This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A class of conserved currents for linearized gravity in the Kerr spacetime

Alexander M. Grant, Éanna É. Flanagan Department of Physics, Cornell University, Ithaca, NY 14853, USA
Abstract

We construct a class of conserved currents for linearized gravity on a Kerr background. Our procedure, motivated by the current for scalar fields discovered by Carter (1977), is given by taking the symplectic product of solutions to the linearized Einstein equations that are defined by symmetry operators. We consider symmetry operators that are associated with separation of variables in the Teukolsky equation, as well as those arising due the self-adjoint nature of the Einstein equations. In the geometric optics limit, the charges associated with these currents reduce to sums over gravitons of positive powers of their Carter constants, much like the conserved current for scalar fields. We furthermore compute the fluxes of these conserved currents through null infinity and the horizon and identify which are finite.

I Introduction and Summary

In the Kerr spacetime, freely falling point particles possess a constant of motion, distinct from the energy EE and the zz component of angular momentum LzL_{z}, known as the Carter constant KK PhysRev.174.1559 . Much like EE and LzL_{z}, which are associated with Killing vectors, this constant of motion can be written in terms of a symmetric rank two Killing tensor KabK_{ab} as 1970CMaPh..18..265W

K=Kabpapb,K=K_{ab}p^{a}p^{b}, (I.1)

where pap^{a} is the four-momentum of the particle and KabK_{ab} satisfies

(aKbc)=0.\nabla_{(a}K_{bc)}=0. (I.2)

This Killing tensor is not associated with any isometry of the Kerr spacetime, although the Carter constant reduces to the particle’s total squared angular momentum (which is associated with spherical symmetry) in the Schwarzschild limit. We fix our conventions for KabK_{ab} in equation (II.2) below.

In addition to point particles, one can also consider test fields on the Kerr background, that is, fields whose magnitudes are small enough that their gravitational backreaction can be neglected. In the Kerr spacetime, scalar, spin-1/21/2, and electromagnetic test fields possess conserved charges that generalize the Carter constant:

  • For a sourceless complex scalar field Φ\Phi, the conserved charge is the Klein-Gordon inner product of Φ\Phi with 0𝒟Φ\,\mbox{}_{0}\mathcal{D}\Phi PhysRevD.16.3395 :

    0K12iΣd3Σa[(0𝒟Φ)aΦ¯Φ¯a0𝒟Φ],\,\mbox{}_{0}K\equiv\frac{1}{2i}\int_{\Sigma}\mathrm{d}^{3}\Sigma^{a}\left[(\,\mbox{}_{0}\mathcal{D}\Phi)\nabla_{a}\overline{\Phi}-\overline{\Phi}\nabla_{a}\,\mbox{}_{0}\mathcal{D}\Phi\right], (I.3)

    where Σ\Sigma is any spacelike hypersurface, the differential operator 0𝒟\,\mbox{}_{0}\mathcal{D} is defined by

    0𝒟Φa(KabbΦ),\,\mbox{}_{0}\mathcal{D}\Phi\equiv\nabla_{a}(K^{ab}\nabla_{b}\Phi), (I.4)

    and bars denote complex conjugation. The operator 0𝒟\,\mbox{}_{0}\mathcal{D} commutes with the d’Alembertian, and so maps the space of solutions into itself. The charge 0K\,\mbox{}_{0}K is associated with the Carter constant in the following sense: for a solution of the form Φeiϑ/ϵ\Phi\propto e^{-i\vartheta/\epsilon}, which represents a collection of scalar quanta with Carter constants {Kα}\{K_{\alpha}\}, the charge is given by (in the geometric optics limit ϵ0\epsilon\to 0)

    0K=1αKα.\,\mbox{}_{0}K=\frac{1}{\hbar}\sum_{\alpha}K_{\alpha}. (I.5)

    That is, the charge is proportional to the sum of the Carter constants of each scalar quantum. In the case of real scalar fields, the charge vanishes in the geometric optics limit.

  • A similar result holds for any spin-1/21/2 field ψ\psi satisfying the Dirac equation PhysRevD.19.1093 . In Kerr, there exists an antisymmetric Killing-Yano tensor fabf_{ab}, which satisfies (afb)c=0\nabla_{(a}f_{b)c}=0 and Kab=facfcbK_{ab}=f_{ac}f^{c}{}_{b}, with our particular choice of KabK_{ab} in equation (II.2). An operator 1/2𝒟\,\mbox{}_{1/2}\mathcal{D}, which is defined in terms of fabf_{ab} and commutes with the Dirac operator, is given by

    1/2𝒟=iγ5γa(fabb16γbγccfab),\,\mbox{}_{1/2}\mathcal{D}=i\gamma_{5}\gamma^{a}\left(f_{a}{}^{b}\nabla_{b}-\frac{1}{6}\gamma^{b}\gamma^{c}\nabla_{c}f_{ab}\right), (I.6)

    where γa\gamma^{a} is the usual gamma matrix and, in terms of the Levi-Civita tensor ϵabcd\epsilon_{abcd}, γ5iϵabcdγaγbγcγd\gamma_{5}\equiv i\epsilon_{abcd}\gamma^{a}\gamma^{b}\gamma^{c}\gamma^{d}. The charge which generalizes the charge in equation (I.3) is proportional to the following integral over a spacelike hypersurface Σ\Sigma:

    1/2KΣd3Σa(1/2𝒟ψ)¯γa1/2𝒟ψ.\,\mbox{}_{1/2}K\propto\int_{\Sigma}\mathrm{d}^{3}\Sigma_{a}\;\overline{(\,\mbox{}_{1/2}\mathcal{D}\psi)}\gamma^{a}\,\mbox{}_{1/2}\mathcal{D}\psi. (I.7)

    As in the scalar field case, this charge is proportional to the sum of the Carter constants of the individual quanta in the geometric optics limit. This construction works for massive as well as massless spin-1/21/2 particles, and even charged spin-1/21/2 particles in the case of the Kerr-Newman spacetime PhysRevD.19.1093 .

  • For electromagnetic fields, there are several conserved charges which satisfy the requirement of reducing, in the geometric optics limit, to a sum of (some power) of the Carter constants of the photons; some examples are given by Andersson:2015xla , which we have considered in Grant:2019qyo (along with additional examples).

It would be interesting to find similar conserved currents in the case of linearized gravity.

One application of such a conserved current would be to gravitational wave astronomy, in the form of further advances in the so-called extreme mass-ratio inspiral problem. The gravitational waves radiated during the inspiral of compact objects into supermassive black holes will be an important signal for LISA AmaroSeoane:2012km . There is therefore a major effort currently underway to accurately compute gravitational waveforms that these sources would produce (see, for example, Wardell:2015kea and the references therein). As there is a great separation of scales in the masses of the inspiralling object and the supermassive black hole, this is known as the extreme mass-ratio inspiral (EMRI) problem. The compact object is treated as a point particle, and given an orbit, which on short timescales is geodesic, the radiation can be computed using black hole perturbation theory. However, on long timescales, the orbital parameters change due to the effects of radiation reaction, and so on these timescales the computed radiation must be corrected. Special classes of orbits, such as circular or equatorial orbits, can be evolved in the adiabatic limit by using the fluxes of energy and angular momentum to infinity and down the horizon to evolve the orbital energy and angular momentum, since for these orbits the Carter constant is completely determined by the energy and angular momentum (see, for example, Hughes:1999bq ).

Generic orbits require a method of obtaining time-averaged rates of change of an orbit’s Carter constant. A formula for this quantity to leading adiabatic order has been derived directly from the self-force Mino:2003yg (see Isoyama:2018sib for recent efforts in this problem, including extensions of this result to the resonant case). It is qualitatively similar to the formulae for energy and angular momentum fluxes, having terms corresponding to infinity and to the horizon Sago01052006 . There is, however, no known derivation of this formula from a conserved current. Such a derivation would provide a unified framework with which to understand these results, and may be necessary to obtain results at higher order. These higher-order results may be necessary for parameter estimation, or perhaps even simply detection, of signals from EMRIs.

Unfortunately, no conserved currents generalizing the Carter constant for general stress-energy tensors exist. More precisely, we have shown that, given a general, conserved stress-energy tensor in Kerr, there is no functional of the stress-energy tensor and its derivatives on a spacelike hypersurface Σ\Sigma that a) reduces to the Carter constant for a point particle and b) is independent of the choice of hypersurface Σ\Sigma when the stress-energy tensor is of compact spatial support Grant:2015xqa . This implies that there can be no generic derivation of a flux formula for a “Carter constant” that applies to arbitrary fields and sources. It is still possible, however, that such derivations could exist for specific types of fields. In particular, it may be possible to derive a flux formula for determining the evolution of an orbit’s Carter contant in linearized gravity from an appropriate conserved current.

Motivated by this possibility, in this paper we construct four conserved currents, denoted 2𝒞̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], 2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], and ±2Ωja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{\pm 2}\Omega}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], that generalize the Carter constant in Kerr, in the sense that each of their charges reduce to the sum of some positive power of the Carter constants of the gravitons in the geometric optics limit. Moreover, we show that these currents have the further property that their fluxes at null infinity and the horizon are finite for well-behaved solutions that describe radiation. While these currents themselves are new, their construction involves symmetry operators which have been studied extensively in the literature (see, for example, PhysRevLett.41.203 ; Chrzanowski:1975wv ; Aksteiner:2016mol ).

The organization of this paper is as follows. Section II is a review of the theory of linearized gravity in Kerr, using both the spinor and Newman-Penrose formalisms, and fixes conventions which we use throughout. It also reviews the Teukolsky formalism and separation of variables in the Kerr spacetime. Section III defines symmetry operators, which are the maps from the space of solutions into itself, such as the operator 0𝒟\,\mbox{}_{0}\mathcal{D} in equation (I.4) above. We give particular examples of symmetry operators for linearized gravity in Kerr, and show how they act on expansions that arise in the Teukolsky formalism. In section IV, we first define the symplectic product, a generalization of the Klein-Gordon inner product used in the scalar case, which we then use to generate the conserved currents that we consider in this paper. In section V, we review the geometric optics limit of solutions in linearized gravity on a curved background and use it to deduce the limits of currents defined in section IV. In section VI, we compute fluxes of these currents through the horizon and null infinity. We conclude in section VII with general discussion and a summary of the properties of these currents in table VII.1. Appendices A and B contain details of the calculations in section VI.

We use the following conventions in this paper: we follow most texts on spinors by using the (+,,,)(+,-,-,-) sign convention for the metric and bars to denote complex conjugation. We denote tensors with indices removed by bold face. For any linear operator Ta1apb1bqT_{a_{1}\cdots a_{p}}{}^{b_{1}\cdots b_{q}} which maps tensors of rank qq to those of rank pp, we write Ta1apSb1bqb1bqT_{a_{1}\cdots a_{p}}{}^{b_{1}\cdots b_{q}}S_{b_{1}\cdots b_{q}} as 𝑻𝑺\boldsymbol{T}\cdot\boldsymbol{S} when indices have been removed. Furthermore, we will leave explicit the soldering forms σaAA\sigma_{a}{}^{AA^{\prime}} which form the isomorphism between the tangent vector space and the space of Hermitian spinors penrose1987spinors .

II Kerr perturbations: review and definitions

II.1 Spinor formalism

In this paper, we will be using a combination of the spinor and Newman-Penrose formalisms in order to describe linearized gravity about some arbitrary vacuum solution of the Einstein equations. In general, we follow the notation of Penrose and Rindler penrose1987spinors ; penrose1988spinors . The spinor formalism is particularly convenient in Kerr, since not only is there a rank two Killing tensor KabK_{ab} as discussed in section I, but also a rank two symmetric spinor ζAB\zeta_{AB} which satisfies the Killing spinor equation penrose1988spinors :

AζBC)(A=0.\nabla^{A^{\prime}}{}_{(A}\zeta_{BC)}=0. (II.1)

This Killing spinor generates the related conformal Killing tensor Σab\Sigma_{ab} given by

ΣabσaσbAAζABBBζ¯AB12Kab14Re[ζCDζCD]gab,\Sigma_{ab}\equiv\sigma_{a}{}^{AA^{\prime}}\sigma_{b}{}^{BB^{\prime}}\zeta_{AB}\bar{\zeta}_{A^{\prime}B^{\prime}}\equiv\frac{1}{2}K_{ab}-\frac{1}{4}\operatorname{Re}\left[\zeta_{CD}\zeta^{CD}\right]g_{ab}, (II.2)

which we use to define our Killing tensor KabK_{ab} 1970CMaPh..18..265W . Note that, given a Killing spinor ζAB\zeta_{AB}, equation (II.2) fixes the ambiguity in KabK_{ab}, which is otherwise only defined only up to terms of the form λgab\lambda g_{ab}, for constant λ\lambda, or up to terms that are products of Killing vectors.

Petrov type D spacetimes possess a Killing spinor intimately connected with the Weyl spinor ΨABCD\Psi_{ABCD} 1970CMaPh..18..265W , the symmetric spinor constructed from the Weyl tensor:

CabcdσaσbAAσcBBσdCC(ϵABϵCDΨ¯ABCD+ϵABϵCDΨABCD)DD.C_{abcd}\equiv\sigma_{a}{}^{AA^{\prime}}\sigma_{b}{}^{BB^{\prime}}\sigma_{c}{}^{CC^{\prime}}\sigma_{d}{}^{DD^{\prime}}\left(\epsilon_{AB}\epsilon_{CD}\overline{\Psi}_{A^{\prime}B^{\prime}C^{\prime}D^{\prime}}+\epsilon_{A^{\prime}B^{\prime}}\epsilon_{C^{\prime}D^{\prime}}\Psi_{ABCD}\right). (II.3)

Since ΨABCD\Psi_{ABCD} is symmetric, it can be written as a symmetric product of four spinors

ΨABCD=α(AβBγCδD).\Psi_{ABCD}=\alpha_{(A}\beta_{B}\gamma_{C}\delta_{D)}. (II.4)

For spacetimes of Petrov type D, there is a choice of these spinors such that αA=βA\alpha_{A}=\beta_{A} and γA=δA\gamma_{A}=\delta_{A} (this is one of many equivalent definitions of a type D spacetime). Normalizing αA\alpha_{A} and γA\gamma_{A} to be a spin basis (o,ι)(o,\iota) (that is, setting oAιA=1o_{A}\iota^{A}=1), one finds

ΨABCD=6Ψ2o(AoBιCιD).\Psi_{ABCD}=6\Psi_{2}o_{(A}o_{B}\iota_{C}\iota_{D)}. (II.5)

We are using the following notation for contractions of spinors with a given spin basis penrose1987spinors : given a symmetric spinor field SB1BnS_{B_{1}\cdots B_{n}} and a spin basis (o,ι)(o,\iota), we define (for any integer ii with 0in0\leq i\leq n)

Si=SB1BnιB1ιBioBi+1oBn.S_{i}=S_{B_{1}\cdots B_{n}}\iota^{B_{1}}\cdots\iota^{B_{i}}o^{B_{i+1}}o^{B_{n}}. (II.6)

Thus, in equation (II.5) Ψ2\Psi_{2} means the Weyl scalar ΨABCDιAιBoCoD\Psi_{ABCD}\iota^{A}\iota^{B}o^{C}o^{D}. The spin basis (o,ι)(o,\iota) is called a principal spin basis for the Weyl spinor if it satisfies equation (II.5). On such a basis, we define the Killing spinor ζAB\zeta_{AB} by

ζABζo(AιB),\zeta_{AB}\equiv\zeta o_{(A}\iota_{B)}, (II.7)

where ζΨ23\zeta\sqrt[3]{\Psi_{2}} is constant 1970CMaPh..18..265W . For the remainder of the paper, we will restrict ourselves (generally) to a principal spin basis of the background Weyl spinor.

With these definitions in hand, we turn to the construction of linearized gravity in Kerr. We fix the background Kerr metric gabg_{ab}, and consider a one-parameter family of metrics gab(λ)g_{ab}(\lambda), with gab(0)=gabg_{ab}(0)=g_{ab}. In general, we will use a notational convention where, for any quantity QQ, Q(λ)Q(\lambda) will denote the quantity at an arbitrary value of λ\lambda, and QQ without an argument will denote Q(0)Q(0), the background value. The linearization ¯δQ\mathchar 22\relax\mkern-9.0mu\delta Q of Q(λ)Q(\lambda) is defined by111We are using ¯δ\mathchar 22\relax\mkern-9.0mu\delta, instead of the more conventional δ\delta, in order to avoid confusion with the Newman-Penrose operator δ\delta.

¯δQ=dQdλ|λ=0.\mathchar 22\relax\mkern-9.0mu\delta Q=\left.\frac{\mathrm{d}Q}{\mathrm{d}\lambda}\right|_{\lambda=0}. (II.8)

The linearized Einstein equations take the form

2abcd¯δgcd=8π¯δTab,\,\mbox{}_{2}\mathcal{E}^{abcd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}=8\pi\mathchar 22\relax\mkern-9.0mu\delta T^{ab}, (II.9)

where

2abcd(cgd)(ab)+12(gcd(ab)+gacgbd)12gab(gcd(cd)).\,\mbox{}_{2}\mathcal{E}^{abcd}\equiv-\nabla^{(c}g^{d)(a}\nabla^{b)}+\frac{1}{2}(g^{cd}\nabla^{(a}\nabla^{b)}+g^{ac}g^{bd}\Box)-\frac{1}{2}g^{ab}(g^{cd}\Box-\nabla^{(c}\nabla^{d)}). (II.10)

is the linearized Einstein operator and ¯δTab\mathchar 22\relax\mkern-9.0mu\delta T^{ab} is the linearized stress-energy tensor. Here the covariant derivative a\nabla_{a} is that associated with gabg_{ab}; the covariant derivative associated with gab(λ)g_{ab}(\lambda) is denoted a(λ)\nabla_{a}(\lambda). The prepended subscript 2 in 2abcd\,\mbox{}_{2}\mathcal{E}^{abcd} refers to the fact that linearized gravity is a spin-2 field.

To describe linearized perturbations using spinors, we consider the following quantity:

(¯δg)AABBσaσbAA¯BBδgab.(\mathchar 22\relax\mkern-9.0mu\delta g)_{AA^{\prime}BB^{\prime}}\equiv\sigma^{a}{}_{AA^{\prime}}\sigma^{b}{}_{BB^{\prime}}\mathchar 22\relax\mkern-9.0mu\delta g_{ab}. (II.11)

Note that this is not the variation of a spinor; we are performing the variation first, and then computing a spinor field using the soldering forms σaAA\sigma^{a}{}_{AA^{\prime}} that are associated with the background spacetime222We note that there have been recent developments on a variational formalism for spinors Backdahl:2015yua which we will not be using. We instead follow the traditional approach of penrose1987spinors .. In general, the placement of parentheses around a quantity that we are varying implies that we take the variation first, and then perform the operation, such as raising or lowering indices: for example, (¯δg)ab=gacgbd¯δgcd(\mathchar 22\relax\mkern-9.0mu\delta g)^{ab}=g^{ac}g^{bd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}, whereas ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g^{ab} would be the variation of the raised metric, and in fact ¯δgab=(¯δg)ab\mathchar 22\relax\mkern-9.0mu\delta g^{ab}=-(\mathchar 22\relax\mkern-9.0mu\delta g)^{ab}.

In a similar manner, one can define a spinor (¯δΨ)ABCD(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD} that is frequently called the perturbed Weyl spinor penrose1987spinors (although it is also not the variation of a spinor), again using the background soldering forms:

(¯δΨ)ABCD14σaσbAEσcBEσdCF¯DFδCabcd.(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}\equiv\frac{1}{4}\sigma^{a}{}_{AE^{\prime}}\sigma^{b}{}_{B}{}^{E^{\prime}}\sigma^{c}{}_{CF^{\prime}}\sigma^{d}{}_{D}{}^{F^{\prime}}\mathchar 22\relax\mkern-9.0mu\delta C_{abcd}. (II.12)

Using the form of the perturbed Riemann tensor, one finds that penrose1987spinors

(¯δΨ)ABCD=12AB(C(¯δg)AB)ABD+14(¯δg)eΨABCDe.(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}=\frac{1}{2}\nabla^{A^{\prime}}{}_{(C}\nabla^{B^{\prime}}{}_{D}(\mathchar 22\relax\mkern-9.0mu\delta g)_{AB)A^{\prime}B^{\prime}}+\frac{1}{4}(\mathchar 22\relax\mkern-9.0mu\delta g)_{e}{}^{e}\Psi_{ABCD}. (II.13)

The equations of motion for the perturbed Weyl spinor are derived from the Bianchi identity, and are penrose1987spinors

AA(¯δΨ)ABCD=12(¯δg)EFABBBΨEFCDΨEF(BCD)(¯δg)EFABB12ΨEF(BCEB(¯δg)D).FAB\nabla^{AA^{\prime}}(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}=\frac{1}{2}(\mathchar 22\relax\mkern-9.0mu\delta g)^{EFA^{\prime}B^{\prime}}\nabla_{BB^{\prime}}\Psi_{EFCD}-\Psi_{EF(BC}\nabla_{D)}{}^{B^{\prime}}(\mathchar 22\relax\mkern-9.0mu\delta g)^{EFA^{\prime}}{}_{B^{\prime}}-\frac{1}{2}\Psi_{EF(BC}\nabla^{EB^{\prime}}(\mathchar 22\relax\mkern-9.0mu\delta g)_{D)}{}^{FA^{\prime}}{}_{B^{\prime}}. (II.14)

Thus, the equations of motion depend explicitly on the metric perturbation as well as the perturbed Weyl spinor. Note further that equation (II.14) reduces to the spin-2 massless spinor field equation AA(¯δΨ)ABCD=0\nabla^{AA^{\prime}}(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}=0 only when the manifold is conformally flat (ΨABCD=0\Psi_{ABCD}=0).

The perturbed Weyl spinor, moreover, is not gauge invariant: under a gauge transformation ¯δgab¯δgab+2(aξb)\mathchar 22\relax\mkern-9.0mu\delta g_{ab}\to\mathchar 22\relax\mkern-9.0mu\delta g_{ab}+2\nabla_{(a}\xi_{b)} penrose1987spinors ,

(¯δΨ)ABCD(¯δΨ)ABCD+ξEEE(AΨBCD)E+2ΨE(ABCD)EξEE.(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}\to(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}+\xi^{EE^{\prime}}\nabla_{E^{\prime}(A}\Psi_{BCD)E}+2\Psi_{E(ABC}\nabla_{D)E^{\prime}}\xi^{EE^{\prime}}. (II.15)

For type D spacetimes, however, (¯δΨ)0(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{0} and (¯δΨ)4(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{4} are gauge invariant, and they are the pieces that correspond to gravitational radiation Stewart:1974uz . Moreover, as is well known, the equations of motion for (¯δΨ)0(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{0} and (¯δΨ)4(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{4} can be “decoupled” from those for (¯δΨ)1(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{1}, (¯δΨ)2(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{2}, and (¯δΨ)3(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{3}, and each other 1973ApJ…185..635T , as we will discuss in section II.3. It suffices to use either (¯δΨ)0(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{0} or (¯δΨ)4(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{4} to describe a generic, well-behaved perturbation, up to l=0,1l=0,1 modes 1973JMP….14.1453W , and therefore we can describe such perturbations in terms of gauge invariant variables.

II.2 Newman-Penrose formalism

We will also be using the Newman-Penrose notation: given a spin basis (o,ι)(o,\iota), the null basis {la,na,ma,m¯a}\{l^{a},n^{a},m^{a},\bar{m}^{a}\} is defined by

la=σaoAAAo¯A,na=σaιAAAι¯A,ma=σaoAAAι¯A,l^{a}=\sigma^{a}{}_{AA^{\prime}}o^{A}\bar{o}^{A^{\prime}},\quad n^{a}=\sigma^{a}{}_{AA^{\prime}}\iota^{A}\bar{\iota}^{A^{\prime}},\quad m^{a}=\sigma^{a}{}_{AA^{\prime}}o^{A}\bar{\iota}^{A^{\prime}}, (II.16)

such that

gab=2(l(anb)m(am¯b)).g_{ab}=2(l_{(a}n_{b)}-m_{(a}\bar{m}_{b)}). (II.17)

Using these four vectors, one can define the Newman-Penrose operators by D=laaD=l^{a}\nabla_{a}, Δ=naa\mathbbold{\Delta}=n^{a}\nabla_{a}, and δ=maa\delta=m^{a}\nabla_{a}, as well as the twelve spin coefficients via the following eight equations:

DoA\displaystyle Do_{A} =ϵoAκιA,\displaystyle=\epsilon o_{A}-\kappa\iota_{A},\qquad DιA\displaystyle D\iota_{A} =πoAϵιA,\displaystyle=\pi o_{A}-\epsilon\iota_{A}, (II.18)
ΔoA\displaystyle\mathbbold{\Delta}o_{A} =γoAτιA,\displaystyle=\gamma o_{A}-\tau\iota_{A},\qquad ΔιA\displaystyle\mathbbold{\Delta}\iota_{A} =νoAγιA,\displaystyle=\nu o_{A}-\gamma\iota_{A},
δoA\displaystyle\delta o_{A} =βoAσιA,\displaystyle=\beta o_{A}-\sigma\iota_{A},\qquad διA\displaystyle\delta\iota_{A} =μoAβιA,\displaystyle=\mu o_{A}-\beta\iota_{A},
δ¯oA\displaystyle\bar{\delta}o_{A} =αoAριA,\displaystyle=\alpha o_{A}-\rho\iota_{A},\qquad δ¯ιA\displaystyle\bar{\delta}\iota_{A} =λoAαιA.\displaystyle=\lambda o_{A}-\alpha\iota_{A}.

The five Weyl scalars Ψ0\Psi_{0}, Ψ1\Psi_{1}, Ψ2\Psi_{2}, Ψ3\Psi_{3}, and Ψ4\Psi_{4}, in Newman-Penrose notation, take the form Newman:1961qr

Ψi=Cabcd{lamblcmdi=0lanblcmdi=112lanb(lcndmcm¯d)i=2lanbm¯cndi=3nam¯bncm¯di=4.\Psi_{i}=-C_{abcd}\begin{cases}l^{a}m^{b}l^{c}m^{d}&i=0\\ l^{a}n^{b}l^{c}m^{d}&i=1\\ \frac{1}{2}l^{a}n^{b}(l^{c}n^{d}-m^{c}\bar{m}^{d})&i=2\\ l^{a}n^{b}\bar{m}^{c}n^{d}&i=3\\ n^{a}\bar{m}^{b}n^{c}\bar{m}^{d}&i=4\end{cases}. (II.19)

A null tetrad such that Ψ0=Ψ1=Ψ3=Ψ4=0\Psi_{0}=\Psi_{1}=\Psi_{3}=\Psi_{4}=0 and Ψ20\Psi_{2}\neq 0, for a Petrov type D spacetime, is called a principal tetrad (as it is a tetrad associated with a principal spin basis).

Furthermore, at certain points throughout this paper, we will be using the notion of and * transformations (reviewed in Geroch:1973am ) to simplify the presentation. These are defined by replacing, in some expression, the members of the spin basis via the following rules:

:\displaystyle{}^{\prime}: oAiιA,\displaystyle\;o_{A}\mapsto i\iota_{A}, ιAioA,\displaystyle\iota_{A}\mapsto io_{A}, o¯Aiι¯A,\displaystyle\bar{o}_{A^{\prime}}\mapsto-i\bar{\iota}_{A^{\prime}}, ι¯Aio¯A,\displaystyle\bar{\iota}_{A^{\prime}}\mapsto-i\bar{o}_{A^{\prime}}, (II.20)
:\displaystyle*: oAoA,\displaystyle\;o_{A}\mapsto o_{A}, ιAιA,\displaystyle\iota_{A}\mapsto\iota_{A}, o¯Aι¯A,\displaystyle\bar{o}_{A^{\prime}}\mapsto-\bar{\iota}_{A^{\prime}}, ι¯Ao¯A.\displaystyle\bar{\iota}_{A^{\prime}}\mapsto-\bar{o}_{A^{\prime}}.

The and * transformations elucidate certain symmetries that appear in Newman-Penrose notation. The transformation, which merely switches lanal^{a}\leftrightarrow n^{a} and mam¯am^{a}\leftrightarrow\bar{m}^{a}, is particularly important in Kerr, since it preserves (o,ι)(o,\iota) as a principal spin basis. As an example, applying the transformations to equation (II.18) yields

ϵ\displaystyle\epsilon^{\prime} =γ,\displaystyle=-\gamma, κ\displaystyle\kappa^{\prime} =ν,\displaystyle=-\nu, π\displaystyle\pi^{\prime} =τ,\displaystyle=-\tau, (II.21)
β\displaystyle\beta^{\prime} =α,\displaystyle=-\alpha, σ\displaystyle\sigma^{\prime} =λ,\displaystyle=-\lambda, μ\displaystyle\mu^{\prime} =ρ,\displaystyle=-\rho,
ϵ\displaystyle\epsilon^{*} =β,\displaystyle=-\beta, κ\displaystyle\kappa^{*} =σ,\displaystyle=-\sigma, π\displaystyle\pi^{*} =μ,\displaystyle=-\mu,
γ\displaystyle\gamma^{*} =α,\displaystyle=-\alpha, τ\displaystyle\tau^{*} =ρ,\displaystyle=-\rho, ν\displaystyle\nu^{*} =λ.\displaystyle=-\lambda.

