This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Chinese Remainder Theorem for Partitions

Seethalakshmi K and Steven Spallone

Mathematical Sciences Institute, The Australian National University, Canberra, Australia [email protected] Indian Institute of Science Education and Research, Pune-411021,Maharashtra,India [email protected]
Abstract.

Let s,ts,t be natural numbers, and fix an ss-core partition σ\sigma and a tt-core partition τ\tau. Put d=gcd(s,t)d=\gcd(s,t) and m=lcm(s,t)m=\operatorname{lcm}(s,t), and write Nσ,τ(k)N_{\sigma,\tau}(k) for the number of mm-core partitions of length no greater than kk whose ss-core is σ\sigma and tt-core is τ\tau. We prove that for kk large, Nσ,τ(k)N_{\sigma,\tau}(k) is a quasipolynomial of period mm and degree 1d(sd)(td)\frac{1}{d}(s-d)(t-d).

Key words and phrases:
t-core partitions, Ehrhart’s Theorem, transportation polytopes

1. Introduction

For a partition λ\lambda and a natural number tt, the tt-core of λ\lambda, written coretλ\operatorname{core}_{t}\lambda, is obtained by removing hooks of size tt from the Young diagram of λ\lambda, until no more can be removed. This analogue of the Division Algorithm has its origins in the representation theory of the symmetric group [Nakayama], and finds application in the study of the partition function [wildon2008counting]. We present an analogue of the Chinese Remainder Theorem in this paper.

Write 𝒞t\mathcal{C}_{t} for the set of tt-cores. Suppose s,ts,t\in\mathbb{N} are relatively prime, and consider the map

cores,t:𝒞st𝒞s×𝒞t\operatorname{core}_{s,t}:\mathcal{C}_{st}\to\mathcal{C}_{s}\times\mathcal{C}_{t}

taking λ\lambda to (coresλ,coretλ)(\operatorname{core}_{s}\lambda,\operatorname{core}_{t}\lambda). This map cores,t\operatorname{core}_{s,t} is surjective ([fayers2014generalisation], Section 5.1), but far from injective. In fact the fibres are infinite. To capture their behavior we stratify them by length as follows.

Given a partition λ\lambda, write (λ)\ell(\lambda) for its length, meaning the number of parts of λ\lambda. For a fixed (σ,τ)𝒞s×𝒞t(\sigma,\tau)\in\mathcal{C}_{s}\times\mathcal{C}_{t}, let m=stm=st and put

(1) Nσ,τ(k)=#{λ𝒞mcoresλ=σ,coretλ=τ,(λ)k}.N_{\sigma,\tau}(k)=\#\{\lambda\in\mathcal{C}_{m}\mid\operatorname{core}_{s}\lambda=\sigma,\>\operatorname{core}_{t}\lambda=\tau,\>\ell(\lambda)\leq k\}.

In other words, Nσ,τ(k)N_{\sigma,\tau}(k) is the cardinality of the kkth stratum,

(2) cores,t1(σ,τ)𝒞mk\operatorname{core}_{s,t}^{-1}(\sigma,\tau)\cap\mathcal{C}_{m}^{k}

where 𝒞mk\mathcal{C}_{m}^{k} is the set of mm-cores of length no greater than kk.

Our first result is:

Theorem 1.

Let s,ts,t\in\mathbb{N} be relatively prime. There is a quasipolynomial Qσ,τ(k)Q_{\sigma,\tau}(k) of degree (s1)(t1)(s-1)(t-1) and period stst, so that for integers k0k\gg 0, we have Nσ,τ(k)=Qσ,τ(k)N_{\sigma,\tau}(k)=Q_{\sigma,\tau}(k). The leading coefficient of Qσ,τ(k)Q_{\sigma,\tau}(k) is a positive number Vs,tV_{s,t} depending only on ss and tt.


Here a “quasipolynomial of period nn” is a function on natural numbers whose restriction to each coset n+in\mathbb{N}+i is a polynomial; see Section  4. The quantity Vs,tV_{s,t} is the volume of a certain polytope we define in Section  LABEL:sec:_proofs_of_thm_1_and_3.

Remark 1.

If σ=τ\sigma=\tau, then σ\sigma is simultaneously an ss-core and a tt-core. In fact, the intersection 𝒞s𝒞t\mathcal{C}_{s}\cap\mathcal{C}_{t} is finite and well-studied; see [anderson2002partitions] and [fayers2011t].

