This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A comparison of categorical and topological entropies on Weinstein manifolds

Hanwool Bae Center for Quantum Structures in Modules and Spaces, Seoul National University, Seoul, South Korea [email protected]  and  Sangjin Lee Center for Geometry and Physics
Institute for Basic Science (IBS)
Pohang 37673, Korea
[email protected]
Abstract.

Let WW be a symplectic manifold, and let ϕ:WW\phi:W\to W be a symplectic automorphism. Then, ϕ\phi induces an auto-equivalence Φ\Phi defined on the Fukaya category of WW. In this paper, we prove that the categorical entropy of Φ\Phi bounds the topological entropy of ϕ\phi from below where WW is a Weinstein manifold and ϕ\phi is compactly supported. Moreover, being motivated by [CGG21], we propose a conjecture which generalizes the result of [New88, Prz80, Yom87].

1. Introduction

1.1. Introduction

Let WW be a Weinstein manifold equipped with a compactly supported, exact symplectic automorphism ϕ\phi. The pair (W,ϕ)(W,\phi) forms a discrete dynamical system. In the current paper, we compare two invariants of the dynamical system.

Let us introduce the invariants we are interested in. The first invariant is called topological entropy. The notion of topological entropy was defined in the ’60s for compact spaces and the ’70s for noncompact spaces. See [AKM65, Hof72, Hof74]. Let htop(ϕ)h_{top}(\phi) denote the classical invariant of (W,ϕ)(W,\phi).

Recently, [DHKK14] defined the notion of categorical entropy for a pair (𝒞,Φ)(\mathcal{C},\Phi) such that 𝒞\mathcal{C} is a triangulated category and Φ:𝒞𝒞\Phi:\mathcal{C}\to\mathcal{C} is an auto-equivalence. We point out that our dynamic system (W,ϕ)(W,\phi) induces a categorical dynamical system (𝒞,Φ)(\mathcal{C},\Phi) in symplectic topology. To be more precise, we recall that

  • the (triangulated closure of the) wrapped Fukaya category 𝒲(W)\mathcal{W}(W) of a Weinstein manifold WW is a triangulated category, and

  • an exact symplectic automorphism ϕ\phi induces an auto-equivalence Φ:𝒲(W)𝒲(W)\Phi:\mathcal{W}(W)\to\mathcal{W}(W).

It induces the second invariant of our symplectic dynamical system (W,ϕ)(W,\phi), i.e., the categorical entropy of (𝒲(W),Φ)(\mathcal{W}(W),\Phi). Let hcat(ϕ)h_{cat}(\phi) denote the second invariant. We call hcat(ϕ)h_{cat}(\phi) the categorical entropy of ϕ\phi.

Both entropies are invariants of one dynamical system. Thus, it is natural to compare two invariants. In this paper, we compare them and prove

(1.1) hcat(ϕ)htop(ϕ).\displaystyle h_{cat}(\phi)\leq h_{top}(\phi).
Remark 1.1.

  1. (1)

    We remark that [KO20, Mat21] study the comparison of two entropies in an algebro-geometric setting. Especially, [KO20] considers a pair (X,ϕ)(X,\phi) such that XX is a smooth projective variety, and ϕ\phi is a surjective endomorphism of XX. Then, ϕ\phi induces an auto-equivalence Φ\Phi on the derived category of coherent sheaves, and it defines the categorical entropy of ϕ\phi. For that case, [KO20] proves the equality hcat(Φ)=htop(ϕ)h_{cat}(\Phi)=h_{top}(\phi).

  2. (2)

    In a symplectic-geometric setting, [BCJ+22] proves the inequality (1.1) for some specific cases.

1.2. Results

One reason for the inequality (1.1) holding is that hcat(ϕ)h_{cat}(\phi) is an invariant up to compactly supported Hamiltonian isotopy, but htop(ϕ)h_{top}(\phi) is not. In other words, if ϕ1\phi_{1} and ϕ2\phi_{2} are Hamiltonian isotopic to each other, then hcat(ϕ1)=hcat(ϕ2)h_{cat}(\phi_{1})=h_{cat}(\phi_{2}). It is because ϕ1\phi_{1} and ϕ2\phi_{2} induce the same auto-equivalence on 𝒲(W)\mathcal{W}(W). However, htop(ϕ1)h_{top}(\phi_{1}) and htop(ϕ2)h_{top}(\phi_{2}) do not need to be the same. Thus, one can expect that the topological entropy is more sensitive than the categorical entropy. In other words, one can expect that Theorem 1.2 holds.

Theorem 1.2 (=Theorem 4.1).

The categorical entropy of ϕ\phi bounds the topological entropy of ϕ\phi from below, i.e.,

hcat(ϕ)htop(ϕ).h_{cat}(\phi)\leq h_{top}(\phi).
Sketch of proof.

Let 𝒞\mathcal{C} be a triangulated category with a generator GG, and let Φ:𝒞𝒞\Phi:\mathcal{C}\to\mathcal{C} be an auto-equivalence. By [DHKK14, Theorem 2.6], if 𝒞\mathcal{C} is smooth and proper, we have

(1.2) hcat(Φ)=limndimHom(G,Φn(G)).\displaystyle h_{cat}(\Phi)=\lim_{n\to\infty}\dim Hom\left(G,\Phi^{n}(G)\right).

Let (W,ϕ)(W,\phi) be a given dynamical system. We note that the wrapped Fukaya category 𝒲(W)\mathcal{W}(W) of WW is smooth, but is not necessarily proper. Thus, we cannot use [DHKK14, Theorem 2.6] directly.

We recall that a fully stopped partially wrapped Fukaya category is proper. Moreover, by Lemma 2.10, the categorical entropies of ϕ\phi on 𝒲(W)\mathcal{W}(W) and on a partially wrapped Fukaya category are the same. Thus, Equation (1.2) holds if HomHom means the morphism space of a fully stopped partially wrapped Fukaya category.

It is left to show that the right-hand side of Equation (1.2) bounds htop(ϕ)h_{top}(\phi) from below. A variant of Crofton inequality proves that. See Lemmas 3.2 and 3.4. ∎

We remark that for the categorical entropy of ϕ\phi, we work on the wrapped Fukaya category 𝒲(W)\mathcal{W}(W). However, there exists another triangulated category which is also an invariant of WW. The other is the compact Fukaya category (W)\mathcal{F}(W) (or its triangulated closure). Thus, it would be natural to ask why we work on 𝒲(W)\mathcal{W}(W) rather than (W)\mathcal{F}(W).

The followings are two reasons why we work on 𝒲(W)\mathcal{W}(W) rather than (W)\mathcal{F}(W):

  • First, it is well-known that there is a Lagrangian generating 𝒲(W)\mathcal{W}(W). However, for (W)\mathcal{F}(W), the existence of Lagrangian generating (W)\mathcal{F}(W) is not known for a general WW.

  • Second, 𝒲(W)\mathcal{W}(W) is a smooth category, but (W)\mathcal{F}(W) is not necessarily smooth. Thus, one cannot apply [DHKK14, Theorem 2.6].

However, if one adds some assumptions that resolve the above two difficulties, one can expect the inequality (1.1) holds on (W)\mathcal{F}(W). Based on this, we prove Theorem 1.3.

Theorem 1.3 (=Theorem 6.3).

Let a pair (W,ϕ:WW)(W,\phi:W\to W) satisfy the assumption in Lemma 6.2. Let Φ(W)\Phi_{\mathcal{F}(W)} denote the functor that ϕ\phi induces on the compact Fukaya category (W)\mathcal{F}(W). Then the categorical entropy hcat(Φ(W))h_{cat}(\Phi_{\mathcal{F}(W)}) bounds the topological entropy of ϕ\phi from below, i.e.

hcat(Φ(W))htop(ϕ).h_{cat}(\Phi_{\mathcal{F}(W)})\leq h_{top}(\phi).

1.3. Further questions

At the beginning of Section 1.2, we emphasize a reason why we expect the inequality (1.1): categorical entropy cannot distinguish members of a Hamiltonian isotopic class, but topological entropy can. Here, we introduce another philosophical reason for our expectations.

In order to describe the reason, we review a property of topological entropy. By [New88, Prz80, Yom87], it is known that

htop(ϕ)=supcompact submanifold YW( the exponential growth rate of Vol(ϕn(Y)) with respect to n).h_{top}(\phi)=\sup_{\text{compact submanifold }Y\subset W}\left(\text{ the exponential growth rate of }\mathrm{Vol}\left(\phi^{n}(Y)\right)\text{ with respect to }n\right).

In other words, one can compute htop(ϕ)h_{top}(\phi) by taking the supremum over all submanifolds YY. On the other hand, the categorical entropy of ϕ\phi cares only about the exact Lagrangian submanifolds, and the other submanifolds cannot affect categorical entropy.

As a counterpart of the exponential growth rate of Vol(ϕn(Y))\mathrm{Vol}\left(\phi^{n}(Y)\right), we define another entropy which is called barcode entropy. We note that the notion of barcode entropy is a slight modification of relative barcode entropy defined in [CGG21]. By definition, barcode entropy is not an invariant of the dynamical system (W,ϕ)(W,\phi), but it is an invariant of (W,ϕ,L1,L2)(W,\phi,L_{1},L_{2}) where LiL_{i} is a Lagrangian submanifold of WW. Let hbar(ϕ;L1,L2)h_{bar}(\phi;L_{1},L_{2}) denote the barcode entropy for (W,ϕ,L1,L2)(W,\phi,L_{1},L_{2}). For the details, see Section 7. Then, we prove Proposition 1.4.

Proposition 1.4 (= Propositions 7.6 and 7.7).

For a pair of Lagrangians (L1,L2)(L_{1},L_{2}) satisfying conditions in Section 7,

hcat(ϕ)hbar(ϕ;L1,L2)htop(ϕ).h_{cat}(\phi)\leq h_{bar}(\phi;L_{1},L_{2})\leq h_{top}(\phi).

Based on Proposition 1.4 and the above arguments, we ask whether the following equations do hold or do not:

hcat(ϕ)=infL1,L2hbar(ϕ;L1,L2),\displaystyle h_{cat}(\phi)=\inf_{L_{1},L_{2}}h_{bar}(\phi;L_{1},L_{2}),
htop(ϕ)=supL1,L2hbar(ϕ;L1,L2).\displaystyle h_{top}(\phi)=\sup_{L_{1},L_{2}}h_{bar}(\phi;L_{1},L_{2}).

1.4. Structure of the paper

The paper consists of six sections except Section 1. Section 2 reviews definitions and preliminaries. Sections 3 and 4 prove the main theorem, i.e., Theorem 1.2. Section 5 discusses two examples: the first example shows that the inequality (1.1) can be strict, and the second example shows that the categorical entropy can be larger than the logarithm of spectral radius, which is a well-known lower bound of the topological entropy. Section 6 considers the compact Fukaya category of WW under some assumptions. Section 7 is about the further questions described in Section 1.3.

1.5. Acknowledgment

In Sections 3 and 7, and the proof of Theorem 4.1, we use the idea given in [CGG21] heavily. Also, Definition 7.5 is originally introduced in [CGG21]. The second named author appreciates Viktor Ginzburg for explaining the key ideas of [CGG21] in a seminar talk and a personal conversation. The first named author is grateful to Otto van Koert for helpful comments.

Hanwool Bae was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2020R1A5A1016126), and Sangjin Lee was supported by the Institute for Basic Science (IBS-R003-D1).

2. Preliminaries

In this section, we give preliminaries including the definitions of topological entropy, categorical entropy, and some basic stuff of Lagrangian Floer theory.

2.1. Topological entropy

Let XX be a topological space and let ϕ:XX\phi:X\to X be a continuous self-mapping defined on XX. The notion of topological entropy htop(ϕ)h_{top}(\phi) is defined in [AKM65] for compact XX and in [Hof72, Hof74] for non-compact XX.

Definition 2.1.

Let XX be a topological space and let ϕ:XX\phi:X\to X be a continuous self-mapping on XX.

  1. (1)

    Let 𝒪(X)\mathcal{O}(X) denote the class of all open covers of XX. Similarly, let 𝒪f(X)\mathcal{O}_{f}(X) denote the class of all finite open covers of XX.