As another example, consider the following equations, in Newman-Penrose notation, that the scalar ζ\zeta obeys in Kerr:

Dζ=ζρ,Δζ=ζμ,δζ=ζτ,δ¯ζ=ζπ.D\zeta=-\zeta\rho,\qquad\Delta\zeta=\zeta\mu,\qquad\delta\zeta=-\zeta\tau,\qquad\bar{\delta}\zeta=\zeta\pi. (II.22)

The second equation can be derived from the first via a transformation, and likewise the fourth from the third, while the third follows from the first via a * transformation. In the future, we will only list one of the equations, and specify that the others can be obtained by the appropriate transformations.

II.3 Teukolsky formalism

The Teukolsky formalism is a choice of variables for test fields in Kerr such that the equations of motion decouple, yielding equations that describe radiation, and furthermore, as we will discuss later in this section, separate in Boyer-Lindquist coordinates. It builds off of the Newman-Penrose formalism: in the case of linearized gravity, the variables involve variations of the Weyl scalars. Note that, taking variations of the Weyl scalars, we find that

¯δΨ0=(¯δΨ)0,¯δΨ4=(¯δΨ)4.\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0}=(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{0},\qquad\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4}=(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{4}. (II.23)

On the left-hand sides of these equations, there is a variation of the null tetrad as well as the Weyl tensor; on the right, only the Weyl tensor is varied, according to equation (II.12). Note that equation (II.23) only holds for ¯δΨ0\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0} and ¯δΨ4\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4}, and only because the background is type D, as the tetrad is varied when varying equation (II.19). This result is rather convenient, since we will have reason to use ¯δΨ0\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0} and (¯δΨ)0(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{0}, for example, interchangeably.

The choice of variables that are employed here are the so-called “master variables” sΩ\,\mbox{}_{s}\Omega, defined by 1973ApJ…185..635T

sΩ{ζ4¯δΨ4s=2Φs=0¯δΨ0s=2.\,\mbox{}_{s}\Omega\equiv\begin{cases}\zeta^{4}\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4}&s=-2\\ \Phi&s=0\\ \mathchar 22\relax\mkern-9.0mu\delta\Psi_{0}&s=2\end{cases}. (II.24)

The value of ss is known as the spin-weight of the particular variable. Moreover, for s>0s>0, one can write these variables in terms of an operator s𝑴\,\mbox{}_{s}\boldsymbol{M}, which maps from the space of gauge fields (such as the metric perturbation ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}) to the corresponding master variable sΩ\,\mbox{}_{s}\Omega. For example, for |s|=2|s|=2,

sΩ=sMab¯δgab.\,\mbox{}_{s}\Omega=\,\mbox{}_{s}M^{ab}\mathchar 22\relax\mkern-9.0mu\delta g_{ab}. (II.25)

From equations (II.12), (II.24), and (II.25) (see, for example, Chrzanowski:1975wv ),

2Mab=12{(δ+π¯3βα¯)(δ+π¯2β2α¯)lalb+(Dρ¯3ϵ+ϵ¯)(Dρ¯2ϵ+2ϵ¯)mamb[(Dρ¯3ϵ+ϵ¯)(δ+2π¯2β)+(δ+π¯3βα¯)(D2ρ¯2ϵ)]lamb},\displaystyle\phantom{{}_{-}}\begin{aligned} \,\mbox{}_{2}M^{ab}=-\frac{1}{2}\Big{\{}(\delta&+\bar{\pi}-3\beta-\bar{\alpha})(\delta+\bar{\pi}-2\beta-2\bar{\alpha})l^{a}l^{b}+(D-\bar{\rho}-3\epsilon+\bar{\epsilon})(D-\bar{\rho}-2\epsilon+2\bar{\epsilon})m^{a}m^{b}\\ &-\big{[}(D-\bar{\rho}-3\epsilon+\bar{\epsilon})(\delta+2\bar{\pi}-2\beta)+(\delta+\bar{\pi}-3\beta-\bar{\alpha})(D-2\bar{\rho}-2\epsilon)\big{]}l^{a}m^{b}\Big{\}},\\ \end{aligned} (II.26a)
2Mab=12ζ4{(δ¯τ¯+3α+β¯)(δ¯τ¯+2α+2β¯)nanb+(Δ+μ¯+3γγ¯)(Δ+μ¯+2γ2γ¯)m¯am¯b[(Δ+μ¯+3γγ¯)(δ¯2τ¯+2α)+(δ¯τ¯+3α+β¯)(Δ+2μ¯+2γ)]nam¯b}.\displaystyle\begin{aligned} \,\mbox{}_{-2}M^{ab}=-\frac{1}{2}\zeta^{4}\Big{\{}(\bar{\delta}&-\bar{\tau}+3\alpha+\bar{\beta})(\bar{\delta}-\bar{\tau}+2\alpha+2\bar{\beta})n^{a}n^{b}+(\mathbbold{\Delta}+\bar{\mu}+3\gamma-\bar{\gamma})(\mathbbold{\Delta}+\bar{\mu}+2\gamma-2\bar{\gamma})\bar{m}^{a}\bar{m}^{b}\\ &-\big{[}(\mathbbold{\Delta}+\bar{\mu}+3\gamma-\bar{\gamma})(\bar{\delta}-2\bar{\tau}+2\alpha)+(\bar{\delta}-\bar{\tau}+3\alpha+\bar{\beta})(\mathbbold{\Delta}+2\bar{\mu}+2\gamma)\big{]}n^{a}\bar{m}^{b}\Big{\}}.\end{aligned} (II.26b)

In terms of these variables, and in a type D spacetime, the equations of motion for the scalar field Φ\Phi (s=0s=0) and linearized gravity (s=±2s=\pm 2) may be written in the form 1973ApJ…185..635T

ssΩ=8πs𝝉|s|𝑻,\,\mbox{}_{s}\Box\,\mbox{}_{s}\Omega=8\pi\,\mbox{}_{s}\boldsymbol{\tau}\cdot\,\mbox{}_{|s|}\boldsymbol{T}, (II.27)

known as the Teukolsky equation. Here, s\,\mbox{}_{s}\Box is a second-order differential operator (the Teukolsky operator) that equals, for s0s\geq 0,

s=2{[D(2s1)ϵ+ϵ¯2sρρ¯](Δ2sγ+μ)[δα¯(2s1)β2sτ+π¯](δ¯2sα+π)2(2s1)(s1)Ψ2},\displaystyle\phantom{{}_{-}}\begin{aligned} \,\mbox{}_{s}\Box=2\{[&D-(2s-1)\epsilon+\bar{\epsilon}-2s\rho-\bar{\rho}](\mathbbold{\Delta}-2s\gamma+\mu)-[\delta-\bar{\alpha}-(2s-1)\beta-2s\tau+\bar{\pi}](\bar{\delta}-2s\alpha+\pi)\\ &-2(2s-1)(s-1)\Psi_{2}\},\end{aligned} (II.28a)
s=2{[Δ+(2s1)γγ¯+μ¯][D+2sϵ+(2s1)ρ][δ¯+(2s1)α+β¯τ¯][δ+2sβ+(2s1)τ]2(2s1)(s1)Ψ2}.\displaystyle\begin{aligned} \,\mbox{}_{-s}\Box=2\{[&\mathbbold{\Delta}+(2s-1)\gamma-\bar{\gamma}+\bar{\mu}][D+2s\epsilon+(2s-1)\rho]-[\bar{\delta}+(2s-1)\alpha+\bar{\beta}-\bar{\tau}][\delta+2s\beta+(2s-1)\tau]\\ &-2(2s-1)(s-1)\Psi_{2}\}.\end{aligned} (II.28b)

On the right-hand side of equation (II.27), s𝝉\,\mbox{}_{s}\boldsymbol{\tau} is an operator which converts s𝑻\,\mbox{}_{s}\boldsymbol{T}, the source term for the equations of motion (for example, 2Tab\,\mbox{}_{2}T^{ab} is the stress-energy tensor ¯δTab\mathchar 22\relax\mkern-9.0mu\delta T^{ab}), into the source term for the Teukolsky equation (II.27). For example, one choice of ±2τab\,\mbox{}_{\pm 2}\tau_{ab} is given by inspection of equations (2.13) and (2.15) of 1973ApJ…185..635T :

2τab=[(δ+π¯α¯3β4τ)l(a|(D3ϵ+ϵ¯4ρρ¯)m(a|]×[(Dϵ+ϵ¯ρ¯)m|b)(δ+π¯α¯β)l|b)],\displaystyle\phantom{{}_{-}}\begin{aligned} \,\mbox{}_{2}\tau_{ab}&=\left[(\delta+\bar{\pi}-\bar{\alpha}-3\beta-4\tau)l_{(a|}-(D-3\epsilon+\bar{\epsilon}-4\rho-\bar{\rho})m_{(a|}\right]\\ &\qquad\qquad\qquad\times\left[(D-\epsilon+\bar{\epsilon}-\bar{\rho})m_{|b)}-(\delta+\bar{\pi}-\bar{\alpha}-\beta)l_{|b)}\right],\end{aligned} (II.29a)
2τab=ζ4[(Δ+3γγ¯+4μ+μ¯)m¯(a|(δ¯τ¯+β¯+3α+4π)n(a|]×[(δ¯τ¯+β¯+α)n|b)(Δ+γγ¯+μ¯)m¯|b)].\displaystyle\begin{aligned} \,\mbox{}_{-2}\tau_{ab}&=\zeta^{4}\left[(\mathbbold{\Delta}+3\gamma-\bar{\gamma}+4\mu+\bar{\mu})\bar{m}_{(a|}-(\bar{\delta}-\bar{\tau}+\bar{\beta}+3\alpha+4\pi)n_{(a|}\right]\\ &\qquad\qquad\qquad\times\left[(\bar{\delta}-\bar{\tau}+\bar{\beta}+\alpha)n_{|b)}-(\mathbbold{\Delta}+\gamma-\bar{\gamma}+\bar{\mu})\bar{m}_{|b)}\right].\end{aligned} (II.29b)

A freedom in ±2τab\,\mbox{}_{\pm 2}\tau_{ab} is discussed in section III.3 below. One can also rewrite Teukolsky’s original result as an operator equation PhysRevLett.41.203 , as we will find useful in section III.2. In terms of s𝑴\,\mbox{}_{s}\boldsymbol{M},

s𝝉|s|𝓔=ss𝑴,\,\mbox{}_{s}\boldsymbol{\tau}\cdot\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}}=\,\mbox{}_{s}\Box\,\mbox{}_{s}\boldsymbol{M}, (II.30)

where, for |s|=2|s|=2, |s|𝓔\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}} is the linearized Einstein operator (II.10). Applying equation (II.30) to a metric perturbation and using equation (II.25) and the linearized Einstein equation (II.9) yields the Teukolsky equation (II.27) for |s|=2|s|=2. Since all of the operations just described are \mathbb{C}-linear, equation (II.30) holds for complexified metric perturbations as well.

So far, we have not tied our discussion to a particular coordinate system, nor a particular tetrad (other than enforcing that we use a principal null tetrad), since we have only required the background metric to be Petrov type D. We now work in Kerr, and in Boyer-Lindquist coordinates (t,r,θ,ϕ)(t,r,\theta,\phi), where the metric takes the form

ds2=dt2Σ(dr2Δ+dθ2)(r2+a2)sin2θdϕ22MrΣ(asin2θdϕdt)2,\mathrm{d}s^{2}=\mathrm{d}t^{2}-\Sigma\left(\frac{\mathrm{d}r^{2}}{\Delta}+\mathrm{d}\theta^{2}\right)-(r^{2}+a^{2})\sin^{2}\theta\mathrm{d}\phi^{2}-\frac{2Mr}{\Sigma}\left(a\sin^{2}\theta\mathrm{d}\phi-\mathrm{d}t\right)^{2}, (II.31)

where Δ=r22Mr+a2\Delta=r^{2}-2Mr+a^{2} and Σ=r2+a2cos2θ=|ζ|2\Sigma=r^{2}+a^{2}\cos^{2}\theta=|\zeta|^{2}, and where we have chosen

ζ=riacosθ.\zeta=r-ia\cos\theta. (II.32)

This choice of ζ\zeta has the property that 𝒕t\boldsymbol{t}\equiv\partial_{t} can be defined in terms of ζAB\zeta_{AB} penrose1988spinors :

tAA=23BζABA.t^{AA^{\prime}}=-\frac{2}{3}\nabla_{B}{}^{A^{\prime}}\zeta^{AB}. (II.33)

Using the Kinnersley tetrad (a principal tetrad of the background Weyl tensor), which is given by

𝒍=(r2+a2)t+aϕΔ+r,𝒏=(r2+a2)t+aϕ2ΣΔ2Σr,𝒎=12ζ¯(iasinθt+θ+isinθϕ),\begin{gathered}\boldsymbol{l}=\frac{(r^{2}+a^{2})\partial_{t}+a\partial_{\phi}}{\Delta}+\partial_{r},\quad\boldsymbol{n}=\frac{(r^{2}+a^{2})\partial_{t}+a\partial_{\phi}}{2\Sigma}-\frac{\Delta}{2\Sigma}\partial_{r},\\ \boldsymbol{m}=\frac{1}{\sqrt{2}\bar{\zeta}}\left(ia\sin\theta\partial_{t}+\partial_{\theta}+\frac{i}{\sin\theta}\partial_{\phi}\right),\end{gathered} (II.34)

we find that Ψ2=M/ζ3\Psi_{2}=-M/\zeta^{3}. Furthermore, the non-zero spin coefficients are given by

ρ=1ζ,μ=Δ2Σζ,γ=μ+rM2Σ,β=cotθ22ζ¯,π=α+β¯=ia2ζ2sinθ,τ=ia2Σsinθ.\begin{gathered}\rho=-\frac{1}{\zeta},\quad\mu=-\frac{\Delta}{2\Sigma\zeta},\quad\gamma=\mu+\frac{r-M}{2\Sigma},\\ \beta=\frac{\cot\theta}{2\sqrt{2}\bar{\zeta}},\quad\pi=\alpha+\bar{\beta}=\frac{ia}{\sqrt{2}\zeta^{2}}\sin\theta,\quad\tau=-\frac{ia}{\sqrt{2}\Sigma}\sin\theta.\end{gathered} (II.35)

We now review how the source-free version of the Teukolsky equation (II.27) separates in these coordinates. Consider, for integers ss and nn, the operators 1974ApJ…193..443T ; chandrasekhar1983mathematical

𝒟n=r+r2+a2Δt+aΔϕ+2nrMΔ,s=θi(asinθt+1sinθϕ)+scotθ.\mathscr{D}_{n}=\partial_{r}+\frac{r^{2}+a^{2}}{\Delta}\partial_{t}+\frac{a}{\Delta}\partial_{\phi}+2n\frac{r-M}{\Delta},\quad\mathscr{L}_{s}=\partial_{\theta}-i\left(a\sin\theta\partial_{t}+\frac{1}{\sin\theta}\partial_{\phi}\right)+s\cot\theta. (II.36)

Note that these operators satisfy

Δm𝒟nΔm=𝒟n+m,sinrθssinrθ=r+s.\Delta^{-m}\mathscr{D}_{n}\Delta^{m}=\mathscr{D}_{n+m},\qquad\sin^{-r}\theta\mathscr{L}_{s}\sin^{r}\theta=\mathscr{L}_{r+s}. (II.37)

We also define the operators 𝒟n+\mathscr{D}_{n}^{+} and s+\mathscr{L}_{s}^{+}, by taking 𝒟n\mathscr{D}_{n} and s\mathscr{L}_{s} and setting tt\partial_{t}\to-\partial_{t} and ϕϕ\partial_{\phi}\to-\partial_{\phi}; note that s+=s¯\mathscr{L}_{s}^{+}=\overline{\mathscr{L}_{s}}\; 333Note that here, and below, our definition of the complex conjugate 𝒪¯\overline{\mathcal{O}} of an operator 𝒪\mathcal{O} is 𝒪¯(f)=𝒪(f¯)¯\overline{\mathcal{O}}(f)=\overline{\mathcal{O}(\bar{f})}, where ff is the argument of this operator. This is consistent with the standard notation for the Newman-Penrose operator δ¯\bar{\delta}.. Equations analogous to equations (II.37) hold for 𝒟n+\mathscr{D}_{n}^{+} and s+\mathscr{L}_{s}^{+}. We will also need a way to express these operators in terms of Newman-Penrose operators; using equations (II.34) and (II.35), we find

s=2ζ(δ¯+2sβ¯),𝒟n=D+2nρμ1(γμ),𝒟n+=ρμ1[Δ2n(γμ)].\mathscr{L}_{s}=\sqrt{2}\zeta\left(\bar{\delta}+2s\bar{\beta}\right),\qquad\mathscr{D}_{n}=D+2n\rho\mu^{-1}(\gamma-\mu),\qquad\mathscr{D}_{n}^{+}=-\rho\mu^{-1}[\mathbbold{\Delta}-2n(\gamma-\mu)]. (II.38)

Note that these formulae are only valid for the Kinnersley tetrad. For real frequencies ω\omega and integers mm, we further define operators 𝒟nmω\mathscr{D}_{nm\omega} and smω\mathscr{L}_{sm\omega} by the requirement that, for any function f(r,θ)f(r,\theta),

𝒟n[ei(mϕωt)f(r,θ)]ei(mϕωt)𝒟nmωf(r,θ),s[ei(mϕωt)f(r,θ)]ei(mϕωt)smωf(r,θ).\mathscr{D}_{n}\left[e^{i(m\phi-\omega t)}f(r,\theta)\right]\equiv e^{i(m\phi-\omega t)}\mathscr{D}_{nm\omega}f(r,\theta),\quad\mathscr{L}_{s}\left[e^{i(m\phi-\omega t)}f(r,\theta)\right]\equiv e^{i(m\phi-\omega t)}\mathscr{L}_{sm\omega}f(r,\theta). (II.39)

This equation yields the formulae

𝒟nmωr+iKmωΔ+2nrMΔ,smωθ+Qmω+scotθ,\mathscr{D}_{nm\omega}\equiv\partial_{r}+\frac{iK_{m\omega}}{\Delta}+2n\frac{r-M}{\Delta},\quad\mathscr{L}_{sm\omega}\equiv\partial_{\theta}+Q_{m\omega}+s\cot\theta, (II.40)

where

Kmωamω(r2+a2),QmωmcscθaωsinθK_{m\omega}\equiv am-\omega(r^{2}+a^{2}),\quad Q_{m\omega}\equiv m\csc\theta-a\omega\sin\theta (II.41)

(note that the conventions for KmωK_{m\omega} in chandrasekhar1983mathematical and 1973ApJ…185..635T differ by a sign; here, we use the convention of chandrasekhar1983mathematical ).

The operator on the left-hand side of the Teukolsky equation (II.27) takes the following simple form:

s=s+s𝒮,\,\mbox{}_{s}\Box=\,\mbox{}_{s}\mathcal{R}+\,\mbox{}_{s}\mathcal{S}, (II.42)

where

s\displaystyle\,\mbox{}_{s}\mathcal{R} {Δ𝒟1𝒟s+2(2s1)rts0Δ𝒟1+s+𝒟02(2s+1)rts0,\displaystyle\equiv\begin{cases}\Delta\mathscr{D}_{1}\mathscr{D}^{+}_{s}-2(2s-1)r\partial_{t}&s\geq 0\\ \Delta\mathscr{D}_{1+s}^{+}\mathscr{D}_{0}-2(2s+1)r\partial_{t}&s\leq 0\end{cases}, (II.43a)
s𝒮\displaystyle\,\mbox{}_{s}\mathcal{S} {1s+s+2i(2s1)acosθts01+ss++2i(2s+1)acosθts0,\displaystyle\equiv\begin{cases}\mathscr{L}^{+}_{1-s}\mathscr{L}_{s}+2i(2s-1)a\cos\theta\partial_{t}&s\geq 0\\ \mathscr{L}_{1+s}\mathscr{L}^{+}_{-s}+2i(2s+1)a\cos\theta\partial_{t}&s\leq 0\end{cases}, (II.43b)

where it can be readily shown that either the top or bottom lines of equations (II.43a) and (II.43b) yield equal results for s=0s=0; that is, +0=0\,\mbox{}_{+0}\mathcal{R}=\,\mbox{}_{-0}\mathcal{R} and +0𝒮=0𝒮\,\mbox{}_{+0}\mathcal{S}=\,\mbox{}_{-0}\mathcal{S}. Note that s\,\mbox{}_{s}\mathcal{R} is a differential operator that only depends on rr, tt, and ϕ\phi, while s𝒮\,\mbox{}_{s}\mathcal{S} only depends on θ\theta, tt, and ϕ\phi. As such, it is clear that the sourceless Teukolsky equation (II.27) separates in rr and θ\theta, and so one can write 1973ApJ…185..635T

sΩ(t,r,θ,ϕ)=dωl=|s||m|lsΩ^lmω(r)sΘlmω(θ)ei(mϕωt).\,\mbox{}_{s}\Omega(t,r,\theta,\phi)=\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}(r)\,\mbox{}_{s}\Theta_{lm\omega}(\theta)e^{i(m\phi-\omega t)}. (II.44)

Inserting this expansion into the sourceless Teukolsky equation (II.27), followed by using equations (II.42), (II.43), (II.37), and (II.39), one finds that (for s0s\geq 0), the functions ±sΩ^lmω\,\mbox{}_{\pm s}\widehat{\Omega}_{lm\omega} and ±sΘlmω\,\mbox{}_{\pm s}\Theta_{lm\omega} satisfy chandrasekhar1983mathematical

[(1s)(m)(ω)s(±m)(±ω)±2(2s1)ωacosθ]±sΘlmω\displaystyle\left[\mathscr{L}_{(1-s)(\mp m)(\mp\omega)}\mathscr{L}_{s(\pm m)(\pm\omega)}\pm 2(2s-1)\omega a\cos\theta\right]\,\mbox{}_{\pm s}\Theta_{lm\omega} =±sλlmω±sΘlmω,\displaystyle=-\,\mbox{}_{\pm s}\lambda_{lm\omega}\,\mbox{}_{\pm s}\Theta_{lm\omega}, (II.45a)
[Δ𝒟(1s)(±m)(±ω)𝒟0(m)(ω)±2i(2s1)ωr]Δ(s±s)/2±sΩ^lmω\displaystyle\left[\Delta\mathscr{D}_{(1-s)(\pm m)(\pm\omega)}\mathscr{D}_{0(\mp m)(\mp\omega)}\pm 2i(2s-1)\omega r\right]\Delta^{(s\pm s)/2}\,\mbox{}_{\pm s}\widehat{\Omega}_{lm\omega} =Δ(s±s)/2±sλlmω±sΩ^lmω,\displaystyle=\Delta^{(s\pm s)/2}\,\mbox{}_{\pm s}\lambda_{lm\omega}\,\mbox{}_{\pm s}\widehat{\Omega}_{lm\omega}, (II.45b)

where ±sλlmω\,\mbox{}_{\pm s}\lambda_{lm\omega} is a separation constant. This constant reduces to (l+s)(ls+1)=l(l+1)s(s1)(l+s)(l-s+1)=l(l+1)-s(s-1) in the Schwarzschild limit 1973ApJ…185..649P ; chandrasekhar1983mathematical .

The functions sΘlmω\,\mbox{}_{s}\Theta_{lm\omega} are regular solutions to a Sturm-Liouville problem on [0,π][0,\pi] with eigenvalues sλlmω\,\mbox{}_{s}\lambda_{lm\omega}. Thus, there is only one solution for each value of ll, mm, and ω\omega, up to scaling. Note, moreover, that the differential operator on the left-hand side of equation (II.45a) commutes with the following three operations: complex conjugation, (s,m,ω)(s,m,ω)(s,m,\omega)\to(-s,-m,-\omega), and (s,θ)(s,πθ)(s,\theta)\to(-s,\pi-\theta). As such, we can simultaneously diagonalize this operator with each of these operations, choosing sλlmω\,\mbox{}_{s}\lambda_{lm\omega} and sΘlmω\,\mbox{}_{s}\Theta_{lm\omega} to be real, as well as choosing

sΘlmω(θ)=(1)m+ssΘl(m)(ω)(θ),sΘlmω(πθ)=(1)l+msΘlmω(θ)\,\mbox{}_{s}\Theta_{lm\omega}(\theta)=(-1)^{m+s}\,\mbox{}_{-s}\Theta_{l(-m)(-\omega)}(\theta),\qquad\,\mbox{}_{s}\Theta_{lm\omega}(\pi-\theta)=(-1)^{l+m}\,\mbox{}_{-s}\Theta_{lm\omega}(\theta) (II.46)

(a convention which is used by 1982JPhA…15.3737G ), as well as

sλlmω=sλlmω=sλl(m)(ω).\,\mbox{}_{s}\lambda_{lm\omega}=\,\mbox{}_{-s}\lambda_{lm\omega}=\,\mbox{}_{s}\lambda_{l(-m)(-\omega)}. (II.47)

Finally, the scaling freedom in sΘlmω\,\mbox{}_{s}\Theta_{lm\omega} is fixed by imposing the following normalization condition 1973ApJ…185..635T

0πsΘlmω(θ)sΘlmω(θ)sinθdθ=δll.\int_{0}^{\pi}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\Theta_{l^{\prime}m\omega}(\theta)\sin\theta\mathrm{d}\theta=\delta_{ll^{\prime}}. (II.48)

The functions

sYlmω(θ,t,ϕ)ei(mϕωt)sΘlmω(θ)\,\mbox{}_{s}Y_{lm\omega}(\theta,t,\phi)\equiv e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta) (II.49)

are the so-called spin-weighted spheroidal harmonics, and are orthogonal for different ll, mm, and ω\omega.

We now define another expansion for sΩ\,\mbox{}_{s}\Omega, subtly different from that in equation (II.44), which results in a convenient way of expanding sΩ¯\overline{\,\mbox{}_{s}\Omega} as well. To do so, note that the differential operator on the right-hand side of equation (II.45b) commutes with taking (m,ω)(m,ω)(m,\omega)\to(-m,-\omega) followed by complex conjugation. As such, we can construct two linearly independent solutions labelled by p=±1p=\pm 1 [their eigenvalue under this operation, multiplied by a conventional factor of (1)m+s(-1)^{m+s}]:

sΩ^lmωp(r)12[sΩ^lmω(r)+p(1)m+ssΩ^l(m)(ω)(r)¯],\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r)\equiv\frac{1}{2}\left[\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}(r)+p(-1)^{m+s}\overline{\,\mbox{}_{s}\widehat{\Omega}_{l(-m)(-\omega)}(r)}\right], (II.50)

and so

sΩ^lmω(r)=p=±1sΩ^lmωp(r).\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}(r)=\sum_{p=\pm 1}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r). (II.51)

It is occasionally more convenient to re-express the expansion (II.44) in terms of sΩ^lmωp(r)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r), instead of sΩ^lmω(r)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}(r):

sΩ(t,r,θ,ϕ)=dωl=|s||m|lp=±1ei(mϕωt)sΘlmω(θ)sΩ^lmωp(r).\,\mbox{}_{s}\Omega(t,r,\theta,\phi)=\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r). (II.52)

A simple consequence of equations (II.46) and (II.50) is that

sΩ(t,r,θ,ϕ)¯=dωl=|s||m|lp=±1pei(mϕωt)sΘlmω(θ)sΩ^lmωp(r),\overline{\,\mbox{}_{s}\Omega(t,r,\theta,\phi)}=\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}pe^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r), (II.53)

and so this is a convenient expansion of the complex conjugate of the master variables. Note, however, that these expansions are different in status from the expansion (II.44), as the coefficients in this expansion must satisfy

sΩ^l(m)(ω)p(r)¯=p(1)m+ssΩ^lmωp(r).\overline{\,\mbox{}_{s}\widehat{\Omega}_{l(-m)(-\omega)p}(r)}=p(-1)^{m+s}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r). (II.54)

III Symmetry operators

As defined by Kalnins, McLenaghan, and Williams 1992RSPSA.439..103K , a symmetry operator is an \mathbb{R}-linear operator that maps the space of solutions to the equations of motion, which must be linear, into itself. For the space of complexified solutions to real equations of motion, there exists a trivial symmetry operator mapping solutions to their complex conjugates. In his original paper, Carter constructed the symmetry operator for scalar fields in equation (I.4), which commutes with the d’Alembertian PhysRevD.16.3395 . If an operator commutes with the operators in the sourceless equations of motion, then it must be a symmetry operator: if a field ϕ\phi satisfies ϕ=0\mathcal{L}\phi=0, and [𝒟,]=0[\mathcal{D},\mathcal{L}]=0, then

𝒟ϕ=𝒟ϕ=0,\mathcal{L}\mathcal{D}\phi=\mathcal{D}\mathcal{L}\phi=0, (III.1)

and so 𝒟ϕ\mathcal{D}\phi is a solution. Lie derivatives with respect to Killing vectors are examples of symmetry operators which commute with the equations of motion. Further examples of symmetry operators can be created by composing symmetry operators associated with Killing vectors, but these are, in a sense, “reducible”.

In this section we review two classes of irreducible symmetry operators that appear in the Kerr spacetime: those that derive from separation of variables, and those that arise from taking the adjoint of the Teukolsky equation. Note that, recently, additional symmetry operators have been discussed in the Kerr spacetime Aksteiner:2016mol , which we do not discuss in this paper.

