This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A comment on the impact of CMD-3 e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross section measurement on the SM gμ2g_{\mu}-2 value

V. V. Bryzgalov111[email protected]  and  O. V. Zenin222[email protected]
NRC “Kurchatov Institute” – IHEP, Protvino, Russia
Abstract

We estimated an impact of the recent CMD-3 measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section at 0.3<s<1.20.3<\sqrt{s}<1.2 GeV on the leading order hadronic contribution aμhad,LOa_{\mu}^{\mathrm{had,LO}} to the muon anomalous magnetic moment aμ=(gμ2)/2a_{\mu}=(g_{\mu}-2)/2, in presence of comparably precise ISR measurements of the cross section by BaBar and KLOE experiments being in significant tension with the CMD-3. Assuming that all the experiments are affected by yet unidentified systematic effects, to account for the latter, we scaled the experimental uncertainties following the PDG prescription, thus facilitating a consistent joint fit of the world data on the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section. The same procedure was applied in all e+ehadronse^{+}e^{-}\to hadrons channels contributing to the dispersive estimate of aμhad,LOa_{\mu}^{\mathrm{had,LO}}. Despite an inclusion of the new CMD-3 π+π\pi^{+}\pi^{-} data, our estimate aμhad,LO(e+e)=(696.2±2.9)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-})=(696.2\pm 2.9)\times 10^{-10} is consistent with aμhad,LO(e+e)a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-}) values obtained by other authors before publication of the CMD-3 result. Including our aμhad,LOa_{\mu}^{\mathrm{had,LO}} value into the SM prediction for aμa_{\mu}, we obtain aμSM=(11659184±4tot)×1010a^{\mathrm{SM}}_{\mu}=(11~{}659~{}184\pm 4_{\mathrm{tot}})\times 10^{-10} which is by 4.7σ4.7\sigma smaller than the world average for the experimental value aμexp=(11659205.9±2.2)×1010a^{\mathrm{exp}}_{\mu}=(11~{}659~{}205.9\pm 2.2)\times 10^{-10}. We confirm the observation by the CMD-3 authors that their σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) measurement, when taken alone, implies the aμSMa^{\mathrm{SM}}_{\mu} prediction consistent with the aμexpa^{\mathrm{exp}}_{\mu} at 1σ\sim 1\sigma level.

The e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section contributes 70%\simeq 70\% to the dispersive estimate [1] (see [2] for a recent review) of the leading order hadronic term aμhad,LOa_{\mu}^{\mathrm{had,LO}} in the SM prediction of the muon anomalous magnetic moment aμSM=(gμ2)/2a^{\mathrm{SM}}_{\mu}=(g_{\mu}-2)/2 and, on the other hand, introduces a major uncertainty in the aμSMa^{\mathrm{SM}}_{\mu} determination.

Following the recent high precision measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross section at 0.3<s<1.20.3<\sqrt{s}<1.2 GeV by the CMD-3 collaboration [3, 4] being in a significant tension with results previously published by BaBar [5], KLOE [6, 7, 8], CMD-2 [9, 10, 11, 12], SND [13] and SND2k [14] experiments (Fig. 1), we attempted to assess the impact of the CMD-3 result on the joint fit of the available e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section data and its implications for the aμSMa^{\mathrm{SM}}_{\mu}. Details of the analysis were reported in [15].333The program code [16] was used by the authors for the PDG mini-review “σ\sigma and RR in e+ee^{+}e^{-} Collisions” [17]. Essentially the same code was used for earlier revisions of the mini-review since [18]. Details on the earliest version of the analysis are given in [19, 20]

Given that possible origins of a mutual systematic bias were not yet identified for the experiments measuring σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) at 1%\sim 1\% precision, all of them must be treated as is on an equal basis. From statistical viewpoint, this results in a low probability of the joint fit with χ2/ndof=2.18\chi^{2}/n_{\mathrm{dof}}=2.18 (Fig. 2). Before inclusion of the “high” CMD-3 data, the major source of statistical tension was the discrepancy between ISR based measurements of the cross section by BaBar [5] and KLOE [8] experiments leading to the joint fit with χ2/ndof=1.45\chi^{2}/n_{\mathrm{dof}}=1.45 (Fig. 3). For ndof1n_{\mathrm{dof}}\gg 1, a consistent fit should yield χ2/ndof(122/ndof,1+22/ndof)\chi^{2}/n_{\mathrm{dof}}\in(1-2\sqrt{2/n_{\mathrm{dof}}},1+2\sqrt{2/n_{\mathrm{dof}}}) with 95%\simeq 95\% probability. χ2/ndof\chi^{2}/n_{\mathrm{dof}} values outside this range indicate either an inadequate parameterization of the cross section or incompatibility between cross section values measured by different experiments. As our model-independent parameterization of the cross section is constructed so that fitting it to mutually compatible measurements should always give χ2/ndof1\chi^{2}/n_{\mathrm{dof}}\simeq 1 [15], the poor fit is mostly due to incompatibility between BaBar, KLOE and CMD-3 experiments discussed in [4].444This situation occurs not only in the π+π\pi^{+}\pi^{-} channel, see χ2/dof\chi^{2}/{\mathrm{dof}} column in the Table 1.

A natural approach to treatment of incompatible measurements is to assume that each experiment is affected by randomly distributed systematic bias that cannot be identified within an isolated experiment and thus unaccounted for by its systematic uncertainty. However, missing systematics can be assessed by observing the distribution of measurements of the same physical quantity made by several independent experiments. The missing systematic uncertainty affecting all the experiments becomes an extra free parameter in the joint fit, with the optimum value maximizing the probability of the fit. A widely used (though debated) PDG prescription [17] is to apply a common scale factor 555Dubbed the Birge factor in literature. to error matrices of all experiments so that the fit yields χ2/ndof=1\chi^{2}/n_{\mathrm{dof}}=1. Being aware of shortcomings of this method, we still use it in our fits for the moment. Effectively, the error matrix of each experiment must be scaled by (χ2/ndof)orig.(\chi^{2}/n_{\mathrm{dof}})^{orig.} obtained in the fit with the unmodified error matrices. At that, the central value of the fitted average cross section remains unchanged, while its uncertainty is scaled by the factor of (χ2/ndof)orig\sqrt{(\chi^{2}/n_{\mathrm{dof}})^{orig}}.

The result of the joint fit to the σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) data at 0.3<s<20.3<\sqrt{s}<2 GeV including CMD-3 is shown by the green band in Fig. 2. The fit with unmodified experimental uncertainties gives χ2/ndof=2.18\chi^{2}/n_{\mathrm{dof}}=2.18 due to dramatic tension between BaBar, KLOE and CMD-3 measurements at 0.6<s<1.00.6<\sqrt{s}<1.0 GeV.666The fit restricted to the 0.6<s<1.00.6<\sqrt{s}<1.0 GeV range would have much larger χ2/ndof\chi^{2}/n_{\mathrm{dof}} (see the lower plot in Fig. 2). As explained above, all experimental uncertainties were inflated by 2.18\sqrt{2.18} factor to make these measurements compatible. On the plots, the individual measurements are shown with their original uncertainties while the fit result is shown with the uncertainty scaled by 2.18\sqrt{2.18}. Scaling up the fit uncertainty accounts for incompatibility between the experiments, as well as for suboptimal parameterization of the cross section.

Substituting the fitted cross section into the dispersion integral for aμhad,LOa_{\mu}^{\mathrm{had,LO}} [1] we obtain the contribution of the π+π\pi^{+}\pi^{-} channel in the 0.3<s<1.9370.3<\sqrt{s}<1.937 GeV range:

aμhad,LO(e+eπ+π,0.3÷1.937GeV)=(505.1±1.4exp.e+e±1.6par.±0.6rad.)×1010,a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-}\to\pi^{+}\pi^{-},0.3\div 1.937~{}\mathrm{GeV})=(505.1\pm 1.4_{\mathrm{exp.}e^{+}e^{-}}\pm 1.6_{\mathrm{par.}}\pm 0.6_{\mathrm{rad.}})\times 10^{-10}\,, (1)

where the first uncertainty is due to experimental uncertainties of the σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) data, the second is the systematic uncertainty due to our cross section parameterization, and the last one is the uncertainty due to radiative corrections applied to the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} data.

Results of application of the same procedure to other hadronic final states are shown in the Table 1. The total leading order hadronic contribution to aμSMa^{\mathrm{SM}}_{\mu} is then

aμhad,LO(e+e)=(696.2±1.9exp.e+e±2.0par.±0.8rad.)×1010.a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-})=(696.2\pm 1.9_{\mathrm{exp.}e^{+}e^{-}}\pm 2.0_{\mathrm{par.}}\pm 0.8_{\mathrm{rad.}})\times 10^{-10}\,. (2)

Despite an inclusion of the “high” CMD-3 σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) measurement, our estimate is still consistent with results obtained by the dispersive method by other authors using only pre-2021 e+ee^{+}e^{-} data [2]. Ref. [2] quotes an average value aμhad,LO(e+e)=(693.1±4.0tot)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-})=(693.1\pm 4.0_{\mathrm{tot}})\times 10^{-10} obtained by merging results from Refs. [21, 22, 23, 24, 25, 26].777We also have a good per final state agreement with [23]. The SM prediction for aμa_{\mu} including QED, electroweak, hadronic light-by-light, and NLO hadronic vacuum polarization contributions [2] and our aμhad,LOa_{\mu}^{\mathrm{had,LO}} value (Eq. 2) is

aμSM=(11659184±4tot)×1010,a^{\mathrm{SM}}_{\mu}=(11~{}659~{}184\pm 4_{\mathrm{tot}})\times 10^{-10}\,, (3)

which is smaller than the experimental value aμexp=(11659205.9±2.2)×1010a^{\mathrm{exp}}_{\mu}=(11~{}659~{}205.9\pm 2.2)\times 10^{-10} [27] by 4.7σ4.7\sigma.

