\geq 1 and sufficiently large nn

μ(Overlapm)nm0.5μ(Overlap0).\displaystyle\mu(\operatorname{Overlap}_{m})\leq n^{m-0.5}\mu(\operatorname{Overlap}_{0})\,.
Proof.

Firstly note that Overlap0={π𝔖n:π(S1)=S2}\operatorname{Overlap}_{0}=\{\pi\in\mathfrak{S}_{n}:\pi(S_{1})=S_{2}\}, and thus we have

#Overlap0=Aut(S1)(n1)!(n1)!.\#\operatorname{Overlap}_{0}=\operatorname{Aut}(S_{1})\cdot(n-\aleph-1)!\geq(n-\aleph-1)!\,.

It remains to bound #Overlapm\#\operatorname{Overlap}_{m} for m1m\geq 1. For each πOverlapm\pi\in\operatorname{Overlap}_{m}, denote Vov={vV(S1):π(v)V(S2)}V_{\operatorname{ov}}=\{v\in V(S_{1}):\pi(v)\in V(S_{2})\}, we have that |Vov|m+2|V_{\operatorname{ov}}|\geq\aleph-m+2. Also, there are at most (+1|Vov|)2+1\binom{\aleph+1}{|V_{\operatorname{ov}}|}\leq 2^{\aleph+1} choices for VovV_{\operatorname{ov}}, and at most (+1)|Vov|(+1)+1(\aleph+1)^{|V_{\operatorname{ov}}|}\leq(\aleph+1)^{\aleph+1} choices for (π(v))vVov(\pi(v))_{v\in V_{\operatorname{ov}}}. Thus

#Overlapm2+1(+1)+1(n+m2)!nm0.5(n1)!,\displaystyle\#\operatorname{Overlap}_{m}\leq 2^{\aleph+1}(\aleph+1)^{\aleph+1}\cdot(n-\aleph+m-2)!\leq n^{m-0.5}\cdot(n-\aleph-1)!\,,

where the last inequality follows from the fact that 2=no(1)\aleph^{2\aleph}=n^{o(1)} for =o(lognloglogn)\aleph=o(\frac{\log n}{\log\log n}). This completes the proof. ∎

Now we can finish our proof of Lemma 3.4.

Proof.

Using Item (2) in Lemma C.1, we have

𝔼[ϕS1,S2]=𝔼πμ[𝔼π[ϕS1,S21{π(S1)=S2}]]+𝔼πμ[𝔼π[ϕS1,S21{π(S1)S2}{π𝔄}]],{}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]=\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\textbf{1}_{\{\pi(S_{1})=S_{2}\}}\big{]}\Big{]}+\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\textbf{1}_{\{\pi(S_{1})\neq S_{2}\}\cap\{\pi\in\mathfrak{A}\}}\big{]}\Big{]}\,, (C.7)

where μ\mu is the uniform distribution over 𝔖n\mathfrak{S}_{n}. Using (C.3), we have that

𝔼πμ[𝔼π[ϕS1,S21{π(S1)=S2}]]\displaystyle\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\textbf{1}_{\{\pi(S_{1})=S_{2}\}}\big{]}\Big{]}
\displaystyle\circeq\ s|E(S1)|𝔼πμ{1{π(S1)=S2}𝔼σν[(i,j)E(S1)(b+aω(σi,σj))]}\displaystyle s^{|E(S_{1})|}\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\textbf{1}_{\{\pi(S_{1})=S_{2}\}}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(S_{1})}(b+a\omega(\sigma_{i},\sigma_{j}))\Big{]}\Bigg{\}}
\displaystyle\circeq\ sμ({π𝔖n:π(S1)=S2}),\displaystyle s^{\aleph}\mu(\{\pi\in\mathfrak{S}_{n}:\pi(S_{1})=S_{2}\})\,, (C.8)

where the second equality follows from the fact that S1S_{1} is a tree and (C.4). In addition, we have that (recall our assumption that ϵ2λs1\epsilon^{2}\lambda s\leq 1, which appears in (C.3))

𝔼πμ[𝔼π[ϕS1,S21{π(S1)S2}{π𝔄}]]\displaystyle\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\textbf{1}_{\{\pi(S_{1})\neq S_{2}\}\cap\{\pi\in\mathfrak{A}\}}\big{]}\Big{]}
\displaystyle\circeq\ 𝔼πμ{1{π(S1)S2}{π𝔄}s|E(S1)E(π1(S2))|n12(|E(S1)|+|E(S2)|2|E(S1)E(π1(S2))|)\displaystyle\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\textbf{1}_{\{\pi(S_{1})\neq S_{2}\}\cap\{\pi\in\mathfrak{A}\}}\cdot s^{|E(S_{1})\cap E(\pi^{-1}(S_{2}))|}n^{-\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-2|E(S_{1})\cap E(\pi^{-1}(S_{2}))|)}
𝔼σν[(i,j)E(S1)E(π1(S2))ω(σi,σj)(i,j)E(S1)E(π1(S2))(b+aω(σi,σj))]}\displaystyle*\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(S_{1})\triangle E(\pi^{-1}(S_{2}))}\omega(\sigma_{i},\sigma_{j})\prod_{(i,j)\in E(S_{1})\cap E(\pi^{-1}(S_{2}))}\big{(}b+a\omega(\sigma_{i},\sigma_{j})\big{)}\Big{]}\Bigg{\}}
\displaystyle\leq\ [1+o(1)]m=1𝔼πμ{1{πOverlapm}smnm𝔼σν[(i,j)E(S1)E(π1(S2))|ω(σi,σj)|\displaystyle[1+o(1)]\cdot\sum_{m=1}^{\aleph}\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\textbf{1}_{\{\pi\in\operatorname{Overlap}_{m}\}}\cdot s^{\aleph-m}n^{-m}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(S_{1})\triangle E(\pi^{-1}(S_{2}))}|\omega(\sigma_{i},\sigma_{j})|
(i,j)E(S1)E(π1(S2))|1+ϵω(σi,σj)|]}m=1k2smnmμ(Overlapm),\displaystyle*\prod_{(i,j)\in E(S_{1})\cap E(\pi^{-1}(S_{2}))}\big{|}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{|}\Big{]}\Bigg{\}}\leq\sum_{m=1}^{\aleph}k^{2\aleph}s^{\aleph-m}n^{-m}\mu(\operatorname{Overlap}_{m})\,, (C.9)

where in the last inequality we used |ω(σi,σj)|k1|\omega(\sigma_{i},\sigma_{j})|\leq k-1. By Lemma C.2, we see that

(C.9)n0.5k2sm=1smμ(Overlap0)(3.3)o(1)sμ({π𝔖n:π(S1)=S2}).\displaystyle\eqref{eq-C.6}\leq n^{-0.5}k^{2\aleph}s^{\aleph}\sum_{m=1}^{\aleph}s^{-m}\mu(\operatorname{Overlap}_{0})\overset{\eqref{eq-choice-K}}{\leq}o(1)\cdot s^{\aleph}\mu(\{\pi\in\mathfrak{S}_{n}:\pi(S_{1})=S_{2}\})\,. (C.10)

Plugging (C.8), (C.9) and (C.10) into (C.7), we obtain

𝔼[ϕS1,S2]s(π(S1)=S2),\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\circeq s^{\aleph}\cdot\mathbb{P}(\pi_{*}(S_{1})=S_{2})\,,

which completes the proof of the first equality in Lemma 3.4. Note that the second equality is obvious. ∎

C.2 Proof of Lemma 3.6

This subsection is devoted to the proof of Lemma 3.6. We first need a general lemma for estimating the joint moments of A¯\bar{A} and B¯\bar{B}.

Lemma C.3.

For 0r,t20\leq r,t\leq 2 and r+t1r+t\geq 1, there exist ur,t=ur,t(ϵ,λ,s,n)u_{r,t}=u_{r,t}(\epsilon,\lambda,s,n) and vr,t=vr,t(ϵ,λ,s,n)v_{r,t}=v_{r,t}(\epsilon,\lambda,s,n) which tend to constants as n+n\to+\infty, such that

𝔼σ,π[A¯i,jrB¯π(i),π(j)t]=ω(σi,σj)ur,t+vr,tn.\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}^{r}\bar{B}_{\pi(i),\pi(j)}^{t}\big{]}=\tfrac{\omega(\sigma_{i},\sigma_{j})u_{r,t}+v_{r,t}}{n}\,.

In particular, we have u1,1=(1+O(n1))ϵλs2,v1,1=(1+O(n1))λs2u_{1,1}=(1+O(n^{-1}))\epsilon\lambda s^{2},v_{1,1}=(1+O(n^{-1}))\lambda s^{2} and v1,0=v0,1=0v_{1,0}=v_{0,1}=0.

Proof.

For the case r+t=1r+t=1 or r=t=1r=t=1, it suffices to recall (C.1) and (C.2). For general cases, we have

𝔼σ,π[A¯i,jrB¯π(i),π(j)t]=𝔼σ,π[A¯i,jrB¯π(i),π(j)t𝟏{Gi,j=0}]+𝔼σ,π[A¯i,jrB¯π(i),π(j)t𝟏{Gi,j=1}]\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}^{r}\bar{B}_{\pi(i),\pi(j)}^{t}\big{]}=\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}^{r}\bar{B}_{\pi(i),\pi(j)}^{t}\mathbf{1}_{\{G_{i,j}=0\}}\big{]}+\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}^{r}\bar{B}_{\pi(i),\pi(j)}^{t}\mathbf{1}_{\{G_{i,j}=1\}}\big{]}
=\displaystyle=\ (1(1+ϵω(σi,σj))λn)(λsn)r+t\displaystyle\ \big{(}1-\tfrac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda}{n}\big{)}\big{(}-\tfrac{\lambda s}{n}\big{)}^{r+t}
+\displaystyle+\ (1+ϵω(σi,σj))λn(s(1λsn)r+(1s)(λsn)r)(s(1λsn)t+(1s)(λsn)t).\displaystyle\ \tfrac{(1+\epsilon\omega(\sigma_{i},\sigma_{j}))\lambda}{n}\Big{(}s\big{(}1-\tfrac{\lambda s}{n}\big{)}^{r}+(1-s)\big{(}-\tfrac{\lambda s}{n}\big{)}^{r}\Big{)}\Big{(}s\big{(}1-\tfrac{\lambda s}{n}\big{)}^{t}+(1-s)\big{(}-\tfrac{\lambda s}{n}\big{)}^{t}\Big{)}.

Therefore, there exist ur,t=ur,t(ϵ,λ,s,n)u^{\prime}_{r,t}=u^{\prime}_{r,t}(\epsilon,\lambda,s,n) and vr,t=vr,t(ϵ,λ,s,n)v^{\prime}_{r,t}=v^{\prime}_{r,t}(\epsilon,\lambda,s,n) which tend to constants as n+n\to+\infty, such that

𝔼σ,π[A¯i,jrB¯π(i),π(j)t]={ur,tn,ω(σi,σj)=k1,vr,tn,ω(σi,σj)=1.\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\bar{A}_{i,j}^{r}\bar{B}_{\pi(i),\pi(j)}^{t}\big{]}=\begin{cases}\frac{u^{\prime}_{r,t}}{n},&\omega(\sigma_{i},\sigma_{j})=k-1\,,\\ \frac{v^{\prime}_{r,t}}{n},&\omega(\sigma_{i},\sigma_{j})=-1\,.\end{cases} (C.11)

Taking ur,t=ur,t+(k1)vr,tku_{r,t}=\frac{u^{\prime}_{r,t}+(k-1)v^{\prime}_{r,t}}{k} and vr,t=ur,tvr,tkv_{r,t}=\frac{u^{\prime}_{r,t}-v^{\prime}_{r,t}}{k} yields our claim. ∎

Now we give estimations on all principal terms first. For simplicity, for 0i,j20\leq i,j\leq 2 denote by Ki,j\operatorname{K}_{i,j} the set of edges which appear ii times in S1S_{1} and T1T_{1} (i.e., the total number of times appearing in S1S_{1} and T1T_{1} is ii), and appear jj times in π1(S2)\pi^{-1}(S_{2}) and π1(T2)\pi^{-1}(T_{2}). In addition, we define Ks=0i,j2,i+j=sKi,j\operatorname{K}_{s}=\cup_{0\leq i,j\leq 2,i+j=s}\operatorname{K}_{i,j}. Define Li,j\operatorname{L}_{i,j} and Ls\operatorname{L}_{s} with respect to vertices in the similar manner. With a slight abuse of notations, we will also use Ks\operatorname{K}_{s} and Ki,j\operatorname{K}_{i,j} to denote their induced graphs. Recall (3.9). It is clear that in the case (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}, we have that Ks=\operatorname{K}_{s}=\emptyset and Ls=\operatorname{L}_{s}=\emptyset for s3s\geq 3. Similar to 𝔄\mathfrak{A} defined in the first moment computation, we define

𝔄={π𝔖n:|L2||E(K2)|+3}.\mathfrak{A}^{\prime}=\{\pi\in\mathfrak{S}_{n}:|\operatorname{L}_{2}|\geq|E(\operatorname{K}_{2})|+3\}\,.
Lemma C.4.

Denote the set of permutations ={π𝔖n:π(S1T1)=S2T2}\mathcal{M}=\{\pi\in\mathfrak{S}_{n}:\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2}\}. For (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}, we have

𝔼[ϕS1,S2ϕT1,T2]\displaystyle\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\big{]} =𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔄}].\displaystyle=\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{A}^{\prime}\cup\mathcal{M}\}}\big{]}\,. (C.12)
Proof.

Similar to Lemma C.1 (2), it suffices to prove when π(𝔄)c\pi\in(\mathfrak{A}^{\prime}\cup\mathcal{M})^{c} we have (K1K)\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime})\neq\emptyset for all KK2\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}. If K2=\operatorname{K}_{2}=\emptyset, then K=\operatorname{K}^{\prime}=\emptyset and |L2|2|\operatorname{L}_{2}|\leq 2. Recalling Definition 3.9 and recalling our assumption that (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*} we have V(S1)V(T1)=V(S_{1})\cap V(T_{1})=\emptyset. Therefore |(S1T1)L2|=|((S1)(T1))L2||(S1)|+|(T1)||L2|2|\mathcal{L}(S_{1}\cup T_{1})\setminus\operatorname{L}_{2}|=\big{|}\big{(}\mathcal{L}(S_{1})\cup\mathcal{L}(T_{1})\big{)}\setminus\operatorname{L}_{2}\big{|}\geq|\mathcal{L}(S_{1})|+|\mathcal{L}(T_{1})|-|\operatorname{L}_{2}|\geq 2. Thus, for all KK2\operatorname{K}^{\prime}\Subset\operatorname{K}_{2} we have (K1K)\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime})\neq\emptyset by ((S1)(T1))L2(K1K)\big{(}\mathcal{L}(S_{1})\cup\mathcal{L}(T_{1})\big{)}\setminus\operatorname{L}_{2}\subset\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime}). If K2\operatorname{K}_{2}\neq\emptyset, then K2\operatorname{K}_{2} is a forest; in addition since π𝔄\pi\not\in\mathfrak{A}^{\prime}, K2\operatorname{K}_{2} has at most two connected components. By π\pi\not\in\mathcal{M} and V(S1)V(T1)=V(S_{1})\cap V(T_{1})=\emptyset, we know that either S1K2S_{1}\not\subset\operatorname{K}_{2} or T1K2T_{1}\not\subset\operatorname{K}_{2} holds. We may assume S1K2S_{1}\not\subset\mathrm{K}_{2}. Since S1S_{1} and T1T_{1} are vertex disjoint, we see that the connected components of S1K2S_{1}\cap\mathrm{K}_{2} are also connected components of K2\mathrm{K}_{2}. Thus, if S1K2S_{1}\cap\mathrm{K}_{2} is disconnected, then both connected components of K2\mathrm{K}_{2} are in S1S_{1} and therefore T1K2=T_{1}\cap\mathrm{K}_{2}=\emptyset. In this case, we have (T1)(KK1)\emptyset\neq\mathcal{L}(T_{1})\subset\mathcal{L}(\operatorname{K}^{\prime}\cup\operatorname{K}_{1}) for all KK2\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}. Else if S1K2S_{1}\cap\mathrm{K}_{2} is connected, then by the same arguments in Lemma C.1 (2), we have (S1(S1K2))(KK1)\emptyset\neq\mathcal{L}\big{(}S_{1}\mathbin{\setminus\mkern-5.0mu\setminus}(S_{1}\cap\mathrm{K}_{2})\big{)}\subset\mathcal{L}(\operatorname{K}^{\prime}\cup\operatorname{K}_{1}) for all KK2\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}. Combining the two cases above we complete the proof. ∎

Lemma C.5.

Suppose (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}. For m0m\geq 0 denote Overlapm={π𝔖n:|E(K2)|=2m,|L2|2m+3𝟏{m=0}}\operatorname{Overlap}^{\prime}_{m}=\{\pi\in\mathfrak{S}_{n}:|E(\operatorname{K}_{2})|=2\aleph-m,|\operatorname{L}_{2}|\geq 2\aleph-m+3-\mathbf{1}_{\{m=0\}}\}. For m1m\geq 1 and sufficiently large nn, we have

μ(πOverlapm)nm0.5μ(πOverlap0).\displaystyle\mu(\pi\in\operatorname{Overlap}^{\prime}_{m})\leq n^{m-0.5}\mu(\pi\in\operatorname{Overlap}^{\prime}_{0})\,.
Proof.

Firstly note that Overlap0={π𝔖n:π(S1T1)=S2T2}\operatorname{Overlap}^{\prime}_{0}=\{\pi\in\mathfrak{S}_{n}:\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2}\}, and thus we have

#Overlap0Aut(S1)Aut(T1)(n22)!(n22)!.\#\operatorname{Overlap}^{\prime}_{0}\geq\operatorname{Aut}(S_{1})\operatorname{Aut}(T_{1})\cdot(n-2\aleph-2)!\geq(n-2\aleph-2)!\,.

It remains to bound #Overlapm\#\operatorname{Overlap}^{\prime}_{m} for m1m\geq 1. For each πOverlapm\pi\in\operatorname{Overlap}^{\prime}_{m}, denoting Vov={vV(S1T1):π(v)V(S2T2)}V^{\prime}_{\operatorname{ov}}=\{v\in V(S_{1}\cup T_{1}):\pi(v)\in V(S_{2}\cup T_{2})\}, we must have |Vov|2m+3|V^{\prime}_{\operatorname{ov}}|\geq 2\aleph-m+3. Also, there are at most (2+2|Vov|)22+2\binom{2\aleph+2}{|V^{\prime}_{\operatorname{ov}}|}\leq 2^{2\aleph+2} choices for VovV^{\prime}_{\operatorname{ov}}, and at most (2+2)|Vov|(2+2)2+1(2\aleph+2)^{|V^{\prime}_{\operatorname{ov}}|}\leq(2\aleph+2)^{2\aleph+1} choices for (π(v))vVov(\pi(v))_{v\in V^{\prime}_{\operatorname{ov}}}. Thus

#Overlapm22+2(2+2)2+1(n2+m3)!nm0.5(n22)!,\displaystyle\#\operatorname{Overlap}^{\prime}_{m}\leq 2^{2\aleph+2}(2\aleph+2)^{2\aleph+1}\cdot(n-2\aleph+m-3)!\leq n^{m-0.5}\cdot(n-2\aleph-2)!\,,

where the last inequality follows from the fact that 2=no(1)\aleph^{2\aleph}=n^{o(1)} for =o(lognloglogn)\aleph=o(\frac{\log n}{\log\log n}). This completes the proof. ∎

Next we deal with non-principal terms. Define the set of good permutations:

𝔊={π𝔖n:2|L4|+|L3||L1|2|E(K4)|+|E(K3)||E(K1)|+2}.\displaystyle\mathfrak{G}=\{\pi\in\mathfrak{S}_{n}:2|\operatorname{L}_{4}|+|\operatorname{L}_{3}|-|\operatorname{L}_{1}|\geq 2|E(\operatorname{K}_{4})|+|E(\operatorname{K}_{3})|-|E(\operatorname{K}_{1})|+2\}\,. (C.13)

Also, if (S1,S2)(T1,T2)(S_{1},S_{2})\neq(T_{1},T_{2}) define 𝔇=\mathfrak{D}=\emptyset; if (S1,S2)=(T1,T2)(S_{1},S_{2})=(T_{1},T_{2}), define

𝔇={π𝔖n:V(π(S1))V(S2)=}.\displaystyle\mathfrak{D}=\{\pi\in\mathfrak{S}_{n}:V(\pi(S_{1}))\cap V(S_{2})=\emptyset\}\,. (C.14)
Lemma C.6.

For (S1,S2;T1,T2)𝖱𝐇,𝐈𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}\setminus\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*}, we have

𝔼[ϕS1,S2ϕT1,T2]=𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔊𝔇}]\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\big{]}=\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{G}\cup\mathfrak{D}\}}\big{]}
Proof.

Note that when (S1,S2)=(T1,T2)(S_{1},S_{2})=(T_{1},T_{2}), we have 𝔊={π𝔖n:|L4||E(K4)|+1}={π𝔖n:V(π(S1))V(S2)}=𝔖n𝔇\mathfrak{G}=\{\pi\in\mathfrak{S}_{n}:|\operatorname{L}_{4}|\geq|E(\operatorname{K}_{4})|+1\}=\{\pi\in\mathfrak{S}_{n}:V(\pi(S_{1}))\cap V(S_{2})\neq\emptyset\}=\mathfrak{S}_{n}\setminus\mathfrak{D}. Thus, (again similar to Lemma C.1 (2)) it suffices to show that when (S1,S2)(T1,T2)(S_{1},S_{2})\neq(T_{1},T_{2}) we have (K1K)\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime})\neq\emptyset for all π(𝔊𝔇)c\pi\in(\mathfrak{G}\cup\mathfrak{D})^{c} and for all KK2K3K4\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}\cup\operatorname{K}_{3}\cup\operatorname{K}_{4}. First, we have

4|L4|+3|L3|+2|L2|+|L1|=4+4=4|E(K4)|+3|E(K3)|+2|E(K2)|+|E(K1)|+4,4|\operatorname{L}_{4}|+3|\operatorname{L}_{3}|+2|\operatorname{L}_{2}|+|\operatorname{L}_{1}|=4\aleph+4=4|E(\operatorname{K}_{4})|+3|E(\operatorname{K}_{3})|+2|E(\operatorname{K}_{2})|+|E(\operatorname{K}_{1})|+4\,,

and thus π𝔊\pi\in\mathfrak{G} is equivalent to

s=14|Ls|s=14|E(Ks)|1.\sum_{s=1}^{4}|\operatorname{L}_{s}|-\sum_{s=1}^{4}|E(\operatorname{K}_{s})|\leq 1\,.

