This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A composition law and refined notions of convergence for periodic continued fractions

Bradley W. Brock Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540-1966, USA [email protected] Bruce W. Jordan Department of Mathematics, Baruch College, The City University of New York, One Bernard Baruch Way, New York, NY 10010-5526, USA [email protected]  and  Lawren Smithline Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540-1966, USA [email protected]
Abstract.

We define an equivalence relation on periodic continued fractions with partial quotients in a ring 𝒪𝐂\mathcal{O}\subseteq\mathbf{C}, a group law on these equivalence classes, and a map from these equivalence classes to matrices in GL2(𝒪)\operatorname{GL_{2}}(\mathcal{O}) with determinant ±1\pm 1. We prove this group of equivalence classes is isomorphic to 𝐙/2𝐙𝒪\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} and study certain of its one- and two-dimensional representations.

For a periodic continued fraction with period kk, we give a refined description of the limits of the kk different kk-decimations of its sequence of convergents. We show that for a periodic continued fraction associated to a matrix with eigenvalues of different magnitudes, all kk of these limits exist in 1(𝐂)\mathbb{P}^{1}(\mathbf{C}) and a strict majority of them are equal.

Key words and phrases:
elementary matrices, SL2\operatorname{\operatorname{SL}_{2}}
2020 Mathematics Subject Classification:
Primary 11J70; Secondary 11G30

1. Introduction

Continued fractions with positive integer partial quotients are a staple of classical number theory, with an intimate connection to Euclid’s algorithm. Here, we consider the more general case of continued fractions with partial quotients in a subring 𝒪1\mathcal{O}\ni 1 of the complex numbers 𝐂\mathbf{C}, as in [BEJ21]. We define an equivalence relation on the set PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) of periodic continued fractions over 𝒪\mathcal{O} and a group law on the resulting equivalence classes PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}).

The theory of periodic continued fractions, unlike continued fractions in general, has connections to both arithmetic groups and diophantine equations. The work [BEJ21] relates the theory of PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) to the group SL2±(𝒪)\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}), the subgroup of GL2(𝒪)\operatorname{GL_{2}}(\mathcal{O}) consisting of matrices with determinant ±1\pm 1, and to diophantine problems on associated varieties. In this paper we further explore the relationship between PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) and the group SL2±(𝒪)\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}). A major influence in our study is the 1966 paper [Coh66] by Cohn.

Section 2 sets out preliminaries related to actions of 2×22\times 2 matrices. We consider the action of GL2(𝒪)\operatorname{GL_{2}}(\mathcal{O}) by linear fractional transformations on the projective line 1(𝐂)\mathbb{P}^{1}(\mathbf{C}). We also name subgroups of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) determined by common eigenspaces. In Section 3, we introduce the concatentation binary operation \star on the semigroup FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) of finite continued fractions over 𝒪\mathcal{O}. We develop an equivalence relation on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) and show that the equivalence classes FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) form a group under \star . We exhibit a map M:FCF(𝒪)SL2±(𝒪)M:\operatorname{\textup{{FCF}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}) in Proposition 3.12 arising from the algorithm for computing the value of a finite continued fraction. We show that MM is well defined on equivalence classes, giving a homomophism M¯:FCF¯(𝒪)SL2±(𝒪)\overline{M}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}). We review results of Cohn [Coh66] that give information on ker(M¯)\ker(\overline{M}) for certain rings 𝒪\mathcal{O}. Using this, we show how the standard amalgam presentation SL2(𝐙)𝐙/4𝐙𝐙/2𝐙𝐙/6𝐙\operatorname{\operatorname{SL}_{2}}(\mathbf{Z})\cong\mathbf{Z}/4\mathbf{Z}\ast_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/6\mathbf{Z} arises from presenting SL2(𝐙)\operatorname{\operatorname{SL}_{2}}(\mathbf{Z}) as an explicit quotient of FCF¯(𝐙).\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z}).

Section 4 extends the structure on finite continued fractions to periodic continued fractions (PCFs). In Theorem 4.9, we show that this yields a natural equivalence relation on periodic continued fractions yielding a group of equivalence classes PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) isomorphic to FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}). Section 5 relates the group PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) to quantities defined in [BEJ21]. We review the fundamental matrix E(P)SL2​​±(𝒪)E(P)\in\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) associated to a periodic continued fraction PP and apply the isomorphism of Theorem 4.9 to show that EE is well-defined on PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}), giving a homomophism E¯:PCF¯(𝒪)SL2±(𝒪)\overline{E}:\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}). For AGL2(𝒪)A\in\operatorname{GL_{2}}(\mathcal{O}) we define subgroups PCF¯𝒪(A)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A) of PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) by requiring E¯(P¯)\overline{E}(\overline{P}) to be a linear combination of AA and the identity matrix II. We exhibit characters corresponding to each eigenvalue of AA. These characters have values that are units in a quadratic extension of 𝒪\mathcal{O}. In Section 6, we give examples where 𝒪\mathcal{O} is a number ring.

In Section 7, we reformulate the PCF-convergence criteria of [BEJ21, Thm. 4.3] in parallel with the cases of convergence in Section 2.1. We show that when E(P)E(P) has eigenvalues of different magnitudes (which implies quasiconvergence), the kk different kk-decimations of its sequence of convergents all converge in 1(𝐂)\mathbb{P}^{1}(\mathbf{C}), and a strict majority agree. Unanimity is equivalent to convergence.

In Section 8, we demonstrate the sharpness of the result of Section 7. We give examples showing that the proportion of agreement of the kk different kk-decimations of the sequence of convergents of a quasiconvergent periodic continued fraction can be arbitrarily close to 1/21/2 or arbitrarily close to and different from 11. We show that the equivalence relation \sim on PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) respects quasiconvergence but does not respect convergence.

2. Actions of 2×22\times 2 matrices

Let 𝒪𝐂\mathcal{O}\subseteq\mathbf{C} be a ring with 11. A finite continued fraction with partial quotients in 𝒪\mathcal{O} is an iterated quotient. It can be interpreted in terms of the action of GL2(𝒪)GL2(𝐂)\operatorname{GL_{2}}(\mathcal{O})\leq\operatorname{GL_{2}}(\mathbf{C}) on the projective line 1(𝐂)\mathbb{P}^{1}(\mathbf{C}) by linear fractional transformations which we review in this section. We also name certain subgroups of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) determined by common eigenspaces.

2.1. Linear fractional transformations

Suppose

M=[m11m12m21m22]GL2(𝐂)M=\begin{bmatrix}m_{11}&m_{12}\\ m_{21}&m_{22}\end{bmatrix}\in\operatorname{GL_{2}}(\mathbf{C}) (1)

and β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}). The matrix MM acts on β\beta by linear fractional transformation

Mβ=m11β+m12m21β+m22,M\beta=\frac{m_{11}\beta+m_{12}}{m_{21}\beta+m_{22}},

where we interpret 1/0=1(𝐂)1/0=\infty\in\mathbb{P}^{1}(\mathbf{C}). For β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}), let

v(β)=(β1) if β and v()=(10).v(\beta)=\binom{\beta}{1}\text{ if }\beta\neq\infty\text{ and }v(\infty)=\binom{1}{0}. (2)

The vector v(β)v(\beta) is an eigenvector of MM if and only if Mβ=βM\beta=\beta. For nonzero polynomial Q=aX2+bX+c𝐂[X]Q=aX^{2}+bX+c\in\mathbf{C}[X], let Roots(Q)\operatorname{Roots}(Q) be the multiset of zeros of Q[x]Q[x] in 1(𝐂)\mathbb{P}^{1}(\mathbf{C}), with the convention that if deg(Q)=1\deg(Q)=1, then \infty is a simple root of QQ; and if deg(Q)=0\deg(Q)=0, then 0Q0\neq Q has a double root at \infty. When Q=0Q=0, say Roots(Q)=1(𝐂)\operatorname{Roots}(Q)=\mathbb{P}^{1}(\mathbf{C}). For a 2×22\times 2 matrix MM as above, set

Quad(M)=m21X2+(m22m11)Xm12.\operatorname{Quad}(M)=m_{21}X^{2}+(m_{22}-m_{11})X-m_{12}. (3)

We use Roots(M)\operatorname{Roots}(M) to denote Roots(Quad(M))\operatorname{Roots}(\operatorname{Quad}(M)). When βRoots(M)\beta\in\operatorname{Roots}(M), v(β)v(\beta) is an eigenvector of MM with eigenvalue

λ(β)\colonequalsm21β+m22=m11+m12/β.\lambda(\beta)\colonequals m_{21}\beta+m_{22}=m_{11}+m_{12}/\beta. (4)

In particular, λ()=m11\lambda(\infty)=m_{11} and λ(0)=m22\lambda(0)=m_{22}.

Proposition 2.1.

Let AA, BB be 2×22\times 2 matrices over 𝒪\mathcal{O}, II be the 2×22\times 2 identity matrix. Let κ,λ𝒪\kappa,\lambda\in\mathcal{O} be not both zero. There exists μ𝒪\mu\in\mathcal{O} such that κB=λA+μI\kappa B=\lambda A+\mu I if and only if κQuad(B)=λQuad(A)\kappa\operatorname{Quad}(B)=\lambda\operatorname{Quad}(A).

Proof.

Suppose κ,λ,μ𝒪\kappa,\lambda,\mu\in\mathcal{O} with (κ,λ)(0,0)(\kappa,\lambda)\neq(0,0) such that κB=λA+μI\kappa B=\lambda A+\mu I. The polynomial Quad(λA+μI)\operatorname{Quad}(\lambda A+\mu I) is independent of μ\mu. We have

κQuad(B)=Quad(κB)=Quad(λA+μI)=Quad(λA)=λQuad(A).\kappa\operatorname{Quad}(B)=\operatorname{Quad}(\kappa B)=\operatorname{Quad}(\lambda A+\mu I)=\operatorname{Quad}(\lambda A)=\lambda\operatorname{Quad}(A).

Conversely, suppose κQuad(B)=λQuad(A)\kappa\operatorname{Quad}(B)=\lambda\operatorname{Quad}(A) for κ,λ𝒪\kappa,\lambda\in\mathcal{O}, (κ,λ)(0,0)(\kappa,\lambda)\neq(0,0). Since Quad\operatorname{Quad} is linear map, Quad(κBλA)=0\operatorname{Quad}(\kappa B-\lambda A)=0. Thus, there is μ𝒪\mu\in\mathcal{O} such that κBλA=μI\kappa B-\lambda A=\mu I. ∎

For a matrix MM, Quad(M)\operatorname{Quad}(M) and the eigenvalues of MM govern the convergence behavior of the sequence MnβM^{n}\beta, n0n\geq 0, for β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}).

Definition 2.2.

For any x,yx,y, let δ(x,y)\delta(x,y) denote the diagonal matrix

δ(x,y)=[x00y].\delta(x,y)=\begin{bmatrix}x&0\\ 0&y\end{bmatrix}.
Proposition 2.3.

For MGL2(𝐂)M\in\operatorname{GL_{2}}(\mathbf{C}), one of four mutually exclusive possibilities holds:

  1. (a)

    Quad(M)\operatorname{Quad}(M) has one root β^\hat{\beta} of multiplicity 2 and limnMnβ=β^\lim_{n\to\infty}M^{n}\beta=\hat{\beta} for all β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}).

  2. (b)

    Quad(M)=0\operatorname{Quad}(M)=0. For all β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}), Mβ=βM\beta=\beta and so limnMnβ=βlim_{n\to\infty}M^{n}\beta=\beta.

  3. (c)

    Quad(M)\operatorname{Quad}(M) has distinct roots β+,β\beta_{+},\beta_{-}, and MM has corresponding eigenvalues λ+=λ(β+)\lambda_{+}=\lambda(\beta_{+}), λ=λ(β)\lambda_{-}=\lambda(\beta_{-}) as in (4), with |λ+|>|λ||\lambda_{+}|>|\lambda_{-}|. For all ββ1(𝐂)\beta\neq\beta_{-}\in\mathbb{P}^{1}(\mathbf{C}), limnMnβ=β+lim_{n\to\infty}M^{n}\beta=\beta_{+}. For β=β\beta=\beta_{-}, limnMnβ=βlim_{n\to\infty}M^{n}\beta=\beta_{-}.

  4. (d)

    Quad(M)\operatorname{Quad}(M) has distinct roots with MM having distinct eigenvalues of the same magnitude. For βRoots(M)\beta\in\operatorname{Roots}(M), limnMnβ=β\lim_{n\to\infty}M^{n}\beta=\beta. Otherwise, the sequence MnβM^{n}\beta diverges.

Proof.

Every MM is conjugate to its Jordan normal form, so the result follows if it is so for MM in Jordan normal form. Let β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}). The design of cases (a)–(d) makes evident that exactly one of the following holds, where λ1\lambda_{1}, λ2\lambda_{2} are the eigenvalues of MM. In cases (a) and (b) below there is one eigenvalue λ1\lambda_{1} of multiplicity 22.

  1. (a)

    MM is defective, Mλ1IM-\lambda_{1}I is nilpotent, and

    limn[λ110λ1]nβ=;\lim_{n\to\infty}\begin{bmatrix}\lambda_{1}&1\\ 0&\lambda_{1}\end{bmatrix}^{n}\beta=\infty;
  2. (b)

    M=λ1IM=\lambda_{1}I, and

    limnδ(λ1,λ1)nβ=β;\lim_{n\to\infty}\delta(\lambda_{1},\lambda_{1})^{n}\beta=\beta;
  3. (c)

    M=δ(λ1,λ2),|λ1|>|λ2|M=\delta(\lambda_{1},\lambda_{2}),|\lambda_{1}|>|\lambda_{2}|, and

    limnδ(λ1,λ2)nβ={,β0,0,β=0;\lim_{n\to\infty}\delta(\lambda_{1},\lambda_{2})^{n}\beta=\begin{cases}\infty,\,\beta\neq 0,\\[3.61371pt] 0,\,\beta=0;\\ \end{cases}\\
  4. (d)

    M=δ(λ1,λ2),|λ1|=|λ2|M=\delta(\lambda_{1},\lambda_{2}),|\lambda_{1}|=|\lambda_{2}|, λ1λ2\lambda_{1}\neq\lambda_{2}, and

    limnδ(λ1,λ2)nβ={β, for β{0,},does not exist for β{0,}.\lim_{n\to\infty}\delta(\lambda_{1},\lambda_{2})^{n}\beta=\begin{cases}\beta,\textrm{ for }\beta\in\{0,\infty\},\\ \text{does not exist for }\beta\notin\{0,\infty\}.\end{cases}

2.2. Subgroups of \excepttoc𝐆𝐋𝟐(𝐂)\operatorname{GL_{2}}(\mathbf{C})\fortocGL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) determined by eigenspaces

The subsets of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) with particular eigenvectors form subgroups of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}).

Proposition 2.4.

Let MGL2(𝐂)M\in\operatorname{GL_{2}}(\mathbf{C}). Every β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}) satisfies Mβ=βM\beta=\beta if and only if MM is a scalar multiple of the identity matrix II.

Proof.

Write M=[mij]1i,j2M=[m_{ij}]_{1\leq i,j\leq 2} as in (1). If M=m11IM=m_{11}I, then every β\beta satisfies Mβ=βM\beta=\beta. Conversely, if every β\beta satisfies Mβ=βM\beta=\beta, then v(0)v(0) and v()v(\infty) are eigenvectors of MM and MM is diagonal. Since v(1)v(1) is also an eigenvector, MM must be a scalar multiple of the identity. ∎

Proposition 2.5.

Let 0L(X)𝐂[X]0\neq L(X)\in\mathbf{C}[X], deg(L)1\deg(L)\leq 1, with root β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}). Set T(β)={MGL2(𝐂)Mβ=β}T(\beta)=\{M\in\operatorname{GL_{2}}(\mathbf{C})\mid M\beta=\beta\}.

  1. (a)

    The set T(β)T(\beta) is a subgroup of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) conjugate to the Borel subgroup of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) consisting of upper triangular matrices.

  2. (b)

    For every MT(β)M\in T(\beta), L(X)L(X) divides Quad(M)\operatorname{Quad}(M). If degL(X)=0\deg L(X)=0, L(X)|Quad(M)L(X)|\operatorname{Quad}(M) means degQuad(M)1\deg\operatorname{Quad}(M)\leq 1.

  3. (c)

    The group T(β)T(\beta) has a multiplicative character λβ\lambda_{\beta} mapping MM to its v(β)v(\beta)-eigenvalue.

Proof.

(a): The stabilizer T()T(\infty) of 1(𝐂)\infty\in\mathbb{P}^{1}(\mathbf{C}) consists of the upper triangular matrices. Since GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) acts transitively on 1(𝐂)\mathbb{P}^{1}(\mathbf{C}), T(β)T(\beta) is a subgroup of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) conjugate to T()T(\infty) for every β1(𝐂)\beta\in\mathbb{P}^{1}(\mathbf{C}).
(b): Suppose MT(β)M\in T(\beta). Then βRoots(M)\beta\in\operatorname{Roots}(M) and L(X)L(X) divides Quad(M)\operatorname{Quad}(M).
(c): Suppose M,MT(β)M,M^{\prime}\in T(\beta). Then MMT(β)MM^{\prime}\in T(\beta) and

λβ(MM)v(β)=MMv(β)=Mλβ(M)v(β)=λβ(M)λβ(M)v(β),\lambda_{\beta}(MM^{\prime})v(\beta)=MM^{\prime}v(\beta)=M\lambda_{\beta}(M^{\prime})v(\beta)=\lambda_{\beta}(M)\lambda_{\beta}(M^{\prime})v(\beta),

so λβ\lambda_{\beta} is a multiplicative character on T(β)T(\beta). ∎

Proposition 2.6.

Let 0Q𝐂[X]0\neq Q\in\mathbf{C}[X] with deg(Q)2\deg(Q)\leq 2. The set

G(Q)={MGL2(𝐂)λ𝐂 such that Quad(M)=λQ}G(Q)=\{M\in\operatorname{GL_{2}}(\mathbf{C})\mid\exists\lambda\in\mathbf{C}\text{ such that }\operatorname{Quad}(M)=\lambda Q\}

is a group. When QQ is not a square,

G(Q)=T(β)T(β) with {β,β}=Roots(Q),ββ,G(Q)=T(\beta)\cap T(\beta^{*})\text{ with }\{\beta,\beta^{*}\}=\operatorname{Roots}(Q),\,\,\beta\neq\beta^{\ast},

and G(Q)G(Q) is conjugate to the group of diagonal matrices in GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}). When QQ is a square in 𝐂[X]\mathbf{C}[X], G(Q)G(Q) is conjugate to the the subgroup of upper triangular matrices in GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) with equal diagonal entries.

Proof.

When QQ is not a square, Roots(Q)={β,β}\operatorname{Roots}(Q)=\{\beta,\beta^{*}\}, ββ\beta\neq\beta^{*}. In this case, MG(Q)M\in G(Q) is equivalent to MM having eigenvectors v(β)v(\beta) and v(β)v(\beta^{*}). Hence, G(Q)=T(β)T(β)G(Q)=T(\beta)\cap T(\beta^{*}). A change of basis mapping β\beta to \infty and β\beta^{*} to 0 conjugates G(Q)G(Q) to G(x)G(x), the group of diagonal matrices.

When QQ is a square, Roots(Q)\operatorname{Roots}(Q) has one element β\beta of multiplicity 22.. Every MG(Q)M\in G(Q) is either a scalar multiple of II or defective. A change of basis mapping β\beta to \infty conjugates G(Q)G(Q) to G(1)G(1). A matrix in G(1)G(1) is either a scalar multiple of II or upper triangular with equal diagonal entries and not diagonal. ∎

3. Finite continued fractions

Let 𝒪𝐂\mathcal{O}\subseteq\mathbf{C} be a ring containing 1. We define the set FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) of finite continued fractions with partial quotients in 𝒪\mathcal{O}, and an operation \star making FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) a semigroup. We give an equivalence relation on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) and show that the equivalence classes FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) form a group.

Let ci𝐂c_{i}\in\mathbf{C}, 1in1\leq i\leq n.

Definition 3.1.

A finite continued fraction (FCF) F=[c1,c2,,cn]F=[c_{1},c_{2},\ldots,c_{n}] is the formal expression

c1+1c2+1c3+1c4+1cn1+1cn.c_{1}+\cfrac{1}{c_{2}+\cfrac{1}{c_{3}+\cfrac{1}{c_{4}+\cfrac{1}{\raisebox{-11.99998pt}{$\ddots\quad$}\raisebox{-23.99997pt}{$c_{n-1}+\cfrac{1}{c_{n}}$}}}}}. (5)

We say that the FCF F=[c1,,cn]F=[c_{1},\ldots,c_{n}] has length length(F)=n\operatorname{length}(F)=n.