Our method is as follows. We associate to τ𝒞tk\tau\in\mathcal{C}_{t}^{k} a multiset Hτ,tkH_{\tau,t}^{k} on {0,1,,t1}\{0,1,\ldots,t-1\} of size kk, corresponding to the first column hook lengths of τ\tau modulo tt. (This is James’ theory of abacuses [james1984representation, page 78].) Members of (2) correspond to matchings between Hσ,skH_{\sigma,s}^{k} and Hτ,tkH_{\tau,t}^{k}. (See Section LABEL:sec:_Counting_fibres_of_the_Sun_Tzu_map.)

Generally, let F,GF,G be multisets of the same size, with multiplicity vectors F\vec{F}, G\vec{G}. Write (F,G)\mathcal{M}(\vec{F},\vec{G}) for the polytope of real matrices with nonnegative entries, row margins F\vec{F}, and column margins G\vec{G}. Then the matchings between FF and GG correspond bijectively with the integer points of (F,G)\mathcal{M}(\vec{F},\vec{G}).

In our situation, the polytopes \mathcal{M} grow linearly in kk, and we may apply Ehrhart’s theory, which says that if 𝒫\mathcal{P} is a polytope with integer vertices, then the number of integer points in n𝒫n\cdot\mathcal{P} is a polynomial in  nn. We refer the reader to Section 4.6.2 of [Stanley], and Chapter 3 of [beck2007computing]. The degree of the polynomial is the dimension of 𝒫\mathcal{P}, and its leading coefficient is the relative volume of 𝒫\mathcal{P}.

When σ=τ=\sigma=\tau=\emptyset, and kk is a multiple of stst, this directly gives our result. The technical heart of this paper is extending Ehrhart’s Theorem to all fibres and all kk.

The polytopes (F,G)\mathcal{M}(\vec{F},\vec{G}) arising from row/column constraints are called “transportation polytopes”. Each can be expressed in the form

𝒫(A,b)={xAxb,x0},\mathcal{P}(A,\vec{b})=\{\vec{x}\mid A\vec{x}\leq\vec{b},\vec{x}\geq 0\},

for some totally unimodular matrix AA, meaning that all the minors of  AA are either 0,10,1, or 1-1. Write N(A,b)N(A,\vec{b}) for the number of integer points in the polytope 𝒫(A,b)\mathcal{P}(A,\vec{b}). Our extension of Ehrhart’s Theorem is:

Theorem 2.

Let AA be an m×nm\times n totally unimodular matrix and b,cm\vec{b},\vec{c}\in\mathbb{Z}^{m}. Suppose AA does not have any zero rows, and that 𝒫(A,b)\mathcal{P}(A,\vec{b}) is bounded of dimension nn. Then there is a polynomial f(k)f(k) so that for integers k0k\gg 0, we have N(A,bk+c)=f(k)N(A,\vec{b}k+\vec{c})=f(k). Moreover degf=n\deg f=n and the leading coefficient of ff is the volume of 𝒫(A,b)\mathcal{P}(A,\vec{b}).

Note that Ehrhart’s Theorem gives the case c=0\vec{c}=0.

Next, suppose ss and tt are not relatively prime. Let d=gcd(s,t)d=\gcd(s,t), m=lcm(s,t)m=\operatorname{lcm}(s,t) and 0=max((σ),(τ))\ell_{0}=\max(\ell(\sigma),\ell(\tau)). Again define Nσ,τ(k)N_{\sigma,\tau}(k) by (1).

Theorem 3.

If cored(σ)=cored(τ)\operatorname{core}_{d}(\sigma)=\operatorname{core}_{d}(\tau), then there is a quasipolynomial Qσ,τ(k)Q_{\sigma,\tau}(k) of degree 1d(sd)(td)\frac{1}{d}(s-d)(t-d) and period mm, so that for integers k0k\gg 0, we have Nσ,τ(k)=Qσ,τ(k)N_{\sigma,\tau}(k)=Q_{\sigma,\tau}(k). The leading coefficient of Qσ,τ(k)Q_{\sigma,\tau}(k) is (Vsd,td)d\left(V_{\frac{s}{d},\frac{t}{d}}\right)^{d}.

(It is easy to see that if cored(σ)cored(τ)\operatorname{core}_{d}(\sigma)\neq\operatorname{core}_{d}(\tau), then each Nσ,τ(k)=0N_{\sigma,\tau}(k)=0.)