III.1 Separation of variables

The first class of symmetry operators we consider is associated with the separability of the underlying equations of motion. To see that there is always a symmetry operator associated with separability, consider as an example the following partial differential equation (in two variables x,yx,y):

ϕ[𝒳(x,x,)+𝒴(y,y,y2,)]ϕ=0,\mathcal{L}\phi\equiv\left[\mathcal{X}(x,\partial_{x},\ldots)+\mathcal{Y}(y,\partial_{y},\partial_{y}^{2},\ldots)\right]\phi=0, (III.2)

for some differential operators 𝒳\mathcal{X} and 𝒴\mathcal{Y}. Since 𝒳\mathcal{X} only depends upon xx and 𝒴\mathcal{Y} only depends upon yy, 𝒳\mathcal{X} and 𝒴\mathcal{Y} must commute. Moreover, =𝒳+𝒴\mathcal{L}=\mathcal{X}+\mathcal{Y}, and so 𝒳\mathcal{X} and 𝒴\mathcal{Y} must both commute with \mathcal{L}, and so 𝒳\mathcal{X} and 𝒴\mathcal{Y} are symmetry operators. In addition, if there are additional variables z1,,znz_{1},\ldots,z_{n}, and 𝒳\mathcal{X} and 𝒴\mathcal{Y} only depend on derivatives with respect to these variables, then this argument still holds.

Irreducible symmetry operators arise in Kerr, similarly, via a separation of variables argument. As discussed in section II.3, the Teukolsky equation separates, yielding the two operators s\,\mbox{}_{s}\mathcal{R} and s𝒮\,\mbox{}_{s}\mathcal{S} in equations (II.43a) and (II.43b) (respectively). These operators are analogous to the operators 𝒳\mathcal{X} and 𝒴\mathcal{Y} in equation (III.2) above, and depend on derivatives with respect to additional variables tt and ϕ\phi. One combination of s\,\mbox{}_{s}\mathcal{R} and s𝒮\,\mbox{}_{s}\mathcal{S} is particularly interesting, namely

s𝒟12(ss𝒮).\,\mbox{}_{s}\mathcal{D}\equiv\frac{1}{2}\left(\,\mbox{}_{s}\mathcal{R}-\,\mbox{}_{s}\mathcal{S}\right). (III.3)

One can show that, for s=0s=0, this is in fact the scalar symmetry operator (I.4) discussed by Carter PhysRevD.16.3395 .

In the case of linearized gravity, s𝒟\,\mbox{}_{s}\mathcal{D} is a map from the space of solutions of the homogeneous Teukolsky equation (II.27) of spin weight ss into itself. In section III.4, we will review a procedure (a version of Chrzanowski metric reconstruction Chrzanowski:1975wv ) which will allow us to construct another operator s𝒟abcd\,\mbox{}_{s}\mathcal{D}_{ab}{}^{cd} from s𝒟\,\mbox{}_{s}\mathcal{D} that maps the space of complexified metric perturbations into itself. The symmetry operator s𝒟abcd\,\mbox{}_{s}\mathcal{D}_{ab}{}^{cd} will be more useful than s𝒟\,\mbox{}_{s}\mathcal{D}, since the symplectic product for linearized gravity naturally acts on the space of metric perturbations.

III.2 Adjoint symmetry operators

In Kerr, for spins higher than 0, there is a second set of irreducible symmetry operators that can be constructed, following an argument due to Wald PhysRevLett.41.203 . This argument holds, as do many of our equations, for all |s|2|s|\leq 2; however, we will only explicitly use |s|=2|s|=2 in this paper.

The argument is as follows. We first define the adjoint of a linear differential operator. Consider a linear differential operator 𝓛\boldsymbol{\mathcal{L}} that takes tensor fields of rank pp to tensor fields of rank qq. We say that an operator which takes tensor fields of rank qq to tensor fields of rank pp is the adjoint 𝓛\boldsymbol{\mathcal{L}}^{\dagger} of 𝓛\boldsymbol{\mathcal{L}} if, for all tensor fields ϕ\boldsymbol{\phi} of rank pp and tensor fields 𝝍\boldsymbol{\psi} of rank qq, there exists a vector field ja[ϕ,𝝍]j^{a}[\boldsymbol{\phi},\boldsymbol{\psi}] such that

𝝍(𝓛ϕ)ϕ(𝓛𝝍)=aja[ϕ,𝝍].\boldsymbol{\psi}\cdot(\boldsymbol{\mathcal{L}}\cdot\boldsymbol{\phi})-\boldsymbol{\phi}\cdot(\boldsymbol{\mathcal{L}}^{\dagger}\cdot\boldsymbol{\psi})=\nabla_{a}j^{a}[\boldsymbol{\phi},\boldsymbol{\psi}]. (III.4)

Note that this is not the usual definition of adjoint, which has a complex conjugate acting on 𝝍\boldsymbol{\psi} in the first term and on (𝝍)(\mathcal{L}^{\dagger}\boldsymbol{\psi}) in the second. Chrzanowski Chrzanowski:1975wv and Gal’tsov 1982JPhA…15.3737G use the usual definition, whereas Wald uses the definition (III.4).

We now give some examples of adjoints of the operators considered in section II.3. First, we note that one can easily show that, for two operators 𝓛1\boldsymbol{\mathcal{L}}_{1} and 𝓛2\boldsymbol{\mathcal{L}}_{2},

(𝓛1𝓛2)=𝓛2𝓛1.(\boldsymbol{\mathcal{L}}_{1}\boldsymbol{\mathcal{L}}_{2})^{\dagger}=\boldsymbol{\mathcal{L}}_{2}^{\dagger}\boldsymbol{\mathcal{L}}_{1}^{\dagger}. (III.5)

Moreover, the adjoints of the various Newman-Penrose operators, using equations (II.16), (II.18), and (III.4), are given by

D=D(ϵ+ϵ¯)+ρ+ρ¯,D^{\dagger}=-D-(\epsilon+\bar{\epsilon})+\rho+\bar{\rho}, (III.6)

together with the corresponding expressions obtained via and * transformations. Using equations (III.4) and (II.10), one finds that 2𝓔\,\mbox{}_{2}\boldsymbol{\mathcal{E}} is self-adjoint:

2𝓔=2𝓔.\,\mbox{}_{2}\boldsymbol{\mathcal{E}}^{\dagger}=\,\mbox{}_{2}\boldsymbol{\mathcal{E}}. (III.7)

Similarly, one can show from equations (III.6) and (II.28a) that

s=s,\,\mbox{}_{s}\Box^{\dagger}=\,\mbox{}_{-s}\Box, (III.8)

as was first noted by Cohen and Kegeles PhysRevD.10.1070 . Finally, the adjoint of the operator s𝝉\,\mbox{}_{s}\boldsymbol{\tau} [equation (II.29)] that enters into the Teukolsky equation (II.27), for |s|=2|s|=2, is given by

sτab={[m(a|(D+2ϵρ)l(a|(δ+2βτ)][l|b)(δ+4β+3τ)m|b)(D+4ϵ+3ρ)]s=2[m¯(a|(Δ2γ+μ)n(a|(δ¯2α+π)][n|b)(δ¯4α3π)m¯|b)(Δ4γ3μ)]ζ4s=2.\,\mbox{}_{s}\tau_{ab}^{\dagger}=\begin{cases}[m_{(a|}(D+2\epsilon-\rho)-l_{(a|}(\delta+2\beta-\tau)][l_{|b)}(\delta+4\beta+3\tau)-m_{|b)}(D+4\epsilon+3\rho)]&s=2\\ [\bar{m}_{(a|}(\mathbbold{\Delta}-2\gamma+\mu)-n_{(a|}(\bar{\delta}-2\alpha+\pi)][n_{|b)}(\bar{\delta}-4\alpha-3\pi)-\bar{m}_{|b)}(\mathbbold{\Delta}-4\gamma-3\mu)]\zeta^{4}&s=-2\\ \end{cases}. (III.9)

We now take the adjoint of equation (II.30), yielding [from equations (III.8) and (III.7)]

|s|𝓔s𝝉=s𝑴s.\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}}\cdot\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}=\,\mbox{}_{s}\boldsymbol{M}^{\dagger}\,\mbox{}_{-s}\Box. (III.10)

Suppose that we have a solution sψ\,\mbox{}_{-s}\psi to the vacuum Teukolsky equation ssψ=0\,\mbox{}_{-s}\Box\,\mbox{}_{-s}\psi=0; note that sψ\,\mbox{}_{-s}\psi is not necessarily the master variable sΩ\,\mbox{}_{-s}\Omega associated with ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} via equation (II.25). Then, from equations (III.10),

|s|𝓔s𝝉sψ=0.\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}}\cdot\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi=0. (III.11)

Thus, s𝝉sψ\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi is a complex metric perturbation that solves the vacuum linearized Einstein equations.

Thus, the operator s𝝉\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger} allows the construction of complex vacuum metric perturbations from vacuum solutions to the Teukolsky equation. From a single solution sψ\,\mbox{}_{-s}\psi to the vacuum Teukolsky equation (II.27) of spin weight s-s, one can therefore apply s𝑴\,\mbox{}_{s^{\prime}}\boldsymbol{M} (for some other ss^{\prime}, where |s|=|s||s^{\prime}|=|s|) to either s𝝉sψ\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi or s𝝉sψ¯\overline{\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi}, both of which yield solutions to the vacuum Teukolsky equation:

ss𝑴s𝝉sψ=0,ss𝑴s𝝉sψ¯=0.\,\mbox{}_{s^{\prime}}\Box\,\mbox{}_{s^{\prime}}\boldsymbol{M}\cdot\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi=0,\qquad\,\mbox{}_{s^{\prime}}\Box\,\mbox{}_{s^{\prime}}\boldsymbol{M}\cdot\overline{\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}\,\mbox{}_{-s}\psi}=0. (III.12)

That is, there exist two symmetry operators of the form

s,s𝒞s𝑴s𝝉,s,s𝒞~s𝑴s𝝉¯.\,\mbox{}_{s^{\prime},s}\mathcal{C}\equiv\,\mbox{}_{s^{\prime}}\boldsymbol{M}\cdot\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger},\qquad\,\mbox{}_{s^{\prime},s}\widetilde{\mathcal{C}}\equiv\,\mbox{}_{s^{\prime}}\boldsymbol{M}\cdot\overline{\,\mbox{}_{s}\boldsymbol{\tau}^{\dagger}}. (III.13)

The operator s,s𝒞\,\mbox{}_{s^{\prime},s}\mathcal{C} maps from the space of solutions to the vacuum Teukolsky equation (II.27) of spin weight s-s to the space of solutions to the vacuum Teukolsky equation of spin weight ss^{\prime}. Similarly, s,s𝒞~\,\mbox{}_{s^{\prime},s}\widetilde{\mathcal{C}} maps from the space of solutions to the complex conjugate of the vacuum Teukolsky equation (II.27) of spin weight s-s into the space of solutions to the vacuum Teukolsky equation of spin weight ss^{\prime}.

As in section III.1, these operators act on the master variables, rather than metric perturbations. However, one can also construct the operators (for |s|=2|s|=2)

s𝒞abcdsτabsMcd,\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\tau_{ab}^{\dagger}\,\mbox{}_{-s}M^{cd}, (III.14)

which are symmetry operators for metric perturbations. That is, they are \mathbb{R}-linear maps from the space of complexified solutions to the vacuum linearized Einstein equations into itself. This follows from the operator identity (derived from equations (III.10) and (III.14))

|s|𝓔s𝓒=s𝑴ss𝑴=s𝑴s𝝉|s|𝓔,\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}}\cdot\,\mbox{}_{s}\boldsymbol{\mathcal{C}}=\,\mbox{}_{s}\boldsymbol{M}^{\dagger}\,\mbox{}_{-s}\Box\,\mbox{}_{-s}\boldsymbol{M}=\,\mbox{}_{s}\boldsymbol{M}^{\dagger}\,\mbox{}_{-s}\boldsymbol{\tau}\cdot\,\mbox{}_{|s|}\boldsymbol{\mathcal{E}}, (III.15)

where the second equality from equation (II.30). Applying this operator identity to (in general) a complex vacuum metric perturbation, the right-hand side yields zero. Note that the two cases s=±2s=\pm 2 in equations (III.9) and (II.26) differ by a transformation, along with a factor of ζ4\zeta^{4}, and so 2𝒞abcd\,\mbox{}_{2}\mathcal{C}_{ab}{}^{cd} and 2𝒞abcd\,\mbox{}_{-2}\mathcal{C}_{ab}{}^{cd} are related by a transformation. Furthermore, the metric perturbations generated by ±2𝒞abcd\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd} are in a trace-free gauge by construction.

Finally, we note that this argument has been used in a fully tetrad-invariant form, using a spinor form of the Teukolsky equations, to generate symmetry operators for metric perturbations of the sort that we review in this section Aksteiner:2016mol . For simplicity, we use the Newman-Penrose form of the Teukolsky equations instead.

III.3 Issues of gauge

Since the operators ±2τab\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger} map into the space of metric perturbations which are solutions to the linearized Einstein equation, the solutions which these operators generate will be in a particular gauge. This gauge freedom can be understood in the following way: the operators ±2τab\,\mbox{}_{\pm 2}\tau_{ab} in equation (II.27) are only defined up to transformations of the form

±2τab±2τab+2ξ(ab),\,\mbox{}_{\pm 2}\tau_{ab}\to\,\mbox{}_{\pm 2}\tau_{ab}+2\xi_{(a}\nabla_{b)}, (III.16)

as they act upon the stress-energy tensor, for which aTab=0\nabla_{a}T^{ab}=0. As such, we find that ±2τab\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger} have the corresponding freedom

±2τab±2τab+2(aξb).\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\to\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}+2\nabla_{(a}\xi_{b)}. (III.17)

Note here that, in the second term, the covariant derivative acts upon the argument of these operators in addition to acting on ξb\xi_{b}. The particular choice (II.29) of ±2τab\,\mbox{}_{\pm 2}\tau_{ab} fixes this freedom, and so the metric perturbations generated by ±2𝒞abcd\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd} are in a particular gauge. The gauge conditions which they satisfy are Chrzanowski:1975wv

gab±2τab=0,la2τab=0,na2τab=0.g^{ab}\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}=0,\qquad l^{a}\,\mbox{}_{2}\tau_{ab}^{\dagger}=0,\qquad n^{a}\,\mbox{}_{-2}\tau_{ab}^{\dagger}=0. (III.18)

For 2τab\,\mbox{}_{2}\tau_{ab}^{\dagger}, this is the ingoing radiation gauge condition, whereas for 2τab\,\mbox{}_{-2}\tau_{ab}^{\dagger}, this is the outgoing radiation gauge condition.

We now show that the solutions 2𝓒¯δ𝒈\,\mbox{}_{2}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g} and 2𝓒¯δ𝒈\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g} do not differ by a gauge transformation, in the case where ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} is real. This is in contrast to the case in electromagnetism Grant:2019qyo , where the analogous solutions do, in fact, differ by a gauge transformation. While the total solutions 2𝓒¯δ𝒈\,\mbox{}_{2}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g} and 2𝓒¯δ𝒈\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g} do not differ by a gauge transformation, we will also show that the imaginary parts of each of these two solutions are related by a gauge transformation, and so they represent the same physical solution.

To proceed, we first note the following identities [note a conventional factor of two difference with PhysRevD.19.1641 , which comes from the difference between their equation (2.21) and our equation (II.13)]

2𝑴¯2𝓒\displaystyle\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\,\mbox{}_{2}\boldsymbol{\mathcal{C}} 12(D+ϵ3ϵ¯)(D+2ϵ2ϵ¯)(D+3ϵϵ¯)(D+4ϵ)2𝑴,\displaystyle\circeq\frac{1}{2}(D+\epsilon-3\bar{\epsilon})(D+2\epsilon-2\bar{\epsilon})(D+3\epsilon-\bar{\epsilon})(D+4\epsilon)\,\mbox{}_{-2}\boldsymbol{M}, (III.19a)
2𝑴¯2𝓒\displaystyle\overline{\,\mbox{}_{-2}\boldsymbol{M}}\cdot\,\mbox{}_{2}\boldsymbol{\mathcal{C}} 12ζ¯4(δ+3α¯+β)(δ+2α¯+2β)(δ+α¯+3β)(δ+4β)2𝑴,\displaystyle\circeq\frac{1}{2}\bar{\zeta}^{4}(\delta+3\bar{\alpha}+\beta)(\delta+2\bar{\alpha}+2\beta)(\delta+\bar{\alpha}+3\beta)(\delta+4\beta)\,\mbox{}_{-2}\boldsymbol{M}, (III.19b)
2𝑴¯2𝓒¯\displaystyle\overline{\,\mbox{}_{-2}\boldsymbol{M}}\cdot\overline{\,\mbox{}_{2}\boldsymbol{\mathcal{C}}} 32ζ4Ψ2¯[τ¯(δ+4α¯)ρ¯(Δ+4γ¯)μ¯(D+4ϵ¯)+π¯(δ¯+4β¯)+2Ψ¯2]2𝑴¯\displaystyle\circeq\frac{3}{2}\overline{\zeta^{4}\Psi_{2}}\left[\bar{\tau}(\delta+4\bar{\alpha})-\bar{\rho}(\mathbbold{\Delta}+4\bar{\gamma})-\bar{\mu}(D+4\bar{\epsilon})+\bar{\pi}(\bar{\delta}+4\bar{\beta})+2\overline{\Psi}_{2}\right]\overline{\,\mbox{}_{-2}\boldsymbol{M}}
=32ζ3Ψ2¯ta[a+4(ιBaoB)]2𝑴¯,\displaystyle=\frac{3}{2}\overline{\zeta^{3}\Psi_{2}}t^{a}[\nabla_{a}+4(\iota_{B}\nabla_{a}o^{B})]\overline{\,\mbox{}_{-2}\boldsymbol{M}}, (III.19c)

where “\circeq” means “equality modulo equations of motion”. Moreover, apart from those that occur in this equation, all other combinations of ±2𝑴\,\mbox{}_{\pm 2}\boldsymbol{M} and ±2𝑴¯\overline{\,\mbox{}_{\pm 2}\boldsymbol{M}} acting on 2𝓒\,\mbox{}_{2}\boldsymbol{\mathcal{C}} and 2𝓒¯\overline{\,\mbox{}_{2}\boldsymbol{\mathcal{C}}} are zero for vacuum solutions. Here we have used the equation

Dρ=(ρ+ϵ+ϵ¯)ρD\rho=(\rho+\epsilon+\bar{\epsilon})\rho (III.20)

(along with its - and *-transformed versions) in order to simplify, as well as equation (II.33). One can furthermore use a -transformation to write down versions of equation (III.19) involving 2𝓒\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}, noting that Ψ2Ψ2\Psi_{2}\to\Psi_{2} under a -transformation, and ζ\zeta must flip sign (note that tat^{a} keeps the same sign).

To determine whether certain linear combinations of ±2𝒞ab¯cdδgcd\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd} (and their complex conjugates) differ by gauge transformations, we need the following relation, which only holds for ¯δΨ4\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4} and ¯δΨ0\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0} coming from the same real vacuum metric perturbations:

(D+ϵ3ϵ¯)(D+2ϵ2ϵ¯)(D+3ϵϵ¯)(D+4ϵ)ζ4¯δΨ4=(δ¯α3β¯)(δ¯2α2β¯)(δ¯3αβ¯)(δ¯4α)ζ4¯δΨ0+3ζ3Ψ2¯ta[a4(ιBaoB)]¯δΨ0¯;\begin{split}(D+\epsilon-3\bar{\epsilon})(D+2\epsilon-2\bar{\epsilon})(D+3\epsilon-\bar{\epsilon})(D+4\epsilon)\zeta^{4}\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4}&=(\bar{\delta}-\alpha-3\bar{\beta})(\bar{\delta}-2\alpha-2\bar{\beta})(\bar{\delta}-3\alpha-\bar{\beta})(\bar{\delta}-4\alpha)\zeta^{4}\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0}\\ &\hskip 10.00002pt+3\overline{\zeta^{3}\Psi_{2}}t^{a}[\nabla_{a}-4(\iota_{B}\nabla_{a}o^{B})]\overline{\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0}};\end{split} (III.21)

we will also need this equation’s -transform. This relation can be derived using the perturbed Bianchi identities and Newman-Penrose equations, as mentioned in PhysRevD.14.317 ; for a more modern derivation, see for example Aksteiner:2016pjt . Using equations (III.19) and (III.21), along with their -transforms, we find that (applied to a real, vacuum metric perturbation),

2𝑴¯2𝓒2𝑴¯2𝓒2𝑴¯2𝓒¯.\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\,\mbox{}_{2}\boldsymbol{\mathcal{C}}\circeq\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}-\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\overline{\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}}. (III.22)

The -transform of this equation merely switches 222\to-2. As remarked below equation (III.19), one has that

2𝑴¯2𝓒¯0\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\overline{\,\mbox{}_{2}\boldsymbol{\mathcal{C}}}\circeq 0 (III.23)

(along with its -transform), and so one therefore has that

2𝑴¯Im[+2𝓒2𝓒]¯δ𝒈=0,2𝑴¯Im[+2𝓒2𝓒]¯δ𝒈=0.\overline{\,\mbox{}_{2}\boldsymbol{M}}\cdot\operatorname{Im}\left[\,\mbox{}_{+2}\boldsymbol{\mathcal{C}}-\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}\right]\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}=0,\qquad\overline{\,\mbox{}_{-2}\boldsymbol{M}}\cdot\operatorname{Im}\left[\,\mbox{}_{+2}\boldsymbol{\mathcal{C}}-\,\mbox{}_{-2}\boldsymbol{\mathcal{C}}\right]\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}=0.\\ (III.24)

This equation does not, as it stands, guarantee that Im[2𝓒¯δ𝒈]\operatorname{Im}[\,\mbox{}_{2}\mathcal{\boldsymbol{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] and Im[2𝓒¯δ𝒈]\operatorname{Im}[\,\mbox{}_{-2}\mathcal{\boldsymbol{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] are related by a gauge transformation, just that the master variables associated with these two metric perturbations are equal. This implies that their difference is a metric perturbation that contributes to ¯δM\mathchar 22\relax\mkern-9.0mu\delta M and ¯δa\mathchar 22\relax\mkern-9.0mu\delta a; that is, it only has monopole and dipole terms 1973JMP….14.1453W . One would expect that Im[±2𝒞ab¯cdδgcd]\operatorname{Im}[\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}], as they are constructed wholly from the radiative Weyl scalars ¯δΨ0\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0} and ¯δΨ4\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4} (which do not have monopole or dipole pieces), would not have non-radiating pieces. This statement is in fact correct due to arguments in Stewart:1978tm . In conclusion, we find that Im[2𝓒¯δ𝒈]\operatorname{Im}[\,\mbox{}_{2}\mathcal{\boldsymbol{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] and Im[2𝓒¯δ𝒈]\operatorname{Im}[\,\mbox{}_{-2}\mathcal{\boldsymbol{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] differ by a gauge transformation:

Im[2𝒞ab¯cdδgcd]=Im[2𝒞ab¯cdδgcd]+2(aξb),\operatorname{Im}[\,\mbox{}_{2}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}]=\operatorname{Im}[\,\mbox{}_{-2}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}]+2\nabla_{(a}\xi_{b)}, (III.25)

for some vector field ξa\xi^{a}. The main theorem of Aksteiner:2016pjt provides an alternative proof of this result, as does the discussion in section 4.3 of Aksteiner:2016mol .

III.4 Action of symmetry operators on expansions

In section II.3, we showed that the master variables (and their complex conjugates) have convenient expansions [equations (II.52) and (II.53)] in terms of spin-weighted spheroidal harmonics. We show in this section that the symmetry operators considered in this paper which act on the master variables are “diagonal”, in the sense that they act upon each term in these expansions by simply multiplying each term by an overall constant. We then construct a similar expansion for vacuum metric perturbations, and show that the action of the symmetry operators that we have defined for metric perturbations are also diagonal on this expansion.

First, let us consider the action of the symmetry operator s𝒟\,\mbox{}_{s}\mathcal{D} defined in equation (III.3). From equations (II.43), (II.37), (II.39), and (II.45), it follows that

s𝒟sΩ=l=|s||m|lp=±1|s|λlmωei(mϕωt)sΘlmω(θ)sΩ^lmωp(r).\,\mbox{}_{s}\mathcal{D}\,\mbox{}_{s}\Omega=\int_{-\infty}^{\infty}\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\,\mbox{}_{|s|}\lambda_{lm\omega}e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r). (III.26)

Later in this section, we will also show that a similar diagonalization occurs for a tensor version of this operator, which we will define in equation (III.47).

Next, we consider the symmetry operators s,s𝒞~\,\mbox{}_{s^{\prime},s}\widetilde{\mathcal{C}} defined in equation (III.13). We begin by noting that these symmetry operators simplify with the choice of Boyer-Lindquist coordinates and the Kinnersley tetrad, yielding the so-called “spin-inversion” operators Chrzanowski:1975wv ; 1982JPhA…15.3737G :

2,2𝒞~\displaystyle\,\mbox{}_{2,2}\widetilde{\mathcal{C}} =12𝒟04,\displaystyle=\frac{1}{2}\mathscr{D}_{0}^{4},\qquad 2,2𝒞~\displaystyle\,\mbox{}_{-2,-2}\widetilde{\mathcal{C}} =132Δ2(𝒟0+)4Δ2,\displaystyle=\frac{1}{32}\Delta^{2}\left(\mathscr{D}_{0}^{+}\right)^{4}\Delta^{2}, (III.27a)
2,2𝒞~\displaystyle\,\mbox{}_{2,-2}\widetilde{\mathcal{C}} =181+0+1+2+,\displaystyle=\frac{1}{8}\mathscr{L}_{-1}^{+}\mathscr{L}_{0}^{+}\mathscr{L}_{1}^{+}\mathscr{L}^{+}_{2},\qquad 2,2𝒞~\displaystyle\,\mbox{}_{-2,2}\widetilde{\mathcal{C}} =181012.\displaystyle=\frac{1}{8}\mathscr{L}_{-1}\mathscr{L}_{0}\mathscr{L}_{1}\mathscr{L}_{2}. (III.27b)

The constant numerical factors here are consistent with those of Wald PhysRevLett.41.203 and Chrzanowski Chrzanowski:1975wv , but disagree with those of other authors (such as chandrasekhar1983mathematical ; 1982JPhA…15.3737G ) due to normalization conventions.

These operators are referred to as spin-inversion operators for the following reason. Considering their action on the terms in the expansion (II.53) of sΩ¯\overline{\,\mbox{}_{s}\Omega}, they are either purely radial [equation (III.27a)] or purely angular [equation (III.27b)]. Due to this fact, along with the expansions in equations (II.52) and (II.53), it is apparent that, when acting on the terms in these expansions, the operator 2,2𝒞~\,\mbox{}_{2,2}\widetilde{\mathcal{C}} maps from the space of solutions to the radial Teukolsky equation (II.45b) with s=2s=-2 to s=2s=2, and similarly 2,2𝒞~\,\mbox{}_{-2,-2}\widetilde{\mathcal{C}} maps from solutions with s=2s=2 to s=2s=-2. Similarly, for the angular operators, due to the fact that the expansion for sΩ¯\overline{\,\mbox{}_{s}\Omega} is in terms of sΘlmω\,\mbox{}_{-s}\Theta_{lm\omega}, 2,2𝒞~\,\mbox{}_{2,-2}\widetilde{\mathcal{C}} maps from the space of solutions to angular Teukolsky equation (II.45a) with s=2s=2 to s=2s=-2, and similarly 2,2𝒞~\,\mbox{}_{-2,2}\widetilde{\mathcal{C}} maps from s=2s=-2 to s=2s=2.