An exclusion of the CMD-3 π+π\pi^{+}\pi^{-} data (Fig. 3) leads to a lower aμhad,LO(e+e)=(694.0±2.0exp.e+e±1.4par.±0.4rad)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-})=(694.0\pm 2.0_{\mathrm{exp.}e^{+}e^{-}}\pm 1.4_{\mathrm{par.}}\pm 0.4_{\mathrm{rad}})\times 10^{-10} which translates to aμSM=(11659182±4tot)×1010a^{\mathrm{SM}}_{\mu}=(11659182\pm 4_{\mathrm{tot}})\times 10^{-10}, lower than aμexpa^{\mathrm{exp}}_{\mu} by 5σ5\sigma.

An extreme exercise would be to estimate an impact of the CMD-3 σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) measurement taken as the dominant experimental input to aμhad,LO(π+π)a_{\mu}^{\mathrm{had,LO}}(\pi^{+}\pi^{-}) at 0.3<s<1.20.3<\sqrt{s}<1.2 GeV. For this purpose, we completely excluded from the fit all the experiments measuring the cross section with 1%\sim 1\% precision, except CMD-3 (Fig. 4).888In a “CMD-3 only” fit, retaining BaBar data in the s>1.2\sqrt{s}>1.2 GeV range uncovered by CMD-3 would be methodically incorrect due to strong correlations between BaBar data points at s<1.2\sqrt{s}<1.2 GeV (where we ignore BaBar) and s>1.2\sqrt{s}>1.2 GeV. Note that in this case the cross section parameterization uncertainty for the total aμhad,LOa_{\mu}^{\mathrm{had,LO}} is slightly lower than the one in the π+π\pi^{+}\pi^{-} channel due to anti-correlation between systematic variations in different channels. This gives aμhad,LO(e+eπ+π,0.3÷1.937GeV)=(529.6±2.8exp.e+e±3.3par.±3.3rad.)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-}\to\pi^{+}\pi^{-},0.3\div 1.937~{}\mathrm{GeV})=(529.6\pm 2.8_{\mathrm{exp.}e^{+}e^{-}}\pm 3.3_{\mathrm{par.}}\pm 3.3_{\mathrm{rad.}})\times 10^{-10} which corresponds to the total aμhad,LO=(723.4±3.1exp.±3.1par.±3.5rad.)×1010a_{\mu}^{\mathrm{had,LO}}=(723.4\pm 3.1_{\mathrm{exp.}}\pm 3.1_{\mathrm{par.}}\pm 3.5_{\mathrm{rad.}})\times 10^{-10} and, hence, to aμSM=(11659211±6tot)×1010a^{\mathrm{SM}}_{\mu}=(11~{}659~{}211\pm 6_{\mathrm{tot}})\times 10^{-10} consistent with the experimental value aμexp=(11659205.9±2.2)×1010a^{\mathrm{exp}}_{\mu}=(11~{}659~{}205.9\pm 2.2)\times 10^{-10}, as pointed out in Ref. [4].

Summary of aμSMa^{\mathrm{SM}}_{\mu} estimates including the above results confronted with the experimental aμexpa^{\mathrm{exp}}_{\mu} value is shown in Fig. 5.

In conclusion, we estimated an impact of the recent CMD-3 measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section at 0.3<s<1.20.3<\sqrt{s}<1.2 GeV on the leading order hadronic contribution aμhad,LOa_{\mu}^{\mathrm{had,LO}} to the muon anomalous magnetic moment aμ=(gμ2)/2a_{\mu}=(g_{\mu}-2)/2, in presence of comparably precise ISR measurements of the cross section by BaBar and KLOE experiments being in significant tension with the CMD-3. Assuming that all the experiments are affected by yet unidentified systematic effects, to account for the latter, we scaled the experimental uncertainties following the PDG prescription, thus facilitating a consistent joint fit of the world data on the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} total cross section. The same procedure was applied in all e+ehadronse^{+}e^{-}\to hadrons channels contributing to the dispersive estimate of aμhad,LOa_{\mu}^{\mathrm{had,LO}}. Despite an inclusion of the new CMD-3 data, our estimate aμhad,LO(e+e)=(696.2±2.9)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-})=(696.2\pm 2.9)\times 10^{-10} is consistent with aμhad,LO(e+e)a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-}) values obtained by other authors before publication of the CMD-3 result. Including our aμhad,LOa_{\mu}^{\mathrm{had,LO}} value into the SM prediction for aμa_{\mu}, we obtain aμSM=(11659184±4tot)×1010a^{\mathrm{SM}}_{\mu}=(11~{}659~{}184\pm 4_{\mathrm{tot}})\times 10^{-10} which is by 4.7σ4.7\sigma smaller than the world average for the experimental value aμexp=(11659205.9±2.2)×1010a^{\mathrm{exp}}_{\mu}=(11~{}659~{}205.9\pm 2.2)\times 10^{-10}. We confirm the observation made in the CMD-3 paper [4] that CMD-3 π+π\pi^{+}\pi^{-} data, when taken alone, imply the aμSMa^{\mathrm{SM}}_{\mu} prediction consistent with the aμexpa^{\mathrm{exp}}_{\mu} at 1σ\sim 1\sigma level.

Acknowledgements.

The authors are indebted to V. B. Anikeev and S. I. Bityukov for valuable discussions on statistical matters.