We mention also a simpler related result for the fibres of the map cores:𝒞st𝒞s\operatorname{core}_{s}:\mathcal{C}_{st}\rightarrow\mathcal{C}_{s} taking an stst-core to its ss-core. For σ𝒞s\sigma\in\mathcal{C}_{s}, let

Nσ(k)={λ𝒞stcoresλ=σ,(λ)k}.N_{\sigma}(k)=\{\lambda\in\mathcal{C}_{st}\mid\operatorname{core}_{s}\lambda=\sigma,\ell(\lambda)\leq k\}.
Theorem 4.

There is a quasipolynomial Qσ(k)Q_{\sigma}(k) of degree s(t1)s(t-1) and period ss, so that for k(σ)k\geq\ell(\sigma), we have Nσ(k)=Qσ(k)N_{\sigma}(k)=Q_{\sigma}(k). The leading coefficient of Qσ(k)Q_{\sigma}(k) is 1(t1)!s\dfrac{1}{(t-1)!^{s}}.

The layout of this paper is as follows. In Section 2, we recall terminology for partitions and multisets, and in Section 3, we review James’ Theory of abacuses for computing tt-cores. Theorem 4 is worked out in Section 4, as a warm up to later material. Section 5 converts the fibre counting problem into a multiset matching problem. Preliminaries for polytopes are given in Section LABEL:sec:_Preliminaries_of_polytopes_and_notation. Our theory of integer points in polytopes, including Theorem 2, is contained in Section LABEL:sec:_Counting_integer_points_in_polytopes. Finally in Section LABEL:sec:_proofs_of_thm_1_and_3 we apply this to our core problem, giving Theorems 1 and 3.

Acknowledgments

The authors would like to thank Amritanshu Prasad for useful conversations on totally unimodular matrices and polytopes, Brendan McKay for pointing us to Ehrhart theory, and Jyotirmoy Ganguly, Ojaswi Chaurasia and Ragini Balachander for helpful discussions.

2. Preliminaries

Write ={1,2,}\mathbb{N}=\{1,2,\ldots\} for the set of natural numbers and ¯={0,1,2,}\underline{\mathbb{N}}=\{0,1,2,\ldots\} for the set of whole numbers. If SS is a set, write ‘idS\operatorname{id}_{S}’ for the identity map. If f:STf:S\to T is a map, write ‘imf\operatorname{im}f’ for the image of ff. We write fin(S)\wp_{\operatorname{fin}}(S) for the set of finite subsets of SS.

2.1. Multisets

Let SS be a set. When SS is a finite set, we write either ‘#S\#S’ or ‘|S||S|’ for the cardinality of SS. For k¯k\in\underline{\mathbb{N}}, write (Sk)\binom{S}{k} for the set of kk-element subsets of SS. Note that #(Sk)=(#Sk)\#\binom{S}{k}=\binom{\#S}{k}.

A multiset on SS is a function FF from SS to ¯\underline{\mathbb{N}}. The cardinality of FF is the sum

|F|=sSF(s).|F|=\sum_{s\in S}F(s).

The support of a multiset FF is

supp(F)={sSF(s)0}.\operatorname{supp}(F)=\{s\in S\mid F(s)\neq 0\}.

Write ‘((Sk))\big{(}\!\tbinom{S}{k}\!\big{)}’ for the set of multisets on SS of cardinality kk. Note that #((Sk))=((#Sk))\#\big{(}\!\tbinom{S}{k}\!\big{)}=\big{(}\!\tbinom{\#S}{k}\!\big{)}, where

((nk))=(k+n1k).\bigg{(}\!\!\dbinom{n}{k}\!\!\bigg{)}=\binom{k+n-1}{k}.

Write fin(S)\mathcal{M}_{\operatorname{fin}}(S) for the set of multisets on SS with finite support. Thus

fin(S)=k0((Sk)).\mathcal{M}_{\operatorname{fin}}(S)=\bigcup_{k\geq 0}\bigg{(}\!\!\dbinom{S}{k}\!\!\bigg{)}.

Given finite sets S,TS,T and a map f:STf:S\to T, define f:fin(S)fin(T)f_{*}:\mathcal{M}_{\operatorname{fin}}(S)\to\mathcal{M}_{\operatorname{fin}}(T) by

f(F)(t)=sf1(t)F(s).f_{*}(F)(t)=\sum\limits_{s\in f^{-1}(t)}F(s).