  2. (2)

    Let αi𝒪(X)\alpha_{i}\in\mathcal{O}(X). Then,

    i=1nαi:={U1Un|Uiαi}𝒪(X).\bigvee_{i=1}^{n}\alpha_{i}:=\{U_{1}\cap\dots\cap U_{n}|U_{i}\in\alpha_{i}\}\in\mathcal{O}(X).
  3. (3)

    For all α𝒪(X)\alpha\in\mathcal{O}(X), let N(α)N(\alpha) denote the minimal cardinality of a sub-cover of α\alpha.

  4. (4)

    If XX is compact, for all α𝒪(X)\alpha\in\mathcal{O}(X), htop(ϕ,α)h_{top}(\phi,\alpha) is a non-negative real number such that

    htop(ϕ,α):=limn1nlogN(i=1nϕi(α)).h_{top}(\phi,\alpha):=\lim_{n\to\infty}\frac{1}{n}\log N\left(\bigvee_{i=1}^{n}\phi^{-i}(\alpha)\right).

    Similarly, if XX is not compact, then htop(ϕ,α)h_{top}(\phi,\alpha) is a non-negative real number such that

    htop(ϕ):=supα𝒪f(X)htop(ϕ,α).h_{top}(\phi):=\sup_{\alpha\in\mathcal{O}_{f}(X)}h_{top}(\phi,\alpha).
  5. (5)

    The topological entropy of ϕ\phi, htop(ϕ)h_{top}(\phi) is defined as

    htop(ϕ):=supα𝒪(X)htop(ϕ,α).h_{top}(\phi):=\sup_{\alpha\in\mathcal{O}(X)}h_{top}(\phi,\alpha).
Remark 2.2.

Let ϕ\phi be a compactly supported self-mapping defined on a non-compact space XX. Let X0X_{0} be a compact submanifold of XX such that X0X_{0} contains the support of ϕ\phi. Then, one can easily show that

htop(ϕ|X0)=htop(ϕ).h_{top}(\phi|_{X_{0}})=h_{top}(\phi).

In the rest of Section 2.1, let XX be a compact manifold (with or without boundary) of dimension nn, equipped with a Riemannian metric gg. Then, there is another definition of topological entropy of ϕ:XX\phi:X\to X. We note that it is known that the new definition gives the same topological entropy with Definition 2.1, (5).

Definition 2.3.

  1. (1)

    Let Γϕk\Gamma_{\phi}^{k} denote the set of strings

    Γϕk:={(x,ϕ(x),,ϕk1(x))Xk:=X××X (k factors).}\Gamma_{\phi}^{k}:=\Big{\{}\left(x,\phi(x),\dots,\phi^{k-1}(x)\right)\in X^{k}:=X\times\dots\times X\text{ ($k$ factors).}\Big{\}}
  2. (2)

    An ϵ\epsilon-cubes in XkX^{k} is a product of balls in XX of radius ϵ\epsilon.

  3. (3)

    For a subset YXkY\subset X^{k}, CapϵY\text{Cap}_{\epsilon}Y is the minimal number of ϵ\epsilon-cubes needed to cover YY.

  4. (4)

    The topological entropy of ϕ\phi, denoted by htop(ϕ)h_{top}(\phi), is given by

    htop(ϕ):=limϵ0lim supk1klogCapϵΓϕk.h_{top}(\phi):=\lim_{\epsilon\to 0}\limsup_{k\to\infty}\frac{1}{k}\log\mathrm{Cap}_{\epsilon}\Gamma_{\phi}^{k}.

We would like to point out that the htop(ϕ)h_{top}(\phi) in Definition 2.3, (4) does not depend on a specific choice of a metric gg. For more details, see [Gro03, Gro87].

We end this subsection by stating a property of topological entropy, that plays a key role in the proof of Lemma 3.4. For a CC^{\infty}-submanifold YXY\subset X of dimension mm, let

Γϕ|Yk:={(y,ϕ(y),,ϕk1(y))Xk|yY}.\Gamma_{\phi|_{Y}}^{k}:=\Big{\{}\left(y,\phi(y),\dots,\phi^{k-1}(y)\right)\in X^{k}|y\in Y\Big{\}}.

We note that the product metric on XkX^{k} can induce an mm-dimensional volume form. Thus, we can measure the volumes of Γϕ|Yk\Gamma_{\phi|_{Y}}^{k} for all kk. It is well-known that the exponential growth rate of the volumes is a lower bound of htop(ϕ)h_{top}(\phi).

Proposition 2.4.

The topological entropy of ϕ\phi is bounded by the exponential growth rate of the volume of Γϕ|Yk\Gamma_{\phi|_{Y}}^{k}, i.e.,

lim supk1klogVol(Γϕ|Yk)htop(ϕ).\limsup_{k\to\infty}\frac{1}{k}\log\mathrm{Vol}(\Gamma_{\phi|_{Y}}^{k})\leq h_{top}(\phi).

See [Yom87, Gro87] for the proof of Proposition 2.4.

2.2. Categorical entropy

We start this subsection by introducing Definition 2.5 which is originally defined in [DHKK14].

Definition 2.5.

Let 𝒞\mathcal{C} be a triangulated category with a split-generator GG. Let Φ\Phi be an auto-equivalence defined on 𝒞\mathcal{C}.

  1. (1)

    The complexity of E2E_{2} relative to E1E_{1} at tt is a number in [0,][0,\infty] given by

    δt(E1;E2):=inf{i=1kenit|0A1A2E1[n1]E1[n2]Ak1E2E2E1[nk]}.\delta_{t}(E_{1};E_{2}):=\inf\Bigg{\{}\sum_{i=1}^{k}e^{n_{i}t}|\leavevmode\hbox to129.07pt{\vbox to51.28pt{\pgfpicture\makeatletter\hbox{\hskip 64.53284pt\lower-25.63832pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.53284pt}{-25.63832pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 33.45552pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.15001pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${A_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 9.45555pt\hfil&\hfil\hskip 33.45552pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.15001pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${A_{2}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.45555pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 40.86363pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.55812pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{1}[n_{1}]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.86366pt\hfil&\hfil\hskip 40.86363pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.55812pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{1}[n_{2}]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.86366pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-50.72176pt}{11.4856pt}\pgfsys@lineto{-20.11363pt}{11.4856pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.91365pt}{11.4856pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-10.05812pt}{3.32144pt}\pgfsys@lineto{-10.05812pt}{-13.87865pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-10.05812pt}{-14.07863pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-0.40257pt}{11.4856pt}\pgfsys@lineto{37.61366pt}{11.4856pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.81364pt}{11.4856pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{47.66917pt}{3.32144pt}\pgfsys@lineto{47.66917pt}{-13.87865pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{47.66917pt}{-14.07863pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-22.2509pt}{-14.27861pt}\pgfsys@lineto{-50.39815pt}{6.16519pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.8091}{0.58768}{-0.58768}{-0.8091}{-50.55995pt}{6.28271pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{32.90404pt}{-14.27861pt}\pgfsys@lineto{-0.05957pt}{5.49005pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.8576}{0.51431}{-0.51431}{-0.8576}{-0.23106pt}{5.59291pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\dots\leavevmode\hbox to88pt{\vbox to52.97pt{\pgfpicture\makeatletter\hbox{\hskip 43.99854pt\lower-26.48608pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-43.99854pt}{-26.48608pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 11.93471pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.62917pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${A_{k-1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 11.93471pt\hfil&\hfil\hskip 44.06381pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.7583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{2}\oplus E_{2}^{\prime}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.06384pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 41.00946pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.70395pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{1}[n_{k}]}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 17.00949pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.92912pt}{10.77782pt}\pgfsys@lineto{3.27089pt}{10.77782pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.47087pt}{10.77782pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{23.9347pt}{2.61366pt}\pgfsys@lineto{23.9347pt}{-14.72641pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{23.9347pt}{-14.92639pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{9.66745pt}{-15.12637pt}\pgfsys@lineto{-19.58932pt}{3.03584pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.8496}{0.52742}{-0.52742}{-0.8496}{-19.75922pt}{3.14131pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\Bigg{\}}.
  2. (2)

    For a given tt\in\mathbb{R}, the categorical entropy of Φ\Phi at tt is defined as

    hcat(Φ;t):=limn1nlogδt(G;Φn(G)){}.h_{cat}(\Phi;t):=\lim_{n\to\infty}\frac{1}{n}\log\delta_{t}(G;\Phi^{n}(G))\in\{-\infty\}\cup\mathbb{R}.

In the current paper, we only consider the case of t=0t=0.

Definition 2.6.

Let Φ:𝒞𝒞\Phi:\mathcal{C}\to\mathcal{C} be an auto-equivalence defined on a triangulated category 𝒞\mathcal{C} with a generator GG. We define the categorical entropy of Φ\Phi as

hcat(Φ):=hcat(Φ;0).h_{cat}(\Phi):=h_{cat}(\Phi;0).
Remark 2.7.

We note that hcat(Φ)=hcat(Φ;0)0h_{cat}(\Phi)=h_{cat}(\Phi;0)\geq 0 by definition.

Let 𝒟\mathcal{D} be a fully faithful subcategory of 𝒞\mathcal{C} such that

  • 𝒟\mathcal{D} is a triangulated category, and

  • the restriction of Φ\Phi to 𝒟\mathcal{D} defines an auto-equivalence on 𝒟\mathcal{D}, i.e, Φ(𝒟)𝒟\Phi(\mathcal{D})\subset\mathcal{D}.

It is known that there exists a localisation functor ll

l:𝒞𝒞/𝒟.l:\mathcal{C}\to\mathcal{C}/\mathcal{D}.

See [Dri04]. Then, Φ\Phi induces an auto-equivalence defined on 𝒞/𝒟\mathcal{C}/\mathcal{D} uniquely up to natural transformations.

Proposition 2.8 (Proposition 3.3 of [BCJ+22]).

There exists a unique (up to natural transformation) dg functor

Φ𝒞/𝒟:𝒞/𝒟𝒞/𝒟,\Phi_{\mathcal{C}/\mathcal{D}}:\mathcal{C}/\mathcal{D}\to\mathcal{C}/\mathcal{D},

satisfying

Φ𝒞/𝒟l=lΦ.\Phi_{\mathcal{C}/\mathcal{D}}\circ l=l\circ\Phi.

To be clear, let us use the following notation Φ𝒞,Φ𝒟\Phi_{\mathcal{C}},\Phi_{\mathcal{D}}, and Φ𝒞/𝒟\Phi_{\mathcal{C}/\mathcal{D}},

Φ𝒞:=Φ:𝒞𝒞,Φ𝒟:=Φ𝒞|𝒟:𝒟𝒟,Φ𝒞/𝒟:𝒞/𝒟𝒞/𝒟.\Phi_{\mathcal{C}}:=\Phi:\mathcal{C}\to\mathcal{C},\Phi_{\mathcal{D}}:=\Phi_{\mathcal{C}}|_{\mathcal{D}}:\mathcal{D}\to\mathcal{D},\Phi{\mathcal{C}/\mathcal{D}}:\mathcal{C}/\mathcal{D}\to\mathcal{C}/\mathcal{D}.

Then, [BCJ+22, Theorem 3.8] compares the categorical entropies of Φ𝒞,Φ𝒟\Phi_{\mathcal{C}},\Phi_{\mathcal{D}}, and Φ𝒞/𝒟\Phi_{\mathcal{C}/\mathcal{D}}.

Lemma 2.9 (Theorem 3.8 of [BCJ+22]).

The categorical entropies of Φ𝒞,Φ𝒟,Φ𝒞/𝒟\Phi_{\mathcal{C}},\Phi_{\mathcal{D}},\Phi_{\mathcal{C}/\mathcal{D}} satisfy

hcat(Φ𝒞/𝒟)hcat(Φ𝒞)max{hcat(Φ𝒟),hcat(Φ𝒞/𝒟)}.h_{cat}(\Phi_{\mathcal{C}/\mathcal{D}})\leq h_{cat}(\Phi_{\mathcal{C}})\leq\max\{h_{cat}(\Phi_{\mathcal{D}}),h_{cat}(\Phi_{\mathcal{C}/\mathcal{D}})\}.