Define the union graph G=S1T1π1(S2T2)G_{\cup}\overset{\triangle}{=}S_{1}\cup T_{1}\cup\pi^{-1}(S_{2}\cup T_{2}). Then π𝔊\pi\in\mathfrak{G} is further equivalent to

|V(G)||E(G)|+1.|V(G_{\cup})|\leq|E(G_{\cup})|+1\,. (C.15)

Now suppose (S1,S2)(T1,T2)(S_{1},S_{2})\neq(T_{1},T_{2}) and π(𝔊𝔇)c\pi\in(\mathfrak{G}\cup\mathfrak{D})^{c}. Since (C.15) does not hold in this case, we immediately have that GG_{\cup} contains at least two connected components. Now we proceed to show that (K1K)\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime})\neq\emptyset. We first deal with the case that exactly one of V(S1)V(T1)V(S_{1})\cap V(T_{1}) and V(S2)V(T2)V(S_{2})\cap V(T_{2}) is not empty. Assuming V(S2)V(T2)V(S_{2})\cap V(T_{2})\neq\emptyset, we have that π1(S2T2)\pi^{-1}(S_{2}\cup T_{2}) is contained in one of the connected components (in GG_{\cup}). Since GG_{\cup} contains at least two connected components, we have that either S1S_{1} or T1T_{1} is not connected to π1(S2T2)\pi^{-1}(S_{2}\cup T_{2}). We may assume that S1S_{1} is not connected to π1(S2T2)\pi^{-1}(S_{2}\cup T_{2}). Recalling that we have also assumed that V(S1)V(T1)=V(S_{1})\cap V(T_{1})=\emptyset, we have S1K1S_{1}\subset\operatorname{K}_{1} and S1S_{1} is one of the connected components in GG_{\cup}, and therefore (S1)(K1K)\emptyset\neq\mathcal{L}(S_{1})\subset\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime}) for all KK2K3K4\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}\cup\operatorname{K}_{3}\cup\operatorname{K}_{4}.

Recall Definition 3.8 and Definition 3.9. By our assumption that (S1,S2;T1,T2)𝖱𝐇,𝐈𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}\setminus\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}}, the only remaining case is V(S1)V(T1)V(S_{1})\cap V(T_{1})\neq\emptyset and V(S2)V(T2)V(S_{2})\cap V(T_{2})\neq\emptyset. In this case S1T1S_{1}\cup T_{1} and S2T2S_{2}\cup T_{2} are both connected. Since for π𝔊\pi\not\in\mathfrak{G} we have shown that GG_{\cup} has at least two connected components, we thus see that S1T1S_{1}\cup T_{1} and π1(S2T2)\pi^{-1}(S_{2}\cup T_{2}) are two distinct connected components. Thus,

|V(G)|\displaystyle|V(G_{\cup})| =|V(S1T1)|+|V(S2T2)|\displaystyle=|V(S_{1}\cup T_{1})|+|V(S_{2}\cup T_{2})|
|E(S1T1)|+|E(S2T2)|+2=|E(G)|+2.\displaystyle\leq|E(S_{1}\cup T_{1})|+|E(S_{2}\cup T_{2})|+2=|E(G_{\cup})|+2\,. (C.16)

Since (C.15) does not hold in this case either, we have that in fact |V(G)|=|E(G)|+2|V(G_{\cup})|=|E(G_{\cup})|+2, showing that S1T1S_{1}\cup T_{1} and π1(S2T2)\pi^{-1}(S_{2}\cup T_{2}) must be vertex-disjoint trees. By (S1,S2)(T1,T2)(S_{1},S_{2})\neq(T_{1},T_{2}), one of the forests F1=S1T1K1F_{1}=S_{1}\mathbin{\setminus\mkern-5.0mu\setminus}T_{1}\subset\operatorname{K}_{1} and F2=π1(S2T2)K1F_{2}=\pi^{-1}(S_{2}\mathbin{\setminus\mkern-5.0mu\setminus}T_{2})\subset\operatorname{K}_{1} is not empty. We may assume that F1=S1T1=(S1T1)T1F_{1}=S_{1}\mathbin{\setminus\mkern-5.0mu\setminus}T_{1}=(S_{1}\cup T_{1})\mathbin{\setminus\mkern-5.0mu\setminus}T_{1} is not empty. Combined with the fact that S1T1S_{1}\cup T_{1} is a tree, we know that (F1)(K1K)\emptyset\neq\mathcal{L}(F_{1})\subset\mathcal{L}(\operatorname{K}_{1}\cup\operatorname{K}^{\prime}) for all KK2K3K4\operatorname{K}^{\prime}\Subset\operatorname{K}_{2}\cup\operatorname{K}_{3}\cup\operatorname{K}_{4} by the same arguments in Lemma C.1 (2), which completes the proof of this lemma. ∎

Lemma C.7.

Define Overlapm={π𝔖n:|V(S1T1)(V(π1(S2T2)))|=m}\operatorname{Overlap}^{*}_{m}=\{\pi\in\mathfrak{S}_{n}:|V(S_{1}\cup T_{1})\cap(V(\pi^{-1}(S_{2}\cup T_{2})))|=m\}. Then we have μ(Overlapm)nm+o(1)\mu(\operatorname{Overlap}^{*}_{m})\leq n^{-m+o(1)}.

Proof.

Let W=V(S1T1)W=V(S_{1}\cup T_{1}). Observe that if |V(S1T1)(V(π1(S2T2)))|=m|V(S_{1}\cup T_{1})\cap(V(\pi^{-1}(S_{2}\cup T_{2})))|=m, then the enumeration of (π(v))vW(\pi(v))_{v\in W} is bounded by (2)mn|W|m(2)2n|W|m(2\aleph)^{m}n^{|W|-m}\leq(2\aleph)^{2\aleph}n^{|W|-m}. It directly follows that

μ(Overlapm)(2)2n|W|m(n2)|W|nm+o(1).\mu(\operatorname{Overlap}^{*}_{m})\leq\frac{(2\aleph)^{2\aleph}n^{|W|-m}}{(n-2\aleph)^{|W|}}\leq n^{-m+o(1)}\,.\qed

We now finish the proof of Lemma 3.6.

Proof of Lemma 3.6.

We first prove Item (1). Suppose (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}^{*}_{\mathbf{H},\mathbf{I}}. Using Lemma C.4, we have

𝔼[ϕS1,S2ϕT1,T2]\displaystyle\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}] =𝔼πμ[𝔼π[ϕS1,S2ϕT1,T21{π}]]\displaystyle=\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\textbf{1}_{\{\pi\in\mathcal{M}\}}\big{]}\Big{]} (C.17)
+𝔼πμ[𝔼π[ϕS1,S2ϕT1,T21{π𝔄\}]].\displaystyle+\mathbb{E}_{\pi\sim\mu}\Big{[}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\textbf{1}_{\{\pi\in\mathfrak{A}^{\prime}\backslash\mathcal{M}\}}\big{]}\Big{]}\,. (C.18)

Using Lemma C.3 and recalling Definition 3.1, we have that (C.17) is bounded by [1+o(1)][1+o(1)] times

𝔼πμ{𝟏π(S1T1)=S2T2𝔼σν[(i,j)E(S1)E(T1)v1,1+u1,1ω(σi,σj)λs]}\displaystyle\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\mathbf{1}_{\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2}}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(S_{1})\cup E(T_{1})}\frac{v_{1,1}+u_{1,1}\omega(\sigma_{i},\sigma_{j})}{\lambda s}\Big{]}\Bigg{\}}
=\displaystyle= s2μ(π(S1T1)=S2T2)𝔼[ϕS1,S2]𝔼[ϕT1,T2](1+𝟏{S1T1}),\displaystyle s^{2\aleph}\mu(\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2})\circeq\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}]\mathbb{E}_{\mathbb{P}}[\phi_{T_{1},T_{2}}](1+\mathbf{1}_{\{S_{1}\cong T_{1}\}})\,, (C.19)

where the first equality follows from the fact that S1,T1S_{1},T_{1} are disjoint trees, Lemma C.3 and (C.4), and the second equality is from Lemma 3.4 and the fact that (since (S1,S2;T1,T2)𝖱𝐇,𝐈(S_{1},S_{2};T_{1},T_{2})\in\mathsf{R}_{\mathbf{H},\mathbf{I}}^{*})

μ(π(S1T1)=S2T2)μ(π(S1)=S2)μ(π(T1)=T2)1+𝟏S1T1.\frac{\mu(\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2})}{\mu(\pi(S_{1})=S_{2})\mu(\pi(T_{1})=T_{2})}\circeq 1+\mathbf{1}_{S_{1}\cong T_{1}}\,.

In addition, we have that (C.18) is bounded by [1+o(1)][1+o(1)] times (writing

E=E((S1T1)

π1(S2T2))
\mathbin{\text{\raisebox{0.86108pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}_{E}=E((S_{1}\cup T_{1})\mathbin{\text{\raisebox{0.86108pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}\pi^{-1}(S_{2}\cup T_{2}))
and E=E((S1T1)π1(S2T2))\cap_{E}=E((S_{1}\cup T_{1})\cap\pi^{-1}(S_{2}\cup T_{2})))

𝔼πμ{𝟏{π𝔄\}(ϵ2λsn)12|

E|
𝔼σν[(i,j)

E
ω(σi,σj)(i,j)Ev1,1+u1,1ω(σi,σj)λs]}
\displaystyle\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\mathbf{1}_{\{\pi\in\mathfrak{A}^{\prime}\backslash\mathcal{M}\}}\big{(}\tfrac{\epsilon^{2}\lambda s}{n}\big{)}^{\frac{1}{2}|\mathbin{\text{\raisebox{0.60275pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}_{E}|}*\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in\mathbin{\text{\raisebox{0.60275pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}_{E}}\omega(\sigma_{i},\sigma_{j})\prod_{(i,j)\in\cap_{E}}\tfrac{v_{1,1}+u_{1,1}\omega(\sigma_{i},\sigma_{j})}{\lambda s}\Big{]}\Bigg{\}}
\displaystyle\leq\ [1+o(1)]m=12𝔼πμ{1{πOverlapm}s2m(ϵ2λsn)m𝔼σν[(i,j)

E
|ω(σi,σj)|
\displaystyle[1+o(1)]\sum_{m=1}^{2\aleph}\mathbb{E}_{\pi\sim\mu}\Bigg{\{}\textbf{1}_{\{\pi\in\operatorname{Overlap}^{\prime}_{m}\}}\cdot s^{2\aleph-m}\big{(}\tfrac{\epsilon^{2}\lambda s}{n}\big{)}^{m}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in\mathbin{\text{\raisebox{0.60275pt}{\scalebox{0.6}{$\triangle$}}$\triangle$}}_{E}}|\omega(\sigma_{i},\sigma_{j})|
(i,j)E|1+ϵω(σi,σj)|]}m=12k4s2m(ϵ2λs)mnmμ(Overlapm),\displaystyle*\prod_{(i,j)\in\cap_{E}}\big{|}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{|}\Big{]}\Bigg{\}}\leq\sum_{m=1}^{2\aleph}k^{4\aleph}s^{2\aleph-m}(\epsilon^{2}\lambda s)^{m}n^{-m}\mu(\operatorname{Overlap}^{\prime}_{m})\,, (C.20)

where in the last inequality we used |ω(σi,σj)|k1|\omega(\sigma_{i},\sigma_{j})|\leq k-1 for all i,j[n]i,j\in[n]. By Lemma C.5, we see that

(C.20)\displaystyle\eqref{eq-C.116} n0.5m=12k4s2(ϵ2λ)mμ(Overlap0)\displaystyle\ \leq n^{-0.5}\sum_{m=1}^{2\aleph}k^{4\aleph}s^{2\aleph}(\epsilon^{2}\lambda)^{m}\mu(\operatorname{Overlap}^{\prime}_{0})
(3.3)s2n0.4μ(Overlap0)=o(1)s2μ(π(S1T1)=S2T2).\displaystyle\overset{\eqref{eq-choice-K}}{\leq}s^{2\aleph}n^{-0.4}\mu(\operatorname{Overlap}^{\prime}_{0})=o(1)\cdot s^{2\aleph}\mu(\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2})\,. (C.21)

Combining (C.19), (C.20) and (C.21), we obtain that

𝔼[ϕS1,S2ϕT1,T2]s2μ(π(S1T1)=S2T2),\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]\circeq s^{2\aleph}\mu(\pi(S_{1}\cup T_{1})=S_{2}\cup T_{2})\,,

which completes our proof of Item (1).

For Item (2), by Lemma C.6 we know

𝔼[ϕS1,S2ϕT1,T2]=𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔊𝔇}]+𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔇}].\displaystyle\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}]=\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{G}\setminus\mathfrak{D}\}}\big{]}+\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{D}\}}\big{]}\,.

Define κ=(κi,j)0i,j2\kappa=(\kappa_{i,j})_{0\leq i,j\leq 2} and =(i,j)0i,j2\ell=(\ell_{i,j})_{0\leq i,j\leq 2}, and define Πκ,\Pi_{\kappa,\ell} to be the subset of 𝔖n\mathfrak{S}_{n} such that the (|E(Ki,j)|)0i,j2=κ(|E(\operatorname{K}_{i,j})|)_{0\leq i,j\leq 2}=\kappa and (|Li,j|)0i,j2=(|\operatorname{L}_{i,j}|)_{0\leq i,j\leq 2}=\ell. Then, using Lemma C.3 and |E(K1)|+2|E(K2)|+3|E(K3)|+4|E(K4)|=4|E(\operatorname{K}_{1})|+2|E(\operatorname{K}_{2})|+3|E(\operatorname{K}_{3})|+4|E(\operatorname{K}_{4})|=4\aleph, we know that for π(𝔊𝔇)Πκ,\pi\in(\mathfrak{G}\setminus\mathfrak{D})\cap\Pi_{\kappa,\ell}

|𝔼π[ϕS1,S2ϕT1,T2]|\displaystyle\Big{|}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\big{]}\Big{|} (λsn)2𝔼σν[0y,z2(i,j)E(Kyz)|uy,zω(σi,σj)+vy,z|n]\displaystyle\leq\big{(}\tfrac{\lambda s}{n}\big{)}^{-2\aleph}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{0\leq y,z\leq 2}\prod_{(i,j)\in E(\operatorname{K}_{yz})}\frac{|u_{y,z}\omega(\sigma_{i},\sigma_{j})+v_{y,z}|}{n}\Big{]}
nκ22+0.5κ21+0.5κ120.5κ010.5κ10L4,\displaystyle\leq n^{\kappa_{22}+0.5\kappa_{21}+0.5\kappa_{12}-0.5\kappa_{01}-0.5\kappa_{10}}L^{4\aleph}\,,

where L=1s(1+λ)2max0r,t2(1+(k1)|ur,t|+|vr,t|)L=\frac{1}{s}(1+\lambda)^{2}\max_{0\leq r,t\leq 2}(1+(k-1)|u_{r,t}|+|v_{r,t}|). Thus we have

|𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔊𝔇}]|=|𝔼πμ[κ,𝟏{π(𝔊𝔇)Πκ,}𝔼π[ϕS1,S2ϕT1,T2]]|\displaystyle\Big{|}\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{G}\setminus\mathfrak{D}\}}\big{]}\Big{|}=\Big{|}\mathbb{E}_{\pi\sim\mu}\Big{[}\sum_{\kappa,\ell}\mathbf{1}_{\{\pi\in(\mathfrak{G}\setminus\mathfrak{D})\cap\Pi_{\kappa,\ell}\}}\mathbb{E}_{\mathbb{P}_{\pi}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\big{]}\Big{]}\Big{|}
\displaystyle\leq\ L4κ,nκ22+0.5κ21+0.5κ120.5κ010.5κ10μ(Πκ,(𝔊𝔇)).\displaystyle L^{4\aleph}\sum_{\kappa,\ell}n^{\kappa_{22}+0.5\kappa_{21}+0.5\kappa_{12}-0.5\kappa_{01}-0.5\kappa_{10}}\mu\big{(}\Pi_{\kappa,\ell}\cap(\mathfrak{G}\setminus\mathfrak{D})\big{)}\,. (C.22)

Recall (C.13). Defining 𝒰={(κ,):24+312κ4+κ3κ1+2}\mathcal{U}=\{(\kappa,\ell):2\ell_{4}+\ell_{3}-\ell_{1}\geq 2\kappa_{4}+\kappa_{3}-\kappa_{1}+2\}, we have

(C.22)\displaystyle\eqref{second-moment-B-setminus-C-1} L4(κ,)𝒰nκ22+0.5κ21+0.5κ120.5κ010.5κ10μ(Overlap11+12+21+22)\displaystyle\leq L^{4\aleph}\sum_{(\kappa,\ell)\in\mathcal{U}}n^{\kappa_{22}+0.5\kappa_{21}+0.5\kappa_{12}-0.5\kappa_{01}-0.5\kappa_{10}}\mu\big{(}\operatorname{Overlap}^{*}_{\ell_{11}+\ell_{12}+\ell_{21}+\ell_{22}}\big{)}
L4(κ,)𝒰nκ22+0.5κ21+0.5κ120.5κ010.5κ1011122122+0.1\displaystyle\leq L^{4\aleph}\sum_{(\kappa,\ell)\in\mathcal{U}}n^{\kappa_{22}+0.5\kappa_{21}+0.5\kappa_{12}-0.5\kappa_{01}-0.5\kappa_{10}-\ell_{11}-\ell_{12}-\ell_{21}-\ell_{22}+0.1}
L4κ,n22+0.521+0.5120.5010.510111221220.9\displaystyle\leq L^{4\aleph}\sum_{\kappa,\ell}n^{\ell_{22}+0.5\ell_{21}+0.5\ell_{12}-0.5\ell_{01}-0.5\ell_{10}-\ell_{11}-\ell_{12}-\ell_{21}-\ell_{22}-0.9}
=L4κ,n0.5010.510110.5120.5210.9,\displaystyle=L^{4\aleph}\sum_{\kappa,\ell}n^{-0.5\ell_{01}-0.5\ell_{10}-\ell_{11}-0.5\ell_{12}-0.5\ell_{21}-0.9}\,, (C.23)

where the second inequality follows from Lemma C.7 and the third inequality is from the definition of 𝒰\mathcal{U}. Since |V(S1)V(T1)|=10+11+12|V(S_{1})\triangle V(T_{1})|=\ell_{10}+\ell_{11}+\ell_{12} and |V(S2)V(T2)|=01+11+21|V(S_{2})\triangle V(T_{2})|=\ell_{01}+\ell_{11}+\ell_{21}, we have

(C.23)L4(16(+1))6n0.5(|V(S1)V(T1)|+|V(S2)V(T2)|)0.9.\displaystyle\eqref{second-moment-B-setminus-C-2}\leq L^{4\aleph}(16\aleph(\aleph+1))^{6}n^{-0.5(|V(S_{1})\triangle V(T_{1})|+|V(S_{2})\triangle V(T_{2})|)-0.9}\,. (C.24)

For sufficiently large nn we have ((1+λ)2L)4(16(+1))6n0.1((1+\lambda)^{2}L)^{4\aleph}(16\aleph(\aleph+1))^{6}\leq n^{0.1}. Thus, combining (C.22), (C.23) and (C.24), we have

|𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔊𝔇}]|[1+o(1)]n0.5(|V(S1)V(T1)|+|V(S2)V(T2)|)0.8.\big{|}\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{G}\setminus\mathfrak{D}\}}]\big{|}\leq[1+o(1)]\cdot n^{-0.5(|V(S_{1})\triangle V(T_{1})|+|V(S_{2})\triangle V(T_{2})|)-0.8}\,. (C.25)

We now treat the term 𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔇}]\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{D}\}}] in the case of (S1,S2)=(T1,T2)(S_{1},S_{2})=(T_{1},T_{2}). Note that for sufficiently large nn we have 𝔼σ,π[(Ai,jλsn)2]hλs(1+ϵω(σi,σj))n\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}\big{(}A_{i,j}-\tfrac{\lambda s}{n}\big{)}^{2}\big{]}\leq\frac{\sqrt{h}\lambda s(1+\epsilon\omega(\sigma_{i},\sigma_{j}))}{n} by the fact that (recall our assumption that h>1h>1)

𝔼σ,π[(Ai,jλsn)2]=(λsn)2(1λs(1+ϵω(σi,σj))n)+(1λsn)2λs(1+ϵω(σi,σj))n.\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\Big{[}\big{(}A_{i,j}-\tfrac{\lambda s}{n}\big{)}^{2}\Big{]}=\big{(}\tfrac{\lambda s}{n}\big{)}^{2}\big{(}1-\tfrac{\lambda s(1+\epsilon\omega(\sigma_{i},\sigma_{j}))}{n}\big{)}+\big{(}1-\tfrac{\lambda s}{n}\big{)}^{2}\tfrac{\lambda s(1+\epsilon\omega(\sigma_{i},\sigma_{j}))}{n}\,.

By independence of edges under σ,π\mathbb{P}_{\sigma,\pi} we have for π𝔇\pi\in\mathfrak{D}

𝔼σ,π[ϕS1,S22]\displaystyle\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}[\phi_{S_{1},S_{2}}^{2}] =(i,j)E(S1)𝔼σ,π[(Ai,jλsn)2](i,j)E(S2)𝔼σ,π[(Bi,jλsn)2]\displaystyle=\prod_{(i,j)\in E(S_{1})}\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}(A_{i,j}-\tfrac{\lambda s}{n})^{2}\big{]}\prod_{(i^{\prime},j^{\prime})\in E(S_{2})}\mathbb{E}_{\mathbb{P}_{\sigma,\pi}}\big{[}(B_{i^{\prime},j^{\prime}}-\tfrac{\lambda s}{n})^{2}\big{]}
h(i,j)E(S1π1(S2))λs(1+ϵω(σi,σj))n.\displaystyle\leq h^{\aleph}\prod_{(i,j)\in E(S_{1}\cup\pi^{-1}(S_{2}))}\tfrac{\lambda s(1+\epsilon\omega(\sigma_{i},\sigma_{j}))}{n}\,.

Thus, we get that when (S1,S2)=(T1,T2)(S_{1},S_{2})=(T_{1},T_{2})

𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔇}]=𝔼πμ,σν[𝟏{π𝔇}𝔼π,σ[ϕS1,S22]]\displaystyle\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{D}\}}\big{]}=\mathbb{E}_{\pi\sim\mu,\sigma\sim\nu}\Big{[}\mathbf{1}_{\{\pi\in\mathfrak{D}\}}\cdot\mathbb{E}_{\mathbb{P}_{\pi,\sigma}}[\phi_{S_{1},S_{2}}^{2}]\Big{]}
\displaystyle\leq\ (λsnh(1λsn))2𝔼πμ,σν[𝟏{π𝔇}(i,j)E(S1π1(S2))λs(1+ϵω(σi,σj))n](1h(1λsn))2,\displaystyle\Big{(}\tfrac{\lambda s}{n\sqrt{h}}(1-\tfrac{\lambda s}{n})\Big{)}^{-2\aleph}\mathbb{E}_{\pi\sim\mu,\sigma\sim\nu}\Bigg{[}\mathbf{1}_{\{\pi\in\mathfrak{D}\}}\prod_{(i,j)\in E(S_{1}\cup\pi^{-1}(S_{2}))}\tfrac{\lambda s(1+\epsilon\omega(\sigma_{i},\sigma_{j}))}{n}\Bigg{]}\leq\big{(}\tfrac{1}{\sqrt{h}}(1-\tfrac{\lambda s}{n})\big{)}^{-2\aleph}\,,

where the last equality follows from the fact that S1π1(S2)S_{1}\cup\pi^{-1}(S_{2}) is a forest for π𝔇\pi\in\mathfrak{D} and (C.4). Since 1λsn1h1-\frac{\lambda s}{n}\geq\frac{1}{\sqrt{h}} for sufficiently large nn we know

𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔇}]O(1)h2.\mathbb{E}_{\mathbb{P}}\big{[}\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{D}\}}\big{]}\leq O(1)\cdot h^{2\aleph}. (C.26)

When (S1,S2)(T1,T2)(S_{1},S_{2})\neq(T_{1},T_{2}), we recall from (C.14) that 𝔇=\mathfrak{D}=\emptyset, which gives

𝔼[ϕS1,S2ϕT1,T2𝟏{π𝔇}]=0.\mathbb{E}_{\mathbb{P}}[\phi_{S_{1},S_{2}}\phi_{T_{1},T_{2}}\mathbf{1}_{\{\pi_{*}\in\mathfrak{D}}\}]=0\,.