The elements cic_{i} are called the partial quotients. For knk\leq n, the convergent 𝒞k(F)\mathcal{C}_{k}(F) of FF is the evaluation of the finite continued fraction [c1,c2,,ck][c_{1},c_{2},\ldots,c_{k}], where we interpret 1/01/0 as 1(𝐂)\infty\in\mathbb{P}^{1}(\mathbf{C}). We distinguish between the formal object F=[c1,c2,ck]F=[c_{1},c_{2},\ldots c_{k}] and its value F^\colonequals𝒞k(F)1(𝐂)\hat{F}\colonequals\mathcal{C}_{k}(F)\in\mathbb{P}^{1}(\mathbf{C}). There is a simple rule to iteratively compute 𝒞k(F)\mathcal{C}_{k}(F) as a ratio pk/qkp_{k}/q_{k}. Let

D(x)=[x110].D(x)=\begin{bmatrix}x&1\\ 1&0\end{bmatrix}.

Let II be the 2×22\times 2 identity matrix and F=[c1,,cn]F=[c_{1},\ldots,c_{n}] be a finite continued fraction as in (5). Define p0,q0,p1,q1p_{0},q_{0},p_{-1},q_{-1} by the matrix equation

[p0p1q0q1]=I.\begin{bmatrix}p_{0}&p_{-1}\\ q_{0}&q_{-1}\end{bmatrix}=I.

Recursively define pk=pk(F)p_{k}=p_{k}(F), qk=qk(F)q_{k}=q_{k}(F) for nk1n\geq k\geq 1 by

[pkpk1qkqk1]=[pk1pk2qk1qk2]D(ck)=D(c1)D(ck).\begin{bmatrix}p_{k}&p_{k-1}\\ q_{k}&q_{k-1}\end{bmatrix}=\begin{bmatrix}p_{k-1}&p_{k-2}\\ q_{k-1}&q_{k-2}\end{bmatrix}D(c_{k})=D(c_{1})\cdots D(c_{k}).

The numerators pkp_{k} and denominators qkq_{k} with 𝒞k(F)=pk(F)/qk(F)\mathcal{C}_{k}(F)=p_{k}(F)/q_{k}(F) can be written in terms of continuant polynomials (see, e.g., [BEJ21, p. 385]).

An 𝒪\mathcal{O}-FCF is a FCF [c1,,cn][c_{1},\ldots,c_{n}] having all partial quotients ci𝒪c_{i}\in\mathcal{O}.

3.1. An equivalence relation on finite continued fractions

Definition 3.2.

The semigroup FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) is the set {FF is an 𝒪-FCF}\{F\mid F\text{ is an $\mathcal{O}$-FCF}\} with the concatenation operation \star:

[c1,,cn][c1,,cn]=[c1,,cn][c1,,cn]\colonequals[c1,,cn,c1,,cn].[c_{1},\ldots,c_{n}]\star[c^{\prime}_{1},\ldots,c^{\prime}_{n^{\prime}}]=[c_{1},\ldots,c_{n}][c^{\prime}_{1},\ldots,c^{\prime}_{n^{\prime}}]\colonequals[c_{1},\ldots,c_{n},c_{1}^{\prime},\ldots,c_{n^{\prime}}].

Equivalently, FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) is the semigroup of the set of words in formal symbols 𝐃(x)\mathbf{D}(x), for x𝒪x\in\mathcal{O}, with the two descriptions identified by

[x1,,xn]𝐃(x1)𝐃(xn).[x_{1},\ldots,x_{n}]\leftrightarrow\mathbf{D}(x_{1})\cdots\mathbf{D}(x_{n}).
Definition 3.3.

Let FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) be the set FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) modulo the equivalence relation \sim generated by the relations

𝐃(x)𝐃(0)𝐃(y)=𝐃(x+y),x,y𝒪.\mathbf{D}(x)\mathbf{D}(0)\mathbf{D}(y)=\mathbf{D}(x+y),\ x,y\in\mathcal{O}. (6)

For F=[c1,,cn]FCF(𝒪)F=[c_{1},\ldots,c_{n}]\in\operatorname{\textup{{FCF}}}(\mathcal{O}) denote by F¯=|[c1,,cn]|FCF¯(𝒪)\overline{F}=|\![c_{1},\ldots,c_{n}]\!|\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) the equivalence class containing FF. For a word 𝐰\mathbf{w} in the 𝐃(x)\mathbf{D}(x)’s denote by 𝐰¯\overline{\mathbf{w}} the equivalence class containing 𝐰\mathbf{w}.

Proposition 3.4.
  1. (a)

    If F1,G1,F2,G2FCF(𝒪)F_{1},G_{1},F_{2},G_{2}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) with F¯1=F¯2\overline{F}_{1}=\overline{F}_{2} and G¯1=G¯2\overline{G}_{1}=\overline{G}_{2}, then

    F1G1¯=F2G2¯FCF¯(𝒪).\overline{F_{1}\star G_{1}}=\overline{F_{2}\star G_{2}}\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}).
  2. (b)

    The binary operation \star on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) induces a well-defined binary operation \star on FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}), making FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) a semigroup.

  3. (c)

    The semigroup FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) is a group with identity |[0,0]|𝐃¯(0)2|\![0,0]\!|\leftrightarrow\overline{\mathbf{D}}(0)^{2}.

  4. (d)

    The element 𝐃¯(x)FCF¯(𝒪)\overline{\mathbf{D}}(x)\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) has inverse 𝐃¯(x)1=𝐃¯(0)𝐃¯(x)𝐃¯(0)\overline{\mathbf{D}}(x)^{-1}=\overline{\mathbf{D}}(0)\overline{\mathbf{D}}(-x)\overline{\mathbf{D}}(0).

Proof.

(a) is immediate, and (b) is implied by (a).
(c): Substituting y=0y=0 into relation (6) shows that the class of 𝐃(0)2\mathbf{D}(0)^{2} is the identity in FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}). The equality

𝐃(x)𝐃(0)𝐃(x)𝐃(0)=𝐃(0)2,x𝒪,\mathbf{D}(x)\mathbf{D}(0)\mathbf{D}(-x)\mathbf{D}(0)=\mathbf{D}(0)^{2},\ x\in\mathcal{O},

exhibits the inverse 𝐃¯(x)1=𝐃¯(0)𝐃¯(x)𝐃¯(0)\overline{\mathbf{D}}(x)^{-1}=\overline{\mathbf{D}}(0)\overline{\mathbf{D}}(-x)\overline{\mathbf{D}}(0). ∎

Definition 3.5.

Define 𝐉,𝐔(x),𝐋(x)FCF(𝒪)\mathbf{J},\mathbf{U}(x),\mathbf{L}(x)\in\operatorname{\textup{{FCF}}}(\mathcal{O}) for x𝒪x\in\mathcal{O} by 𝐉\colonequals𝐃(0)\mathbf{J}\colonequals\mathbf{D}(0), 𝐔(x)\colonequals𝐃(x)𝐃(0)\mathbf{U}(x)\colonequals\mathbf{D}(x)\mathbf{D}(0), and 𝐋(x)\colonequals𝐃(0)𝐃(x)\mathbf{L}(x)\colonequals\mathbf{D}(0)\mathbf{D}(x). We consider the group 𝐙/2𝐙𝒪\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}, where 𝒪\mathcal{O} is viewed as an additive group and j𝐙/2𝐙j\in\mathbf{Z}/2\mathbf{Z} is a generator. Let W𝖥:FCF(𝒪)𝐙/2𝐙𝒪W_{\mathsf{F}}:\operatorname{\textup{{FCF}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} be the surjective map of semigroups

W𝖥:𝐃(x)xj𝐙/2𝐙𝒪.W_{\mathsf{F}}:\mathbf{D}(x)\mapsto xj\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}.

In particular, note that W𝖥(𝐉)=j𝐙/2𝐙W_{\mathsf{F}}(\mathbf{J})=j\in\mathbf{Z}/2\mathbf{Z}, W𝖥(𝐔(x))=x𝒪W_{\mathsf{F}}(\mathbf{U}(x))=x\in\mathcal{O}, and W𝖥(𝐋(x)))=jxjW_{\mathsf{F}}(\mathbf{L}(x)))=jxj.

Proposition 3.6.

The morphism of semigroups W𝖥:FCF(𝒪)𝐙/2𝐙𝒪W_{\mathsf{F}}:\operatorname{\textup{{FCF}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} of Definition 3.5 induces an isomorphism of groups W¯𝖥:FCF¯(𝒪)𝐙/2𝐙𝒪\overline{W}_{\mathsf{F}}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}.

Proof.

Verify that W𝖥(𝐃(x)𝐃(0)𝐃(y))=W𝖥(𝐃(x+y))W_{\mathsf{F}}(\mathbf{D}(x)\mathbf{D}(0)\mathbf{D}(y))=W_{\mathsf{F}}(\mathbf{D}(x+y)) for x,y𝒪x,y\in\mathcal{O}. Hence W𝖥W_{\mathsf{F}} induces a well-defined map on equivalence classes FCF¯(𝒪)=FCF(𝒪)/\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})=\operatorname{\textup{{FCF}}}(\mathcal{O})/\sim by the Definition 3.3 of \sim. To see that W¯𝖥\overline{W}_{\mathsf{F}} is an isomorphism, verify that its inverse is given by

W¯𝖥1:𝐙/2𝐙𝒪FCF¯(𝒪)withW¯𝖥1(j)=𝐉¯ and W¯𝖥1(x)=𝐔¯(x) for x𝒪.\overline{W}_{\mathsf{F}}^{\,-1}:\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\longrightarrow\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\quad\text{with}\quad\overline{W}_{\mathsf{F}}^{\,-1}(j)=\overline{\mathbf{J}}\text{ and }\overline{W}_{\mathsf{F}}^{\,-1}(x)=\overline{\mathbf{U}}(x)\text{ for }x\in\mathcal{O}.\qed
Remark 3.7.

For F=[c1,,cn]FCF(𝒪)F=[c_{1},\ldots,c_{n}]\in\operatorname{\textup{{FCF}}}(\mathcal{O}), set F\colonequals[0,cn,,c1,0]F^{\ast}\colonequals[0,-c_{n},\ldots,-c_{1},0]. Observe that F¯=F¯1FCF¯(𝒪)\overline{F^{\ast}}=\overline{F}^{\,-1}\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}):

|[c1,,cn]||[0,cn,,c1,0]|=|[c1,,cn]||[0,cn,,c1,0]|=|[0,0]|.|\![c_{1},\ldots,c_{n}]\!|\star|\![0,-c_{n},\ldots,-c_{1},0]\!|=|\![c_{1},\ldots,c_{n}]\!||\![0,-c_{n},\ldots,-c_{1},0]\!|=|\![0,0]\!|.

This formula for F¯1\overline{F}^{\,-1} also follows from Proposition 3.4(d).

Definition 3.8.

The finite continued fraction F=[c1,,cn]F=[c_{1},\ldots,c_{n}] is reduced if it has no interior zeros: ci0c_{i}\neq 0 for 2in12\leq i\leq n-1.

Proposition 3.9.

For FFCF(𝒪)F\in\operatorname{\textup{{FCF}}}(\mathcal{O}), there is a unique reduced FredFCF(𝒪)F_{\mathrm{red}}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) such that FredF.F_{\mathrm{red}}\sim F.

Proof.

Given FFCF(𝒪)F\in\operatorname{\textup{{FCF}}}(\mathcal{O}), iteratively apply relation (6) to remove interior zeros to produce a reduced FredFF_{\textrm{red}}\sim F.

On the other hand, suppose Fred,FredFCF(𝒪)F_{\textrm{red}},F^{\prime}_{\textrm{red}}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) are both reduced and F¯red=F¯red\overline{F}_{\textrm{red}}=\overline{F^{\prime}}_{\textrm{red}}. Then W¯𝖥(F¯red)=W¯𝖥(F¯red)𝐙/2𝐙𝒪\overline{W}_{\mathsf{F}}(\overline{F}_{\textrm{red}})=\overline{W}_{\mathsf{F}}(\overline{F^{\prime}}_{\textrm{red}})\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}. Since they are reduced, both F¯red\overline{F}_{\textrm{red}} and F¯red\overline{F^{\prime}}_{\textrm{red}} map under W¯𝖥\overline{W}_{\mathsf{F}} to words in FCF¯(𝒪)𝐙/2𝐙𝒪\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\cong\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}, each literally expressed without spurious insertions of the identity, and they are equal. Since 𝐙/2𝐙𝒪\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} is a free product, these words are the same and Fred=FredF^{\prime}_{\textrm{red}}=F_{\textrm{red}}. ∎

Definition 3.10.

For any F¯FCF¯(𝒪)\overline{F}\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}), the normal form of F¯\overline{F} is the unique reduced representative FredFCF(𝒪)F_{\textrm{red}}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) of the equivalence class F¯\overline{F}.

Remark 3.11.

Two elements F¯,F¯FCF¯(𝒪)\overline{F},\overline{F}^{\prime}\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) are equal if and only if they have the same normal forms in FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}):

F¯=F¯Fred=FredFCF(𝒪).\overline{F}=\overline{F}^{\prime}\Longleftrightarrow F_{\textrm{red}}=F^{\prime}_{\textrm{red}}\in\operatorname{\textup{{FCF}}}(\mathcal{O}).

In practice one computes FredF_{\mathrm{red}} for FFCF(𝒪)F\in\operatorname{\textup{{FCF}}}(\mathcal{O}) by the algorithm of repeatedly applying relation (6) until all interior zeros are eliminated. For example, consider

F=[0,2,0,2,0,3,0,5]FCF(𝐙).F=[0,-2,0,2,0,3,0,5]\in\operatorname{\textup{{FCF}}}(\mathbf{Z}).

We have

F=[0,2,0,2,0,3,0,5][0,0,0,3,0,5][0,3,0,5][0,8],F=[0,-2,0,2,0,3,0,5]\sim[0,0,0,3,0,5]\sim[0,3,0,5]\sim[0,8],

and hence Fred=[0,8]FCF(𝐙)F_{\mathrm{red}}=[0,8]\in\operatorname{\textup{{FCF}}}(\mathbf{Z}) with F¯=|[0,2,0,2,0,3,0,5]|=|[0,8]|=F¯redFCF¯(𝐙)\overline{F}=|\![0,-2,0,2,0,3,0,5]\!|=|\![0,8]\!|=\overline{F}_{\textrm{red}}\in\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z}).

3.2. Mapping finite continued fractions to matrices

Let

SL2​​±(𝒪)={gGL2(𝒪)det(g)=±1}.\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O})=\{g\in\operatorname{GL_{2}}(\mathcal{O})\mid\det(g)=\pm 1\}.

The kernel of the determinant map, SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}), is normal of index 2 in SL2​​±(𝒪)\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}).

Proposition 3.12.

The map M:FCF(𝒪)SL2​​±(𝒪)M:\operatorname{\textup{{FCF}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) given by

M([c1,,cn])=D(c1)D(cn)so thatM(𝐃(x))=D(x)M([c_{1},\ldots,c_{n}])=D(c_{1})\cdots D(c_{n})\quad\text{so that}\quad M(\mathbf{D}(x))=D(x) (7)

induces a well-defined homomorphism of groups M¯:FCF¯(𝒪)SL2​​±(𝒪)\overline{M}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}). We therefore have a homomorphism of groups 𝐌\colonequalsM¯W¯𝖥1:𝐙/2𝐙𝒪SL2​​±(𝒪)\mathbf{M}\colonequals\overline{M}\circ\overline{W}_{\mathsf{F}}^{\,-1}:\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}).

Proof.

We have specified the map MM on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}). We must show that MM respects equivalence under (6). By direct computation,

M(𝐃(x)𝐃(0)𝐃(y))=D(x)D(0)D(y)=D(x+y)=M(𝐃(x+y)).M(\mathbf{D}(x)\mathbf{D}(0)\mathbf{D}(y))=D(x)D(0)D(y)=D(x+y)=M(\mathbf{D}(x+y)).\qed
Proposition 3.13.

Suppose F1,F2FCF(𝒪)F_{1},F_{2}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) and F1F2F_{1}\sim F_{2}.

  1. (a)

    The values of F1F_{1} and F2F_{2} are equal: F^1=F^2\hat{F}_{1}=\hat{F}_{2}.

  2. (b)

    We have length(F1)length(F2)mod2\operatorname{length}(F_{1})\equiv\operatorname{length}(F_{2})\bmod 2, so there is a well-defined function

    length¯:FCF¯(𝒪)𝐙/2𝐙given bylength¯(F¯)=length(F)(mod2).\operatorname{\overline{\operatorname{length}}}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\quad\text{given by}\quad\operatorname{\overline{\operatorname{length}}}(\overline{F})=\operatorname{length}(F)\pmod{2}.
Proof.

(a): Since F1F2F_{1}\sim F_{2}, M(F1)=M(F2)SL2​​±(𝒪)M(F_{1})=M(F_{2})\in\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) by Proposition 3.12 We have that F^1=F^2\hat{F}_{1}=\hat{F}_{2}, because F^1=M(F1)11/M(F1)21\hat{F}_{1}=M(F_{1})_{11}/M(F_{1})_{21} and likewise for F^2\hat{F}_{2} by (7).
(b): Reformation of a word by relation (6) maintains the parity of the word length. ∎

Proposition 3.14.

Let χ:FCF¯(𝒪)±1\chi:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\langle\pm 1\rangle be detM¯\det\circ\,\overline{M}. Let χ~:𝐙/2𝐙𝒪±1\tilde{\chi}:\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\rightarrow\langle\pm 1\rangle be the group homomorpism to ±1\langle\pm 1\rangle that maps jj to 1-1 and is trivial on the second factor. For wFCF(𝒪)w\in\operatorname{\textup{{FCF}}}(\mathcal{O}), we have χ(w¯)=(1)length¯(w¯)\chi(\overline{w})=(-1)^{\operatorname{\overline{\operatorname{length}}}(\overline{w})} and χ~W¯𝖥=χ\tilde{\chi}\circ\overline{W}_{\mathsf{F}}=\chi.

Proof.

The maps χ\chi and χ~W¯𝖥\tilde{\chi}\circ\overline{W}_{\mathsf{F}} are determined by their action on the generators 𝐃¯(x)\overline{\mathbf{D}}(x) of FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}), namely χ(𝐃¯(x))=1\chi(\overline{\mathbf{D}}(x))=-1 and χ~W¯𝖥(𝐃¯(x))=χ~(xj)=1\tilde{\chi}\circ\overline{W}_{\mathsf{F}}(\overline{\mathbf{D}}(x))=\tilde{\chi}(xj)=-1. Hence χ=χ~W𝖥\chi=\tilde{\chi}\circ W_{\mathsf{F}} and for wFCF(𝒪)w\in\operatorname{\textup{{FCF}}}(\mathcal{O}), χ(w¯)=(1)length(w)=(1)length¯(w¯)\chi(\overline{w})=(-1)^{\operatorname{length}(w)}=(-1)^{\operatorname{\overline{\operatorname{length}}}(\overline{w})}. ∎

Definition 3.15.

Set FCF¯+(𝒪)=ker(length¯)FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O})=\ker(\operatorname{\overline{\operatorname{length}}})\triangleleft\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}).

Proposition 3.16.

Let χ~:𝐙/2𝐙𝒪±1\tilde{\chi}:\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\rightarrow\langle\pm 1\rangle be as in Proposition 3.14. There is an isomorphism ψ:𝒪𝒪kerχ~𝐙/2𝐙𝒪\psi:\mathcal{O}\ast\mathcal{O}\rightarrow\ker{\tilde{\chi}}\subseteq\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} given by sending x𝒪x\in\mathcal{O} in the first factor to x𝐙/2𝐙𝒪x\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} and y𝒪y\in\mathcal{O} in the second factor to jyj𝐙/2𝐙𝒪jyj\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}. Hence W¯𝖥\overline{W}_{\mathsf{F}} maps FCF¯+(𝒪)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O}) isomorphically onto 𝒪𝒪ker(χ~)\mathcal{O}\ast\mathcal{O}\simeq\ker(\tilde{\chi}).

Proof.

The definition of the free product 𝐙/2𝐙𝒪\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} implies that ψ\psi is injective. A word in 𝐙/2𝐙𝒪\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} with an even number of jj’s is of the form x1jy1jx2jy2jxnjynjx_{1}jy_{1}jx_{2}jy_{2}j\cdots x_{n}jy_{n}j with possibly x1x_{1}, yny_{n}, or both 0, which is in the image of ψ\psi. ∎

Definition 3.17.

Set

W𝖥+\colonequalsψ1W𝖥|FCF+(𝒪):FCF+(𝒪)𝒪𝒪.W_{\mathsf{F}^{+}}\colonequals\psi^{-1}\circ W_{\mathsf{F}}|_{\operatorname{\textup{{FCF}}}^{+}(\mathcal{O})}:\operatorname{\textup{{FCF}}}^{+}(\mathcal{O})\longrightarrow\mathcal{O}\ast\mathcal{O}.
Proposition 3.18.
  1. (a)

    The map W𝖥+W_{\mathsf{F}^{+}} of Definition 3.17 induces an isomorphism

    W¯𝖥+:FCF¯+(𝒪)𝒪𝒪.\overline{W}_{\mathsf{F}^{+}}:\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\mathcal{O}\ast\mathcal{O}.
  2. (b)

    Let 𝐉,𝐔(x),𝐋(x)FCF(𝒪)\mathbf{J},\mathbf{U}(x),\mathbf{L}(x)\in\operatorname{\textup{{FCF}}}(\mathcal{O}) for x𝒪x\in\mathcal{O} be as in Definition 3.5. We have W¯𝖥+(𝐔¯(x))=x\overline{W}_{\mathsf{F}^{+}}(\overline{\mathbf{U}}(x))=x in the first factor of 𝒪𝒪\mathcal{O}\ast\mathcal{O} and W¯𝖥+(𝐋¯(y))=y\overline{W}_{\mathsf{F}^{+}}(\overline{\mathbf{L}}(y))=y in the second factor. In particular {𝐔¯(x),𝐋¯(y)x,y𝒪}\{\overline{\mathbf{U}}(x),\overline{\mathbf{L}}(y)\mid x,y\in\mathcal{O}\} generates FCF¯+(𝒪)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O}).