Let WW be a Weinstein manifold, and let ϕ:WW\phi:W\to W be a compactly supported exact symplectic automorphism. Let Λ\Lambda be a stop in W\partial_{\infty}W. If 𝒲(W)\mathcal{W}(W) (resp. 𝒲(W,Λ)\mathcal{W}(W,\Lambda)) denotes the wrapped Fukaya category of WW (resp. partially wrapped Fukaya category of WW with a stop Λ\Lambda), ϕ\phi induces functors Φ:𝒲(W)𝒲(W)\Phi:\mathcal{W}(W)\to\mathcal{W}(W) and ΦΛ:𝒲(W,Λ)𝒲(W,Λ)\Phi_{\Lambda}:\mathcal{W}(W,\Lambda)\to\mathcal{W}(W,\Lambda). Thanks to Lemma 2.9, one can compare hcat(Φ)h_{cat}(\Phi) and hcat(ΦΛ)h_{cat}(\Phi_{\Lambda}).

Lemma 2.10 (Theorem 4.2 of [BCJ+22]).

The induced functors Φ\Phi and ΦΛ\Phi_{\Lambda} have the same categorical entropy, i.e.,

hcat(Φ)=hcat(ΦΛ).h_{cat}(\Phi)=h_{cat}(\Phi_{\Lambda}).
Proof.

We note that

𝒲(W):=𝒲(W,Λ)/𝒟,\mathcal{W}(W):=\mathcal{W}(W,\Lambda)/\mathcal{D},

where 𝒟\mathcal{D} means the full subcategory of 𝒲(W,Λ)\mathcal{W}(W,\Lambda) generated by all linking disks.

Since ϕ\phi is compactly supported, the restriction of Φ\Phi on 𝒟\mathcal{D} is the identity functor. Thus, the categorical entropy of Φ|𝒟\Phi|_{\mathcal{D}} is zero.

We note that, as mentioned Remark 2.7,

hcat(Φ),hcat(ΦΛ)0.h_{cat}(\Phi),h_{cat}(\Phi_{\Lambda})\geq 0.

By applying Lemma 2.9, one has

0hcat(ΦΛ)hcat(Φ)max{hcat(ΦΛ),0}=hcat(ΦΛ).0\leq h_{cat}(\Phi_{\Lambda})\leq h_{cat}(\Phi)\leq\max\{h_{cat}(\Phi_{\Lambda}),0\}=h_{cat}(\Phi_{\Lambda}).

This completes the proof. ∎

Remark 2.11.

In Section 1, we used the notation hcat(ϕ)h_{cat}(\phi) to denote hcat(Φ)h_{cat}(\Phi) where Φ\Phi is the induced auto-equivalence on the wrapped Fukaya category of WW. In above, ϕ\phi induced an auto-equivalence on anther Fukaya category, partially wrapped Fukaya category. In order to avoid confusion, we let hcat(Φ)h_{cat}(\Phi) (resp. hcat(ΦΛ)h_{cat}(\Phi_{\Lambda})) denote the categorical entropy on 𝒲(W^)\mathcal{W}(\hat{W}) (resp. 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda)).

2.3. Lagrangian Floer theory

Let W^\hat{W} be a Weinstein manifold with a Liouville one form λ\lambda. Then, there exists a Weinstein domain WW whose completion is W^\hat{W}. In other words,

W^:=W(W×[1,)),\hat{W}:=W\cup\left(\partial W\times[1,\infty)\right),

where W\partial W and W×{1}\partial W\times\{1\} are identified by the natural identification. It is well-known that the Liouville one form λ\lambda satisfies

λ|W×[1,]:=rα,\lambda|_{\partial W\times[1,\infty]}:=r\alpha,

where rr is the coordinate for [1,)[1,\infty) and α:=λ|W\alpha:=\lambda|_{\partial W}. Furthermore, let JJ be an almost complex structure on W^\hat{W} that is compatible with the symplectic form ω:=dλ\omega:=d\lambda and is of contact type at \infty. The latter condition is necessary to apply maximum principles to JJ-holomorphic curves in W^\hat{W} in order to define Lagrangian Floer (co)homology. Then the symplectic structure ω\omega and the almost complex structure JJ determine a Riemannian metric gg on W^\hat{W} given by

g(,)=ω(,J).g(\cdot,\cdot)=\omega(\cdot,J\cdot).
Definition 2.12.

An exact Lagrangian LL is cylindrical at \infty if

L(W×[1,))=Λ×[1,),L\cap\left(\partial W\times[1,\infty)\right)=\Lambda\times[1,\infty),

where Λ:=L×W\Lambda:=L\times\partial W.

For convenience, we will use the term “Lagrangian” instead of “exact Lagrangian with Cylindrical end”.

Let us assume that L1L_{1} and L2L_{2} are a transversal pair of Lagrangians in W^\hat{W}. Since LiL_{i} is an exact Lagrangian, there is a primitive function

hi:Li,h_{i}:L_{i}\to\mathbb{R},

such that λ|Li=dfi\lambda|_{L_{i}}=df_{i}. Let us fix such primitive functions hih_{i} for Lagrangians LiL_{i}.

Let 𝒫(L1,L2)\mathcal{P}(L_{1},L_{2}) be the space of paths from L1L_{1} to L2L_{2}. We define the action functional

(2.1) 𝒜:=𝒜L1,L2:𝒫(L1,L2)\mathcal{A}:=\mathcal{A}_{L_{1},L_{2}}:\mathcal{P}(L_{1},L_{2})\to\mathbb{R}

by

𝒜(γ):=h1(γ(0))+h2(γ(1)),γ𝒫(L1,L2)\mathcal{A}(\gamma):=-h_{1}(\gamma(0))+h_{2}(\gamma(1)),\forall\gamma\in\mathcal{P}(L_{1},L_{2})

Let us equip the path space 𝒫(L1,L2)\mathcal{P}(L_{1},L_{2}) with the standard L2L^{2}-metric induced by gg. Then it is straightforward to check that

  • the critical points of the action functional 𝒜\mathcal{A} are the constant paths from L1L_{1} to L2L_{2}, i.e., the intersection points of L1L_{1} and L2L_{2}, and

  • the gradient flows are given by strips

    u:×[0,1]W^u:\mathbb{R}\times[0,1]\to\hat{W}

    satisfying the JJ-holomorphic equation

    su+Jtu=0,(s,t)×[0,1].\partial_{s}u+J\partial_{t}u=0,\forall(s,t)\in\mathbb{R}\times[0,1].

The Lagrangian Floer complex CF(L1,L2)CF^{*}(L_{1},L_{2}) is given by the Morse complex for the action functional 𝒜=𝒜L1,L2\mathcal{A}=\mathcal{A}_{L_{1},L_{2}} . Indeed, for a given field kk,

  • CF(L1,L2)CF^{*}(L_{1},L_{2}) is a graded kk-vector space generated by the intersection points L1L2L_{1}\cap L_{2}, and

  • the differential map is defined by counting the JJ-holomorphic strips between two intersection points of L1L_{1} and L2L_{2}.

We would like to point out that the grading of the Floer cochain complex is not crucial in our remaining arguments. We will just assume that one of the followings holds.

  • either the Floer complex CF(L1,L2)CF^{*}(L_{1},L_{2}) is /2\mathbb{Z}/2-graded, or

  • it is \mathbb{Z}-graded assuming that

    2c1(W)=02c_{1}(W)=0

    and the Lagrangians L1L_{1} and L2L_{2} are graded in the sense of [Sei08, Section 12].

We remark that one can extend the action functional 𝒜\mathcal{A} (2.1) as a function defined on CF(L1,L2)CF(L_{1},L_{2}) as

(2.2) 𝒜(xiL1L2aixi)=max{𝒜(xi)|ai0}.\displaystyle\mathcal{A}\left(\sum_{x_{i}\in L_{1}\cap L_{2}}a_{i}x_{i}\right)=\max\left\{\mathcal{A}(x_{i})|a_{i}\neq 0\right\}.

We need the extended action functional 𝒜\mathcal{A} in Section 7.

3. Crofton’s inequality

The goal of this section is to prove Lemma 3.4 which plays a key role in the proof of Theorem 1.2. In order to prove Lemma 3.4, we construct a family of Lagrangian submanifolds satisfying some conditions in Lemma 3.2. By using the family of Lagrangians, we prove Lemma 3.4 in Section 3.2.

3.1. Lagrangian tomograph

In many place of this paper, we consider pairs of Lagrangians satisfying the following condition.

Definition 3.1.

A pair of Lagrangian (L1,L2)(L_{1},L_{2}) is good if L1L_{1} and L2L_{2} are disjoint in the cylindrical part, i.e.,

L1L2(W×[1,))=.L_{1}\cap L_{2}\cap\left(\partial W\times[1,\infty)\right)=\varnothing.

For a good pair of Lagrangians, we construct Lagrangian tomograph in Lemma 3.2. The original construction of Lagrangian tomograph is given in [CGG21, Section 5.2.3], and our construction is a slight modification of the original one.

Lemma 3.2.

Let (L1,L2)(L_{1},L_{2}) be a good pair of Lagrangians. Then, for any ϵ>0\epsilon>0 and sufficiently large dd\in\mathbb{N}, there is a family of Lagrangians {Ls}sBϵd\{L^{s}\}_{s\in B_{\epsilon}^{d}}, where BϵdB_{\epsilon}^{d} is a dd-dimensional closed ball, such that

  1. (i)

    L1L_{1} and LsL^{s} are Hamiltonian isotopic to each other for all sBϵds\in B_{\epsilon}^{d},

  2. (ii)

    dH(L1,Ls)<ϵ2d_{H}(L_{1},L^{s})<\frac{\epsilon}{2} for all sBϵds\in B^{d}_{\epsilon}, and

  3. (iii)

    LsL2L^{s}\pitchfork L_{2} for almost all sBϵds\in B_{\epsilon}^{d}.

Before going further, we briefly review the notion of Hofer norm dHd_{H} of a Hamiltonian isotopy, which appears in the condition (ii) of Lemma 3.2. Let φ\varphi be a compactly supported Hamiltonian isotopy. Then, the Hofer norm of φ\varphi is defined as

φHofer:=infHS1(maxMHtminMHt)𝑑t,\lVert\varphi\rVert_{Hofer}:=\inf_{H}\int_{S^{1}}(\max_{M}H_{t}-\min_{M}H_{t})dt,

where the infimum is taken over all 11-periodic in time Hamiltonian HH generating φ\varphi. Moreover, one can define the Hofer distance between two Hamiltonian isotopic Lagrangians LL and LL^{\prime} as

dH(L,L):=inf{φHofer|φ(L)=L}.d_{H}(L,L^{\prime}):=\inf\{\lVert\varphi\rVert_{Hofer}|\varphi(L)=L^{\prime}\}.
Proof of Lemma 3.2.

Since (L1,L2)(L_{1},L_{2}) is a good pair, there is a compact set W0W_{0} such that

L1L2Int(W0)W0Int(W),L_{1}\cap L_{2}\subset\mathrm{Int}(W_{0})\subset W_{0}\subset\mathrm{Int}(W),

where Int(W0)\mathrm{Int}(W_{0}) and Int(W)\mathrm{Int}(W) denote the interiors of W0W_{0} and WW respectively. Then, we choose a collection of real-valued functions

{g1,,gd|gi:L1},\{g_{1},\dots,g_{d}|g_{i}:L_{1}\to\mathbb{R}\},

satisfying

  1. (A)

    gi(x)=0g_{i}(x)=0 if xL1Wx\in L_{1}\setminus W, and

  2. (B)

    for all xL1W0x\in L_{1}\cap W_{0}, the cotangent fiber TxL1T^{*}_{x}L_{1} is generated by {dgi(x)|i=1,,d}\{dg_{i}(x)|i=1,\dots,d\}.

For any s=(s1,,sd)ds=(s_{1},\dots,s_{d})\in\mathbb{R}^{d}, We set

fs:L1,\displaystyle f_{s}:L_{1}\to\mathbb{R},
xs1g1(x)++sdgd(x).\displaystyle x\mapsto s_{1}g_{1}(x)+\dots+s_{d}g_{d}(x).