Therefore, combining (C.25) and (C.26), we finish the proof. ∎

C.3 Proof of Lemma 4.4

We first introduce some notation for convenience. Denote 𝒫j(χ)\mathcal{P}_{j}(\chi) the set of jj-paths (i.e., paths with jj vertices) of χ\chi, and denote

CAND=j(χ)={(u,v)U:χu,v=0,σu=σv,P𝒫j(χ),EndP(P)={u,v}},\displaystyle\operatorname{CAND}^{=}_{j}(\chi)=\big{\{}(u,v)\in\operatorname{U}:\chi_{u,v}=0,\sigma_{u}=\sigma_{v},\exists P\in\mathcal{P}_{j}(\chi),\operatorname{EndP}(P)=\{u,v\}\big{\}}\,, (C.27)
CANDj(χ)={(u,v)U:χu,v=0,σuσv,P𝒫j(χ),EndP(P)={u,v}},\displaystyle\operatorname{CAND}_{j}^{\neq}(\chi)=\big{\{}(u,v)\in\operatorname{U}:\chi_{u,v}=0,\sigma_{u}\neq\sigma_{v},\exists P\in\mathcal{P}_{j}(\chi),\operatorname{EndP}(P)=\{u,v\}\big{\}}\,,

as the sets of non-neighboring pairs (u,v)(u,v) for which there exists a jj-path connecting this pair. These sets are candidates for the edges in E(G)E(G)E(G)\setminus E(G^{\prime}). For a fixed labeling σ[k]n\sigma\in[k]^{n}, we say that σ\sigma is typical if (in what follows, χ\chi^{\prime} is the random edge vector corresponding to GG^{\prime} as in Definition 4.3)

|#{u[n]:σu=i}n/k|n0.9 for all i[k];\displaystyle\big{|}\#\{u\in[n]:\sigma_{u}=i\}-n/k\big{|}\leq n^{0.9}\mbox{ for all }i\in[k]\,; (C.28)
σ(#(CAND=j(χ)CAND=l(χ))3n0.1)=1o(1) for 2jlN;\displaystyle\mathbb{P}^{\prime}_{\sigma}\Big{(}\#\big{(}\operatorname{CAND}^{=}_{j}(\chi^{\prime})\cap\operatorname{CAND}^{=}_{l}(\chi^{\prime})\big{)}\leq 3n^{0.1}\Big{)}=1-o(1)\mbox{ for }2\leq j\neq l\leq N\,; (C.29)
σ(#(CANDj(χ)CANDl(χ))3n0.1)=1o(1) for 2jlN;\displaystyle\mathbb{P}^{\prime}_{\sigma}\Big{(}\#\big{(}\operatorname{CAND}^{\neq}_{j}(\chi^{\prime})\cap\operatorname{CAND}^{\neq}_{l}(\chi^{\prime})\big{)}\leq 3n^{0.1}\Big{)}=1-o(1)\mbox{ for }2\leq j\neq l\leq N\,; (C.30)
σ(|#CAND=j(χ)nλj1(1+(k1)ϵj1)2k|2n0.9, 2jN)=1o(1);\displaystyle\mathbb{P}^{\prime}_{\sigma}\Big{(}\big{|}\#\operatorname{CAND}^{=}_{j}(\chi^{\prime})-\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\big{|}\leq 2n^{0.9},\forall\ 2\leq j\leq N\Big{)}=1-o(1)\,; (C.31)
σ(|#CANDj(χ)nλj1(k1)(1ϵj1)2k|2n0.9, 2jN)=1o(1).\displaystyle\mathbb{P}^{\prime}_{\sigma}\Big{(}\big{|}\#\operatorname{CAND}^{\neq}_{j}(\chi^{\prime})-\tfrac{n\lambda^{j-1}(k-1)(1-\epsilon^{j-1})}{2k}\big{|}\leq 2n^{0.9},\forall\ 2\leq j\leq N\Big{)}=1-o(1)\,. (C.32)
Claim C.8.

We have ν({σ[k]n:σ is typical})=1o(1)\nu(\{\sigma\in[k]^{n}:\sigma\mbox{ is typical}\})=1-o(1).

Proof.

Clearly, we have that σ\sigma satisfies (C.28) with probability 1o(1)1-o(1). Suppose χσ\chi^{\prime}\sim\mathbb{P}_{\sigma}^{\prime} is subsampled from χσ\chi\sim\mathbb{P}_{\sigma} (recalling Definition 4.3, this means that χ\chi is the random edge vector according to GσG\sim\mathbb{P}_{\sigma}, and χ\chi^{\prime} is the random edge vector according to GG^{\prime} which is obtained from GG after appropriate edge removal). Denote

𝒫ˇ=j(χ)\displaystyle\check{\mathcal{P}}^{=}_{j}(\chi) ={P𝒫j(χ):EndP(P)={u,v} for some (u,v) in U with χu,v=0,σu=σv};\displaystyle=\Big{\{}P\in\mathcal{P}_{j}(\chi):\operatorname{EndP}(P)=\{u,v\}\text{ for some }(u,v)\mbox{ in }\operatorname{U}\text{ with }\chi_{u,v}=0,\sigma_{u}=\sigma_{v}\Big{\}}\,;
𝒫ˇj(χ)\displaystyle\check{\mathcal{P}}^{\neq}_{j}(\chi) ={P𝒫j(χ):EndP(P)={u,v} for some (u,v) in U with χu,v=0,σuσv}.\displaystyle=\Big{\{}P\in\mathcal{P}_{j}(\chi):\operatorname{EndP}(P)=\{u,v\}\text{ for some }(u,v)\mbox{ in }\operatorname{U}\text{ with }\chi_{u,v}=0,\sigma_{u}\neq\sigma_{v}\Big{\}}\,.

(Note that it is possible that #𝒫ˇ=j#CAND=j\#\check{\mathcal{P}}^{=}_{j}\neq\#\operatorname{CAND}^{=}_{j} since pairs in CAND=j\operatorname{CAND}^{=}_{j} may correspond to multiple paths in 𝒫ˇ=j\check{\mathcal{P}}^{=}_{j}.) Recalling Definition 4.3 and applying a union bound (over all BiB_{i}’s in Definition 4.3), we have for all σ[k]n\sigma\in[k]^{n}

σ(#{eU:χe>χe}<n0.1),σ(#(𝒫j(χ)𝒫j(χ))<n0.1)=1o(1),\displaystyle\mathbb{P}_{\sigma}^{\prime}\Big{(}\#\big{\{}e\in\operatorname{U}:\chi_{e}>\chi^{\prime}_{e}\big{\}}<n^{0.1}\Big{)},\ \mathbb{P}_{\sigma}^{\prime}\Big{(}\#\big{(}\mathcal{P}_{j}(\chi)\setminus\mathcal{P}_{j}(\chi^{\prime})\big{)}<n^{0.1}\Big{)}=1-o(1)\,, (C.33)
σ(|#𝒫ˇ=j(χ)#CAND=j(χ)|n0.1)=1o(1).\displaystyle\mathbb{P}_{\sigma}\Big{(}|\#\check{\mathcal{P}}^{=}_{j}(\chi)-\#\operatorname{CAND}^{=}_{j}(\chi)|\leq n^{0.1}\Big{)}=1-o(1)\,. (C.34)

In addition, it can be shown by Markov inequality that for all σ[k]n\sigma\in[k]^{n} and 2jlN2\leq j\neq l\leq N, with σ\mathbb{P}^{\prime}_{\sigma}-probability 1o(1)1-o(1) we have that

#{(P1,P2):P1𝒫ˇ=j(χ),P2𝒫ˇ=l(χ),EndP(P1)=EndP(P2)}n0.1;\displaystyle\#\big{\{}(P_{1},P_{2}):P_{1}\in\check{\mathcal{P}}^{=}_{j}(\chi^{\prime}),P_{2}\in\check{\mathcal{P}}^{=}_{l}(\chi^{\prime}),\operatorname{EndP}(P_{1})=\operatorname{EndP}(P_{2})\big{\}}\leq n^{0.1}\,;
#{(P1,P2):P1𝒫ˇj(χ),P2𝒫ˇl(χ),EndP(P1)=EndP(P2)}n0.1.\displaystyle\#\big{\{}(P_{1},P_{2}):P_{1}\in\check{\mathcal{P}}^{\neq}_{j}(\chi^{\prime}),P_{2}\in\check{\mathcal{P}}^{\neq}_{l}(\chi^{\prime}),\operatorname{EndP}(P_{1})=\operatorname{EndP}(P_{2})\big{\}}\leq n^{0.1}\,.

Thus (C.29) and (C.30) hold for all σ[k]n\sigma\in[k]^{n}. We next deal with (C.31). To this end, by (C.34) and (C.33), it suffices to show that the measure of σ[k]n\sigma\in[k]^{n} such that

σ(|#𝒫ˇ=j(χ)nλj1(1+(k1)ϵj1)2k|n0.9, 3jN)=1o(1)\displaystyle\mathbb{P}_{\sigma}\Big{(}\big{|}\#\check{\mathcal{P}}^{=}_{j}(\chi)-\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\big{|}\leq n^{0.9},\forall\ 3\leq j\leq N\Big{)}=1-o(1)

is 1o(1)1-o(1). Note that

𝔼σν[𝔼σ[#𝒫ˇ=j]]=𝔼[#𝒫ˇ=j]=P𝒫j(1U)(P𝒫ˇ=j)\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\mathbb{E}_{\mathbb{P}_{\sigma}}\big{[}\#\check{\mathcal{P}}^{=}_{j}\big{]}\Big{]}=\mathbb{E}_{\mathbb{P}}\Big{[}\#\check{\mathcal{P}}^{=}_{j}\Big{]}=\sum_{P\in\mathcal{P}_{j}(1_{\operatorname{U}})}\mathbb{P}\Big{(}P\in\check{\mathcal{P}}^{=}_{j}\Big{)}
=\displaystyle=\ P𝒫j(1U)(u,v)U(EndP(P)={u,v},σu=σv,χu,v=0,χe=1 for all eE(P))\displaystyle\sum_{\begin{subarray}{c}P\in\mathcal{P}_{j}(1_{\operatorname{U}})\\ (u,v)\in\operatorname{U}\end{subarray}}\mathbb{P}\Big{(}\operatorname{EndP}(P)=\{u,v\},\sigma_{u}=\sigma_{v},\chi_{u,v}=0,\chi_{e}=1\mbox{ for all }e\in E(P)\Big{)}
=\displaystyle=\ P𝒫j(1U)1k(1(1+ϵ(k1))λn)(1+(k1)ϵj1)λj1nj1=[1+O(1n)]nλj1(1+(k1)ϵj1)2k,\displaystyle\sum_{P\in\mathcal{P}_{j}(1_{\operatorname{U}})}\tfrac{1}{k}\cdot(1-\tfrac{(1+\epsilon(k-1))\lambda}{n})\cdot\tfrac{(1+(k-1)\epsilon^{j-1})\lambda^{j-1}}{n^{j-1}}=[1+O(\tfrac{1}{n})]\cdot\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\,,

where the fourth equality follows from Claim B.2. We now estimate the second moment. We have

𝔼[(#𝒫ˇ=j)2]=P1,P2𝒫j(1U)(P1,P2𝒫ˇ=j).\displaystyle\mathbb{E}_{\mathbb{P}}\Big{[}\big{(}\#\check{\mathcal{P}}^{=}_{j}\big{)}^{2}\Big{]}=\sum_{P_{1},P_{2}\in\mathcal{P}_{j}(1_{\operatorname{U}})}\mathbb{P}(P_{1},P_{2}\in\check{\mathcal{P}}^{=}_{j})\,.

For |V(P1)V(P2)|=m1|V(P_{1})\cap V(P_{2})|=m\geq 1, we have (note that |E(P1)E(P2)|m1|E(P_{1})\cap E(P_{2})|\leq m-1)

(P1,P2𝒫ˇ=j)(χe=1 for all eE(P1)E(P2))(kλn)2(j1)m+1.\displaystyle\mathbb{P}(P_{1},P_{2}\in\check{\mathcal{P}}^{=}_{j})\leq\mathbb{P}(\chi_{e}=1\mbox{ for all }e\in E(P_{1})\cup E(P_{2}))\leq\big{(}\tfrac{k\lambda}{n}\big{)}^{2(j-1)-m+1}\,.

Since the number of pairs (P1,P2)(P_{1},P_{2}) with |V(P2)V(P2)|=m|V(P_{2})\cap V(P_{2})|=m is at most n2jmn^{2j-m}, we have that

V(P1)V(P2)(P1,P2𝒫ˇ=j)m=1jn2jm(kλn)2(j1)m+1n0.4(nλj1(1+(k1)ϵj1)2k)2.\displaystyle\sum_{V(P_{1})\cap V(P_{2})\neq\emptyset}\mathbb{P}(P_{1},P_{2}\in\check{\mathcal{P}}^{=}_{j})\leq\sum_{m=1}^{j}n^{2j-m}\big{(}\tfrac{k\lambda}{n}\big{)}^{2(j-1)-m+1}\leq n^{-0.4}\Big{(}\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\Big{)}^{2}\,.

In addition, for V(P1)V(P2)=V(P_{1})\cap V(P_{2})=\emptyset, we have (P1,P2𝒫ˇ=j)=(P1𝒫ˇ=j)2\mathbb{P}(P_{1},P_{2}\in\check{\mathcal{P}}^{=}_{j})=\mathbb{P}(P_{1}\in\check{\mathcal{P}}^{=}_{j})^{2}. Thus, we have

𝔼σν[(#𝒫ˇ=jnλj1(1+(k1)ϵj1)2k)2]n0.4(nλj1(1+(k1)ϵj1)2k)2,\displaystyle\mathbb{E}_{\sigma\sim\nu}\Big{[}\big{(}\#\check{\mathcal{P}}^{=}_{j}-\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\big{)}^{2}\Big{]}\leq n^{-0.4}\cdot\Big{(}\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\Big{)}^{2}\,,

and we can deduce (C.31) by Chebyshev inequality. The requirement (C.32) can be dealt with in a similar manner. ∎

Lemma C.9.

Fix any sequence of σ\sigma with respect to nn such that σ\sigma is typical. For GσσG^{\sigma}\sim\mathbb{P}_{\sigma} we get

(C3(Gσ),,CN(Gσ))(Pois(c3),,Pois(cN)),\Big{(}C_{3}(G^{\sigma}),\ldots,C_{N}(G^{\sigma})\Big{)}\Longrightarrow\Big{(}\operatorname{Pois}(c_{3}),\ldots,\operatorname{Pois}(c_{N})\Big{)}\,,

where {Pois(cj):3jN}\{\operatorname{Pois}(c_{j}):3\leq j\leq N\} are independent Poisson variables with parameters (1+(k1)ϵj)λj2j\frac{(1+(k-1)\epsilon^{j})\lambda^{j}}{2j}.

Proof.

Let GG\sim\mathbb{P} and recall that Cj(G)C_{j}(G) is the number of jj-cycles in GG. Recalling (4.3), it suffices to show that for typical σ\sigma we have

TV((C3(G),,CN(G)),(C3(Gσ),,CN(Gσ)))=o(1).{}\operatorname{TV}\Big{(}(C_{3}(G),\ldots,C_{N}(G)),(C_{3}(G^{\sigma}),\ldots,C_{N}(G^{\sigma}))\Big{)}=o(1)\,. (C.35)

From Claim C.8, it suffices to show that for arbitrary typical σ\sigma^{\prime}, there exists a coupling ˇ\check{\mathbb{P}} of GσσG^{\sigma}\sim\mathbb{P}_{\sigma} and GσσG^{\sigma^{\prime}}\sim\mathbb{P}_{\sigma^{\prime}} such that

ˇ((C3(Gσ),,CN(Gσ))(C3(Gσ),,CN(Gσ)))=o(1).\check{\mathbb{P}}\Big{(}\big{(}C_{3}(G^{\sigma}),\ldots,C_{N}(G^{\sigma})\big{)}\neq\big{(}C_{3}(G^{\sigma^{\prime}}),\ldots,C_{N}(G^{\sigma^{\prime}})\big{)}\Big{)}=o(1). (C.36)

Define DIF(σ,σ)={i[n]:σiσi}\operatorname{DIF}(\sigma,\sigma^{\prime})=\{i\in[n]:\sigma_{i}\neq\sigma^{\prime}_{i}\}. Since the distribution of (C3(Gσ),,CN(Gσ))\big{(}C_{3}(G^{\sigma}),\ldots,C_{N}(G^{\sigma})\big{)} is invariant under any permutation of σ\sigma, by (C.28) it suffices to show (C.36) assuming that |DIF(σ,σ)|2kn0.9|\operatorname{DIF}(\sigma,\sigma^{\prime})|\leq 2kn^{0.9}. We couple GσσG^{\sigma}\sim\mathbb{P}_{\sigma} and GσσG^{\sigma^{\prime}}\sim\mathbb{P}_{\sigma^{\prime}} as follows: for each (i,j)U(i,j)\in\operatorname{U}, we independently sample a random variable xi,j𝒰[0,1]x_{i,j}\sim\mathcal{U}[0,1], and then for y{σ,σ}y\in\{\sigma,\sigma^{\prime}\} take Gyi,j=1G^{y}_{i,j}=1 if and only if xi,j1+ϵω(yi,yj)nx_{i,j}\leq\frac{1+\epsilon\omega(y_{i},y_{j})}{n}. Let ˇ\check{\mathbb{P}} be the law of (Gσ,Gσ)(G^{\sigma},G^{\sigma^{\prime}}). Since for any 3jN3\leq j\leq N, y{σ,σ}y\in\{\sigma,\sigma^{\prime}\} and uDIF(σ,σ)u\in\operatorname{DIF}(\sigma,\sigma^{\prime}), we have

ˇ(uV(𝙲j(Gy)))nj1(λkn)j=o(n0.9),\displaystyle\check{\mathbb{P}}\Big{(}u\in V(\mathtt{C}_{j}(G^{y}))\Big{)}\leq n^{j-1}(\tfrac{\lambda k}{n})^{j}=o(n^{-0.9})\,,

it follows that

ˇ((C3(Gσ),,CN(Gσ))(C3(Gσ),,CN(Gσ)))\displaystyle\check{\mathbb{P}}\Big{(}\big{(}C_{3}(G^{\sigma}),\ldots,C_{N}(G^{\sigma})\big{)}\neq\big{(}C_{3}(G^{\sigma^{\prime}}),\ldots,C_{N}(G^{\sigma^{\prime}})\big{)}\Big{)}
\displaystyle\leq ˇ(DIF(σ,σ)(3jN,y{σ,σ}V(𝙲j(Gy))))2N|DIF(σ,σ)|o(n0.9)=o(1).\displaystyle\ \check{\mathbb{P}}\Big{(}\operatorname{DIF}(\sigma,\sigma^{\prime})\cap\big{(}\cup_{3\leq j\leq N,y\in\{\sigma,\sigma^{\prime}\}}V(\mathtt{C}_{j}(G^{y}))\big{)}\neq\emptyset\Big{)}\leq 2N|\operatorname{DIF}(\sigma,\sigma^{\prime})|\cdot o(n^{-0.9})=o(1).

Therefore we have verified (C.36), finishing our proof of Lemma C.9. ∎

Let ,σ=(σ=σ)\mathbb{P}_{*,\sigma}=\mathbb{P}_{*}(\cdot\mid\sigma_{*}=\sigma) and define ,σ\mathbb{P}_{*,\sigma}^{\prime} in the similar manner. Based on Claim C.8, it suffices to show that TV(,σ((A,B)),,σ((A,B)))=o(1)\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}((A,B)\in\cdot\mid\mathcal{E}),\mathbb{P}^{\prime}_{*,\sigma}((A,B)\in\cdot)\big{)}=o(1) for all typical σ\sigma. Let G=G(σ)G=G({\sigma}) and G=G(σ)G^{\prime}=G^{\prime}(\sigma) be two parent graphs sampled from ,σ\mathbb{P}_{*,\sigma} and ,σ\mathbb{P}^{\prime}_{*,\sigma} respectively (and coupled naturally via the mechanism in Definition 4.3). From the data processing inequality, it suffices to show that TV(,σ(G),,σ(G))=o(1)\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}(G\in\cdot\mid\mathcal{E}),\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\cdot)\big{)}=o(1). Denote 𝒢\mathcal{G} the event that GG does not contain any self-bad subgraph HH such that |V(H)|D3|V(H)|\leq D^{3} and that the number of cycles of length at most NN is at most logn\log n (note that sometimes we also view 𝒢\mathcal{G} as a collection of vectors that correspond to edges in GG satisfying 𝒢\mathcal{G}). It is known from (4.5) and (4.3) that ,σ(𝒢)=1o(1)\mathbb{P}_{*,\sigma}^{\prime}(\mathcal{G})=1-o(1) (the label σ\sigma does not matter here since the stochastic domination employed in (4.5) holds for all σ\sigma). By the triangle inequality

TV(,σ(G),,σ(G))TV(,σ(G),,σ(G𝒢))+,σ(𝒢c),\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}(G\in\cdot\mid\mathcal{E}),\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\cdot)\big{)}\leq\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}(G\in\cdot\mid\mathcal{E}),\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\cdot\mid\mathcal{G})\big{)}+\mathbb{P}_{*,\sigma}^{\prime}(\mathcal{G}^{c})\,,

in order to prove Lemma 4.4 it suffices to show

TV(,σ(G),,σ(G𝒢)))=o(1).\displaystyle\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}(G\in\cdot\mid\mathcal{E}),\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\cdot\mid\mathcal{G}))\big{)}=o(1)\,. (C.37)

Denote 𝚙=(1+ϵ(k1))λn\mathtt{p}=\frac{(1+\epsilon(k-1))\lambda}{n} and 𝚚=(1ϵ)λn\mathtt{q}=\frac{(1-\epsilon)\lambda}{n}. For any χ{0,1}U\chi\in\{0,1\}^{\operatorname{U}}, denote

𝙴1,=(χ)=#{(i,j)U:χi,j=1,σi=σj};𝙴1,(χ)=#{(i,j)U:χi,j=1,σiσj};\displaystyle\mathtt{E}_{1,=}(\chi)=\#\big{\{}(i,j)\in\operatorname{U}:\chi_{i,j}=1,\sigma_{i}=\sigma_{j}\big{\}}\,;\quad\mathtt{E}_{1,\neq}(\chi)=\#\big{\{}(i,j)\in\operatorname{U}:\chi_{i,j}=1,\sigma_{i}\neq\sigma_{j}\big{\}}\,;
𝙴0,=(χ)=#{(i,j)U:χi,j=0,σi=σj};𝙴0,(χ)=#{(i,j)U:χi,j=0,σiσj}.\displaystyle\mathtt{E}_{0,=}(\chi)=\#\big{\{}(i,j)\in\operatorname{U}:\chi_{i,j}=0,\sigma_{i}=\sigma_{j}\big{\}}\,;\quad\mathtt{E}_{0,\neq}(\chi)=\#\big{\{}(i,j)\in\operatorname{U}:\chi_{i,j}=0,\sigma_{i}\neq\sigma_{j}\big{\}}\,.