Refer to caption
Figure 1: (reprinted from [4]) Relative differences between previous measurements of the pion formfactor by BaBar [5], KLOE [6, 7] (middle plot), CMD-2 [9, 10, 11, 12], SND [13] and SND2k [14] (lower plot) experiments and the fit (yellow band) to the CMD-3 data [3, 4] (upper plot).
Refer to caption
Refer to caption
Figure 2: The hadronic RR-ratio  =σ(e+eπ+π(γ),Born)/(4πα023s)=\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}(\gamma),\mathrm{Born})/\left(\frac{4\pi\alpha_{0}^{2}}{3s}\right). Statistical uncertainties of the data are shown by horizontal ticks on the vertical error bars. The latter correspond to the combined statistical and systematic uncertainties. Fit to the data by a continuous piecewise linear function is shown by the green band. See [15] for details of the parameterization. The fit uncertainty is scaled by the χ2/ndof\sqrt{\chi^{2}/n_{\mathrm{dof}}} factor to account for incompatibility between individual experiments as explained in the text. The lower plot is an enlarged view of the ρ\rhoω\omega interference region where incompatibility between CMD-3, BaBar and KLOE measurements is most dramatic (cf. Fig. 1). References to the experimental data are listed in the π+π(γ)\pi^{+}\pi^{-}(\gamma) row of Table 1.
Refer to caption
Refer to caption
Figure 3: Same as Fig. 2 but without the CMD-3 π+π\pi^{+}\pi^{-} data. The lower plot demonstrates an inconsistency between BaBar and KLOE measurements.
Refer to caption
Refer to caption
Figure 4: Same as Fig. 2 but without experiments measuring σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) to 1%\sim 1\% precision except CMD-3. This makes the fit effectively dominated by CMD-3 at s<1.2\sqrt{s}<1.2 GeV. The fit results in aμhad,LO(e+eπ+π,0.3÷1.937GeV)=(529.6±2.8exp.e+e±3.3par.±3.3rad.)×1010a_{\mu}^{\mathrm{had,LO}}(e^{+}e^{-}\to\pi^{+}\pi^{-},0.3\div 1.937~{}\mathrm{GeV})=(529.6\pm 2.8_{\mathrm{exp.}e^{+}e^{-}}\pm 3.3_{\mathrm{par.}}\pm 3.3_{\mathrm{rad.}})\times 10^{-10} corresponding to the total aμhad,LO=(723.4±3.1exp.±3.1par.±3.5rad.)×1010a_{\mu}^{\mathrm{had,LO}}=(723.4\pm 3.1_{\mathrm{exp.}}\pm 3.1_{\mathrm{par.}}\pm 3.5_{\mathrm{rad.}})\times 10^{-10} and aμSM=(11659211±6tot)×1010a^{\mathrm{SM}}_{\mu}=(11~{}659~{}211\pm 6_{\mathrm{tot}})\times 10^{-10} consistent with the experimental value aμexp=(11659205.9±2.2)×1010a^{\mathrm{exp}}_{\mu}=(11~{}659~{}205.9\pm 2.2)\times 10^{-10}, as first pointed out in the CMD-3 paper [4].
Final state aμ(had,LO)a_{\mu}(\mathrm{had},\mathrm{LO}) ×1010\times 10^{10} 000.000 (exp.) (par.) (rad.) s[GeV]\sqrt{s}\,[\mathrm{GeV}] χ2/dof\chi^{2}/\mathrm{dof} References
π+π(γ)\pi^{+}\pi^{-}(\gamma) 505.147 (1.367) (1.551) (0.606) 0.3 ÷\div 1.937 2.18 [28, 3, 9, 13, 11, 12, 8, 14, 29, 30, 31, 32, 5, 33, 34, 10]
π+ππ0\pi^{+}\pi^{-}\pi^{0} 48.481 (0.967) (0.629) (0.066) 0.66 ÷\div 1.937 1.79 [35, 9, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
π+π2π0\pi^{+}\pi^{-}2\pi^{0} 18.778 (0.431) (0.509) (0.067) 0.85 ÷\div 1.937 1.94 [46, 47, 48, 49, 50, 51, 52, 53, 43, 54]
2π+2π2\pi^{+}2\pi^{-} 15.397 (0.181) (0.060) (0.043) 0.6125 ÷\div 1.937 2.34 [46, 47, 49, 55, 56, 57, 58, 52, 59, 60, 61, 62, 43, 63, 64]
K+KK^{+}K^{-} 23.211 (0.188) (0.072) (0.009) 0.985 ÷\div 1.937 1.99 [65, 66, 67, 68, 69, 70, 40, 71, 72]
KSKLK_{S}K_{L} 13.188 (0.130) (0.000) (0.000) 1.00371 ÷\div 1.937 0.95 [73, 67, 38, 74, 75, 76, 40, 77, 78]
π0γ\pi^{0}\gamma 4.359 (0.093) (0.049) (0.000) 0.59986 ÷\div 1.38 1.70 [79, 80, 81]
KSK+π+KSKπ+K_{S}K^{+}\pi^{-}+K_{S}K^{-}\pi^{+} 1.814 (0.100) (0.000) (0.000) 1.24 ÷\div 1.937 0.99 [82]
2π+2ππ02\pi^{+}2\pi^{-}\pi^{0} 1.746 (0.043) (0.000) (0.009) 1.0125 ÷\div 1.937 0.00 [49, 83, 63]
2π+2π02π2\pi^{+}2\pi^{0}2\pi^{-} 1.728 (0.198) (0.034) (0.000) 1.3125 ÷\div 1.937 1.99 [84, 85, 63]
2π+2π3π02\pi^{+}2\pi^{-}3\pi^{0} 0.099 (0.013) (0.002) (0.001) 1.575 ÷\div 1.937 0.57 [86]
3π+3π3\pi^{+}3\pi^{-} 0.240 (0.014) (0.000) (0.012) 1.3125 ÷\div 1.937 0.00 [84, 87, 88, 85, 63]
3π+3ππ03\pi^{+}3\pi^{-}\pi^{0} 0.020 (0.004) (0.001) (0.000) 1.6 ÷\div 1.937 0.65 [89]
ηγ\eta\gamma 0.691 (0.051) (0.000) (0.000) 0.6 ÷\div 1.354 1.36 [79, 38, 90, 91]
ηπ+π\eta\pi^{+}\pi^{-} 0.575 (0.019) (0.000) (0.000) 1.15 ÷\div 1.937 1.18 [92, 83, 93, 94, 43]
K+Kπ0K^{+}K^{-}\pi^{0} 0.202 (0.050) (0.000) (0.001) 1.44 ÷\div 1.937 0.54 [95, 96]
K+Kπ0π0K^{+}K^{-}\pi^{0}\pi^{0} 0.100 (0.011) (0.000) (0.000) 1.5 ÷\div 1.937 1.32 [97]
K+Kπ+πK^{+}K^{-}\pi^{+}\pi^{-} 0.799 (0.033) (0.000) (0.000) 1.4 ÷\div 1.937 0.00 [95, 98, 99, 97]
K+Kπ+ππ0K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} 0.129 (0.024) (0.000) (0.000) 1.6125 ÷\div 1.937 1.63 [83]
KSKLηK_{S}K_{L}\eta 0.238 (0.059) (0.000) (0.000) 1.575 ÷\div 1.937 1.31 [100]
KSKLπ0K_{S}K_{L}\pi^{0} 0.839 (0.114) (0.000) (0.000) 1.425 ÷\div 1.937 1.50 [100]
KSKLπ0π0K_{S}K_{L}\pi^{0}\pi^{0} 0.137 (0.043) (0.000) (0.000) 1.35 ÷\div 1.937 0.00 [100]
KSKLπ+πK_{S}K_{L}\pi^{+}\pi^{-} 0.166 (0.028) (0.000) (0.000) 1.425 ÷\div 1.937 0.00 [77]
KSK+ππ0+KSKπ+π0K_{S}K^{+}\pi^{-}\pi^{0}+K_{S}K^{-}\pi^{+}\pi^{0} 0.640 (0.044) (0.000) (0.000) 1.51 ÷\div 1.937 1.08 [101]
KSKSπ+πK_{S}K_{S}\pi^{+}\pi^{-} 0.066 (0.007) (0.000) (0.000) 1.63 ÷\div 1.937 1.37 [77]
ω(783)η\omega(783)\eta 0.035 (0.002) (0.000) (0.000) 1.34 ÷\div 1.937 0.85 [102, 103]
ω(783)<π0γ>π0\omega(783)<\pi^{0}\gamma>\pi^{0} 0.894 (0.021) (0.000) (0.000) 0.75 ÷\div 1.937 1.56 [104, 105, 106, 107, 47, 108, 109, 110, 111]
ω(783)<π+ππ0>π+π\omega(783)<\pi^{+}\pi^{-}\pi^{0}>\pi^{+}\pi^{-} 0.098 (0.005) (0.000) (0.000) 1.15 ÷\div 1.937 1.10 [112, 92, 83, 45]
ωηπ0\omega\eta\pi^{0} 0.055 (0.043) (0.000) (0.000) 1.5 ÷\div 1.937 1.16 [113]
ϕ(1020)η\phi(1020)\eta 0.067 (0.003) (0.000) (0.000) 1.56 ÷\div 1.937 0.98 [114, 83, 82]
π+π2π0η\pi^{+}\pi^{-}2\pi^{0}\eta 0.117 (0.019) (0.000) (0.000) 1.625 ÷\div 1.937 0.85 [115]
π+π3π0\pi^{+}\pi^{-}3\pi^{0} 1.067 (0.112) (0.000) (0.000) 1.125 ÷\div 1.937 0.68 [115]
π+ππ0η\pi^{+}\pi^{-}\pi^{0}\eta 0.663 (0.075) (0.000) (0.000) 1.394 ÷\div 1.937 0.82 [102]
pp¯p\bar{p} 0.030 (0.001) (0.000) (0.000) 1.889 ÷\div 1.937 1.24 [116, 117, 118, 119]
nn¯n\bar{n} 0.028 (0.006) (0.000) (0.000) 1.89 ÷\div 1.937 1.24 [120, 121]
2hadron(hadrons)2hadron(hadrons) 43.509 (0.722) (0.661) (0.000) 1.937 ÷\div 11.199 1.35 [122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156]
pQCD 2.065 (0.000) (0.002) (0.000) >> 11.1990
ChPT ππ,π0γ\pi\pi,\pi^{0}\gamma 0.538 (0.000) (0.013) (0.000) 0.2792 ÷\div 0.3000
Ψ(1S)\Psi(1S) 6.495 (0.000) (0.124) (0.000) 3.0969
Ψ(2S)\Psi(2S) 1.631 (0.000) (0.057) (0.000) 3.6861
Υ(1S)\Upsilon(1S) 0.054 (0.000) (0.002) (0.000) 9.4604
Υ(2S)\Upsilon(2S) 0.021 (0.000) (0.003) (0.000) 10.0234
Υ(3S)\Upsilon(3S) 0.014 (0.000) (0.002) (0.000) 10.3551
Υ(4S)\Upsilon(4S) 0.010 (0.000) (0.001) (0.000) 10.5794
Total 696.181 (1.925) (1.953) (0.813)
Table 1: Summary of aμhad,LOa_{\mu}^{\mathrm{had,LO}} contributions from the exclusive σ(e+ehadrons)\sigma(e^{+}e^{-}\to hadrons) measurements at s<1.937\sqrt{s}<1.937 GeV and inclusive σ(e+e2hadron(hadrons))\sigma(e^{+}e^{-}\to 2hadron(hadrons)) measurements at 1.937<s<11.1991.937<\sqrt{s}<11.199 GeV. The first uncertainty is the experimental one scaled by χ2/ndof\sqrt{\chi^{2}/n_{\mathrm{dof}}} in channels with χ2/ndof>1\chi^{2}/n_{\mathrm{dof}}>1. The second uncertainty is due to our parameterization of the experimental cross section used in the aμhad,LOa_{\mu}^{\mathrm{had,LO}} dispersion integral. The last uncertainty is due to radiative corrections applied to the experimental data. At s<0.3\sqrt{s}<0.3 GeV we use ChPT parameterization for e+eπ0γe^{+}e^{-}\to\pi^{0}\gamma, π+π\pi^{+}\pi^{-} cross sections. The 3-loop pQCD parameterization of the total e+ehadronse^{+}e^{-}\to hadrons cross section is used at s>11.199\sqrt{s}>11.199 GeV. Contributions of the narrow Ψ(1,2S)\Psi(1,2S) and Υ(14S)\Upsilon(1-4S) resonances are accounted for using the Breit–Wigner parameterization. See details in Ref. [15].
Refer to caption
Figure 5: Summary of aμSMa^{\mathrm{SM}}_{\mu} estimates vs the aμexpa^{\mathrm{exp}}_{\mu} world average currently dominated by the FNAL gμ2g_{\mu}-2 measurement [27]. The plot shows the aμSMa^{\mathrm{SM}}_{\mu} values including our nominal (red) aμhad,LOa_{\mu}^{\mathrm{had,LO}} estimate utilizing e+ehadronse^{+}e^{-}\to hadrons data including CMD-3, our aμhad,LOa_{\mu}^{\mathrm{had,LO}} estimate without CMD-3 (green), and the tentative aμhad,LOa_{\mu}^{\mathrm{had,LO}} value with the π+π\pi^{+}\pi^{-} channel dominated by CMD-3 (grey). The aμSMa^{\mathrm{SM}}_{\mu} value including the dispersive aμhad,LOa_{\mu}^{\mathrm{had,LO}} value by the Muon g2g-2 Theory Initiative [2] is shown in dark green. The aμSMa^{\mathrm{SM}}_{\mu} including lattice QCD calculation of aμhad,LOa_{\mu}^{\mathrm{had,LO}} by the BMW Collaboration [157] is shown in orange.