We note that there is a small neighborhood of L1L_{1} in W^\hat{W}, which is symplectomorphic to a small disk cotangent bundle of L1L_{1}. Then for sds\in\mathbb{R}^{d} such that s1\lVert s\rVert\ll 1, one can assume that the graph of dfsdf_{s} is embedded into W^\hat{W}. Let LsL^{s} be the embedded image of the graph of dfsdf_{s} in W^\hat{W}. By the construction of LsL^{s}, (i) holds obviously.

Let assume that BϵdB^{d}_{\epsilon} is a closed ball in d\mathbb{R}^{d} centered at the origin with a sufficiently small radius. Then, one can observe that (ii) holds for all sBϵds\in B^{d}_{\epsilon}. We note that the radius of BϵdB^{d}_{\epsilon} will depend on \ell in Equation (3.2) below.

In order to prove (iii), we would like to show that the following Ψ\Psi is a submersion on L2L_{2}.

(3.1) Ψ:Bϵd×L1W^,\displaystyle\Psi:B^{d}_{\epsilon}\times L_{1}\to\hat{W},
(s,x)dfs(x).\displaystyle(s,x)\mapsto df_{s}(x).

In other words, if Ψ(s,x)L2\Psi(s,x)\in L_{2}, we would like to show that

DΨ(s,x):T(s,x)(Bϵd×L1)TsBϵdTxL1TΨ(s,x)W^D\Psi_{(s,x)}:T_{(s,x)}\left(B^{d}_{\epsilon}\times L_{1}\right)\simeq T_{s}B^{d}_{\epsilon}\oplus T_{x}L_{1}\to T_{\Psi(s,x)}\hat{W}

is surjective.

We note that W^\hat{W} is equipped with a Riemannian metric gg compatible with the symplectic structure. Let

(3.2) :=min{d(x,y)|xL1(WInt(W0)),yL2(WInt(W0))},\displaystyle\ell:=\min\left\{d(x,y)|x\in L_{1}\cap\left(W\setminus\mathrm{Int}(W_{0})\right),y\in L_{2}\cap\left(W\setminus\mathrm{Int}(W_{0})\right)\right\},

where d(x,y)d(x,y) is the distance function. Since both L1(WInt(W0))L_{1}\cap(W\setminus\mathrm{Int}(W_{0})) and L2(WInt(W0))L_{2}\cap(W\setminus\mathrm{Int}(W_{0})) are compact and L1L2Int(W0)L_{1}\cap L_{2}\subset\mathrm{Int}(W_{0}), \ell is well-defined and positive.

We note that the restriction of gg on L1L_{1} defines a metric on L1L_{1}. Thus, for all xL1x\in L_{1}, one can assume that TxL1T^{*}_{x}L_{1} is a normed-vector space. If the radius of BϵdB^{d}_{\epsilon} is sufficiently small, then for all (s,x)Bϵd×W(s,x)\in B^{d}_{\epsilon}\times W, dfs(x)<\lVert df_{s}(x)\rVert<\ell. It is because gig_{i} is compactly supported. Here, \lVert\cdot\rVert means the norm on TxL1T^{*}_{x}L_{1}. We assume that the radius of BϵdB^{d}_{\epsilon} is sufficiently small in the rest of the proof.

Let assume that Ψ(s,x)L2\Psi(s,x)\in L_{2}. If Ψ(s,x)W^W\Psi(s,x)\in\hat{W}\setminus W, then by (A), Ψ(s,x)L1\Psi(s,x)\in L_{1}. It contradicts to L1L2W0WL_{1}\cap L_{2}\subset W_{0}\subset W. If Ψ(s,x)WInt(W0)\Psi(s,x)\in W\setminus\mathrm{Int}(W_{0}), then d(Ψ(s,x),x)=dfs(x)<d(\Psi(s,x),x)=\lVert df_{s}(x)\rVert<\ell. This is contradict to Equation (3.2).

The above paragraph shows that if Ψ(s,x)L2\Psi(s,x)\in L_{2}, then Ψ(s,x)W0\Psi(s,x)\in W_{0}, i.e., LsL2W0L^{s}\cap L_{2}\subset W_{0}. By (B), this proves that Ψ\Psi is a submersion on L2L_{2}. Since codimL2=dimL1\mathrm{codim}L_{2}=\mathrm{dim}L_{1}, for almost all sBϵds\in B^{d}_{\epsilon}, LsL2L^{s}\pitchfork L_{2}, i.e., (iii) holds. ∎

Remark 3.3.

  1. (1)

    We note that the the radius of BϵdB^{d}_{\epsilon} is determined by ,ϵ\ell,\epsilon, and the collection {g1,,gd}\{g_{1},\dots,g_{d}\}.

  2. (2)

    We would like to point out that ϵ2\frac{\epsilon}{2} in Lemma 3.2, (ii) will be used later in the proof of Proposition 7.6.

3.2. Crofton’s inequality

In Section 3.2, we prove Lemma 3.4, i.e., a Crofton type inequality, which plays a key role in the proof of Theorem 1.2. We remark that, as mentioned in [CGG21, Section 5.2.2], Lemma 3.4 is well-known to experts. For more details, see [CGG21, Section 5.2.2] and references therein.

In order to state Lemma 3.4, we need some preparation. For sBϵds\in B^{d}_{\epsilon} such that LsL2L^{s}\pitchfork L_{2}, let

N(s):=|LsL2|.N(s):=|L^{s}\cap L_{2}|.

Then, N(s)N(s) is finite for almost all sBϵds\in B^{d}_{\epsilon}. Moreover, N(s)N(s) is an integrable function on BϵdB^{d}_{\epsilon}.

Since BϵddB^{d}_{\epsilon}\subset\mathbb{R}^{d}, BϵdB^{d}_{\epsilon} carries the standard Euclidean metric. Let dsds be the volume form on BϵdB^{d}_{\epsilon} induced from the Euclidean metric.

Let

E:=Ψ1(W0).E:=\Psi^{-1}(W_{0}).

Then, let us fix a metric gEg_{E} on EE such that the restriction of DΨD\Psi to the normals to Ψ1(y),yW\Psi^{-1}(y),y\in W is an isometry. Since Ψ\Psi is a proper submersion, Ψ\Psi is a locally trivial fibration by Ehresmann’s fibration Theorem [Ehr51]. Thus, the existence of such a metric is guaranteed.

Now, we state Lemma 3.4.

Lemma 3.4.

One has

BϵdN(s)𝑑sCVol(L2W),\int_{B^{d}_{\epsilon}}N(s)ds\leq C\cdot\mathrm{Vol}(L_{2}\cap W),

where CC is a constant depending only on Ψ,ds\Psi,ds, the fixed metric gg on W^\hat{W}, and the fixed metric gEg_{E} on EE.

Proof.

Let Σ:=Ψ1(L2W)\Sigma:=\Psi^{-1}(L_{2}\cap W). Then, by definition, for all sBϵds\in B_{\epsilon}^{d} such that LsL2L^{s}\pitchfork L_{2}, one has

|(s×L1)Σ|=|LsL2|=N(s).|(s\times L_{1})\cap\Sigma|=|L^{s}\cap L_{2}|=N(s).

Note that in the proof of Lemma 3.2, we have

LsL2W0W,L^{s}\cap L_{2}\subset W_{0}\subset W,

by choosing a sufficiently small BϵdB^{d}_{\epsilon}.

We recall that BϵdB^{d}_{\epsilon} carries the Euclidean metric and L1L_{1} also carries a metric g|L1g|_{L_{1}}. Thus, Bϵd×L1B^{d}_{\epsilon}\times L_{1} carries a product metric. On EE, the restriction of the product metric gives another metric that does not need to be the same as gEg_{E}.

Let π:EBϵd×L1Bϵd\pi:E\hookrightarrow B^{d}_{\epsilon}\times L_{1}\to B^{d}_{\epsilon} be the projection to the first factor. Then, if Vol1()\mathrm{Vol}_{1}(\cdot) denotes the volume with respect to the product metric on EE, one has

(3.3) BϵdN(s)𝑑s=Bϵd|(s×L1)Σ|𝑑s=Σπ𝑑sVol1(Σ).\displaystyle\int_{B^{d}_{\epsilon}}N(s)ds=\int_{B^{d}_{\epsilon}}|(s\times L_{1})\cap\Sigma|ds=\int_{\Sigma}\pi^{*}ds\leq\mathrm{Vol}_{1}(\Sigma).

Let Vol()\mathrm{Vol}(\cdot) (resp. Vol2()\mathrm{Vol}_{2}(\cdot)) denote the volume with respect to the fixed metric gg (resp. gEg_{E}) on WW (resp. EE). Then, by Fubini theorem, one has

(3.4) Vol2(Σ)=L2WVol2(Ψ1(y))𝑑y|L2maxyΨ(E)Vol2(Ψ1(y))Vol(L2W).\displaystyle\mathrm{Vol}_{2}(\Sigma)=\int_{L_{2}\cap W}\mathrm{Vol}_{2}\left(\Psi^{-1}(y)\right)dy|_{L_{2}}\leq\max_{y\in\Psi(E)}\mathrm{Vol}_{2}\left(\Psi^{-1}(y)\right)\cdot\mathrm{Vol}(L_{2}\cap W).

We note that since EE is compact,

(3.5) Vol1(Σ)C0Vol2(Σ),\displaystyle\mathrm{Vol}_{1}(\Sigma)\leq C_{0}\cdot\mathrm{Vol}_{2}(\Sigma),

where C0C_{0} is a constant depending only on gEg_{E} and the product metric on EE.

By combining Equations (3.3) – (3.5), one concludes that

BϵdN(s)𝑑sCVol(L2W),\int_{B^{d}_{\epsilon}}N(s)ds\leq C\cdot\mathrm{Vol}(L_{2}\cap W),

where CC is a constant depending only on Ψ,ds,g\Psi,ds,g, and gEg_{E}. ∎

4. Categorical vs topological entropy

In this Section, we prove our main theorem comparing categorical and topological entropy. To be more precise, let ϕ:W^W^\phi:\hat{W}\to\hat{W} be a compactly supported exact symplectic automorphism of a Weinstein manifold W^\hat{W}. Let Φ:𝒲(W^)𝒲(W^)\Phi:\mathcal{W}(\hat{W})\to\mathcal{W}(\hat{W}) denote the functor induced from ϕ\phi, where 𝒲(W^)\mathcal{W}(\hat{W}) is the wrapped Fukaya category of W^\hat{W}. Then, we prove Theorem 4.1.

Theorem 4.1 (=Theorem 1.2).

The categorical entropy of Φ\Phi bounds the topological entropy of ϕ\phi from below, i.e.,

hcat(Φ)htop(ϕ).h_{cat}(\Phi)\leq h_{top}(\phi).
Proof.

In order to prove Theorem 4.1, we recall that every Weinstein manifold W^\hat{W} admits a Lefschetz fibration π:W^\pi:\hat{W}\to\mathbb{C} by [GP17]. Then, π\pi defines a Fukaya-Seidel category. Moreover, it is known by [GPS18] that the corresponding Fukaya-Seidel category is the partially wrapped Fukaya category with the stop Λ=π1()\Lambda=\pi^{-1}(-\infty). Let 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda) denote the partially wrapped Fukaya category with a stop Λ\Lambda. Also, it is known that the Lefschetz thimbles of π\pi generate 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda). Let GG denote the generating Lagrangian submanifold.

We note that wrapping a Lagrangian GG means taking a Hamiltonian isotopy of GG. Since 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda) is fully stopped, there exists a Hamiltonian isotopy φ0\varphi_{0} such that

  1. (A)

    (φ0(G),ϕn(G))\left(\varphi_{0}(G),\phi^{n}(G)\right) is a good pair for all nn\in\mathbb{N}, and

  2. (B)

    HWΛ(φ0(G),ϕn(G))=HF(φ0(G),ϕn(G))HW_{\Lambda}\left(\varphi_{0}(G),\phi^{n}(G)\right)=HF\left(\varphi_{0}(G),\phi^{n}(G)\right) for all nn\in\mathbb{N},

where HWΛHW_{\Lambda} means the morphism space of 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda). See Figure 1.