Note that for χ{0,1}U\chi\in\{0,1\}^{\operatorname{U}} such that \mathcal{E} holds, we have

,σ(G=χ)=,σ(G=χ)σ()=𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ),σ().\displaystyle\mathbb{P}_{*,\sigma}(G=\chi\mid\mathcal{E})=\frac{\mathbb{P}_{*,\sigma}(G=\chi)}{\mathbb{P}_{\sigma}(\mathcal{E})}=\frac{\mathtt{p}^{\mathtt{E}_{1,=}(\chi)}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi)}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi)}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi)}}{\mathbb{P}_{*,\sigma}(\mathcal{E})}\,. (C.38)

In addition, for any σ[k]n\sigma\in[k]^{n}, by applying (4.5), (4.1) and (4.7) in the proof of Lemma 4.2 (the label σ\sigma does not matter here for the same reason as explained earlier), we have

,σ(((1))c)o(1).\displaystyle\mathbb{P}_{*,\sigma}((\mathcal{E}^{(1)})^{c})\leq o(1). (C.39)

Also, using Lemma C.9 we have

,σ((2))((Pois(c3),,Pois(cN))=(0,,0)).\mathbb{P}_{*,\sigma}(\mathcal{E}^{(2)})\circeq\mathbb{P}\Big{(}(\operatorname{Pois}(c_{3}),\ldots,\operatorname{Pois}(c_{N}))=(0,\ldots,0)\Big{)}\,. (C.40)

Combining (C.39) and (C.40), for typical σ[k]n\sigma\in[k]^{n}, we have

,σ()\displaystyle{}\mathbb{P}_{*,\sigma}(\mathcal{E}) ((Pois(c3),,Pois(cN))=(0,,0))j=3Ne(1+(k1)ϵj)λj2j.\displaystyle\circeq\mathbb{P}\Big{(}(\operatorname{Pois}(c_{3}),\ldots,\operatorname{Pois}(c_{N}))=(0,\ldots,0)\Big{)}\circeq\prod_{j=3}^{N}e^{-\frac{(1+(k-1)\epsilon^{j})\lambda^{j}}{2j}}\,. (C.41)

We now estimate ,σ(G=χ𝒢)\mathbb{P}^{\prime}_{*,\sigma}(G^{\prime}=\chi^{\prime}\mid\mathcal{G}). Since ,σ(𝒢)=1o(1)\mathbb{P}_{*,\sigma}(\mathcal{G})=1-o(1), we have

,σ(G=χ𝒢)\displaystyle\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid\mathcal{G}) χ𝒢,σ(G=χ),σ(G=χG=χ)\displaystyle\circeq\sum_{\chi\in\mathcal{G}}\mathbb{P}_{*,\sigma}(G=\chi)\cdot\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid G=\chi)
χ𝒢𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ),σ(G=χG=χ).\displaystyle\circeq\sum_{\chi\in\mathcal{G}}\mathtt{p}^{\mathtt{E}_{1,=}(\chi)}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi)}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi)}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi)}\cdot\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid G=\chi)\,.

And it remains to estimate ,σ(G=χG=χ)\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid G=\chi). For χχ\chi^{\prime}\leq\chi, denote

Υ(χ;χ)={eU:χe=1,χe=0} and Ξj(χ)=C𝙲j(χ)E(C).\displaystyle\Upsilon(\chi^{\prime};\chi)=\Big{\{}e\in\operatorname{U}:\chi_{e}=1,\chi_{e}^{\prime}=0\Big{\}}\mbox{ and }\Xi_{j}(\chi)=\bigcup_{C\in\mathtt{C}_{j}(\chi)}E(C)\,.

Recall Definition 4.1. For χ𝒢\chi\in\mathcal{G}, we have Ξj(χ)Ξl(χ)=\Xi_{j}(\chi)\cap\Xi_{l}(\chi)=\emptyset for 3j<lN3\leq j<l\leq N. Denote χχ\chi^{\prime}\lhd\chi when Υ(χ;χ)j=3NΞj(χ)\Upsilon(\chi^{\prime};\chi)\subset\cup_{j=3}^{N}\Xi_{j}(\chi) and |Υ(χ;χ)E(C)|1|\Upsilon(\chi^{\prime};\chi)\cap E(C)|\leq 1 for C3jN𝙲j(χ)C\in\cup_{3\leq j\leq N}\mathtt{C}_{j}(\chi). Then for χ𝒢\chi\in\mathcal{G} we have

,σ(G=χG=χ)=𝟏{χχ}j=3N(1/j)|Υ(χ;χ)Ξj(χ)|.\displaystyle\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid G=\chi)=\mathbf{1}_{\{\chi^{\prime}\lhd\chi\}}\cdot\prod_{j=3}^{N}(1/j)^{|\Upsilon(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|}\,.

Thus, we have (recall ,σ(𝒢)=1o(1)\mathbb{P}_{*,\sigma}(\mathcal{G})=1-o(1))

,σ(G=χ𝒢)χ:χ𝒢χχ𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ)j=3Nj|Υ(χ;χ)Ξj|.\displaystyle\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid\mathcal{G})\circeq\sum_{\begin{subarray}{c}\chi:\chi\in\mathcal{G}\\ \chi^{\prime}\lhd\chi\end{subarray}}\frac{\mathtt{p}^{\mathtt{E}_{1,=}(\chi)}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi)}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi)}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi)}}{\prod_{j=3}^{N}j^{|\Upsilon(\chi^{\prime};\chi)\cap\Xi_{j}|}}\,.

Denote

Υ=(χ;χ)={(i,j)Υ(χ;χ):σi=σj} and Υ(χ;χ)=Υ(χ;χ)Υ=(χ;χ).\displaystyle\Upsilon_{=}(\chi^{\prime};\chi)=\{(i,j)\in\Upsilon(\chi^{\prime};\chi):\sigma_{i}=\sigma_{j}\}\mbox{ and }\Upsilon_{\neq}(\chi^{\prime};\chi)=\Upsilon(\chi^{\prime};\chi)\setminus\Upsilon_{=}(\chi^{\prime};\chi)\,.

We then have that

,σ(G=χ𝒢)𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ)𝐦,𝐧=0logn(j=3N𝚙mj𝚚njjmj+nj\displaystyle\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid\mathcal{G})\circeq\mathtt{p}^{\mathtt{E}_{1,=}(\chi^{\prime})}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi^{\prime})}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi^{\prime})}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi^{\prime})}\sum_{\mathbf{m},\mathbf{n}=0}^{\log n}\Bigg{(}\prod_{j=3}^{N}\frac{\mathtt{p}^{m_{j}}\mathtt{q}^{n_{j}}}{j^{m_{j}+n_{j}}}*
#{χ𝒢:χχ,|Υ=(χ;χ)Ξj(χ)|=mj,|Υ(χ;χ)Ξj(χ)|=nj}),\displaystyle\#\Big{\{}\chi\in\mathcal{G}:\chi^{\prime}\leq\chi,|\Upsilon_{=}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=m_{j},|\Upsilon_{\neq}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=n_{j}\Big{\}}\Bigg{)}\,, (C.42)

where 𝐦=(m1,,mN)\mathbf{m}=(m_{1},\ldots,m_{N}), 𝐧=(n1,,nN)\mathbf{n}=(n_{1},\ldots,n_{N}), and the summation indicates summing each entry in 𝐦\mathbf{m} and 𝐧\mathbf{n} from 0 to logn\log n. We next bound the cardinality for the set in (C.3). To this end, we have (we denote by 𝖢𝖠𝖭=j=#(CAND=j(χ)lN,ljCANDl(χ))\mathsf{CAN}^{=}_{j}=\#(\operatorname{CAND}^{=}_{j}(\chi^{\prime})\setminus\cup_{l\leq N,l\neq j}\operatorname{CAND}^{\neq}_{l}(\chi^{\prime})) and 𝖢𝖠𝖭j=#(CANDj(χ)lN,ljCANDl(χ))\mathsf{CAN}^{\neq}_{j}=\#(\operatorname{CAND}^{\neq}_{j}(\chi^{\prime})\setminus\cup_{l\leq N,l\neq j}\operatorname{CAND}^{\neq}_{l}(\chi^{\prime})) below)

#{χ𝒢:χχ,|Υ=(χ;χ)Ξj(χ)|=mj,|Υ(χ;χ)Ξj(χ)|=nj}\displaystyle\#\Big{\{}\chi\in\mathcal{G}:\chi^{\prime}\leq\chi,|\Upsilon_{=}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=m_{j},|\Upsilon_{\neq}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=n_{j}\Big{\}}
\displaystyle\geq\ j=3N(𝖢𝖠𝖭=jmj)j=3N(𝖢𝖠𝖭jnj)[1+o(1)]j=3N(𝖢𝖠𝖭=j)mj(𝖢𝖠𝖭j)njmj!nj!\displaystyle\prod_{j=3}^{N}\binom{\mathsf{CAN}^{=}_{j}}{m_{j}}\prod_{j=3}^{N}\binom{\mathsf{CAN}^{\neq}_{j}}{n_{j}}\geq[1+o(1)]\cdot\prod_{j=3}^{N}\frac{(\mathsf{CAN}^{=}_{j})^{m_{j}}(\mathsf{CAN}^{\neq}_{j})^{n_{j}}}{m_{j}!n_{j}!}

and

#{χ𝒢:χχ,|Υ=(χ;χ)Ξj(χ)|=mj,|Υ(χ;χ)Ξj(χ)|=nj}\displaystyle\#\Big{\{}\chi\in\mathcal{G}:\chi^{\prime}\leq\chi,|\Upsilon_{=}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=m_{j},|\Upsilon_{\neq}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=n_{j}\Big{\}}
\displaystyle\leq\ j=3N(#CAND=j(χ)mj)j=3N(#CANDj(χ)nj)j=3N(#CAND=j(χ))mj(#CANDj(χ))njmj!nj!.\displaystyle\prod_{j=3}^{N}\binom{\#\operatorname{CAND}^{=}_{j}(\chi^{\prime})}{m_{j}}\prod_{j=3}^{N}\binom{\#\operatorname{CAND}^{\neq}_{j}(\chi^{\prime})}{n_{j}}\leq\prod_{j=3}^{N}\frac{(\#\operatorname{CAND}^{=}_{j}(\chi^{\prime}))^{m_{j}}(\#\operatorname{CAND}^{\neq}_{j}(\chi^{\prime}))^{n_{j}}}{m_{j}!n_{j}!}\,.

Denote

𝒜=\displaystyle\mathcal{A}= {χ:|#CAND=j(χ)nλj1(1+(k1)ϵj1)2k|2n0.9 for j=3,,N}\displaystyle\Big{\{}\chi^{\prime}:\Big{|}\#\operatorname{CAND}^{=}_{j}(\chi^{\prime})-\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\Big{|}\leq 2n^{0.9}\mbox{ for }j=3,\cdots,N\Big{\}} (C.43)
{χ:|#CANDj(χ)nλj1(1ϵj1)2k|2n0.9 for j=3,,N}\displaystyle\bigcap\Big{\{}\chi^{\prime}:\Big{|}\#\operatorname{CAND}^{\neq}_{j}(\chi^{\prime})-\tfrac{n\lambda^{j-1}(1-\epsilon^{j-1})}{2k}\Big{|}\leq 2n^{0.9}\mbox{ for }j=3,\cdots,N\Big{\}}
{χ:#(CANDij(χ)CANDil(χ))3n0.1 for i{=,};jl}.\displaystyle\bigcap\Big{\{}\chi^{\prime}:\#\big{(}\operatorname{CAND}^{i}_{j}(\chi^{\prime})\cap\operatorname{CAND}^{i}_{l}(\chi^{\prime})\big{)}\leq 3n^{0.1}\mbox{ for }i\in\{=,\neq\};j\neq l\Big{\}}\,.

Since σ\sigma is typical, we see that σ(𝒜)=1o(1)\mathbb{P}_{\sigma}^{\prime}(\mathcal{A})=1-o(1). In addition, for χ𝒜\chi^{\prime}\in\mathcal{A}, we have

𝖢𝖠𝖭=j,#CAND=j(χ)\displaystyle\mathsf{CAN}^{=}_{j},\ \#\operatorname{CAND}^{=}_{j}(\chi^{\prime}) nλj1(1+(k1)ϵj1)2k;\displaystyle\circeq\tfrac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\,;
𝖢𝖠𝖭j,#CANDj(χ)\displaystyle\mathsf{CAN}^{\neq}_{j},\ \#\operatorname{CAND}^{\neq}_{j}(\chi^{\prime}) n(k1)λj1(1ϵj1)2k.\displaystyle\circeq\tfrac{n(k-1)\lambda^{j-1}(1-\epsilon^{j-1})}{2k}\,.

Thus, for such χ\chi^{\prime} we have

#{χ𝒢:χχ,|Υ=(χ;χ)Ξj(χ)|=mj,|Υ(χ;χ)Ξj(χ)|=nj}\displaystyle\#\Big{\{}\chi\in\mathcal{G}:\chi^{\prime}\leq\chi,|\Upsilon_{=}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=m_{j},|\Upsilon_{\neq}(\chi^{\prime};\chi)\cap\Xi_{j}(\chi)|=n_{j}\Big{\}}
\displaystyle\circeq\ j=3N1mj!(nλj1(1+(k1)ϵj1)2k)mjj=3N1nj!(n(k1)λj1(1ϵj1)2k)nj.\displaystyle\prod_{j=3}^{N}\frac{1}{m_{j}!}\Big{(}\frac{n\lambda^{j-1}(1+(k-1)\epsilon^{j-1})}{2k}\Big{)}^{m_{j}}\prod_{j=3}^{N}\frac{1}{n_{j}!}\Big{(}\frac{n(k-1)\lambda^{j-1}(1-\epsilon^{j-1})}{2k}\Big{)}^{n_{j}}\,.

Plugging this estimation into (C.3), we get that for χ𝒜\chi^{\prime}\in\mathcal{A}

,σ(G=χ\displaystyle\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid 𝒢)𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ)\displaystyle\mathcal{G})\circeq\ \mathtt{p}^{\mathtt{E}_{1,=}(\chi^{\prime})}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi^{\prime})}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi^{\prime})}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi^{\prime})}*
𝐦,𝐧=0lognj=3Nλj(mj+nj)((1+(k1)ϵ)(1+(k1)ϵj1)k)mj((k1)(1ϵ)(1ϵj1)k)nj(2j)mj+njmj!nj!\displaystyle\qquad\sum_{\mathbf{m},\mathbf{n}=0}^{\log n}\prod_{j=3}^{N}\frac{\lambda^{j(m_{j}+n_{j})}(\frac{(1+(k-1)\epsilon)(1+(k-1)\epsilon^{j-1})}{k})^{m_{j}}(\frac{(k-1)(1-\epsilon)(1-\epsilon^{j-1})}{k})^{n_{j}}}{{(2j)}^{m_{j}+n_{j}}m_{j}!n_{j}!}
(C.41)𝚙𝙴1,=(χ)𝚚𝙴1,(χ)(1𝚙)𝙴0,=(χ)(1𝚚)𝙴0,(χ)()\displaystyle\ \overset{\eqref{eq-prob-mathcal-E}}{\circeq}\frac{\mathtt{p}^{\mathtt{E}_{1,=}(\chi^{\prime})}\mathtt{q}^{\mathtt{E}_{1,\neq}(\chi^{\prime})}(1-\mathtt{p})^{\mathtt{E}_{0,=}(\chi^{\prime})}(1-\mathtt{q})^{\mathtt{E}_{0,\neq}(\chi^{\prime})}}{\mathbb{P}(\mathcal{E})}
,σ(G=χ).\displaystyle\quad\circeq\mathbb{P}_{*,\sigma}(G=\chi^{\prime}\mid\mathcal{E})\,.

Thus, we have for all typical σ\sigma

TV(,σ(G),,σ(G𝒢))),σ(G𝒜c)+maxχ𝒜{|,σ(G=χ𝒢),σ(G=χ)1|},\displaystyle\operatorname{TV}\big{(}\mathbb{P}_{*,\sigma}(G\in\cdot\mid\mathcal{E}),\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\cdot\mid\mathcal{G}))\big{)}\leq\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}\in\mathcal{A}^{c})+\max_{\chi^{\prime}\in\mathcal{A}}\Bigg{\{}\Big{|}\frac{\mathbb{P}_{*,\sigma}^{\prime}(G^{\prime}=\chi^{\prime}\mid\mathcal{G})}{\mathbb{P}_{*,\sigma}(G=\chi^{\prime}\mid\mathcal{E})}-1\Big{|}\Bigg{\}}\,,

which vanishes, thereby yielding (C.37) as desired.

C.4 Proof of Claim 4.11

Note that

K:HKS𝙼(S,K)𝙼(K,H)=(4.29)𝙼(S,H)K:HKS(D8n0.1)12(|(S)V(K)|+|(K)V(H)||(S)V(H)|).\displaystyle\sum_{K:H\ltimes K\subset S}\mathtt{M}(S,K)\mathtt{M}(K,H)\overset{\eqref{eq-def-mathtt-M}}{=}\mathtt{M}(S,H)\sum_{K:H\ltimes K\subset S}\big{(}\tfrac{D^{8}}{n^{0.1}}\big{)}^{\frac{1}{2}(|\mathcal{L}(S)\setminus V(K)|+|\mathcal{L}(K)\setminus V(H)|-|\mathcal{L}(S)\setminus V(H)|)}\,.

In light of (4.26), in order to prove Claim 4.11, it suffices to prove

K:HKSn0.04(|(S)V(K)|+|(K)V(H)||(S)V(H)|)\displaystyle\sum_{K:H\ltimes K\subset S}n^{-0.04(|\mathcal{L}(S)\setminus V(K)|+|\mathcal{L}(K)\setminus V(H)|-|\mathcal{L}(S)\setminus V(H)|)} (C.44)
\displaystyle\leq [1+o(1)]2|(S,H)|D10(|(S)V(H)|+τ(S)τ(H)).\displaystyle[1+o(1)]\cdot 2^{|\mathfrak{C}(S,H)|}D^{10(|\mathcal{L}(S)\setminus V(H)|+\tau(S)-\tau(H))}\,.

To this end, we consider the decomposition of E(S)E(H)E(S)\setminus E(H) given by Corollary A.4: for 𝚖=|(S,H)|\mathtt{m}=|\mathfrak{C}(S,H)| and some 0𝚝5(|(S)V(H)|+τ(H)τ(S))0\leq\mathtt{t}\leq 5(|\mathcal{L}(S)\setminus V(H)|+\tau(H)-\tau(S)) we can decompose E(S)E(H)E(S)\setminus E(H) into 𝚖\mathtt{m} independent cycles C1,,C𝚖C_{1},\ldots,C_{\mathtt{m}} and 𝚝\mathtt{t} paths P1,,P𝚝P_{1},\ldots,P_{\mathtt{t}}. Denote

X𝚒(K)=\displaystyle X_{\mathtt{i}}(K)=\ #{uV(C𝚒):u(K)V(H)},𝟷𝚒𝚖;\displaystyle\#\Big{\{}u\in V(C_{\mathtt{i}}):u\in\mathcal{L}(K)\setminus V(H)\Big{\}}\,,\mathtt{1}\leq\mathtt{i}\leq\mathtt{m}\,;
Y𝚓(K)=\displaystyle Y_{\mathtt{j}}(K)=\ #{uV(P𝚓)EndP(P𝚓):u(K)V(H)},𝟷𝚓𝚝;\displaystyle\#\Big{\{}u\in V(P_{\mathtt{j}})\setminus\operatorname{EndP}(P_{\mathtt{j}}):u\in\mathcal{L}(K)\setminus V(H)\Big{\}}\,,\mathtt{1}\leq\mathtt{j}\leq\mathtt{t}\,;
Z(K)=\displaystyle Z(K)=\ #({u𝚓=𝟷𝚝EndP(P𝚓):u(((S)V(K))((K)V(H)))}\displaystyle\#\Big{(}\big{\{}u\in\cup_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{j}}):u\in\big{(}(\mathcal{L}(S)\setminus V(K))\cup(\mathcal{L}(K)\setminus V(H))\big{)}\big{\}}\setminus
{u𝚓=𝟷𝚝EndP(P𝚓):u(S)V(H)}).\displaystyle\big{\{}u\in\cup_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{j}}):u\in\mathcal{L}(S)\setminus V(H)\big{\}}\Big{)}\,.

(See Figure 2 for an illustration.) Clearly we have X𝚒,Y𝚓0X_{\mathtt{i}},Y_{\mathtt{j}}\geq 0. We argue that

((S)V(H))EndP(P𝚓)(((S)V(K))((K)V(H)))EndP(P𝚓){}\big{(}\mathcal{L}(S)\setminus V(H)\big{)}\cap\operatorname{EndP}(P_{\mathtt{j}})\subset\big{(}(\mathcal{L}(S)\setminus V(K))\cup(\mathcal{L}(K)\setminus V(H))\big{)}\cap\operatorname{EndP}(P_{\mathtt{j}}) (C.45)

for 1𝚓𝚝1\leq\mathtt{j}\leq\mathtt{t} and thus we also have Z0Z\geq 0. Assume that u((S)V(H))EndP(P𝚓)u\in(\mathcal{L}(S)\setminus V(H))\cap\operatorname{EndP}(P_{\mathtt{j}}). If uV(K)u\not\in V(K), then u(S)V(K)u\in\mathcal{L}(S)\setminus V(K). If uV(K)V(H)u\in V(K)\setminus V(H), we see that u(K)u\not\in\mathcal{I}(K) since HKH\ltimes K, which together with u(S)u\in\mathcal{L}(S) implies that u(K)u\in\mathcal{L}(K) (and thus u(K)V(H)u\in\mathcal{L}(K)\setminus V(H)). Combining the above two arguments leads to (C.45).