References

  • [1] A. Petermann, “Magnetic moment of the μ\mu meson,” Phys. Rev. 105 (1957) 1931, CERN-57-27.
  • [2] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].
  • [3] CMD-3 Collaboration, F. V. Ignatov et al., “Measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross section from threshold to 1.2 GeV with the CMD-3 detector,” arXiv:2302.08834 [hep-ex].
  • [4] CMD-3 Collaboration, F. V. Ignatov et al., “Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g-2),” arXiv:2309.12910 [hep-ex].
  • [5] BaBar Collaboration, J. P. Lees et al., “Precise Measurement of the e+eπ+π(γ)e^{+}e^{-}\to\pi^{+}\pi^{-}(\gamma) Cross Section with the Initial-State Radiation Method at BABAR,” Phys. Rev. D 86 (2012) 032013, BABAR-PUB-12-003, arXiv:1205.2228 [hep-ex].
  • [6] KLOE Collaboration, F. Ambrosino et al., “Measurement of σ(e+eπ+π)\sigma(e^{+}e^{-}\to\pi^{+}\pi^{-}) from threshold to 0.85 GeV2 using Initial State Radiation with the KLOE detector,” Phys. Lett. B 700 (2011) 102–110, arXiv:1006.5313 [hep-ex].
  • [7] KLOE Collaboration, D. Babusci et al., “Precision measurement of σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\gamma)/\sigma(e^{+}e^{-}\rightarrow\mu^{+}\mu^{-}\gamma) and determination of the π+π\pi^{+}\pi^{-} contribution to the muon anomaly with the KLOE detector,” Phys. Lett. B 720 (2013) 336–343, arXiv:1212.4524 [hep-ex].
  • [8] KLOE-2 Collaboration, A. Anastasi et al., “Combination of KLOE σ(e+eπ+πγ(γ))\sigma\big{(}e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\gamma(\gamma)\big{)} measurements and determination of aμπ+πa_{\mu}^{\pi^{+}\pi^{-}} in the energy range 0.10<s<0.950.10<s<0.95 GeV2,” JHEP 03 (2018) 173, arXiv:1711.03085 [hep-ex].
  • [9] CMD-2 Collaboration, R. R. Akhmetshin et al., “Reanalysis of hadronic cross-section measurements at CMD-2,” Phys. Lett. B 578 (2004) 285–289, arXiv:hep-ex/0308008.
  • [10] CMD-2 Collaboration, V. M. Aul’chenko et al., “Measurement of the pion form-factor in the range 1.04 GeV to 1.38 GeV with the CMD-2 detector,” JETP Lett. 82 (2005) 743–747, arXiv:hep-ex/0603021.
  • [11] CMD-2 Collaboration, V. M. Aul’chenko et al., “Measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross section with the CMD-2 detector in the 370–520 MeV c.m. energy range,” JETP Lett. 84 (2006) 413–417, arXiv:hep-ex/0610016.
  • [12] CMD-2 Collaboration, R. R. Akhmetshin et al., “High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector,” Phys. Lett. B 648 (2007) 28–38, arXiv:hep-ex/0610021.
  • [13] SND Collaboration, M. N. Achasov et al., “Update of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross-section measured by SND detector in the energy region 400<s<1000400<\sqrt{s}<1000 MeV,” J. Exp. Theor. Phys. 103 (2006) 380–384, arXiv:hep-ex/0605013.
  • [14] SND Collaboration, M. N. Achasov et al., “Measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525<s<0.8830.525<\sqrt{s}<0.883 GeV,” JHEP 01 (2021) 113, arXiv:2004.00263 [hep-ex].
  • [15] O. V. Zenin and V. V. Bryzgalov, “Estimation of the hadron contribution to gμ2g_{\mu}-2 using the IHEP total cross section database,” in XXXV International Workshop on High Energy Physics “From Quarks to Galaxies: Elucidating Dark Sides”, Protvino, Russia, November 28 – December 1, 2023. {https://indico.ihep.su/event/hepftXXXV}.
  • [16] V. V. Bryzgalov and O. V. Zenin. {https://glab.ihep.su/zenin_o/compas_users/-/tree/master/ee/}.
  • [17] Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  • [18] Particle Data Group Collaboration, K. Hagiwara et al., “Review of particle physics,” Phys. Rev. D 66 (2002) 010001.
  • [19] V. V. Ezhela, S. B. Lugovsky, and O. V. Zenin, “Hadronic part of the muon g2g-2 estimated on the σ(tot)2003(e+ehadrons)\sigma^{2003}_{(tot)}(e^{+}e^{-}\to hadrons) evaluated data compilation,” IHEP-2003-35, arXiv:hep-ph/0312114.
  • [20] COMPETE (e+ee^{+}e^{-}) Collaboration, K. Kang, V. V. Ezhela, S. K. Kang, S. B. Lugovsky, M. R. Whalley, and O. V. Zenin, “Total Cross Sections of e+ee^{+}e^{-}\to hadrons and pQCD Tests,” in 6th Workshop on Non-Perturbative Quantum Chromodynamics, pp. 120–133. 2002. arXiv:hep-ph/0202051.
  • [21] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to 𝜶(𝐦𝐙𝟐)\mathbf{\boldsymbol{\alpha}(m_{Z}^{2})},” Eur. Phys. J. C 80 no. 3, (2020) 241, arXiv:1908.00921 [hep-ph]. [Erratum: Eur.Phys.J.C 80, 410 (2020)].
  • [22] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g2g-2 and α(mZ2){\alpha(m_{Z}^{2})} using newest hadronic cross-section data,” Eur. Phys. J. C 77 no. 12, (2017) 827, arXiv:1706.09436 [hep-ph].
  • [23] A. Keshavarzi, D. Nomura, and T. Teubner, “g2g-2 of charged leptons, α(MZ2)\alpha(M^{2}_{Z}) , and the hyperfine splitting of muonium,” Phys. Rev. D 101 no. 1, (2020) 014029, MAN/HEP/2019/010, LTH 1216, KEK-TH-2165, arXiv:1911.00367 [hep-ph].
  • [24] A. Keshavarzi, D. Nomura, and T. Teubner, “Muon g2g-2 and α(MZ2)\alpha(M_{Z}^{2}): a new data-based analysis,” Phys. Rev. D 97 no. 11, (2018) 114025, LTH 1153, KEK-TH-2035, LTH-1153, YITP-18-09, LTH 1153; KEK-TH-2035; YITP-18-09, arXiv:1802.02995 [hep-ph].
  • [25] M. Hoferichter, B.-L. Hoid, and B. Kubis, “Three-pion contribution to hadronic vacuum polarization,” JHEP 08 (2019) 137, INT-PUB-19-030, arXiv:1907.01556 [hep-ph].
  • [26] G. Colangelo, M. Hoferichter, and P. Stoffer, “Two-pion contribution to hadronic vacuum polarization,” JHEP 02 (2019) 006, INT-PUB-18-048, arXiv:1810.00007 [hep-ph].
  • [27] Muon g-2 Collaboration, D. P. Aguillard et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm,” Phys. Rev. Lett. 131 no. 16, (2023) 161802, FERMILAB-PUB-23-385-AD-CSAID-PPD, arXiv:2308.06230 [hep-ex].
  • [28] BES III Collaboration, M. Ablikim et al., “Measurement of the e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} cross section between 600 and 900 MeV using initial state radiation,” Phys. Lett. B 753 (2016) 629–638, arXiv:1507.08188 [hep-ex]. [Erratum: Phys.Lett.B 812, 135982 (2021)].
  • [29] Frascati (ADONE) Collaboration, D. Bollini, P. Giusti, T. Massam, L. Monari, F. Palmonari, G. Valenti, and A. Zichichi, “Search for ρ\rho-Like Vector Mesons in the Mass Range 1.2 GeV to 3.0 GeV,” Lett. Nuovo Cim. 15 (1976) 393, PRINT-76-0036 (CERN).
  • [30] CMD Collaboration, L. M. Barkov et al., “Electromagnetic Pion Form-Factor in the Timelike Region,” Nucl. Phys. B 256 (1985) 365–384.
  • [31] DM2 Collaboration, D. Bisello et al., “The Pion Electromagnetic Form-factor in the Timelike Energy Range 1.35 GeV s\leq\sqrt{s}\leq 2.4 GeV,” Phys. Lett. B 220 (1989) 321–327, LAL-88-47.
  • [32] DM1 Collaboration, A. Quenzer et al., “Pion Form-Factor from 480 MeV to 1100 MeV,” Phys. Lett. B 76 (1978) 512–516.
  • [33] CLEO-c Collaboration, T. Xiao, S. Dobbs, A. Tomaradze, K. K. Seth, and G. Bonvicini, “Precision Measurement of the Hadronic Contribution to the Muon Anomalous Magnetic Moment,” Phys. Rev. D 97 no. 3, (2018) 032012, arXiv:1712.04530 [hep-ex].
  • [34] TOF Collaboration, I. B. Vasserman, P. M. Ivanov, G. Y. Kezerashvili, I. A. Koop, A. P. Lysenko, Y. N. Pestov, A. N. Skrinsky, G. V. Fedotovich, and Y. M. Shatunov, “Pion Form-factor Measurement in the Reaction e+eπ+πe^{+}e^{-}\to\pi^{+}\pi^{-} for Energies Within the Range From 0.4 GeV to 0.46 GeV,” Yad. Fiz. 33 (1981) 709–714.