Refer to caption
-\infty
Figure 1. The interior of the black dotted circle is the base of a Lefschetz fibration π\pi. The star marked points are the singular values and the black dot is -\infty. We note that the stop Λ\Lambda is give by Λ=π1()\Lambda=\pi^{-1}(-\infty). One can choose GG such that π(G)\pi(G) is the union of all black curves. Similarly, π(φ0(G))\pi\left(\varphi_{0}(G)\right) is the union of all red curves. Let π(W)\pi(W) be contained in the interior of blue dotted circle. Then, (φ0(G),ϕn(G))\left(\varphi_{0}(G),\phi^{n}(G)\right) is a good pair for all nn\in\mathbb{Z}.

For a given nn\in\mathbb{N}, we apply Lemma 3.2 for the good pair of Lagrangians (φ0(G),ϕn(G))\left(\varphi_{0}(G),\phi^{n}(G)\right). Then, there exists a family of Lagrangian {Ls}sBϵd\{L^{s}\}_{s\in B^{d}_{\epsilon}} such that

  1. (i)

    φ0(G)\varphi_{0}(G) and LsL^{s} are Hamiltonian isotopic to each other for all sBϵds\in B_{\epsilon}^{d},

  2. (ii)

    dH(φ0(G),Ls)<ϵ2d_{H}(\varphi_{0}(G),L^{s})<\frac{\epsilon}{2}, and

  3. (iii)

    Lsϕn(G)L^{s}\pitchfork\phi^{n}(G) for almost all sBϵds\in B_{\epsilon}^{d}.

We note that one can find a family {Ls}sBϵd\{L^{s}\}_{s\in B^{d}_{\epsilon}} which does not depend on nn. To be more precise, we remark that in the proof of Lemma 3.2, the construction of {Ls}sBϵd\{L^{s}\}_{s\in B^{d}_{\epsilon}} depends only on ϵ\epsilon, a collection of functions {g1,,gd}\{g_{1},\dots,g_{d}\}, and \ell in Equation (3.2). Since ϵ\epsilon is a fixed, sufficiently small positive number, ϵ\epsilon is independent of nn. Similarly, {g1,gd}\{g_{1},\dotsm g_{d}\} is a collection of functions not depending on nn.

We recall that in order to define \ell, we should fix W0WW_{0}\subset W such that

W0Int(W) and φ0(G)ϕn(G)Int(W0).W_{0}\subset\mathrm{Int}(W)\text{ and }\varphi_{0}(G)\cap\phi^{n}(G)\subset\mathrm{Int}(W_{0}).

Without loss of generality, one can assume that W0W_{0} not only satisfies the above two conditions, but also contains the support of ϕ\phi. Then, outside of W0W_{0}, ϕn1(G)\phi^{n_{1}}(G) and ϕn2(G)\phi^{n_{2}}(G) agree for all nin_{i}\in\mathbb{N}. Thus, \ell in Equation (3.2) does not depend on nn.

Since we have a family {Ls}sBϵd\{L^{s}\}_{s\in B^{d}_{\epsilon}} not depending on nn, one can define the following function

Nn(s):=|Lsϕn(G)|.N_{n}(s):=|L^{s}\cap\phi^{n}(G)|.

We point out that for each nn\in\mathbb{N}, Nn(s)N_{n}(s) is an integrable function because of (iii).

By applying Lemma 3.4, we have

(4.1) BϵdNn(s)𝑑sCVol(ϕn(G)W).\displaystyle\int_{B^{d}_{\epsilon}}N_{n}(s)ds\leq C\cdot\mathrm{Vol}\left(\phi^{n}(G)\cap W\right).

We note that the constant CC in (4.1) is independent of nn.

On the other hand, for Lsϕn(G)L^{s}\pitchfork\phi^{n}(G), we have

(4.2) dimHWΛ(G,ϕn(G))=dimHF(φ0(G),ϕn(G))=dimHF(Ls,ϕn(G))Nn(s).\displaystyle\mathrm{dim}HW_{\Lambda}\left(G,\phi^{n}(G)\right)=\mathrm{dim}HF\left(\varphi_{0}(G),\phi^{n}(G)\right)=\mathrm{dim}HF\left(L^{s},\phi^{n}(G)\right)\leq N_{n}(s).

The first equality holds because of (B), the second equality holds because of (i), and the last inequality holds because of the definition of Lagrangian Floer homology.

By integrating Equation (4.2), one has

(4.3) Vol(Bϵd)dimHWΛ(G,ϕn(G))=BϵddimHWΛ(G,ϕn(G))𝑑sBϵdNn(s)𝑑s.\displaystyle\mathrm{Vol}(B^{d}_{\epsilon})\cdot\mathrm{dim}HW_{\Lambda}\left(G,\phi^{n}(G)\right)=\int_{B^{d}_{\epsilon}}\mathrm{dim}HW_{\Lambda}\left(G,\phi^{n}(G)\right)ds\leq\int_{B^{d}_{\epsilon}}N_{n}(s)ds.

From two inequalities (4.1) and (4.3), one has

(4.4) Vol(Bϵd)dimHWΛ(G,ϕn(G))CVol(ϕn(G)W).\displaystyle\mathrm{Vol}(B^{d}_{\epsilon})\cdot\mathrm{dim}HW_{\Lambda}\left(G,\phi^{n}(G)\right)\leq C\cdot\mathrm{Vol}\left(\phi^{n}(G)\cap W\right).

By taking lim supn1nlog+\limsup_{n\to\infty}\frac{1}{n}\log^{+} for the both hand sides of (4.4), one has

(4.5) hcat(ΦΛ:𝒲(W^,Λ)𝒲(W^,Λ))\displaystyle h_{cat}\left(\Phi_{\Lambda}:\mathcal{W}(\hat{W},\Lambda)\to\mathcal{W}(\hat{W},\Lambda)\right) =lim supn1nlogdimHWΛ(φ0(G),ϕn(G))\displaystyle=\limsup_{n\to\infty}\frac{1}{n}\log\dim HW_{\Lambda}\left(\varphi_{0}(G),\phi^{n}(G)\right)
lim supn1nlogVol(ϕn(G)W).\displaystyle\leq\limsup_{n\to\infty}\frac{1}{n}\log\mathrm{Vol}\left(\phi^{n}(G)\cap W\right).

The first equality in Equation (4.5) holds because of [DHKK14, Theorem 2.6] and because 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda) is smooth and proper.

We note that, by Lemma 2.10,

hcat(Φ)=hcat(ΦΛ).h_{cat}(\Phi)=h_{cat}(\Phi_{\Lambda}).

We also note that, by Proposition 2.4,

(4.6) lim supn1nlogVol(ϕn(G)W)htop(ϕ).\displaystyle\limsup_{n\to\infty}\frac{1}{n}\log\mathrm{Vol}\left(\phi^{n}(G)\cap W\right)\leq h_{top}(\phi).

Thus, (4.5) and (4.6) complete the proof. ∎

Remark 4.2.

In the proof of Theorem 4.1, we fix a Lefschetz fibration, and we use the corresponding Fukaya-Seidel category. We note that if one fixes a fully stopped partially wrapped Fukaya category instead of a Fukaya-Seidel category, the same proof still works.

5. Examples

In this section, we provide two examples. The first example is a symplectic automorphism for which the inequality (1.1) is strict. The second example shows that categorical entropy can be strictly greater than the spectral radius of its induced map on the homology.

5.1. The first example

Let WW be a 2-dimensional Weinstein domain such that W𝔻2W\neq\mathbb{D}^{2}. It is well-known that its wrapped Fukaya category is generated by the Lagrangian cocores, see [CRGG17, GPS18]. This ensures that the categorical entropy of an endo-functor on 𝒲(W)\mathcal{W}(W) is well-defined.

Let UU be a small open ball in WW. It is well-known that there is a Hamiltonian diffeomorphism ϕ~:U¯U¯\widetilde{\phi}:\overline{U}\to\overline{U} defined on the closure of UU such that

  • ϕ~\tilde{\phi} is the identity near the boundary of U¯\overline{U}, and

  • ϕ~\tilde{\phi} has a positive topological entropy.

Smale’s horseshoe map is an example of such ϕ~\tilde{\phi}.

Since ϕ~\widetilde{\phi} is assumed to be the identity near the boundary of the closure of UU, it admits a trivial extension to the whole Weinstein domain WW, which we will call ϕ\phi. Since ϕ\phi is a compactly supported Hamiltonian diffeomorphism, if we let Φ\Phi be its induced functor on 𝒲(W)\mathcal{W}(W) as above, then we have

hcat(Φ)=0<htop(ϕ~=ϕ|U)htop(ϕ).h_{cat}(\Phi)=0<h_{top}(\widetilde{\phi}=\phi|_{U})\leq h_{top}(\phi).

Hence ϕ\phi is an example showing that the inequality (1.1) can be strict.

5.2. The second example

Let ϕ:H(W)H(W)\phi_{*}:H_{*}(W)\to H_{*}(W) be the linear map on the homology of WW which ϕ\phi induced. We define the spectral radius of ϕ\phi as the maximal absolute value of eigenvalues of ϕ\phi_{*}. Let Rad(ϕ)\mathrm{Rad}(\phi) denote the spectral radius of ϕ\phi.

It is well-known that logRad(ϕ)\log\mathrm{Rad}(\phi) is a lower bound of htop(ϕ)h_{top}(\phi). We refer the reader to [Gro87] for more details. Since Theorem 4.1 gives another lower bound of htop(ϕ)h_{top}(\phi), i.e., hcat(Φ)h_{cat}(\Phi), one can ask the relationship between two lower bounds of htop(ϕ)h_{top}(\phi). In this subsection, first, we give an example of ϕ\phi such that

logRad(ϕ)hcat(ϕ),\log\mathrm{Rad}(\phi)\neq h_{cat}(\phi),

then, we discuss a difficulty of comparing two lower bounds generally.

Let AA and BB be nn-dimensional spheres. Then let WW be the plumbing of the cotangent bundles TAT^{*}A and TBT^{*}B at a point. In other words, WW is the Milnor fiber of A2A_{2}-type.

Let τA\tau_{A} and τB\tau_{B} be the Dehn twist defined on WW along AA and BB, respectively. Let us consider the symplectic automorphism on WW given by

ϕ=τAτB1.\phi=\tau_{A}\circ\tau_{B}^{-1}.

Now observe that the homology of WW is given by

H(W)={[pt]=0,[A],[B]=n,0otherwise.H_{*}(W)=\begin{cases}\mathbb{Z}\langle[pt]\rangle&*=0,\\ \mathbb{Z}\langle[A],[B]\rangle&*=n,\\ 0&\text{otherwise.}\end{cases}

Since ϕ\phi induces the trivial map on the zeroth homology H0(W)H_{0}(W), it is enough to consider its induced map on the nn-dimensional homology Hn(W)H_{n}(W) to compute Rad(ϕ)\mathrm{Rad}(\phi_{*}).

For that purpose, we consider the induced map of τA\tau_{A} and τB\tau_{B} on Hn(W)H_{n}(W) separately.

  1. (1)

    (τA)([A])=(1)n1[A](\tau_{A})_{*}([A])=(-1)^{n-1}[A].

  2. (2)

    (τA)([B])=[A]+[B](\tau_{A})_{*}([B])=[A]+[B].

  3. (3)

    (τB)([A])=[A]+(1)n[B](\tau_{B})_{*}([A])=[A]+(-1)^{n}[B].

  4. (4)

    (τB)([B])=(1)n1[B](\tau_{B})_{*}([B])=(-1)^{n-1}[B].

In other words, (τA)(\tau_{A})_{*} and (τB)(\tau_{B})_{*} are represented by the matrices

(τA)=((1)n1101) and (τB)=(10(1)n(1)n1),(\tau_{A})_{*}=\begin{pmatrix}(-1)^{n-1}&1\\ 0&1\end{pmatrix}\text{ and }(\tau_{B})_{*}=\begin{pmatrix}1&0\\ (-1)^{n}&(-1)^{n-1}\end{pmatrix},

respectively.