We now show that the spin-inversion operators merely multiply each term in the expansion (II.53) by some constant, starting with the angular spin-inversion operators. The angular Teukolsky equation (II.45a) is a Sturm-Liouville problem, which only has one solution for a given value of ll, mm, and ω\omega (up to normalization). If the angular spin-inversion operators, when acting upon individual terms in the expansion (II.53), map between the two spaces of solutions with s=±2s=\pm 2, then these maps can be entirely characterized by two overall constants, which we denote by ±2Clmω\,\mbox{}_{\pm 2}C_{lm\omega}:

1(±m)(±ω)0(±m)(±ω)1(±m)(±ω)2(±m)(±ω)±2Θlmω±2Clmω2Θlmω.\mathscr{L}_{-1(\pm m)(\pm\omega)}\mathscr{L}_{0(\pm m)(\pm\omega)}\mathscr{L}_{1(\pm m)(\pm\omega)}\mathscr{L}_{2(\pm m)(\pm\omega)}\,\mbox{}_{\pm 2}\Theta_{lm\omega}\equiv\,\mbox{}_{\pm 2}C_{lm\omega}\,\mbox{}_{\mp 2}\Theta_{lm\omega}. (III.28)

This equation is known as the angular Teukolsky-Starobinsky identity. Since these operators are entirely real, this constant ±2Clmω\,\mbox{}_{\pm 2}C_{lm\omega} is also real. Moreover, the normalization condition for sΘlmω\,\mbox{}_{s}\Theta_{lm\omega} implies that chandrasekhar1983mathematical

2Clmω=2ClmωClmω,\,\mbox{}_{2}C_{lm\omega}=\,\mbox{}_{-2}C_{lm\omega}\equiv C_{lm\omega}, (III.29)

where

Clmω2=2λlmω2(2λlmω+2)28ω22λlmω[αmω2(52λlmω+6)12a2]+144ω4αmω4,C_{lm\omega}^{2}=\,\mbox{}_{2}\lambda_{lm\omega}^{2}(\,\mbox{}_{2}\lambda_{lm\omega}+2)^{2}-8\omega^{2}\,\mbox{}_{2}\lambda_{lm\omega}[\alpha_{m\omega}^{2}(5\,\mbox{}_{2}\lambda_{lm\omega}+6)-12a^{2}]+144\omega^{4}\alpha_{m\omega}^{4}, (III.30)

and

αmω2=a2am/ω.\alpha_{m\omega}^{2}=a^{2}-am/\omega. (III.31)

We now turn to the case of the radial operators in equation (III.27a), which are somewhat more complicated. This is because there are two solutions to the radial equation (II.45b), as it is second-order, and not a Sturm-Liouville problem. However, as noted in section II.3, the two solutions can be characterized by their eigenvalues under the transformation (m,ω)(m,ω)(m,\omega)\to(-m,-\omega), followed by complex conjugation. Since the radial spin-inversion operator is also invariant under this transformation, we must therefore have that

Δ2𝒟0(m)(ω)4Δ(s±s)/2±2Ω^lmωp2±2±2ClmωpΔ(ss)/22Ω^lmωp\Delta^{2}\mathscr{D}_{0(\mp m)(\mp\omega)}^{4}\Delta^{(s\pm s)/2}\,\mbox{}_{\pm 2}\widehat{\Omega}_{lm\omega p}\equiv 2^{\pm 2}\,\mbox{}_{\pm 2}C_{lm\omega p}\Delta^{(s\mp s)/2}\,\mbox{}_{\mp 2}\widehat{\Omega}_{lm\omega p} (III.32)

(the factor of 2±22^{\pm 2} is purely conventional, and is present only to make our final expressions simpler). This equation is known as the radial Teukolsky-Starobinsky identity.

To determine the values of the constants ±2Clmωp\,\mbox{}_{\pm 2}C_{lm\omega p}, we need to use the fact that ±2Ω\,\mbox{}_{\pm 2}\Omega come from the same real metric perturbation. The values of these constants given by Teukolsky and Press in their original paper 1974ApJ…193..443T only hold for the p=1p=1 case (as pointed out by Bardeen bardeen 444That 1974ApJ…193..443T only considers p=1p=1 can be seen from their equation (3.21), along with the remark below their equation (3.22) that the quantities S2S_{2} and S2S_{2}^{\dagger} that appear in this equation are given by 2Slm\,\mbox{}_{2}S_{lm} and 2Slm\,\mbox{}_{-2}S_{lm} (in this chapter, these are denoted 2Θlmω\,\mbox{}_{2}\Theta_{lm\omega} and 2Θlmω\,\mbox{}_{-2}\Theta_{lm\omega}). These two statements imply that the radial functions RsR_{s} discussed in 1974ApJ…193..443T obey Rs(m,ω)¯=Rs(m,ω).\overline{R_{s}(-m,-\omega)}=R_{s}(m,\omega). In this paper, due to differences in notation and the conventions in equation (II.46), this is equivalent to the statement that sΩ^l(m)(ω)=(1)m+ssΩ^lmω¯\,\mbox{}_{s}\widehat{\Omega}_{l(-m)(-\omega)}=(-1)^{m+s}\overline{\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}}, which by equation (II.54) implies that p=1p=1.). The values of ±2Clmωp\,\mbox{}_{\pm 2}C_{lm\omega p} are found using equation (III.22), since (in terms of sΩ\,\mbox{}_{s}\Omega) the complex conjugate of this equation (and its -transform) can be written as

s,s𝒞~sΩ¯=s,s𝒞~sΩ¯s,s𝒞sΩ.\,\mbox{}_{-s,-s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{s}\Omega}=\,\mbox{}_{-s,s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-s}\Omega}-\,\mbox{}_{-s,s}\mathcal{C}\,\mbox{}_{-s}\Omega. (III.33)

Using equations (III.27), (III.28), and (III.32), as well as (III.19c), we find that

s,s𝒞~sΩ¯\displaystyle\,\mbox{}_{-s,s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-s}\Omega} =18dωl=2|m|lp=±1pClmωei(mϕωt)sΘlmωsΩ^lmωp,\displaystyle=\frac{1}{8}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}pC_{lm\omega}e^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}, (III.34a)
s,s𝒞~sΩ¯\displaystyle\,\mbox{}_{-s,-s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{s}\Omega} =18dωl=2|m|lp=±1psClmωpei(mϕωt)sΘlmωsΩ^lmωp,\displaystyle=\frac{1}{8}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}p\,\mbox{}_{s}C_{lm\omega p}e^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}, (III.34b)
s,s𝒞sΩ\displaystyle\,\mbox{}_{-s,s}\mathcal{C}\,\mbox{}_{-s}\Omega =3iM2sgn(s)dωl=2|m|lp=±1ωei(mϕωt)sΘlmωsΩ^lmωp,\displaystyle=\frac{3iM}{2}\operatorname{sgn}(s)\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\omega e^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}, (III.34c)

and so equation (III.33) implies that

±2Clmωp=Clmω12ipMω.\,\mbox{}_{\pm 2}C_{lm\omega p}=C_{lm\omega}\mp 12ipM\omega. (III.35)

At this point, we have shown how symmetry operators on the space of master variables act diagonally on the expansions (II.52) and (II.53). We would like a similar diagonalization for the operator s𝓒\,\mbox{}_{s}\boldsymbol{\mathcal{C}}, but (a priori) there does not exist an analogous expansion for the metric perturbation. We now construct such an expansion. To begin, if a) sψ\,\mbox{}_{s}\psi is a solution to the vacuum Teukolsky equation (II.27), b) it is the master variable associated with some real solution to the linearized Einstein equations, and c)

sΩ=sMabIm[sτabsψ],\,\mbox{}_{s}\Omega=\,\mbox{}_{s}M^{ab}\operatorname{Im}[\,\mbox{}_{s}\tau_{ab}^{\dagger}\,\mbox{}_{-s}\psi], (III.36)

then we call sψ\,\mbox{}_{s}\psi a Debye potential for ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} (for the origin of this terminology, see PhysRevD.10.1070 ). The first of these conditions ensures that 2ψ\,\mbox{}_{2}\psi and ζ42ψ\zeta^{-4}\,\mbox{}_{-2}\psi satisfy the same relation as (respectively) ¯δΨ0\mathchar 22\relax\mkern-9.0mu\delta\Psi_{0} and ¯δΨ4\mathchar 22\relax\mkern-9.0mu\delta\Psi_{4} in equation (III.21). The second of these conditions ensures that Im[sτabsψ]\operatorname{Im}[\,\mbox{}_{s}\tau_{ab}^{\dagger}\,\mbox{}_{-s}\psi] and (by the first condition) Im[sτabsψ]\operatorname{Im}[\,\mbox{}_{-s}\tau_{ab}^{\dagger}\,\mbox{}_{s}\psi] are the same as ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}, up to gauge and l=0,1l=0,1 terms.

The easiest way to satisfy these conditions is as follows. First, note that, by equations (III.14) and (III.34),

sMabIm{s𝒞abImcd[sτcdsΩ]}=116sMabRe[sτabdωl=2|m|lp=±1psClmωpei(mϕωt)sΘlmωsΩ^lmωp]=1256dωl=2|m|lp=±1(Clmω2+144M2ω2)ei(mϕωt)sΘlmωsΩ^lmωp.\begin{split}\,\mbox{}_{s}M^{ab}&\operatorname{Im}\left\{\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\operatorname{Im}[\,\mbox{}_{-s}\tau_{cd}^{\dagger}\,\mbox{}_{s}\Omega]\right\}\\ &=\frac{1}{16}\,\mbox{}_{s}M^{ab}\operatorname{Re}\left[\,\mbox{}_{s}\tau_{ab}^{\dagger}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}p\,\mbox{}_{s}C_{lm\omega p}e^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}\right]\\ &=\frac{1}{256}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}(C_{lm\omega}^{2}+144M^{2}\omega^{2})e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}.\\ \end{split} (III.37)

We now define sψ\,\mbox{}_{s}\psi, for a given sΩ\,\mbox{}_{s}\Omega, by

sψ256sMabIm[sτabdωl=2|m|lp=±1ei(mϕωt)sΘlmω(θ)sΩ^lmωp(r)Clmω2+144M2ω2]=16idωl=2|m|lp=±1pei(mϕωt)sΘlmω(θ)sΩ^lmωp(r)sClmωp,\begin{split}\,\mbox{}_{s}\psi&\equiv 256\,\mbox{}_{s}M^{ab}\operatorname{Im}\left[\,\mbox{}_{s}\tau_{ab}^{\dagger}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\frac{e^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}(\theta)\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}(r)}{C_{lm\omega}^{2}+144M^{2}\omega^{2}}\right]\\ &=16i\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\frac{pe^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r)}{\,\mbox{}_{s}C_{lm\omega p}},\end{split} (III.38)

where the second line comes from equation (III.34), and sΩ^lmωp\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p} is given in terms of sΩ\,\mbox{}_{s}\Omega by equations (II.44) and (II.50). Since Clmω2+144M2ω2C_{lm\omega}^{2}+144M^{2}\omega^{2} is real, sψ\,\mbox{}_{s}\psi satisfies the first of the above requirements, and by equation (III.37) it also satisfies the second. Moreover, the second line implies that

sψ^lmω(p)=16ipsClmωpsΩ^lmωp.\,\mbox{}_{s}\widehat{\psi}_{lm\omega(-p)}=\frac{16ip}{\,\mbox{}_{s}C_{lm\omega p}}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}. (III.39)

where the expansion coefficients sψ^lmωp\,\mbox{}_{s}\widehat{\psi}_{lm\omega p} are defined by an expansion analogous to equation (II.52), together with the behavior under complex conjugation given by equation (II.54). This condition is satisfied, due to the fact that

sCl(m)(ω)p¯=sClmωp,\overline{\,\mbox{}_{s}C_{l(-m)(-\omega)p}}=\,\mbox{}_{s}C_{lm\omega p}, (III.40)

by equations (II.47), (III.30) and (III.35), as well as by using equation (II.54) for sΩ^lmωp\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}. While this would also be a perfectly reasonable definition of sψ\,\mbox{}_{s}\psi, it is not apparent in this form that sψ\,\mbox{}_{s}\psi is generated by a real metric perturbation, which is crucial, and is explicit in equation (III.38). Finally, note that equations analogous to equation (III.34) also hold for sψ\,\mbox{}_{s}\psi in terms of sψlmωp\,\mbox{}_{s}\psi_{lm\omega p}.

We can now define an expansion for the metric perturbation. First, we define

¯δ±gab±2τab2ψ,\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}\equiv\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\,\mbox{}_{\mp 2}\psi, (III.41)

which (as remarked above) satisfy

sMabIm[¯δ+gab]=sMabIm[¯δgab]=sΩ.\,\mbox{}_{s}M^{ab}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{ab}]=\,\mbox{}_{s}M^{ab}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{ab}]=\,\mbox{}_{s}\Omega. (III.42)

These metric perturbations have convenient expansions of the form

¯δ±gab=dωl=2|m|lp=±1(¯δ±glmωp)ab,\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}=\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}, (III.43)

where

(¯δ±glmωp)ab±2τab[ei(mϕωt)2Θlmω(θ)2ψ^lmωp(r)].(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}\equiv\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\left[e^{i(m\phi-\omega t)}\,\mbox{}_{\mp 2}\Theta_{lm\omega}(\theta)\,\mbox{}_{\mp 2}\widehat{\psi}_{lm\omega p}(r)\right]. (III.44)

Note that the relationship between ¯δ±gab\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab} and their coefficients is not \mathbb{C}-linear, due to the transformation properties of these coefficients under complex conjugation resulting from equation (II.54).

This procedure, which allowed us to construct a metric perturbation Im[¯δ±gab]\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}] from 2Ω\,\mbox{}_{\mp 2}\Omega such that the master variables associated with this metric perturbation are ±2Ω\,\mbox{}_{\pm 2}\Omega, is similar to the one laid out in Chrzanowski:1975wv , which is referred to in the literature as Chrzanowski metric reconstruction. We now provide an operator form of this procedure: define

sΠabsΩ256s𝒞abImcd[sτcddωl=2|m|lp=±1ei(mϕωt)sΘlmωsΩ^lmωpClmω2+144M2ω2]=16isτabdωl=2|m|lp=±1pei(mϕωt)sΘlmωsΩ^lmωpsClmωp,\begin{split}\,\mbox{}_{s}\Pi_{ab}\,\mbox{}_{s}\Omega&\equiv 256\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\operatorname{Im}\left[\,\mbox{}_{-s}\tau_{cd}^{\dagger}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\frac{e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}}{C^{2}_{lm\omega}+144M^{2}\omega^{2}}\right]\\ &=16i\,\mbox{}_{s}\tau_{ab}^{\dagger}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\frac{pe^{i(m\phi-\omega t)}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\widehat{\Omega}_{lm\omega p}}{\,\mbox{}_{-s}C_{lm\omega p}},\end{split} (III.45)

which satisfies

sMabIm[sΠabsΩ]=sMabIm[sΠabsΩ]=sΩ.\,\mbox{}_{s}M^{ab}\operatorname{Im}[\,\mbox{}_{s}\Pi_{ab}\,\mbox{}_{s}\Omega]=\,\mbox{}_{s}M^{ab}\operatorname{Im}[\,\mbox{}_{-s}\Pi_{ab}\,\mbox{}_{-s}\Omega]=\,\mbox{}_{s}\Omega. (III.46)

Note that the operator sΠab\,\mbox{}_{s}\Pi_{ab} is non-local, since it requires an expansion in spin-weighted spheroidal harmonics for its definition. This operator allows us to define a version of the operator s𝒟\,\mbox{}_{s}\mathcal{D} defined in section III.1 that maps to the space of complexified solutions of the linearized Einstein equations, much like s𝒞abcd\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}:

s𝒟abcdsΠabs𝒟sMcd.\,\mbox{}_{s}\mathcal{D}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\Pi_{ab}\,\mbox{}_{s}\mathcal{D}\,\mbox{}_{s}M^{cd}. (III.47)

We also define a version of this operator without the intermediate factor of s𝒟\,\mbox{}_{s}\mathcal{D}:

sXabcdsΠabsMcd.\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\Pi_{ab}\,\mbox{}_{s}M^{cd}. (III.48)

Now that we have both a definition of an expansion for the metric perturbation, along with a variety of symmetry operators defined which map the space of metric perturbations into itself, we can proceed to show that these symmetry operators act diagonally on these expansions. Note, again, that there is no convenient notion of an expansion of the form (III.43) for a general ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}, and so we only compute the action of our various symmetry operators on ¯δ±gab\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}. The simplest case is s𝒞abcd\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}, which satisfies [by equation (III.34)]555Note that, as mentioned above below equation (III.44), the relationship between ¯δ±gab\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab} and their coefficients is not \mathbb{C}-linear. This explains the apparent contradiction of the left-hand side of equations (III.49a) and (III.49b) being \mathbb{C}-antilinear, but the right-hand sides appearing to be \mathbb{C}-linear.

±2𝒞ab¯δ±gcd¯cd\displaystyle\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\overline{\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{cd}} =±2τab2,±2𝒞~2ψ¯\displaystyle=\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\,\mbox{}_{\mp 2,\pm 2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{\mp 2}\psi}
=18dωl=2|m|lp=±1pClmω(¯δ±glmωp)ab,\displaystyle=\frac{1}{8}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}pC_{lm\omega}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}, (III.49a)
±2𝒞ab¯δgcd¯cd\displaystyle\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\overline{\mathchar 22\relax\mkern-9.0mu\delta_{\mp}g_{cd}} =±2τab2,2𝒞~±2ψ¯\displaystyle=\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\,\mbox{}_{\mp 2,\mp 2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{\pm 2}\psi}
=18dωl=2|m|lp=±1p±2Clmωp(¯δ±glmωp)ab,\displaystyle=\frac{1}{8}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}p\,\mbox{}_{\pm 2}C_{lm\omega p}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}, (III.49b)
±2𝒞ab¯cdδ±gcd\displaystyle\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{cd} =±2τab2,±2𝒞2ψ\displaystyle=\,\mbox{}_{\pm 2}\tau_{ab}^{\dagger}\,\mbox{}_{\mp 2,\pm 2}\mathcal{C}\,\mbox{}_{\mp 2}\psi
=±3iM2dωl=2|m|lp=±1ω(¯δ±glmωp)ab.\displaystyle=\pm\frac{3iM}{2}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\omega(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}. (III.49c)

These equations demonstrate that the action on the expansion (III.43) is diagonal, up to mappings from (¯δ±glmωp)ab¯(¯δ±glmωp)ab\overline{(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}}\to(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab} and (¯δglmωp)ab(\mathchar 22\relax\mkern-9.0mu\delta_{\mp}g_{lm\omega p})_{ab}, as well as mappings from (¯δ±glmωp)ab(¯δglmωp)ab(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}\to(\mathchar 22\relax\mkern-9.0mu\delta_{\mp}g_{lm\omega p})_{ab}. More useful later in this paper will be the action of s𝒞abcd\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd} on Im[¯δ±gab]\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}]:

±2𝒞abImcd[¯δ+gcd]=±2𝒞abImcd[¯δgcd]=i16dωl=2|m|lp=±1p±2Clmωp(¯δ±glmωp)ab.\begin{split}\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{cd}]&=\,\mbox{}_{\pm 2}\mathcal{C}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{cd}]\\ &=\frac{i}{16}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}p\,\mbox{}_{\pm 2}C_{lm\omega p}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}.\end{split} (III.50)

Similarly, we will consider the action of s𝒟abcd\,\mbox{}_{s}\mathcal{D}_{ab}{}^{cd} and sXabcd\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd} on Im[¯δ±gab]\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}]. We have that [by equation (III.42)]

sΠabsΩ=sXabImcd[¯δ±gcd],\,\mbox{}_{s}\Pi_{ab}\,\mbox{}_{s}\Omega=\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{cd}], (III.51)

along with [by equations (III.41) and (III.45)]

±2Πab±2Ω=¯δ±gab,\,\mbox{}_{\pm 2}\Pi_{ab}\,\mbox{}_{\pm 2}\Omega=\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}, (III.52)

and so we find that

±2XabImcd[¯δ+gcd]=±2XabImcd[¯δgcd]=¯δ±gab,\,\mbox{}_{\pm 2}\mathrm{X}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{cd}]=\,\mbox{}_{\pm 2}\mathrm{X}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{cd}]=\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}, (III.53)

Similarly, by the \mathbb{R}-linearity of equation (III.52), we find that [from equation (III.26)]

±2𝒟abImcd[¯δ+gcd]=±2𝒟abImcd[¯δgcd]=dωl=2|m|lp=±12λlmω(¯δ±glmωp)ab.\,\mbox{}_{\pm 2}\mathcal{D}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{cd}]=\,\mbox{}_{\pm 2}\mathcal{D}_{ab}{}^{cd}\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{cd}]=\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\,\mbox{}_{2}\lambda_{lm\omega}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{lm\omega p})_{ab}. (III.54)

III.5 Projection operators

The final set of symmetry operators that we introduce are projection operators acting on the space of master variables sΩ\,\mbox{}_{s}\Omega. Before we introduce these operators, however, it is relevant to discuss the asymptotic properties of the master variables. First, define the tortoise coordinate rr^{*} by

drdrr2+a2Δ.\frac{\mathrm{d}r^{*}}{\mathrm{d}r}\equiv\frac{r^{2}+a^{2}}{\Delta}. (III.55)

This coordinate satisfies rr^{*}\to\infty as rr\to\infty and rr^{*}\to-\infty as rr+r\to r_{+}, where r+r_{+} is the location of the horizon, satisfying Δ|r=r+=0\Delta|_{r=r_{+}}=0.

Now, the vacuum Teukolsky radial equation (II.45b) is a second-order ordinary differential equation in rr, and so its solution space is spanned by two solutions (for given values of ss, ll, mm, and ω\omega) that are characterized by their asymptotic behavior at either r=r+r=r_{+} or r=r=\infty. One can show, from the asymptotic form of the vacuum Teukolsky radial equation (II.45b), that one can choose two independent solutions sRlmωin(r)\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r) and sRlmωout(r)\,\mbox{}_{s}R_{lm\omega}^{\textrm{out}}(r) with the following asymptotic forms as rr^{*}\to-\infty 1974ApJ…193..443T :

sRlmωin(r)eikmωr/Δs,sRlmωout(r)eikmωr,\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r)\to e^{-ik_{m\omega}r^{*}}/\Delta^{s},\quad\,\mbox{}_{s}R_{lm\omega}^{\textrm{out}}(r)\to e^{ik_{m\omega}r^{*}}, (III.56)

where

kmωωam/(2Mr+).k_{m\omega}\equiv\omega-am/(2Mr_{+}). (III.57)

Similarly, at rr^{*}\to\infty, one can choose two independent solutions sRlmωdown(r)\,\mbox{}_{s}R_{lm\omega}^{\textrm{down}}(r) and sRlmωup(r)\,\mbox{}_{s}R_{lm\omega}^{\textrm{up}}(r), which have the following asymptotic forms:

sRlmωdown(r)eiωr/r,sRlmωup(r)eiωr/r2s+1.\,\mbox{}_{s}R_{lm\omega}^{\textrm{down}}(r)\to e^{-i\omega r^{*}}/r,\quad\,\mbox{}_{s}R_{lm\omega}^{\textrm{up}}(r)\to e^{i\omega r^{*}}/r^{2s+1}. (III.58)

A general solution can therefore be expanded in terms of these solutions as

sΩ^lmω(r)=sΩ^lmωdownsRlmωdown(r)+sΩ^lmωupsRlmωup(r)=sΩ^lmωinsRlmωin(r)+sΩ^lmωoutsRlmωout(r).\begin{split}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}(r)&=\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{down}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{down}}(r)+\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{up}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{up}}(r)\\ &=\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{in}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r)+\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{out}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{out}}(r).\end{split} (III.59)

Moreover, from the asymptotic behavior in equations (III.56) and (III.58), we have

sRl(m)(ω)in/out/down/up(r)¯=sRlmωin/out/down/up(r),\overline{\,\mbox{}_{s}R_{l(-m)(-\omega)}^{\textrm{in/out/down/up}}(r)}=\,\mbox{}_{s}R_{lm\omega}^{\textrm{in/out/down/up}}(r), (III.60)

and so, from the definition (II.50),

sΩ^lmωp(r)=sΩ^lmωpdownsRlmωdown(r)+sΩ^lmωpupsRlmωup(r)=sΩ^lmωpinsRlmωin(r)+sΩ^lmωpoutsRlmωout(r),\begin{split}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r)&=\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}^{\textrm{down}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{down}}(r)+\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}^{\textrm{up}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{up}}(r)\\ &=\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}^{\textrm{in}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r)+\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}^{\textrm{out}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{out}}(r),\end{split} (III.61)

where

sΩ^lmωpin/out/down/up12[sΩ^lmωin/out/down/up+p(1)m+ssΩ^l(m)(ω)in/out/down/up¯].\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}^{\textrm{in/out/down/up}}\equiv\frac{1}{2}\left[\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{in/out/down/up}}+p(-1)^{m+s}\overline{\,\mbox{}_{s}\widehat{\Omega}_{l(-m)(-\omega)}^{\textrm{in/out/down/up}}}\right]. (III.62)

We now define projection operators associated with this expansion as follows: for example, define s𝒫in\,\mbox{}_{s}\mathcal{P}^{\textrm{in}} by

s𝒫insΩ=s𝒫indωl=|s||m|lei(mϕωt)sΘlmω(θ)[sΩ^lmωinsRlmωin(r)+sΩ^lmωoutsRlmωout(r)]dωl=|s||m|lei(mϕωt)sΘlmω(θ)sΩ^lmωinsRlmωin(r).\begin{split}\,\mbox{}_{s}\mathcal{P}^{\textrm{in}}\,\mbox{}_{s}\Omega&=\,\mbox{}_{s}\mathcal{P}^{\textrm{in}}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\left[\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{in}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r)+\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{out}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{out}}(r)\right]\\ &\equiv\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=|s|}^{\infty}\sum_{|m|\leq l}e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}(\theta)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega}^{\textrm{in}}\,\mbox{}_{s}R_{lm\omega}^{\textrm{in}}(r).\end{split} (III.63)

Analogous definitions can be given for s𝒫out\,\mbox{}_{s}\mathcal{P}^{\textrm{out}}, s𝒫down\,\mbox{}_{s}\mathcal{P}^{\textrm{down}}, and s𝒫up\,\mbox{}_{s}\mathcal{P}^{\textrm{up}}. Since these operators require an expansion in spin-weighted spheroidal harmonics, they are necessarily non-local.

The reason we introduce these projection operators is that, as we show in appendix B, whether sτabsΩ\,\mbox{}_{s}\tau_{ab}^{\dagger}\,\mbox{}_{-s}\Omega falls off as 1/r1/r (that is, whether it is an asymptotically flat metric perturbation) depends on the values sΩlmωdown/out\,\mbox{}_{-s}\Omega_{lm\omega}^{\textrm{down/out}}. This was first remarked by Chrzanowski in Chrzanowski:1975wv . As such, we define a projected version of sτab\,\mbox{}_{s}\tau_{ab}^{\dagger}, which we call sτ̊ab\,\mbox{}_{s}\mathring{\tau}_{ab}^{\dagger}, such that sτ̊absΩ\,\mbox{}_{s}\mathring{\tau}_{ab}^{\dagger}\,\mbox{}_{-s}\Omega is always well-behaved as rr\to\infty:

2τ̊ab2τab2𝒫down,2τ̊ab2τab2𝒫up.\,\mbox{}_{2}\mathring{\tau}_{ab}^{\dagger}\equiv\,\mbox{}_{2}\tau_{ab}^{\dagger}\,\mbox{}_{-2}\mathcal{P}^{\textrm{down}},\qquad\,\mbox{}_{-2}\mathring{\tau}_{ab}^{\dagger}\equiv\,\mbox{}_{-2}\tau_{ab}^{\dagger}\,\mbox{}_{2}\mathcal{P}^{\textrm{up}}. (III.64)

Using this operator, we can define

s𝒞̊abcdsτ̊absMcd,\,\mbox{}_{s}\mathring{\mathcal{C}}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\mathring{\tau}_{ab}^{\dagger}\,\mbox{}_{-s}M^{cd}, (III.65)

which allows for the definition of

sΠ̊abscdΩ256s𝒞̊abImcd[sτcddωl=2|m|lp=±1ei(mϕωt)sΘlmωsΩ^lmωpClmω2+144M2ω2].\,\mbox{}_{s}\mathring{\Pi}_{ab}{}^{cd}\,\mbox{}_{s}\Omega\equiv 256\,\mbox{}_{s}\mathring{\mathcal{C}}_{ab}{}^{cd}\operatorname{Im}\left[\,\mbox{}_{-s}\tau_{cd}^{\dagger}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l=2}^{\infty}\sum_{|m|\leq l}\sum_{p=\pm 1}\frac{e^{i(m\phi-\omega t)}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}}{C^{2}_{lm\omega}+144M^{2}\omega^{2}}\right]. (III.66)

Finally, this last operator allows for the definitions

s𝒟̊abcdsΠ̊abs𝒟sMcd,sX̊abcdsΠ̊absMcd.\,\mbox{}_{s}\mathring{\mathcal{D}}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\mathring{\Pi}_{ab}\,\mbox{}_{s}\mathcal{D}\,\mbox{}_{s}M^{cd},\qquad\,\mbox{}_{s}\ring{\mathrm{X}}_{ab}{}^{cd}\equiv\,\mbox{}_{s}\mathring{\Pi}_{ab}\,\mbox{}_{s}M^{cd}. (III.67)

IV Conserved Currents

We next turn to conserved currents that can be constructed using these symmetry operators. First, we review the general theory of symplectic products, which are bilinear currents constructed from the Lagrangian formulation of a given classical field theory. We then select a handful of conserved currents that can be constructed using symplectic products and symmetry operators, whose properties we discuss throughout the rest of this paper.