Proof.

The fact that the equivalence relation does not change the parity of the number of 𝐉\mathbf{J}’s implies (a). (b) follows from Proposition 3.16 after unwinding the definitions. ∎

Remark 3.19.

The map M¯\overline{M} of Proposition 3.12 on FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) takes 𝐉¯\overline{\mathbf{J}} to J\colonequalsD(0)=[0110].J\colonequals D(0)=\left[\begin{smallmatrix}0&1\\ 1&0\end{smallmatrix}\right]. For x𝒪x\in\mathcal{O},

M¯(𝐃¯(x))=D(x)\colonequals[x110],M¯(𝐔¯(x))=U(x)\colonequals[1x01],M¯(𝐋¯(x))=L(x)\colonequals[10x1].\overline{M}(\overline{\mathbf{D}}(x))=D(x)\colonequals\begin{bmatrix}x&1\\ 1&0\end{bmatrix},\,\,\overline{M}(\overline{\mathbf{U}}(x))=U(x)\colonequals\begin{bmatrix}1&x\\ 0&1\end{bmatrix},\,\,\overline{M}(\overline{\mathbf{L}}(x))=L(x)\colonequals\begin{bmatrix}1&0\\ x&1\end{bmatrix}.
Definition 3.20.
  1. (a)

    The elementary matrices in SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}) are {L(c),U(c)c𝒪}\{L(c),U(c)\mid c\in\mathcal{O}\}.

  2. (b)

    The elementary matrices in SL2​​±(𝒪)\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) are {L(c),U(c),Jc𝒪}\{L(c),U(c),J\mid c\in\mathcal{O}\}.

  3. (c)

    The group 𝔼2(𝒪){\mathbb{E}}_{2}(\mathcal{O}) is the subgroup of SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}) generated by elementary matrices in SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}).

  4. (d)

    The group 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}) is the subgroup of SL2±(𝒪)\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}) generated by elementary matrices in SL2±(𝒪)\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}).

  5. (e)

    Set M¯+=M¯|FCF¯+(𝒪):FCF¯+(𝒪)SL2(𝒪)\overline{M}^{+}=\overline{M}|_{\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O})}:\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O})\longrightarrow\operatorname{\operatorname{SL}_{2}}(\mathcal{O}).

Proposition 3.21.

The image of M¯:FCF¯(𝒪)SL2​​±(𝒪)\overline{M}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) is 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}) and M¯(FCF¯+(𝒪))=𝔼2(𝒪)\overline{M}(\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O}))={\mathbb{E}}_{2}(\mathcal{O}).

Proof.

By Remark 3.19, M¯\overline{M} maps generators of FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) to generators of 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}) and generators of FCF¯+(𝒪)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O}) to generators of 𝔼2(𝒪){\mathbb{E}}_{2}(\mathcal{O}). ∎

Corollary 3.22.

We have 𝔼2±(𝒪)=D(x):x𝒪{\mathbb{E}}_{2}^{\pm}(\mathcal{O})=\langle D(x):x\in\mathcal{O}\rangle and 𝔼2±(𝒪)SL2(𝒪)=𝔼2(𝒪).{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\cap\operatorname{\operatorname{SL}_{2}}(\mathcal{O})={\mathbb{E}}_{2}(\mathcal{O}).

Proof.

Since FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) is generated by 𝐃(x)\mathbf{D}(x), the equality 𝔼2±(𝒪)=D(x):x𝒪{\mathbb{E}}_{2}^{\pm}(\mathcal{O})=\langle D(x):x\in\mathcal{O}\rangle is an immeditate consequence of Proposition 3.21. The kernel of the determinant map applied to 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}) is 𝔼2±(𝒪)SL2(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O})\cap\operatorname{\operatorname{SL}_{2}}(\mathcal{O}). The group FCF¯+(𝒪)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O}) is the kernel of determinant composed with M¯\overline{M} by Proposition 3.14 and Definition 3.15. Thus, the equality 𝔼2±(𝒪)SL2(𝒪)=𝔼2(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O})\cap\operatorname{\operatorname{SL}_{2}}(\mathcal{O})={\mathbb{E}}_{2}(\mathcal{O}) follows. ∎

Remark 3.23.

Note that 𝔼2±(𝒪)=SL2​​±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O})=\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) if and only if 𝔼2(𝒪)=SL2(𝒪){\mathbb{E}}_{2}(\mathcal{O})=\operatorname{\operatorname{SL}_{2}}(\mathcal{O}). For a number field KK with integers 𝒪K\mathcal{O}_{K}, it is known that 𝔼2(𝒪K)=SL2(𝒪K){\mathbb{E}}_{2}(\mathcal{O}_{K})=\operatorname{\operatorname{SL}_{2}}(\mathcal{O}_{K}) unless K=𝐐(D)K=\mathbf{Q}(\sqrt{-D}) where D1,2,3,7,11D\neq 1,2,3,7,11 and is squarefree. Vaseršteĭn [Vas72] proved that 𝔼2(𝒪K)=SL2(𝒪K){\mathbb{E}}_{2}(\mathcal{O}_{K})=\operatorname{\operatorname{SL}_{2}}(\mathcal{O}_{K}) if KK is not imaginary quadratic (see also [Lie81]), and Cohn [Coh66, Thm. 6.1] had previously settled the imaginary quadratic case.

Nica [Nic11] provides a short constructive proof that for 𝒪K\mathcal{O}_{K} the ring of integers of an imaginary quadratic field KK, either 𝔼2(𝒪K)=SL2(𝒪K){\mathbb{E}}_{2}(\mathcal{O}_{K})=\operatorname{\operatorname{SL}_{2}}(\mathcal{O}_{K}) or 𝔼2(𝒪K){\mathbb{E}}_{2}(\mathcal{O}_{K}) is an infinite index non-normal subgroup of SL2(𝒪K)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}_{K}).

3.3. The kernel of \excepttoc𝑴¯\overline{M}\fortocM¯\overline{M} and presentations of \excepttoc𝔼𝟐(𝓞){\mathbb{E}}_{2}(\mathcal{O})\fortoc 𝔼2(𝒪){\mathbb{E}}_{2}(\mathcal{O})

The map M¯:FCF¯(𝒪)SL2​​±(𝒪)\overline{M}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) of Proposition 3.12 has image 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}) by Proposition 3.21. It is a difficult problem to find the kernel of M¯\overline{M}. We begin with the observation that M¯\overline{M} is not injective.

Remark 3.24.

Let

x,y,z𝒪withw=xzxyz.x,y,z\in\mathcal{O}\quad\text{with}\quad w=-x-z-xyz.

Suppose x,y,z0x,y,z\neq 0, and there exists a,b𝒪a,b\in\mathcal{O} such that xy=awxy=aw, yz=bwyz=bw. Note 𝒪\mathcal{O} is an integral domain since 𝒪𝐂\mathcal{O}\subset\mathbf{C}, so x,y0x,y\neq 0 implies w0w\neq 0. We also have y+a+b+awb=0y+a+b+awb=0 because w(y+a+b+awb)=wy+xy+yz+xy2z=y(w+x+z+xyz)=0w(y+a+b+awb)=wy+xy+yz+xy^{2}z=y(w+x+z+xyz)=0. This is sufficient to compute that

M¯(|[x,y,z,a,w,b]|)\displaystyle\overline{M}(|\![x,y,z,a,w,b]\!|) =(D(x)D(y)D(z))(D(a)D(w)D(b))\displaystyle=\left(D(x)D(y)D(z)\right)\left(D(a)D(w)D(b)\right)
=[waw+1bw+1y][yaw+1bw+1w]=1SL2(𝒪).\displaystyle=\begin{bmatrix}-w&aw+1\\ bw+1&y\end{bmatrix}\begin{bmatrix}-y&aw+1\\ bw+1&w\end{bmatrix}=1\in\operatorname{\operatorname{SL}_{2}}(\mathcal{O}).

Hence, for example we have the following nontrivial elements in the kernel of M¯\overline{M}:

|[x,x1,x\displaystyle|\![x,-x^{-1},x ,x1,x,x1]|,\displaystyle,x^{-1},-x,x^{-1}]\!|,
|[x,4x1,x\displaystyle|\![x,-4x^{-1},x ,2x1,2x,2x1]|,\displaystyle,-2x^{-1},2x,-2x^{-1}]\!|, (8)
|[x,3x1,x\displaystyle|\![x,-3x^{-1},x ,3x1,x,3x1]|,\displaystyle,-3x^{-1},x,-3x^{-1}]\!|, (9)
|[x,α,α1\displaystyle|\![x,\alpha,-\alpha^{-1} ,xα2,α1,α]|,\displaystyle,x\alpha^{2},\alpha^{-1},-\alpha]\!|, (10)

provided 1/x,2/x,3/x,1/α𝒪1/x,2/x,3/x,1/\alpha\in\mathcal{O}, respectively.

A ring 𝒪𝐂\mathcal{O}\subset\mathbf{C} has a norm |||\cdot| given by the usual absolute value.

Definition 3.25.

A ring 𝒪𝐂\mathcal{O}\subset\mathbf{C} is discretely normed [Coh66, p. 16] when every unit x𝒪×x\in\mathcal{O}^{\times} has norm 1, and every nonzero, nonunit x𝒪x\in\mathcal{O} has norm at least 22.

An imaginary quadratic number ring 𝒪\mathcal{O} is discretely normed unless it has discriminant

D{3,4,7,8,11,12}.-D\in\{-3,-4,-7,-8,-11,-12\}.

The exceptions arise from elements xx such that |x|=2|x|=\sqrt{2} when D=4,7,8-D=-4,-7,-8 or |x|=3|x|=\sqrt{3} when D=3,8,11,12-D=-3,-8,-11,-12, namely

x=1+i,1+72,2,andx=3+32, 1+2,1+112,3x=1+i,\,\frac{1+\sqrt{-7}}{2},\,\sqrt{-2},\,\quad\text{and}\quad x=\frac{3+\sqrt{-3}}{2},\,1+\sqrt{-2},\,\frac{1+\sqrt{-11}}{2},\,\sqrt{-3}

up to signs. These all give nontrivial kernel elements when substituted into expressions (8) and (9), respectively, such that all partial quotients are nonzero nonunits.

If 𝒪\mathcal{O} is any discretely normed ring and |[c1,c2,,cn]|kerM¯|\![c_{1},c_{2},\ldots,c_{n}]\!|\in\ker\overline{M}, then some cic_{i} is a unit or zero as shown by a modification of [Coh66, Lemma 5.1].

In parallel with [Coh66, p. 27], we define the following subgroup of FCF¯(𝒪).\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}).

Definition 3.26.
  1. (a)

    For a𝒪×a\in\mathcal{O}^{\times}, let 𝐜(a)=|[a,a1,a]|FCF¯(𝒪).\mathbf{c}(a)=|\![a,-a^{-1},a]\!|\in\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}).

  2. (b)

    Let 𝐊(𝒪)\mathbf{K}(\mathcal{O}) be the normal closure in FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) of the group generated by

    𝐜(1)2,\mathbf{c}(1)^{2}, (11)
    𝐜(a)𝐜(b)𝐜(a1b1)𝐜(1),a,b𝒪×,\mathbf{c}(a)\mathbf{c}(b)\mathbf{c}(a^{-1}b^{-1})\mathbf{c}(1),\ a,b\in\mathcal{O}^{\times}, (12)
    𝐃¯(x)𝐜(a)𝐃¯(0)𝐃¯(a2x)𝐃¯(0)𝐜(a),a𝒪×,x𝒪.\overline{\mathbf{D}}(x)\mathbf{c}(a)\overline{\mathbf{D}}(0)\overline{\mathbf{D}}(a^{2}x)\overline{\mathbf{D}}(0)\mathbf{c}(-a),\ a\in\mathcal{O}^{\times},x\in\mathcal{O}. (13)

Calculating that M¯(𝐜(a))=δ(a,a1)\overline{M}(\mathbf{c}(a))=\delta(a,-a^{-1}) in the notation of Definition 2.2, it is routinely verified that (11) – (13) map to ISL2​​±(𝒪)I\in\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) under M¯\overline{M} and hence 𝐊(𝒪)\mathbf{K}(\mathcal{O}) is a normal subgroup of kerM¯\ker\overline{M}. Relations (11) and (12) give 𝐜(a):a𝒪×mod𝐊(𝒪)FCF¯(𝒪)/𝐊(𝒪)\langle\mathbf{c}(a):a\in\mathcal{O}^{\times}\rangle\,\,\text{mod}\,\mathbf{K}(\mathcal{O})\,\subset\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})/\mathbf{K}(\mathcal{O}) the same commutative group structure as M¯(𝐜(a))SL2±(𝒪)\langle\overline{M}(\mathbf{c}(a))\rangle\subset\operatorname{\operatorname{SL}_{2}}^{\pm}(\mathcal{O}). In particular,

𝐜(1)𝐜(1)mod𝐊(𝒪)=𝐜(1)𝐜(1)mod𝐊(𝒪)\mathbf{c}(1)\mathbf{c}(-1)\,\,\text{mod}\,\mathbf{K}(\mathcal{O})=\mathbf{c}(-1)\mathbf{c}(1)\,\,\text{mod}\,\mathbf{K}(\mathcal{O})

has order 22 and maps by M¯\overline{M} to I-I. Relation (13) implies

𝐜(a)𝐃¯(x)𝐜(a)=𝐃¯(a2x)mod𝐊(𝒪),\mathbf{c}(-a)\overline{\mathbf{D}}(x)\mathbf{c}(a)=\overline{\mathbf{D}}(-a^{2}x)\bmod\mathbf{K}(\mathcal{O}),

from which we see that 𝐜(1)𝐜(1)mod𝐊(𝒪)\mathbf{c}(1)\mathbf{c}(-1)\bmod\mathbf{K}(\mathcal{O}) is central in FCF¯(𝒪)/𝐊(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})/\mathbf{K}(\mathcal{O}).

Definition 3.27.

Borrowing the terminology of [Coh66, p. 8], we say a ring 𝒪\mathcal{O} is universal for 𝔼2±{\mathbb{E}}_{2}^{\pm} when FCF¯(𝒪)/𝐊(𝒪)𝔼2±(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})/\mathbf{K}(\mathcal{O})\cong{\mathbb{E}}_{2}^{\pm}(\mathcal{O}), in other words, if kerM¯=𝐊(𝒪)\ker\overline{M}=\mathbf{K}(\mathcal{O}).

Remark 3.28.

Note that taking a=1,b=1a=-1,b=1 in (12) gives 𝐜(1)𝐜(1)𝐜(1)𝐜(1)𝐊(𝒪)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\in\mathbf{K}(\mathcal{O}) for any 𝒪\mathcal{O}, implying the same for its conjugate 𝐜(1)𝐜(1)𝐜(1)𝐜(1)\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1). Set

𝐊(𝒪)\colonequalsncl𝐜(1)𝐜(1)𝐜(1)𝐜(1),|[x,1,1,x,1,1]|,|[x,1,1,x,1,1]|,x𝒪,\mathbf{K^{\prime}}(\mathcal{O})\colonequals\operatorname{ncl}\langle\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1),|\![x,1,-1,x,1,-1]\!|,|\![x,-1,1,x,-1,1]\!|,x\in\mathcal{O}\rangle, (14)

the normal closure being taken in FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}). Note that 𝐜(1)2,𝐜(1)2𝐊(𝒪)\mathbf{c}(1)^{2},\,\mathbf{c}(-1)^{2}\in\mathbf{K}^{\prime}(\mathcal{O}) by taking x=1x=1, x=1x=-1 in (14). From (12), (13) we see that 𝐊(𝒪)𝐊(𝒪)\mathbf{K}^{\prime}(\mathcal{O})\lhd\,\mathbf{K}(\mathcal{O}). When 𝒪×=±1\mathcal{O}^{\times}=\langle\pm 1\rangle, we have 𝐊(𝒪)=𝐊(𝒪)\mathbf{K}^{\prime}(\mathcal{O})=\mathbf{K}(\mathcal{O}).

Proposition 3.29.

Let

𝐊′′(𝐙)=ncl𝐜(1)2,𝐜(1)2,𝐜(1)𝐜(1)𝐜(1)𝐜(1),\mathbf{K}^{\prime\prime}(\mathbf{Z})=\operatorname{ncl}\langle\mathbf{c}(1)^{2},\mathbf{c}(-1)^{2},\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)\rangle, (15)

the normal closure being taken in FCF¯(𝐙)\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z}). Then 𝐊(𝐙)=𝐊(𝐙)=𝐊′′(𝐙)\mathbf{K}(\mathbf{Z})=\mathbf{K}^{\prime}(\mathbf{Z})=\mathbf{K}^{\prime\prime}(\mathbf{Z}) and 𝐊(𝐙)\mathbf{K}(\mathbf{Z}) is a normal subgroup of FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}), equal to the normal closure of 𝐜(1)2,𝐜(1)2,𝐜(1)𝐜(1)𝐜(1)𝐜(1)\langle\mathbf{c}(1)^{2},\mathbf{c}(-1)^{2},\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)\rangle in FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}).

Proof.

To show that 𝐊′′(𝐙)=𝐊(𝐙)=𝐊(𝐙)\mathbf{K}^{\prime\prime}(\mathbf{Z})=\mathbf{K}^{\prime}(\mathbf{Z})=\mathbf{K}(\mathbf{Z}), it suffices to show that

|[x,1,1,x,1,1]|,|[x,1,1,x,1,1]|,x𝒪𝐊′′(𝐙)\langle|\![x,1,-1,x,1,-1]\!|,|\![x,-1,1,x,-1,1]\!|,x\in\mathcal{O}\rangle\subseteq\mathbf{K}^{\prime\prime}(\mathbf{Z}) (16)

in light of Remark 3.28. Verify that

𝐜(1)2|[x]|1|[x1,1,1,x1,1,1]||[x]|=|[x]|1|[x,1,1,x,1,1]||[x]|\mathbf{c}(1)^{2}|\![x]\!|^{-1}|\![x-1,1,-1,x-1,1,-1]\!||\![x]\!|=|\![x]\!|^{-1}|\![x,1,-1,x,1,-1]\!||\![x]\!|

for x𝒪x\in\mathcal{O}, and hence

|[x1,1,1,x1,1,1]|𝐊′′(𝐙)|[x,1,1,x,1,1]|𝐊′′(𝐙).|\![x-1,1,-1,x-1,1,-1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z})\Longleftrightarrow|\![x,1,-1,x,1,-1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z}).

Since 𝐜(1)2=|[1,1,1,1,1,1]|𝐊′′(𝐙)\mathbf{c}(-1)^{2}=|\![-1,1,-1,-1,1,-1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z}), it follows by induction that

|[x,1,1,x,1,1]|𝐊′′(𝐙) for all x𝐙.|\![x,1,-1,x,1,-1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z})\text{ for all $x\in\mathbf{Z}$.}

Likewise the identity

𝐜(1)2|[x]|1|[x+1,1,1,x+1,1,1]||[x]|=|[x]|1|[x,1,1,x,1,1]||[x]|\mathbf{c}(-1)^{2}|\![x]\!|^{-1}|\![x+1,-1,1,x+1,-1,1]\!||\![x]\!|=|\![x]\!|^{-1}|\![x,-1,1,x,-1,1]\!||\![x]\!|

implies that

|[x+1,1,1,x+1,1,1]|𝐊′′(𝐙)|[x,1,1,x,1,1]|𝐊′′(𝐙).|\![x+1,-1,1,x+1,-1,1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z})\Longleftrightarrow|\![x,-1,1,x,-1,1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z}).

Since |[1,1,1,1,1,1]|=𝐜(1)2𝐊′′(𝐙)|\![1,-1,1,1,-1,1]\!|=\mathbf{c}(1)^{2}\in\mathbf{K}^{\prime\prime}(\mathbf{Z}), induction shows that |[x,1,1,x,1,1]|𝐊′′(𝐙)|\![x,-1,1,x,-1,1]\!|\in\mathbf{K}^{\prime\prime}(\mathbf{Z}) for all x𝐙x\in\mathbf{Z}, establishing (16).