Consequently, the map ϕ=(τA)(τB1)\phi_{*}=(\tau_{A})_{*}\circ(\tau_{B}^{-1})_{*} is represented by

((1)n1101)(10(1)n(1)n1)1\displaystyle\begin{pmatrix}(-1)^{n-1}&1\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ (-1)^{n}&(-1)^{n-1}\end{pmatrix}^{-1} =((1)n1101)(101(1)n1)\displaystyle=\begin{pmatrix}(-1)^{n-1}&1\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ 1&(-1)^{n-1}\end{pmatrix}
=(1+(1)n1(1)n11(1)n1).\displaystyle=\begin{pmatrix}1+(-1)^{n-1}&(-1)^{n-1}\\ 1&(-1)^{n-1}\end{pmatrix}.

Let us now assume that nn is even. Then the above matrix is

(0111).\begin{pmatrix}0&-1\\ 1&-1\end{pmatrix}.

A straightforward computation shows that its eigenvalues are

1+3i2 and 13i2.\frac{-1+\sqrt{3}i}{2}\text{ and }\frac{-1-\sqrt{3}i}{2}.

Hence the spectral radius of ϕ\phi_{*} is

|1+3i2|=|13i2|=1.\left|\frac{-1+\sqrt{3}i}{2}\right|=\left|\frac{-1-\sqrt{3}i}{2}\right|=1.

On the other hand, [BCJ+22, Theorem 7.14, Lemma 8.5] says that the categorical entropy of the induced map of ϕ\phi on the wrapped Fukaya category is

3+52.\frac{3+\sqrt{5}}{2}.

Finally we have a strict inequality

logRad(ϕ)=0<3+52=hcat(Φ).\log\mathrm{Rad}(\phi)=0<\frac{3+\sqrt{5}}{2}=h_{cat}(\Phi).

So far, we compared logRad(ϕ)\log\mathrm{Rad}(\phi) and hcat(ϕ)h_{cat}(\phi) for a fixed ϕ\phi and showed that

(5.1) logRad(ϕ)hcat(Φ).\displaystyle\log\mathrm{Rad}(\phi)\leq h_{cat}(\Phi).

Thus, one can ask that inequality (5.1) holds for a general ϕ\phi. We note that symplectic automorphisms of a specific type satisfy the inequality (5.1), but we do not know whether it holds or not for a general case. See Remark 5.1 for the special case. In the rest of this subsection, we briefly discuss our strategy for the specific type, and why the strategy does not work for a general symplectomorphism.

Note that ϕ\phi induces a linear map on the Grothendieck group K0(𝒲(W))K_{0}(\mathcal{W}(W)). Let Φ\Phi_{*} denote the induced map on K0(𝒲(W))K_{0}(\mathcal{W}(W)). Then, by [KST20], we have

logRad(Φ)hcat(Φ),\log\mathrm{Rad}(\Phi_{*})\leq h_{cat}(\Phi),

under some conditions.

[Laz19] shows that there is a surjective map from middle-dimensional cohomology of WW to K0(𝒲(W))K_{0}(\mathcal{W}(W)). Thus, one can relate logRad(Φ)\log\mathrm{Rad}(\Phi_{*}) with the action of ϕ\phi_{*} on the middle-dimensional homology of WW via duality between homology and cohomology.

On the other hand, logRad(ϕ)\log\mathrm{Rad}(\phi) cares about the homology of all dimension. Thus, if Hk(W)H_{k}(W) is nontrivial for some 1kn11\leq k\leq n-1, then it is difficult to compare hcat(ϕ)h_{cat}(\phi) and logRad(ϕ)\log\mathrm{Rad}(\phi) directly.

Remark 5.1.

From the above discussion, one can expect that if Hk(W)=0H_{k}(W)=0 for all 1kn11\leq k\leq n-1, then logRad(ϕ)hcat(ϕ)\log\mathrm{Rad}(\phi)\leq h_{cat}(\phi). We note that the plumbing space of TSnT^{*}S^{n}’s along a tree TT satisfies the condition. Let Pn(T)P_{n}(T) denote the plumbing space. Then, on Pn(T)P_{n}(T), it is easy to observe that the Grothendieck group K0(𝒲(Pn(T)))K_{0}(\mathcal{W}(P_{n}(T))) and Hn(Pn(T))H_{n}\left(P_{n}(T)\right) are isomorphic.

We note that for a compact core Lagrangian, there is a Dehn twist along it. Then, every Dehn twist induces linear maps on K0(𝒲(Pn(T)))K_{0}(\mathcal{W}(P_{n}(T))) and Hn(Pn(T))H_{n}\left(P_{n}(T)\right). By choosing nice bases for K0(𝒲(Pn(T)))K_{0}(\mathcal{W}(P_{n}(T))) and Hn(Pn(T))H_{n}\left(P_{n}(T)\right), one can easily show that every Dehn twist induces the same matrix on the K0(𝒲(Pn(T)))K_{0}(\mathcal{W}(P_{n}(T))) and Hn(Pn(T))H_{n}\left({P_{n}(T)}\right).

By the above argument, if ϕ:Pn(T)Pn(T)\phi:P_{n}(T)\to P_{n}(T) is a product of positive/negative powers of Dehn twists, then the following equality holds.

logRad(ϕ)hcat(Φ).\log\mathrm{Rad}(\phi)\leq h_{cat}(\Phi).

6. The case of compact Fukaya category

As mentioned in the introduction, we prove that a variant of Theorem 4.1 holds for compact Fukaya category under an additional assumption. The assumption we consider is a kind of “duality” between compact and wrapped Fukaya categories of W^\hat{W}. We start Section 6 by giving a specific example satisfying the “duality”.

Let TT be a tree and let Pn(T)P_{n}(T) be the plumbing of the cotangent bundles of TSnT^{*}S^{n} along TT as in [BCJ+22]. For each vertex vv of TT, let SvS_{v} be the Lagrangian sphere in Pn(T)P_{n}(T) corresponding to vv, and let LvL_{v} be the Lagrangian cocore disk corresponding to vv. This means that the Lagrangian spheres SvS_{v} and the Lagrangian cocore disks LvL_{v} intersect transversely and that the intersection numbers between those are given by

|SvLw|={1v=w,0 otherwise.|S_{v}\cap L_{w}|=\begin{cases}1&v=w,\\ 0&\text{ otherwise.}\end{cases}

We note that [BCJ+22] compares the categorical entropies on compact and wrapped Fukaya categories of Pn(T)P_{n}(T) by using [AS12, Lemma 2.5] and the above Lagrangians {Sv}\{S_{v}\} and {Lv}\{L_{v}\}. Motivated by this, we will assume the following in this subsection.

Assumption 6.1.

There exists a finite collection of exact, closed Lagrangians {Si}iI\{S_{i}\}_{i\in I} of WW indexed by some set II such that

  1. (1)

    the direct sum S=iISvS=\oplus_{i\in I}S_{v} split-generates the compact Fukaya category (W)\mathcal{F}(W) in such way that every exact, closed Lagrangian LL of WW is quasi-isomorphic to a twisted complex for LL with components {Si}\{S_{i}\}, in which none of the arrows are nonzero multiples of the identity morphisms, and

  2. (2)

    there exists another collection of Lagrangian {Li}iI\{L_{i}\}_{i\in I} of WW, each of which intersects SiIS_{i}\in I transversely and satisfies

    |SiLj|={1i=j,0 otherwise.|S_{i}\cap L_{j}|=\begin{cases}1&i=j,\\ 0&\text{ otherwise.}\end{cases}

Let S=iISiS=\bigoplus_{i\in I}S_{i} and L=iILiL=\bigoplus_{i\in I}L_{i}. Let us denote by Φ(W)\Phi_{\mathcal{F}(W)} the auto-functor on (W)\mathcal{F}(W) induced by ϕ\phi. Then, since the arguments in [BCJ+22, Lemma 6.5, Theorem 6.6] continue to work under Assumption 6.1, we have Lemma 6.2.

Lemma 6.2.

For any exact, compactly-supported symplectic automorphism ϕ\phi on WW, if WW satisfies Assumption 6.1, then

hcat(Φ(W))=limn1nlogdimHF(ϕn(S),L).h_{cat}(\Phi_{\mathcal{F}(W)})=\lim_{n\to\infty}\frac{1}{n}\log\dim HF^{*}(\phi^{n}(S),L).
Theorem 6.3.

Let a pair (W,ϕ:WW)(W,\phi:W\to W) be as in Lemma 6.2. Then the categorical entropy hcat(Φ(W))h_{cat}(\Phi_{\mathcal{F}(W)}) for its induced functor on the compact Fukaya category (W)\mathcal{F}(W) bounds the topological entropy of ϕ\phi from below, i.e.

hcat(Φ(W))htop(ϕ).h_{cat}(\Phi_{\mathcal{F}(W)})\leq h_{top}(\phi).
Proof.

Basically, most arguments in the proof of Theorem 4.1 can be applied to this case. Indeed, for nn\in\mathbb{N}, we once again apply Lemma 3.2 to the pair (S,ϕn(L))(S,\phi^{-n}(L)) to get a family of Lagrangian {Ss}sBϵd\{S^{s}\}_{s\in B_{\epsilon}^{d}} such that

  1. (i)

    SS and SsS^{s} are Hamiltonian isotopic to each other for all sBϵds\in B_{\epsilon}^{d},

  2. (ii)

    dH(S,Ss)<ϵ2d_{H}(S,S^{s})<\frac{\epsilon}{2}, and

  3. (iii)

    Ssϕn(L)S^{s}\pitchfork\phi^{-n}(L) for almost all sBϵds\in B_{\epsilon}^{d}.

As mentioned in the proof of 4.1, one can find such a family {Ss}sBϵd\{S^{s}\}_{s\in B_{\epsilon}^{d}}, for which the third condition (iii) holds for all nn\in\mathbb{N}.

Then we consider the following function.

Nn(s):=|Ssϕn(L)|.N_{n}(s):=|S^{s}\cap\phi^{-n}(L)|.

By applying Lemma 3.4 once again, we have

(6.1) BϵdNn(s)𝑑sCVol(ϕn(L)W).\displaystyle\int_{B^{d}_{\epsilon}}N_{n}(s)ds\leq C^{\prime}\cdot\mathrm{Vol}\left(\phi^{-n}(L)\cap W\right).

for some constant CC^{\prime} which does not depend on nn.

On the other hand, for Ssϕn(L)S^{s}\pitchfork\phi^{-n}(L), we have

(6.2) dimHF(ϕn(S),L)=dimHF(S,ϕn(L))=dimHF(Ss,ϕn(L))Nn(s).\displaystyle\mathrm{dim}HF\left(\phi^{n}(S),L\right)=\mathrm{dim}HF\left(S,\phi^{-n}(L)\right)=\mathrm{dim}HF\left(S^{s},\phi^{-n}(L)\right)\leq N_{n}(s).

The above inequality holds since SS and SsS^{s} are Hamiltonian isotopic.

By integrating Equation (6.2), one has

(6.3) Vol(Bϵd)dimHF(ϕn(S),L)=BϵddimHF(ϕn(S),L)𝑑sBϵdNn(s)𝑑s.\displaystyle\mathrm{Vol}(B^{d}_{\epsilon})\cdot\mathrm{dim}HF\left(\phi^{n}(S),L\right)=\int_{B^{d}_{\epsilon}}\mathrm{dim}HF\left(\phi^{n}(S),L\right)ds\leq\int_{B^{d}_{\epsilon}}N_{n}(s)ds.

From two inequalities (6.1) and (6.3), one has

(6.4) Vol(Bϵd)dimHF(ϕn(S),L)CVol(ϕn(G)W).\displaystyle\mathrm{Vol}(B^{d}_{\epsilon})\cdot\mathrm{dim}HF\left(\phi^{n}(S),L\right)\leq C^{\prime}\cdot\mathrm{Vol}\left(\phi^{n}(G)\cap W\right).

By taking lim supn1nlog+\limsup_{n\to\infty}\frac{1}{n}\log^{+} for the both hand sides of (6.4) and using Lemma 6.2, one has

(6.5) hcat(Φ(W))\displaystyle h_{cat}(\Phi_{\mathcal{F}(W)}) =lim supn1nlogdimHF(ϕn(S),L)\displaystyle=\limsup_{n\to\infty}\frac{1}{n}\log\dim HF\left(\phi^{n}(S),L\right)
lim supn1nlogVol(ϕn(L)W).\displaystyle\leq\limsup_{n\to\infty}\frac{1}{n}\log\mathrm{Vol}\left(\phi^{-n}(L)\cap W\right).