Refer to caption
Figure 2: Illustration of the decomposition

Note that the vertices in C𝚒C_{\mathtt{i}} and V(P𝚓)EndP(P𝚓)V(P_{\mathtt{j}})\setminus\operatorname{EndP}(P_{\mathtt{j}}) have degree at least 2 in SS and thus they do not belong to (S)\mathcal{L}(S). By the definition of X𝚒,Y𝚓X_{\mathtt{i}},Y_{\mathtt{j}} and ZZ, we have

|(S)V(K)|+|(K)V(H)||(S)V(H)|=Z+𝚒=𝟷𝚖X𝚒+𝚓=𝟷𝚝Y𝚓.|\mathcal{L}(S)\setminus V(K)|+|\mathcal{L}(K)\setminus V(H)|-|\mathcal{L}(S)\setminus V(H)|=Z+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}X_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}Y_{\mathtt{j}}.

Thus, the left-hand side of (C.44) equals (below we write 𝐗(K)=(X𝟷(K),,X𝚖(K))\mathbf{X}(K)=(X_{\mathtt{1}}(K),\ldots,X_{\mathtt{m}}(K)) and the same applies to 𝐘(K)\mathbf{Y}(K), 𝐱\mathbf{x} and 𝐲\mathbf{y})

K:HKSn0.04(Z(K)+𝚒=𝟷𝚖X𝚒(K)+𝚓=𝟷𝚝Y𝚓(K))\displaystyle\sum_{K:H\ltimes K\subset S}n^{-0.04(Z(K)+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}X_{\mathtt{i}}(K)+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}Y_{\mathtt{j}}(K))}
=\displaystyle= z,𝐱,𝐲0n0.04(z+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝y𝚓)#{K:HKS,Z(K)=z,𝐗(K)=𝐱,𝐘(K)=𝐲},\displaystyle\sum_{z,\mathbf{x},\mathbf{y}\geq 0}n^{-0.04(z+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}y_{\mathtt{j}})}\#\big{\{}K:H\ltimes K\subset S,Z(K)=z,\mathbf{X}(K)=\mathbf{x},\mathbf{Y}(K)=\mathbf{y}\big{\}}\,,

where 𝐱0\mathbf{x}\geq 0 means x𝚒0x_{\mathtt{i}}\geq 0 for all 1𝚒𝚖1\leq\mathtt{i}\leq\mathtt{m} (and similarly for 𝐲0\mathbf{y}\geq 0). We now bound the CARD\mathrm{CARD}, the cardinality of the above set as follows. First note that the enumeration of ((S)V(K))((K)V(H))(\mathcal{L}(S)\setminus V(K))\cup(\mathcal{L}(K)\setminus V(H)) is bounded by Dz+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝y𝚓D^{z+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}y_{\mathtt{j}}}. Since the vertices in ((S)V(K))((K)V(H))(\mathcal{L}(S)\setminus V(K))\cup(\mathcal{L}(K)\setminus V(H)) split C𝚒C_{\mathtt{i}}’s and P𝚓P_{\mathtt{j}}’s into 𝚖𝚖\mathtt{m}^{\prime}\leq\mathtt{m} independent cycles and 𝚒X𝚒+𝚓(Y𝚓+1)\sum_{\mathtt{i}}X_{\mathtt{i}}+\sum_{\mathtt{j}}(Y_{\mathtt{j}}+1) new paths, where each paths/cycles belong to either KK or SKS\setminus K, leading to a bound of 2𝚖+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝(y𝚓+1)2^{\mathtt{m}+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}(y_{\mathtt{j}}+1)} on the enumeration. Thus for |E(S)|D|E(S)|\leq D we have

CARDDz+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝y𝚓2𝚖+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝(y𝚓+1).\displaystyle\mathrm{CARD}\leq D^{z+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}y_{\mathtt{j}}}2^{\mathtt{m}+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}(y_{\mathtt{j}}+1)}\,.

Therefore, the left-hand side of (C.44) is bounded by

2𝚖(2D)𝚝z,x,y0(2Dn0.04)z+𝚒=𝟷𝚖x𝚒+𝚓=𝟷𝚝y𝚓2𝚖(2D)𝚝,\displaystyle 2^{\mathtt{m}}(2D)^{\mathtt{t}}\sum_{z,x,y\geq 0}\big{(}\tfrac{2D}{n^{0.04}}\big{)}^{z+\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}x_{\mathtt{i}}+\sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}y_{\mathtt{j}}}\circeq 2^{\mathtt{m}}(2D)^{\mathtt{t}}\,,

concluding (C.44) by recalling that 𝚖=|(S,H)|\mathtt{m}=|\mathfrak{C}(S,H)| and 𝚝5(τ(S)τ(H))\mathtt{t}\leq 5(\tau(S)-\tau(H)).

C.5 Proof of Lemma B.1

To prove Lemma B.1, by averaging over the conditioning of community labels we have that the left-hand side of (B.3) is bounded by

s|E(H)|𝔼σν[eE(H)𝔼σ[(Geλn)2λ/n]]=s|E(H)|𝔼σν[(i,j)E(H)(1+ϵω(σi,σj))].\displaystyle s^{|E(H)|}\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\prod_{e\in E(H)}\mathbb{E}_{\mathbb{P}_{\sigma}}\Big{[}\frac{(G_{e}-\tfrac{\lambda}{n})^{2}}{\lambda/n}\Big{]}\Bigg{]}=s^{|E(H)|}\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\prod_{(i,j)\in E(H)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\Bigg{]}\,.

Thus, it suffices to show that for any admissible HH we have

s|E(H)|𝔼σν[(i,j)E(H)(1+ϵω(σi,σj))]O(1)(αδ/2)|E(H)|.{}s^{|E(H)|}\mathbb{E}_{\sigma\sim\nu}\Bigg{[}\prod_{(i,j)\in E(H)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\Bigg{]}\leq O(1)\cdot(\sqrt{\alpha}-\delta/2)^{|E(H)|}\,. (C.46)

Now we provide the proof of (C.46), thus finishing the proof of Lemma B.1.

Proof of (C.46).

Denoting 𝖢𝗈𝗋𝖾(H)\mathsf{Core}(H) the 22-core of HH, we can write HH as H=𝖢𝗈𝗋𝖾(H)(𝚒=1𝚝T𝚒)H=\mathsf{Core}(H)\cup\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}T_{\mathtt{i}}\big{)}, where {T𝚒:1𝚒𝚝}\{T_{\mathtt{i}}:1\leq\mathtt{i}\leq\mathtt{t}\} are disjoint rooted trees such that V(T𝚒)V(𝖢𝗈𝗋𝖾(H))V(T_{\mathtt{i}})\cap V(\mathsf{Core}(H)) is (the singleton of) the root of T𝚒T_{\mathtt{i}}, denoted as (T𝚒)\mathfrak{R}(T_{\mathtt{i}}). Clearly, conditioned on {σu:uV(𝖢𝗈𝗋𝖾(H))}\{\sigma_{u}:u\in V(\mathsf{Core}(H))\}, we have that

{(i,j)E(T𝚒)(1+ϵω(σi,σj)):1𝚒𝚝}\Bigg{\{}\prod_{(i,j)\in E(T_{\mathtt{i}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}:1\leq\mathtt{i}\leq\mathtt{t}\Bigg{\}}

are conditionally independent. In addition, since for any tree TT we have

𝔼[(i,j)E(T)(1+ϵω(σi,σj))σ(T)]=1,\displaystyle\mathbb{E}\Big{[}\prod_{(i,j)\in E(T)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\sigma_{\mathfrak{R}(T)}\Big{]}=1\,,

we then get that

𝔼[𝚒=1𝚝(i,j)E(T𝚒)(1+ϵω(σi,σj)){σu:uV(𝖢𝗈𝗋𝖾(H))}]=1.\displaystyle\mathbb{E}\Big{[}\prod_{\mathtt{i}=1}^{\mathtt{t}}\prod_{(i,j)\in E(T_{\mathtt{i}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\{\sigma_{u}:u\in V(\mathsf{Core}(H))\}\Big{]}=1\,.

Therefore (noting that the product over edges outside of the 2-core can be decomposed as product over edges in T𝚒T_{\mathtt{i}} for 1𝚒𝚝1\leq\mathtt{i}\leq\mathtt{t}),

𝔼[(i,j)E(H)(1+ϵω(σi,σj))]=𝔼[𝔼[(i,j)E(H)(1+ϵω(σi,σj)){σu:uV(𝖢𝗈𝗋𝖾(H))}]]\displaystyle\mathbb{E}\Big{[}\prod_{(i,j)\in E(H)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\Big{]}=\mathbb{E}\Bigg{[}\mathbb{E}\Big{[}\prod_{(i,j)\in E(H)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\{\sigma_{u}:u\in V(\mathsf{Core}(H))\}\Big{]}\Bigg{]}
=\displaystyle=\ 𝔼[(i,j)E(𝖢𝗈𝗋𝖾(H))(1+ϵω(σi,σj))𝚒=1𝚝𝔼[(i,j)E(T𝚒)(1+ϵω(σi,σj))σ(T𝚒)]]\displaystyle\mathbb{E}\Bigg{[}\prod_{(i,j)\in E(\mathsf{Core}(H))}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\prod_{\mathtt{i}=1}^{\mathtt{t}}\mathbb{E}\Big{[}\prod_{(i,j)\in E(T_{\mathtt{i}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\sigma_{\mathfrak{R}(T_{\mathtt{i}})}\Big{]}\Bigg{]}
=\displaystyle=\ 𝔼[(i,j)E(𝖢𝗈𝗋𝖾(H))(1+ϵω(σi,σj))].\displaystyle\mathbb{E}\Bigg{[}\prod_{(i,j)\in E(\mathsf{Core}(H))}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\Bigg{]}\,.

Since in addition, s<αδs<\sqrt{\alpha}-\delta, it suffices to show that for any admissible HH with at most DD edges and with minimum degree at least 2, we have (C.46) holds for HH. For any such graph HH (note that in this case (H)=\mathcal{I}(H)=\emptyset), by applying Corollary A.4 with H\emptyset\ltimes H (in place of HSH\ltimes S as in the corollary-statement), we see that HH can be decomposed into 𝚖\mathtt{m} independent cycles C1,C𝚖C_{1},\ldots C_{\mathtt{m}} and 𝚝\mathtt{t} paths P1,,P𝚝P_{1},\ldots,P_{\mathtt{t}} satisfying Item (1)–(3) in Corollary A.4. In particular, since HH is admissible, recalling Definition 4.1 we have 𝚝5τ(H)=O(1)\mathtt{t}\leq 5\tau(H)=O(1) and |E(C𝚒)|N|E(C_{\mathtt{i}})|\geq N. Keeping this in mind, we now proceed to show (C.46). Denoting 𝖤𝗇𝖽=𝚒=𝟷𝚝EndP(P𝚒)\mathsf{End}=\cup_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}}), conditioned on {σ𝗎:𝗎𝖤𝗇𝖽}\{\sigma_{\mathsf{u}}:\mathsf{u}\in\mathsf{End}\} we have

{(i,j)E(C𝚒)(1+ϵω(σi,σj)),(i,j)E(P𝚓)(1+ϵω(σi,σj)):𝟷𝚒𝚖,𝟷𝚓𝚝}\displaystyle\Big{\{}\prod_{(i,j)\in E(C_{\mathtt{i}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)},\prod_{(i,j)\in E(P_{\mathtt{j}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}:\mathtt{1}\leq\mathtt{i}\leq\mathtt{m},\mathtt{1}\leq\mathtt{j}\leq\mathtt{t}\Big{\}}

are conditionally independent. In addition, by Claim B.2 we have

s|E(C𝚒)|𝔼σν[(i,j)E(C𝚒)(1+ϵω(σi,σj)){σ𝗎:𝗎𝖤𝗇𝖽}]\displaystyle s^{|E(C_{\mathtt{i}})|}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(C_{\mathtt{i}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\{\sigma_{\mathsf{u}}:\mathsf{u}\in\mathsf{End}\}\Big{]}
=\displaystyle=\ s|E(C𝚒)|(1+(k1)ϵ|E(C𝚒)|)(4.1)(αδ/2)|E(C𝚒)|,\displaystyle s^{|E(C_{\mathtt{i}})|}(1+(k-1)\epsilon^{|E(C_{\mathtt{i}})|})\overset{\eqref{eq-def-N}}{\leq}(\sqrt{\alpha}-\delta/2)^{|E(C_{\mathtt{i}})|}\,,

where in the last inequality we also used |E(C𝚒)|N|E(C_{\mathtt{i}})|\geq N. Furthermore, using Claim B.2 and the fact that |ω(σu,σv)|k1|\omega(\sigma_{u},\sigma_{v})|\leq k-1 we get that

s|E(P𝚓)|𝔼σν[(i,j)E(P𝚓)(1+ϵω(σi,σj)){σ𝗎:𝗎𝖤𝗇𝖽}]\displaystyle s^{|E(P_{\mathtt{j}})|}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(P_{\mathtt{j}})}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\mid\{\sigma_{\mathsf{u}}:\mathsf{u}\in\mathsf{End}\}\Big{]}
\displaystyle\leq\ s|E(P𝚓)|(1+(k1)ϵ|E(P𝚓)|)k(αδ/2)|E(P𝚓)|,\displaystyle s^{|E(P_{\mathtt{j}})|}(1+(k-1)\epsilon^{|E(P_{\mathtt{j}})|})\leq k(\sqrt{\alpha}-\delta/2)^{|E(P_{\mathtt{j}})|}\,,

where the last inequality follows from s<αδ/2s<\sqrt{\alpha}-\delta/2 and ϵ<1\epsilon<1. Putting these together, we have

s|E(H)|𝔼σν[(i,j)E(H)(1+ϵω(σi,σj))]\displaystyle s^{|E(H)|}\mathbb{E}_{\sigma\sim\nu}\Big{[}\prod_{(i,j)\in E(H)}\big{(}1+\epsilon\omega(\sigma_{i},\sigma_{j})\big{)}\Big{]}
\displaystyle\leq\ 𝚒=𝟷𝚖(αδ/2)|E(C𝚒)|𝚓=𝟷𝚝k(αδ/2)|E(P𝚓)|𝚝=O(1)O(1)(αδ/2)|E(H)|,\displaystyle\prod_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}}(\sqrt{\alpha}-\delta/2)^{|E(C_{\mathtt{i}})|}\prod_{\mathtt{j}=\mathtt{1}}^{\mathtt{t}}k(\sqrt{\alpha}-\delta/2)^{|E(P_{\mathtt{j}})|}\overset{\mathtt{t}=O(1)}{\leq}O(1)\cdot(\sqrt{\alpha}-\delta/2)^{|E(H)|}\,, (C.47)

which yields the desired result. ∎

C.6 Proof of Claim B.5

Recall (B.13). We divide the assumption 𝚆(χ)\mathtt{W}\not\subset\mathcal{B}(\chi) into two cases.

Case 1: There exists u(S1)V(K1)𝚅u\in\mathcal{L}(S_{1})\setminus V(K_{1})\subset\mathtt{V} such that u(χ)u\not\in\mathcal{B}(\chi). For each ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} and i[k]i\in[k], define ϰi(u)[k]𝚅\varkappa_{i(u)}\in[k]^{\mathtt{V}} such that ϰi(u)(v)=ϰ(v)\varkappa_{i(u)}(v)=\varkappa(v) for v𝚅{u}v\in\mathtt{V}\setminus\{u\} and ϰi(u)(u)=i\varkappa_{i(u)}(u)=i. Since u(χ)u\not\in\mathcal{B}(\chi), we know that in χ{𝟷𝙴}\chi\oplus\{\mathtt{1}_{\mathtt{E}}\}, there is neither small cycle nor self-bad graph containing uu. Thus, given G(par)|U𝙴=χG(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi, in each G(ϰ)G(\varkappa) for ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} there is no small cycle nor self-bad graph containing uu. Thus we have given G(par)|U𝙴=χG(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi,

G(ϰi(u)) is equal in distribution with G(ϰj(u)) for all ϰ[k]𝚅,i,j[k].G^{\prime}(\varkappa_{i(u)})\mbox{ is equal in distribution with }G^{\prime}(\varkappa_{j(u)})\mbox{ for all }\varkappa\in[k]^{\mathtt{V}},i,j\in[k]\,.

Thus, the left-hand side of (B.18) equals

1k|𝚅|+1i[k]ϰ[k]𝚅hϰi(u)γ(S1,S2;K1,K2)𝔼~[φγ;K1,K2;H(G(ϰi(u)))G(par)|U𝙴=χ].\displaystyle\frac{1}{k^{|\mathtt{V}|+1}}\sum_{i\in[k]}\sum_{\varkappa\in[k]^{\mathtt{V}}}h_{\varkappa_{i(u)}\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa_{i(u)}))\mid G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi\Big{]}\,.

Noticing from (B.8) that

i[k]hϰi(u)γ(S1,S2;K1,K2)=0,\displaystyle\sum_{i\in[k]}h_{\varkappa_{i(u)}\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})=0\,,

we have that the left-hand side of (B.18) must cancel to 0. The result follows similarly if there exists u(S2)V(K2)u\in\mathcal{L}(S_{2})\setminus V(K_{2}) such that u(χ)u\not\in\mathcal{B}(\chi).

Case 2: There exists uV(K1)V(H)u\in V(K_{1})\setminus V(H) such that u(χ)u\not\in\mathcal{B}(\chi). We argue that now we must have

𝔼~[φγ;K1,K2;H(G(ϰ))G(par)|U𝙴=χ]=0,ϰ[k]𝚅.\displaystyle\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa))\mid G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi\Big{]}=0\,,\forall\varkappa\in[k]^{\mathtt{V}}\,. (C.48)

In fact, since HK1H\ltimes K_{1}, there exists eE(K1)E(H)e\in E(K_{1})\setminus E(H) such that e=(u,v)e=(u,v). Since in χ{𝟷𝙴}\chi\oplus\{\mathtt{1}_{\mathtt{E}}\} there is no small cycle nor self-bad graph containing uu, we know that for any realization G(par)G(\operatorname{par}) such that G(par)|U𝙴=χG(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}=\chi, for each ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} there is no small cycle nor self-bad graph containing uu in G(ϰ)G(\varkappa). Therefore

G(ϰ)u,v=G(ϰ)u,v for all ϰ[k]𝚅G^{\prime}(\varkappa)_{u,v}=G(\varkappa)_{u,v}\mbox{ for all }\varkappa\in[k]^{\mathtt{V}}

and thus G(ϰ)u,vG^{\prime}(\varkappa)_{u,v} is conditionally independent with {G(ϰ)i,j:(i,j)U(u,v)}\{G^{\prime}(\varkappa)_{i,j}:(i,j)\in\operatorname{U}\setminus(u,v)\}. Thus recalling (B.9) we see that the conditional expectation in (C.48) cancels to 0. The result follows similarly if there exists uV(K2)V(H)u\in V(K_{2})\setminus V(H) such that u(χ)u\not\in\mathcal{B}(\chi).

C.7 Proof of Claim B.6

Consider the graph Kˇ1,Kˇ2\check{K}_{1},\check{K}_{2} such that E(Kˇi)=E(Ki)E(\check{K}_{i})=E(K_{i}) and V(Kˇi)=V(Ki)((χ)𝚆)V(\check{K}_{i})=V(K_{i})\cup(\mathcal{B}(\chi)\setminus\mathtt{W}). Recalling (B.13) and Definition B.4, we have

(χ)𝚆(V(S1)V(K1))(V(S2)V(K2)),\displaystyle\mathcal{B}(\chi)\setminus\mathtt{W}\subset(V(S_{1})\setminus V(K_{1}))\cup(V(S_{2})\setminus V(K_{2}))\,,

and thus τ(Kˇi)=τ(Ki)|(χ)𝚆|=τ(Kˇi)\tau(\check{K}_{i})=\tau(K_{i})-|\mathcal{B}(\chi)\setminus\mathtt{W}|=\tau(\check{K}_{i})-\ell. Noting that Kˇ1S1\check{K}_{1}\ltimes S_{1} and Kˇ2S2\check{K}_{2}\ltimes S_{2} since (S1)=(S2)=\mathcal{I}(S_{1})=\mathcal{I}(S_{2})=\emptyset, we can decompose E(S1)E(Kˇ1)E(S_{1})\setminus E(\check{K}_{1}) into 𝚝\mathtt{t} paths P1,,P𝚝P_{1},\ldots,P_{\mathtt{t}} and 𝚡\mathtt{x} independent cycles C𝟷,,C𝚡C_{\mathtt{1}},\ldots,C_{\mathtt{x}} satisfying Items (1)–(3) in Corollary A.4, and similarly we can decompose E(S2)E(Kˇ2)E(S_{2})\setminus E(\check{K}_{2}) into into 𝚛\mathtt{r} paths Q1,,Q𝚛Q_{1},\ldots,Q_{\mathtt{r}} and 𝚢\mathtt{y} independent cycles D𝟷,,D𝚢D_{\mathtt{1}},\ldots,D_{\mathtt{y}}. What’s more, since C𝚒(S1,K1)C_{\mathtt{i}}\in\mathfrak{C}(S_{1},K_{1}) we have V(C𝚒)V(H)V(C𝚒)V(K1)=V(C_{\mathtt{i}})\cap V(H)\subset V(C_{\mathtt{i}})\cap V(K_{1})=\emptyset, and thus from S1S2=HS_{1}\cap S_{2}=H we have V(C𝚒)V(Q𝚓)=V(C𝚒)V(D𝚓)=V(C_{\mathtt{i}})\cap V(Q_{\mathtt{j}})=V(C_{\mathtt{i}})\cap V(D_{\mathtt{j}^{\prime}})=\emptyset. This yields that

V(C𝚒)((𝚖𝚒V(C𝚖))(𝚒V(P𝚒))(𝚓V(D𝚓))(𝚓V(Q𝚓)))={}V(C_{\mathtt{i}})\cap\Big{(}\big{(}\cup_{\mathtt{m}\neq\mathtt{i}}V(C_{\mathtt{m}})\big{)}\cup\big{(}\cup_{\mathtt{i}^{\prime}}V(P_{\mathtt{i}^{\prime}})\big{)}\cup\big{(}\cup_{\mathtt{j}}V(D_{\mathtt{j}})\big{)}\cup\big{(}\cup_{\mathtt{j}^{\prime}}V(Q_{\mathtt{j}^{\prime}})\big{)}\Big{)}=\emptyset (C.49)

and similar results hold for D𝚓D_{\mathtt{j}}. Also from Item (2) in Corollary A.4 we have V(P𝚒)V(H)V(P𝚒)V(K1)EndP(P𝚒)V(P_{\mathtt{i}^{\prime}})\cap V(H)\subset V(P_{\mathtt{i}^{\prime}})\cap V(K_{1})\subset\operatorname{EndP}(P_{\mathtt{i}^{\prime}}), thus

V(P𝚒)((𝚒V(C𝚒))(𝚖𝚒V(P𝚖))(𝚓V(D𝚓))(𝚓V(Q𝚓)))EndP(P𝚒){}V(P_{\mathtt{i}^{\prime}})\cap\Big{(}\big{(}\cup_{\mathtt{i}}V(C_{\mathtt{i}})\big{)}\cup\big{(}\cup_{\mathtt{m}^{\prime}\neq\mathtt{i}^{\prime}}V(P_{\mathtt{m}^{\prime}})\big{)}\cup\big{(}\cup_{\mathtt{j}}V(D_{\mathtt{j}})\big{)}\cup\big{(}\cup_{\mathtt{j}^{\prime}}V(Q_{\mathtt{j}^{\prime}})\big{)}\Big{)}\subset\operatorname{EndP}(P_{\mathtt{i}^{\prime}}) (C.50)

and similar results hold for Q𝚓Q_{\mathtt{j}^{\prime}}. In addition, since S1,S2S_{1},S_{2} are admissible, we must have |V(C𝚒)|,|V(D𝚓)|N|V(C_{\mathtt{i}})|,|V(D_{\mathtt{j}})|\geq N for all 1𝚒𝚡1\leq\mathtt{i}\leq\mathtt{x} and 1𝚓𝚢1\leq\mathtt{j}\leq\mathtt{y}. Denote

𝚂=((𝚒=1𝚝EndP(P𝚒))(𝚓=1𝚛EndP(Q𝚓)))V(K1K2).\displaystyle\mathtt{S}=\Big{(}\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}})\big{)}\cup\big{(}\cup_{\mathtt{j}=1}^{\mathtt{r}}\operatorname{EndP}(Q_{\mathtt{j}})\big{)}\Big{)}\setminus V(K_{1}\cup K_{2})\,.