We have 𝐊(𝐙)FCF¯+(𝐙)\mathbf{K}(\mathbf{Z})\leq\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}) since each of its generators in (15) has even length, satisfying Definition 3.15. Since FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}) is a normal subgroup of index 22 with the nontrivial coset of FCF¯(𝐙)/FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z})/\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}) containing |[0]|=|[0]|1|\![0]\!|=|\![0]\!|^{-1}, to show that the normal closure of 𝐜(1)2,𝐜(1)2,𝐜(1)𝐜(1)𝐜(1)𝐜(1)\langle\mathbf{c}(1)^{2},\mathbf{c}(-1)^{2},\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)\rangle in FCF¯(𝐙)\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z}) is equal to its normal closure in FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}), it suffices to observe that

|[0]|𝐜(1)2|[0]|\displaystyle|\![0]\!|\mathbf{c}(-1)^{2}|\![0]\!| =𝐜(1)2\displaystyle=\mathbf{c}(1)^{-2}
|[0]|𝐜(1)2|[0]|\displaystyle|\![0]\!|\mathbf{c}(1)^{2}|\![0]\!| =𝐜(1)2\displaystyle=\mathbf{c}(-1)^{-2}
|[0]|𝐜(1)𝐜(1)𝐜(1)𝐜(1)|[0]|\displaystyle|\![0]\!|\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)|\![0]\!| =[𝐜(1)𝐜(1)𝐜(1)𝐜(1)]1.\displaystyle=[\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)]^{-1}.\qed
Theorem 3.30 (Cohn).

The map M¯:FCF¯(𝐙)𝔼2±(𝐙)=SL2​​±(𝐙)\overline{M}:\operatorname{\overline{\textup{{FCF}}}}(\mathbf{Z})\rightarrow{\mathbb{E}}_{2}^{\pm}(\mathbf{Z})=\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathbf{Z}) is surjective with kernel 𝐊(𝐙)\mathbf{K}(\mathbf{Z}). Likewise M¯+:FCF¯+(𝐙)𝔼2(𝐙)\overline{M}^{\,+}:\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z})\rightarrow{\mathbb{E}}_{2}(\mathbf{Z}) is surjective with kernel 𝐊(𝐙)\mathbf{K}(\mathbf{Z}).

Proof.

Cohn [Coh66, Thm. 5.2] shows that discretely normed rings are universal for 𝔼2±{\mathbb{E}}_{2}^{\pm} as in Definition 3.27, and 𝐙\mathbf{Z} is discretely normed. The statement for M¯\overline{M} implies that for M¯+\overline{M}^{\,+}. Of course, it follows from the Euclidean algorithm that 𝔼2±(𝐙)=SL2​​±(𝐙){\mathbb{E}}_{2}^{\pm}(\mathbf{Z})=\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathbf{Z}); see, for example,[Art91, Chap. 12, Sect. 4]. ∎

Knowing the kernel of M¯+:FCF¯+(𝒪)𝒪𝒪𝔼2(𝒪)SL2(𝒪)\overline{M}^{\,+}:\operatorname{\overline{\textup{{FCF}}}}^{+}(\mathcal{O})\cong\mathcal{O}\ast\mathcal{O}\rightarrow{\mathbb{E}}_{2}(\mathcal{O})\leq\operatorname{\operatorname{SL}_{2}}(\mathcal{O}) gives a presentation of 𝔼2(𝒪){\mathbb{E}}_{2}(\mathcal{O}), and a presentation of SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}) if M¯+\overline{M}^{\,+} is surjective. More generally, information on ker(M¯+)\ker(\overline{M}^{\,+}) gives information on the generation of SL2(𝒪)\operatorname{\operatorname{SL}_{2}}(\mathcal{O}) if 𝔼2(𝒪)=SL2(𝒪){\mathbb{E}}_{2}(\mathcal{O})=\operatorname{\operatorname{SL}_{2}}(\mathcal{O}). It is an interesting question whether information on ker(M¯+)\ker(\overline{M}^{\,+}), such as knowing 𝐊(𝒪)ker(M¯+)\mathbf{K}(\mathcal{O})\leq\ker(\overline{M}^{\,+}), gives results on bounded generation in case 𝒪×\mathcal{O}^{\times} is infinite as in [MRS18] and [JZ19].

We show that the presentation of SL2(𝐙)\operatorname{\operatorname{SL}_{2}}(\mathbf{Z}) given by Theorem 3.30 gives the familiar amalgamated product presentation.

Corollary 3.31.

We have SL2(𝐙)𝐙/6𝐙𝐙/2𝐙𝐙/4𝐙\operatorname{\operatorname{SL}_{2}}(\mathbf{Z})\cong\mathbf{Z}/6\mathbf{Z}\ast_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/4\mathbf{Z}.

Proof.

Note that by Remark 3.7, 𝐜(1)1=|[0,1,1,1,0]|\mathbf{c}(-1)^{-1}=|\![0,1,-1,1,0]\!|. Let α=|[1,1]|FCF¯+(𝐙)\alpha=|\![1,-1]\!|\in\operatorname{\overline{\textup{{FCF}}}}^{+}(\mathbf{Z}) and β=|[1,1,1,0]|=𝐜(1)|[0]|FCF¯+(𝐙)\beta=|\![1,-1,1,0]\!|=\mathbf{c}(1)|\![0]\!|\in\operatorname{\overline{\textup{{FCF}}}}^{+}(\mathbf{Z}), so that

α3=𝐜(1)𝐜(1),β2=𝐜(1)𝐜(1)1,M¯(α)=[0111], and M¯(β)=[0110].\alpha^{3}=\mathbf{c}(1)\mathbf{c}(-1),\,\beta^{2}=\mathbf{c}(1)\mathbf{c}(-1)^{-1},\,\overline{M}(\alpha)=\begin{bmatrix}0&1\\ -1&1\end{bmatrix},\,\text{ and }\overline{M}(\beta)=\begin{bmatrix}0&1\\ -1&0\end{bmatrix}. (17)

We now consider the group 𝐙/6𝐙𝐙/2𝐙𝐙/4𝐙\mathbf{Z}/6\mathbf{Z}\ast_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/4\mathbf{Z}. A presentation of this group is the free group on two generators 𝜶\bm{\alpha} and 𝜷\bm{\beta} modulo the obvious relations:

𝐙/6𝐙𝐙/2𝐙𝐙/4𝐙𝜶𝜷ncl𝜶6,𝜶3𝜷2,𝜷4,\mathbf{Z}/6\mathbf{Z}\ast_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/4\mathbf{Z}\cong\frac{\langle\bm{\alpha}\rangle\ast\langle\bm{\beta}\rangle}{\operatorname{ncl}\langle\bm{\alpha}^{6},\bm{\alpha}^{3}\bm{\beta}^{2},\bm{\beta}^{4}\rangle}, (18)

where ncl𝜶6,𝜶3𝜷2,𝜷4\operatorname{ncl}\langle\bm{\alpha}^{6},\bm{\alpha}^{3}\bm{\beta}^{2},\bm{\beta}^{4}\rangle is the normal closure of 𝜶6,𝜶3𝜷2,𝜷4\langle\bm{\alpha}^{6},\bm{\alpha}^{3}\bm{\beta}^{2},\bm{\beta}^{4}\rangle in 𝜶𝜷\langle\bm{\alpha}\rangle\ast\langle\bm{\beta}\rangle.

We now state and prove a series of claims:
Claim 1. Set 𝐊′′(𝐙)\colonequalsnclα6,α3β2,β4\mathbf{K}^{\prime\prime}(\mathbf{Z})\colonequals\operatorname{ncl}\langle\alpha^{6},\alpha^{3}\beta^{2},\beta^{4}\rangle, the normal closure of α6,α3β2,β4\langle\alpha^{6},\alpha^{3}\beta^{2},\beta^{4}\rangle in FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}). Then 𝐊′′(𝐙)\mathbf{K}^{\prime\prime}(\mathbf{Z}) is the normal closure of 𝐜(1)2,𝐜(1)2,𝐜(1)𝐜(1)𝐜(1)𝐜(1)\langle\mathbf{c}(1)^{2},\mathbf{c}(-1)^{2},\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1)\rangle in FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}). So by Proposition 3.29, 𝐊′′(𝐙)=𝐊(𝐙)=𝐊(𝐙)\mathbf{K}^{\prime\prime}(\mathbf{Z})=\mathbf{K}(\mathbf{Z})=\mathbf{K}^{\prime}(\mathbf{Z}).
Proof. 𝐊′′(𝐙)𝐊(𝐙)\mathbf{K}^{\prime\prime}(\mathbf{Z})\subseteq\mathbf{K}(\mathbf{Z}): Using (17), verify that M¯(α6)=M¯(α3β2)=M¯(β4)=1SL2(𝐙)\overline{M}(\alpha^{6})=\overline{M}(\alpha^{3}\beta^{2})=\overline{M}(\beta^{4})=1\in\operatorname{\operatorname{SL}_{2}}(\mathbf{Z}). Hence 𝐊′′(𝐙)ker(M¯)=ker(M¯+)=𝐊(𝐙)\mathbf{K}^{\prime\prime}(\mathbf{Z})\subseteq\ker(\overline{M})=\ker(\overline{M}^{\,+})=\mathbf{K}(\mathbf{Z}) by Theorem 3.30.
𝐊(𝐙)𝐊′′(𝐙)\mathbf{K}(\mathbf{Z})\subseteq\mathbf{K}^{\prime\prime}(\mathbf{Z}): It suffices to note the following:

𝐜(1)𝐜(1)𝐜(1)𝐜(1)\displaystyle\mathbf{c}(1)\mathbf{c}(-1)\mathbf{c}(1)\mathbf{c}(-1) =α6,\displaystyle=\alpha^{6},
𝐜(1)2\displaystyle\mathbf{c}(-1)^{2} =β2α3=(α3β2)1α6,\displaystyle=\beta^{-2}\alpha^{3}=(\alpha^{3}\beta^{2})^{-1}\alpha^{6},
𝐜(1)2\displaystyle\mathbf{c}(1)^{2} =βα3β=β1[β4(α3β2)1]βnclα6,α3β2,β4\equalscolon𝐊′′(𝐙),\displaystyle=\beta\alpha^{-3}\beta=\beta^{-1}[\beta^{4}(\alpha^{3}\beta^{2})^{-1}]\beta\in\operatorname{ncl}\langle\alpha^{6},\alpha^{3}\beta^{2},\beta^{4}\rangle\equalscolon\mathbf{K}^{\prime\prime}(\mathbf{Z}),

proving Claim 1.
Claim 2. The elements α\alpha and β\beta generate FCF¯+(𝐙)\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z}).
Proof. By Proposition 3.18, PCF¯+(𝐙)\operatorname{\overline{\textup{{PCF}}}}^{\,+}(\mathbf{Z}) is a free group on the two generators 𝐔¯(1)=𝐔¯(1)1\overline{\mathbf{U}}(-1)=\overline{\mathbf{U}}(1)^{-1} and 𝐋¯(1)=𝐋¯(1)1\overline{\mathbf{L}}(-1)=\overline{\mathbf{L}}(1)^{-1}. But

𝐔¯(1)\displaystyle\overline{\mathbf{U}}(-1) =|[1,0]|=|[0,0,1,1,1,0]||[1,1]|=β1α\displaystyle=|\![-1,0]\!|=|\![0,0,-1,1,-1,0]\!||\![1,-1]\!|=\beta^{-1}\alpha
𝐋¯(1)\displaystyle\overline{\mathbf{L}}(-1) =|[0,1]|=|[0,0,1,1,1,0]||[1,1]||[1,1]|=β1α2,\displaystyle=|\![0,-1]\!|=|\![0,0,-1,1,-1,0]\!||\![1,-1]\!||\![1,-1]\!|=\beta^{-1}\alpha^{2},

proving Claim 2.
We can now conclude the proof of Corollary 3.31. By Theorem 3.30 we have

SL2(𝐙)\displaystyle\operatorname{\operatorname{SL}_{2}}(\mathbf{Z}) FCF¯+(𝐙)𝐊(𝐙)αβnclα6,α3β2,β4by Claims 1 and 2\displaystyle\cong\frac{\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathbf{Z})}{\mathbf{K}(\mathbf{Z})}\cong\frac{\langle\alpha\rangle\ast\langle\beta\rangle}{\operatorname{ncl}\langle\alpha^{6},\alpha^{3}\beta^{2},\beta^{4}\rangle}\quad\text{by Claims 1 and 2}
𝐙/6𝐙𝐙/2𝐙𝐙/4𝐙by (18).\displaystyle\cong\mathbf{Z}/6\mathbf{Z}\ast_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/4\mathbf{Z}\quad\text{by \eqref{warm}}.\qed

When 𝒪\mathcal{O} is a discretely normed quadratic imaginary number ring, Cohn shows 𝐊(𝒪)=kerM¯\mathbf{K}(\mathcal{O})=\ker\overline{M} and, in [Coh66, Thm. 6.1], 𝔼2±(𝒪)SL2​​±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O})\subset\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) is a proper containment.

4. Periodic continued fractions

An infinite continued fraction CC is a formal expression [c1,c2,][c_{1},c_{2},\ldots] where the sequence of partial quotients does not terminate. The infinite continued fraction C=[c1,c2,]C=[c_{1},c_{2},\ldots] may also be expressed as a nonterminating version of (5). As in the finite case, the convergent 𝒞k(C)\mathcal{C}_{k}(C) is the evaluation of [c1,c2,,ck].[c_{1},c_{2},\ldots,c_{k}]. For MM as in (7), set Mk(C)\colonequalsM([c1,c2,,ck])M_{k}(C)\colonequals M([c_{1},c_{2},\ldots,c_{k}]) with M0(C)=IM_{0}(C)=I so that 𝒞k(C)=Mk(C)11/Mk(C)21\mathcal{C}_{k}(C)=M_{k}(C)_{11}/M_{k}(C)_{21}. The value (or limit) of CC is

C^=limk𝒞k(C)\hat{C}=\lim_{k\to\infty}\mathcal{C}_{k}(C)

when the limit exists in 1(𝐂)\mathbb{P}^{1}(\mathbf{C}), in which case CC converges.

A periodic continued fraction (PCF) PP is an infinite continued fraction [c1,c2,][c_{1},c_{2},\ldots] together with a type (N,k)(N,k) with N0N\geq 0, k1k\geq 1 such that cn+k=cnc_{n+k}=c_{n} for n>Nn>N. We denote the sequence of partial quotients of the PCF PP by

P=[b1,,bN,a1,a2,,ak¯].P=[b_{1},\ldots,b_{N},\overline{a_{1},a_{2},\ldots,a_{k}}\,]. (19)

The natural number kk is the period of PP; the initial part of PP in (19) is the FCF In(P)=[b1,,bN]\operatorname{In}(P)=[b_{1},\ldots,b_{N}]; and the repeated part of PP is the FCF Rep(P)=[a1,,ak]\operatorname{Rep}(P)=[a_{1},\ldots,a_{k}]. The PCF PP as in (19) has Galois dual

P\colonequals[b1,,bN,0,ak,,a1¯];P^{\ast}\colonequals[b_{1},\ldots,b_{N},0,\overline{-a_{k},\ldots,-a_{1}}\,]; (20)

see, e.g., [BEJ21, p. 384]. For a ring 𝒪𝐂\mathcal{O}\subseteq\mathbf{C} containing 1, say P=[b1,,bN,a1,a2,,ak¯]P=[b_{1},\ldots,b_{N},\overline{a_{1},a_{2},\ldots,a_{k}}\,] is an 𝒪\mathcal{O}-PCF\operatorname{\textup{{PCF}}} if bi,aj𝒪b_{i},a_{j}\in\mathcal{O} for 1iN1\leq i\leq N, 1jk1\leq j\leq k. Let PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) denote the set of all 𝒪\mathcal{O}-PCFs. If PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}), then PPCF(𝒪)P^{\ast}\in\operatorname{\textup{{PCF}}}(\mathcal{O}).

A PCF with type (0,k)(0,k) is purely periodic. For brevity, we abbreviate purely periodic continued fraction as RCF, after the phrase repeating continued fraction. The set of RCFs which are 𝒪\mathcal{O}-PCFs is denoted RCF(𝒪)\operatorname{\textup{{RCF}}}(\mathcal{O}). An untyped periodic continued fraction (UCF) UU is an infinite continued fraction which is periodic of some type (N,k)(N,k). Notice that the type of a UCF is not uniquely determined: A UCF UU with type (N,k)(N,k) also has type (N,mk)(N^{\prime},mk) for every NNN^{\prime}\geq N and every multiple mkmk of kk.

Definition 4.1.

There are three equality relationships between a PCF PP of type (N,k)(N,k) and a PCF PP^{\prime} of type (N,k)(N^{\prime},k^{\prime}).

  1. (a)

    PP and PP^{\prime} are CF-equal (written =CF=_{\textrm{CF}}) when PP and PP^{\prime} are the same as UCFs.

  2. (b)

    PP and PP^{\prime} are k-equal (written =k=_{\textrm{k}}) when PP and PP^{\prime} are the same as UCFs and k=kk=k^{\prime}.

  3. (c)

    PP and PP^{\prime} are equal (written ==) when PP and PP^{\prime} are the same as PCFs, that is, P=CFPP=_{\textrm{CF}}P^{\prime} and (N,k)=(N,k)(N,k)=(N^{\prime},k^{\prime}).

For example, [1,2¯]=CF[1,2,2¯][1,\overline{2}]=_{\textrm{CF}}[1,\overline{2,2}], but [1,2¯]k[1,2,2¯][1,\overline{2}\,]\neq_{\textrm{k}}[1,\overline{2,2}\,]. And [1,2,1¯]=k[1,2,1,2¯][1,\overline{2,1}\,]=_{\textrm{k}}[1,2,\overline{1,2}\,], but [1,2,1¯][1,2,1,2¯][1,\overline{2,1}\,]\neq[1,2,\overline{1,2}\,].

4.1. An equivalence relation and group law on PCFs

We give an equivalence relation on PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) and a group law on the equivalence classes by means of the group law on FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}).

Definition 4.2.

The map W𝖯:PCF(𝒪)𝐙/2𝐙𝒪W_{\mathsf{P}}:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} maps the PCF PP with initial part In(P)\operatorname{In}(P) and repeating part Rep(P)\operatorname{Rep}(P) to

W𝖯(P)=W𝖥(In(P))W𝖥(Rep(P))W𝖥(In(P))1=W𝖥(In(P))W𝖥(Rep(P))W𝖥(In(P)),W_{\mathsf{P}}(P)=W_{\mathsf{F}}(\operatorname{In}(P))W_{\mathsf{F}}(\operatorname{Rep}(P))W_{\mathsf{F}}(\operatorname{In}(P))^{-1}=W_{\mathsf{F}}(\operatorname{In}(P))W_{\mathsf{F}}(\operatorname{Rep}(P))W_{\mathsf{F}}(\operatorname{In}(P)^{\ast}), (21)

where W𝖥W_{\mathsf{F}} is as in Definition 3.5 and In(P)\operatorname{In}(P)^{\ast} is as in Remark 3.7.

The type (N,k)(N,k) is essential data attached to PP for computing the map W𝖯W_{\mathsf{P}}. We also have maps :PCF(𝒪)FCF(𝒪)\operatorname{\mathscr{F}}:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\operatorname{\textup{{FCF}}}(\mathcal{O}) and :FCF(𝒪)RCF(𝒪)PCF(𝒪)\operatorname{\mathscr{R}}:\operatorname{\textup{{FCF}}}(\mathcal{O})\rightarrow\operatorname{\textup{{RCF}}}(\mathcal{O})\subseteq\operatorname{\textup{{PCF}}}(\mathcal{O}) defined by

([b1,,bN,a1,,ak¯])\displaystyle\operatorname{\mathscr{F}}([b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}\,]) ={[b1,,bN,a1,,ak,0,bN,,b1,0],N>0[a1,,ak],N=0.\displaystyle=\begin{cases}[b_{1},\ldots,b_{N},a_{1},\ldots,a_{k},0,-b_{N},\ldots,-b_{1},0],\ N>0\\ [a_{1},\ldots,a_{k}],\ N=0.\end{cases} (22)
([c1,,cn])\displaystyle\operatorname{\mathscr{R}}([c_{1},\ldots,c_{n}]) =[c1,,cn¯].\displaystyle=[\,\overline{c_{1},\ldots,c_{n}}\,]. (23)

Note that \operatorname{\mathscr{F}}\circ\operatorname{\mathscr{R}} is the identity on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) and the map W𝖯W_{\mathsf{P}} factors as

W𝖯=W𝖥.W_{\mathsf{P}}=W_{\mathsf{F}}\circ\operatorname{\mathscr{F}}. (24)

The maps \operatorname{\mathscr{R}} and |RCF(𝒪)\operatorname{\mathscr{F}}|_{\operatorname{\textup{{RCF}}}(\mathcal{O})} give inverse bijections:

|RCF(𝒪):RCF(𝒪)FCF(𝒪)and:FCF(𝒪)RCF(𝒪).\operatorname{\mathscr{F}}|_{\operatorname{\textup{{RCF}}}(\mathcal{O})}:\operatorname{\textup{{RCF}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\operatorname{\textup{{FCF}}}(\mathcal{O})\quad\text{and}\quad\operatorname{\mathscr{R}}:\operatorname{\textup{{FCF}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\operatorname{\textup{{RCF}}}(\mathcal{O}). (25)

The equivalence relation \sim on FCF(𝒪)\operatorname{\textup{{FCF}}}(\mathcal{O}) defined in Section 3.1 induces an equivalence relation, also denoted \sim. on PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}).