IV.1 Symplectic product

Given a theory that possesses a Lagrangian formulation with Lagrangian density \mathcal{L}, one method of generating conserved quantities is to use the symplectic product defined in this section. Following Burnett and Wald Burnett57 , we start with a general Lagrangian four-form 𝑳[ϕ][ϕ]\boldsymbol{L}[\boldsymbol{\phi}]\equiv{}^{*}\mathcal{L}[\boldsymbol{\phi}] that is locally constructed from dynamical fields ϕ\boldsymbol{\phi}, where denotes the Hodge dual. It then follows that

¯δ𝑳[ϕ]𝑬[ϕ]¯δϕd𝚯[ϕ;¯δϕ],\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{L}[\boldsymbol{\phi}]\equiv\boldsymbol{E}[\boldsymbol{\phi}]\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}-\mathrm{d}\boldsymbol{\Theta}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}], (IV.1)

where the three-form 𝚯[ϕ;¯δϕ]\boldsymbol{\Theta}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}] is the symplectic potential, and 𝑬[ϕ]\boldsymbol{E}[\boldsymbol{\phi}] is a tensor-valued differential form666Some of the indices of 𝑬[ϕ]\boldsymbol{E}[\boldsymbol{\phi}] are contracted with those of ¯δϕ\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}, yielding a four-form 𝑬[ϕ]¯δϕ\boldsymbol{E}[\boldsymbol{\phi}]\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}. that encodes the equations of motion; that is, 𝑬[ϕ]=0\boldsymbol{E}[\boldsymbol{\phi}]=0 on shell. Thus, on shell, the integral of ¯δ𝑳[ϕ]\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{L}[\boldsymbol{\phi}] is just a boundary term, which we use to define 𝚯[ϕ;¯δϕ]\boldsymbol{\Theta}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{\phi}]. We can then define the symplectic product by taking a second, independent variation:

𝝎[ϕ;¯δ1ϕ,¯δ2ϕ]¯δ1𝚯[ϕ;¯δ2ϕ]¯δ2𝚯[ϕ;¯δ1ϕ].\boldsymbol{\omega}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi},\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}]\equiv\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\Theta}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}]-\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\Theta}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi}]. (IV.2)

Thus, we have that

d𝝎[ϕ;¯δ1ϕ,¯δ2ϕ]=¯δ1𝑬[ϕ]¯δ2ϕ¯δ2𝑬[ϕ]¯δ1ϕ,\begin{split}\mathrm{d}\boldsymbol{\omega}[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi},\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}]&=\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{E}[\boldsymbol{\phi}]\cdot\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}-\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{E}[\boldsymbol{\phi}]\cdot\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi},\end{split} (IV.3)

which vanishes if ¯δ1ϕ\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi} and ¯δ2ϕ\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi} are both solutions to the linearized equations of motion. We define the corresponding vector current by

Sja[ϕ;¯δ1ϕ,¯δ2ϕ](𝝎[ϕ;¯δ1ϕ,¯δ2ϕ])a.\,\mbox{}_{S}j^{a}\left[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi},\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}\right]\equiv\left({}^{*}\boldsymbol{\omega}\left[\boldsymbol{\phi};\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{\phi},\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{\phi}\right]\right)^{a}. (IV.4)

We now turn to two different Lagrangians whose symplectic products are particularly interesting. First, we consider the symplectic product for the Einstein-Hilbert Lagrangian four-form by 𝑳EH[𝒈]=Rϵ/(16π)\boldsymbol{L}_{\textrm{EH}}[\boldsymbol{g}]=R\boldsymbol{\epsilon}/(16\pi). For this Lagrangian, we find (following Burnett57 , for example; note the difference in sign due to using a different sign convention for RabcdR^{a}{}_{bcd})

(ΘEH)abc[𝒈;¯δ𝒈]=18πϵabcdgfgδd¯[eδCe,f]g(\Theta_{\textrm{EH}})_{abc}[\boldsymbol{g};\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]=-\frac{1}{8\pi}\epsilon_{abcd}g^{fg}\delta^{d}{}_{[e}\mathchar 22\relax\mkern-9.0mu\delta C^{e}{}_{f]g}, (IV.5)

where ¯δCabc\mathchar 22\relax\mkern-9.0mu\delta C^{a}{}_{bc} is the variation of the connection coefficients for a(λ)\nabla_{a}(\lambda):

¯δCa=bc12gad(b¯δgcd+c¯δgbdd¯δgbc).\mathchar 22\relax\mkern-9.0mu\delta C^{a}{}_{bc}=\frac{1}{2}g^{ad}(\nabla_{b}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}+\nabla_{c}\mathchar 22\relax\mkern-9.0mu\delta g_{bd}-\nabla_{d}\mathchar 22\relax\mkern-9.0mu\delta g_{bc}). (IV.6)

Thus, the symplectic (vector) current is given by

SjEHa[¯δ1𝒈,¯δ2𝒈]=18πδa¯[bδ1Cb[(¯δ2g)cd12(¯δ2g)egcde]c]d12=116π¯δ1Ca(¯δ2g)bcbc+va[¯δ1𝒈](¯δ2g)b+bwab[¯δ1𝒈]b(¯δ2g)cc12,\begin{split}\,\mbox{}_{S}j_{\textrm{EH}}^{a}[\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{g},\mathchar 22\relax\mkern-9.0mu\delta_{2}\boldsymbol{g}]&=\frac{1}{8\pi}\delta^{a}{}_{[b}\mathchar 22\relax\mkern-9.0mu\delta_{1}C^{b}{}_{c]d}\left[(\mathchar 22\relax\mkern-9.0mu\delta_{2}g)^{cd}-\frac{1}{2}(\mathchar 22\relax\mkern-9.0mu\delta_{2}g)^{e}{}_{e}g^{cd}\right]-1\longleftrightarrow 2\\ &=\frac{1}{16\pi}\mathchar 22\relax\mkern-9.0mu\delta_{1}C^{a}{}_{bc}(\mathchar 22\relax\mkern-9.0mu\delta_{2}g)^{bc}+v^{a}[\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{g}](\mathchar 22\relax\mkern-9.0mu\delta_{2}g)^{b}{}_{b}+w^{ab}[\mathchar 22\relax\mkern-9.0mu\delta_{1}\boldsymbol{g}]\nabla_{b}(\mathchar 22\relax\mkern-9.0mu\delta_{2}g)^{c}{}_{c}-1\longleftrightarrow 2,\end{split} (IV.7)

for some tensor fields va[¯δ𝒈]v^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] and wab[¯δ𝒈]w^{ab}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] which are unimportant for the discussion of this paper, as we only consider metric perturbations which are trace-free. Here, for simplicity, the dependence on the background metric gabg_{ab} is implicit. This symplectic product provides a bilinear current on the space of metric perturbations which is conserved for vacuum solutions to the linearized Einstein equations.

Somewhat unexpectedly, one can also define a symplectic product for the master variables themselves. In order to do so, we need a Lagrangian formulation for the Teukolsky equation. Such a Lagrangian formulation was recently used to generate Noether currents for the master variables in Toth:2018qrx . As noted by Bini, Cherubini, Jantzen, and Ruffini Bini:2002jx , the Teukolsky operator can be rewritten as a modified wave operator:

s=(a+sΓa)(a+sΓa)4s2Ψ2,\,\mbox{}_{s}\Box=(\nabla^{a}+s\Gamma^{a})(\nabla_{a}+s\Gamma_{a})-4s^{2}\Psi_{2}, (IV.8)

where

Γa=2[γla+(ϵ+ρ)naαma(β+τ)m¯a].\Gamma^{a}=-2\left[\gamma l^{a}+(\epsilon+\rho)n^{a}-\alpha m^{a}-(\beta+\tau)\bar{m}^{a}\right]. (IV.9)

Since the equations of motion are now in the form of a modified wave equation, one can write down a Lagrangian four-form of the form (for s0s\geq 0)

𝑳BCJR[sΩ,sΩ]=(d+s𝚪)sΩ(ds𝚪)sΩ96s2Ψ2sΩsΩϵ.\boldsymbol{L}_{\textrm{BCJR}}[\,\mbox{}_{s}\Omega,\,\mbox{}_{-s}\Omega]={}^{*}(\mathrm{d}+s\boldsymbol{\Gamma})\,\mbox{}_{s}\Omega\wedge(\mathrm{d}-s\boldsymbol{\Gamma})\,\mbox{}_{-s}\Omega-96s^{2}\Psi_{2}\,\mbox{}_{s}\Omega\,\mbox{}_{-s}\Omega\boldsymbol{\epsilon}. (IV.10)

Note that, in this expression, the metric and Γa\Gamma^{a} are non-dynamical fields, and therefore do not get varied. Varying this Lagrangian four-form results in the Teukolsky equations for spins ss and s-s. One can easily show that

𝚯BCJR[sΩ,sΩ;¯δsΩ,¯δsΩ]=¯δsΩ(ds𝚪)sΩ+¯δsΩ(d+s𝚪)sΩ,\boldsymbol{\Theta}_{\textrm{BCJR}}[\,\mbox{}_{s}\Omega,\,\mbox{}_{-s}\Omega;\mathchar 22\relax\mkern-9.0mu\delta\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta\,\mbox{}_{-s}\Omega]=\mathchar 22\relax\mkern-9.0mu\delta\,\mbox{}_{s}\Omega{}^{*}(\mathrm{d}-s\boldsymbol{\Gamma})\,\mbox{}_{-s}\Omega+\mathchar 22\relax\mkern-9.0mu\delta\,\mbox{}_{-s}\Omega{}^{*}(\mathrm{d}+s\boldsymbol{\Gamma})\,\mbox{}_{s}\Omega, (IV.11)

and so

SjBCJRa[¯δ1sΩ,¯δ1sΩ;¯δ2sΩ,¯δ2sΩ]=¯δ1sΩ(asΓa)¯δ2sΩ+¯δ1sΩ(a+sΓa)¯δ2sΩ12.\,\mbox{}_{S}j_{\textrm{BCJR}}^{a}\left[\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega;\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega\right]=\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega(\nabla^{a}-s\Gamma^{a})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega+\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega(\nabla^{a}+s\Gamma^{a})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega-1\longleftrightarrow 2. (IV.12)

Here, we are dropping any dependence on the background values of sΩ\,\mbox{}_{s}\Omega and sΩ\,\mbox{}_{-s}\Omega, since they do not appear on the right-hand side.

Although this current is bilinear on the space of variations of the master variables, it can be regarded as a bilinear current on the space of master variables themselves, since their equations of motion are linear. Note further that this symplectic product is not the physical symplectic product for linearized gravity.

IV.2 Currents of interest

Using the results of sections III and IV.1, we now define the following currents, for which we will be computing the geometric optics limit and the fluxes at the horizon and null infinity. The first of these currents is a rescaled version of the symplectic product of s𝓒¯δ𝒈\,\mbox{}_{s}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g} and its complex conjugate:

s𝒞ja[¯δ𝒈]8iSjEHa[s𝓒¯δ𝒈,s𝓒¯δ𝒈¯],\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\equiv 8i\,\mbox{}_{S}j_{\textrm{EH}}^{a}\Big{[}\,\mbox{}_{s}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g},\overline{\,\mbox{}_{s}\boldsymbol{\mathcal{C}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}}\Big{]}, (IV.13)

in terms of the symplectic product (IV.7) and the symmetry operator (III.14). The normalization here is chosen to give a nicer limit in geometric optics; similarly, this current is simpler in the limit of geometric optics than other currents that can be constructed from s𝓒\,\mbox{}_{s}\boldsymbol{\mathcal{C}}. The currents defined in equation (IV.13) are entirely local, but they generally diverge at null infinity, as we will show in section VI. The divergences can be removed by using s𝓒̊\,\mbox{}_{s}\mathring{\boldsymbol{\mathcal{C}}} instead of s𝓒\,\mbox{}_{s}\boldsymbol{\mathcal{C}}. We therefore define

2𝒞̊ja[¯δ𝒈]8is=±2SjEHa[s𝓒̊¯δ𝒈,s𝓒̊¯δ𝒈¯],\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\equiv 8i\sum_{s=\pm 2}\,\mbox{}_{S}j_{\textrm{EH}}^{a}\bigg{[}\,\mbox{}_{s}\mathring{\boldsymbol{\mathcal{C}}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g},\overline{\,\mbox{}_{s}\mathring{\boldsymbol{\mathcal{C}}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}}\bigg{]}, (IV.14)

where 2𝓒̊\,\mbox{}_{2}\mathring{\boldsymbol{\mathcal{C}}} is defined in equation (III.65). The motivation for including the sum over ss in this definition is due to the fact that 2𝓒̊\,\mbox{}_{2}\mathring{\boldsymbol{\mathcal{C}}} and 2𝓒̊\,\mbox{}_{-2}\mathring{\boldsymbol{\mathcal{C}}} are only nonzero for ingoing and outgoing solutions at null infinity, respectively. The sum therefore ensures that the total current is nonzero for both types of solutions.

We next define similar currents involving s𝐗\,\mbox{}_{s}\boldsymbol{\mathrm{X}} and s𝓓\,\mbox{}_{s}\boldsymbol{\mathcal{D}}:

s𝒟ja[¯δ𝒈]\displaystyle\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] i16SjEHa[s𝐗¯δ𝒈,s𝓓¯δ𝒈¯],\displaystyle\equiv\frac{i}{16}\,\mbox{}_{S}j_{\textrm{EH}}^{a}\Big{[}\,\mbox{}_{s}\boldsymbol{\mathrm{X}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g},\overline{\,\mbox{}_{s}\boldsymbol{\mathcal{D}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}}\Big{]}, (IV.15)
2𝒟̊ja[¯δ𝒈]\displaystyle\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] i16s=±2SjEHa[s𝐗̊¯δ𝒈,s𝓓̊¯δ𝒈¯].\displaystyle\equiv\frac{i}{16}\sum_{s=\pm 2}\,\mbox{}_{S}j_{\textrm{EH}}^{a}\bigg{[}\,\mbox{}_{s}\mathring{\boldsymbol{\mathrm{X}}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g},\overline{\,\mbox{}_{s}\mathring{\boldsymbol{\mathcal{D}}}\cdot\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}}\bigg{]}. (IV.16)

Unlike the currents (IV.13) and (IV.14), both of these currents are nonlocal. We will see below that the geometric optics limits of these currents are proportional to the Carter constants KK of the gravitons, as opposed to K4K^{4} for the currents (IV.13) and (IV.14).

Finally, we define the currents

sΩja[¯δ𝒈]14πiSjBCJRa[sΩ,sΩ;s,s𝒞~sΩ¯,s,s𝒞~sΩ¯],\,\mbox{}_{\,\mbox{}_{s}\Omega}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\equiv\frac{1}{4\pi i}\,\mbox{}_{S}j_{\textrm{BCJR}}^{a}\left[\,\mbox{}_{s}\Omega,\,\mbox{}_{-s}\Omega;\,\mbox{}_{s,s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-s}\Omega},\,\mbox{}_{-s,s}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-s}\Omega}\right], (IV.17)

in terms of the symplectic product for the master variables in equation (IV.12) and the symmetry operator (III.13). Note that ±2Ω\,\mbox{}_{\pm 2}\Omega are functions of ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}, by equation (II.25). These currents are very similar to the currents ±2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{\pm 2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], having the same geometric optics limit, and also being local; however, these currents have the advantage of also having finite fluxes at null infinity.

We now derive various properties of these currents in sections V and VI. For convenience, these properties are summarized at the end of this paper in table VII.1.

V Geometric Optics

Using the symmetry operators in section III and the symplectic products in section IV.1, one could define a multitude of currents that are conserved for vacuum solutions to the linearized Einstein equations. In this section, we provide the motivation for the particular currents highlighted in section IV.2. This is accomplished by taking the geometric optics limit, in which solutions to the linearized Einstein equations represent null fluids of gravitons. We express the associated currents in terms of the gravitons’ constants of motion.

V.1 Geometric optics on general backgrounds

The starting point for geometric optics is a harmonic ansatz for the metric perturbation:

¯δgab=Re{[aϖab+O(ϵ)]eiϑ/ϵ},\mathchar 22\relax\mkern-9.0mu\delta g_{ab}=\operatorname{Re}\left\{\left[a\varpi_{ab}+O(\epsilon)\right]e^{-i\vartheta/\epsilon}\right\}, (V.1)

where aa and ϑ\vartheta are real, ϖab\varpi_{ab}, the polarization tensor, is a complex, symmetric tensor that is normalized to satisfy ϖabϖ¯ab=1\varpi_{ab}\bar{\varpi}^{ab}=1, and ϵ\epsilon is a dimensionless parameter whose limit is taken to zero. Inserting this ansatz into the linearized Einstein equations and the Lorenz gauge condition and equating coefficients of powers of ϵ\epsilon yields the following results (see, for example, Misner, Thorne, and Wheeler mtw ):

  1. i.

    The wavevector kak^{a} defined by

    kaaϑk_{a}\equiv\nabla_{a}\vartheta (V.2)

    is tangent to a congruence of null geodesics:

    kbbka=0,kaka=0.k^{b}\nabla_{b}k^{a}=0,\qquad k_{a}k^{a}=0. (V.3)
  2. ii.

    The polarization tensor ϖab\varpi_{ab} is orthogonal to kak^{a} and parallel-transported along these geodesics:

    kaϖab=0,kccϖab=0.k^{a}\varpi_{ab}=0,\qquad k^{c}\nabla_{c}\varpi_{ab}=0. (V.4)
  3. iii.

    The amplitude aa evolves along these geodesics according to

    a(a2ka)=0.\nabla_{a}(a^{2}k^{a})=0. (V.5)

We now consider this formalism in terms of spinors. First, as kak^{a} is null, we can write

kAA=κAκ¯A,k^{AA^{\prime}}=\kappa^{A}\bar{\kappa}^{A^{\prime}}, (V.6)

for some spinor κA\kappa^{A}. We choose a second spinor λA\lambda^{A} such that (κ,λ)(\kappa,\lambda) form a spin basis. The conditions (V.4) and the normalization of ϖab\varpi_{ab} imply that

ϖab=k(aαb)+eRqaqb+eLq¯aq¯b,\varpi_{ab}=k_{(a}\alpha_{b)}+e_{R}q_{a}q_{b}+e_{L}\bar{q}_{a}\bar{q}_{b}, (V.7)

where qaκAλ¯Aq_{a}\equiv\kappa_{A}\bar{\lambda}_{A^{\prime}} and αa\alpha^{a} is an arbitrary vector satisfying αaka=0\alpha^{a}k_{a}=0. Because of the gauge freedom ¯δgab¯δgab+2(aξb)\mathchar 22\relax\mkern-9.0mu\delta g_{ab}\to\mathchar 22\relax\mkern-9.0mu\delta g_{ab}+2\nabla_{(a}\xi_{b)}, the first term can be removed by a gauge transformation (which preserves the Lorenz gauge condition), and so we can safely set αa=0\alpha^{a}=0.

The last two terms in equation (V.7) are physically measurable. The complex coefficients eRe_{R} and eLe_{L} correspond to right and left circular polarization. By the normalization of ϖab\varpi_{ab}, we have that |eR|2+|eL|2=1|e_{R}|^{2}+|e_{L}|^{2}=1. Moreover, these factors of eRe_{R} and eLe_{L} appear in the expansion for (¯δΨ)ABCD(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}:

(¯δΨ)ABCD=1ϵ2aκAκBκCκD(eReiϑ/ϵ+e¯Leiϑ/ϵ)+O(1/ϵ).(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD}=-\frac{1}{\epsilon^{2}}a\kappa_{A}\kappa_{B}\kappa_{C}\kappa_{D}\left(e_{R}e^{-i\vartheta/\epsilon}+\bar{e}_{L}e^{i\vartheta/\epsilon}\right)+O(1/\epsilon). (V.8)

V.2 Conserved currents

When considering nonlinear quantities in geometric optics, such as conserved currents, we will discard rapidly oscillating terms. This effectively takes a spacetime average of these quantities over a scale that is large compared to ϵ\epsilon, but small compared to the radius of curvature of the background spacetime (see, for example, Isaacson:1968zza , or Burnett:1989gp for rigorous treatments of this averaging procedure via weak limits). Such an average we will denote by \langle\cdot\rangle.

We start with a few simple results. First, if a conserved current reduces in the limit of geometric optics to

ja=1ϵn[a2Qka+O(ϵ)],\langle j^{a}\rangle=\frac{1}{\epsilon^{n}}[a^{2}Qk^{a}+O(\epsilon)], (V.9)

for some quantity QQ and integer nn, then QQ is a conserved quantity along the integral curves of kak^{a}. To see this, note that the leading order term in the conservation equation aja=0\nabla_{a}\langle j^{a}\rangle=0 yields

0=a2kaaQ+Qa(a2ka)=a2kaaQ,0=a^{2}k^{a}\nabla_{a}Q+Q\nabla_{a}(a^{2}k^{a})=a^{2}k^{a}\nabla_{a}Q, (V.10)

from equation (V.5). All currents that we consider in this paper will be of the form (V.9) in the geometric optics limit..

The second result is that, under the assumption (V.9), the conserved charge associated with the current jaj^{a} reduces to a sum over all gravitons of the conserved quantity QQ for each graviton. This result means that equation (V.9) is a physically appealing assumption. The proof proceeds as follows mtw : first, we note that the effective stress-energy tensor appropriate to gravitational radiation in the geometric optics regime is given by Isaacson:1968zza

Tabeff=132π(a¯δgcd)[b(¯δg)cd]+O(1/ϵ)=a232πϵ2[kakb+O(ϵ)].\langle T_{ab}^{\textrm{eff}}\rangle=\frac{1}{32\pi}\left\langle(\nabla_{a}\mathchar 22\relax\mkern-9.0mu\delta g_{cd})[\nabla_{b}(\mathchar 22\relax\mkern-9.0mu\delta g)^{cd}]\right\rangle+O(1/\epsilon)=\frac{a^{2}}{32\pi\epsilon^{2}}\left[k_{a}k_{b}+O(\epsilon)\right]. (V.11)

On the other hand, the stress-energy tensor for a collection of gravitons with number-flux 𝒩a\mathcal{N}_{a} and momentum pa=ka/ϵp_{a}=\hbar k_{a}/\epsilon is given by mtw

Tabeff=p(a𝒩b),T_{ab}^{\textrm{eff}}=p_{(a}\mathcal{N}_{b)}, (V.12)

and so we find that

a2ka=32πϵ𝒩a[1+O(ϵ)].a^{2}k_{a}=32\pi\hbar\epsilon\mathcal{N}_{a}[1+O(\epsilon)]. (V.13)

Upon integrating a current jaj^{a} given by equation (V.9) over a hypersurface Σ\Sigma, one finds the charge

Σjad3Σa=32πϵn1αQα[1+O(ϵ)],\int_{\Sigma}\langle j^{a}\rangle\mathrm{d}^{3}\Sigma_{a}=\frac{32\pi\hbar}{\epsilon^{n-1}}\sum_{\alpha}Q_{\alpha}[1+O(\epsilon)], (V.14)

where α\alpha labels the gravitons passing through the hypersurface. That is, the charge is proportional to the sum of the conserved quantities over all of the gravitons passing through the surface.

V.3 Computations

We now turn to computations of geometric optics limits for the conserved currents discussed in this paper. For these calculations, we first define the quantities κ0\kappa_{0}, κ1\kappa_{1}, rar_{a}, and sas_{a}:

κ0oAκA,κ1ιAκA,raσaoAAAκ¯A,saσaιAAAκ¯A.\kappa_{0}\equiv o_{A}\kappa^{A},\qquad\kappa_{1}\equiv\iota_{A}\kappa^{A},\qquad r^{a}\equiv\sigma^{a}{}_{AA^{\prime}}o^{A}\bar{\kappa}^{A^{\prime}},\qquad s^{a}\equiv\sigma^{a}{}_{AA^{\prime}}\iota^{A}\bar{\kappa}^{A^{\prime}}. (V.15)

These quantities are constructed from the spinor κA\kappa_{A} (which is related to the wavevector kak^{a}) and the principal spin basis (o,ι)(o,\iota). They satisfy

|ζκ0κ1|2=ϵ222K,rara=sasa=raka=saka=0,rar¯a=|κ0|2,sas¯a=|κ1|2,ras¯a=κ0κ¯1,\begin{gathered}|\zeta\kappa_{0}\kappa_{1}|^{2}=\frac{\epsilon^{2}}{2\hbar^{2}}K,\qquad r_{a}r^{a}=s_{a}s^{a}=r_{a}k^{a}=s_{a}k^{a}=0,\\ r_{a}\bar{r}^{a}=|\kappa_{0}|^{2},\qquad s_{a}\bar{s}^{a}=|\kappa_{1}|^{2},\qquad r_{a}\bar{s}^{a}=-\kappa_{0}\bar{\kappa}_{1},\end{gathered} (V.16)

where K=2Kabkakb/ϵ2K=\hbar^{2}K_{ab}k^{a}k^{b}/\epsilon^{2} is the Carter constant for the gravitons. The factors of \hbar arise in this classical computation as part of converting from the wavevectors of the gravitons to their momenta, and hence their conserved quantities.

We now begin calculating the conserved currents defined in section IV.2. Since, to leading order in geometric optics, the differential operators present in this paper become c-numbers, a straightforward calculation starting from equations (II.26) and (III.9) shows that

sτab\displaystyle\,\mbox{}_{s}\tau_{ab}^{\dagger} =1ϵ2{κ02rarb+O(ϵ)s=2ζ4κ12sasb+O(ϵ)s=2,\displaystyle=\frac{1}{\epsilon^{2}}\begin{cases}\kappa_{0}^{2}r_{a}r_{b}+O(\epsilon)&s=2\\ \zeta^{4}\kappa_{1}^{2}s_{a}s_{b}+O(\epsilon)&s=-2\end{cases}, (V.17a)
sMab\displaystyle\,\mbox{}_{s}M^{ab} =12ϵ2{κ02rarb+O(ϵ)s=2ζ4κ12sasb+O(ϵ)s=2,\displaystyle=\frac{1}{2\epsilon^{2}}\begin{cases}\kappa_{0}^{2}r^{a}r^{b}+O(\epsilon)&s=2\\ \zeta^{4}\kappa_{1}^{2}s^{a}s^{b}+O(\epsilon)&s=-2\end{cases}, (V.17b)

and [starting from equation (V.8)] that

sΩ=aϵ2(eReiϑ/ϵ+e¯Leiϑ/ϵ){κ04+O(ϵ)s=2(ζκ1)4+O(ϵ)s=2.\,\mbox{}_{s}\Omega=-\frac{a}{\epsilon^{2}}(e_{R}e^{-i\vartheta/\epsilon}+\bar{e}_{L}e^{i\vartheta/\epsilon})\begin{cases}\kappa_{0}^{4}+O(\epsilon)&s=2\\ (\zeta\kappa_{1})^{4}+O(\epsilon)&s=-2\end{cases}. (V.18)

As such, we find that

s𝒞ab¯cdδgcd=aϵ4ζ4(κ1κ0)2(eReiϑ/ϵ+e¯Leiϑ/ϵ){rarbκ12+O(ϵ)s=2sasbκ02+O(ϵ)s=2.\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}=-\frac{a}{\epsilon^{4}}\zeta^{4}(\kappa_{1}\kappa_{0})^{2}(e_{R}e^{-i\vartheta/\epsilon}+\bar{e}_{L}e^{i\vartheta/\epsilon})\begin{cases}r_{a}r_{b}\kappa_{1}^{2}+O(\epsilon)&s=2\\ s_{a}s_{b}\kappa_{0}^{2}+O(\epsilon)&s=-2\end{cases}. (V.19)

This implies that

(s𝒞bc¯deδgde)as𝒞bc¯deδgde¯=2πi7K4(|eR|2|eL|2)𝒩a[1+O(ϵ)].\left\langle(\,\mbox{}_{s}\mathcal{C}_{bc}{}^{de}\mathchar 22\relax\mkern-9.0mu\delta g_{de})\nabla^{a}\overline{\,\mbox{}_{s}\mathcal{C}^{bc}{}_{de}\mathchar 22\relax\mkern-9.0mu\delta g^{de}}\right\rangle=-\frac{2\pi i}{\hbar^{7}}K^{4}(|e_{R}|^{2}-|e_{L}|^{2})\mathcal{N}^{a}[1+O(\epsilon)]. (V.20)

Thus, we find that the current s𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] is given in this limit by

s𝒞ja[¯δ𝒈]=12πIm[(s𝒞bc¯deδgde)as𝒞bc¯deδgde¯][1+O(ϵ)]=17K4(|eR|2|eL|2)𝒩a[1+O(ϵ)].\begin{split}\left\langle\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\right\rangle&=\frac{1}{2\pi}\left\langle\operatorname{Im}\left[(\,\mbox{}_{s}\mathcal{C}_{bc}{}^{de}\mathchar 22\relax\mkern-9.0mu\delta g_{de})\nabla^{a}\overline{\,\mbox{}_{s}\mathcal{C}^{bc}{}_{de}\mathchar 22\relax\mkern-9.0mu\delta g^{de}}\right]\right\rangle[1+O(\epsilon)]\\ &=\frac{1}{\hbar^{7}}K^{4}\left(|e_{R}|^{2}-|e_{L}|^{2}\right)\mathcal{N}^{a}[1+O(\epsilon)].\end{split} (V.21)

As such, these currents are a generalization of the Carter constant for point particles to linearized gravity in the Kerr spacetime, at least in the limit of geometric optics.