  • [35] SND Collaboration, M. N. Achasov et al., “Study of the process e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} in the energy region s1/2s^{1/2} from 0.98 GeV to 1.38 GeV,” Phys. Rev. D 66 (2002) 032001, arXiv:hep-ex/0201040.
  • [36] CMD Collaboration, L. M. Barkov et al., “Investigation of the Process e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} at the Energy Range 840 – 1020 MeV on VEPP-2M with the Help of Cryogenic Magnetic Detector,” IYF-89-15.
  • [37] DM1 Collaboration, A. Cordier et al., “Cross-section of the Reaction e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} for Center-of-mass Energies From 750 MeV to 1100 MeV,” Nucl. Phys. B 172 (1980) 13–24, LAL-79/1.
  • [38] CMD-2 Collaboration, R. R. Akhmetshin et al., “Measurement of phi meson parameters with CMD-2 detector at VEPP-2M collider,” Phys. Lett. B 364 (1995) 199–206.
  • [39] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of dynamics of ϕπ+ππ0\phi\to\pi^{+}\pi^{-}\pi^{0} decay with CMD-2 detector,” Phys. Lett. B 434 (1998) 426–436.
  • [40] SND Collaboration, M. N. Achasov et al., “Measurements of the parameters of the ϕ(1020)\phi(1020) resonance through studies of the processes e+eK+Ke^{+}e^{-}\to K^{+}K^{-}, KSKLK_{S}K_{L}, and π+ππ0\pi^{+}\pi^{-}\pi^{0},” Phys. Rev. D 63 (2001) 072002, arXiv:hep-ex/0009036.
  • [41] SND Collaboration, M. N. Achasov et al., “Study of the process e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} in the energy region s<0.98\sqrt{s}<0.98 GeV,” Phys. Rev. D 68 (2003) 052006, arXiv:hep-ex/0305049.
  • [42] BaBar Collaboration, B. Aubert et al., “Study of e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} process using initial state radiation with BaBar,” Phys. Rev. D 70 (2004) 072004, SLAC-PUB-10624, BABAR-PUB-04-034, arXiv:hep-ex/0408078.
  • [43] ND Collaboration, S. I. Dolinsky et al., “Summary of experiments with the neutral detector at the e+ee^{+}e^{-} storage ring VEPP-2M,” Phys. Rept. 202 (1991) 99–170.
  • [44] CMD-2 Collaboration, V. M. Aul’chenko et al., “Study of the e+ eπ\pi+π\piπ\pi0 process in the energy range 1.05–2.00 GeV,” J. Exp. Theor. Phys. 121 no. 1, (2015) 27–34.
  • [45] DM2 Collaboration, A. Antonelli et al., “Measurement of the e+eπ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0} and e+eωπ+πe^{+}e^{-}\to\omega\pi^{+}\pi^{-} reactions in the energy interval 1350 MeV–2400 MeV,” Z. Phys. C 56 (1992) 15–20, LAL-92-08.
  • [46] SND Collaboration, M. N. Achasov et al., “e+e4πe^{+}e^{-}\to 4\pi processes investigation in the energy range 0.98 GeV to 1.38 GeV with SND detector,” BUDKER-INP-2001-34.
  • [47] DM2 Collaboration, D. Bisello et al., “DM2 results on e+ee^{+}e^{-} annihilation into multi - hadrons in the 1350 MeV - 2400 MeV energy range,” in 25th International Conference on High-energy Physics. 6, 1990.
  • [48] MEA Collaboration, B. Esposito et al., “Measurement on π+ππ0π0\pi^{+}\pi^{-}\pi^{0}\pi^{0}, π+ππ+ππ0\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}, π+ππ+ππ0π0\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}, π+ππ+ππ+π\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-} Production Cross-sections in e+ee^{+}e^{-} Annihilation at 1.45 GeV - 1.80 GeV Center-of-mass Energy,” Lett. Nuovo Cim. 31 (1981) 445–452.
  • [49] M3N Collaboration, G. Cosme et al., “Hadronic Cross-sections Study in e+ee^{+}e^{-} Collisions From 1.350 GeV to 2.125 GeV,” Nucl. Phys. B 152 (1979) 215–231, LAL-78-32.
  • [50] γγ2\gamma\gamma{}2 Collaboration, C. Bacci et al., “Measurement of Hadronic Exclusive Cross-sections in e+ee^{+}e^{-} Annihilation From 1.42 GeV to 2.20 GeV,” Nucl. Phys. B 184 (1981) 31–39, LNF-80/72-P.
  • [51] CMD-2 Collaboration, R. R. Akhmetshin et al., “a(1)(1260)πa(1)(1260)\pi dominance in the process e+e4πe^{+}e^{-}\to 4\pi at energies 1.05 GeV – 1.38 GeV,” Phys. Lett. B 466 (1999) 392–402, BUDKER-INP-1998-83, arXiv:hep-ex/9904024.
  • [52] ACO Collaboration, G. Cosme et al., “Multi-Pion Production Below 1.1 GeV by e+ee^{+}e^{-} Annihilation,” Phys. Lett. B 63 (1976) 349–351.
  • [53] BaBar Collaboration, J. P. Lees et al., “Measurement of the e+eπ+ππ0π0{e}^{+}{e}^{{-}}{\rightarrow}{{\pi}}^{+}{{\pi}}^{{-}}{{\pi}}^{0}{{\pi}}^{0} cross section using initial-state radiation at BABAR,” Phys. Rev. D 96 no. 9, (2017) 092009, SLAC-PUB-17147, BABAR-PUB-17-002, arXiv:1709.01171 [hep-ex].
  • [54] OLYA Collaboration, L. M. Kurdadze et al., “Study of the Reaction e+eπ+ππ0π0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}\pi^{0} at (2 ee) Up to 1.4 GeV,” JETP Lett. 43 (1986) 643–645.
  • [55] DM1 Collaboration, A. Cordier, D. Bisello, J. C. Bizot, J. Buon, B. Delcourt, L. Fayard, and F. Mane, “Study of the e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} Reaction in the 1.4 GeV to 2.18 GeV Energy Range,” Phys. Lett. B 109 (1982) 129–132, LAL 81/33.
  • [56] CMD-2 Collaboration, R. R. Akhmetshin et al., “Cross-section of the reaction e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} below 1 GeV at CMD-2,” Phys. Lett. B 475 (2000) 190–197, arXiv:hep-ex/9912020.
  • [57] CMD-2 Collaboration, R. R. Akhmetshin et al., “Observation of the ϕπ+ππ+π\phi\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} decay,” Phys. Lett. B 491 (2000) 81–89, arXiv:hep-ex/0008019.
  • [58] CMD-2 Collaboration, R. R. Akhmetshin et al., “Total cross section of the process e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} in the C.M. energy range 980 MeV to 1380 MeV,” Phys. Lett. B 595 (2004) 101–108, arXiv:hep-ex/0404019.
  • [59] CMD-3 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} in the c.m. energy range 920–1060 MeV with the CMD-3 detector,” Phys. Lett. B 768 (2017) 345–350, arXiv:1612.04483 [hep-ex].
  • [60] DM1 Collaboration, A. Cordier et al., “Cross-section of the Reaction e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} for Center-of-mass Energies From 890 MeV to 1100 MeV,” Phys. Lett. B 81 (1979) 389–392, LAL-78/31.
  • [61] γγ2\gamma\gamma{}2 Collaboration, C. Bacci et al., “Measurement of the e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} Cross-section in the ρ\rho^{\prime} (1600) Energy Region,” Phys. Lett. B 95 (1980) 139–142, LNF-80/25-P.
  • [62] BaBar Collaboration, J. P. Lees et al., “Initial-State Radiation Measurement of the e+e>π+ππ+πe^{+}e^{-}->\pi^{+}\pi^{-}\pi^{+}\pi^{-} Cross Section,” Phys. Rev. D 85 (2012) 112009, SLAC-PUB-14857, BABAR-PUB-11-016, arXiv:1201.5677 [hep-ex].
  • [63] CMD Collaboration, L. M. Barkov et al., “The investigation of multi - pion creation with the cryogenic magnetic detector at the VEPP-2M storage ring. (In Russian),” Sov. J. Nucl. Phys. 47 (1988) 248–252.
  • [64] OLYA Collaboration, L. M. Kurdadze, M. Y. Lelchuk, E. V. Pakhtusova, V. A. Sidorov, A. N. Skrinsky, A. G. Chilingarov, Y. M. Shatunov, B. A. Shvarts, and S. I. Eidelman, “Study of e+eπ+ππ+πe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-} Reaction at 2 ee Up to 1.4 GeV,” JETP Lett. 47 (1988) 512–515.
  • [65] CMD-2 Collaboration, R. R. Akhmetshin et al., “Measurement of e+eϕK+Ke^{+}e^{-}\to\phi\to K^{+}K^{-} cross section with the CMD-2 detector at VEPP-2M Collider,” Phys. Lett. B 669 (2008) 217–222, 0804.0146, arXiv:0804.0178 [hep-ex].