By (B.13), (B.11) and Definition B.4, we have (((χ)𝚆)𝙻1)V(K1K2)=((\mathcal{B}(\chi)\setminus\mathtt{W})\cup\mathtt{L}_{1})\cap V(K_{1}\cup K_{2})=\emptyset. In addition, we can see that each vertex in ((χ)𝚆)𝙻1(\mathcal{B}(\chi)\setminus\mathtt{W})\cup\mathtt{L}_{1} has degree at least 11 in S1S2S_{1}\cup S_{2} but has degree 0 in Kˇ1,Kˇ2\check{K}_{1},\check{K}_{2}. Thus, from Item (2) Corollary A.4 we have

((χ)𝚆)𝙻1(𝚒=1𝚝EndP(P𝚒))(𝚓=1𝚛EndP(Q𝚓).\displaystyle(\mathcal{B}(\chi)\setminus\mathtt{W})\cup\mathtt{L}_{1}\subset\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}})\big{)}\cup\big{(}\cup_{\mathtt{j}=1}^{\mathtt{r}}\operatorname{EndP}(Q_{\mathtt{j}})\,.

In conclusion, we have that ((χ)𝚆)𝙻1𝚂𝚅(\mathcal{B}(\chi)\setminus\mathtt{W})\cup\mathtt{L}_{1}\subset\mathtt{S}\subset\mathtt{V} and

|𝚂|2(𝚝+𝚛)10i=1,2(|(Si)V(Kˇi)|+τ(Si)τ(Ki)+)(B.14)10(Γ1+2),\displaystyle|\mathtt{S}|\leq 2(\mathtt{t}+\mathtt{r})\leq 10\sum_{i=1,2}\big{(}|\mathcal{L}(S_{i})\setminus V(\check{K}_{i})|+\tau(S_{i})-\tau(K_{i})+\ell\big{)}\overset{\eqref{eq-def-Gamma}}{\leq}10(\Gamma_{1}+2\ell)\,,

where the second inequality follows from Item (3) in Corollary A.4. Recall that we use ϰ\varkappa and γ\gamma to denote the community labelling restricted on 𝚅\mathtt{V} and [n]𝚅[n]\setminus\mathtt{V}, respectively. Also recall the definition of φγ;K1,K2;H(G(ϰ))\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa)) in Claim B.6 (recall that it was defined for the partial label γ\gamma since it only depends on the community labelling on [n]𝚅[n]\setminus\mathtt{V}). We have that for all ϰ|𝚂=η|𝚂\varkappa|_{\mathtt{S}}=\eta|_{\mathtt{S}}

|𝔼~[φγ;K1,K2;H(G(ϰ))G(par)i,j=χi,j,(i,j)U𝙴]|\displaystyle\Big{|}\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\varkappa))\mid G(\operatorname{par})_{i,j}=\chi_{i,j},(i,j)\in\operatorname{U}\setminus\mathtt{E}\Big{]}\Big{|}
=\displaystyle=\ |𝔼~[φγ;K1,K2;H(G(η))G(par)i,j=χi,j,(i,j)U𝙴]|\displaystyle\Big{|}\mathbb{E}_{\widetilde{\mathbb{P}}}\Big{[}\varphi_{\gamma;K_{1},K_{2};H}(G^{\prime}(\eta))\mid G(\operatorname{par})_{i,j}=\chi_{i,j},(i,j)\in\operatorname{U}\setminus\mathtt{E}\Big{]}\Big{|} (C.51)
\displaystyle\leq\ 𝔼[|φγ;K1,K2;H(G(par)|𝙴)|],\displaystyle\mathbb{E}\Big{[}\big{|}\varphi_{\gamma;K_{1},K_{2};H}\big{(}G(\operatorname{par})|_{\mathtt{E}}\big{)}\big{|}\Big{]}\,, (C.52)

where the last inequality follows from G(ϰ)i,jG(par)i,jG^{\prime}(\varkappa)_{i,j}\leq G(\operatorname{par})_{i,j} for all ϰ[k]𝚅\varkappa\in[k]^{\mathtt{V}} and (i,j)U(i,j)\in\operatorname{U}, and the fact that |φγ;K1,K2;H||\varphi_{\gamma;K_{1},K_{2};H}| (as a function on {0,1}𝙴\{0,1\}^{\mathtt{E}}) is increasing. In addition, for all ζ[k]𝚂,η[k]𝚅𝚂\zeta\in[k]^{\mathtt{S}},\eta\in[k]^{\mathtt{V}\setminus\mathtt{S}} we can write hηζγ(S1,S2;K1,K2)h_{\eta\oplus\zeta\oplus\gamma}(S_{1},S_{2};K_{1},K_{2}) as (recall (B.8))

(1δ)|E(S1)|+|E(S2)||E(K1)||E(K2)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|)𝚒=𝟷𝚝𝚑ηζ(P𝚒)𝚓=𝟷𝚛𝚑ηζ(Q𝚓)𝚒=𝟷𝚡𝚑ηζ(C𝚒)𝚓=𝟷𝚢𝚑ηζ(D𝚓),\displaystyle\frac{(1-\delta)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}\cdot\prod_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}\mathtt{h}_{\eta\oplus\zeta}(P_{\mathtt{i}})\prod_{\mathtt{j}=\mathtt{1}}^{\mathtt{r}}\mathtt{h}_{\eta\oplus\zeta}(Q_{\mathtt{j}})\prod_{\mathtt{i}^{\prime}=\mathtt{1}}^{\mathtt{x}}\mathtt{h}_{\eta\oplus\zeta}(C_{\mathtt{i}^{\prime}})\prod_{\mathtt{j}^{\prime}=\mathtt{1}}^{\mathtt{y}}\mathtt{h}_{\eta\oplus\zeta}(D_{\mathtt{j}^{\prime}})\,,

where for each V(P𝚒)={u0,,ul}V(P_{\mathtt{i}})=\{u_{0},\ldots,u_{l}\} with EndP(P𝚒)={u0,ul}\operatorname{EndP}(P_{\mathtt{i}})=\{u_{0},u_{l}\} and V(C𝚒)={v0,,vl}V(C_{\mathtt{i}^{\prime}})=\{v_{0},\ldots,v_{l^{\prime}}\}

𝚑ηζ(P𝚒)=ω(ζu0,ηu1)ω(ηul1,ζul)m=1l2ω(ηum,ηum+1),𝚑ηζ(C𝚒)=m=0lω(ηum,ηum+1),\displaystyle\mathtt{h}_{\eta\oplus\zeta}(P_{\mathtt{i}})=\omega(\zeta_{u_{0}},\eta_{u_{1}})\omega(\eta_{u_{l-1}},\zeta_{u_{l}})\prod_{m=1}^{l-2}\omega(\eta_{u_{m}},\eta_{u_{m+1}}),\quad\mathtt{h}_{\eta\oplus\zeta}(C_{\mathtt{i}^{\prime}})=\prod_{m=0}^{l^{\prime}}\omega(\eta_{u_{m}},\eta_{u_{m+1}})\,,

and 𝚑ηζ(Q𝚓),𝚑ηζ(D𝚓)\mathtt{h}_{\eta\oplus\zeta}(Q_{\mathtt{j}}),\mathtt{h}_{\eta\oplus\zeta}(D_{\mathtt{j}^{\prime}}) are defined in the similar manner. By (C.49) and (C.50), we have that given a fixed ζ[k]𝚂\zeta\in[k]^{\mathtt{S}}, {𝚑ηζ(P𝚒),𝚑ηζ(C𝚒),𝚑ηζ(Q𝚓),𝚑ηζ(D𝚓)}\big{\{}\mathtt{h}_{\eta\oplus\zeta}(P_{\mathtt{i}}),\mathtt{h}_{\eta\oplus\zeta}(C_{\mathtt{i}^{\prime}}),\mathtt{h}_{\eta\oplus\zeta}(Q_{\mathtt{j}}),\mathtt{h}_{\eta\oplus\zeta}(D_{\mathtt{j}^{\prime}})\big{\}} (where ην𝚅𝚂\eta\sim\nu_{\mathtt{V}\setminus\mathtt{S}}) are conditionally independent. In addition, from (B.6) we have that for each P𝚒P_{\mathtt{i}}

|𝔼ην𝚅𝚂[𝚑ηζ(P𝚒)ζ]|k\displaystyle\Big{|}\mathbb{E}_{\eta\sim\nu_{\mathtt{V}\setminus\mathtt{S}}}\big{[}\mathtt{h}_{\eta\oplus\zeta}(P_{\mathtt{i}})\mid\zeta\big{]}\Big{|}\leq k

and the same bound holds for each Q𝚓Q_{\mathtt{j}}, C𝚒C_{\mathtt{i}^{\prime}} and D𝚓D_{\mathtt{j}^{\prime}}. Thus for all ζ[k]𝚂\zeta\in[k]^{\mathtt{S}} we have (for a path PP denoting Ξ(P)=(1δ)|E(P)|ω(u,v)\Xi(P)=(1-\delta)^{|E(P)|}\omega(u,v) where {u,v}=EndP(P)\{u,v\}=\operatorname{EndP}(P))

(1δ)|E(S1)|+|E(S2)||E(K1)||E(K2)|k|𝚅𝚂||η[k]𝚅𝚂hηζγ(S1,S2;K1,K2)|\displaystyle\frac{(1-\delta)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{k^{|\mathtt{V}\setminus\mathtt{S}|}}\Big{|}\sum_{\eta\in[k]^{\mathtt{V}\setminus\mathtt{S}}}h_{\eta\oplus\zeta\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\Big{|}
\displaystyle\leq\ 𝚒=𝟷𝚝k(1δ)|E(P𝚒)|𝚓=𝟷𝚛k(1δ)|E(D𝚓)|𝚒=𝟷𝚡k(1δ)|E(C𝚒)|𝚓=𝟷𝚢k(1δ)|E(D𝚓)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|)\displaystyle\frac{\prod_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}k(1-\delta)^{|E(P_{\mathtt{i}})|}\prod_{\mathtt{j}=\mathtt{1}}^{\mathtt{r}}k(1-\delta)^{|E(D_{\mathtt{j}})|}\prod_{\mathtt{i}^{\prime}=\mathtt{1}}^{\mathtt{x}}k(1-\delta)^{|E(C_{\mathtt{i}^{\prime}})|}\prod_{\mathtt{j}^{\prime}=\mathtt{1}}^{\mathtt{y}}k(1-\delta)^{|E(D_{\mathtt{j}^{\prime}})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}
\displaystyle\leq\ k𝚝+𝚛(1δ/2)|E(S1)|+|E(S2)||E(K1)||E(K2)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|),\displaystyle k^{\mathtt{t}+\mathtt{r}}\frac{(1-\delta/2)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}\,, (C.53)

where the second inequality follows from (4.1) and |E(C𝚒)|,|E(D𝚓)|N|E(C_{\mathtt{i}})|,|E(D_{\mathtt{j}})|\geq N. Thus, by (C.51) and (C.52) we have that (B.18) is bounded by

𝔼[|φγ;K1,K2;H(G(par)|𝙴)|]1k|𝚂|ζ[k]𝚂1k|𝚅𝚂||η[k]𝚅𝚂hηζγ(S1,S2;K1,K2)|\displaystyle\mathbb{E}\Big{[}\big{|}\varphi_{\gamma;K_{1},K_{2};H}\big{(}G(\operatorname{par})|_{\mathtt{E}}\big{)}\big{|}\Big{]}\cdot\frac{1}{k^{|\mathtt{S}|}}\sum_{\zeta\in[k]^{\mathtt{S}}}\frac{1}{k^{|\mathtt{V}\setminus\mathtt{S}|}}\Big{|}\sum_{\eta\in[k]^{\mathtt{V}\setminus\mathtt{S}}}h_{\eta\oplus\zeta\oplus\gamma}(S_{1},S_{2};K_{1},K_{2})\Big{|}
(C.53)\displaystyle\overset{\eqref{eq-h-averaging}}{\leq}\ 𝔼[|φγ;K1,K2;H(G(par)|𝙴)|]k𝚝+𝚛(1δ/2)|E(S1)|+|E(S2)||E(K1)||E(K2)|n12(|E(S1)|+|E(S2)||E(K1)||E(K2)|),\displaystyle\mathbb{E}\Big{[}\big{|}\varphi_{\gamma;K_{1},K_{2};H}\big{(}G(\operatorname{par})|_{\mathtt{E}}\big{)}\big{|}\Big{]}\cdot k^{\mathtt{t}+\mathtt{r}}\frac{(1-\delta/2)^{|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|}}{n^{\frac{1}{2}(|E(S_{1})|+|E(S_{2})|-|E(K_{1})|-|E(K_{2})|)}}\,,

as desired.

C.8 Proof of Claim B.7

This subsection is devoted to the proof of Claim B.7. We first outline our strategy for bounding ~((G(par)|U𝙴)=𝙱)\widetilde{\mathbb{P}}(\mathcal{B}(G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}})=\mathtt{B}). Roughly speaking, we will show that for all χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}} such that (χ)=𝙱\mathcal{B}(\chi)=\mathtt{B}, there exists a subgraph 𝙶χ𝟷𝙴\mathtt{G}\subset\chi\oplus\mathtt{1}_{\mathtt{E}} such that V(K1)V(K2)𝙱V(𝙶)V(K_{1})\cup V(K_{2})\cup\mathtt{B}\subset V(\mathtt{G}) and 𝙶\mathtt{G} has high edge density (or equivalently, Φ(𝙶)\Phi(\mathtt{G}) is small). With this observation, we can reduce the problem to bounding the probability that in the graph G(par)|U𝙴𝟷𝙴G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}\oplus\mathtt{1}_{\mathtt{E}} there exists a subgraph with high edge density and it turns out that a union bound suffices for this, though some further delicacy in bounding enumerations of such subgraphs also arise.

Intuitively, the existence of 𝙶\mathtt{G} follows from the fact that there exists 𝙸𝙱\mathtt{I}\subset\mathtt{B} such that for each u𝙸u\in\mathtt{I} there exists a self-bad graph BuB_{u} containing uu, and for each u𝙱𝙸u\in\mathtt{B}\setminus\mathtt{I} there exists a small cycle CuC_{u} containing uu. We expect the graph H(u𝙸Bu)(u𝙱𝙸Cu)H\cup(\cup_{u\in\mathtt{I}}B_{u})\cup(\cup_{u\in\mathtt{B}\setminus\mathtt{I}}C_{u}) to have high edge density (and it contains all the vertices in V(K1)V(K2)𝙱V(K_{1})\cup V(K_{2})\cup\mathtt{B}, as desired). To verify this, we list 𝙱\mathtt{B} as {u1,,u𝙼}\{u_{1},\ldots,u_{\mathtt{M}}\} in an arbitrary order and we define 𝙶i\mathtt{G}_{i} to be the subgraph in χ𝟷𝙴\chi\oplus\mathtt{1}_{\mathtt{E}} induced by

V(H)(ji,uj𝙸V(Buj))(ji,uj𝙱𝙸V(Cuj)).V(H)\cup\big{(}\cup_{j\leq i,u_{j}\in\mathtt{I}}V(B_{u_{j}})\big{)}\cup\big{(}\cup_{j\leq i,u_{j}\in\mathtt{B}\setminus\mathtt{I}}V(C_{u_{j}})\big{)}\,.

We will track the change of Φ(𝙶i)\Phi(\mathtt{G}_{i}) and we will show that: (1) for each uj𝙸u_{j}\in\mathtt{I} we have Φ(𝙶j)Φ(𝙶j1)\Phi(\mathtt{G}_{j})\leq\Phi(\mathtt{G}_{j-1}); (2) for each uj𝙱𝙸u_{j}\in\mathtt{B}\setminus\mathtt{I} such that V(Cuj)V(C_{u_{j}}) or the neighborhood of V(Cuj)V(C_{u_{j}}) in K1K2K_{1}\cup K_{2} intersect with 𝙶j1\mathtt{G}_{j-1}, we also have Φ(𝙶j)Φ(𝙶j1)\Phi(\mathtt{G}_{j})\leq\Phi(\mathtt{G}_{j-1}); (3) for each uj𝙱𝙸u_{j}\in\mathtt{B}\setminus\mathtt{I} such that neither V(Cuj)V(C_{u_{j}}) nor the neighborhood of V(Cuj)V(C_{u_{j}}) in K1K2K_{1}\cup K_{2} intersects with 𝙶j1\mathtt{G}_{j-1}, we have Φ(𝙶j)(2000λ~22k22)NΦ(𝙶j1)\Phi(\mathtt{G}_{j})\leq(2000\tilde{\lambda}^{22}k^{22})^{N}\Phi(\mathtt{G}_{j-1}). Thus, to control Φ(𝙶𝙼)\Phi(\mathtt{G}_{\mathtt{M}}), it suffices to bound the number of “undesired” vertices that fall into category (3).

Now we present our proof formally. For each χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}}, we write χ𝙴\chi\sim\mathtt{E} if in the realization χ𝟷𝙴\chi\oplus\mathtt{1}_{\mathtt{E}}, there is no self-bad graph KK with D3N|V(K)|D3D^{3}-N\leq|V(K)|\leq D^{3}. Similar to (4.1) and (4.7) in Lemma 4.2, we can show that (χ≁𝙴)nD2\mathbb{P}(\chi\not\sim\mathtt{E})\leq n^{-D^{2}} (recall we have assumed D2log2nD\geq 2\log_{2}n at the beginning of Section 4 and in (4.1) we get an extra factor 2|V(K)|2D3/2nD22^{-|V(K)|}\leq 2^{-D^{3}/2}\leq n^{-D^{2}}). Thus, it suffices to bound the probability that χ𝙴\chi\sim\mathtt{E} and (χ)=𝙱\mathcal{B}(\chi)=\mathtt{B}. For each χ𝙴\chi\sim\mathtt{E} and (χ)=𝙱\mathcal{B}(\chi)=\mathtt{B}, denote

dense(χ)={u𝙱:Kχ𝟷𝙴,uV(K),K is self-bad,|V(K)|D3}.\displaystyle\mathcal{B}_{\operatorname{dense}}(\chi)=\Big{\{}u\in\mathtt{B}:\exists K\subset\chi\oplus\mathtt{1}_{\mathtt{E}},u\in V(K),K\mbox{ is self-bad},|V(K)|\leq D^{3}\Big{\}}\,.

Since χ𝙴\chi\sim\mathtt{E}, we also know that for all udense(χ)u\in\mathcal{B}_{\operatorname{dense}}(\chi), there exists a self-bad graph K=K(u)K=K(u) such that |V(K)|D3N|V(K)|\leq D^{3}-N (By χ𝙴\chi\sim\mathtt{E}, we have excluded self-bad graphs with the number of vertices in [D3N,D3][D^{3}-N,D^{3}]). In addition, for all u(χ)dense(χ)u\in\mathcal{B}(\chi)\setminus\mathcal{B}_{\operatorname{dense}}(\chi), there must exist a cycle Cuχ𝟷𝙴C_{u}\subset\chi\oplus\mathtt{1}_{\mathtt{E}} with length at most NN such that uV(Cu)u\in V(C_{u}). Clearly, we have either Cu=CwC_{u}=C_{w} or V(Cu)V(Cw)=V(C_{u})\cap V(C_{w})=\emptyset for all u,w(χ)dense(χ)u,w\in\mathcal{B}(\chi)\setminus\mathcal{B}_{\operatorname{dense}}(\chi), since otherwise CuCwC_{u}\cup C_{w} is a self-bad graph containing uu and ww (leading to u,wdense(χ)u,w\in\mathcal{B}_{\operatorname{dense}}(\chi)). This also implies that the cycle CuC_{u} is unique for each u(χ)dense(χ)u\in\mathcal{B}(\chi)\setminus\mathcal{B}_{\mathrm{dense}}(\chi). Define

cyc(χ)={u𝙱dense(χ):Cu and its neighbors in K1K2 do not intersect H}.\displaystyle\mathcal{B}_{\operatorname{cyc}}(\chi)=\Big{\{}u\in\mathtt{B}\setminus\mathcal{B}_{\operatorname{dense}}(\chi):C_{u}\text{ and its neighbors in }K_{1}\cup K_{2}\text{ do not intersect }H\Big{\}}\,.

The set cyc\mathcal{B}_{\operatorname{cyc}} is the set of “undesired” vertices as we discussed at the beginning of this subsection. Our proof will follow the following three steps, as shown in the boldface font below.

Control the number of undesired vertices. We first show that (recall (B.14))

|cyc(χ)|2N(Γ1+Γ2+).{}|\mathcal{B}_{\operatorname{cyc}}(\chi)|\leq 2N(\Gamma_{1}+\Gamma_{2}+\ell)\,. (C.54)

Recalling that cyc(χ)(χ)\mathcal{B}_{\operatorname{cyc}}(\chi)\subset\mathcal{B}(\chi) and our assumption that |(χ)𝚆|=|\mathcal{B}(\chi)\setminus\mathtt{W}|=\ell, we have (recall (B.13))

#(cyc(χ)((V(S1)V(K1))(V(S2)V(K2))))\displaystyle\#\Big{(}\mathcal{B}_{\operatorname{cyc}}(\chi)\cap\big{(}(V(S_{1})\setminus V(K_{1}))\cup(V(S_{2})\setminus V(K_{2}))\big{)}\Big{)}
\displaystyle\leq\ |𝙻1|+(B.11)|(S1)V(K1)|+|(S2)V(K2)|+2Γ1+,\displaystyle|\mathtt{L}_{1}|+\ell\overset{\eqref{eq-def-mathtt-L}}{\leq}|\mathcal{L}(S_{1})\setminus V(K_{1})|+|\mathcal{L}(S_{2})\setminus V(K_{2})|+\ell\leq 2\Gamma_{1}+\ell\,, (C.55)

where the third inequality follows from applying Lemma A.2 to K1S1K_{1}\ltimes S_{1} and K2S2K_{2}\ltimes S_{2} (note that (S1)=(S2)=\mathcal{I}(S_{1})=\mathcal{I}(S_{2})=\emptyset) respectively. Clearly, it suffices to show that

#(cyc(χ)(V(K1)V(K2)))2NΓ2.\#\Big{(}\mathcal{B}_{\operatorname{cyc}}(\chi)\cap\big{(}V(K_{1})\cup V(K_{2})\big{)}\Big{)}\leq 2N\Gamma_{2}\,.