We now turn to the current s𝒟ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]. First, note that, from equations (III.3) and (II.43),

s𝒟sΩ=1ϵ2|ζκ0κ1|2sΩ[1+O(ϵ)],\,\mbox{}_{s}\mathcal{D}\,\mbox{}_{s}\Omega=\frac{1}{\epsilon^{2}}|\zeta\kappa_{0}\kappa_{1}|^{2}\,\mbox{}_{s}\Omega[1+O(\epsilon)], (V.22)

and so

s𝒟ab¯cdδgcd=K22sXab¯cdδgcd[1+O(ϵ)].\,\mbox{}_{s}\mathcal{D}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}=\frac{K}{2\hbar^{2}}\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}[1+O(\epsilon)]. (V.23)

Now, note that sXab¯cdδgcd\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}, by equations (III.48) and (III.45), can be written (in the limit of geometric optics, where differential operators commute to leading order) as a product of the form

sXab¯cdδgcd=4(s,s𝒞~s,s𝒞~¯)1s𝒞abs𝒞cdef¯cd¯δgef[1+O(ϵ)],\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}=4\left(\,\mbox{}_{s,s}\tilde{\mathcal{C}}\overline{\,\mbox{}_{-s,-s}\tilde{\mathcal{C}}}\right)^{-1}\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\overline{\,\mbox{}_{-s}\mathcal{C}_{cd}{}^{ef}}\mathchar 22\relax\mkern-9.0mu\delta g_{ef}[1+O(\epsilon)], (V.24)

where the operator (s,s𝒞~s,s𝒞~¯)1\left(\,\mbox{}_{s,s}\tilde{\mathcal{C}}\overline{\,\mbox{}_{-s,-s}\tilde{\mathcal{C}}}\right)^{-1} is a nonlocal operator having the effect of multiplying each coefficient of the expansion (II.52) by 64/(Clmω2+144M2ω2)64/(C_{lm\omega}^{2}+144M^{2}\omega^{2}). This operator is a nonlocal inverse to s,s𝒞~s,s𝒞~¯\,\mbox{}_{s,s}\tilde{\mathcal{C}}\overline{\,\mbox{}_{-s,-s}\tilde{\mathcal{C}}}, by equation (III.34). For its geometric optics limit, note that

2,2𝒞~2Ω¯\displaystyle\,\mbox{}_{2,-2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{2}\Omega} =12ϵ4(ζ¯κ0κ¯1)42Ω¯[1+O(ϵ)],\displaystyle=\frac{1}{2\epsilon^{4}}(\bar{\zeta}\kappa_{0}\bar{\kappa}_{1})^{4}\overline{\,\mbox{}_{2}\Omega}[1+O(\epsilon)],\quad 2,2𝒞~2Ω¯\displaystyle\,\mbox{}_{-2,2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-2}\Omega} =12ϵ4(ζκ¯0κ1)42Ω¯[1+O(ϵ)],\displaystyle=\frac{1}{2\epsilon^{4}}(\zeta\bar{\kappa}_{0}\kappa_{1})^{4}\overline{\,\mbox{}_{-2}\Omega}[1+O(\epsilon)], (V.25a)
2,2𝒞~2Ω¯\displaystyle\,\mbox{}_{2,2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{-2}\Omega} =12ϵ4|κ0|82Ω¯[1+O(ϵ)],\displaystyle=\frac{1}{2\epsilon^{4}}|\kappa_{0}|^{8}\overline{\,\mbox{}_{-2}\Omega}[1+O(\epsilon)],\quad 2,2𝒞~2Ω¯\displaystyle\,\mbox{}_{-2,-2}\widetilde{\mathcal{C}}\;\overline{\,\mbox{}_{2}\Omega} =12ϵ4|ζκ1|82Ω¯[1+O(ϵ)],\displaystyle=\frac{1}{2\epsilon^{4}}|\zeta\kappa_{1}|^{8}\overline{\,\mbox{}_{2}\Omega}[1+O(\epsilon)], (V.25b)

and so

(s,s𝒞~s,s𝒞~¯)1sΩ=4ϵ8|ζκ0κ1|8sΩ[1+O(ϵ)].\left(\,\mbox{}_{s,s}\tilde{\mathcal{C}}\overline{\,\mbox{}_{-s,-s}\tilde{\mathcal{C}}}\right)^{-1}\,\mbox{}_{s}\Omega=\frac{4\epsilon^{8}}{|\zeta\kappa_{0}\kappa_{1}|^{8}}\,\mbox{}_{s}\Omega[1+O(\epsilon)]. (V.26)

Moreover, we have that [from equations (V.17a) and (V.17b)]

s𝒞abs𝒞cdef¯cd¯δgef=a4ϵ8|ζκ0κ1|8(e¯Reiϑ/ϵ+eLeiϑ/ϵ){rarb/κ02+O(ϵ)s=2sasb/κ12+O(ϵ)s=2,\,\mbox{}_{s}\mathcal{C}_{ab}{}^{cd}\overline{\,\mbox{}_{-s}\mathcal{C}_{cd}{}^{ef}}\mathchar 22\relax\mkern-9.0mu\delta g_{ef}=-\frac{a}{4\epsilon^{8}}|\zeta\kappa_{0}\kappa_{1}|^{8}(\bar{e}_{R}e^{i\vartheta/\epsilon}+e_{L}e^{-i\vartheta/\epsilon})\begin{cases}r_{a}r_{b}/\kappa_{0}^{2}+O(\epsilon)&s=2\\ s_{a}s_{b}/\kappa_{1}^{2}+O(\epsilon)&s=-2\end{cases}, (V.27)

from which it follows that

sXab¯cdδgcd=4a(e¯Reiϑ/ϵ+eLeiϑ/ϵ){rarb/κ02+O(ϵ)s=2sasb/κ12+O(ϵ)s=2.\,\mbox{}_{s}\mathrm{X}_{ab}{}^{cd}\mathchar 22\relax\mkern-9.0mu\delta g_{cd}=-4a(\bar{e}_{R}e^{i\vartheta/\epsilon}+e_{L}e^{-i\vartheta/\epsilon})\begin{cases}r_{a}r_{b}/\kappa_{0}^{2}+O(\epsilon)&s=2\\ s_{a}s_{b}/\kappa_{1}^{2}+O(\epsilon)&s=-2\end{cases}. (V.28)

The current in question is then given by

s𝒟ja[¯δ𝒈]=1K(|eR|2|eL|2)𝒩a[1+O(ϵ)].\langle\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\rangle=\frac{1}{\hbar}K\left(|e_{R}|^{2}-|e_{L}|^{2}\right)\mathcal{N}^{a}[1+O(\epsilon)]. (V.29)

This therefore provides another, entirely non-local notion of the Carter constant for linearized gravity in the Kerr spacetime.

There are, of course, other currents whose charges reduce to the Carter constant in the geometric optics limit. Another class of currents come from the symplectic product for the master variables, instead of the metric perturbation. One current of interest from this class is given by equation (IV.17), which has a limit in geometric optics given by [from equations (IV.12), (V.25), and (V.18)]

sΩja[¯δ𝒈]=17K4(|eR|2|eL|2)𝒩a[1+O(ϵ)].\langle\,\mbox{}_{\,\mbox{}_{s}\Omega}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\rangle=\frac{1}{\hbar^{7}}K^{4}(|e_{R}|^{2}-|e_{L}|^{2})\mathcal{N}^{a}[1+O(\epsilon)]. (V.30)

The results of this section [equations (V.21), (V.29), and (V.30)] give the geometric optics limits for the currents that do not involve projection operators. We now consider the two remaining currents, 2𝒞̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] and 2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]. For simplicity, we first consider 2𝒞̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] (the exact same argument holds for 2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]). This current is the sum of two terms, the first of which is equal to 2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{-2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], except that it contains a projection which eliminates the ingoing modes at null infinity. Similarly, the second term is equal to 2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}], except it eliminates all outgoing modes. Consider the case where ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} represents a null fluid of gravitons where the gravitons are purely outgoing at future null infinity; that is, kak^{a} is tangent to an outgoing null congruence. The geometric optics limit in this case would be the same as that of 2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{-2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]. Similarly, if kak^{a} is an ingoing null congruence, the geometric optics limit would be the same as that of 2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]. Since these geometric optics limits are equal by equation (V.21), we recover the following result:

2𝒞̊ja[¯δ𝒈]=17K4(|eR|2|eL|2)𝒩a[1+O(ϵ)],\left\langle\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]\right\rangle=\frac{1}{\hbar^{7}}K^{4}\left(|e_{R}|^{2}-|e_{L}|^{2}\right)\mathcal{N}^{a}[1+O(\epsilon)], (V.31)

when ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} represents an ingoing or outgoing null fluid of gravitons. A similar argument gives a similar result for 2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]. However, the geometric optics limits for 2𝒞̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] and 2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] are only given by simple expressions when kak^{a} is either tangent to an ingoing or outgoing null congruence, but not for general geometric optics solutions ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}.

We conclude this discussion with a brief review of a classification scheme for conserved currents in geometric optics that we used in Grant:2019qyo . In the limit of geometric optics, one often finds that conserved currents depend on the quantities eRe_{R} and eLe_{L} in one of the following four ways; depending on this dependence, we call such currents energy, zilch, chiral, and antichiral currents:

ja=Q𝒩a{1+O(ϵ)energy currents(|eR|2|eL|2)+O(ϵ)zilch currentseRe¯L+O(ϵ)chiral currentse¯ReL+O(ϵ)antichiral currents.\langle j^{a}\rangle=Q\mathcal{N}^{a}\begin{cases}1+O(\epsilon)&\textrm{energy currents}\\ (|e_{R}|^{2}-|e_{L}|^{2})+O(\epsilon)&\textrm{zilch currents}\\ e_{R}\bar{e}_{L}+O(\epsilon)&\textrm{chiral currents}\\ \bar{e}_{R}e_{L}+O(\epsilon)&\textrm{antichiral currents}\end{cases}. (V.32)

This classification scheme is a specialization of that of Anco:2002xn . For conserved currents that are \mathbb{R}-bilinear functionals of (¯δΨ)ABCD(\mathchar 22\relax\mkern-9.0mu\delta\Psi)_{ABCD} (a property which is satisfied by all currents considered in this paper), there is a relationship between QQ and the type of current in this classification: for energy and zilch currents,

Q=Qa1anpa1pan,Q=Q_{a_{1}\cdots a_{n}}p^{a_{1}}\cdots p^{a_{n}}, (V.33)

where Qa1anQ_{a_{1}\cdots a_{n}} is a rank nn Killing tensor and nn is odd for energy currents and even for zilch currents. Moreover, for chiral and antichiral currents, QQ cannot be written in the above form. Since we wanted to construct conserved currents which were related to the Carter constant, which is a conserved quantity arising from a rank two Killing tensor, it is unsurprising that all currents which we considered were zilch currents.

Another interesting result of this classification scheme is an odd result for the symplectic product for the master variables. The symplectic product for linearized gravity, when applied to ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab} and £ξ¯δgab\pounds_{\xi}\mathchar 22\relax\mkern-9.0mu\delta g_{ab}, gives an energy current in geometric optics, and the associated conserved quantity is proportional to ξapa\xi^{a}p_{a} (which would be proportional to the energy in the case ξa=ta\xi^{a}=t^{a}). This current is known as the canonical energy current. However, using the symplectic product for the master variables, one finds that a similar current, obtained by using ±sΩ\,\mbox{}_{\pm s}\Omega and £ξ±sΩ\pounds_{\xi}\,\mbox{}_{\pm s}\Omega, gives a chiral current. In this sense, the symplectic product for the master variables cannot be used to construct a current whose geometric optics limit behaves like energy.

VI Fluxes at null infinity and the horizon

Another desirable property for a conserved current is that its flux through the horizon (HH) and through null infinity (\mathscr{I}) be finite. In this section, we provide formulae for these fluxes, using results for the asymptotic falloffs in appendix B. More details on the definitions of these fluxes are given in appendix A.

We begin with some notation: first, the Boyer-Lindquist coordinate system is not well suited to working at the horizon or null infinity. Instead, one uses the ingoing and outgoing coordinate systems (v,r,θ,ψ)(v,r,\theta,\psi) and (u,r,θ,χ)(u,r,\theta,\chi), defined in terms of Boyer-Lindquist coordinates and the tortoise coordinate (III.55) by

v\displaystyle v =t+r,\displaystyle=t+r^{*},\qquad ψ\displaystyle\psi =ϕ+adrΔ,\displaystyle=\phi+\int\frac{a\mathrm{d}r}{\Delta}, (VI.1a)
u\displaystyle u =tr,\displaystyle=t-r^{*},\qquad χ\displaystyle\chi =ϕadrΔ.\displaystyle=\phi-\int\frac{a\mathrm{d}r}{\Delta}. (VI.1b)

The ingoing coordinate system is relevant near the future horizon (H+H^{+}) and past null infinity (\mathscr{I}^{-}), while the outgoing coordinate system is relevant near the past horizon (HH^{-}) and future null infinity (+\mathscr{I}^{+}). When dealing with a generic surface SS, we will write ww and α\alpha instead of either vv and ψ\psi or uu and χ\chi:

w={v at H+u at H+,α={ψ at H+χ at H+.w=\begin{cases}v&\textrm{ at $H^{+}$, $\mathscr{I}^{-}$}\\ u&\textrm{ at $H^{-}$, $\mathscr{I}^{+}$}\end{cases},\qquad\alpha=\begin{cases}\psi&\textrm{ at $H^{+}$, $\mathscr{I}^{-}$}\\ \chi&\textrm{ at $H^{-}$, $\mathscr{I}^{+}$}\end{cases}. (VI.2)

This greatly simplifies definitions. For example, we will write the flux of a current ja\,\mbox{}_{\ldots}j^{a} through a surface SS as d2Q/dwdΩ|S\mathrm{d}^{2}\,\mbox{}_{\ldots}Q/\mathrm{d}w\mathrm{d}\Omega|_{S}, which we will define more explicitly in equation (A.1), where the differential solid angle is defined by

dΩsinθdθdα.\mathrm{d}\Omega\equiv\sin\theta\mathrm{d}\theta\mathrm{d}\alpha. (VI.3)

We next remark that, in this paper, we compute fluxes of the conserved currents (IV.13), (IV.14), (IV.15), and (IV.16) only when acting upon the metric perturbations Im[¯δ±gab]\operatorname{Im}[\mathchar 22\relax\mkern-9.0mu\delta_{\pm}g_{ab}]. We are free to do so, as these metric perturbations are related by a gauge transformation to any l2l\geq 2 metric perturbation ¯δgab\mathchar 22\relax\mkern-9.0mu\delta g_{ab}. Moreover, this specialization allows us to use equations (III.49) and (III.54) in order to write the fluxes in terms of the fluxes of the currents

±2jllmωppaSjEHa[(¯δ±𝒈)lmωp,(¯δ±𝒈)lmωp¯],\,\mbox{}_{\pm 2}j^{a}_{ll^{\prime}m\omega pp^{\prime}}\equiv\,\mbox{}_{S}j_{\textrm{EH}}^{a}\Big{[}(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}\boldsymbol{g})_{lm\omega p},\overline{(\mathchar 22\relax\mkern-9.0mu\delta_{\pm}\boldsymbol{g})_{l^{\prime}m\omega p^{\prime}}}\Big{]}, (VI.4)

assuming that we average over ww and α\alpha. These currents are functions of the Debye potentials ±2ψ\,\mbox{}_{\pm 2}\psi, instead of the metric perturbation. In particular, they are functions of the coefficients sψ^lmωpin/out/down/up\,\mbox{}_{s}\widehat{\psi}_{lm\omega p}^{\;\textrm{in/out/down/up}}. In terms of the fluxes of the currents (VI.4), we have that (averaging over ww and α\alpha)

d2s𝒞QdwdΩw,α\displaystyle\left\langle\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}Q}{\mathrm{d}w\mathrm{d}\Omega}\right\rangle_{w,\alpha} =i32dωl,l=2|m|min(l,l)p,p=±1ppsClmωpsClmωp¯d2sQllmωppdwdΩ,\displaystyle=\frac{i}{32}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l,l^{\prime}=2}^{\infty}\sum_{|m|\leq\min(l,l^{\prime})}\sum_{p,p^{\prime}=\pm 1}pp^{\prime}\,\mbox{}_{s}C_{lm\omega p}\overline{\,\mbox{}_{s}C_{l^{\prime}m\omega p^{\prime}}}\frac{\mathrm{d}^{2}\,\mbox{}_{s}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}, (VI.5a)
d2s𝒟QdwdΩw,α\displaystyle\left\langle\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}Q}{\mathrm{d}w\mathrm{d}\Omega}\right\rangle_{w,\alpha} =i16dωl,l=2|m|min(l,l)p,p=±12λlmωd2sQllmωppdwdΩ.\displaystyle=\frac{i}{16}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l,l^{\prime}=2}^{\infty}\sum_{|m|\leq\min(l,l^{\prime})}\sum_{p,p^{\prime}=\pm 1}\,\mbox{}_{2}\lambda_{l^{\prime}m\omega}\frac{\mathrm{d}^{2}\,\mbox{}_{s}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}. (VI.5b)

As these quantities are all \mathbb{R}-bilinear, it is convenient to define

sΥllmωppin/out/down/upsψ^lmωpin/out/down/upsψ^lmωpin/out/down/up¯.\,\mbox{}_{s}\Upsilon^{\textrm{in}/\textrm{out}/\textrm{down}/\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}\equiv\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}/\textrm{out}/\textrm{down}/\textrm{up}}_{lm\omega p}\overline{\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}/\textrm{out}/\textrm{down}/\textrm{up}}_{l^{\prime}m\omega p^{\prime}}}. (VI.6)

Moreover, the fluxes will each have a nontrivial angular dependence. To determine this, we define, for some quantity q[sψ]q[\,\mbox{}_{s}\psi], with coefficients qlmωp[sψ]q_{lm\omega p}[\,\mbox{}_{s}\psi] in an expansion, the angular dependences qSlmωpin/out/down/up(θ)\,\mbox{}_{q}S^{\textrm{in}/\textrm{out}/\textrm{down}/\textrm{up}}_{lm\omega p}(\theta) by

qlmωp(t,r,θ,ϕ){sψ^lmωpinei(mψωv)qSlmωpin(θ)Δnqin+sψ^lmωpoutei(mχωu)qSlmωpout(θ)Δnqoutrr+sψ^lmωpdownei(mψωv)qSlmωpdown(θ)rnqdown+sψ^lmωpupei(mχωu)qSlmωpup(θ)rnqupr,q_{lm\omega p}(t,r,\theta,\phi)\equiv\begin{cases}\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}}_{lm\omega p}e^{i(m\psi-\omega v)}\,\mbox{}_{q}S^{\textrm{in}}_{lm\omega p}(\theta)\Delta^{n_{q}^{\textrm{in}}}+\,\mbox{}_{s}\widehat{\psi}^{\textrm{out}}_{lm\omega p}e^{i(m\chi-\omega u)}\,\mbox{}_{q}S^{\textrm{out}}_{lm\omega p}(\theta)\Delta^{n_{q}^{\textrm{out}}}&r\to r_{+}\\ \,\mbox{}_{s}\widehat{\psi}^{\textrm{down}}_{lm\omega p}e^{i(m\psi-\omega v)}\,\mbox{}_{q}S^{\textrm{down}}_{lm\omega p}(\theta)r^{n_{q}^{\textrm{down}}}+\,\mbox{}_{s}\widehat{\psi}^{\textrm{up}}_{lm\omega p}e^{i(m\chi-\omega u)}\,\mbox{}_{q}S^{\textrm{up}}_{lm\omega p}(\theta)r^{n_{q}^{\textrm{up}}}&r\to\infty\end{cases}, (VI.7)

for some integers nqin/out/down/upn_{q}^{\textrm{in}/\textrm{out}/\textrm{down}/\textrm{up}}. Assuming appropriate smoothness conditions, equation (VI.7) simplifies further if we specialize to the various surfaces at which we are computing these quantities:

qlmωp(t,r,θ,ϕ)|S{sψ^lmωpinei(mψωv)qSlmωpin(θ)ΔnqinS=H+sψ^lmωpoutei(mχωu)qSlmωpout(θ)ΔnqoutS=Hsψ^lmωpdownei(mψωv)qSlmωpdown(θ)rnqdownS=sψ^lmωpupei(mχωu)qSlmωpup(θ)rnqupS=+.\left.q_{lm\omega p}(t,r,\theta,\phi)\right|_{S}\sim\begin{cases}\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}}_{lm\omega p}e^{i(m\psi-\omega v)}\,\mbox{}_{q}S^{\textrm{in}}_{lm\omega p}(\theta)\Delta^{n_{q}^{\textrm{in}}}&S=H^{+}\\ \,\mbox{}_{s}\widehat{\psi}^{\textrm{out}}_{lm\omega p}e^{i(m\chi-\omega u)}\,\mbox{}_{q}S^{\textrm{out}}_{lm\omega p}(\theta)\Delta^{n_{q}^{\textrm{out}}}&S=H^{-}\\ \,\mbox{}_{s}\widehat{\psi}^{\textrm{down}}_{lm\omega p}e^{i(m\psi-\omega v)}\,\mbox{}_{q}S^{\textrm{down}}_{lm\omega p}(\theta)r^{n_{q}^{\textrm{down}}}&S=\mathscr{I}^{-}\\ \,\mbox{}_{s}\widehat{\psi}^{\textrm{up}}_{lm\omega p}e^{i(m\chi-\omega u)}\,\mbox{}_{q}S^{\textrm{up}}_{lm\omega p}(\theta)r^{n_{q}^{\textrm{up}}}&S=\mathscr{I}^{+}\end{cases}. (VI.8)

In other words, only “in” modes contribute at H+H^{+}, “out” modes at HH^{-}, etc. The various quantities qq which we will be considering will be components of metric perturbations and perturbed connection coefficients. The relevant integers nqin/out/down/upn_{q}^{\textrm{in/out/down/up}} are (effectively) given in table B.1. Moreover, the various angular dependences are given by equations (B.6) and (B.7), and computed in appendix B.

Using table B.1 and equations (A.5a) and (A.5b), we find that

d2+2QllmωppdowndudΩ|+\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{+2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{\mathscr{I}^{+}} =0,\displaystyle=0, (VI.9a)
d2+2QllmωppdowndvdΩ|\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{+2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{\mathscr{I}^{-}} =i64π2Υllmωppdown¯δ+Clm¯m¯Slmωpdown¯δ+gm¯m¯Slmωpdown¯+l,pl,p¯,\displaystyle=-\frac{i}{64\pi}\,\mbox{}_{-2}\Upsilon^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S^{\textrm{down}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S^{\textrm{down}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.9b)
d2+2QllmωppdowndvdΩ|H+\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{+2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{H^{+}} =i64π2Υllmωppin¯δ+Clm¯m¯Slmωpin(¯δ+g)m¯m¯Slmωpin¯+l,pl,p¯,\displaystyle=-\frac{i}{64\pi}\,\mbox{}_{-2}\Upsilon^{\textrm{in}}_{ll^{\prime}m\omega pp^{\prime}}\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S^{\textrm{in}}_{lm\omega p}\overline{\,\mbox{}_{(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}}S^{\textrm{in}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.9c)
d2+2QllmωppdowndudΩ|H\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{+2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{H^{-}} =iΣ+32π2Υllmωppout(¯δ+Cnm¯m¯Slmωpout¯δ+gm¯m¯Slmωpout¯¯δ+Cn(lm¯)Slmωpout¯δ+gnm¯Slmωpout¯)\displaystyle=\frac{i\Sigma_{+}}{32\pi}\,\mbox{}_{-2}\Upsilon^{\textrm{out}}_{ll^{\prime}m\omega pp^{\prime}}\left(\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n\bar{m}\bar{m}}}S^{\textrm{out}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S^{\textrm{out}}_{l^{\prime}m\omega p^{\prime}}}-\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n(l\bar{m})}}S^{\textrm{out}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{n\bar{m}}}S^{\textrm{out}}_{l^{\prime}m\omega p^{\prime}}}\right)
+l,pl,p¯,\displaystyle\hskip 10.00002pt+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.9d)

where the superscript “down” indicates that we have performed a projection such that sψ^lmωpup=0\,\mbox{}_{s}\widehat{\psi}^{\textrm{up}}_{lm\omega p}=0, and

d22QllmωppupdudΩ|+\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{\mathscr{I}^{+}} =i32π2Υllmωppup¯δCnmmSlmωpup¯δgmmSlmωpup¯+l,pl,p¯,\displaystyle=\frac{i}{32\pi}\,\mbox{}_{2}\Upsilon^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S^{\textrm{up}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S^{\textrm{up}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.10a)
d22QllmωppupdvdΩ|\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{\mathscr{I}^{-}} =0,\displaystyle=0, (VI.10b)
d22QllmωppupdvdΩ|H+\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{H^{+}} =i64π2Υllmωppin(¯δClmmSlmωpin¯δgmmSlmωpin¯¯δCl(nm)Slmωpin¯δglmSlmωpin¯)\displaystyle=-\frac{i}{64\pi}\,\mbox{}_{2}\Upsilon^{\textrm{in}}_{ll^{\prime}m\omega pp^{\prime}}\left(\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lmm}}S^{\textrm{in}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S^{\textrm{in}}_{l^{\prime}m\omega p^{\prime}}}-\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{l(nm)}}S^{\textrm{in}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm}}S^{\textrm{in}}_{l^{\prime}m\omega p^{\prime}}}\right)
+l,pl,p¯,\displaystyle\hskip 10.00002pt+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.10c)
d22QllmωppupdudΩ|H\displaystyle\left.\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{H^{-}} =iΣ+32π2Υllmωppout¯δCnmmSlmωpout¯δgmmSlmωpout¯+l,pl,p¯,\displaystyle=\frac{i\Sigma_{+}}{32\pi}\,\mbox{}_{2}\Upsilon^{\textrm{out}}_{ll^{\prime}m\omega pp^{\prime}}\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S^{\textrm{out}}_{lm\omega p}\overline{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S^{\textrm{out}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p\longleftrightarrow l^{\prime},p^{\prime}}, (VI.10d)

and the superscript “up” denotes the fact that we have performed a projection to set sψ^lmωpdown=0\,\mbox{}_{s}\widehat{\psi}^{\textrm{down}}_{lm\omega p}=0. If these projections are not performed, then the respective fluxes diverge, as is evident from table B.1 and equation (A.5). Since the fluxes of s𝒞ja\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}j^{a} and s𝒟ja\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a} can be written in terms of those of sjllmωppa\,\mbox{}_{s}j_{ll^{\prime}m\omega pp^{\prime}}^{a}, there are issues with these currents as well.

These divergences motivated the introduction of the projection operators in section III.5. With these projection operators, we have sacrificed locality (which we had already sacrificed in s𝒟ja\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a}) in order to obtain finite fluxes. As mentioned at the end of section V.3, the geometric optics limits are similar to those of the currents s𝒞ja\,\mbox{}_{\,\mbox{}_{s}\mathcal{C}}j^{a} and s𝒟ja\,\mbox{}_{\,\mbox{}_{s}\mathcal{D}}j^{a}. We also have that

d22𝒞̊QdwdΩw,α\displaystyle\left\langle\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}Q}{\mathrm{d}w\mathrm{d}\Omega}\right\rangle_{w,\alpha} =i32dωl,l=2|m|min(l,l)p,p=±1\displaystyle=\frac{i}{32}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l,l^{\prime}=2}^{\infty}\sum_{|m|\leq\min(l,l^{\prime})}\sum_{p,p^{\prime}=\pm 1}
×pp{2Clmωp2Clmωp¯d22QllmωppdowndwdΩ+2Clmωp2Clmωp¯d22QllmωppupdwdΩ},\displaystyle\hskip 35.00005pt\times pp^{\prime}\left\{\,\mbox{}_{2}C_{lm\omega p}\overline{\,\mbox{}_{2}C_{l^{\prime}m\omega p^{\prime}}}\frac{\mathrm{d}^{2}\,\mbox{}_{2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}+\,\mbox{}_{-2}C_{lm\omega p}\overline{\,\mbox{}_{-2}C_{l^{\prime}m\omega p^{\prime}}}\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}\right\}, (VI.11a)
d22𝒟̊QdwdΩw,α\displaystyle\left\langle\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}Q}{\mathrm{d}w\mathrm{d}\Omega}\right\rangle_{w,\alpha} =i16dωl,l=2|m|min(l,l)p,p=±12λlmω{d22QllmωppdowndwdΩ+d22QllmωppupdwdΩ}.\displaystyle=\frac{i}{16}\int_{-\infty}^{\infty}\mathrm{d}\omega\sum_{l,l^{\prime}=2}^{\infty}\sum_{|m|\leq\min(l,l^{\prime})}\sum_{p,p^{\prime}=\pm 1}\,\mbox{}_{2}\lambda_{l^{\prime}m\omega}\left\{\frac{\mathrm{d}^{2}\,\mbox{}_{2}Q^{\textrm{down}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}+\frac{\mathrm{d}^{2}\,\mbox{}_{-2}Q^{\textrm{up}}_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}\right\}. (VI.11b)

Using equations (VI.9), (VI.10), and (VI.11), we have completely determined the fluxes of the charges 2𝒞̊ja\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a} and 2𝒟̊ja\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}.