Definition 4.3.

For P,PPCF(𝒪)P,P^{\prime}\in\operatorname{\textup{{PCF}}}(\mathcal{O}), say

PP\displaystyle P\sim P^{\prime} (P)(P)W𝖥((P))=W𝖥((P))\displaystyle\Longleftrightarrow\operatorname{\mathscr{F}}(P)\sim\operatorname{\mathscr{F}}(P^{\prime})\Longleftrightarrow W_{\mathsf{F}}(\operatorname{\mathscr{F}}(P))=W_{\mathsf{F}}(\operatorname{\mathscr{F}}(P^{\prime}))
W𝖯(P)=W𝖯(P)𝐙/2𝐙𝒪.\displaystyle\Longleftrightarrow W_{\mathsf{P}}(P)=W_{\mathsf{P}}(P^{\prime})\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}.
Remark 4.4.

For F,FFCF(𝒪)F,F^{\prime}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) we have

FF(F)(F) since ((F))=F.F\sim F^{\prime}\Longleftrightarrow\operatorname{\mathscr{R}}(F)\sim\operatorname{\mathscr{R}}(F^{\prime})\text{ since }\operatorname{\mathscr{F}}\left(\operatorname{\mathscr{R}}(F)\right)=F. (26)
Proposition 4.5.

If P,PPCF(𝒪)P,P^{\prime}\in\operatorname{\textup{{PCF}}}(\mathcal{O}) and P=kPP=_{\textrm{k}}P^{\prime} as in Definition 4.1(b), then PPP\sim P^{\prime}.

Proof.

First consider the case that PP is of type (N,k)(N,k) and PP^{\prime} is of type (N+1,k)(N+1,k) with P=kPP=_{\textrm{k}}P^{\prime}. Then we must have

P=[b1,,bN,a1,,ak¯]andP=[b1,,bN,a1,a2,,ak,a1¯].P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}]\quad\text{and}\quad P^{\prime}=[b_{1},\ldots,b_{N},a_{1},\overline{a_{2},\ldots,a_{k},a_{1}}].

We have

(P)\displaystyle\operatorname{\mathscr{F}}(P) =[b1,,bN,a1,,ak,0,bN,,b1,0] and\displaystyle=[b_{1},\ldots,b_{N},a_{1},\ldots,a_{k},0,-b_{N},\ldots,-b_{1},0]\text{ and}
(P)\displaystyle\operatorname{\mathscr{F}}(P^{\prime}) =[b1,,bN,a1,a2,,ak,a1,0,a1,bN,,b1,0]\displaystyle=[b_{1},\dots,b_{N},a_{1},a_{2},\ldots,a_{k},a_{1},0,-a_{1},-b_{N},\ldots,-b_{1},0]

with \operatorname{\mathscr{F}} as in (22). But then (P)(P)\operatorname{\mathscr{F}}(P)\sim\operatorname{\mathscr{F}}(P^{\prime}) by applying (6).

The proposition then follows from this by iteration. ∎

Definition 4.6.

An RCF R=[a1,an¯]RCF(𝒪)R=[\,\overline{a_{1},\ldots a_{n}}\,]\in\operatorname{\textup{{RCF}}}(\mathcal{O}) is reduced when (R)FCF(𝒪)\operatorname{\mathscr{F}}(R)\in\operatorname{\textup{{FCF}}}(\mathcal{O}) is reduced as in Definition 3.8, i.e., ai0a_{i}\neq 0 for 2in12\leq i\leq n-1.

Remark 4.7.

Note that FFCF(𝒪)F\in\operatorname{\textup{{FCF}}}(\mathcal{O}) is reduced if and only if (F)RCF(𝒪)\operatorname{\mathscr{R}}(F)\in\operatorname{\textup{{RCF}}}(\mathcal{O}) is reduced since (F)=F\operatorname{\mathscr{F}}\circ\operatorname{\mathscr{R}}(F)=F.

Proposition 4.8.

For PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}), let (P)redFCF(𝒪)\operatorname{\mathscr{F}}(P)_{\mathrm{red}}\in\operatorname{\textup{{FCF}}}(\mathcal{O}) be as in Proposition 3.9. Then the element Pred=((P)red)P_{\mathrm{red}}=\operatorname{\mathscr{R}}(\operatorname{\mathscr{F}}(P)_{\mathrm{red}}) is the unique reduced element of RCF(𝒪)\operatorname{\textup{{RCF}}}(\mathcal{O}) such that PredP.P_{\mathrm{red}}\sim P.

Proof.

For PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}) we have that

Pred=((P)red)RCF(𝒪)P_{\mathrm{red}}=\operatorname{\mathscr{R}}\left(\operatorname{\mathscr{F}}(P)_{\mathrm{red}}\right)\in\operatorname{\textup{{RCF}}}(\mathcal{O})

is reduced, as stated in Remark 4.7. We claim that PPredP\sim P_{\mathrm{red}}. Note that (P)(P)red\operatorname{\mathscr{F}}(P)\sim\operatorname{\mathscr{F}}(P)_{\mathrm{red}} implies that ((P))((P)red)\operatorname{\mathscr{R}}\left(\operatorname{\mathscr{F}}(P)\right)\sim\operatorname{\mathscr{R}}\left(\operatorname{\mathscr{F}}(P)_{\mathrm{red}}\right) as in Remark 4.4. By Definition 4.3, (P)=(((P)))\operatorname{\mathscr{F}}(P)=\operatorname{\mathscr{F}}(\operatorname{\mathscr{R}}(\operatorname{\mathscr{F}}(P))) implies P((P))P\sim\operatorname{\mathscr{R}}(\operatorname{\mathscr{F}}(P)). Thus, P((P)red)P\sim\operatorname{\mathscr{R}}\left(\operatorname{\mathscr{F}}(P)_{\mathrm{red}}\right). Suppose R,RRCF(𝒪)R,R^{\prime}\in\operatorname{\textup{{RCF}}}(\mathcal{O}) are both reduced and RRR\sim R^{\prime}. In this case, (R),(R)FCF(𝒪)\operatorname{\mathscr{F}}(R),\operatorname{\mathscr{F}}(R^{\prime})\in\operatorname{\textup{{FCF}}}(\mathcal{O}) are both reduced and (R)(R)\operatorname{\mathscr{F}}(R)\sim\operatorname{\mathscr{F}}(R^{\prime}) by Definition 4.3. Proposition 3.9 shows that (R)=(R)FCF(𝒪)\operatorname{\mathscr{F}}(R)=\operatorname{\mathscr{F}}(R^{\prime})\in\operatorname{\textup{{FCF}}}(\mathcal{O}) and hence R=RR=R^{\prime} by (25). ∎

Write PCF¯(𝒪)\colonequalsPCF(𝒪)/\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\colonequals\operatorname{\textup{{PCF}}}(\mathcal{O})/\sim. For P=[b1,,bN,a1,,ak¯]PCF(𝒪)P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}\,]\in\operatorname{\textup{{PCF}}}(\mathcal{O}), let P¯=|[b1,,bN,a1,,ak¯]|PCF¯(𝒪)\overline{P}=|\![b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}\,]\!|\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) be the equivalence class containing PP. By Definition 4.3 and Remark 4.4, the maps \operatorname{\mathscr{F}} and \operatorname{\mathscr{R}} induce inverse bijections

¯:PCF¯(𝒪)FCF¯(𝒪)and¯:FCF¯(𝒪)PCF¯(𝒪).\overline{\operatorname{\mathscr{F}}}:\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\quad\text{and}\quad\overline{\operatorname{\mathscr{R}}}:\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}).

Via the bijections ¯\overline{\operatorname{\mathscr{F}}}, ¯\overline{\operatorname{\mathscr{R}}} the binary operation \star of Proposition 3.4 on FCF¯(𝒪)\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O}) induces a binary operation, also denoted \star, on PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}): for P,PPCF(𝒪)P,P^{\prime}\in\operatorname{\textup{{PCF}}}(\mathcal{O}) we have

¯(P¯P¯)=¯(P¯)¯(P¯)andP¯P¯=¯(¯(P¯)¯(P¯)).\overline{\operatorname{\mathscr{F}}}(\overline{P}\star\overline{P}^{\prime})=\overline{\operatorname{\mathscr{F}}}(\overline{P})\star\overline{\operatorname{\mathscr{F}}}(\overline{P}^{\prime})\quad\text{and}\quad\overline{P}\star\overline{P}^{\prime}=\overline{\operatorname{\mathscr{R}}}\left(\overline{\operatorname{\mathscr{F}}}(\overline{P})\star\overline{\operatorname{\mathscr{F}}}(\overline{P}^{\prime})\right). (27)
Theorem 4.9.

The semigroup PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) with its binary operation \star is a group isomorphic to FCF¯(𝒪)𝐙/2𝐙𝒪\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\cong\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}. The map W𝖯:PCF(𝒪)𝐙/2𝐙𝒪W_{\mathsf{P}}:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} of Definition 4.2 induces an isomorphism of groups W¯𝖯:PCF¯(𝒪)𝐙/2𝐙𝒪\overline{W}_{\mathsf{P}}:\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\stackrel{{\scriptstyle\simeq}}{{\longrightarrow}}\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}.

For the convenience of the reader we give in Figure 1 the maps defined thus far and the relations between them.

PCF(𝒪)\textstyle{\operatorname{\textup{{PCF}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\operatorname{\mathscr{F}}}E\scriptstyle{E}FCF(𝒪)\textstyle{\operatorname{\textup{{FCF}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\scriptstyle{M}W𝖥\scriptstyle{W_{\mathsf{F}}}PCF¯(𝒪)\textstyle{\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}¯\scriptstyle{\overline{\operatorname{\mathscr{F}}}}\scriptstyle{\approx}E¯\scriptstyle{\overline{E}}FCF¯(𝒪)\textstyle{\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\approx}W¯𝖥\scriptstyle{\overline{W}_{\mathsf{F}}}M¯\scriptstyle{\overline{M}}𝐙/2𝐙𝒪\textstyle{\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐌\scriptstyle{\mathbf{M}}𝔼2±(𝒪)\textstyle{{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SL2​​±(𝒪)\textstyle{\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O})}
PCF¯(𝒪)\textstyle{\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}¯\scriptstyle{\overline{\operatorname{\mathscr{F}}}}\scriptstyle{\approx}E¯\scriptstyle{\overline{E}}FCF¯(𝒪)\textstyle{\operatorname{\overline{\textup{{FCF}}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M¯\scriptstyle{\overline{M}}W¯𝖥\scriptstyle{\overline{W}_{\mathsf{F}}}\scriptstyle{\approx}𝐙/2𝐙𝒪\textstyle{\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐌\scriptstyle{\mathbf{M}}𝔼2±(𝒪)\textstyle{{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SL2​​±(𝒪)\textstyle{\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O})}PCF¯+(𝒪)\textstyle{\operatorname{\overline{\textup{{PCF}}}}^{\,+}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\approx}FCF¯+(𝒪)\textstyle{\operatorname{\overline{\textup{{FCF}}}}^{\,+}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}W¯𝖥+\scriptstyle{\overline{W}_{\mathsf{F}^{+}}}\scriptstyle{\approx}M¯+\scriptstyle{\overline{M}^{\,+}}𝒪𝒪\textstyle{\mathcal{O}\ast\mathcal{O}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}𝔼2(𝒪)\textstyle{{\mathbb{E}}_{2}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SL2(𝒪)\textstyle{\operatorname{\operatorname{SL}_{2}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}
Figure 1. The commutative diagrams formed by the maps in Sections 3 and 4.1. The maps W𝖯=W𝖥:PCF(𝒪)𝐙/2𝐙𝒪W_{\mathsf{P}}=W_{\mathsf{F}}\circ\operatorname{\mathscr{F}}:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} and W¯𝖯=W¯𝖥¯:PCF¯(𝒪)𝐙/2𝒪\overline{W}_{\mathsf{P}}=\overline{W}_{\mathsf{F}}\circ\overline{\operatorname{\mathscr{F}}}:\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\rightarrow\mathbf{Z}/2\ast\mathcal{O} can be added to the diagrams.
Remark 4.10.

If P¯PCF¯(𝒪)\overline{P}\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) with PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}), then Proposition 4.8 shows that the equivalence class P¯\overline{P} contains a unique reduced RCF Pred=P¯redP_{\textrm{red}}=\overline{P}_{\textrm{red}}. We call the Pred=P¯redP_{\textrm{red}}=\overline{P}_{\textrm{red}} the normal form of P¯\overline{P}. Two elements P¯,P¯PCF¯(𝒪)\overline{P},\overline{P}^{\prime}\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) are equal if and only if they have the same normal forms:

P¯=P¯P¯red=P¯redRCF(𝒪).\overline{P}=\overline{P}^{\prime}\Longleftrightarrow\overline{P}_{\textrm{red}}=\overline{P}^{\prime}_{\textrm{red}}\in\operatorname{\textup{{RCF}}}(\mathcal{O}).

For 𝒪𝐂\mathcal{O}\neq\mathbf{C}, there are PCFs PP with not all partial quotients in 𝒪\mathcal{O} with normal form PredRCF(𝒪)P_{\mathrm{red}}\in\operatorname{\textup{{RCF}}}(\mathcal{O}); most simply, [c,0,c¯][0¯][\,\overline{c,0,-c}\,]\sim[\,\overline{0}\,] for any c𝐂c\in\mathbf{C}. We test the equivalence of P,PPCF(𝒪)P,P^{\prime}\in\operatorname{\textup{{PCF}}}(\mathcal{O}) via their normal forms Pred,PredRCF(𝒪)P_{\mathrm{red}},P^{\prime}_{\mathrm{red}}\in\operatorname{\textup{{RCF}}}(\mathcal{O}). It is never necessary to make an excursion outside 𝒪\mathcal{O} to determine equivalence of PCFs with partial quotients in 𝒪\mathcal{O}.

We give an example of how to compute PredP_{\mathrm{red}} using Proposition 4.8 and Remark 3.11. Suppose P=[3,0,3,4,0,1,0,5¯]PCF(𝐙)P=[3,0,-3,4,\overline{0,1,0,-5}\,]\in\operatorname{\textup{{PCF}}}(\mathbf{Z}). Then

(P)=[3,0,3,4,0,1,0,5,0,4,3,0,3,0]FCF(𝐙).\operatorname{\mathscr{F}}(P)=[3,0,-3,4,0,1,0,-5,0,-4,3,0,-3,0]\in\operatorname{\textup{{FCF}}}(\mathbf{Z}).

We have

(P)[0,4,0,1,0,5,0,4,3,0,3,0][0,5,0,9,0,0][0,4,0,0][0,4].\operatorname{\mathscr{F}}(P)\sim[0,4,0,1,0,-5,0,-4,3,0,-3,0]\sim[0,5,0,-9,0,0]\sim[0,-4,0,0]\sim[0,-4].

Hence (P)red=[0,4]FCF(𝐙)\operatorname{\mathscr{F}}(P)_{\mathrm{red}}=[0,-4]\in\operatorname{\textup{{FCF}}}(\mathbf{Z}) and Pred=([0,4])=[0,4¯]RCF(𝐙)P_{\mathrm{red}}=\operatorname{\mathscr{R}}([0,-4])=[\,\overline{0,-4}\,]\in\operatorname{\textup{{RCF}}}(\mathbf{Z}) with

|[3,0,3,4,0,1,0,5¯]|=P¯=P¯red=|[0,4¯]|PCF¯(𝐙).|\![3,0,-3,4,\overline{0,1,0,-5}\,]\!|=\overline{P}=\overline{P}_{\mathrm{red}}=|\![\,\overline{0,-4}\,]\!|\in\operatorname{\overline{\textup{{PCF}}}}(\mathbf{Z}).

In practice, P¯P¯PCF¯(𝒪)\overline{P}\star\overline{P}^{\prime}\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) is computed using the normal forms P¯red\overline{P}_{\textrm{red}},P¯red\overline{P}^{\prime}_{\textrm{red}}: if P¯red=[c1,,cn¯]RCF(𝒪)\overline{P}_{\textrm{red}}=[\,\overline{c_{1},\ldots,c_{n}}\,]\in\operatorname{\textup{{RCF}}}(\mathcal{O}) and P¯red=[c1,,cn¯]RCF(𝒪)\overline{P}^{\prime}_{\textrm{red}}=[\,\overline{c^{\prime}_{1},\ldots,c^{\prime}_{n^{\prime}}}\,]\in\operatorname{\textup{{RCF}}}(\mathcal{O}), then

P¯P¯=|[c1,,cn,c1,,cn¯]|PCF¯(𝒪).\overline{P}\star\overline{P}^{\prime}=|\![\,\overline{c_{1},\ldots,c_{n},c^{\prime}_{1},\ldots,c^{\prime}_{n^{\prime}}}\,]\!|\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}).
Remark 4.11.

Suppose

P=[b1,a1,,ak¯],P=[b1,a1,,ak¯]PCF(𝒪)P=[b_{1},\overline{a_{1},\ldots,a_{k}}\,],\,P^{\prime}=[b_{1}^{\prime},\overline{a_{1}^{\prime},\ldots,a_{k^{\prime}}^{\prime}}\,]\in\operatorname{\textup{{PCF}}}(\mathcal{O})

are of types (1,k)(1,k) and (1,k)(1,k^{\prime}) respectively. Then the product takes a particularly simple form with a representative of type (1,k+k)(1,k+k^{\prime}):

P¯P¯\displaystyle\overline{P}\star\overline{P^{\prime}} =|[b1,a1,,ak,0,b1,0,b1,a1,ak,0,b1,0¯]| by (27)\displaystyle=|\![\,\overline{b_{1},a_{1},\ldots,a_{k},0,-b_{1},0,b_{1}^{\prime},a_{1}^{\prime},\ldots a_{k^{\prime}}^{\prime},0,-b_{1}^{\prime},0}\,]\!|\text{ by \eqref{status}}
=|[b1,a1,,ak+b1b1,a1,,akb1,0¯]| using (3.3)\displaystyle=|\![\,\overline{b_{1},a_{1},\ldots,a_{k}+b_{1}^{\prime}-b_{1},a_{1}^{\prime},\ldots,a_{k^{\prime}}^{\prime}-b_{1}^{\prime},0}\,]\!|\text{ using \eqref{muster}}
=|[b1,a1,,ak1,ak+b1b1,a1,,ak1,akb1,0,b1¯]|\displaystyle=|\![b_{1},\overline{a_{1},\ldots,a_{k-1},a_{k}+b^{\prime}_{1}-b_{1},a^{\prime}_{1},\ldots,a^{\prime}_{k^{\prime}-1},a^{\prime}_{k^{\prime}}-b_{1}^{\prime},0,b_{1}}\,]\!|
=|[b1,a1,,ak1,ak+b1b1,a1,,ak1,akb1+b1¯]|.\displaystyle=|\![b_{1},\overline{a_{1},\ldots,a_{k-1},a_{k}+b_{1}^{\prime}-b_{1},a_{1}^{\prime},\ldots,a^{\prime}_{k^{\prime}-1},a^{\prime}_{k^{\prime}}-b^{\prime}_{1}+b_{1}}\,]\!|. (28)

A similar exercise shows that the product is simple for P,PPCF(𝒪)P,P^{\prime}\in\operatorname{\textup{{PCF}}}(\mathcal{O}) with In(P)=In(P)\operatorname{In}(P)=\operatorname{In}(P^{\prime}). Suppose

P=[b1,,bN,a1,,ak¯] and P=[b1,,bN,a1,,ak¯].P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}\,]\text{ and }P^{\prime}=[b_{1},\ldots,b_{N},\overline{a_{1}^{\prime},\ldots,a_{k^{\prime}}^{\prime}}\,].

Then

P¯P¯=|[b1,,bN,a1,,ak,a1,,ak¯]|.\overline{P}\star\overline{P^{\prime}}=|\![b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k},a_{1}^{\prime},\ldots,a_{k^{\prime}}^{\prime}}\,]\!|. (29)
Remark 4.12.

For every PCF of the form P=[b1,,bN,0¯]P=[b_{1},\ldots,b_{N},\overline{0}\,], W𝖯(P)𝐙/2𝐙𝒪W_{\mathsf{P}}(P)\in\mathbf{Z}/2\mathbf{Z}\ast\mathcal{O} is an involution, but, in general, PP is not equivalent to [0¯][\,\overline{0}\,].

Every PCF of the form [b1,,bN,0,0¯][b_{1},\ldots,b_{N},\overline{0,0}\,] is in the class of the identity in PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}), that is, P[0,0¯]P\sim[\,\overline{0,0}\,].

5. The subgroup PCF¯𝒪(A)PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A)\leq\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}) and its representations

For PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}), [BEJ21, Defn. 2.4] defines a matrix E(P)E(P) which plays a large role in the study of PP. We review the definition, using the notation of this paper.

Definition 5.1.