For all ucyc(χ)(V(K1)V(K2))u\in\mathcal{B}_{\operatorname{cyc}}(\chi)\cap\big{(}V(K_{1})\cup V(K_{2})\big{)}, note that uV(H)u\not\in V(H), and thus we have uV(K1)V(K2)u\not\in V(K_{1})\cap V(K_{2}). We may assume that uV(K1)V(K2)V(K1)V(H)u\in V(K_{1})\setminus V(K_{2})\subset V(K_{1})\setminus V(H). Since HK1H\ltimes K_{1} (which implies (K1)(H)V(H)\mathcal{I}(K_{1})\subset\mathcal{I}(H)\subset V(H)) we see that u(K1)u\not\in\mathcal{I}(K_{1}). Recall that CuC_{u} is a cycle with length at most NN. Also recall that V(Cu)V(H)=V(C_{u})\cap V(H)=\emptyset, which implies (recall that V(H)=V(S1)V(S2)V(H)=V(S_{1})\cap V(S_{2}))

V(Cu)(V(K1)V(K2))V(Cu)(V(S1S2))=V(Cu)V(H)=.V(C_{u})\cap\big{(}V(K_{1})\cap V(K_{2})\big{)}\subset V(C_{u})\cap\big{(}V(S_{1}\cap S_{2})\big{)}=V(C_{u})\cap V(H)=\emptyset\,.

Also, from the fact that S1S_{1} is admissible we have CuK1C_{u}\not\subset K_{1}. We now claim that

V(Cu)((K1)V(H)).\displaystyle V(C_{u})\cap(\mathcal{L}(K_{1})\setminus V(H))\neq\emptyset\,. (C.56)

Indeed, suppose on the contrary that V(Cu)((K1)V(H))=V(C_{u})\cap(\mathcal{L}(K_{1})\setminus V(H))=\emptyset. Let IuI_{u} be the connected component containing uu in K1CuK_{1}\cap C_{u}. Since we have that IuCuI_{u}\neq C_{u} from CuK1C_{u}\not\subset K_{1}, it must hold that either V(Iu)={u}V(I_{u})=\{u\} or (Iu)\mathcal{L}(I_{u})\neq\emptyset. If V(Iu)={u}V(I_{u})=\{u\}, since u(K1)u\not\in\mathcal{I}(K_{1}) there must exist a neighbor of uu (denoted as yy) in K1K_{1}, and by yV(Iu)y\not\in V(I_{u}) we have (u,y)E(Cu)(u,y)\not\in E(C_{u}). If (Iu)\mathcal{L}(I_{u})\neq\emptyset, take an arbitrary x(Iu)x\in\mathcal{L}(I_{u}). By the definition of cyc(χ)\mathcal{B}_{\operatorname{cyc}}(\chi) we have xV(H)x\not\in V(H) and thus x(K1)x\not\in\mathcal{L}(K_{1}) (by our assumption that V(Cu)((K1)V(H))=V(C_{u})\cap(\mathcal{L}(K_{1})\setminus V(H))=\emptyset). Thus there must exist a neighbor of xx (denoted as yy) in K1K_{1} such that (x,y)E(Cu)(x,y)\not\in E(C_{u}) (otherwise xx has two neighbors in CuK1C_{u}\cap K_{1}, which contradicts to x(Iu)x\in\mathcal{L}(I_{u})). In conclusion, in both cases we have shown that there exists an xV(Cu)x\in V(C_{u}) (whereas x=ux=u in the first case) such that xx has a neighbor yV(K1)y\in V(K_{1}) and (x,y)E(Cu)(x,y)\not\in E(C_{u}). Then using the definition of ucyc(χ)u\in\mathcal{B}_{\operatorname{cyc}}(\chi) we see that yV(H)y\not\in V(H), which gives y𝚆(χ)y\in\mathtt{W}\subset\mathcal{B}(\chi) (recall (B.13) and recall our assumption that 𝚆(χ)\mathtt{W}\subset\mathcal{B}(\chi)). Therefore, there exists either a self-bad graph ByB_{y} with |V(By)|D3|V(B_{y})|\leq D^{3} (which further implies that |V(By)|D3N|V(B_{y})|\leq D^{3}-N since χ𝙴\chi\sim\mathtt{E}) or a cycle CyC_{y} with |V(Cy)|N|V(C_{y})|\leq N. In addition, yV(Cu)y\not\in V(C_{u}) since otherwise the graph C̊u\mathring{C}_{u} with V(C̊u)=V(Cu)V(\mathring{C}_{u})=V(C_{u}) and E(C̊u)=E(Cu){(x,y)}E(\mathring{C}_{u})=E(C_{u})\cup\{(x,y)\} is a self-bad subgraph of χ𝟷𝙴\chi\oplus\mathtt{1}_{\mathtt{E}} containing uu, contradicting to udense(χ)u\not\in\mathcal{B}_{\operatorname{dense}}(\chi). Therefore, neither ByB_{y} nor CyC_{y} is identical to CuC_{u}. Since (x,y)(x,y) is an edge in K1K2K_{1}\cup K_{2}, then accordingly the graph BB induced by V(By)V(Cu)V(B_{y})\cup V(C_{u}) or V(Cy)V(Cu)V(C_{y})\cup V(C_{u}) is a self-bad graph in χ{𝟷𝙴}\chi\oplus\{\mathtt{1}_{\mathtt{E}}\} with |V(B)|D3|V(B)|\leq D^{3} and uV(B)u\in V(B), contradicting the fact that udense(χ)u\not\in\mathcal{B}_{\operatorname{dense}}(\chi). This completes the proof of (C.56). Using (C.56) and the fact that either Cu=CwC_{u}=C_{w} or V(Cu)V(Cw)=V(C_{u})\cap V(C_{w})=\emptyset for all u,wcycu,w\in\mathcal{B}_{\operatorname{cyc}}, we see that |cyc|N|𝙻2|2NΓ2|\mathcal{B}_{\operatorname{cyc}}|\leq N|\mathtt{L}_{2}|\leq 2N\Gamma_{2}, where the second inequality follows from Lemma A.2 by an argument similar to (C.55).

Construct the dense graph 𝙶\mathtt{G}. Now based on (C.54), we construct a graph 𝙶χ𝟷𝙴\mathtt{G}\subset\chi\oplus\mathtt{1}_{\mathtt{E}} as follows. Recall that for each udense(χ)u\in\mathcal{B}_{\operatorname{dense}}(\chi), there exists a self-bad graph BuB_{u} such that uV(Bu)u\in V(B_{u}) and |V(Bu)|D3N|V(B_{u})|\leq D^{3}-N. Thus, we have

Φ(BuJ)Lemma A.1(ii)Φ(Bu)Φ(J)Φ(BuJ)Φ(J) for all J𝒦n.\displaystyle\Phi(B_{u}\cup J)\overset{\text{Lemma~{}\ref{lemma-facts-graphs}(ii)}}{\leq}\frac{\Phi(B_{u})\Phi(J)}{\Phi(B_{u}\Cap J)}\leq\Phi(J)\mbox{ for all }J\subset\mathcal{K}_{n}\,. (C.57)

For each u(χ)dense(χ)u\in\mathcal{B}(\chi)\setminus\mathcal{B}_{\operatorname{dense}}(\chi), if V(Cu)V(C_{u}) intersect with V(H)V(H), it is straightforward to check that

Φ(CuJ)Φ(J) for all JH.\displaystyle\Phi(C_{u}\cup J)\leq\Phi(J)\mbox{ for all }J\supset H\,. (C.58)

Similarly, if the neighborhood of V(Cu)V(C_{u}) in K1K2K_{1}\cup K_{2} intersect with V(H)V(H) (i.e. there exists xV(Cu)x\in V(C_{u}) and yV(H)y\in V(H) such that (x,y)E(K1)E(K2)(x,y)\in E(K_{1})\cup E(K_{2})), it is straightforward to check that

Φ(CuJ{(x,y)})Φ(J) for all JH.\displaystyle\Phi(C_{u}\cup J\cup\{(x,y)\})\leq\Phi(J)\mbox{ for all }J\supset H\,. (C.59)

Finally, if ucyc(χ)u\in\mathcal{B}_{\operatorname{cyc}}(\chi), it is straightforward to check that

Φ(CuJ)(2000λ~22k22)NΦ(J) for all JH.\displaystyle\Phi(C_{u}\cup J)\leq(2000\tilde{\lambda}^{22}k^{22})^{N}\cdot\Phi(J)\mbox{ for all }J\supset H\,. (C.60)

Now we take 𝙶\mathtt{G} to be the subgraph in χ𝟷𝙴\chi\oplus\mathtt{1}_{\mathtt{E}} induced by

V(H)(udense(χ)V(Bu))(u𝙱dense(χ)V(Cu)).\displaystyle V(H)\cup\big{(}\cup_{u\in\mathcal{B}_{\operatorname{dense}}(\chi)}V(B_{u})\big{)}\cup\big{(}\cup_{u\in\mathtt{B}\setminus\mathcal{B}_{\operatorname{dense}}(\chi)}V(C_{u})\big{)}\,.

We claim that 𝙶\mathtt{G} satisfies the following conditions:

  1. (1)

    V(K1)V(K2)𝙱V(𝙶)V(K_{1})\cup V(K_{2})\cup\mathtt{B}\subset V(\mathtt{G}) and |V(𝙶)|D4|V(\mathtt{G})|\leq D^{4};

  2. (2)

    (𝙶),(𝙶)V(H)\mathcal{I}(\mathtt{G}),\mathcal{L}(\mathtt{G})\subset V(H);

  3. (3)

    All the independent cycles of 𝙶\mathtt{G} must intersect with V(K1)V(K2)𝙱V(K_{1})\cup V(K_{2})\cup\mathtt{B};

  4. (4)

    Φ(𝙶)(2000λ~22k22)2N2(Γ1+Γ2+)Φ(H)\Phi(\mathtt{G})\leq(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}\cdot\Phi(H).

We check these four conditions one by one. Condition (1) is straightforward since (recall (B.13))

V(K1)V(K2)𝙱=V(H)𝙱V(K_{1})\cup V(K_{2})\cup\mathtt{B}=V(H)\cup\mathtt{B}

for all 𝚆𝙱\mathtt{W}\subset\mathtt{B}. Condition (2) follows from the fact that (Bu),(Cu),(Bu),(Cu)=\mathcal{I}(B_{u}),\mathcal{I}(C_{u}),\mathcal{L}(B_{u}),\mathcal{L}(C_{u})=\emptyset. Condition (4) directly follows from (C.57), (C.58), (C.59) and (C.60). As for Condition (3), suppose on the contrary that there exists an independent cycle CC of 𝙶\mathtt{G} such that V(C)(V(K1)V(K2)𝙱)=V(C)\cap(V(K_{1})\cup V(K_{2})\cup\mathtt{B})=\emptyset. For u𝙱dense(χ)u\in\mathtt{B}\setminus\mathcal{B}_{\operatorname{dense}}(\chi) we have uV(C)u\not\in V(C), and we must have V(C)V(Cu)=V(C)\cap V(C_{u})=\emptyset since otherwise CC is connected to uu in 𝙶\mathtt{G}, contradicting to our assumption that CC is an independent cycle. In addition, for udense(χ)u\in\mathcal{B}_{\operatorname{dense}}(\chi), we must have V(C)V(Bu)=V(C)\cap V(B_{u})=\emptyset, since otherwise we have |V(Bu)||V(BuC)|=|V(Bu)V(C)|>0|V(B_{u})|-|V(B_{u}\mathbin{\setminus\mkern-5.0mu\setminus}C)|=|V(B_{u})\cap V(C)|>0 and |E(Bu)||E(BuC)|=|E(Bu)E(C)||V(Bu)||V(BuC)||E(B_{u})|-|E(B_{u}\mathbin{\setminus\mkern-5.0mu\setminus}C)|=|E(B_{u})\cap E(C)|\leq|V(B_{u})|-|V(B_{u}\mathbin{\setminus\mkern-5.0mu\setminus}C)|, leading to Φ(Bu)>Φ(BuC)\Phi(B_{u})>\Phi(B_{u}\mathbin{\setminus\mkern-5.0mu\setminus}C) and contradicting to the assumption that BuB_{u} is self-bad. Altogether, we have

V(C)V(𝙶)((udense(χ)V(Bu))(u𝙱dense(χ)V(Cu)))V(K1)V(K2)𝙱,\displaystyle V(C)\subset V(\mathtt{G})\setminus\Big{(}\big{(}\cup_{u\in\mathcal{B}_{\operatorname{dense}}(\chi)}V(B_{u})\big{)}\cup\big{(}\cup_{u\in\mathtt{B}\setminus\mathcal{B}_{\operatorname{dense}}(\chi)}V(C_{u})\big{)}\Big{)}\subset V(K_{1})\cup V(K_{2})\cup\mathtt{B}\,,

which contradicts to our assumption and thus verifies (3). In conclusion, we show that for all χ{0,1}U𝙴\chi\in\{0,1\}^{\operatorname{U}\setminus\mathtt{E}} such that (χ)=𝙱\mathcal{B}(\chi)=\mathtt{B}, there exists a graph 𝙶=𝙶(χ)χ𝟷𝙴\mathtt{G}=\mathtt{G}(\chi)\subset\chi\oplus\mathtt{1}_{\mathtt{E}} such that Conditions (1)–(4) hold. Thus we have

χG(par)|U𝙴((χ)=𝙱)χG(par)|U𝙴(𝙶χ𝟷𝙴 satisfying Conditions (1)–(4)).\displaystyle\mathbb{P}_{\chi\sim G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}}(\mathcal{B}(\chi)=\mathtt{B})\leq\mathbb{P}_{\chi\sim G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}}(\exists\mathtt{G}\subset\chi\oplus\mathtt{1}_{\mathtt{E}}\mbox{ satisfying Conditions (1)--(4)})\,. (C.61)

Bound the probability in (C.61). Denote 𝙶0\mathtt{G}_{0} the graph such that V(𝙶0)=𝙱V(K1)V(K2)V(\mathtt{G}_{0})=\mathtt{B}\cup V(K_{1})\cup V(K_{2}) and E(𝙶0)=E(K1)E(K2)E(\mathtt{G}_{0})=E(K_{1})\cup E(K_{2}). Now, applying Corollary A.4 with 𝙶0𝙶\mathtt{G}_{0}\ltimes\mathtt{G} (note that Condition (3) yields (𝙶,𝙶0)=\mathfrak{C}(\mathtt{G},\mathtt{G}_{0})=\emptyset), we see that E(𝙶)E(𝙶0)E(\mathtt{G})\setminus E(\mathtt{G}_{0}) can be decomposed into 𝚝\mathtt{t} paths P1,,P𝚝χP_{1},\ldots,P_{\mathtt{t}}\subset\chi such that

  1. (I)

    |V(P𝚒)|D4|V(P_{\mathtt{i}})|\leq D^{4} and 𝚝5D4\mathtt{t}\leq 5D^{4};

  2. (II)

    V(P𝚒)(𝙱V(K1K2)(𝚓𝚒V(P𝚓)))=EndP(P𝚒)V(P_{\mathtt{i}})\cap\big{(}\mathtt{B}\cup V(K_{1}\cup K_{2})\cup(\cup_{\mathtt{j}\neq\mathtt{i}}V(P_{\mathtt{j}}))\big{)}=\operatorname{EndP}(P_{\mathtt{i}}).

In addition, we claim that

  1. (III)

    𝙻(𝙱𝚆)𝚒=1𝚝EndP(P𝚒)\mathtt{L}\cup(\mathtt{B}\setminus\mathtt{W})\subset\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}});

  2. (IV)

    Φ((𝚒=𝟷𝚝P𝚒)𝙶0)(2000λ~22k22)2N2(Γ1+Γ2+)Φ(H)\Phi\big{(}(\cup_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}P_{\mathtt{i}})\cup\mathtt{G}_{0}\big{)}\leq(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}\Phi(H).

Note that Item (IV) follows directly from Condition (4) above. We next verify Item (III). Since (𝙶),(𝙶)V(H)\mathcal{I}(\mathtt{G}),\mathcal{L}(\mathtt{G})\subset V(H), each vertex in 𝙻(𝙱𝚆)\mathtt{L}\cup(\mathtt{B}\setminus\mathtt{W}) has degree at least 2 in 𝙶\mathtt{G} but has degree at most 1 in 𝙶0\mathtt{G}_{0} (recall (B.11) and (B.13)). Thus we have 𝙻(𝙱𝚆)𝚒=1𝚝V(P𝚒)\mathtt{L}\cup(\mathtt{B}\setminus\mathtt{W})\subset\cup_{\mathtt{i}=1}^{\mathtt{t}}V(P_{\mathtt{i}}), implying Item (III) together with Item (II). Now we can apply the union bound to conclude that

(C.61)χG(par)|U𝙴( paths P1,,P𝚝χ satisfying Item (I)–(IV))\displaystyle\eqref{eq-bad-set-prob-relaxation-1}\leq\mathbb{P}_{\chi\sim G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}}(\exists\mbox{ paths }P_{1},\ldots,P_{\mathtt{t}}\subset\chi\mbox{ satisfying Item (I)--(IV)})
\displaystyle\leq\ (P1,,P𝚝) satisfying (I)–(IV) χG(par)|U𝙴(P1,,P𝚝χ)\displaystyle\sum_{(P_{1},\ldots,P_{\mathtt{t}})\text{ satisfying (I)--(IV) }}\mathbb{P}_{\chi\sim G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}}}(P_{1},\ldots,P_{\mathtt{t}}\subset\chi)
\displaystyle\leq\ 𝚝=05D4X1,,X𝚝D4(kλn)X1++X𝚝#{(P1,P𝚝) satisfying (I)–(IV):|E(P𝚒)|=X𝚒}.\displaystyle\sum_{\mathtt{t}=0}^{5D^{4}}\sum_{X_{1},\ldots,X_{\mathtt{t}}\leq D^{4}}\big{(}\tfrac{k\lambda}{n}\big{)}^{X_{1}+\ldots+X_{\mathtt{t}}}\#\Big{\{}(P_{1},\ldots P_{\mathtt{t}})\mbox{ satisfying (I)--(IV)}:|E(P_{\mathtt{i}})|=X_{\mathtt{i}}\Big{\}}\,. (C.62)

Denote p=#(𝚒=1𝚝EndP(P𝚒))(𝙱V(H))p=\#\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}})\big{)}\setminus\big{(}\mathtt{B}\cup V(H)\big{)}. Note that according to Remark A.5, we may assume without loss of generality that for each u(𝚒=1𝚝EndP(P𝚒))(𝙱V(H))u\in\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}})\big{)}\setminus\big{(}\mathtt{B}\cup V(H)\big{)}, uu belongs to at least 33 different P𝚓P_{\mathtt{j}}’s. Thus from Item (III) we must have

𝚝(|𝙻(𝙱𝚆)|+3p)/2=(|𝙻|++3p)/2,\mathtt{t}\geq(|\mathtt{L}\cup(\mathtt{B}\setminus\mathtt{W})|+3p)/2=(|\mathtt{L}|+\ell+3p)/2\,,

where the equality follows from 𝙻(𝙱𝚆)=\mathtt{L}\cap(\mathtt{B}\setminus\mathtt{W})=\emptyset, implied by 𝙻𝚆\mathtt{L}\subset\mathtt{W}. In addition, from Item (IV) we see that

Φ((𝚒=𝟷𝚝P𝚒)𝙶0)(2000λ~22k22)2N2(Γ1+Γ2+)Φ(H).\displaystyle\Phi\big{(}(\cup_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}P_{\mathtt{i}})\cup\mathtt{G}_{0})\leq(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}\cdot\Phi(H)\,.

Note that |V(𝙶0)|=|V(K1)|+|V(K2)|+|𝙻1|+|V(H)||V(\mathtt{G}_{0})|=|V(K_{1})|+|V(K_{2})|+|\mathtt{L}_{1}|+\ell-|V(H)| and |E(𝙶0)|=|E(K1)|+|E(K2)||E(H)||E(\mathtt{G}_{0})|=|E(K_{1})|+|E(K_{2})|-|E(H)|. Recalling (4.2), we see that Φ((𝚒=𝟷𝚝P𝚒)𝙶0)\Phi\big{(}(\cup_{\mathtt{i}=\mathtt{1}}^{\mathtt{t}}P_{\mathtt{i}})\cup\mathtt{G}_{0}) equals to

(2k2λ~2nD50)X𝟷++X𝚝𝚝+|𝙻1|++p(1000λ~20k20D50n)X𝟷++X𝚝Φ(K1)Φ(K2)/Φ(H).\displaystyle\big{(}\tfrac{2k^{2}\tilde{\lambda}^{2}n}{D^{50}}\big{)}^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}-\mathtt{t}+|\mathtt{L}_{1}|+\ell+p}\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}}\cdot\Phi(K_{1})\Phi(K_{2})/\Phi(H)\,.

Therefore, we obtain that

(2k2λ~2nD50)X𝟷++X𝚝𝚝(1000λ~20k20D50n)X𝟷++X𝚝\displaystyle\big{(}\tfrac{2k^{2}\tilde{\lambda}^{2}n}{D^{50}}\big{)}^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}-\mathtt{t}}\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}}
\displaystyle\leq\ (2k2λ~2nD50)|𝙻1|p(2000λ~22k22)2N2(Γ1+Γ2+)Φ(H)2Φ(K1)Φ(K2)\displaystyle\big{(}\tfrac{2k^{2}\tilde{\lambda}^{2}n}{D^{50}}\big{)}^{-|\mathtt{L}_{1}|-\ell-p}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}*\frac{\Phi(H)^{2}}{\Phi(K_{1})\Phi(K_{2})}
\displaystyle\leq\ (nD50)τ(K1)+τ(K2)2τ(H)|𝙻1|p(2000λ~22k22)2N2(Γ1+Γ2+)(1000λ~20k20)|E(K1)|+|E(K2)|2|E(H)|,\displaystyle\big{(}\tfrac{n}{D^{50}}\big{)}^{\tau(K_{1})+\tau(K_{2})-2\tau(H)-|\mathtt{L}_{1}|-\ell-p}\cdot\frac{(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}}{(1000\tilde{\lambda}^{20}k^{20})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,, (C.63)

where the last inequality follows from (noticing that HK1,K2H\subset K_{1},K_{2} and λ~1\tilde{\lambda}\geq 1)

Φ(H)2Φ(K1)Φ(K2)\displaystyle\tfrac{\Phi(H)^{2}}{\Phi(K_{1})\Phi(K_{2})} =(4.2)(2λ~2k2nD50)|V(K1)||V(K2)|+2|V(H)|(1000λ~20k20D50n)|E(K1)||E(K2)|+2|E(H)|\displaystyle\overset{\eqref{eq-def-Phi}}{=}\big{(}\tfrac{2\tilde{\lambda}^{2}k^{2}n}{D^{50}}\big{)}^{-|V(K_{1})|-|V(K_{2})|+2|V(H)|}\big{(}\tfrac{1000\tilde{\lambda}^{20}k^{20}D^{50}}{n}\big{)}^{-|E(K_{1})|-|E(K_{2})|+2|E(H)|}
(nD50)τ(K1)τ(K2)+2τ(H)(1000λ~20k20)(|E(K1)|+|E(K2)|2|E(H)|).\displaystyle\leq\big{(}\tfrac{n}{D^{50}}\big{)}^{-\tau(K_{1})-\tau(K_{2})+2\tau(H)}\cdot(1000\tilde{\lambda}^{20}k^{20})^{-(|E(K_{1})|+|E(K_{2})|-2|E(H)|)}\,.