Using the symplectic product for linearized gravity, we have not been able to construct a local current with finite fluxes which reduces to the Carter constant in geometric optics. However, we can do so using the symplectic product we defined in equation (IV.12) for the master variables. We find that the fluxes for sΩja\,\mbox{}_{\,\mbox{}_{s}\Omega}j^{a}, averaged over ww and α\alpha, are given by an expansion of the form

d2sΩQdwdΩw,αdωl,l=2|m|<l,lp,p=±1d2sΩQllmωppdwdΩ,\left\langle\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q}{\mathrm{d}w\mathrm{d}\Omega}\right\rangle_{w,\alpha}\equiv\int_{-\infty}^{\infty}\mathrm{d}\omega\;\sum_{l,l^{\prime}=2}^{\infty}\;\sum_{|m|<l,l^{\prime}}\sum_{p,p^{\prime}=\pm 1}\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}w\mathrm{d}\Omega}, (VI.12)

where

d2sΩQllmωppdudΩ|+=ω32π{ClmωsΘlmωsΘlmω[sψ^lmωpupsψ^lmωpup¯+l,p,sl,p,s¯]+sClmωpsΘlmωsΘlmω[sψ^lmωpupsψ^lmωpup¯+l,p,sl,p,s¯]},\displaystyle\begin{aligned} \left.\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{\mathscr{I}^{+}}=\frac{\omega}{32\pi}\bigg{\{}&C_{l^{\prime}m\omega}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{s}\widehat{\psi}^{\textrm{up}}_{lm\omega p}\overline{\,\mbox{}_{-s}\widehat{\psi}^{\textrm{up}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\\ &+\,\mbox{}_{s}C_{l^{\prime}m\omega p^{\prime}}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{-s}\widehat{\psi}^{\textrm{up}}_{lm\omega p}\overline{\,\mbox{}_{s}\widehat{\psi}^{\textrm{up}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\bigg{\}},\end{aligned} (VI.13a)
d2sΩQllmωppdvdΩ|=ω32π{ClmωsΘlmωsΘlmω[sψ^lmωpdownsψ^lmωpdown¯+l,p,sl,p,s¯]+sClmωpsΘlmωsΘlmω[sψ^lmωpdownsψ^lmωpdown¯+l,p,sl,p,s¯]},\displaystyle\begin{aligned} \left.\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{\mathscr{I}^{-}}=-\frac{\omega}{32\pi}\bigg{\{}&C_{l^{\prime}m\omega}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{s}\widehat{\psi}^{\textrm{down}}_{lm\omega p}\overline{\,\mbox{}_{-s}\widehat{\psi}^{\textrm{down}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\\ &+\,\mbox{}_{s}C_{l^{\prime}m\omega p^{\prime}}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{-s}\widehat{\psi}^{\textrm{down}}_{lm\omega p}\overline{\,\mbox{}_{s}\widehat{\psi}^{\textrm{down}}_{l^{\prime}m\omega p^{\prime}}}+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\bigg{\}},\end{aligned} (VI.13b)

and

d2sΩQllmωppdvdΩ|H+=Mr+kmω16π{ClmωsΘlmωsΘlmω[sκmωsψ^lmωpinsψ^lmωpin¯+l,p,sl,p,s¯]+sClmωpsΘlmωsΘlmω[sκmωsψ^lmωpinsψ^lmωpin¯+l,p,sl,p,s¯]},\displaystyle\begin{aligned} \left.\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}v\mathrm{d}\Omega}\right|_{H^{+}}=-\frac{Mr_{+}k_{m\omega}}{16\pi}\bigg{\{}&C_{l^{\prime}m\omega}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{s}\kappa_{m\omega}\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}}_{lm\omega p}\overline{\,\mbox{}_{-s}\widehat{\psi}^{\textrm{in}}_{l^{\prime}m\omega p^{\prime}}}\\ &\hskip 105.00015pt+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\\ &+\,\mbox{}_{s}C_{l^{\prime}m\omega p^{\prime}}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{-s}\kappa_{m\omega}\,\mbox{}_{-s}\widehat{\psi}^{\textrm{in}}_{lm\omega p}\overline{\,\mbox{}_{s}\widehat{\psi}^{\textrm{in}}_{l^{\prime}m\omega p^{\prime}}}\\ &\hskip 125.00018pt+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\bigg{\}},\end{aligned} (VI.14a)
d2sΩQllmωppdudΩ|H=Mr+kmω16π{ClmωsΘlmωsΘlmω[sκmωsψ^lmωpoutsψ^lmωpout¯+l,p,sl,p,s¯]+sClmωpsΘlmωsΘlmω[sκmωsψ^lmωpoutsψ^lmωpout¯+l,p,sl,p,s¯]},\displaystyle\begin{aligned} \left.\frac{\mathrm{d}^{2}\,\mbox{}_{\,\mbox{}_{s}\Omega}Q_{ll^{\prime}m\omega pp^{\prime}}}{\mathrm{d}u\mathrm{d}\Omega}\right|_{H^{-}}=\frac{Mr_{+}k_{m\omega}}{16\pi}\bigg{\{}&C_{l^{\prime}m\omega}\,\mbox{}_{s}\Theta_{lm\omega}\,\mbox{}_{s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{s}\kappa_{m\omega}\,\mbox{}_{s}\widehat{\psi}^{\textrm{out}}_{lm\omega p}\overline{\,\mbox{}_{-s}\widehat{\psi}^{\textrm{out}}_{l^{\prime}m\omega p^{\prime}}}\\ &\hskip 105.00015pt+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\\ &+\,\mbox{}_{s}C_{l^{\prime}m\omega p^{\prime}}\,\mbox{}_{-s}\Theta_{lm\omega}\,\mbox{}_{-s}\Theta_{l^{\prime}m\omega}\Big{[}\,\mbox{}_{-s}\kappa_{m\omega}\,\mbox{}_{-s}\widehat{\psi}^{\textrm{out}}_{lm\omega p}\overline{\,\mbox{}_{s}\widehat{\psi}^{\textrm{out}}_{l^{\prime}m\omega p^{\prime}}}\\ &\hskip 125.00018pt+\overline{l,p,s\longleftrightarrow l^{\prime},p^{\prime},-s}\Big{]}\bigg{\}},\end{aligned} (VI.14b)

where

sκmω=1is(r+M)2Mr+kmω.\,\mbox{}_{s}\kappa_{m\omega}=1-\frac{is(r_{+}-M)}{2Mr_{+}k_{m\omega}}. (VI.15)

VII Discussion

Table VII.1: Summary of the properties of the conserved currents considered in this paper. For convenience, we give the equation numbers (within section IV.2) in which these currents are defined. We then give the limit of the corresponding charges in geometric optics, where KK is the Carter constant of a graviton (see section V for the definitions of the polarization coefficients eRe_{R} and eLe_{L}, as well as the justification of the factors of \hbar). The next column indicates whether the fluxes of these currents through future and past null infinity (±\mathscr{I}^{\pm}) and the future and past horizons (H±H^{\pm}) are finite. We finally indicate which of these currents are local functionals of the metric perturbation.
Definition Geometric optics limit Finite fluxes?
Current (equation) of charge (per graviton) +\mathscr{I}^{+} \mathscr{I}^{-} H+H^{+} HH^{-} Local?
2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] (IV.13) K4(|eR|2|eL|2)/7K^{4}(|e_{R}|^{2}-|e_{L}|^{2})/\hbar^{7} ×\times
2𝒞ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{-2}\mathcal{C}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] ×\times
2𝒞̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{C}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] (IV.14) K4(|eR|2|eL|2)/7K^{4}(|e_{R}|^{2}-|e_{L}|^{2})/\hbar^{7}\; 777 ​​This result only holds, if the null fluid of gravitons is either completely ingoing or outgoing at null infinity; see the discussion near the end of section V.3 for more details. ×\times
2𝒟ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathcal{D}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] (IV.15) K(|eR|2|eL|2)/K(|e_{R}|^{2}-|e_{L}|^{2})/\hbar ×\times ×\times
2𝒟ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{-2}\mathcal{D}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] ×\times ×\times
2𝒟̊ja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\mathring{\mathcal{D}}}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}] (IV.16) K(|eR|2|eL|2)/K(|e_{R}|^{2}-|e_{L}|^{2})/\hbar\; 7 ×\times
2Ωja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{2}\Omega}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]
2Ωja[¯δ𝒈]\,\mbox{}_{\,\mbox{}_{-2}\Omega}j^{a}[\mathchar 22\relax\mkern-9.0mu\delta\boldsymbol{g}]
(IV.17) K4(|eR|2|eL|2)/7K^{4}(|e_{R}|^{2}-|e_{L}|^{2})/\hbar^{7}

In this paper, we have constructed a class of conserved currents for linearized gravity whose conserved charges reduce to the sum of the Carter constants (to some positive power) for a null fluid of gravitons in the geometric optics limit. These conserved currents are constructed from symplectic products of two solutions constructed via the method of symmetry operators. Moreover, some of these currents yield finite fluxes at the horizon and null infinity, although most that are finite at null infinity are not local. A full summary of their properties is given in table VII.1. Note that only the currents sΩja\,\mbox{}_{\,\mbox{}_{s}\Omega}j^{a} are both local and possess finite fluxes.

That some of these currents possess diverging fluxes at null infinity is not ideal. It may be possible to find a symmetry operator, differing from those that appear in this paper by a gauge transformation, that is both local and maps to a solution with a non-divergent symplectic product. In the absence of a clear example of such a symmetry operator, we have instead decided to consider nonlocal symmetry operators which are easier to define. We have also shown that there exists a symplectic product for the master variables (instead of the metric perturbation) which yields finite fluxes. This symplectic product can also be used to construct a current which gives (positive powers of) the Carter constant in the limit of geometric optics. However, note that this is not the physical symplectic product for linearized gravity.

One motivation for seeking conserved currents is the hope to derive, for the dynamical system of a point particle coupled to linearized gravity in the Kerr spacetime, a “unified conservation law” that would generalize the conservation of the Carter constant for a point particle by itself. The local currents considered in this paper could be relevant for such a conservation law, but the potential relevance of the nonlocal currents is less obvious. We plan to further explore these currents, particularly their applications, in future work.

Acknowledgments

We thank Lars Andersson and Kartik Prabhu for helpful conversations. We acknowledge the support of NSF Grants PHY-1404105 and PHY-1707800 to Cornell University.

Appendix A Integration along the horizon and null infinity

The flux of a current ja\,\mbox{}_{\ldots}j^{a} through a surface SS of constant rr (such as the horizon or null infinity) is defined by

d2QdwdΩ|SlimS(r2+a2)jaNa,\left.\frac{\mathrm{d}^{2}\,\mbox{}_{\ldots}Q}{\mathrm{d}w\mathrm{d}\Omega}\right|_{S}\equiv\lim_{\to S}(r^{2}+a^{2})\,\mbox{}_{\ldots}j^{a}N_{a}, (A.1)

where NaN_{a} is the surface normal, and the factor of r2+a2r^{2}+a^{2} comes from the fact that the determinant of the induced metric on surfaces of constant rr is (r2+a2)sinθ(r^{2}+a^{2})\sin\theta. The surface normals are proportional to (dr)a(\mathrm{d}r)_{a},

Na(dr)a=naΔ2Σla,N_{a}\propto(\mathrm{d}r)_{a}=n_{a}-\frac{\Delta}{2\Sigma}l_{a}, (A.2)

and the usual scaling freedom is fixed by requiring888Note that, if one were integrating these currents on a finite portion of these surfaces, the normalization of NaN_{a} would not matter. However, for equation (A.1) to hold—that is, when integrating over an infinitesimal portion dw\mathrm{d}w, for w=uw=u or vv, we must normalize NaN_{a} appropriately. that either Naau=1N^{a}\nabla_{a}u=1 (for HH^{-} and +\mathscr{I}^{+}) or Naav=1N^{a}\nabla_{a}v=1 (for H+H^{+} and \mathscr{I}^{-}). It turns out, however, that these requirements are the same, and fix the normalization such that

Na=1r2+a2(ΣnaΔ2la).N_{a}=\frac{1}{r^{2}+a^{2}}\left(\Sigma n_{a}-\frac{\Delta}{2}l_{a}\right). (A.3)

As such, we find that

d2QdvdΩ|H+\displaystyle\left.\frac{\mathrm{d}^{2}Q}{\mathrm{d}v\mathrm{d}\Omega}\right|_{H^{+}} =limrr+,v fixedΣ(jnΔ2Σjl),\displaystyle=\lim_{r\to r_{+},v\textrm{ fixed}}\Sigma\left(j_{n}-\frac{\Delta}{2\Sigma}j_{l}\right), (A.4a)
d2QdudΩ|H\displaystyle\left.\frac{\mathrm{d}^{2}Q}{\mathrm{d}u\mathrm{d}\Omega}\right|_{H^{-}} =limrr+,u fixedΣ(jnΔ2Σjl),\displaystyle=\lim_{r\to r_{+},u\textrm{ fixed}}\Sigma\left(j_{n}-\frac{\Delta}{2\Sigma}j_{l}\right), (A.4b)
d2QdvdΩ|\displaystyle\left.\frac{\mathrm{d}^{2}Q}{\mathrm{d}v\mathrm{d}\Omega}\right|_{\mathscr{I}^{-}} =limr,v fixedr2(jn12jl),\displaystyle=\lim_{r\to\infty,v\textrm{ fixed}}r^{2}\left(j_{n}-\frac{1}{2}j_{l}\right), (A.4c)
d2QdudΩ|+\displaystyle\left.\frac{\mathrm{d}^{2}Q}{\mathrm{d}u\mathrm{d}\Omega}\right|_{\mathscr{I}^{+}} =limr,v fixedr2(jn12jl).\displaystyle=\lim_{r\to\infty,v\textrm{ fixed}}r^{2}\left(j_{n}-\frac{1}{2}j_{l}\right). (A.4d)

From this discussion, for the calculations in section VI, we need the components of symplectic products along lal_{a} and nan_{a}:

SjlEH[¯δ+𝒈,¯δ+𝒈¯]\displaystyle\,\mbox{}_{S}j^{\textrm{EH}}_{l}\left[\mathchar 22\relax\mkern-9.0mu\delta_{+}\boldsymbol{g},\overline{\mathchar 22\relax\mkern-9.0mu\delta_{+}\boldsymbol{g}}\right] =116πIm[(¯δ+C)lm¯m¯(¯δ+g)m¯m¯¯],\displaystyle=-\frac{1}{16\pi}\operatorname{Im}\left[(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{l\bar{m}\bar{m}}\overline{(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)^{\bar{m}\bar{m}}}\right], (A.5a)
SjnEH[¯δ+𝒈,¯δ+𝒈¯]\displaystyle\,\mbox{}_{S}j^{\textrm{EH}}_{n}\left[\mathchar 22\relax\mkern-9.0mu\delta_{+}\boldsymbol{g},\overline{\mathchar 22\relax\mkern-9.0mu\delta_{+}\boldsymbol{g}}\right] =116πIm[(¯δ+C)nm¯m¯(¯δ+g)m¯m¯¯(¯δ+C)n(lm¯)(¯δ+g)(nm¯)¯],\displaystyle=-\frac{1}{16\pi}\operatorname{Im}\left[(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n\bar{m}\bar{m}}\overline{(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)^{\bar{m}\bar{m}}}-(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n(l\bar{m})}\overline{(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)^{(n\bar{m})}}\right], (A.5b)

where ll, nn, mm, and m¯\bar{m} subscripts denote contraction on an index with the corresponding null tetrad vector, and where the non-zero perturbed connection coefficients are

(¯δ+C)lm¯m¯\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{l\bar{m}\bar{m}} =12[D+2(ϵϵ¯)ρ](¯δ+g)m¯m¯,\displaystyle=-\frac{1}{2}[D+2(\epsilon-\bar{\epsilon})-\rho](\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}, (A.6a)
(¯δ+C)n(lm¯)\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n(l\bar{m})} =14(D+2ϵ+ρ)(¯δ+g)(nm¯)12τ(¯δ+g)m¯m¯,\displaystyle=-\frac{1}{4}(D+2\epsilon+\rho)(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{(n\bar{m})}-\frac{1}{2}\tau(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}, (A.6b)
(¯δ+C)nm¯m¯\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n\bar{m}\bar{m}} =14(δ+2α¯)(¯δ+g)(nm¯)12[Δ+2(γγ¯)2μ](¯δ+g)m¯m¯.\displaystyle=-\frac{1}{4}(\delta+2\bar{\alpha})(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{(n\bar{m})}-\frac{1}{2}[\mathbbold{\Delta}+2(\gamma-\bar{\gamma})-2\mu](\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}. (A.6c)

One can obtain the analogous expressions for ¯δ\mathchar 22\relax\mkern-9.0mu\delta_{-} by performing a transformation. For the symplectic product defined using the master variables, we find that

SjlBCJR[¯δ1sΩ,¯δ1sΩ;¯δ2sΩ,¯δ2sΩ]\displaystyle\,\mbox{}_{S}j^{\textrm{BCJR}}_{l}\left[\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega;\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega\right] =¯δ1sΩ(DsΓl)¯δ2sΩ+¯δ1sΩ(D+sΓl)¯δ2sΩ12,\displaystyle=\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega(D-s\Gamma_{l})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega+\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega(D+s\Gamma_{l})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega-1\longleftrightarrow 2, (A.7a)
SjnBCJR[¯δ1sΩ,¯δ1sΩ;¯δ2sΩ,¯δ2sΩ]\displaystyle\,\mbox{}_{S}j^{\textrm{BCJR}}_{n}\left[\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega;\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega,\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega\right] =¯δ1sΩ(ΔsΓn)¯δ2sΩ+¯δ1sΩ(Δ+sΓn)¯δ2sΩ12.\displaystyle=\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{s}\Omega(\mathbbold{\Delta}-s\Gamma_{n})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{-s}\Omega+\mathchar 22\relax\mkern-9.0mu\delta_{1}\,\mbox{}_{-s}\Omega(\mathbbold{\Delta}+s\Gamma_{n})\mathchar 22\relax\mkern-9.0mu\delta_{2}\,\mbox{}_{s}\Omega-1\longleftrightarrow 2. (A.7b)

Appendix B Asymptotic behavior

In order to determine fluxes at null infinity and the horizon, we also need to know the asymptotic behavior of the quantities that appear in equation (A.5) and its transform. These are given in table B.1. To determine these falloff rates, we write the quantities that appear in (A.5) and its transform in terms of differential operators acting upon the Debye potential, using the operators defined in equation (II.36): the perturbed metric satisfies

(¯δ+g)(nm¯)\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{(n\bar{m})} =12ζ¯[(𝒟0+1ζ2ζ¯)(2+3iasinθζ)+(2++iasinθζ+2iasinθζ¯)(𝒟03ζ)]2ψ,\displaystyle=-\frac{1}{\sqrt{2}\bar{\zeta}}\left[\left(\mathscr{D}_{0}+\frac{1}{\zeta}-\frac{2}{\bar{\zeta}}\right)\left(\mathscr{L}_{2}^{+}-\frac{3ia\sin\theta}{\zeta}\right)+\left(\mathscr{L}_{2}^{+}+\frac{ia\sin\theta}{\zeta}+\frac{2ia\sin\theta}{\bar{\zeta}}\right)\left(\mathscr{D}_{0}-\frac{3}{\zeta}\right)\right]\,\mbox{}_{-2}\psi, (B.1a)
(¯δ+g)m¯m¯\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}} =(𝒟0+1ζ)(𝒟03ζ)2ψ,\displaystyle=-\left(\mathscr{D}_{0}+\frac{1}{\zeta}\right)\left(\mathscr{D}_{0}-\frac{3}{\zeta}\right)\,\mbox{}_{-2}\psi, (B.1b)
(¯δg)(lm)\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{(lm)} =ζ222ζ¯Δ[(2+iasinθζ+2iasinθζ¯)(𝒟0+3ζ)+(𝒟0++1ζ2ζ¯)(23iasinθζ)]Δ22ψ,\displaystyle=\frac{\zeta^{2}}{2\sqrt{2}\bar{\zeta}\Delta}\left[\left(\mathscr{L}_{2}+\frac{ia\sin\theta}{\zeta}+\frac{2ia\sin\theta}{\bar{\zeta}}\right)\left(\mathscr{D}_{0}^{+}-\frac{3}{\zeta}\right)+\left(\mathscr{D}_{0}^{+}+\frac{1}{\zeta}-\frac{2}{\bar{\zeta}}\right)\left(\mathscr{L}_{2}-\frac{3ia\sin\theta}{\zeta}\right)\right]\Delta^{2}\,\mbox{}_{2}\psi, (B.1c)
(¯δg)mm\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{mm} =ζ24ζ¯2(𝒟0++1ζ)(𝒟0+3ζ)Δ22ψ,\displaystyle=\frac{\zeta^{2}}{4\bar{\zeta}^{2}}\left(\mathscr{D}_{0}^{+}+\frac{1}{\zeta}\right)\left(\mathscr{D}_{0}^{+}-\frac{3}{\zeta}\right)\Delta^{2}\,\mbox{}_{2}\psi, (B.1d)

whereas the relevant perturbed connection coefficients are given by

(¯δ+C)lm¯m¯\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{l\bar{m}\bar{m}} =12(𝒟0+1ζ)(¯δ+g)m¯m¯,\displaystyle=-\frac{1}{2}\left(\mathscr{D}_{0}+\frac{1}{\zeta}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}, (B.2a)
(¯δ+C)n(lm¯)\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n(l\bar{m})} =14(𝒟01ζ)(¯δ+g)(nm¯)+iasinθ22Σ(δ+g)m¯m¯,\displaystyle=-\frac{1}{4}\left(\mathscr{D}_{0}-\frac{1}{\zeta}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{(n\bar{m})}+\frac{ia\sin\theta}{2\sqrt{2}\Sigma}(\delta_{+}g)_{\bar{m}\bar{m}}, (B.2b)
(¯δ+C)nm¯m¯\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{+}C)_{n\bar{m}\bar{m}} =142ζ¯(1+2iasinθζ¯)(¯δ+g)(nm¯)+Δ4Σ(𝒟0+2ζ2ζ¯)(¯δ+g)m¯m¯,\displaystyle=-\frac{1}{4\sqrt{2}\bar{\zeta}}\left(\mathscr{L}_{-1}^{+}-\frac{2ia\sin\theta}{\bar{\zeta}}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{(n\bar{m})}+\frac{\Delta}{4\Sigma}\left(\mathscr{D}_{0}^{+}-\frac{2}{\zeta}-\frac{2}{\bar{\zeta}}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{+}g)_{\bar{m}\bar{m}}, (B.2c)
(¯δC)nmm\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{-}C)_{nmm} =Δ4Σ(𝒟0+1ζ+2ζ¯)(¯δg)mm,\displaystyle=\frac{\Delta}{4\Sigma}\left(\mathscr{D}_{0}^{+}-\frac{1}{\zeta}+\frac{2}{\bar{\zeta}}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{mm}, (B.2d)
(¯δC)l(nm)\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{-}C)_{l(nm)} =18Σ(𝒟0+3ζ)Δ(¯δg)(lm)+iasinθ22ζ2(¯δg)mm,\displaystyle=\frac{1}{8\Sigma}\left(\mathscr{D}_{0}^{+}-\frac{3}{\zeta}\right)\Delta(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{(lm)}+\frac{ia\sin\theta}{2\sqrt{2}\zeta^{2}}(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{mm}, (B.2e)
(¯δC)lmm\displaystyle(\mathchar 22\relax\mkern-9.0mu\delta_{-}C)_{lmm} =142ζ1(¯δg)(lm)12(𝒟02ζ)(¯δg)mm.\displaystyle=-\frac{1}{4\sqrt{2}\zeta}\mathscr{L}_{-1}(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{(lm)}-\frac{1}{2}\left(\mathscr{D}_{0}-\frac{2}{\zeta}\right)(\mathchar 22\relax\mkern-9.0mu\delta_{-}g)_{mm}. (B.2f)

In order to compute the asymptotic behavior of these quantities, one needs to determine the asymptotic behavior of derivatives of the master variables. However, applying the naïve approach, which uses the asymptotic expansions given by equations (III.56) and (III.58), along with

𝒟0(±m)(±ω)f(r)e±iωr=dfdre±iωr𝒟0(±m)(±ω)f(r)eiωr=[dfdr2iωf(r)]eiωr}r,𝒟0(±m)(±ω)f(r)e±ikmωr=dfdre±ikmωr𝒟0(±m)(±ω)f(r)eikmωr=[dfdr4Mr+Δikmωf(r)]eikmωr}r,\begin{split}&\left.\begin{aligned} \mathscr{D}_{0(\pm m)(\pm\omega)}f(r)e^{\pm i\omega r^{*}}&=\frac{\mathrm{d}f}{\mathrm{d}r}e^{\pm i\omega r^{*}}\\ \mathscr{D}_{0(\pm m)(\pm\omega)}f(r)e^{\mp i\omega r^{*}}&=\left[\frac{\mathrm{d}f}{\mathrm{d}r}\mp 2i\omega f(r)\right]e^{\mp i\omega r^{*}}\\ \end{aligned}\right\}r^{*}\to\infty,\\ &\left.\begin{aligned} \mathscr{D}_{0(\pm m)(\pm\omega)}f(r)e^{\pm ik_{m\omega}r^{*}}&=\frac{\mathrm{d}f}{\mathrm{d}r}e^{\pm ik_{m\omega}r^{*}}\\ \mathscr{D}_{0(\pm m)(\pm\omega)}f(r)e^{\mp ik_{m\omega}r^{*}}&=\left[\frac{\mathrm{d}f}{\mathrm{d}r}\mp\frac{4Mr^{+}}{\Delta}ik_{m\omega}f(r)\right]e^{\mp ik_{m\omega}r^{*}}\\ \end{aligned}\right\}r^{*}\to-\infty,\end{split} (B.3)

results in cancellations in the leading-order behavior. Instead, we use the radial Teukolsky-Starobinsky identity (III.32), which provides a differential equation that is independent of the radial Teukolsky equation (II.45b). Using the radial Teukolsky equation, one can reduce the radial Teukolsky-Starobinsky identity to the following expression for derivatives of sΩ^lmωp(r)\,\mbox{}_{s}\widehat{\Omega}_{lm\omega p}(r) chandrasekhar1983mathematical :

𝒟0(m)(ω)Δ(2±2)/2±2Ω^lmωp±2ΞlmωpΔ(2±2)/2±2Ω^lmωp+±2ΠlmωpΔ(22)/22Ω^lmωp,\mathscr{D}_{0(\mp m)(\mp\omega)}\Delta^{(2\pm 2)/2}\,\mbox{}_{\pm 2}\widehat{\Omega}_{lm\omega p}\equiv\,\mbox{}_{\pm 2}\Xi_{lm\omega p}\Delta^{(2\pm 2)/2}\,\mbox{}_{\pm 2}\widehat{\Omega}_{lm\omega p}+\,\mbox{}_{\pm 2}\Pi_{lm\omega p}\Delta^{(2\mp 2)/2}\,\mbox{}_{\mp 2}\widehat{\Omega}_{lm\omega p}, (B.4)

where this equation defines the coefficients ±sΞlmωp\,\mbox{}_{\pm s}\Xi_{lm\omega p} and ±sΠlmωp\,\mbox{}_{\pm s}\Pi_{lm\omega p}. These equations also clearly hold for sψ^lmωp(r)\,\mbox{}_{s}\widehat{\psi}_{lm\omega p}(r).