  • [66] CMD-3 Collaboration, E. A. Kozyrev et al., “Study of the process e+eK+Ke^{+}e^{-}\to K^{+}K^{-} in the center-of-mass energy range 1010–1060~MeV with the CMD-3 detector,” Phys. Lett. B 779 (2018) 64–71, arXiv:1710.02989 [hep-ex].
  • [67] CMD Collaboration, G. V. Anikin et al., “The Results of Experiments with CMD on VEPP-2M Storage Ring,” in Ithaca 1983, International Symposium on Lepton and Photon Interactions at High Energies, Ithaca, N.Y., Aug 4-9, 1983. 8, 1983.
  • [68] MEA Collaboration, B. Esposito et al., “Measurements of the EM timelike form-factors for kaon and pion at s=1.5\sqrt{s}=1.5 GeV,” Lett. Nuovo Cim. 28 (1980) 337–342.
  • [69] OLYA Collaboration, P. M. Ivanov et al., “Measurement of the Charged Kaon Form-factor in the Energy Range 1.0 GeV to 1.4 GeV,” Phys. Lett. B 107 (1981) 297–300.
  • [70] DM1 Collaboration, B. Delcourt, D. Bisello, J. C. Bizot, J. Buon, A. Cordier, and F. Mane, “Study of the Reaction e+eK+Ke^{+}e^{-}\to K^{+}K^{-} in the Total Energy Range 1400 MeV to 2060 MeV,” Phys. Lett. B 99 (1981) 257–260, LAL/80-36.
  • [71] BaBar Collaboration, J. P. Lees et al., “Precision measurement of the e+eK+K(γ)e^{+}e^{-}\to K^{+}K^{-}(\gamma) cross section with the initial-state radiation method at BABAR,” Phys. Rev. D 88 no. 3, (2013) 032013, BABAR-PUB-13-006, SLAC-PUB-15487, arXiv:1306.3600 [hep-ex].
  • [72] SND Collaboration, M. N. Achasov et al., “Measurement of the 𝐞+𝐞𝐊+𝐊\mathbf{e^{+}e^{-}\to K^{+}K^{-}} cross section in the energy range 𝐬=1.052.0\mathbf{\sqrt{s}=1.05-2.0} GeV” Phys. Rev. D 94 no. 11, (2016) 112006, arXiv:1608.08757 [hep-ex].
  • [73] CMD-2 Collaboration, R. R. Akhmetshin et al., “Measurement of ϕ\phi meson parameters in KL0{}^{0}_{L} KS0{}^{0}_{S} decay mode with CMD-2,” Phys. Lett. B 466 (1999) 385, arXiv:hep-ex/9906032. [Erratum: Phys.Lett.B 508, 217–218 (2001)].
  • [74] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eKL0KS0e^{+}e^{-}\to K^{0}_{L}K^{0}_{S} in the CM energy range 1.05 GeV to 1.38 GeV with CMD-2,” Phys. Lett. B 551 (2003) 27–34, arXiv:hep-ex/0211004.
  • [75] CMD-3 Collaboration, E. A. Kozyrev et al., “Study of the process e+eKS0KL0e^{+}e^{-}\to K^{0}_{S}K^{0}_{L} in the center-of-mass energy range 1004–1060 MeV with the CMD-3 detector at the VEPP-2000 e+ee^{+}e^{-} collider,” Phys. Lett. B 760 (2016) 314–319, arXiv:1604.02981 [hep-ex].
  • [76] DM1 Collaboration, F. Mane, D. Bisello, J. C. Bizot, J. Buon, A. Cordier, and B. Delcourt, “Study of the Reaction e+eKS0KL0e^{+}e^{-}\to K^{0}_{S}K^{0}_{L} in the Total Energy Range 1.4 GeV to 2.18 GeV and Interpretation of the K+K^{+} and K0K^{0} Form-factors,” Phys. Lett. B 99 (1981) 261–264, LAL/80-37.
  • [77] BaBar Collaboration, J. P. Lees et al., “Cross sections for the reactions e+eKS0KL0e^{+}e^{-}\to K_{S}^{0}K_{L}^{0}, KS0KL0π+πK_{S}^{0}K_{L}^{0}\pi^{+}\pi^{-}, KS0KS0π+πK_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}, and KS0KS0K+KK_{S}^{0}K_{S}^{0}K^{+}K^{-} from events with initial-state radiation,” Phys. Rev. D 89 no. 9, (2014) 092002, SLAC-PUB-15934, arXiv:1403.7593 [hep-ex].
  • [78] OLYA Collaboration, P. M. Ivanov et al., “Measurements of the form-factor of the neutral kaon from 1.06 GeV to 1.40 GeV,” JETP Lett. 36 (1982) 112–115.
  • [79] SND Collaboration, M. N. Achasov et al., “Experimental study of the processes e+eϕηγe^{+}e^{-}\to\phi\to\eta\gamma, π0γ\pi^{0}\gamma at VEPP-2M,” Eur. Phys. J. C 12 (2000) 25–33, BUDKER-INP-1999-39.
  • [80] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the processes e+eηγe^{+}e^{-}\to\eta\gamma, π0γ3γ\pi^{0}\gamma\to 3\gamma in the c.m. energy range 600 MeV to 1380 MeV at CMD-2,” Phys. Lett. B 605 (2005) 26–36, BUDKER-INP-2004-51, arXiv:hep-ex/0409030.
  • [81] SND Collaboration, M. N. Achasov et al., “Study of the reaction e+eπ0γe^{+}e^{-}\to\pi^{0}\gamma with the SND detector at the VEPP-2M collider,” Phys. Rev. D 93 no. 9, (2016) 092001, arXiv:1601.08061 [hep-ex].
  • [82] BaBar Collaboration, B. Aubert et al., “Measurements of e+eK+Kηe^{+}e^{-}\to K^{+}K^{-}\eta, K+Kπ0K^{+}K^{-}\pi^{0} and Ks0K±πK^{0}_{s}K^{\pm}\pi^{\mp} cross- sections using initial state radiation events,” Phys. Rev. D 77 (2008) 092002, SLAC-PUB-12968, BABAR-PUB-07-052, arXiv:0710.4451 [hep-ex].
  • [83] BaBar Collaboration, B. Aubert et al., “The e+e2(π+π)π0e^{+}e^{-}\to 2(\pi^{+}\pi^{-})\pi^{0}, 2(π+π)η2(\pi^{+}\pi^{-})\eta, K+Kπ+ππ0K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} and K+Kπ+πηK^{+}K^{-}\pi^{+}\pi^{-}\eta Cross Sections Measured with Initial-State Radiation,” Phys. Rev. D 76 (2007) 092005, BABAR-PUB-07-045, SLAC-PUB-12753, arXiv:0708.2461 [hep-ex]. [Erratum: Phys.Rev.D 77, 119902 (2008)].
  • [84] BaBar Collaboration, B. Aubert et al., “The e+e3(π+π),2(π+ππ0)e^{+}e^{-}\to 3(\pi^{+}\pi^{-}),2(\pi^{+}\pi^{-}\pi^{0}) and K+K2(π+π)K^{+}K^{-}2(\pi^{+}\pi^{-}) cross sections at center-of-mass energies from production threshold to 4.5 GeV measured with initial-state radiation,” Phys. Rev. D 73 (2006) 052003, SLAC-PUB-11663, BABAR-PUB-05-053, arXiv:hep-ex/0602006.
  • [85] DM2 Collaboration, M. Schioppa , ROMA-THESIS-1986-SCHIOPPA.
  • [86] BaBar Collaboration, J. P. Lees et al., “Study of the reactions e+e2(π+π)π0π0π0e^{+}e^{-}\to 2(\pi^{+}\pi^{-})\pi^{0}\pi^{0}\pi^{0} and e+e2(π+π)π0π0ηe^{+}e^{-}\to 2(\pi^{+}\pi^{-})\pi^{0}\pi^{0}\eta at center-of-mass energies from threshold to 4.5 GeV using initial-state radiation,” Phys. Rev. D 103 no. 9, (2021) 092001, SLAC-PUB-17587, BaBar-PUB-20004, arXiv:2102.01314 [hep-ex].
  • [87] DM1 Collaboration, D. Bisello, J. C. Bizot, J. Buon, A. Cordier, B. Delcourt, and F. Mane, “Study of the Reaction e+e3π+3πe^{+}e^{-}\to 3\pi^{+}3\pi^{-} in the Total Energy Range 1400 MeV to 2180 MeV,” Phys. Lett. B 107 (1981) 145–147, LAL 81/19.
  • [88] CMD-3 Collaboration, R. R. Akhmetshin et al., “Study of the process e+e3(π+π)e^{+}e^{-}\to 3(\pi^{+}\pi^{-}) in the c.m. energy range 1.5–2.0 GeV with the CMD-3 detector,” Phys. Lett. B 723 (2013) 82–89, arXiv:1302.0053 [hep-ex].
  • [89] CMD-3 Collaboration, R. R. Akhmetshin et al., “Study of the process e+e3(π+π)π0e^{+}e^{-}\to 3(\pi^{+}\pi^{-})\pi^{0} in the C.M. Energy range 1.6–2.0 GeV with the CMD-3 detector,” Phys. Lett. B 792 (2019) 419–423, arXiv:1902.06449 [hep-ex].
  • [90] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eηγe^{+}e^{-}\to\eta\gamma in center-of-mass energy range 600 MeV to 1380 MeV at CMD-2,” Phys. Lett. B 509 (2001) 217–226, arXiv:hep-ex/0103043.
  • [91] ACO Collaboration, G. Cosme et al., “New Measurements with the Orsay Electron-Positron Storage Ring of the Radiative Decay Modes of the ϕ\phi-Meson,” Phys. Lett. B 63 (1976) 352–356, LAL-1279.
  • [92] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eπ+ππ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} with CMD-2 detector,” Phys. Lett. B 489 (2000) 125–130, arXiv:hep-ex/0009013.
  • [93] SND Collaboration, V. M. Aulchenko et al., “Measurement of the e+eηπ+πe^{+}e^{-}\to\eta\pi^{+}\pi^{-} cross section in the center-of-mass energy range 1.22-2.00 GeV with the SND detector at the VEPP-2000 collider,” Phys. Rev. D 91 no. 5, (2015) 052013, arXiv:1412.1971 [hep-ex].
  • [94] BaBar Collaboration, J. P. Lees et al., “Study of the process e+eπ+πηe^{+}e^{-}\to\pi^{+}\pi^{-}\eta using initial state radiation,” Phys. Rev. D 97 (2018) 052007, BABAR-PUB-17-003, SLAC-PUB-17204, arXiv:1801.02960 [hep-ex].