Let E:PCF(𝒪)SL2​​±(𝒪)E:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) be the map E=ME=M\circ\operatorname{\mathscr{F}} with MM as in (7) and \operatorname{\mathscr{F}} as in (22).

We denote the quadratic polynomial Quad(E(P))\operatorname{Quad}(E(P)) as in (3) by Quad(P)𝒪[x]\operatorname{Quad}(P)\in\mathcal{O}[x] and the multiset of its roots Roots(E(P))\operatorname{Roots}(E(P)) by Roots(P)\operatorname{Roots}(P).

Proposition 5.2.

The map EE induces a homomorphism E¯:PCF¯(𝒪)SL2​​±(𝒪)\overline{E}:\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) with image 𝔼2±(𝒪)SL2​​±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O})\leq\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) as in Section 3.

Proof.

From Definition 4.3 and Proposition 3.12 we see that EE is well-defined on equivalence classes in PCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}). By Proposition 3.21, the image of EE is 𝔼2±(𝒪){\mathbb{E}}_{2}^{\pm}(\mathcal{O}). ∎

Definition 5.3.

Let β1(𝐂).\beta\in\mathbb{P}^{1}(\mathbf{C}). Set

PCF¯𝒪(β)={P¯PCF¯(𝒪)E¯(P¯)β=β}.\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta)=\{\overline{P}\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\mid\overline{E}(\overline{P})\beta=\beta\}.

Recall from Proposition 2.5 that T(β)T(\beta) is the subgroup {MGL2(𝐂)Mβ=β}\{M\in\operatorname{GL_{2}}(\mathbf{C})\mid M\beta=\beta\} and T(β)T(\beta) has a multiplicative character λβ\lambda_{\beta} mapping MM to its v(β)v(\beta)-eigenvalue. The preimage of T(β)𝔼2±(𝒪)T(\beta)\cap{\mathbb{E}}_{2}^{\pm}(\mathcal{O}) under E¯\overline{E} is PCF¯𝒪(β)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta), so PCF¯𝒪(β)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta) is a subgroup of PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}). The multiplicative character λβE¯\lambda_{\beta}\circ\overline{E} maps an element P¯PCF¯𝒪(β)\overline{P}\in\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta) to the v(β)v(\beta)-eigenvalue of E¯(P¯)\overline{E}(\overline{P}).

Definition 5.4.
  1. (a)

    For Q𝒪[X]Q\in\mathcal{O}[X] with degQ2,\deg Q\leq 2, set

    PCF¯𝒪(Q)={P¯PCF¯(𝒪)E¯(P¯)G(Q)},\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q)=\{\overline{P}\in\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\mid\overline{E}(\overline{P})\in G(Q)\},

    where G(Q)G(Q) is the subgroup of GL2(𝐂)\operatorname{GL_{2}}(\mathbf{C}) defined in Proposition 2.6.

  2. (b)

    For AGL2(𝒪)A\in\operatorname{GL_{2}}(\mathcal{O}), set

    PCF¯𝒪(A)=PCF¯𝒪(Quad(A)).\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A)=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\operatorname{Quad}(A)).
  3. (c)

    Recall from Proposition 5.2 that E:PCF(𝒪)SL2​​±(𝒪)E:\operatorname{\textup{{PCF}}}(\mathcal{O})\rightarrow\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}) factors through PCF¯(𝒪)\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O}):

    E:PCF(𝒪)PCF¯(𝒪)E¯SL2​​±(𝒪).E:\operatorname{\textup{{PCF}}}(\mathcal{O})\longrightarrow\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\stackrel{{\scriptstyle\overline{E}}}{{\longrightarrow}}\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O}).

    For PPCF(𝒪)P\in\operatorname{\textup{{PCF}}}(\mathcal{O}), set

    PCF¯𝒪(P)=PCF¯𝒪(P¯)=PCF¯𝒪(E(P))=PCF¯𝒪(E¯(P¯)).\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(P)=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\overline{P})=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(E(P))=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\overline{E}(\overline{P})).

For Q𝒪[X]Q\in\mathcal{O}[X] with degQ2\deg Q\leq 2, the preimage of G(Q)𝔼2±(𝒪)G(Q)\cap{\mathbb{E}}_{2}^{\pm}(\mathcal{O}) under E¯\overline{E} is PCF¯𝒪(Q)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q), so PCF¯𝒪(Q)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q) is a group. For βRoots(Q)\beta\in\operatorname{Roots}(Q), the group PCF¯𝒪(Q)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q) has a multiplicative character λβE¯\lambda_{\beta}\circ\overline{E} inherited from the containment PCF¯𝒪(Q)PCF¯𝒪(β)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q)\subset\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta).

Theorem 5.5.

Let AGL2(𝒪)A\in\operatorname{GL_{2}}(\mathcal{O}).

  1. (a)

    If Roots(A)={β,β}\operatorname{Roots}(A)=\{\beta,\beta^{*}\}, ββ\beta\neq\beta^{*}, and AA has corresponding eigenvectors v(β),v(β)v(\beta),v(\beta^{*}), then

    PCF¯𝒪(A)=PCF¯𝒪(β)PCF¯𝒪(β),\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A)=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta)\cap\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta^{*}),

    and the values of the characters λβE¯\lambda_{\beta}\circ\overline{E} and λβE¯\lambda_{\beta^{*}}\circ\,\overline{E} on PCF¯𝒪(A)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A) are quadratic integral over 𝒪\mathcal{O} and in 𝒪[β]×\mathcal{O}[\beta]^{\times}. The product of these characters is detE¯\det\circ\,\overline{E}.

  2. (b)

    If Roots(A)\operatorname{Roots}(A) has one element β\beta of multiplicity 22, PCF¯𝒪(A)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A) has a character λβE¯\lambda_{\beta}\circ\,\overline{E} whose square is detE¯\det\circ\,\overline{E}.

  3. (c)

    Otherwise, AA is a scalar multiple of the identity and PCF¯𝒪(A)\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A) has a character λE¯\lambda\circ\,\overline{E} equal to λβE¯\lambda_{\beta}\circ\overline{E} for every β.\beta. Its square is detE¯\det\circ\,\overline{E}.

Proof.

Let P¯PCF¯(A)\overline{P}\in\operatorname{\overline{\textup{{PCF}}}}(A) and E=E¯(P¯)𝔼2±(𝒪)E=\overline{E}(\overline{P})\in{\mathbb{E}}_{2}^{\pm}(\mathcal{O}).

(a): If Quad(A)\operatorname{Quad}(A) is not zero and not a square, then Roots(A)\operatorname{Roots}(A) has distinct elements β,β\beta,\beta^{*} and EE has corresponding eigenvalues λβ(E),λβ(E)\lambda_{\beta}(E),\lambda_{\beta^{*}}(E) that solve the monic quadratic equation det(EλI)\det(E-\lambda I). It follows from Propostion 2.6 that

PCF¯𝒪(A)=PCF¯𝒪(β)PCF¯𝒪(β).\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A)=\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta)\cap\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta^{*}).

Relation (4) shows the eigenvalue λβ(E)𝒪[β]\lambda_{\beta}(E)\in\mathcal{O}[\beta]. The sum λβ(E)+λβ(E)\lambda_{\beta}(E)+\lambda_{\beta^{*}}(E) is in 𝒪\mathcal{O}, so λβ(E)𝒪[β]\lambda_{\beta^{*}}(E)\in\mathcal{O}[\beta]. The product λβ(E)λβ(E)\lambda_{\beta}(E)\lambda_{\beta^{*}}(E) is detE=±1\det E=\pm 1, so both λβ(E)\lambda_{\beta}(E) and λβ(E)\lambda_{\beta^{*}}(E) are units.

(b): When Quad(A)\operatorname{Quad}(A) is a nonzero square, AA has a single eigenvector v(β)v(\beta). For EE as above, the eigenvalue λβ(E)\lambda_{\beta}(E) solves a monic linear equation over 𝒪\mathcal{O} and λβ(E)2=±1\lambda_{\beta}(E)^{2}=\pm 1.

(c): When Quad(A)\operatorname{Quad}(A) is zero, every EPCF¯𝒪(A)E\in\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(A) is μEI\mu_{E}I, a scalar multiple of II. In this case, λβ(E)=μE\lambda_{\beta}(E)=\mu_{E} for every β\beta. ∎

Remark 5.6.

Let P=[b1,a1,,ak¯]P=[b_{1},\overline{a_{1},\ldots,a_{k}}] be a PCF of type (1,k)(1,k). The convergent 𝒞k(P)\mathcal{C}_{k}(P) relates Roots(P)\operatorname{Roots}(P) and the eigenvalues of E=M((P))E=M(\operatorname{\mathscr{F}}(P)). When

P[b1,a1,,ak1,akb1,0¯],P\sim[\overline{b_{1},a_{1},\ldots,a_{k-1},a_{k}-b_{1},0}], (30)

we have E(P)=M([b1,a1,,ak1,akb1,0])E(P)=M([b_{1},a_{1},\ldots,a_{k-1},a_{k}-b_{1},0]). For M=M([b1,a1,,ak1])=[m11m12m21m22]M=M([b_{1},a_{1},\ldots,a_{k-1}])=\left[\begin{smallmatrix}m_{11}&m_{12}\\ m_{21}&m_{22}\end{smallmatrix}\right], we have

E=[E11E12E21E22]=[m11m12m21m22][1akb101]=[m11m11(akb1)+m12m21m21(akb1)+m22].E=\begin{bmatrix}E_{11}&E_{12}\\ E_{21}&E_{22}\end{bmatrix}=\begin{bmatrix}m_{11}&m_{12}\\ m_{21}&m_{22}\end{bmatrix}\begin{bmatrix}1&a_{k}-b_{1}\\ 0&1\end{bmatrix}=\begin{bmatrix}m_{11}&m_{11}(a_{k}-b_{1})+m_{12}\\ m_{21}&m_{21}(a_{k}-b_{1})+m_{22}\end{bmatrix}.

Thus, E11/E21E_{11}/E_{21} is the kkth convergent 𝒞k(P)\mathcal{C}_{k}(P). If Roots(P)\operatorname{Roots}(P) has two distinct elements β,β\beta,\beta^{*} and EE has associated eigenvalues λ,λ\lambda,\lambda^{*},

λ=E11E21β.\lambda=E_{11}-E_{21}\beta^{\ast}.

If Roots(P)\operatorname{Roots}(P) has one element β\beta of multiplicity two, E11E21βE_{11}-E_{21}\beta is the eigenvalue of EE. If EE is a scalar multiple of II, its eigenvalue is E11E_{11}.

Remark 5.7.

The maps defined in this section form a commutative diagram as given in Figure 2.

PCF¯(𝒪)\textstyle{\operatorname{\overline{\textup{{PCF}}}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E¯\scriptstyle{\overline{E}}𝔼2±(𝒪)\textstyle{{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SL2​​±(𝒪)\textstyle{\operatorname{\operatorname{\operatorname{SL}_{2}}^{\raisebox{0.72229pt}{\!\!$\scriptstyle\pm$}}}(\mathcal{O})}PCF¯𝒪(β)\textstyle{\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(\beta)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T(β)𝔼2±(𝒪)\textstyle{T(\beta)\cap{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λβ\scriptstyle{\lambda_{\beta}}𝒪[β]×\textstyle{\mathcal{O}[\beta]^{\times}}PCF¯𝒪(Q)\textstyle{\operatorname{\overline{\textup{{PCF}}}}_{\mathcal{O}}(Q)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G(Q)𝔼2±(𝒪)\textstyle{G(Q)\cap{\mathbb{E}}_{2}^{\pm}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}
Figure 2. The commutative diagram formed by the maps in Section 5 for Q𝒪[X]Q\in\mathcal{O}[X] with deg(Q)2\deg(Q)\leq 2 and βRoots(Q)\beta\in\operatorname{Roots}(Q).

6. Examples of Theorem 5.5 arising from number rings

6.1. \excepttoc𝑷𝟏=[𝟏,𝟐¯],𝑷^𝟏=𝟐P_{1}=[1,\overline{2}],\hat{P}_{1}=\sqrt{2}\fortocP1=[1,2¯],P^1=2P_{1}=[1,\overline{2}],\hat{P}_{1}=\sqrt{2}

The 𝐙\mathbf{Z}-PCF P1P_{1} is of type (N,k)=(1,1)(N,k)=(1,1) and

E(P1)=D(1)D(2)D(1)1=[1211],E(P_{1})=D(1)D(2)D(1)^{-1}=\begin{bmatrix}1&2\\ 1&1\end{bmatrix},

so Quad(P1)=x22\operatorname{Quad}(P_{1})=x^{2}-2, Roots(P1)={2,2}\operatorname{Roots}(P_{1})=\{\sqrt{2},-\sqrt{2}\}, and the first convergent 𝒞1(P1)=1/1\mathcal{C}_{1}(P_{1})=1/1. We have P¯1PCF¯𝐙(P1)\overline{P}_{1}\in\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1}), with PCF¯𝐙(P1)\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1}) as in Definition 5.4(c). The characters

λ\colonequalsλ2E¯,λ\colonequalsλ2E¯ of PCF¯𝐙(P1)\lambda\colonequals\lambda_{\sqrt{2}}\circ\overline{E},\,\,\lambda^{*}\colonequals\lambda_{-\sqrt{2}}\circ\overline{E}\,\,\text{ of $\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1})$} (31)

map P¯1\overline{P}_{1} to the eigenvalues of E(P1)E(P_{1}):

λ(P¯1)=1+2 and λ(P¯1)=12,\lambda(\overline{P}_{1})=1+\sqrt{2}\text{ and }\lambda^{\ast}(\overline{P}_{1})=1-\sqrt{2}, (32)

which are units in 𝐙[2]\mathbf{Z}[\sqrt{2}], and λ(P¯1)λ(P¯1)=det(E(P1))=(1)k=1\lambda(\overline{P}_{1})\lambda^{\ast}(\overline{P}_{1})=\det(E({P}_{1}))=(-1)^{k}=-1.

6.2. \excepttoc𝑷𝟐=[𝟏,𝟐,𝟐,𝟐¯],𝑷^𝟐=𝟐P_{2}=[1,\overline{2,2,2}],\hat{P}_{2}=\sqrt{2}\fortocP2=[1,2,2,2¯],P^2=2P_{2}=[1,\overline{2,2,2}],\hat{P}_{2}=\sqrt{2}

The 𝐙\mathbf{Z}-PCF P2P_{2} has type (N,k)=(1,3)(N,k)=(1,3), and

E(P2)\displaystyle E(P_{2}) =D(1)D(2)3D(1)1=[71057]=E(P1)3=[1211]3,\displaystyle=D(1)D(2)^{3}D(1)^{-1}=\begin{bmatrix}7&10\\ 5&7\end{bmatrix}=E(P_{1})^{3}=\begin{bmatrix}1&2\\ 1&1\end{bmatrix}^{3},

so Quad(P2)=5x210=5Quad(P1)\operatorname{Quad}(P_{2})=5x^{2}-10=5\operatorname{Quad}(P_{1}) and Roots(P2)=Roots(P1)={2,2}\operatorname{Roots}(P_{2})=\operatorname{Roots}(P_{1})=\{\sqrt{2},-\sqrt{2}\}. By (29), the equivalence class P¯2\overline{P}_{2} satisfies

P¯2=P¯1P¯1P¯1PCF¯𝐙(P2)=PCF¯𝐙(P1).\overline{P}_{2}=\overline{P}_{1}\star\overline{P}_{1}\star\overline{P}_{1}\in\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{2})=\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1}).

The convergent 𝒞3(P2)\mathcal{C}_{3}(P_{2}) is 7/5. The characters λ\lambda, λ\lambda^{\ast} of PCF¯𝐙(P2)=PCF¯𝐙(P1)\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{2})=\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1}) in (31) map P¯2\overline{P}_{2} to the eigenvalues of E(P2)E(P_{2}):

λ(P¯2)=7+52 and λ(P¯2)=752,\lambda(\overline{P}_{2})=7+5\sqrt{2}\text{ and }\lambda^{\ast}(\overline{P}_{2})=7-5\sqrt{2},

which are units in 𝐙[2]\mathbf{Z}[\sqrt{2}], and λ(P¯2)λ(P¯2)=det(E¯(P¯2))=(1)3=1\lambda(\overline{P}_{2})\lambda^{\ast}(\overline{P}_{2})=\det(\overline{E}(\overline{P}_{2}))=(-1)^{3}=-1. Consequent to λ\lambda being a homomorphism,

λ(P¯2)=λ(P¯1P¯1P¯1)=52+7=(1+2)3=λ(P¯1)3\lambda(\overline{P}_{2})=\lambda(\overline{P}_{1}\star\overline{P}_{1}\star\overline{P}_{1})=5\sqrt{2}+7=(1+\sqrt{2})^{3}=\lambda(\overline{P}_{1})^{3}

using (32).

6.3. \excepttoc𝑷𝟑=[𝟐,𝟐,𝟒¯],𝑷^𝟑=𝟐P_{3}=[2,\overline{-2,4}],\hat{P}_{3}=\sqrt{2}\fortocP3=[2,2,4¯],P^3=2P_{3}=[2,\overline{-2,4}],\hat{P}_{3}=\sqrt{2}

The 𝐙\mathbf{Z}-PCF P3P_{3} is of type (N,k)=(1,2)(N,k)=(1,2) and

E(P3)\displaystyle E(P_{3}) =D(2)D(2)D(4)D(2)1=[3423],\displaystyle=D(2)D(-2)D(4)D(2)^{-1}=\begin{bmatrix}-3&-4\\ -2&-3\end{bmatrix},

so Quad(P3)=2x2+4=2Quad(P1)\operatorname{Quad}(P_{3})=-2x^{2}+4=-2\operatorname{Quad}(P_{1}) and Roots(P3)=Roots(P1)\operatorname{Roots}(P_{3})=\operatorname{Roots}(P_{1}). The convergent 𝒞2(P3)\mathcal{C}_{2}(P_{3}) is 3/23/2. The class P¯3\overline{P}_{3} is in PCF¯𝐙(P1)=PCF¯𝐙(P3)\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1})=\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{3}). For the characters λ\lambda, λ\lambda^{\ast} as in (31), we have

λ(P¯3)=322 and λ(P¯3)=3+22,\lambda(\overline{P}_{3})=-3-2\sqrt{2}\text{ and }\lambda^{\ast}(\overline{P}_{3})=-3+2\sqrt{2}, (33)

with which are units in 𝐙[2]\mathbf{Z}[\sqrt{2}], and λ(P¯3)λ(P¯3)=det(E¯(P¯3))=(1)2=1\lambda(\overline{P}_{3})\lambda^{\ast}(\overline{P}_{3})=\det(\overline{E}(\overline{P}_{3}))=(-1)^{2}=1.

6.4. \excepttoc𝑷𝟒=[𝟐,𝟑,𝟐,𝟑¯],𝑷^𝟒=𝟐P_{4}=[2,\overline{3,-2,3}],\hat{P}_{4}=\sqrt{2}\fortocP4=[2,3,2,3¯],P^4=2P_{4}=[2,\overline{3,-2,3}],\hat{P}_{4}=\sqrt{2}

The 𝐙\mathbf{Z}-PCF P4P_{4} is of type (N,k)=(1,3)(N,k)=(1,3) and

E(P4)\displaystyle E(P_{4}) =D(1)D(3)D(2)D(3)D(1)1=[71057],\displaystyle=D(1)D(3)D(-2)D(3)D(1)^{-1}=\begin{bmatrix}-7&-10\\ -5&-7\end{bmatrix},

so Quad(P4)=5x2+10=5Quad(P1)\operatorname{Quad}(P_{4})=-5x^{2}+10=-5\operatorname{Quad}(P_{1}) and Roots(P4)=Roots(P1)\operatorname{Roots}(P_{4})=\operatorname{Roots}(P_{1}). The convergent 𝒞3(P4)\mathcal{C}_{3}(P_{4}) is 7/57/5. We have P¯4PCF¯Z(P4)=PCF¯𝐙(P1)\overline{P}_{4}\in\operatorname{\overline{\textup{{PCF}}}}_{Z}(P_{4})=\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}}(P_{1}) and, by (4.11),

P¯4=|[1,21+2,2,42+1¯]|=|[1,2¯]||[2,2,4¯]|=P¯1P¯3.\overline{P}_{4}=|\![1,\overline{2-1+2,-2,4-2+1}]\!|=|\![1,\overline{2}]\!||\![2,\overline{-2,4}]\!|=\overline{P}_{1}\star\overline{P}_{3}.

The values of the characters λ,λ\lambda,\lambda^{\ast} in (31) on P¯4\overline{P}_{4} are

λ(P¯4)=752 and λ(P¯4)=7+52.\lambda(\overline{P}_{4})=-7-5\sqrt{2}\text{ and }\lambda^{\ast}(\overline{P}_{4})=-7+5\sqrt{2}.