Table B.1: Asymptotic behavior of the solutions for linearized gravity.
Ingoing [ei(mψωv)×e^{i(m\psi-\omega v)}\times] Outgoing [ei(mχωu)×e^{i(m\chi-\omega u)}\times]
rr+r\to r_{+} rr\to\infty rr+r\to r_{+} rr\to\infty
(¯δ+glmωp)nm¯(\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{lm\omega p})_{n\bar{m}} Δ\Delta 1/r21/r^{2} 11 rr
(¯δ+glmωp)m¯m¯(\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{lm\omega p})_{\bar{m}\bar{m}} 11 1/r1/r 11 11
(¯δglmωp)lm(\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm\omega p})_{lm} 1/Δ1/\Delta rr 11 1/r21/r^{2}
(¯δglmωp)mm(\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm\omega p})_{mm} 11 11 11 1/r1/r
(¯δ+Clmωp)lm¯m¯(\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{lm\omega p})_{l\bar{m}\bar{m}} 1/Δ1/\Delta 1/r1/r 11 1/r1/r
(¯δ+Clmωp)n(lm¯)(\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{lm\omega p})_{n(l\bar{m})} 11 1/r21/r^{2} 11 1/r21/r^{2}
(¯δ+Clmωp)nm¯m¯(\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{lm\omega p})_{n\bar{m}\bar{m}} Δ\Delta 1/r21/r^{2} 11 11
(¯δClmωp)nmm(\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lm\omega p})_{nmm} Δ\Delta 1/r1/r 11 1/r1/r
(¯δClmωp)l(nm)(\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lm\omega p})_{l(nm)} 11 1/r21/r^{2} 11 1/r21/r^{2}
(¯δClmωp)lmm(\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lm\omega p})_{lmm} 1/Δ1/\Delta 11 11 1/r21/r^{2}

Plugging equation (B.4) [for sψlmωp(r)\,\mbox{}_{s}\psi_{lm\omega p}(r)] into equations (B.1) and (B.2), and then taking the limits rr\to\infty and rr+r\to r_{+}, yields the asymptotic forms given in table B.1. Using this same calculation, we can determine the angular dependences of the quantities in (B.1) and (B.2). Defining, for s0s\geq 0,

±sηlmω+=±2i(2s1)ωr+2λlmω,±sηlmω=±2(2s1)ωacosθ+2λlmω,\,\mbox{}_{\pm s}\eta^{+}_{lm\omega}=\pm 2i(2s-1)\omega r_{+}-\,\mbox{}_{2}\lambda_{lm\omega},\qquad\,\mbox{}_{\pm s}\eta^{\infty}_{lm\omega}=\pm 2(2s-1)\omega a\cos\theta+\,\mbox{}_{2}\lambda_{lm\omega}, (B.5)

they are given by

¯δ+gnm¯Slmωpin=4ikmωMr+2κmωζ+2(m)(ω)2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{n\bar{m}}}S_{lm\omega p}^{\textrm{in}}=\frac{4ik_{m\omega}\sqrt{Mr_{+}}\,\mbox{}_{-2}\kappa_{m\omega}}{\zeta_{+}}\mathscr{L}_{2(-m)(-\omega)}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.6a)
¯δ+gnm¯Slmωpout=2ηlmω+ζ++8Mr+ikmω1κmω4(Mr+)3/2ikmω1κmωζ+22(m)(ω)2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{n\bar{m}}}S_{lm\omega p}^{\textrm{out}}=\frac{\,\mbox{}_{-2}\eta^{+}_{lm\omega}\zeta_{+}+8Mr_{+}ik_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}}{4(Mr_{+})^{3/2}ik_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}\zeta_{+}^{2}}\mathscr{L}_{2(-m)(-\omega)}\,\mbox{}_{-2}\Theta_{lm\omega},} (B.6b)
¯δ+gnm¯Slmωpdown=22iω2(m)(ω)2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{n\bar{m}}}S_{lm\omega p}^{\textrm{down}}=2\sqrt{2}i\omega\mathscr{L}_{2(-m)(-\omega)}\,\mbox{}_{-2}\Theta_{lm\omega}, ¯δ+gnm¯Slmωpup=22(m)(ω)2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{n\bar{m}}}S_{lm\omega p}^{\textrm{up}}=-\sqrt{2}\mathscr{L}_{2(-m)(-\omega)}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.6c)
¯δ+gm¯m¯Slmωpin=4(2Mr+)3/2kmω22κmω1κmω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{in}}=4(2Mr_{+})^{3/2}k_{m\omega}^{2}\,\mbox{}_{-2}\kappa_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.6d)
¯δ+gm¯m¯Slmωpout=24Mr+iωkmω1κmωζ++[iζ+(21ηlmω+)+8Mr+kmω]2ηlmω+4ikmω2(2Mr+)5/21κmωζ+2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{out}}=-\frac{24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}\zeta_{+}+[i\zeta_{+}(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})+8Mr_{+}k_{m\omega}]\,\mbox{}_{-2}\eta^{+}_{lm\omega}}{4ik_{m\omega}^{2}(2Mr_{+})^{5/2}\,\mbox{}_{-1}\kappa_{m\omega}\zeta_{+}}\,\mbox{}_{-2}\Theta_{lm\omega},} (B.6e)
¯δ+gm¯m¯Slmωpdown=4ω22Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{down}}=4\omega^{2}\,\mbox{}_{-2}\Theta_{lm\omega}, ¯δ+gm¯m¯Slmωpup=i2ηlmωω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}g_{\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{up}}=\frac{i\,\mbox{}_{2}\eta^{\infty}_{lm\omega}}{\omega}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.6f)
¯δglmSlmωpin=2ηlmω+ζ+8Mr+ikmω1κmω8(Mr+)3/2ikmω1κmω2mω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm}}S_{lm\omega p}^{\textrm{in}}=\frac{\,\mbox{}_{2}\eta^{+}_{lm\omega}\zeta_{+}-8Mr_{+}ik_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}}{8(Mr_{+})^{3/2}ik_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}}\mathscr{L}_{2m\omega}\,\mbox{}_{2}\Theta_{lm\omega}, (B.6g)
¯δglmSlmωpout=2Mr+ikmω2κmωζ+2mω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm}}S_{lm\omega p}^{\textrm{out}}=2\sqrt{Mr_{+}}ik_{m\omega}\,\mbox{}_{2}\kappa_{m\omega}\zeta_{+}\mathscr{L}_{2m\omega}\,\mbox{}_{2}\Theta_{lm\omega}, (B.6h)
¯δglmSlmωpdown=2mω22Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm}}S_{lm\omega p}^{\textrm{down}}=\frac{\mathscr{L}_{2m\omega}}{\sqrt{2}}\,\mbox{}_{2}\Theta_{lm\omega}, ¯δglmSlmωpup=2iω2mω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{lm}}S_{lm\omega p}^{\textrm{up}}=\sqrt{2}i\omega\mathscr{L}_{2m\omega}\,\mbox{}_{2}\Theta_{lm\omega}, (B.6i)
¯δgmmSlmωpin=24Mr+iωkmω1κmωζ++[iζ+(21ηlmω+)8Mr+kmω]2ηlmω+16ikmω2(2Mr+)5/21κmωζ+2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S_{lm\omega p}^{\textrm{in}}=\frac{24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}\zeta_{+}+[i\zeta_{+}(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})-8Mr_{+}k_{m\omega}]\,\mbox{}_{2}\eta^{+}_{lm\omega}}{16ik_{m\omega}^{2}(2Mr_{+})^{5/2}\,\mbox{}_{1}\kappa_{m\omega}\zeta_{+}}\,\mbox{}_{2}\Theta_{lm\omega},} (B.6j)
¯δgmmSlmωpout=(2Mr+)3/2kmω22κmω1κmω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S_{lm\omega p}^{\textrm{out}}=-(2Mr_{+})^{3/2}k_{m\omega}^{2}\,\mbox{}_{2}\kappa_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}\,\mbox{}_{2}\Theta_{lm\omega}, (B.6k)
¯δgmmSlmωpdown=i2ηlmω4ω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S_{lm\omega p}^{\textrm{down}}=\frac{i\,\mbox{}_{-2}\eta^{\infty}_{lm\omega}}{4\omega}\,\mbox{}_{2}\Theta_{lm\omega}, ¯δgmmSlmωpup=ω22Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}g_{mm}}S_{lm\omega p}^{\textrm{up}}=-\omega^{2}\,\mbox{}_{2}\Theta_{lm\omega}, (B.6l)

and

¯δ+Clm¯m¯Slmωpin=4(2Mr+)5/2ikmω32κmω1κmω2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{in}}=4(2Mr_{+})^{5/2}ik_{m\omega}^{3}\,\mbox{}_{-2}\kappa_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}\,\mbox{}_{-2}\Theta_{lm\omega},} (B.7a)
¯δ+Clm¯m¯Slmωpout={4Mr+ikmω1κmω[24Mr+iωkmω1κmω+i(21ηlmω+)2ηlmω+]ζ+{8Mr+iωkmω[31κmω(21ηlmω+)42ηlmω+]+i2ηlmω+[|1ηlmω+|2+4(2λlmω+1)]}}2Θlmω16kmω3(2Mr+)7/2|1κmω|2ζ+,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{out}}&=\Big{\{}4Mr_{+}ik_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}[24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}+i(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})\,\mbox{}_{-2}\eta^{+}_{lm\omega}]\\ &\hskip 20.00003pt-\zeta_{+}\{8Mr_{+}i\omega k_{m\omega}[3\,\mbox{}_{-1}\kappa_{m\omega}(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})-4\,\mbox{}_{-2}\eta^{+}_{lm\omega}]\\ &\hskip 50.00008pt+i\,\mbox{}_{-2}\eta^{+}_{lm\omega}[|\,\mbox{}_{-1}\eta^{+}_{lm\omega}|^{2}+4(\,\mbox{}_{2}\lambda_{lm\omega}+1)]\}\Big{\}}\frac{\,\mbox{}_{-2}\Theta_{lm\omega}}{16k_{m\omega}^{3}(2Mr_{+})^{7/2}|\,\mbox{}_{-1}\kappa_{m\omega}|^{2}\zeta_{+}},\end{aligned}} (B.7b)
¯δ+Clm¯m¯Slmωpdown=4iω32Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{down}}=4i\omega^{3}\,\mbox{}_{-2}\Theta_{lm\omega}, ¯δ+Clm¯m¯Slmωpup=i2ηlmω2ω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{l\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{up}}=-\frac{i\,\mbox{}_{2}\eta^{\infty}_{lm\omega}}{2\omega}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.7c)
¯δ+Cn(lm¯)Slmωpin=4(Mr+)3/2kmω22κmω1κmωζ+2(ζ+2(m)(ω)iasinθ)2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n(l\bar{m})}}S_{lm\omega p}^{\textrm{in}}=-4(Mr_{+})^{3/2}k_{m\omega}^{2}\,\mbox{}_{-2}\kappa_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}\zeta_{+}^{-2}(\zeta_{+}\mathscr{L}_{2(-m)(-\omega)}-ia\sin\theta)\,\mbox{}_{-2}\Theta_{lm\omega},} (B.7d)
¯δ+Cn(lm¯)Slmωpout=ζ+3{[24Mr+iωkmω1κmω+i(21ηlmω+)2ηlmω+]ζ+(ζ+2(m)(ω)iasinθ)+8Mr+kmω2ηlmω+(2ζ+2(m)(ω)iasinθ)+6(4Mr+)2ikmω21κmω2(m)(ω)}2Θlmω64(Mr+)5/2ikmω21κmω,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n(l\bar{m})}}S_{lm\omega p}^{\textrm{out}}&=\zeta_{+}^{-3}\Big{\{}[24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}+i(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})\,\mbox{}_{-2}\eta^{+}_{lm\omega}]\zeta_{+}(\zeta_{+}\mathscr{L}_{2(-m)(-\omega)}-ia\sin\theta)\\ &\hskip 40.00006pt+8Mr_{+}k_{m\omega}\,\mbox{}_{-2}\eta^{+}_{lm\omega}(2\zeta_{+}\mathscr{L}_{2(-m)(-\omega)}-ia\sin\theta)\\ &\hskip 40.00006pt+6(4Mr_{+})^{2}ik_{m\omega}^{2}\,\mbox{}_{-1}\kappa_{m\omega}\mathscr{L}_{2(-m)(-\omega)}\Big{\}}\frac{\,\mbox{}_{-2}\Theta_{lm\omega}}{64(Mr_{+})^{5/2}ik_{m\omega}^{2}\,\mbox{}_{-1}\kappa_{m\omega}},\end{aligned}} (B.7e)
¯δ+Cn(lm¯)Slmωpdown=2ω22(m)(ω)2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n(l\bar{m})}}S_{lm\omega p}^{\textrm{down}}=-\sqrt{2}\omega^{2}\mathscr{L}_{2(-m)(-\omega)}\,\mbox{}_{-2}\Theta_{lm\omega},} (B.7f)
¯δ+Cn(lm¯)Slmωpup={[4ω2a2(2cos2θ3)12iω(M+iam)+2λlmω(2λlmω+2)]2(m)(ω)+4aωsinθ(12aωcosθ+2ηlmω)}2Θlmω82ω2,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n(l\bar{m})}}S_{lm\omega p}^{\textrm{up}}&=-\Big{\{}[4\omega^{2}a^{2}(2\cos^{2}\theta-3)-12i\omega(M+iam)+\,\mbox{}_{2}\lambda_{lm\omega}(\,\mbox{}_{2}\lambda_{lm\omega}+2)]\mathscr{L}_{2(-m)(-\omega)}\\ &\hskip 30.00005pt+4a\omega\sin\theta(12a\omega\cos\theta+\,\mbox{}_{2}\eta^{\infty}_{lm\omega})\Big{\}}\frac{\,\mbox{}_{-2}\Theta_{lm\omega}}{8\sqrt{2}\omega^{2}},\end{aligned}} (B.7g)
¯δ+Cnm¯m¯Slmωpin=Mr+ikmω2κmωζ+4{ζ+2[(21ηlmω+)(1)(m)(ω)2(m)(ω)]+16Mr+ikmω3/2κmωζ++2a2sin2θ+iasinθζ+2(m)(ω)}2Θlmω2,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{in}}&=\sqrt{Mr_{+}}ik_{m\omega}\,\mbox{}_{-2}\kappa_{m\omega}\zeta_{+}^{-4}\Big{\{}\zeta_{+}^{2}[(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})-\mathscr{L}_{(-1)(-m)(-\omega)}\mathscr{L}_{2(-m)(-\omega)}]\\ &\hskip 120.00018pt+16Mr_{+}ik_{m\omega}\,\mbox{}_{-3/2}\kappa_{m\omega}\zeta_{+}+2a^{2}\sin^{2}\theta\\ &\hskip 120.00018pt+ia\sin\theta\zeta_{+}\mathscr{L}_{2(-m)(-\omega)}\Big{\}}\frac{\,\mbox{}_{-2}\Theta_{lm\omega}}{\sqrt{2}},\end{aligned}} (B.7h)
¯δ+Cnm¯m¯Slmωpout=ζ+4{2ηlmω+[ζ+(iasinθζ+(1)(m)(ω))2(m)(ω)8Mr+ikmωζ++2a2sin2θ]8Mr+ikmω1κmω(ζ+(1)(m)(ω)iasinθ)2(m)(ω)+[24Mr+ωkmω1κmω+(21ηlmω+)2ηlmω+]ζ+2}2Θlmω(8Mr+)3/2ikmω1κmω,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{out}}&=\zeta_{+}^{-4}\Big{\{}\,\mbox{}_{-2}\eta^{+}_{lm\omega}[\zeta_{+}(ia\sin\theta-\zeta_{+}\mathscr{L}_{(-1)(-m)(-\omega)})\mathscr{L}_{2(-m)(-\omega)}-8Mr_{+}ik_{m\omega}\zeta_{+}+2a^{2}\sin^{2}\theta]\\ &\hskip 35.00005pt-8Mr_{+}ik_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}(\zeta_{+}\mathscr{L}_{(-1)(-m)(-\omega)}-ia\sin\theta)\mathscr{L}_{2(-m)(-\omega)}\\ &\hskip 35.00005pt+[24Mr_{+}\omega k_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}+(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})\,\mbox{}_{-2}\eta^{+}_{lm\omega}]\zeta_{+}^{2}\Big{\}}\frac{\,\mbox{}_{-2}\Theta_{lm\omega}}{(8Mr_{+})^{3/2}ik_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}},\\ \end{aligned}} (B.7i)
¯δ+Cnm¯m¯Slmωpdown=5ω22Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{down}}=-5\omega^{2}\,\mbox{}_{-2}\Theta_{lm\omega}, ¯δ+Cnm¯m¯Slmωpup=22ηlmω(1)(m)(ω)2(m)(ω)42Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{+}C_{n\bar{m}\bar{m}}}S_{lm\omega p}^{\textrm{up}}=-\frac{2\,\mbox{}_{2}\eta^{\infty}_{lm\omega}-\mathscr{L}_{(-1)(-m)(-\omega)}\mathscr{L}_{2(-m)(-\omega)}}{4}\,\mbox{}_{-2}\Theta_{lm\omega}, (B.7j)
¯δCnmmSlmωpin={4Mr+ikmω1κmω[24Mr+iωkmω1κmω+i(21ηlmω+)2ηlmω+]+ζ+{8Mr+iωkmω[31κmω(21ηlmω+)42ηlmω+]+i2ηlmω+[|1ηlmω+|2+4(2λlmω+1)]}}2Θlmωkmω3(8Mr+)7/2|1κmω|2ζ+3,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S_{lm\omega p}^{\textrm{in}}&=\Big{\{}4Mr_{+}ik_{m\omega}\,\mbox{}_{-1}\kappa_{m\omega}[24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}+i(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})\,\mbox{}_{2}\eta^{+}_{lm\omega}]\\ &\hskip 20.00003pt+\zeta_{+}\{8Mr_{+}i\omega k_{m\omega}[3\,\mbox{}_{1}\kappa_{m\omega}(2-\,\mbox{}_{-1}\eta^{+}_{lm\omega})-4\,\mbox{}_{2}\eta^{+}_{lm\omega}]\\ &\hskip 50.00008pt+i\,\mbox{}_{2}\eta^{+}_{lm\omega}[|\,\mbox{}_{1}\eta^{+}_{lm\omega}|^{2}+4(\,\mbox{}_{2}\lambda_{lm\omega}+1)]\}\Big{\}}\frac{\,\mbox{}_{2}\Theta_{lm\omega}}{k_{m\omega}^{3}(8Mr_{+})^{7/2}|\,\mbox{}_{1}\kappa_{m\omega}|^{2}\zeta_{+}^{3}},\end{aligned}} (B.7k)
¯δCnmmSlmωpout=(2Mr+)5/2ikmω32κmω1κmω2ζ+22Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S_{lm\omega p}^{\textrm{out}}=-\frac{(2Mr_{+})^{5/2}ik_{m\omega}^{3}\,\mbox{}_{2}\kappa_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}}{2\zeta_{+}^{2}}\,\mbox{}_{2}\Theta_{lm\omega},} (B.7l)
¯δCnmmSlmωpdown=i2ηlmω16ω2Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S_{lm\omega p}^{\textrm{down}}=\frac{i\,\mbox{}_{-2}\eta^{\infty}_{lm\omega}}{16\omega}\,\mbox{}_{2}\Theta_{lm\omega}, ¯δCnmmSlmωpup=iω322Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{nmm}}S_{lm\omega p}^{\textrm{up}}=-\frac{i\omega^{3}}{2}\,\mbox{}_{2}\Theta_{lm\omega}, (B.7m)
¯δCl(nm)Slmωpin=ζ+3{[24Mr+iωkmω1κmω+i2ηlmω+(21ηlmω+)]ζ+(ζ+2mω+iasinθ)8Mr+kmω2ηlmω+(2ζ+2mω+iasinθ)+6(4Mr+)2ikmω21κmω2mω}2Θlmω256(Mr+)5/2ikmω21κmω,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{l(nm)}}S_{lm\omega p}^{\textrm{in}}&=\zeta_{+}^{-3}\Big{\{}[24Mr_{+}i\omega k_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}+i\,\mbox{}_{2}\eta^{+}_{lm\omega}(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})]\zeta_{+}(\zeta_{+}\mathscr{L}_{2m\omega}+ia\sin\theta)\\ &\hskip 40.00006pt-8Mr_{+}k_{m\omega}\,\mbox{}_{2}\eta^{+}_{lm\omega}(2\zeta_{+}\mathscr{L}_{2m\omega}+ia\sin\theta)\\ &\hskip 40.00006pt+6(4Mr_{+})^{2}ik_{m\omega}^{2}\,\mbox{}_{1}\kappa_{m\omega}\mathscr{L}_{2m\omega}\Big{\}}\frac{\,\mbox{}_{2}\Theta_{lm\omega}}{256(Mr_{+})^{5/2}ik_{m\omega}^{2}\,\mbox{}_{1}\kappa_{m\omega}},\end{aligned}} (B.7n)
¯δCl(nm)Slmωpout=(Mr+)3/2kmω22κmω1κmωζ+2(ζ+2mω+iasinθ)2Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{l(nm)}}S_{lm\omega p}^{\textrm{out}}=-(Mr_{+})^{3/2}k_{m\omega}^{2}\,\mbox{}_{2}\kappa_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}\zeta_{+}^{-2}(\zeta_{+}\mathscr{L}_{2m\omega}+ia\sin\theta)\,\mbox{}_{2}\Theta_{lm\omega},} (B.7o)
¯δCl(nm)Slmωpdown={[4ω2a2(2cos2θ3)+12iω(Miam)+2λlmω(2λlmω+2)]2mω+4aωsinθ(12aωcosθ+2ηlmω)}2Θlmω322ω2,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{l(nm)}}S_{lm\omega p}^{\textrm{down}}&=-\Big{\{}[4\omega^{2}a^{2}(2\cos^{2}\theta-3)+12i\omega(M-iam)+\,\mbox{}_{2}\lambda_{lm\omega}(\,\mbox{}_{2}\lambda_{lm\omega}+2)]\mathscr{L}_{2m\omega}\\ &\hskip 30.00005pt+4a\omega\sin\theta(12a\omega\cos\theta+\,\mbox{}_{-2}\eta^{\infty}_{lm\omega})\Big{\}}\frac{\,\mbox{}_{2}\Theta_{lm\omega}}{32\sqrt{2}\omega^{2}},\end{aligned}} (B.7p)
¯δCl(nm)Slmωpup=ω22mω222Θlmω,\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{l(nm)}}S_{lm\omega p}^{\textrm{up}}=-\frac{\omega^{2}\mathscr{L}_{2m\omega}}{2\sqrt{2}}\,\mbox{}_{2}\Theta_{lm\omega}, (B.7q)
¯δClmmSlmωpin=ζ2{2ηlmω+[2a2sin2θζ+(ζ+(1)mω+3iasinθ)2mω8Mr+ikmωζ+]+8Mr+ikmω1κmω(ζ+(1)mω+3iasinθ)2mω[24Mr+ωkmω1κmω+2ηlmω+(21ηlmω+)]ζ+2}2Θlmω2(8Mr+)3/2ikmω1κmω,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lmm}}S_{lm\omega p}^{\textrm{in}}&=\zeta^{-2}\Big{\{}\,\mbox{}_{2}\eta^{+}_{lm\omega}[2a^{2}\sin^{2}\theta-\zeta_{+}(\zeta_{+}\mathscr{L}_{(-1)m\omega}+3ia\sin\theta)\mathscr{L}_{2m\omega}-8Mr_{+}ik_{m\omega}\zeta_{+}]\\ &\hskip 35.00005pt+8Mr_{+}ik_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}(\zeta_{+}\mathscr{L}_{(-1)m\omega}+3ia\sin\theta)\mathscr{L}_{2m\omega}\\ &\hskip 35.00005pt-[24Mr_{+}\omega k_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}+\,\mbox{}_{2}\eta^{+}_{lm\omega}(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})]\zeta_{+}^{2}\Big{\}}\frac{\,\mbox{}_{2}\Theta_{lm\omega}}{2(8Mr_{+})^{3/2}ik_{m\omega}\,\mbox{}_{1}\kappa_{m\omega}},\end{aligned}} (B.7r)
¯δClmmSlmωpout=Mr+ikmω2κmωζ+2{ζ+(8Mr+ikmω2κmω3iasinθ2mω)+2a2sin2θζ+2[(1)mω2mω+(21ηlmω+)]}2Θlmω22,\displaystyle\mathrlap{\begin{aligned} \,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lmm}}S_{lm\omega p}^{\textrm{out}}&=\sqrt{Mr_{+}}ik_{m\omega}\,\mbox{}_{2}\kappa_{m\omega}\zeta_{+}^{-2}\Big{\{}\zeta_{+}(8Mr_{+}ik_{m\omega}\,\mbox{}_{2}\kappa_{m\omega}-3ia\sin\theta\mathscr{L}_{2m\omega})+2a^{2}\sin^{2}\theta\\ &\hskip 115.00017pt-\zeta_{+}^{2}[\mathscr{L}_{(-1)m\omega}\mathscr{L}_{2m\omega}+(2-\,\mbox{}_{1}\eta^{+}_{lm\omega})]\Big{\}}\frac{\,\mbox{}_{2}\Theta_{lm\omega}}{2\sqrt{2}},\end{aligned}} (B.7s)
¯δClmmSlmωpdown=22ηlmω+(1)mω2mω82Θlmω,\displaystyle\mathrlap{\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lmm}}S_{lm\omega p}^{\textrm{down}}=-\frac{2\,\mbox{}_{-2}\eta^{\infty}_{lm\omega}+\mathscr{L}_{(-1)m\omega}\mathscr{L}_{2m\omega}}{8}\,\mbox{}_{2}\Theta_{lm\omega},} ¯δClmmSlmωpup=3ω222Θlmω.\displaystyle\,\mbox{}_{\mathchar 22\relax\mkern-9.0mu\delta_{-}C_{lmm}}S_{lm\omega p}^{\textrm{up}}=-\frac{3\omega^{2}}{2}\,\mbox{}_{2}\Theta_{lm\omega}. (B.7t)

References

  • [1] Brandon Carter. Global structure of the kerr family of gravitational fields. Phys. Rev., 174:1559–1571, Oct 1968.
  • [2] M. Walker and R. Penrose. On quadratic first integrals of the geodesic equations for type {22}\{22\} spacetimes. Communications in Mathematical Physics, 18:265–274, December 1970.
  • [3] Brandon Carter. Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D, 16:3395–3414, Dec 1977.
  • [4] B. Carter and R. G. McLenaghan. Generalized total angular momentum operator for the dirac equation in curved space-time. Phys. Rev. D, 19:1093–1097, Feb 1979.
  • [5] Lars Andersson, Thomas Bäckdahl, and Pieter Blue. Spin geometry and conservation laws in the Kerr spacetime. In Lydia Bieri and Shing-Tung Yau, editors, Surveys in Differential Geometry, volume 20, chapter 8, pages 183–226. International Press, August 2015.
  • [6] Alexander M. Grant and Éanna É. Flanagan. Conserved currents for electromagnetic fields in the Kerr spacetime. Class. Quant. Grav., 37(18):185021, 2020.
  • [7] Pau Amaro-Seoane et al. eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes, 6:4–110, 2013.
  • [8] Barry Wardell and Achamveedu Gopakumar. Self-force: Computational Strategies. Fund. Theor. Phys., 179:487–522, 2015.
  • [9] Scott A. Hughes. The Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. Phys. Rev., D61(8):084004, 2000. [Erratum: Phys. Rev.D90,no.10,109904(2014)].
  • [10] Yasushi Mino. Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev., D67:084027, 2003.
  • [11] Soichiro Isoyama, Ryuichi Fujita, Hiroyuki Nakano, Norichika Sago, and Takahiro Tanaka. “Flux-balance formulae” for extreme mass-ratio inspirals. PTEP, 2019(1):013E01, 2019.
  • [12] Norichika Sago, Takahiro Tanaka, Wataru Hikida, Katsuhiko Ganz, and Hiroyuki Nakano. Adiabatic evolution of orbital parameters in kerr spacetime. Progress of Theoretical Physics, 115(5):873–907, 2006.
  • [13] Alexander Grant and Eanna E. Flanagan. Non-conservation of Carter in black hole spacetimes. Class. Quant. Grav., 32(15):157001, 2015.
  • [14] Robert M. Wald. Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations. Phys. Rev. Lett., 41:203–206, Jul 1978.
  • [15] P. L. Chrzanowski. Vector Potential and Metric Perturbations of a Rotating Black Hole. Phys. Rev., D11:2042–2062, 1975.
  • [16] Steffen Aksteiner and Thomas Bäckdahl. Symmetries of linearized gravity from adjoint operators. J. Math. Phys., 60(8):082501, 2019.
  • [17] R. Penrose and W. Rindler. Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1987.
  • [18] R. Penrose and W. Rindler. Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1988.
  • [19] Thomas Bäckdahl and Juan A. Valiente Kroon. A formalism for the calculus of variations with spinors. J. Math. Phys., 57:022502, 2016.
  • [20] J.M. Stewart and M. Walker. Perturbations of spacetimes in general relativity. Proc.Roy.Soc.Lond., A341:49–74, 1974.
  • [21] S. A. Teukolsky. Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. Astrophys. J. , 185:635–648, October 1973.
  • [22] R. M. Wald. On perturbations of a Kerr black hole. Journal of Mathematical Physics, 14:1453–1461, 1973.
  • [23] Ezra Newman and Roger Penrose. An Approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3:566–578, 1962.
  • [24] Robert P. Geroch, A. Held, and R. Penrose. A space-time calculus based on pairs of null directions. J. Math. Phys., 14:874–881, 1973.
  • [25] S. A. Teukolsky and W. H. Press. Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. , 193:443–461, October 1974.
  • [26] S. Chandrasekhar. The mathematical theory of black holes. International series of monographs on physics. Clarendon Press, 1983.
  • [27] W. H. Press and S. A. Teukolsky. Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric. Astrophys. J. , 185:649–674, October 1973.
  • [28] D. V. Gal’tsov. Radiation reaction in the Kerr gravitational field. Journal of Physics A Mathematical General, 15:3737–3749, December 1982.
  • [29] E. G. Kalnins, R. G. McLenaghan, and G. C. Williams. Symmetry Operators for Maxwell’s Equations on Curved Space-Time. Royal Society of London Proceedings Series A, 439:103–113, October 1992.
  • [30] Jeffrey M. Cohen and Lawrence S. Kegeles. Electromagnetic fields in curved spaces: A constructive procedure. Phys. Rev. D, 10:1070–1084, Aug 1974.
  • [31] Lawrence S. Kegeles and Jeffrey M. Cohen. Constructive procedure for perturbations of spacetimes. Phys. Rev. D, 19:1641–1664, Mar 1979.
  • [32] Paul L. Chrzanowski, Richard A. Matzner, Vernon D. Sandberg, and Michael P. Ryan. Zero-mass plane waves in nonzero gravitational backgrounds. Phys. Rev. D, 14:317–326, Jul 1976.
  • [33] Steffen Aksteiner, Lars Andersson, and Thomas Bäckdahl. New identities for linearized gravity on the Kerr spacetime. Phys. Rev. D, 99(4):044043, 2019.
  • [34] John M. Stewart. Hertz-Bromwich-Debye-Whittaker-Penrose Potentials in General Relativity. Proc. Roy. Soc. Lond., A367:527–538, 1979.
  • [35] J. Bardeen. A Re-examination of the Teukolsky-Starobinsky Identities. unpublished, 2007.
  • [36] Gregory A. Burnett and Robert M. Wald. A conserved current for perturbations of einstein-maxwell space-times. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 430(1878):57–67, 1990.
  • [37] G.ábor Zsolt Tóth. Noether currents for the Teukolsky master equation. Class. Quant. Grav., 35(18):185009, 2018.
  • [38] Donato Bini, Christian Cherubini, Robert T Jantzen, and Remo J. Ruffini. Teukolsky master equation: De Rham wave equation for the gravitational and electromagnetic fields in vacuum. Prog. Theor. Phys., 107:967–992, 2002.
  • [39] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W. H. Freeman, 1973.
  • [40] Richard A. Isaacson. Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor. Phys. Rev., 166:1272–1279, 1968.
  • [41] G. A. Burnett. The High Frequency Limit in General Relativity. J. Math. Phys., 30:90–96, 1989.
  • [42] Stephen C. Anco and Juha Pohjanpelto. Conserved currents of massless fields of spin s>0s>0. Proc. Roy. Soc. Lond., A459:1215–1240, 2003.