It remains to bound the enumerations of such P𝚒P_{\mathtt{i}}’s. Firstly, we have at most npn^{p} possible choices for the set (𝚒=1𝚝EndP(P𝚒))(𝙱V(H))\big{(}\cup_{\mathtt{i}=1}^{\mathtt{t}}\operatorname{EndP}(P_{\mathtt{i}})\big{)}\setminus\big{(}\mathtt{B}\cup V(H)\big{)}. Given this, we have at most D8D^{8} possible choices of each EndP(P𝚒)\operatorname{EndP}(P_{\mathtt{i}}). Given the endpoints of P𝚒P_{\mathtt{i}}, we have at most nX𝚒1n^{X_{\mathtt{i}}-1} possible choices for the remaining vertices of P𝚒P_{\mathtt{i}}. Thus, we have

#{(P1,P𝚝) satisfying (I)–(IV):|E(P𝚒)|=X𝚒}npD8𝚝nX1++X𝚝𝚝.\displaystyle\#\Big{\{}(P_{1},\ldots P_{\mathtt{t}})\mbox{ satisfying (I)--(IV)}:|E(P_{\mathtt{i}})|=X_{\mathtt{i}}\Big{\}}\leq n^{p}D^{8\mathtt{t}}n^{X_{1}+\ldots+X_{\mathtt{t}}-\mathtt{t}}\,.

Plugging this estimation into (C.62) we obtain that

(C.62)\displaystyle\eqref{eq-bad-set-prob-relaxation-2} p5D4𝚝(|𝙻|++3p)/2(X1,,X𝚝) satisfying (C.63)(kλn)X1++X𝚝npD8𝚝nX1++X𝚝𝚝\displaystyle\leq\sum_{p\leq 5D^{4}}\sum_{\mathtt{t}\geq(|\mathtt{L}|+\ell+3p)/2}\sum_{(X_{1},\ldots,X_{\mathtt{t}})\textup{ satisfying }\eqref{eq-requirement-X}}\big{(}\tfrac{k\lambda}{n}\big{)}^{X_{1}+\ldots+X_{\mathtt{t}}}n^{p}D^{8\mathtt{t}}n^{X_{1}+\ldots+X_{\mathtt{t}}-\mathtt{t}}
=p5D4𝚝(|𝙻|++3p)/2(X1,,X𝚝) satisfying (C.63)n𝚝+pD8𝚝(kλ)X𝟷++X𝚝.\displaystyle=\sum_{p\leq 5D^{4}}\sum_{\mathtt{t}\geq(|\mathtt{L}|+\ell+3p)/2}\sum_{(X_{1},\ldots,X_{\mathtt{t}})\textup{ satisfying }\eqref{eq-requirement-X}}n^{-\mathtt{t}+p}D^{8\mathtt{t}}(k\lambda)^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}}\,. (C.64)

Recall (C.63). For (X1,,X𝚝)(X_{1},\ldots,X_{\mathtt{t}}) satisfying (C.63) we must have the quantity n𝚝D8𝚝(kλ)X𝟷++X𝚝n^{-\mathtt{t}}D^{8\mathtt{t}}(k\lambda)^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}} is bounded by

(nD50)τ(K1)+τ(K2)2τ(H)|𝙻1|p(2000λ~22k22)2N2(Γ1+Γ2+)D42𝚝(1000λ~19k19)(X𝟷++X𝚝)(1000λ~20k20)|E(K1)|+|E(K2)|2|E(H)|,\displaystyle\frac{(\tfrac{n}{D^{50}})^{\tau(K_{1})+\tau(K_{2})-2\tau(H)-|\mathtt{L}_{1}|-\ell-p}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}}{D^{42\mathtt{t}}(1000\tilde{\lambda}^{19}k^{19})^{(X_{\mathtt{1}}+\ldots+X_{\mathtt{t}})}(1000\tilde{\lambda}^{20}k^{20})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,,

which also yields that n𝚝D8𝚝(kλ)X𝟷++X𝚝n^{-\mathtt{t}}D^{8\mathtt{t}}(k\lambda)^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}} is bounded by (denote ι(14,13)\iota\in(\tfrac{1}{4},\tfrac{1}{3}) such that (nD50)ι=n14(\tfrac{n}{D^{50}})^{\iota}=n^{\frac{1}{4}})

(n𝚝D8𝚝λX𝟷++X𝚝)1ι((nD50)τ(K1)+τ(K2)2τ(H)|𝙻1|p(2000λ~12k12)2N2(Γ1+Γ2+)D42𝚝(1000λ~19k19)(X𝟷++X𝚝)(1000λ~20k20)|E(K1)|+|E(K2)|2|E(H)|)ι\displaystyle\Big{(}n^{-\mathtt{t}}D^{8\mathtt{t}}\lambda^{X_{\mathtt{1}}+\ldots+X_{\mathtt{t}}}\Big{)}^{1-\iota}\cdot\Big{(}\frac{(\tfrac{n}{D^{50}})^{\tau(K_{1})+\tau(K_{2})-2\tau(H)-|\mathtt{L}_{1}|-\ell-p}(2000\tilde{\lambda}^{12}k^{12})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}}{D^{42\mathtt{t}}(1000\tilde{\lambda}^{19}k^{19})^{(X_{\mathtt{1}}+\ldots+X_{\mathtt{t}})}(1000\tilde{\lambda}^{20}k^{20})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\Big{)}^{\iota}
n2𝚝/3D8𝚝(2k2)(X𝟷++X𝚝)n14(τ(K1)+τ(K2)2τ(H)|𝙻1|p)(2000λ~22k22)2N2(Γ1+Γ2+)(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|.\displaystyle\leq n^{-2\mathtt{t}/3}D^{-8\mathtt{t}}(2k^{2})^{-(X_{\mathtt{1}}+\ldots+X_{\mathtt{t}})}\cdot\frac{n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H)-|\mathtt{L}_{1}|-\ell-p)}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,.

Thus, we have that (C.64) is bounded by (note that X1,,X𝚝1(2k2)(X𝟷++X𝚝)D8𝚝=1+o(1)\sum_{X_{1},\ldots,X_{\mathtt{t}}\geq 1}(2k^{2})^{-(X_{\mathtt{1}}+\ldots+X_{\mathtt{t}})}D^{-8\mathtt{t}}=1+o(1))

p5D4𝚝(|𝙻|++3p)/2n14(τ(K1)+τ(K2)2τ(H)|𝙻1|p)(2000λ~22k22)2N2(Γ1+Γ2+)n23𝚝+p(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|\displaystyle\sum_{p\leq 5D^{4}}\sum_{\mathtt{t}\geq(|\mathtt{L}|+\ell+3p)/2}\frac{n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H)-|\mathtt{L}_{1}|-\ell-p)}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}n^{-\frac{2}{3}\mathtt{t}+p}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}
\displaystyle\leq\ [1+o(1)]n14(τ(K1)+τ(K2)2τ(H)2|𝙻1||𝙻2|2)(2000λ~22k22)2N2(Γ1+Γ2+)(4λ~2k2)|E(K1)|+|E(K2)|2|E(H)|.\displaystyle[1+o(1)]\cdot\frac{n^{\frac{1}{4}(\tau(K_{1})+\tau(K_{2})-2\tau(H)-2|\mathtt{L}_{1}|-|\mathtt{L}_{2}|-2\ell)}(2000\tilde{\lambda}^{22}k^{22})^{2N^{2}(\Gamma_{1}+\Gamma_{2}+\ell)}}{(4\tilde{\lambda}^{2}k^{2})^{|E(K_{1})|+|E(K_{2})|-2|E(H)|}}\,.

Combined with (C.61) and (C.62), this yields the desired bound on ~((G(par)|U𝙴)=𝙱)\widetilde{\mathbb{P}}(\mathcal{B}(G(\operatorname{par})|_{\operatorname{U}\setminus\mathtt{E}})=\mathtt{B}).

References

  • [1] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. In IEEE Transactions on Information Theory, 62(1):471–487, 2016.
  • [2] E. Abbe and C. Sandon. Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 670–688. IEEE, 2015.
  • [3] E. Abbe and C. Sandon. Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation. In Advances in Neural Information Processing Systems (NIPS), volume 29, pages 1334–1342. Curran Associates, Inc., 2016.
  • [4] E. Abbe and C. Sandon. Proof of the achievability conjectures for the general stochastic block model. In Communications on Pure and Applied Mathematics, 71(7):1334–1406, 2018.
  • [5] A. S. Bandeira, A. E. Alaoui, S. Hopkins, T. Schramm, A. S. Wein, and I. Zadik. The Franz-Parisi criterion and computational trade-offs in high dimensional statistics. In Advances in Neural Information Processing Systems (NIPS), volume 35. Curran Associates, Inc., 2022.
  • [6] A. S. Bandeira, D. Kunisky, and A. S. Wein. Computational hardness of certifying bounds on constrained PCA problems. In 11th Innovations in Theoretical Computer Science Conference, Schloss Dagstuhl-Leibniz-Zentrumfűr Informatik, 2020.
  • [7] A. S. Bandeira, A. Perry, and A. S. Wein. Notes on computational-to-statistical gaps: predictions using statistical physics. In Portugaliae Mathematica, 75(2):159–186, 2018.
  • [8] J. Banks, C. Moore, J. Neeman, and P. Netrapalli. Information-theoretic thresholds for community detection in sparse networks. In Conference on Learning Theory (COLT), pages 383–416. PMLR, 2016.
  • [9] B. Barak, C. N. Chou, Z. Lei, T. Schramm, and Y. Sheng. (Nearly) efficient algorithms for the graph matching problem on correlated random graphs. In Advances in Neural Information Processing Systems (NIPS), volume 32. Curran Associates, Inc., 2019.
  • [10] B. Barak, S. Hopkins, J. Kelner, P. K. Kothari, A. Moitra, and A. Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. In SIAM Journal on Computing, 48(2):687–735, 2019.
  • [11] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 26–33, 2005.
  • [12] P. J. Bickel and A. Chen. A nonparametric view of network models and Newman-Girvan and other modularities. In Proceedings of the National Academy of Sciences of the United States of America, 106(50):21068–21073, 2009.
  • [13] C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of random graphs: community detection and non-regular Ramanujan graphs. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 1347–1357. IEEE, 2015.
  • [14] M. Bozorg, S. Salehkaleybar, and M. Hashemi. Seedless graph matching via tail of degree distribution for correlated Erdős-Rényi graphs. Preprint, arXiv:1907.06334.
  • [15] M. Brennan and G. Bresler. Reducibility and statistical-computational gaps from secret leakage. In Conference on Learning Theory (COLT), pages 648–847. PMLR, 2020.
  • [16] M. Brennan, G. Bresler, and W. Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. In Conference On Learning Theory (COLT), pages 48–166. PMLR, 2018.
  • [17] G. Bresler and B. Huang. The Algorithmic Phase Transition of Random kk-SAT for Low Degree Polynomials. In 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 298–309. IEEE, 2022.
  • [18] G. Brito, I. Dumitriu, S. Ganguly, C. Hoffman, and L. V. Tran. Recovery and rigidity in a regular stochastic block model. In Proceedings of the 27th annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 1589–1601. SIAM, 2016.
  • [19] B. Chin and A. Sly. Optimal reconstruction of general sparse stochastic block models. Preprint, arXiv:2111.00697.
  • [20] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, A. S. Wein, and I.  Zadik. Statistical and computational phase transitions in group testing. In Conference on Learning Theory (COLT), pages 4764–4781. PMLR, 2022.
  • [21] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In Advances in Neural Information Processing Systems (NIPS), volume 19. MIT Press, 2006.
  • [22] D. Cullina and N. Kiyavash. Exact alignment recovery for correlated Erdős-Rényi graphs. Preprint, arXiv:1711.06783.
  • [23] D. Cullina and N. Kiyavash. Improved achievability and converse bounds for Erdős-Rényi graph matching. In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, page 63–72. ACM, 2016.
  • [24] D. Cullina, N. Kiyavash, P. Mittal, and H. V. Poor. Partial recovery of Erdős-Rényi graph alignment via kk-core alignment. In Proceedings of the 2020 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pages 99–100. ACM, 2020.
  • [25] O. E. Dai, D. Cullina, N. Kiyavash, and M. Grossglauser. Analysis of a canonical labeling algorithm for the alignment of correlated Erdős-Rényi graphs. In Proceedings of the ACM on Measurement and Analysis of Computing Systems, pages 1–25. ACM, 2019.
  • [26] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. In Physics Review E, 84:066106, 2011.
  • [27] A. Dhawan, C. Mao, and A. S. Wein. Detection of dense subhypergraphs by low-degree polynomials. Preprint, arXiv: 2304.08135.
  • [28] J. Ding and H. Du. Detection threshold for correlated Erdős-Rényi graphs via densest subgraph. In IEEE Transactions on Information Theory, 69(8):5289–5298, 2023.
  • [29] J. Ding and H. Du. Matching recovery threshold for correlated random graphs. In Annals of Statistics, 51(4): 1718–1743, 2023.
  • [30] J. Ding, H. Du, and Z. Li. Low-degree hardness of detection for correlated Erdős-Rényi Graphs. Preprint, arXiv:2311.15931.
  • [31] J. Ding and Z. Li. A polynomial time iterative algorithm for matching Gaussian matrices with non-vanishing correlation. To appear in Foundations of Computational Mathematics.
  • [32] J. Ding and Z. Li. A polynomial-time iterative algorithm for random graph matching with non-vanishing correlation. Preprint, arXiv:2306.00266.
  • [33] J. Ding, Z. Ma, Y. Wu, and J. Xu. Efficient random graph matching via degree profiles. In Probability Theory and Related Fields, 179(1-2):29–115, 2021.
  • [34] Y. Ding, D. Kunisky, A. S. Wein, and A. S. Bandeira. Subexponential-time algorithms for sparse PCA. In Foundations of Computational Mathematics, 22(1):1–50, 2022.
  • [35] Z. Fan, C. Mao, Y. Wu, and J. Xu. Spectral graph matching and regularized quadratic relaxations I: Algorithm and theory. In Foundations of Computational Mathematics, 23(5):1511–1565, 2023.
  • [36] Z. Fan, C. Mao, Y. Wu, and J. Xu. Spectral graph matching and regularized quadratic relaxations II: Erdős-Rényi graphs and universality. In Foundations of Computational Mathematics, 23(5):1567–1617, 2023.
  • [37] S. Feizi, G. Quon, M. Medard, M. Kellis, and A. Jadbabaie. Spectral alignment of networks. Preprint, arXiv:1602.04181.
  • [38] D. Gamarnik. The overlap gap property: A topological barrier to optimizing over random structures. In Proceedings of the National Academy of Sciences of the United States of America, 118(41):e2108492118, 2021.
  • [39] D. Gamarnik, A. Jagannath, and A. S. Wein. Hardness of random optimization problems for Boolean circuits, low-degree Polynomials, and Langevin dynamics. In SIAM Journal on Computing, 53(1):1–46, 2024.
  • [40] L. Ganassali and L. Massoulié. From tree matching to sparse graph alignment. In Proceedings of Thirty Third Conference on Learning Theory (COLT), pages 1633–1665. PMLR, 2020.
  • [41] L. Ganassali, L. Massoulié, and M. Lelarge. Correlation detection in trees for planted graph alignment. In Annals of Applied Probability, 34(3):2799–2843, 2024.
  • [42] L. Ganassali, L. Massoulié, and G. Semerjian. Statistical limits of correlation detection in trees. To appear in Annals of Applied Probability.
  • [43] J. Gaudio, M. Z. Racz, and A. Sridhar. Exact Community Recovery in Correlated Stochastic Block Models. In Conference on Learning Theory (COLT), pages 2183–2241. PMLR, 2022.
  • [44] A. Haghighi, A. Ng, and C. Manning. Robust textual inference via graph matching. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 387–394, Vancouver, British Columbia, Canada, Oct 2005.
  • [45] G. Hall and L. Massoulié. Partial recovery in the graph alignment problem. In Operations Research, 71(1):259–272, 2023.
  • [46] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic block models: First steps. In Social Networks 5(2):109–137,1983.
  • [47] S. Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell University, 2018.
  • [48] S. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer. The power of sum-of-squares for detecting hidden structures. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.
  • [49] S. Hopkins and D. Steurer. Efficient Bayesian estimation from few samples: community detection and related problems. In 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017.
  • [50] E. Kazemi, S. H. Hassani, and M. Grossglauser. Growing a graph matching from a handful of seeds. In Proceedings of VLDB Endowment, 8(10):1010–1021, jun 2015.
  • [51] H. Kesten and B. P. Stigum. Additional limit theorems for indecomposable multidimensional Galton-Watson processes. In Annals of Mathematical Statistics, 37:1463–1481, 1966.
  • [52] D. Kunisky, C. Moore, and A. S. Wein. Tensor Cumulants for Statistical Inference on Invariant Distributions. Preprint, arXiv:2404.18735.
  • [53] D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. In Mathematical Analysis, its Applications and Computation: ISAAC 2019, pages 1–50. Springer, 2022.
  • [54] V. Lyzinski, D. E. Fishkind, and C. E. Priebe. Seeded graph matching for correlated Erdős-Rényi graphs. In Journal of Machine Learning Research, 15:3513–3540, 2014.
  • [55] C. Mao, M. Rudelson, and K. Tikhomirov. Random Graph Matching with Improved Noise Robustness. In Proceedings of Thirty Fourth Conference on Learning Theory (COLT), pages 3296–3329. PMLR, 2021.
  • [56] C. Mao, M. Rudelson, and K. Tikhomirov. Exact matching of random graphs with constant correlation. In Probability Theory and Related Fields, 186(2):327–389, 2023.
  • [57] C. Mao and A. S. Wein. Optimal Spectral Recovery of a Planted Vector in a Subspace. To appear in Bernoulli.
  • [58] C. Mao, Y. Wu, J. Xu, and S. H. Yu. Testing network correlation efficiently via counting trees. To appear in Annals of Statistics.
  • [59] C. Mao, Y. Wu, J. Xu, and S. H. Yu. Random graph matching at Otter’s threshold via counting chandeliers. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages 1345–1356. ACM, 2023.
  • [60] L. Massoulié. Community detection thresholds and the weak Ramanujan property. In Proceedings of the 46th annual ACM symposium on Theory of computing (STOC), pages 694–703. ACM, 2014.
  • [61] A. Montanari and A. S. Wein. Equivalence of Approximate Message Passing and Low-Degree Polynomials in Rank-One Matrix Estimation. Preprint, arXiv:2212.06996.
  • [62] E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition model. In Probability Theory and Related Fields, (3-4):431–461, 2015.
  • [63] E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture. In Combinatorica, 38(3):665–708, 2018.
  • [64] E. Mossel, A. Sly, and Y. Sohn. Exact phase transitions for stochastic block models and reconstruction on trees. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages 96–102. ACM, 2023.
  • [65] E. Mossel, A. Sly, and Y. Sohn. Weak recovery, hypothesis testing, and mutual information in stochastic block models and planted factor graphs Preprint, arXiv:2406.15957.
  • [66] E. Mossel and J. Xu. Seeded graph matching via large neighborhood statistics. In Random Structures and Algorithms, 57(3):570–611, 2020.
  • [67] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In IEEE Symposium on Security and Privacy, pages 111–125. IEEE, 2008.
  • [68] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Symposium on Security and Privacy, pages 173–187. IEEE, 2009.
  • [69] E. Onaran, S. Garg, and E. Erkip. Optimal de-anonymization in random graphs with community structure. In 50th Asilomar Conference on Signals, Systems and Computers, pages 709–713. IEEE, 2016.
  • [70] R. Otter. The number of trees. In Annals of Mathematics, pages 583–599, 1948.
  • [71] P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1235–1243. ACM, 2011.
  • [72] G. Piccioli, G. Semerjian, G. Sicuro, and L. Zdeborová. Aligning random graphs with a sub-tree similarity message-passing algorithm. In Journal of Statistical Mechanics: Theory and Experiment, 2022(6):063401, jun 2022.
  • [73] M. Z. Racz and A. Sridhar. Correlated Stochastic Block Models: Exact Graph Matching with Applications to Recovering Communities. In Advances in Neural Information Processing Systems (NIPS), volume 34, pages 22259–22273, 2021.
  • [74] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic block model. In Annals of Statistics, 39(4):1878–1915, 2010.
  • [75] F. Shirani, S. Garg, and E. Erkip. Seeded graph matching: efficient algorithms and theoretical guarantees. In 2017 51st Asilomar Conference on Signals, Systems, and Computers, pages 253–257. IEEE, 2017.
  • [76] T. Schramm and A. S. Wein. Computational barriers to estimation from low-degree polynomials. In Annals of Statistics, 50(3):1833–1858, 2022.
  • [77] R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks with application to functional orthology detection. In Proceedings of the National Academy of Sciences of the United States of America, 105:12763–12768, 2008.
  • [78] T.A.B. Snijders and K. Nowicki. Estimation and prediction for stochastic block models for graphs with latent block structure. In Journal of Classification, 14(1):75–100, 1997.
  • [79] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for graph matching. In PLOS ONE, 10(4):1–17, 04 2015.
  • [80] A. S. Wein. Optimal low-degree hardness of maximum independent set. In Mathematical Statistics and Learning, pages 221–251, 2022.
  • [81] Y. Wu, J. Xu, and S. H. Yu, Testing correlation of unlabeled random graphs. In Annals of Applied Probability, 33(4): 2519–2558, 2023.
  • [82] Y. Wu, J. Xu, and S. H. Yu, Settling the sharp reconstruction thresholds of random graph matching. In IEEE Transactions on Information Theory, 68(8):5391–5417, 2022.
  • [83] J. Yang and H. W. Chung. Graph Matching in Correlated Stochastic Block Models for Improved Graph Clustering. Preprint, arXiv:2309.05182.
  • [84] J. Yang, D. Shin, and H. W. Chung. Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation. In Proceedings of the 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA. PMLR, 2023.
  • [85] L. Yartseva and M. Grossglauser. On the performance of percolation graph matching. In Proceedings of the First ACM Conference on Online Social Networks, pages 119–130. ACM, 2013.