We have λ(P¯4)λ(P¯4)=det(E¯(P¯4))=(1)3=1.\lambda(\overline{P}_{4})\lambda^{\ast}(\overline{P}_{4})=\det(\overline{E}(\overline{P}_{4}))=(-1)^{3}=-1. From Example 6.1 λ(P¯1)=1+2\lambda(\overline{P}_{1})=1+\sqrt{2} and from Example 6.3 λ(P¯3)=223\lambda(\overline{P}_{3})=-2\sqrt{2}-3. We verify using (32) and (33)

λ(P¯4)=λ(P¯1P¯3)=527=(1+2)(223)=λ(P¯1)λ(P¯3).\lambda(\overline{P}_{4})=\lambda(\overline{P}_{1}\star\overline{P}_{3})=-5\sqrt{2}-7=(1+\sqrt{2})(-2\sqrt{2}-3)=\lambda(\overline{P}_{1})\lambda(\overline{P}_{3}).

6.5. \excepttoc𝑷𝟓=[𝟒𝟒𝟐+𝟑𝟏𝟐𝟐,𝟐𝟗𝟖𝟓𝟑𝟐+𝟐𝟏𝟏𝟎𝟗𝟒𝟐,𝟖𝟖𝟒+𝟔𝟐𝟒𝟐¯],𝑷^𝟓=𝟐+𝟐P_{5}=[442+312\sqrt{2},\overline{-298532+211094\sqrt{2},884+624\sqrt{2}}],\hat{P}_{5}=\sqrt{2+\sqrt{2}}\fortocP5=[442+3122,298532+2110942,884+6242¯],P^5=2+2P_{5}=[442+312\sqrt{2},\overline{-298532+211094\sqrt{2},884+624\sqrt{2}}],\hat{P}_{5}=\sqrt{2+\sqrt{2}}

The 𝐙[2]\mathbf{Z}[\sqrt{2}]-PCF P5P_{5} from [BEJ21, Cor. 8.19] is of type (N,k)=(1,2)(N,k)=(1,2). We have

E=E(P5)\displaystyle E=E(P_{5}) =D(442+3122)D(298532+2110942)D(884+6242)D(442+3122)1\displaystyle=D(442+312\sqrt{2})D(-298532+211094\sqrt{2})D(884+624\sqrt{2})D(442+312\sqrt{2})^{-1}
=[228487+1615642174876+1236562298532+2110942228487+1615642], so\displaystyle=\begin{bmatrix}-228487+161564\sqrt{2}&-174876+123656\sqrt{2}\\ -298532+211094\sqrt{2}&-228487+161564\sqrt{2}\end{bmatrix},\text{ so}
Quad(P5)\displaystyle\operatorname{Quad}(P_{5}) =(298532+2110942)x2+1748761236562\displaystyle=(-298532+211094\sqrt{2})x^{2}+174876-123656\sqrt{2}
=(298532+2110942)(x222),\displaystyle=(-298532+211094\sqrt{2})(x^{2}-2-\sqrt{2}),

Roots(P5)={β\colonequals2+2,β}\operatorname{Roots}(P_{5})=\{\beta\colonequals\sqrt{2+\sqrt{2}},-\beta\}, and the convergent 𝒞2(P5)=(11502+81052)/52441.6\mathcal{C}_{2}(P_{5})=(11502+8105\sqrt{2})/52\approx 441.6, which is a horrible approximation to β\beta in keeping with [BEJ21, p. 415], which remarks on and quantifies the extremely slow convergence of P5P_{5}. The values of the characters

μ\colonequalsλβE¯,,μ\colonequalsλβE¯:PCF¯𝐙[2](P5)𝐙[2][β]×\mu\colonequals\lambda_{\beta}\circ\overline{E},,\mu^{\ast}\colonequals\lambda_{-\beta}\circ\overline{E}:\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}[\sqrt{2}]}(P_{5})\rightarrow\mathbf{Z}[\sqrt{2}][\beta]^{\times}

on the class P¯5PCF¯𝐙[2](P5)\overline{P}_{5}\in\operatorname{\overline{\textup{{PCF}}}}_{\mathbf{Z}[\sqrt{2}]}(P_{5}) are

μ(P¯5)\displaystyle\mu(\overline{P}_{5}) =(228487+1615642)+(298532+2110942)β and\displaystyle=(-228487+161564\sqrt{2})+(-298532+211094\sqrt{2})\beta\text{ and}
μ(P¯5)\displaystyle\mu^{\ast}(\overline{P}_{5}) =(228487+1615642)(298532+2110942)β,\displaystyle=(-228487+161564\sqrt{2})-(-298532+211094\sqrt{2})\beta,

which are both units in the ring 𝐙[2][β]=𝐙[β]\mathbf{Z}[\sqrt{2}][\beta]=\mathbf{Z}[\beta]. In fact

Nm𝐐(β)/𝐐(2)μ(P¯5)=Nm𝐐(β)/𝐐(2)μ(P¯5)=μ(P¯5)μ(P¯5)=det(E¯(P¯5))=1.\operatorname{Nm}_{\mathbf{Q}(\beta)/\mathbf{Q}(\sqrt{2})}\mu(\overline{P}_{5})=\operatorname{Nm}_{\mathbf{Q}(\beta)/\mathbf{Q}(\sqrt{2})}\mu^{\ast}(\overline{P}_{5})=\mu(\overline{P}_{5})\mu^{\ast}(\overline{P}_{5})=\det(\overline{E}(\overline{P}_{5}))=1.

7. Refined notions of convergence for periodic continued fractions

For a PCF PP, the multiset Roots(P)\operatorname{Roots}(P) contains the limit P^\hat{P} of PP when that limit exists; see, e.g., [BEJ21, Appendix].

Theorem 7.1.

Let P=[b1,,bN,a1,,ak¯]P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}] and P=[b1,,bN,a1,,ak¯]P^{\prime}=[b^{\prime}_{1},\ldots,b^{\prime}_{N^{\prime}},\overline{a^{\prime}_{1},\ldots,a^{\prime}_{k^{\prime}}}] be PCFs of types (N,k)(N,k) and (N,k)(N^{\prime},k^{\prime}) that are CF\operatorname{CF}-equal.

  1. (a)

    If k=kk^{\prime}=k so that PP and PP^{\prime} are k\operatorname{k}-equal, then E(P)=E(P)E(P)=E(P^{\prime}), Quad(P)=Quad(P)\operatorname{Quad}(P)=\operatorname{Quad}(P^{\prime}), and Roots(P)=Roots(P)\operatorname{Roots}(P)=\operatorname{Roots}(P^{\prime}).

  2. (b)

    If kkk^{\prime}\neq k, then E(P)k=E(P)kE(P)^{k^{\prime}}=E(P^{\prime})^{k}, and Quad(P)\operatorname{Quad}(P) and Quad(P)\operatorname{Quad}(P^{\prime}) are linearly dependent. If Quad(P)\operatorname{Quad}(P) and Quad(P)\operatorname{Quad}(P^{\prime}) are both nonzero, then Roots(P)=Roots(P)\operatorname{Roots}(P)=\operatorname{Roots}(P^{\prime}).

  3. (c)

    The PCF PP converges if and only if PP^{\prime} converges and in this case their limits are equal: P^=P^Roots(P)=Roots(P)\hat{P}=\hat{P}^{\prime}\in\operatorname{Roots}(P)=\operatorname{Roots}(P^{\prime}).

Proof.

(a): Suppose k=kk=k^{\prime}. If N=NN=N^{\prime}, then PP equals PP^{\prime}. In the alternative NNN\neq N^{\prime}, we may assume N>NN^{\prime}>N with N=N+jN^{\prime}=N+j. In this case,

P=[b1,,bN,bN+1,,bN+j,aj+1,,aj+k¯],P^{\prime}=[b_{1},\ldots,b_{N},b_{N+1},\ldots,b_{N+j},\overline{a_{j+1},\ldots,a_{j+k}}],

where we take the subscripts of the aa’s modk\bmod\ k to put them in the range 1 to kk and bi=aiNb_{i}=a_{i-N} for i>Ni>N. So

E(P)\displaystyle E(P^{\prime}) =M([b1,,bN,bN+1,,bN+j,aj+1,,aj+k,0,bN+j,,b1,0])\displaystyle=M([b_{1},\ldots,b_{N},b_{N+1},\ldots,b_{N+j},a_{j+1},\ldots,a_{j+k},0,-b_{N+j},\ldots,-b_{1},0])
=M([b1,,bN,a1,a2,,aj+k,0,aj,,a1,bN,,b1,0])\displaystyle=M([b_{1},\ldots,b_{N},a_{1},a_{2},\ldots,a_{j+k},0,-a_{j},\ldots,-a_{1},-b_{N},\ldots,-b_{1},0])
=M([b1,,bN,a1,a2,,aj+k1,0,aj1,,a1,bN,,b1,0])\displaystyle=M([b_{1},\ldots,b_{N},a_{1},a_{2},\ldots,a_{j+k-1},0,-a_{j-1},\ldots,-a_{1},-b_{N},\ldots,-b_{1},0])
\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\vdots
=M([b1,,bN,a1,,ak,0,bN,,b1,0])=E(P)\displaystyle=M([b_{1},\ldots,b_{N},a_{1},\ldots,a_{k},0,-b_{N},\ldots,-b_{1},0])=E(P)

using the fact that M([a,0,a])=M([0])M([a,0,-a])=M([0]) and ai=ai+ka_{i}=a_{i+k} jj times. The rest of (a) follows trivially.

(b): Since the choice of NN does not affect EE, we may assume N=NN=N^{\prime}. The equality E(P)k=E(P)kE(P)^{k^{\prime}}=E(P^{\prime})^{k} follows from the observation that the concatenation of kk^{\prime} copies of [a1,,ak][a_{1},\ldots,a_{k}] equals the concatenation of kk copies of [a1,,ak][a^{\prime}_{1},\ldots,a^{\prime}_{k^{\prime}}]. The Cayley–Hamilton theorem implies that any power of a 2×22\times 2 matrix MM is a linear combination of MM and II. This implies E(P)E(P), E(P)E(P^{\prime}), and II are linearly dependent, which implies Quad(P)\operatorname{Quad}(P) and Quad(P)\operatorname{Quad}(P^{\prime}) are linearly dependent, which implies they have the same roots if both are nonzero.

(c): This is trivial, since PP and PP^{\prime} are CF\operatorname{CF}-equal. ∎

For the PCF P=[b1,,bN,a1,,ak¯]P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}] of type (N,k)(N,k), we introduce notation for the matrix MN+j(P)1MN+j+k(P)M_{N+j}(P)^{-1}M_{N+j+k}(P) and its entries:

Rj(P)=MN+j(P)1MN+j+k(P)=M([aj+1,,ak,a1,,aj])=[rj(P)sj(P)tj(P)uj(P)],R_{j}(P)=M_{N+j}(P)^{-1}M_{N+j+k}(P)=M([a_{j+1},\ldots,a_{k},a_{1},\ldots,a_{j}])=\begin{bmatrix}r_{j}(P)&s_{j}(P)\\ t_{j}(P)&u_{j}(P)\end{bmatrix},

and for the limits, if they exist,

P^j=limn𝒞N+j+nk(P).\hat{P}_{j}=\lim_{n\to\infty}\mathcal{C}_{N+j+nk}(P). (34)
Definition 7.2.

The matrix Rj(P)R_{j}(P) is heavy when

tj(P)=0and|uj(P)|>1.t_{j}(P)=0\ \textrm{and}\ |u_{j}(P)|>1.

Rephrased with this terminology, the condition [BEJ21, Thm. 4.3(b), INEQ 4.1] says that Rj(P)R_{j}(P) is heavy for some 0jk10\leq j\leq k-1.

The matrix R0(P)R_{0}(P) is M(Rep(P))M(\operatorname{Rep}(P)). The matrices Rj(P)R_{j}(P) are all conjugate to E(P)E(P). From the definition, we see P^j=P^j+k\hat{P}_{j}=\hat{P}_{j+k}.

Proposition 7.3.

Let PP be a PCF. Suppose Rj(P)R_{j}(P) is heavy.

  1. (a)

    The limit P^j\hat{P}_{j} exists and v(P^j)v(\hat{P}_{j}) is an rj(P)r_{j}(P)-eigenvector of E(P)E(P).

  2. (b)

    Rj+1(P)R_{j+1}(P) is not heavy.

Proof.

(a): The heavy condition implies Rj(P)R_{j}(P) has an eigenvector (10)\binom{1}{0} with eigenvector rj(P)r_{j}(P). Therefore, E=MN+jRjMN+j(P)1E=M_{N+j}R_{j}M_{N+j}(P)^{-1} has eigenvector MN+j(P)(10)M_{N+j}(P)\binom{1}{0}. We compute the limit

P^j=limnMN+j+nk(P)=limnMN+j(P)Rjn=MN+j.\hat{P}_{j}=\lim_{n\to\infty}M_{N+j+nk}(P)\infty=\lim_{n\to\infty}M_{N+j}(P)R_{j}^{n}\infty=M_{N+j}\infty.

We are now done because v(P^j)v(\hat{P}_{j}) and MN+j(P)(10)M_{N+j}(P)\binom{1}{0} are both elements of the equivalence class MN+j(P)M_{N+j}(P)\infty.

(b): The calculation, with argument PP suppressed and a=aj+1nka=a_{j+1-nk}, for the value of nknk such that 1j+1nkk1\leq j+1-nk\leq k,

[rj+1sj+1tj+1uj+1]=[011a][rjsj0uj][a110]=[uj0(rjuj)a+sjrj]\begin{bmatrix}r_{j+1}&s_{j+1}\\ t_{j+1}&u_{j+1}\end{bmatrix}=\begin{bmatrix}0&1\\ 1&-a\end{bmatrix}\begin{bmatrix}r_{j}&s_{j}\\ 0&u_{j}\end{bmatrix}\begin{bmatrix}a&1\\ 1&0\end{bmatrix}=\begin{bmatrix}u_{j}&0\\ (r_{j}-u_{j})a+s_{j}&r_{j}\end{bmatrix}

shows that Rj(P)R_{j}(P) and Rj+1(P)R_{j+1}(P) cannot both be heavy. If they are, uj+1=rju_{j+1}=r_{j}, yielding |uj+1|<1|u_{j+1}|<1, a contradiction. ∎

We recall a theorem proved in the appendix of [BEJ21], with the cases aligned to match Proposition 2.3.

Theorem 7.4.

([BEJ21, Thm. 4.3]) Let PP be a PCF, let λ±\lambda_{\pm} be the eigenvalues of E=E(P)E=E(P) chosen so that |λ+|1|λ||\lambda_{+}|\geq 1\geq|\lambda_{-}|, and let v(β±)v(\beta_{\pm}) be the corresponding eigenvectors. If PP converges, its limit P^=β+\hat{P}=\beta_{+}. Exactly one of the following holds.

  1. (a)

    Quad(P)\operatorname{Quad}(P) has one root β+=β\beta_{+}=\beta_{-} of multiplicity 22, and P^=β+=β.\hat{P}=\beta_{+}=\beta_{-}.

  2. (b)

    Quad(P)=0\operatorname{Quad}(P)=0, E=λ+I=λIE=\lambda_{+}I=\lambda_{-}I, and PP diverges.

  3. (c)

    Quad(P)\operatorname{Quad}(P) has roots β+,β\beta_{+},\beta_{-} with |λ+|>|λ||\lambda_{+}|>|\lambda_{-}|.

    1. (i)

      For some j0j\geq 0, Rj(P)R_{j}(P) is heavy, P^j=β\hat{P}_{j}=\beta_{-}, P^j+1=β+\hat{P}_{j+1}=\beta_{+}, and PP diverges.

    2. (ii)

      For all j0j\geq 0, Rj(P)R_{j}(P) is not heavy, and PP converges to P^=β+\hat{P}=\beta_{+}.

  4. (d)

    Quad(P)\operatorname{Quad}(P) has distinct roots β+,β\beta_{+},\beta_{-} with |λ+|=|λ||\lambda_{+}|=|\lambda_{-}|, and PP diverges. In fact, P^j\hat{P}_{j} does not exist for some jj.

Proof.

In case (a), by Proposition 2.3(a), for all jj, P^j=β+\hat{P}_{j}=\beta_{+}, so PP converges to β+\beta_{+}.

In case (b), Rj(P)=ER_{j}(P)=E for all j,j, so P^j=𝒞N+j(P)\hat{P}_{j}=\mathcal{C}_{N+j}(P). No two consecutive ones are equal: P^jP^j+1\hat{P}_{j}\neq\hat{P}_{j+1} by the more general rule that no two consecutive convergents can be equal, so PP diverges.

Now assume that cases (a) and (b) do not hold. Quad(P)\operatorname{Quad}(P) has two distinct roots, β\beta_{-}, β+\beta_{+}. The matrix EE has corresponding distinct eigenvalues λ\lambda_{-}, λ+\lambda_{+}.

In case (c), |λ+|>|λ|,|\lambda_{+}|>|\lambda_{-}|, and Proposition 2.3(c) shows all βj\beta_{j} exist. Suppose, as in the first subcase, there exists jj such that Rj(P)R_{j}(P) is heavy, Proposition 7.3 shows P^j=β\hat{P}_{j}=\beta_{-} and Rj+1R_{j+1} is not heavy. Proposition 2.3(c) shows P^j+1=β+,\hat{P}_{j+1}=\beta_{+}, so PP diverges.

In the alternative subcase of (c), where there is no jj such that RjR_{j} is heavy, we have P^j=β+\hat{P}_{j}=\beta_{+} for all jj, and PP converges to β+\beta_{+}.

In case (d) of divergence, we have |λ+|=|λ||\lambda_{+}|=|\lambda_{-}| and λ+λ\lambda_{+}\neq\lambda_{-}. By Proposition 2.3(d), the limit P^j\hat{P}_{j} exists if and only if tj=tj(P)=0t_{j}=t_{j}(P)=0. We claim there exists jj such that tj(P)0t_{j}(P)\neq 0.

Assume, to the contrary, that tj=0t_{j}=0 for all jj. To deduce a contradiction, we show tj=tj+1=tj+2=0t_{j}=t_{j+1}=t_{j+2}=0 implies aj+2=0a_{j+2}=0. From the equality

Rj+1[aj+2110]=[aj+2110]Rj+2,R_{j+1}\begin{bmatrix}a_{j+2}&1\\ 1&0\end{bmatrix}=\begin{bmatrix}a_{j+2}&1\\ 1&0\end{bmatrix}R_{j+2}, (35)

we see that tj+1=tj+2=0t_{j+1}=t_{j+2}=0 implies sj+2=0s_{j+2}=0. Similarly, tj=tj+1=0t_{j}=t_{j+1}=0 implies sj+1=0s_{j+1}=0, so Rj+1R_{j+1} and Rj+2R_{j+2} are diagonal with distinct diagonal entries λ±\lambda_{\pm}. Equation (35) implies aj+2=0a_{j+2}=0.

Since tj=0t_{j}=0 for all jj, we have that aj=0a_{j}=0 for all jj. If kk is odd then tj=1t_{j}=1 for every j, a contradiction. If kk is even then we are in case (b), also a contradiction, thus proving the claim. Hence, for some jj, P^j\hat{P}_{j} does not exist, and PP diverges. ∎

We name the convergence behaviors of a PCF PP identified in Theorem 7.4.

Definition 7.5.

In cases 7.4(a) and 7.4(c), PP is quasiconvergent. In cases 7.4(b) and 7.4(d), PP is strictly divergent. In the divergent subcase of 7.4(ci), PP is strictly quasiconvergent.

Divergent means strictly divergent or strictly quasiconvergent. Quasiconvergent means convergent or strictly quasiconvergent.

Theorem 7.6.

Let PCFs PP and QQ be equivalent. PP is quasiconvergent if and only if QQ is quasiconvergent. If PP and QQ both converge, then P^=Q^\hat{P}=\hat{Q}.

Proof.

PCFs PP and QQ are quasiconvergent together, because E(P)=E(Q)E(P)=E(Q). For the same reason, if PP and QQ both converge, they converge to the same value. ∎

The following lemma and theorem characterize strict quasiconvergence.

Lemma 7.7.

Let P=[b1,,bN,a1,,ak¯]P=[b_{1},\ldots,b_{N},\overline{a_{1},\ldots,a_{k}}] be a PCF. If Rj(P)R_{j}(P) and Rj+2(P)R_{j+2}(P) are both heavy, then aj+2nk=0a_{j+2-n^{\prime}k}=0 for the value of nn^{\prime} such that 1j+2nkk1\leq j+2-n^{\prime}k\leq k.

Proof.

Inspect the relation, with argument PP suppressed, a=aj+1nka=a_{j+1-nk}, and a=aj+2nka^{\prime}=a_{j+2-n^{\prime}k}:

[rj+2sj+2tj+2uj+2]=[1aaaa+1][rjsjtjuj][aa+1aa1].\begin{bmatrix}r_{j+2}&s_{j+2}\\ t_{j+2}&u_{j+2}\end{bmatrix}=\begin{bmatrix}1&-a\\ -a^{\prime}&aa^{\prime}+1\end{bmatrix}\begin{bmatrix}r_{j}&s_{j}\\ t_{j}&u_{j}\end{bmatrix}\begin{bmatrix}aa^{\prime}+1&a\\ a^{\prime}&1\end{bmatrix}.