Here the latter is again bounded above by htop(ϕ)h_{top}(\phi) due to Proposition 2.4. Therefore, (6.5) proves the assertion. ∎

7. Barcode entropy

In this section, we define another entropy, called barcode entropy. As mentioned in Section 1.2, the notion of barcode entropy is the same as the relative barcode entropy defined in [CGG21]. At the end of Section 7, we give further questions related to categorical, topological, and barcode entropies.

7.1. Preliminaries

In this subsection, we review the theory of persistence module, and we apply the theory to Lagrangian Floer homology. We refer the reader to [PRSZ20, UZ16] for the theory of Persistence module. Also, we refer the reader to [CGG21] for the details we omitted in the current subsection.

The notion of non-Archimedean norm on a vector space is defined in [UZ16, Definition 2.2]. It is easy to check that 𝒜\mathcal{A} in (2.2) is a non-Archimedean norm on the kk-vector space CF(L1,L2)CF(L_{1},L_{2}). Moreover, CF(L1,L2)CF(L_{1},L_{2}) is orthogonal with respect to 𝒜\mathcal{A}.

Now, we are ready to apply [UZ16, Theorem 3.4] for the differential

δ:CF(L1,L2)CF(L1,L2),\delta:CF(L_{1},L_{2})\to CF(L_{1},L_{2}),

Since δ\delta is a linear self-mapping of an orthogonal vector space CF(L1,L2)CF(L_{1},L_{2}), one obtains a basis Σ={αi,βj,γj}\Sigma=\{\alpha_{i},\beta_{j},\gamma_{j}\} of CF(L1,L2)CF(L_{1},L_{2}) satisfying

  1. (1)

    αi=0\partial\alpha_{i}=0,

  2. (2)

    γj=βj\partial\gamma_{j}=\beta_{j}, and

  3. (3)

    𝒜(γ1)𝒜(β1)𝒜(γ2)𝒜(β2)\mathcal{A}(\gamma_{1})-\mathcal{A}(\beta_{1})\leq\mathcal{A}(\gamma_{2})-\mathcal{A}(\beta_{2})\leq\dots.

By using the above, we define the followings.

Definition 7.1.

  1. (1)

    A bar of CF(L1,L2)CF(L_{1},L_{2}) is either αi\alpha_{i} or a pair (βj,γj)(\beta_{j},\gamma_{j}).

  2. (2)

    The length of a bar bb is given by

    the length of b={if b=αi,𝒜(γj)𝒜(βj)otherwise.\text{the length of }b=\begin{cases}\infty&\text{if }b=\alpha_{i},\\ \mathcal{A}(\gamma_{j})-\mathcal{A}(\beta_{j})&\text{otherwise}.\end{cases}
  3. (3)

    Let bϵ(L1,L2)b_{\epsilon}(L_{1},L_{2}) be the number of bars of CF(L1,L2)CF(L_{1},L_{2}) whose lengths are greater than or equal to ϵ\epsilon.

Remark 7.2.

We note that 𝒜\mathcal{A} is unique up to constant. More precisely, for an exact Lagrangian LiL_{i}, a choice of primitive function hi:Lih_{i}:L_{i}\to\mathbb{R} is not unique, but unique up to constant. Thus, it is easy to show that the length of bars depends only on LiL_{i} and independent of the choice of primitive function hi:Lih_{i}:L_{i}\to\mathbb{R}.

By Definition 7.1, Lemma 7.3 is obvious.

Lemma 7.3.

Let L1L_{1} and L2L_{2} be a transversal pair of Lagrangians. Then, for any ϵ0\epsilon\geq 0,

bϵ(L1,L2)b0(L1,L2)|L1L2|.b_{\epsilon}(L_{1},L_{2})\leq b_{0}(L_{1},L_{2})\leq|L_{1}\cap L_{2}|.

It is well-known that bϵb_{\epsilon} is insensitive to small perturbations of the Lagrangians with respect to the Hofer distance. More precisely, Lemma 7.4 holds.

Lemma 7.4.

Let L1L_{1}^{\prime} be a Lagrangian satisfying

  • L1L_{1}^{\prime} and L1L_{1} are Hamiltonian isotopic to each other,

  • dH(L1,L1)<δ2d_{H}(L_{1},L_{1}^{\prime})<\frac{\delta}{2} with δ<ϵ\delta<\epsilon, and

  • L1L_{1}^{\prime} and L2L_{2} are transversal to each other.

Then,

bϵ+δ(L1,L2)bϵ(L1,L2)bϵδ(L1,L2).b_{\epsilon+\delta}(L_{1}^{\prime},L_{2})\leq b_{\epsilon}(L_{1},L_{2})\leq b_{\epsilon-\delta}(L_{1}^{\prime},L_{2}).
Proof.

See [CGG21, Equations (3,13) and (3,14)]. We also refer the reader to [KS21, PRSZ20, UZ16]. ∎

Now, we extend the barcode counting function bϵ(L1,L2)b_{\epsilon}(L_{1},L_{2}) to a good pair (L1,L2)(L_{1},L_{2}) defined in Definition 3.1. For a good pair, we set

bϵ(L1,L2):=lim infdH(L2,L2)0bϵ(L1,L2),b_{\epsilon}(L_{1},L_{2}):=\liminf_{d_{H}(L_{2},L_{2}^{\prime})\to 0}b_{\epsilon}(L_{1},L_{2}^{\prime}),

where the limit is taken over Lagrangians L2L_{2}^{\prime} such that L2L1L_{2}^{\prime}\pitchfork L_{1}. We also note that L2L_{2} and L2L_{2}^{\prime} should be Hamiltonian isotopic so that the Hofer distance between them is defined.

7.2. Barcode entropy

In the rest of this paper, we consider the same situation as what we considered in Section 4. For the reader’s convenience, we review the setting.

Let (W^,λ)(\hat{W},\lambda) be a Weinstein manifold and let ϕ:W^W^\phi:\hat{W}\to\hat{W} be a compactly supported exact symplectic automorphism. Then, there is a Weinstein domain WW such that

  • W^=W(W×[1,))\hat{W}=W\cup\partial\left(W\times[1,\infty)\right),

  • λ|W×[1,)=rα\lambda|_{\partial W\times[1,\infty)}=r\alpha where rr is a coordinate for [1.)[1.\infty) and α:=λ|W\alpha:=\lambda|_{\partial W}, and

  • the support of ϕ\phi is contained in Int(W)\mathrm{Int}(W).

Let (L1,L2)(L_{1},L_{2}) be a good pair of Lagrangians with respect to WW, i.e.,

L1L2(W×[1,))=.L_{1}\cap L_{2}\cap\left(\partial W\times[1,\infty)\right)=\varnothing.

Since ϕ\phi is the identity outside of WW, (L1,ϕn(L2))\left(L_{1},\phi^{n}(L_{2})\right) is also a good pair for any nn\in\mathbb{Z}. Then, for a fixed ϵ\epsilon, bϵ(L1,ϕn(L2))b_{\epsilon}\left(L_{1},\phi^{n}(L_{2})\right) is well-defined. We would like to define the barcode entropy of ϕ\phi as the exponential growth rate of bϵ(L1,ϕn(L2))b_{\epsilon}\left(L_{1},\phi^{n}(L_{2})\right) as nn\to\infty.

To be more precise, let log+:0\log^{+}:\mathbb{Z}_{\geq 0}\to\mathbb{R} be the function defined as

log+(k)={0 if k=0,log(k) other wise, \log^{+}(k)=\begin{cases}0\text{ if }k=0,\\ \log(k)\text{ other wise, }\end{cases}

where the logarithm is taken base 22.

Definition 7.5.

  1. (1)

    For any ϵ0\epsilon\in\mathbb{R}_{\geq 0}, the ϵ\epsilon-barcode entropy of ϕ\phi relative to (L1,L2)(L_{1},L_{2}) is

    hϵ(ϕ;L1,L2):=limn1nlog+bϵ(L1,ϕn(L2)).h_{\epsilon}(\phi;L_{1},L_{2}):=\lim_{n\to\infty}\frac{1}{n}\log^{+}b_{\epsilon}\left(L_{1},\phi^{n}(L_{2})\right).
  2. (2)

    The barcode entropy of ϕ\phi relative to (L1,L2)(L_{1},L_{2}) is

    hbar(ϕ;L1,L2):=limϵ0hϵ(ϕ;L1,L2).h_{bar}(\phi;L_{1},L_{2}):=\lim_{\epsilon\searrow 0}h_{\epsilon}(\phi;L_{1},L_{2}).

We note that Definition 7.5 is the same as the notion of relative barcode entropy in [CGG21], except a minor adjustment to our set up.

7.3. Barcode vs topological entropy

In this subsection, we prove that for any good pair (L1,L2)(L_{1},L_{2}), the barcode entropy of ϕ\phi bounds the topological entropy of ϕ\phi from below. The proof of Proposition 7.6 is almost same as the [CGG21, Proof of Theorem A].

Proposition 7.6 (= The second inequality in Proposition 1.4).

For any good pair (L1,L2)(L_{1},L_{2}),

hbar(ϕ;L1,L2)htop(ϕ).h_{bar}(\phi;L_{1},L_{2})\leq h_{top}(\phi).
Proof.

If hbar(ϕ;L1,L2)=0h_{bar}(\phi;L_{1},L_{2})=0, then there is nothing to prove. Thus, let assume that hbar(ϕ;L1,L2)>0h_{bar}(\phi;L_{1},L_{2})>0. We would like to show that if αhbar(ϕ;L1,L2)\alpha\leq h_{bar}(\phi;L_{1},L_{2}), then αhtop(ϕ)\alpha\leq h_{top}(\phi).

Let δ\delta be a positive number. Since

hbar(ϕ;L1,L2):=limϵ0hϵ(ϕ;L1,L2)α,h_{bar}(\phi;L_{1},L_{2}):=\lim_{\epsilon\searrow 0}h_{\epsilon}(\phi;L_{1},L_{2})\geq\alpha,

there is ϵ0>0\epsilon_{0}>0 such that if ϵ<ϵ0\epsilon<\epsilon_{0}, then hϵ(ϕ;L1,L2)>αδh_{\epsilon}(\phi;L_{1},L_{2})>\alpha-\delta. We fix a positive number ϵ\epsilon such that 2ϵ<ϵ02\epsilon<\epsilon_{0}.

Since

h2ϵ(ϕ;L1,L2)=lim supn1nlog+b2ϵ(L1,ϕn(L2))>αδ,h_{2\epsilon}(\phi;L_{1},L_{2})=\limsup_{n\to\infty}\frac{1}{n}\log^{+}b_{2\epsilon}\left(L_{1},\phi^{n}(L_{2})\right)>\alpha-\delta,

there is an increasing sequence of natural numbers {ni}i\{n_{i}\}_{i\in\mathbb{N}} such that

(7.1) b2ϵ(L1,ϕni(L2))>2(αδ)ni.\displaystyle b_{2\epsilon}\left(L_{1},\phi^{n_{i}}(L_{2})\right)>2^{(\alpha-\delta)n_{i}}.

Now, we apply Lemma 3.2 to the good pair (L1,ϕni(L2))\left(L_{1},\phi^{n_{i}}(L_{2})\right). Then, one obtains a family of Lagrangians {Ls}sBϵ,nid\{L^{s}\}_{s\in B^{d}_{\epsilon,n_{i}}} such that

  1. (i)

    L1L_{1} and LsL^{s} are Hamiltonian isotopic for all sBϵ,nids\in B^{d}_{\epsilon,n_{i}},

  2. (ii)

    dH(L1,Ls)<ϵ2d_{H}(L_{1},L^{s})<\frac{\epsilon}{2} for all sBϵ,nids\in B^{d}_{\epsilon,n_{i}}, and

  3. (iii)

    Lsϕni(L2)L^{s}\pitchfork\phi^{n_{i}}(L_{2}) for almost all sBϵ,nids\in B^{d}_{\epsilon,n_{i}}.

We point out that by the argument in the proof of Theorem 4.1, we can choose a family satisfying (i)–(iii) for all nin_{i}. Let {Ls}sBϵd\{L^{s}\}_{s\in B^{d}_{\epsilon}} denote a fixed Lagrangian tomograph.