  • [95] DM2 Collaboration, D. Bisello et al., “e+ee^{+}e^{-} annihilation into multi-hadrons in the 1350 MeV - 2400 MeV energy range,” Nucl. Phys. B Proc. Suppl. 21 (1991) 111–117, LAL-90-71.
  • [96] DM2 Collaboration, D. Bisello et al., “Observation of an isoscalar vector meson at approximately 1650 MeV/c2c^{2} in the e+eKK¯πe^{+}e^{-}\to K\bar{K}\pi reaction,” Z. Phys. C 52 (1991) 227–230, LAL-91-24.
  • [97] BaBar Collaboration, J. P. Lees et al., “Cross Sections for the Reactions e+eK+Kπ+πe^{+}e^{-}\to K^{+}K^{-}\pi^{+}\pi^{-}, K+Kπ0π0K^{+}K^{-}\pi^{0}\pi^{0}, and K+KK+KK^{+}K^{-}K^{+}K^{-} Measured Using Initial-State Radiation Events,” Phys. Rev. D 86 (2012) 012008, SLAC-PUB-14403, BABAR-PUB-11-001, arXiv:1103.3001 [hep-ex].
  • [98] DM1 Collaboration, A. Cordier, D. Bisello, J. C. Bizot, J. Buon, B. Delcourt, L. Fayard, and F. Mane, “Study of the e+eπ+πK+Ke^{+}e^{-}\to\pi^{+}\pi^{-}K^{+}K^{-} Reaction From 1.4 GeV to 2.18 GeV,” Phys. Lett. B 110 (1982) 335–338, LAL-81/35.
  • [99] CMD-3 Collaboration, D. N. Shemyakin et al., “Measurement of the e+eK+Kπ+πe^{+}e^{-}\to K^{+}K^{-}\pi^{+}\pi^{-} cross section with the CMD-3 detector at the VEPP-2000 collider,” Phys. Lett. B 756 (2016) 153–160, arXiv:1510.00654 [hep-ex].
  • [100] BaBar Collaboration, J. P. Lees et al., “Cross sections for the reactions e+eKS0KL0π0e^{+}e^{-}\to K^{0}_{S}K^{0}_{L}\pi^{0}, KS0KL0ηK^{0}_{S}K^{0}_{L}\eta, and KS0KL0π0π0K^{0}_{S}K^{0}_{L}\pi^{0}\pi^{0} from events with initial-state radiation,” Phys. Rev. D 95 no. 5, (2017) 052001, BABAR-PUB-16-004, SLAC-PUB-16918, arXiv:1701.08297 [hep-ex].
  • [101] BaBar Collaboration, J. P. Lees et al., “Measurement of the e+eKS0K±ππ0e^{+}e^{-}\to K^{0}_{\scriptscriptstyle S}K^{\pm}\pi^{\mp}\pi^{0} and KS0K±πηK^{0}_{\scriptscriptstyle S}K^{\pm}\pi^{\mp}\eta cross sections using initial-state radiation,” Phys. Rev. D 95 no. 9, (2017) 092005, BABAR-PUB-15-005, SLAC-PUB-16940, arXiv:1704.05009 [hep-ex].
  • [102] CMD-3 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eπ+ππ0ηe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}\eta in the c.m. energy range 1394-2005 MeV with the CMD-3 detector,” Phys. Lett. B 773 (2017) 150–158, arXiv:1706.06267 [hep-ex].
  • [103] SND Collaboration, M. N. Achasov et al., “Measurement of the e+eωηe^{+}e^{-}\to\omega\eta cross section below s=2\sqrt{s}=2 GeV,” Phys. Rev. D 94 no. 9, (2016) 092002, arXiv:1607.00371 [hep-ex].
  • [104] KLOE Collaboration, F. Ambrosino et al., “Study of the process e+eωπ0e^{+}e^{-}\to\omega\pi^{0} in the ϕ\phi-meson mass region with the KLOE detector,” Phys. Lett. B 669 (2008) 223–228, arXiv:0807.4909 [hep-ex].
  • [105] SND Collaboration, V. M. Aulchenko et al., “Study of the Reactions e+eωπ0e^{+}e^{-}\to\omega\pi^{0} and e+eπ0π0γe^{+}e^{-}\to\pi^{0}\pi^{0}\gamma with SND Detector at VEPP-2M,” BUDKER-INP-2000-35.
  • [106] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eωπ0π0π0γe^{+}e^{-}\to\omega\pi^{0}\to\pi^{0}\pi^{0}\gamma in c.m. energy range 920 MeV – 1380 MeV at CMD-2,” Phys. Lett. B 562 (2003) 173–181, arXiv:hep-ex/0304009.
  • [107] SND Collaboration, M. N. Achasov et al., “Measurement of the cross section for the e+eωπ0π0π0γe^{+}e^{-}\to\omega\pi^{0}\to\pi^{0}\pi^{0}\gamma process in the energy range of 1.1 GeV – 1.9 GeV,” JETP Lett. 94 (2012) 734–737.
  • [108] SND Collaboration, M. N. Achasov et al., “Investigation of the e+eωπ0π0π0γe^{+}e^{-}\to\omega\pi^{0}\to\pi^{0}\pi^{0}\gamma reaction in the energy domain near the ϕ\phi meson,” Nucl. Phys. B 569 (2000) 158–182, arXiv:hep-ex/9907026.
  • [109] ND Collaboration, S. I. Dolinsky et al., “The Reaction e+eΩπ0e^{+}e^{-}\to\Omega\pi^{0} in the Center-of-mass Energy Range From 1.0 GeV to 1.4 GeV,” Phys. Lett. B 174 (1986) 453–457, NOVOSIBIRSK-86-69.
  • [110] CMD-2 Collaboration, R. R. Akhmetshin et al., “Study of the process e+eπ0π0γe^{+}e^{-}\to\pi^{0}\pi^{0}\gamma in c.m. energy range 600 MeV to 970 MeV at CMD2,” Phys. Lett. B 580 (2004) 119–128, arXiv:hep-ex/0310012.
  • [111] SND Collaboration, M. N. Achasov et al., “Updated measurement of the e+eωπ0π0π0γe^{+}e^{-}\to\omega\pi^{0}\to\pi^{0}\pi^{0}\gamma cross section with the SND detector,” Phys. Rev. D 94 no. 11, (2016) 112001, arXiv:1610.00235 [hep-ex].
  • [112] DM1 Collaboration, A. Cordier, D. Bisello, J. C. Bizot, J. Buon, B. Delcourt, and F. Mane, “Observation of a New Isoscalar Vector Meson in e+eωπ+πe^{+}e^{-}\to\omega\pi^{+}\pi^{-} Annihilation at 1.65 GeV,” Phys. Lett. B 106 (1981) 155–158, LAL 81/20.
  • [113] SND Collaboration, M. N. Achasov et al., “Study of the process e+eωηπ0e^{+}e^{-}\to\omega\eta\pi^{0} in the energy range s<2\sqrt{s}<2 GeV with the SND detector,” Phys. Rev. D 94 no. 3, (2016) 032010, arXiv:1606.06481 [hep-ex].
  • [114] CMD-3 Collaboration, V. L. Ivanov et al., “Study of the process e+eK+Kηe^{+}e^{-}{\to}K^{+}K^{-}\eta with the CMD-3 detector at the VEPP-2000 collider,” Phys. Lett. B 798 (2019) 134946, arXiv:1906.08006 [hep-ex].
  • [115] BaBar Collaboration, J. P. Lees et al., “Study of the reactions e+eπ+ππ0π0π0γe^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\gamma and π+ππ0π0ηγ\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta\gamma at center-of-mass energies from threshold to 4.35 GeV using initial-state radiation,” Phys. Rev. D 98 no. 11, (2018) 112015, SLAC-PUB-17344, arXiv:1810.11962 [hep-ex].
  • [116] DM2 Collaboration, D. Bisello et al., “A Measurement of e+ep¯pe^{+}e^{-}\to\bar{p}p for 1975 MeV s\leq\sqrt{s}\leq 2250 MeV,” Nucl. Phys. B 224 (1983) 379, LAL 83/15.
  • [117] CMD-3 Collaboration, R. R. Akhmetshin et al., “Study of the process e+epp¯e^{+}e^{-}\to p\bar{p} in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector,” Phys. Lett. B 759 (2016) 634–640, arXiv:1507.08013 [hep-ex].
  • [118] DM1 Collaboration, B. Delcourt et al., “Study of the Reaction e+epp¯e^{+}e^{-}\to p\bar{p} in the Total Energy Range 1925 MeV – 2180 MeV,” Phys. Lett. B 86 (1979) 395–398, LAL-79/12.
  • [119] BaBar Collaboration, J. P. Lees et al., “Study of e+epp¯e^{+}e^{-}\to p\bar{p} via initial-state radiation at BABAR,” Phys. Rev. D 87 no. 9, (2013) 092005, BABAR-PUB-12-030, SLAC-PUB-15324, arXiv:1302.0055 [hep-ex].
  • [120] FENICE Collaboration, A. Antonelli et al., “The first measurement of the neutron electromagnetic form-factors in the timelike region,” Nucl. Phys. B 517 (1998) 3–35.
  • [121] SND Collaboration, M. N. Achasov et al., “Study of the process e+enn¯e^{+}e^{-}\to n\bar{n} at the VEPP-2000 e+ee^{+}e^{-} collider with the SND detector,” Phys. Rev. D 90 no. 11, (2014) 112007, arXiv:1410.3188 [hep-ex].
  • [122] BES Collaboration, M. Ablikim et al., “R value measurements for e+ee^{+}e^{-} annihilation at 2.60 GeV, 3.07 GeV and 3.65 GeV,” Phys. Lett. B 677 (2009) 239–245, arXiv:0903.0900 [hep-ex].
  • [123] BES Collaboration, J. Z. Bai et al., “Measurements of the cross-section for e+ehadronse^{+}e^{-}\to hadrons at center-of-mass energies from 2 GeV to 5 GeV,” Phys. Rev. Lett. 88 (2002) 101802, SLAC-PUB-8938, arXiv:hep-ex/0102003.
  • [124] BES II Collaboration, M. Ablikim et al., “Measurements of the continuum R(uds) and R values in e+ee^{+}e^{-} annihilation in the energy region between 3.650 and 3.872 GeV,” Phys. Rev. Lett. 97 (2006) 262001, arXiv:hep-ex/0612054.