Observe that tj=0t_{j}=0 implies

rj+2=rj+aarjaauj+asj,\displaystyle r_{j+2}=r_{j}+aa^{\prime}r_{j}-aa^{\prime}u_{j}+a^{\prime}s_{j},
tj+2=a(ujrj+2).\displaystyle t_{j+2}=a^{\prime}(u_{j}-r_{j+2}).

If tj+2=0t_{j+2}=0 and a0a^{\prime}\neq 0, then rj+2=ujr_{j+2}=u_{j}, contradicting |uj|>1>|rj+2||u_{j}|>1>|r_{j+2}|. Hence, tj+2=0t_{j+2}=0 implies a=aj+2nk=0.a^{\prime}=a_{j+2-n^{\prime}k}=0.

Theorem 7.8.

The PCF PP is strictly quasiconvergent if and only if for each jj, 1jk1\leq j\leq k, P^j\hat{P}_{j} exists, a strict majority, but not all, of which are the same.

Proof.

Let the eigenvalues of E=E(P)E=E(P) be λ+\lambda_{+} and λ\lambda_{-}, with |λ+|1|\lambda_{+}|\geq 1. If both eigenvalues have magnitude 11, arbitrarily assign one to be λ+\lambda_{+}. Define β+\beta_{+} and β\beta_{-} such that v(β+)v(\beta_{+}), v(β)v(\beta_{-}) are eigenvectors of EE with corresponding eigenvalues λ+\lambda_{+} and λ\lambda_{-}.

If PP is strictly quasiconvergent, then there exists jj such that Rj(P)R_{j}(P) is heavy and λ+=uj.\lambda_{+}=u_{j}.

Proposition 7.3 shows that for every jj such that Rj(P)R_{j}(P) is heavy, P^j=β\hat{P}_{j}=\beta_{-} and Rj+1(P)R_{j+1}(P) is not heavy. For those jj such that Rj(P)R_{j}(P) is not heavy, P^j=β+.\hat{P}_{j}=\beta_{+}.

If Rj(P)R_{j}(P) is heavy for every even jj or every odd jj, then either kk is even and, by Lemma 7.7, every second partial quotient of Rep(P)\operatorname{Rep}(P) is zero, or kk is odd, and all partial quotients of Rep(P)\operatorname{Rep}(P) are zero. In the even case, EE is conjugate to an elementary matrix and PP satisfies 7.4(a) or 7.4(b), a contradiction. In the odd case, EE is conjugate to the matrix JJ of Remark 3.19 and PP satisfies 7.4(d). Hence, for only a minority of jj, 1jk1\leq j\leq k, can Rj(P)R_{j}(P) be heavy and P^j=β\hat{P}_{j}=\beta_{-}.

Conversely, suppose for each jj, 1jk1\leq j\leq k, P^j\hat{P}_{j} exists, a strict majority, but not all, of which are the same.

If PP satisfies Theorem 7.4(b), then P^jP^j+1\hat{P}_{j}\neq\hat{P}_{j+1}. So a majority of the P^j\hat{P}_{j}, 1jk1\leq j\leq k, are not equal to a particular value.

The PCF PP satisfies Theorem 7.4(d) if and only if EE has eigenvalues λ+λ\lambda_{+}\neq\lambda_{-} with |λ+|=|λ|=1|\lambda_{+}|=|\lambda_{-}|=1. We claim that for 1jk1\leq j\leq k, either P^j\hat{P}_{j} does not exist, or P^j\hat{P}_{j} exists and 𝒞N+j+nk(P)\mathcal{C}_{N+j+nk}(P) is a constant independent of nn. We shall prove this for j=kj=k. The result follows for all jj by rotating the periodic part of PP. Write

v(P^k)=cv(β+)+dv(β),v(\hat{P}_{k})=cv(\beta_{+})+dv(\beta_{-}),

and observe

Env(P^k)=cλ+nv(β+)+dλnv(β).E^{n}v(\hat{P}_{k})=c\lambda_{+}^{n}v(\beta_{+})+d\lambda_{-}^{n}v(\beta_{-}).

If P^k\hat{P}_{k} exists, then v(P^k)v(\hat{P}_{k}) is an eigenvector of EE, so either c=0c=0 or d=0d=0. This proves the claim.

By assumption that the limits P^j\hat{P}_{j} exist and the fact that consecutive convergents cannot be equal, we cannot have a strict majority of P^j\hat{P}_{j} agree and PP satisfy Theorem 7.4(d)

The only possibility left is that PP satisfies Theorem 7.4(ci), so PP is strictly quasiconvergent. ∎

8. Examples for quasiconvergence

8.1. Strict majority in Theorem 7.8 is necessary

The strict majority hypothesis in the sufficiency part of the proof of Theorem 7.8 is essential. For example, P=[a,b,0,0¯]P=[a,b,\overline{0,0}] has limits P^1=a\hat{P}_{1}=a and P^2=a+1/b\hat{P}_{2}=a+1/b. The split is equal and PP is not quasiconvergent. It is strictly divergent because it satisfies Theorem 7.4(b).

8.2. The fraction of \excepttoc𝑷^𝒋=𝜷+\hat{P}_{j}=\beta_{+}\fortocP^j=β+\hat{P}_{j}=\beta_{+} can be made arbitrarily close to \excepttoc𝟏/𝟐1/2\fortoc1/21/2

We can make the fraction of P^j=β+\hat{P}_{j}=\beta_{+} arbitrarily close to 1/21/2. Let c0c\neq 0 and

P=[a,b,c,1/c,c,0,,0¯],P=[a,b,\overline{c,-1/c,c,0,\ldots,0}\,],

have odd length period k3k\geq 3. We have P^2j=a\hat{P}_{2j}=a and P^2j+1=a+1/b\hat{P}_{2j+1}=a+1/b, 1j<k/21\leq j<k/2. If c2=1c^{2}=-1 we are in case (b) of Theorem 7.4, and P^1=a+1/(bc)\hat{P}_{1}=a+1/(b-c). If |c|=1|c|=1, c21c^{2}\neq-1, we are in case (d), and P^1\hat{P}_{1} does not exist. If |c|1|c|\neq 1 we are in case (ci) and

P^1=β+={a+1/bif |c|>1,aif |c|<1,\hat{P}_{1}=\beta_{+}=\begin{cases}a+1/b&\text{if }|c|>1,\\ a&\text{if }|c|<1,\end{cases}

so β+\beta_{+} has a slim (k+1)/2(k+1)/2 majority. A similar construction can be made for even periods by taking

P=[a,b,c,1/c,c,0,,0,d,1/d,d,0,,0¯]P^{\prime}=[a,b,\overline{c,-1/c,c,0,\ldots,0,d,-1/d,d,0,\ldots,0}\,]

where the length of the strings of 0’s have the same parity.

8.3. The fraction of \excepttoc𝑷^𝒋=𝜷+\hat{P}_{j}=\beta_{+}\fortocP^j=β+\hat{P}_{j}=\beta_{+} can be made arbitrarily close to \excepttoc𝟏1\fortoc11

Likewise we can make the fraction of P^j=β+\hat{P}_{j}=\beta_{+} arbitrarily close to 11. Let {Fn}n=1=1,1,2,3,5,\{F_{n}\}_{n=1}^{\infty}=1,1,2,3,5,\ldots be the Fibonacci sequence. Let b0b\neq 0 and

P\colonequalsQk=[a,b,1,,1,Fk2/Fk1¯],P\colonequals Q_{k}=[a,b,\overline{1,\ldots,1,-F_{k-2}/F_{k-1}}\,],

where there are (k1)(k-1) 11’s. The continued fraction PP for k4k\geq 4 provides an example where exactly k1k-1 of the kk P^j\hat{P}_{j}’s are β+\beta_{+}. (If k=3k=3, P^2\hat{P}_{2} doesn’t exist, and if k=2k=2, β+=β=P^\beta_{+}=\beta_{-}=\hat{P}.)

Proposition 8.1.

If k4k\geq 4 and b0b\neq 0, then P^j=β+(Qk)=a+Fk1bFk1+Fk2\hat{P}_{j}=\beta_{+}(Q_{k})=a+\frac{F_{k-1}}{bF_{k-1}+F_{k-2}} for 1jk11\leq j\leq k-1, but P^k=β(Qk)=a+1/b\hat{P}_{k}=\beta_{-}(Q_{k})=a+1/b.

Proof.

We compute M=M(k)\colonequalsM([1,1,,1,Fk2/Fk1])M=M(k)\colonequals M([1,1,\dots,1,-F_{k-2}/F_{k-1}]):

M\displaystyle M =[1110]k1[Fk2/Fk1110]\displaystyle=\begin{bmatrix}1&1\\ 1&0\end{bmatrix}^{k-1}\begin{bmatrix}-F_{k-2}/F_{k-1}&1\\ 1&0\end{bmatrix}
=[FkFk1Fk1Fk2][Fk2/Fk1110]\displaystyle=\begin{bmatrix}F_{k}&F_{k-1}\\ F_{k-1}&F_{k-2}\end{bmatrix}\begin{bmatrix}-F_{k-2}/F_{k-1}&1\\ 1&0\end{bmatrix}
=[(1)k/Fk1Fk0Fk1],\displaystyle=\begin{bmatrix}(-1)^{k}/F_{k-1}&F_{k}\\ 0&F_{k-1}\end{bmatrix}, (36)

using Cassini’s identity Fk12FkFk2=(1)kF_{k-1}^{2}-F_{k}F_{k-2}=(-1)^{k} ([Knu97, p. 81]).

The next step is to compute the P^j\hat{P}_{j}, 1jk1\leq j\leq k, as in (34). We begin with P^k\hat{P}_{k}. Set

A=D(a)D(b)=[a110][b110]=[ab+1ab1].A=D(a)D(b)=\begin{bmatrix}a&1\\ 1&0\end{bmatrix}\begin{bmatrix}b&1\\ 1&0\end{bmatrix}=\begin{bmatrix}ab+1&a\\ b&1\end{bmatrix}. (37)

Using (8.3), we have

M(n,k)\colonequalsM2+nk(Qk)\displaystyle M(n,k)\colonequals M_{2+nk}(Q_{k}) =AMn=[ab+1ab1][(1)k/Fk1Fk0Fk1]n\displaystyle=AM^{n}=\begin{bmatrix}ab+1&a\\ b&1\end{bmatrix}\begin{bmatrix}(-1)^{k}/F_{k-1}&F_{k}\\ 0&F_{k-1}\end{bmatrix}^{n}
=[ab+1ab1][(1)kn/Fk1n0Fk1n]\displaystyle=\begin{bmatrix}ab+1&a\\ b&1\end{bmatrix}\begin{bmatrix}(-1)^{kn}/F_{k-1}^{n}&\ast\\ 0&F_{k-1}^{n}\end{bmatrix}
=[(ab+1)(1)kn/Fk1nb(1)kn/Fk1n].\displaystyle=\begin{bmatrix}(ab+1)(-1)^{kn}/F_{k-1}^{n}&\ast\\ b(-1)^{kn}/F_{k-1}^{n}&\ast\end{bmatrix}.

Hence

𝒞N+nk=M(n,k)11/M(n,k)21=ab+1b=a+1/b\mathcal{C}_{N+nk}=M(n,k)_{11}/M(n,k)_{21}=\frac{ab+1}{b}=a+1/b

for all n1n\geq 1 and

P^k=limn𝒞N+nk=a+1/b.\hat{P}_{k}=\lim_{n\to\infty}\mathcal{C}_{N+nk}=a+1/b.

For the other P^j\hat{P}_{j}, we need to calculate Mj\colonequalsD(1)jMD(1)jM_{j}\colonequals D(1)^{-j}MD(1)^{j} for 1jk11\leq j\leq k-1, so that we can apply Proposition 2.3. Firstly note that

D(1)j=[Fj+1FjFjFj1],and soD(1)j=(1)j[Fj1FjFjFj+1].D(1)^{j}=\begin{bmatrix}F_{j+1}&F_{j}\\ F_{j}&F_{j-1}\end{bmatrix},\quad\text{and so}\quad D(1)^{-j}=(-1)^{j}\begin{bmatrix}F_{j-1}&-F_{j}\\ -F_{j}&F_{j+1}\end{bmatrix}. (38)

Hence from (38) and (8.3) we get

Mj\displaystyle M_{j} =(1)j[Fj1FjFjFj+1][(1)k/Fk1Fk0Fk1][Fj+1FjFjFj1]\displaystyle=(-1)^{j}\begin{bmatrix}F_{j-1}&-F_{j}\\ -F_{j}&F_{j+1}\end{bmatrix}\begin{bmatrix}(-1)^{k}/F_{k-1}&F_{k}\\ 0&F_{k-1}\end{bmatrix}\begin{bmatrix}F_{j+1}&F_{j}\\ F_{j}&F_{j-1}\end{bmatrix}
=(1)j[Fj((1)k+1Fj+1/Fk1+Fj+1Fk1FjFk)].\displaystyle=(-1)^{j}\begin{bmatrix}\ast&\ast\\ F_{j}((-1)^{k+1}F_{j+1}/F_{k-1}+F_{j+1}F_{k-1}-F_{j}F_{k})&\ast\end{bmatrix}. (39)

If (Mj)21=0(M_{j})_{21}=0, then we would have Fk1|Fj+1F_{k-1}|F_{j+1} from (8.3). But this is not possible for jk1j\leq k-1 unless j=k2j=k-2: Fk1FkF_{k-1}\not|F_{k} takes care of j=k13j=k-1\geq 3 and if jk3j\leq k-3, then Fk1>Fj+1F_{k-1}>F_{j+1} since k4k\geq 4. Hence (Mj)210(M_{j})_{21}\neq 0 if 1jk11\leq j\leq k-1, jk2j\neq k-2, so in this case P^j=β+(Qk)\hat{P}_{j}=\beta_{+}(Q_{k}) by Proposition 2.3(c), with the “MM” there equal to AMA1AMA^{-1} and the “β\beta” there equal to AD(1)jAD(1)^{j}\infty.

For the exceptional case j=k2j=k-2, explicit computation of Mk2M_{k-2} using the Cassini/Vajda identities for Fibonacci numbers gives

Mk2=[Fk1FkFk3/Fk10(1)k/Fk1].M_{k-2}=\begin{bmatrix}F_{k-1}&F_{k}F_{k-3}/F_{k-1}\\ 0&(-1)^{k}/F_{k-1}\end{bmatrix}. (40)

Hence by (40) (Mk2)21=0(M_{k-2})_{21}=0 and |(Mk2)11|>|(Mk2)22||(M_{k-2})_{11}|>|(M_{k-2})_{22}| since k4k\geq 4. Hence P^k2=β+(Qk)\hat{P}_{k-2}=\beta_{+}(Q_{k}) again by Proposition 2.3(c), with the “MM” there equal to AMA1AMA^{-1} and the “β\beta” there equal to AD(1)k2AD(1)^{k-2}\infty.

Lastly we show the computation giving β(Qk)\beta_{-}(Q_{k}) and β+(Qk)\beta_{+}(Q_{k}):

β(Qk)=a+1/bandβ+(Qk)=a+Fk1bFk1+Fk2.\beta_{-}(Q_{k})=a+1/b\quad\text{and}\quad\beta_{+}(Q_{k})=a+\frac{F_{k-1}}{bF_{k-1}+F_{k-2}}. (41)

Calculating β(Qk)\beta_{-}(Q_{k}) and β+(Qk)\beta_{+}(Q_{k}) entails finding the eigenvectors of E(Qk)=AMA1E(Q_{k})=AMA^{-1} with AA as in (37) and MM as in (8.3). Let

v\colonequals(10),λ\colonequals(1)kFk1,andv+\colonequals(Fk1Fk2),λ+\colonequalsFk1.v_{-}\colonequals\begin{pmatrix}1\\ 0\end{pmatrix},\,\,\lambda_{-}\colonequals\frac{(-1)^{k}}{F_{k-1}},\quad\text{and}\quad v_{+}\colonequals\begin{pmatrix}F_{k-1}\\ F_{k-2}\end{pmatrix},\,\,\lambda_{+}\colonequals F_{k-1}.

Observe that |λ+|>|λ||\lambda_{+}|>|\lambda_{-}| since k4k\geq 4. Using the Cassini identity yet again, verify that

Mv=λvandMv+=λ+v+.Mv_{-}=\lambda_{-}v_{-}\quad\text{and}\quad Mv_{+}=\lambda_{+}v_{+}.

So E(Qk)=AMA1E(Q_{k})=AMA^{-1} will have eigenvectors AvAv_{-}, Av+Av_{+} with eigenvalues λ\lambda_{-}, λ+\lambda_{+}, respectively. We have

Av\displaystyle Av_{-} =(ab+1b)=b(a+1/b1)=bv(β) and\displaystyle=\begin{pmatrix}ab+1\\ b\end{pmatrix}=b\begin{pmatrix}a+1/b\\ 1\end{pmatrix}=bv(\beta_{-})\text{ and}
Av+\displaystyle Av_{+} =((ab+1)Fk1+aFk2bFk1+Fk2)=(bFk1+Fk2)(a+Fk1bFk1+Fk21)\displaystyle=\begin{pmatrix}(ab+1)F_{k-1}+aF_{k-2}\\ bF_{k-1}+F_{k-2}\end{pmatrix}=(bF_{k-1}+F_{k-2})\begin{pmatrix}a+\frac{F_{k-1}}{bF_{k-1}+F_{k-2}}\\ 1\end{pmatrix}
=(bFk1+Fk2)v(β+),\displaystyle=(bF_{k-1}+F_{k-2})v(\beta_{+}),

establishing the formulas (41) for β(Qk)\beta_{-}(Q_{k}) and β+(Qk)\beta_{+}(Q_{k}). ∎

8.4. The equivalence \excepttoc\sim\fortoc\sim on \excepttocPCF(𝓞)\operatorname{\textup{{PCF}}}(\mathcal{O})\fortocPCF(𝒪)\operatorname{\textup{{PCF}}}(\mathcal{O}) does not respect convergence

Theorem 7.6 shows quasiconvergence is a property of PCF equivalence class. It is possible for PQP\sim Q, both quasiconvergent, with PP strictly quasiconvergent (and hence divergent) and QQ convergent. For example, take a0a\neq 0 and let P=[a,0,1/a¯]P=[\overline{a,0,-1/a}], Q=[a1/a¯]Q=[\overline{a-1/a}]. Let the convergents of PP be 𝒞i(P)\mathcal{C}_{i}(P), i1i\geq 1. If |a|<1|a|<1, then PP satisfies Theorem 7.4(ci), and hence is strictly quasiconvergent. The limits P^j\hat{P}_{j} for 1j31\leq j\leq 3 are

P^1=limi𝒞1+3i(P)=a,P^2=limi𝒞2+3i(P)=1/a,P^3=limi𝒞3+3i(P)=1/a.\begin{array}[]{ccccc}\hat{P}_{1}&=&\lim_{i\to\infty}\mathcal{C}_{1+3i}(P)&=&a,\\ \hat{P}_{2}&=&\lim_{i\to\infty}\mathcal{C}_{2+3i}(P)&=&-1/a,\\ \hat{P}_{3}&=&\lim_{i\to\infty}\mathcal{C}_{3+3i}(P)&=&-1/a.\end{array}

The PCF QQ converges to 1/a-1/a, since the convergents are just 𝒞i(Q)=𝒞3i(P)\mathcal{C}_{i}(Q)=\mathcal{C}_{3i}(P).

References

  • [Art91] Michael Artin. Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.
  • [BEJ21] Bradley W. Brock, Noam D. Elkies, and Bruce W. Jordan. Periodic continued fractions over SS-integers in number fields and Skolem’s pp-adic method. Acta Arith., 197(4):379–420, 2021.
  • [Coh66] P. M. Cohn. On the structure of the GL2\operatorname{GL}_{2} of a ring. Inst. Hautes Études Sci. Publ. Math., (30):5–53, 1966.
  • [JZ19] Bruce W. Jordan and Yevgeny Zaytman. On the bounded generation of arithmetic SL2\operatorname{SL}_{2}. Proc. Natl. Acad. Sci. USA, 116(38):18880–18882, 2019.
  • [Knu97] Donald E. Knuth. The art of computer programming. Vol. 1. Addison-Wesley, Reading, MA, 1997. Fundamental algorithms, Third edition [of MR0286317].
  • [Lie81] Bernhard Liehl. On the group SL2\operatorname{SL}_{2} over orders of arithmetic type. J. Reine Angew. Math., 323:153–171, 1981.
  • [MRS18] Aleksander V. Morgan, Andrei S. Rapinchuk, and Balasubramanian Sury. Bounded generation of SL2\operatorname{SL}_{2} over rings of SS-integers with infinitely many units. Algebra Number Theory, 12(8):1949–1974, 2018.
  • [Nic11] Bogdan Nica. The unreasonable slightness of E2\textrm{E}_{2} over imaginary quadratic rings. Amer. Math. Monthly, 118(5):455–462, 2011.
  • [Vas72] L. N. Vaseršteĭn. The group SL2\operatorname{SL}_{2} over Dedekind rings of arithmetic type. Mat. Sb. (N.S.), 89(131):313–322, 351, 1972.