Let

Ni(s):=|Lsϕni(L2)|.N_{i}(s):=|L^{s}\cap\phi^{n_{i}}(L_{2})|.

Then, one has

BϵdNi(s)𝑑sCVol(ϕni(L2)W),\int_{B^{d}_{\epsilon}}N_{i}(s)ds\leq C\cdot\mathrm{Vol}(\phi^{n_{i}}(L_{2})\cap W),

by applying Lemma 3.4. We note that CC is a constant independent from nin_{i}.

From Lemmas 7.3 and 7.4 and Equation (7.1), we have

2(αδ)nib2ϵ(L1,ϕni(L2))bϵ(Ls,ϕni(L2))|Lsϕni(L2)|=Ni(s).2^{(\alpha-\delta)n_{i}}\leq b_{2\epsilon}\left(L_{1},\phi^{n_{i}}(L_{2})\right)\leq b_{\epsilon}\left(L^{s},\phi^{n_{i}}(L_{2})\right)\leq|L^{s}\cap\phi^{n_{i}}(L_{2})|=N_{i}(s).

Then, by taking integration over BϵdB^{d}_{\epsilon}, one has

Vol(Bϵd)2(αδ)niCVol(ϕni(L2)W).\mathrm{Vol}(B^{d}_{\epsilon})\cdot 2^{(\alpha-\delta)n_{i}}\leq C\cdot\mathrm{Vol}\left(\phi^{n_{i}}(L_{2})\cap W\right).

Since Vol(Bϵd)\mathrm{Vol}(B^{d}_{\epsilon}) and CC do not depend on nin_{i},

(7.2) αδlim supi1nilog+Vol(ϕni(L2)W)htop(ϕ|W).\displaystyle\alpha-\delta\leq\limsup_{i\to\infty}\frac{1}{n_{i}}\log^{+}\mathrm{Vol}\left(\phi^{n_{i}}(L_{2})\cap W\right)\leq h_{top}(\phi|_{W}).

The last inequality holds because of Proposition 2.4, and because of the fact that

ϕni(L2)W=ϕni(L2W)=(ϕ|W)ni(L2W).\phi^{n_{i}}(L_{2})\cap W=\phi^{n_{i}}(L_{2}\cap W)=(\phi|_{W})^{n_{i}}(L_{2}\cap W).

Finally, we note that ϕ\phi is compactly supported, and that supp(ϕ)W\mathrm{supp}(\phi)\subset W. Thus,

htop(ϕ)=htop(ϕ|W).h_{top}(\phi)=h_{top}(\phi|_{W}).

See Remark 2.2.

Thus, one has

αδhtop(ϕ).\alpha-\delta\leq h_{top}(\phi).

This completes the proof. ∎

7.4. Barcode vs categorical entropy

In the previous section, for an arbitrary good pair (L1,L2)(L_{1},L_{2}), we compared the barcode entropy of a triple (ϕ;L1,L2)(\phi;L_{1},L_{2}) and the topological entropy of ϕ\phi. As the result, we proved Proposition 7.6. In this subsection, we compare barcode and categorical entropy. However, in order to compare them, we should choose some specific pairs of Lagrangians.

First, we choose a stop Λ\Lambda giving a fully stopped partially wrapped Fukaya category 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda). Let GG be an embedded Lagrangian generating 𝒲(W^,Λ)\mathcal{W}(\hat{W},\Lambda). As we did in the proof of Theorem 4.1, let φ0\varphi_{0} be a Hamiltonian isotopy satisfying

  1. (A)

    (φ0(G),ϕn(G))\left(\varphi_{0}(G),\phi^{n}(G)\right) is a good pair for all nn\in\mathbb{N},

  2. (B)

    HWΛ(φ0(G),ϕn(G))=HF(φ0(G),ϕn(G))HW_{\Lambda}\left(\varphi_{0}(G),\phi^{n}(G)\right)=HF\left(\varphi_{0}(G),\phi^{n}(G)\right) for all nn\in\mathbb{N}.

As we did before, one has

hcat(Φ)=hcat(ΦΛ)=lim supn1nlog+dimHF(φ0(G),ϕn(G)).h_{cat}(\Phi)=h_{cat}(\Phi_{\Lambda})=\limsup_{n\to\infty}\frac{1}{n}\log^{+}\dim HF\left(\varphi_{0}(G),\phi^{n}(G)\right).

Since dimHF(φ0(G),ϕn(G))\dim HF\left(\varphi_{0}(G),\phi^{n}(G)\right) equals the number of bars having infinite length, one has

dimHF(φ0(G),ϕn(G))bϵ(φ0(G),ϕn(G)).\dim HF\left(\varphi_{0}(G),\phi^{n}(G)\right)\leq b_{\epsilon}\left(\varphi_{0}(G),\phi^{n}(G)\right).

This induces Proposition 7.7.

Proposition 7.7 (= The first inequality in Proposition 1.4).

For GG and φ0\varphi_{0} given above,

hcat(Φ)hbar(ϕ;φ0(G),G).h_{cat}(\Phi)\leq h_{bar}\left(\phi;\varphi_{0}(G),G\right).
Remark 7.8.

We note that there always exists a good pair (L1,L2)(L_{1},L_{2}) such that hbar(ϕ;L1,L2)=0h_{bar}(\phi;L_{1},L_{2})=0. By choosing a Lagrangian L2L_{2} such that L2L_{2} does not intersect the support of ϕ\phi, one obtains a such pair. Thus, the choice of GG (and φ0\varphi_{0}) in Proposition 7.7 is essential.

7.5. Further questions

In this subsection, we discuss the questions given in Section 1.3 in more detail.

We also recall that

htop(ϕ) the exponential growth rate of Vol(ϕn(Y)),\displaystyle h_{top}(\phi)\geq\text{ the exponential growth rate of }\mathrm{Vol}\left(\phi^{n}(Y)\right),

for any compact submanifold YY by [New88, Prz80]. And it is known by [Yom87] that

(7.3) htop(ϕ)=supcompact submanifold YW( the exponential growth rate of Vol(ϕn(Y))).\displaystyle h_{top}(\phi)=\sup_{\text{compact submanifold }Y\subset W}\left(\text{ the exponential growth rate of }\mathrm{Vol}\left(\phi^{n}(Y)\right)\right).

As one can see in the proof of Proposition 7.6, hbar(ϕ;L1,L2)h_{bar}(\phi;L_{1},L_{2}) bounds the exponential volume growth rate of ϕn(L2)\phi^{n}(L_{2}) from below. Thus,

htop(ϕ)hbar(ϕ;L1,L2).h_{top}(\phi)\geq h_{bar}(\phi;L_{1},L_{2}).

As a generalization of Equation (7.3), one can ask whether the following equality holds or not:

htop(ϕ)=sup(L1,L2) is a good pairhbar(ϕ;L1,L2).h_{top}(\phi)=\sup_{(L_{1},L_{2})\text{ is a good pair}}h_{bar}(\phi;L_{1},L_{2}).

The supremum in the above equation runs over the set of all good pairs. As mentioned in Remark 7.8, it is easy to find a good pair (L1,L2)(L_{1},L_{2}) such that hbar(ϕ;L1,L2)=0h_{bar}(\phi;L_{1},L_{2})=0. Thus, we would like to remove such good pairs from the set where the supremum runs over, for computational convenience.

Finally, we ask whether the following equality holds or not:

htop(ϕ)=supG,φ0hbar(ϕ;φ0(G),G)),h_{top}(\phi)=\sup_{G,\varphi_{0}}h_{bar}\left(\phi;\varphi_{0}(G),G)\right),

where GG is a generating Lagrangian and φ0\varphi_{0} is a Hamiltonian isotopy satisfying the conditions in Section 7.4.

On the other hand, one can ask a similar question for hcat(ϕ)h_{cat}(\phi). More precisely, we ask whether the following equality holds or not:

hcat(ϕ)=infG,φ0hbar(ϕ;φ0(G),G)).h_{cat}(\phi)=\inf_{G,\varphi_{0}}h_{bar}\left(\phi;\varphi_{0}(G),G)\right).

References

  • [AKM65] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106
  • [AS12] Mohammed Abouzaid and Ivan Smith, Exact Lagrangians in plumbings, Geom. Funct. Anal. 22 (2012), no. 4, 785–831. MR 2984118
  • [BCJ+22] Hanwool Bae, Dongwook Choa, Wonbo Jeong, Dogancan Karabas, and Sangjin Lee, Categorical and topological entropies on symplectic manifolds, arXiv preprint arXiv:2203.12205 (2022).
  • [CGG21] Erman Cineli, Viktor L Ginzburg, and Basak Z Gurel, Topological entropy of hamiltonian diffeomorphisms: a persistence homology and floer theory perspective, arXiv preprint arXiv:2111.03983 (2021).
  • [CRGG17] Baptiste Chantraine, Georgios Dimitroglou Rizell, Paolo Ghiggini, and Roman Golovko, Geometric generation of the wrapped fukaya category of weinstein manifolds and sectors, arXiv preprint arXiv:1712.09126 (2017).
  • [DHKK14] G. Dimitrov, F. Haiden, L. Katzarkov, and M. Kontsevich, Dynamical systems and categories, The influence of Solomon Lefschetz in geometry and topology, Contemp. Math., vol. 621, Amer. Math. Soc., Providence, RI, 2014, pp. 133–170. MR 3289326
  • [Dri04] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075
  • [Ehr51] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 29–55. MR 0042768
  • [GP17] Emmanuel Giroux and John Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol. 21 (2017), no. 2, 963–997. MR 3626595
  • [GPS18] Sheel Ganatra, John Pardon, and Vivek Shende, Sectorial descent for wrapped fukaya categories, arXiv preprint arXiv:1809.03427 (2018).
  • [Gro87] M. Gromov, Entropy, homology and semialgebraic geometry, no. 145-146, 1987, Séminaire Bourbaki, Vol. 1985/86, pp. 5, 225–240. MR 880035
  • [Gro03] Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
  • [Hof72] Jack Edward Hofer, TOPOLOGICAL ENTROPY FOR NONCOMPACT SPACES AND OTHER EXTENSIONS, ProQuest LLC, Ann Arbor, MI, 1972, Thesis (Ph.D.)–Oregon State University. MR 2621482
  • [Hof74] J. E. Hofer, Topological entropy for noncompact spaces, Michigan Math. J. 21 (1974), 235–242. MR 370542
  • [KO20] Kohei Kikuta and Genki Ouchi, Hochschild entropy and categorical entropy, arXiv preprint arXiv:2012.13510 (2020).
  • [KS21] Asaf Kislev and Egor Shelukhin, Bounds on spectral norms and barcodes, Geom. Topol. 25 (2021), no. 7, 3257–3350. MR 4372632
  • [KST20] Kohei Kikuta, Yuuki Shiraishi, and Atsushi Takahashi, A note on entropy of auto-equivalences: lower bound and the case of orbifold projective lines, Nagoya Math. J. 238 (2020), 86–103. MR 4092848
  • [Laz19] Oleg Lazarev, Geometric and algebraic presentations of weinstein domains, arXiv preprint arXiv:1910.01101 (2019).
  • [Mat21] Dominique Mattei, Categorical vs topological entropy of autoequivalences of surfaces, Mosc. Math. J. 21 (2021), no. 2, 401–412. MR 4252457
  • [New88] Sheldon E. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems 8 (1988), no. Charles Conley Memorial Issue, 283–299. MR 967642
  • [PRSZ20] Leonid Polterovich, Daniel Rosen, Karina Samvelyan, and Jun Zhang, Topological persistence in geometry and analysis, University Lecture Series, vol. 74, American Mathematical Society, Providence, RI, [2020] ©2020. MR 4249570
  • [Prz80] Feliks Przytycki, An upper estimation for topological entropy of diffeomorphisms, Invent. Math. 59 (1980), no. 3, 205–213. MR 579699
  • [Sei08] P. Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Mathamatics, European Mathematical Society, Zürich, 2008.
  • [UZ16] Michael Usher and Jun Zhang, Persistent homology and Floer-Novikov theory, Geom. Topol. 20 (2016), no. 6, 3333–3430. MR 3590354
  • [Yom87] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979