  • [125] Mark-J Collaboration, D. P. Barber et al., “Measurement of Hadron Production and Three Jet Event Properties at PETRA MIT,” Phys. Lett. B 108 (1982) 63–66, MIT-LNS-115.
  • [126] DASP Collaboration, H. Albrecht et al., “The Hadronic Cross-section of Electron - Positron Annihilation at 9.5 GeV and the Υ\Upsilon and Υ\Upsilon^{\prime} Resonance Parameters,” Phys. Lett. B 116 (1982) 383–386, DESY-82-037.
  • [127] TASSO Collaboration, M. Althoff et al., “Measurement of r and Search for the Top Quark in e+ee^{+}e^{-} Annihilation Between 39.8 GeV and 45.2 GeV,” Phys. Lett. B 138 (1984) 441–448, DESY-84-001.
  • [128] CELLO Collaboration, H. J. Behrend et al., “Determination of alpha-s and sin**2theta(w) from Measurements of the Total Hadronic Cross-Section in e+ee^{+}e^{-} Annihilation,” Phys. Lett. B 183 (1987) 400–411, DESY-86-133.
  • [129] VENUS Collaboration, H. Yoshida et al., “Measurement of R and Search for New Heavy Quarks in e+ee^{+}e^{-} Annihilation at 50 GeV and 52 GeV Center-of-mass Energies,” Phys. Lett. B 198 (1987) 570, KEK-PREPRINT-87-81, KOBE-HEP-87-03, KUNS-893, OULNS-87-5, TMUP-HEL-87-22.
  • [130] TOPAZ Collaboration, I. Adachi et al., “Measurement of the Total Hadronic Cross-sections in e+e- Annihilation and Determination of the Standard Model Parameters,” Phys. Lett. B 234 (1990) 525–533, KEK-PREPRINT-89-136, DPNU-89-51, INS-779, KOBE-HEP-89-10, NWU-HEP-89-04, OCU-HEP-89-04, PU-89-636, TU-HEP-89-03, TUAT-HEP-89-03, UT-HE-89-08.
  • [131] VENUS Collaboration, K. Abe et al., “Experimental limits on extra ZZ bosons from e+ee^{+}e^{-} annihilation data with the VENUS detector at s\sqrt{s} = 50 GeV to approximately 64 GeV,” Phys. Lett. B 246 (1990) 297–305, KEK-PREPRINT-90-34.
  • [132] TOPAZ Collaboration, K. Abe et al., “Search for a narrow resonance in e+ee^{+}e^{-} collisions between E(cm) = 58 GeV and 60 GeV,” Phys. Lett. B 304 (1993) 373–380, KEK-PREPRINT-92-205, TUAT-HEP-93-01, NWU-HEP-9302, DPNU-93-08, OCU-HEP-93-1, PU-93-666, INS-966, KOBE-HEP-93-04, TIT-HPE-93-03.
  • [133] TOPAZ Collaboration, K. Miyabayashi et al., “Measurement of the total hadronic cross-section and determination of gamma - Z interference in e+ee^{+}e^{-} annihilation,” Phys. Lett. B 347 (1995) 171–178, DPNU-94-47, NWU-HEP-94-06, KEK-PREPRINT-94-152, TUAT-HEP-94-05, TIT-HPE-94-11, OCU-HEP-94-09, PU-94-688, INS-1074, KOBE-HEP-94-08.
  • [134] KEDR Collaboration, V. V. Anashin et al., “Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector,” Phys. Lett. B 788 (2019) 42–51, arXiv:1805.06235 [hep-ex].
  • [135] Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing Collaboration, D. P. Barber et al., “Study of Electron - Positron Collisions at the Highest PETRA Energy,” Phys. Lett. B 85 (1979) 463–466, MIT-LNS-104.
  • [136] CLEO Collaboration, R. Giles et al., “The Total Cross-section for Electron - Positron Annihilation Into Hadron Final States in the Υ\Upsilon Energy Region,” Phys. Rev. D 29 (1984) 1285, CLNS-83/586, CLEO-83-10.
  • [137] SLAC-PEP-MAC Collaboration, E. Fernandez et al., “Precision Measurement of the Total Cross-section for e+ee^{+}e^{-}\to Hadrons at a Center-of-mass Energy of 29 GeV,” Phys. Rev. D 31 (1985) 1537, SLAC-PUB-3479.
  • [138] Mark-J Collaboration, B. Adeva et al., “Study of Hadron and Inclusive Muon Production From Electron Positron Annihilation at 39.79 GeV s\leq\sqrt{s}\leq 46.78 GeV,” Phys. Rev. D 34 (1986) 681–691, MIT-LNS-146.
  • [139] AMY Collaboration, T. Kumita et al., “Measurements of RR for e+ee^{+}e^{-} annihilation at TRISTAN,” Phys. Rev. D 42 (1990) 1339–1349, KEK-PREPRINT-89-188, AMY-89-21.
  • [140] MARK-II Collaboration, C. Von Zanthier et al., “Measurement of the Total Hadronic Cross-section in e+ee^{+}e^{-} Annihilation at s=29\sqrt{s}=29 GeV,” Phys. Rev. D 43 (1991) 34–45, SLAC-PUB-5213, LBL-28859.
  • [141] CLEO Collaboration, R. Ammar et al., “A Measurement of the total cross-section for e+ehadronse^{+}e^{-}\to hadrons at s=10.52\sqrt{s}=10.52 GeV,” Phys. Rev. D 57 (1998) 1350–1358, SLAC-PUB-9765, CLNS-97-1493, CLEO-97-14, arXiv:hep-ex/9707018.
  • [142] SLAC-SPEAR Collaboration, P. A. Rapidis et al., “Observation of a Resonance in e+ee^{+}e^{-} Annihilation Just Above Charm Threshold,” Phys. Rev. Lett. 39 (1977) 526, SLAC-PUB-1959, LBL-6484. [Erratum: Phys.Rev.Lett. 39, 974 (1977)].
  • [143] CUSB Collaboration, E. Rice et al., “Search for structure in σ(e+ehadrons)\sigma(e^{+}e^{-}\to hadrons) between s=10.34\sqrt{s}=10.34 GeV and 11.611.6 GeV,” Phys. Rev. Lett. 48 (1982) 906–910.
  • [144] BES Collaboration, J. Z. Bai et al., “Measurement of the total cross-section for hadronic production by e+ee^{+}e^{-} annihilation at energies between 2.6 GeV – 5 GeV,” Phys. Rev. Lett. 84 (2000) 594–597, SLAC-REPRINT-1999-087, arXiv:hep-ex/9908046.
  • [145] JADE Collaboration, B. Naroska, “e+ee^{+}e^{-} Physics with the JADE Detector at PETRA,” Phys. Rept. 148 (1987) 67, DESY-86-113.
  • [146] Mark-II Collaboration, R. H. Schindler, “Charmed meson production and decay properties at the Ψ′′(3770)\Psi^{\prime\prime}(3770),” SLAC-R-0219.
  • [147] SLAC-SPEAR Collaboration, A. Osterheld et al., “Measurements of Total Hadronic and Inclusive DD^{*} Cross-sections in e+ee^{+}e^{-} Annihilations Between 3.87 GeV and 4.5 GeV,” SLAC-PUB-4160.
  • [148] Crystal Ball Collaboration, C. Edwards et al., “Hadron Production in e+ee^{+}e^{-} Annihilation From s=5\sqrt{s}=5 GeV to 7.4 GeV,” SLAC-PUB-5160.
  • [149] LENA Collaboration, B. Niczyporuk et al., “Measurement of R in e+ee^{+}e^{-} Annihilation for s\sqrt{s} Between 7.4 GeV and 9.4 GeV,” Z. Phys. C 15 (1982) 299, DESY-82-052.
  • [150] TASSO Collaboration, M. Althoff et al., “Jet Production and Fragmentation in e+ee^{+}e^{-} Annihilation at 12 GeV to 43 GeV,” Z. Phys. C 22 (1984) 307–340, DESY-83-130.
  • [151] Crystal Ball Collaboration, Z. Jakubowski et al., “Determination of Γ(ee\Gamma(ee) of the Υ\Upsilon (1s) and Υ\Upsilon (2s) Resonances and Measurement of R at WW=9.39 GeV,” Z. Phys. C 40 (1988) 49, SLAC-PUB-4567, DESY-88-032.
  • [152] TASSO Collaboration, W. Braunschweig et al., “Global Jet Properties at 14 GeV to 44 GeV Center-of-mass Energy in e+ee^{+}e^{-} Annihilation,” Z. Phys. C 47 (1990) 187–198, DESY-90-013.
  • [153] TASSO Collaboration, R. Brandelik et al., “e+ee^{+}e^{-} Annihilation at High-Energies and Search for the t-Quark Continuum Contribution,” Z. Phys. C 4 (1980) 87, DESY-79/74.
  • [154] ARGUS Collaboration, H. Albrecht et al., “Measurement of R and determination of the charged particle multiplicity in e+ee^{+}e^{-} annihilation at s\sqrt{s} around 10 GeV,” Z. Phys. C 54 (1992) 13–20, DESY-91-092.
  • [155] DESY-Hamburg-Heidelberg-Munich Collaboration, P. Bock et al., “Total Cross-section for Hadron Production by e+ee^{+}e^{-} Annihilation Between 9.4 GeV and 9.5 GeV,” Z. Phys. C 6 (1980) 125, DESY-80-58.
  • [156] MD-1 Collaboration, A. E. Blinov et al., “The Measurement of RR in e+ee^{+}e^{-} annihilation at center-of-mass energies between 7.2 GeV and 10.34 GeV,” Z. Phys. C 70 (1996) 31–38, BUDKER-INP-1993-54.
  • [157] S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from lattice QCD,” Nature 593 no. 7857, (2021) 51–55, arXiv:2002.12347 [hep-lat].