We use the same notation to denote the restriction f:((Sk))((Tk))f_{*}:\big{(}\!\tbinom{S}{k}\!\big{)}\to\big{(}\!\tbinom{T}{k}\!\big{)}, when kk is understood.

Lemma 1.

For Gfin(T)G\in\mathcal{M}_{\operatorname{fin}}(T), we have

#(f)1(G)=tT((#f1(t)G(t))).\#(f_{*})^{-1}(G)=\prod_{t\in T}\big{(}\!\tbinom{\#f^{-1}(t)}{G(t)}\!\big{)}.
Proof.

We need to count the Ffin(S)F\in\mathcal{M}_{\operatorname{fin}}(S) such that for all tTt\in T, we have

G(t)=f(F)(t)=sf1(t)F(s).\begin{split}G(t)&=f_{*}(F)(t)\\ &=\sum_{s\in f^{-1}(t)}F(s).\\ \end{split}

There are ((#f1(t)G(t)))\big{(}\!\tbinom{\#f^{-1}(t)}{G(t)}\!\big{)} many choices for the values of FF on the fibre over tTt\in T. Multiplying these gives the formula. ∎

Note that

imf={Hfin(T)supp(H)im(f)}.\operatorname{im}f_{*}=\{H\in\mathcal{M}_{\operatorname{fin}}(T)\mid\operatorname{supp}(H)\subseteq\operatorname{im}(f)\}.

For maps f:STf:S\to T and g:TUg:T\to U, note that (gf)=gf,\left(g\circ f\right)_{*}=g_{*}\circ f_{*}, and (idS)=id((Sk))\left(\operatorname{id}_{S}\right)_{*}=\operatorname{id}_{\big{(}\!\tbinom{S}{k}\!\big{)}}. This makes the association Sfin(S)S\leadsto\mathcal{M}_{\operatorname{fin}}(S) a functor from the category of sets to itself.

2.2. Partitions and Pseudopartitions

A partition λ\lambda is a weakly decreasing finite sequence of natural numbers. Thus λ=(a1,a2,,a)\lambda=\left(a_{1},a_{2},\ldots,a_{\ell}\right), with a1a2a>0a_{1}\geq a_{2}\geq\cdots\geq a_{\ell}>0. In these terms a1+a2++aa_{1}+a_{2}+\cdots+a_{\ell} is the size of λ\lambda, and =(λ)\ell=\ell(\lambda) is the length of  λ\lambda. We allow the empty partition λ=\lambda=\emptyset; its length is 0. Write Λ\Lambda for the set of partitions, and Λ\Lambda^{\ell} for the set of partitions of length \ell.

We define pseudopartitions to be weakly decreasing finite sequences of whole numbers. Thus λ=(a1,a2,,a)\lambda=\left(a_{1},a_{2},\ldots,a_{\ell}\right), with a1a2a0a_{1}\geq a_{2}\geq\cdots\geq a_{\ell}\geq 0. Again, \ell is the length of λ\lambda. For instance λ=(5,4,3,1,0,0)\lambda=(5,4,3,1,0,0) is a pseudopartition of length 66, with 22 “trailing zeros”. Write Λ¯\underline{\Lambda} for the set of pseudopartitions, and Λ¯k\underline{\Lambda}^{k} for the set of pseudopartitions of length kk. Let z:Λ¯Λ¯z:\underline{\Lambda}\to\underline{\Lambda} be the map which adds a trailing zero to the end of a pseudopartition. For instance z((5,4,0))=(5,4,0,0)z((5,4,0))=(5,4,0,0). If λ\lambda is a pseudopartition of length k\ell\leq k, define

uk(λ)=zk(λ)Λ¯k.u^{k}(\lambda)=z^{k-\ell}(\lambda)\in\underline{\Lambda}^{k}.

Write r:Λ¯Λr:\underline{\Lambda}\to\Lambda for the map which removes all trailing zeros from the pseudopartition to make it a partition, e.g., r((5,4,3,1,0,0))=(5,4,3,1)r((5,4,3,1,0,0))=(5,4,3,1). The fibres of rr are the zz-orbits of partitions.

2.3. Young Diagrams

The Young diagram of a partition λ=(a1,a2,,a)\lambda=\left(a_{1},a_{2},\ldots,a_{\ell}\right) is given by

𝒴(λ)={(i,j)×1i,1jai}.\mathcal{Y}(\lambda)=\{(i,j)\in\mathbb{N}\times\mathbb{N}\mid 1\leq i\leq\ell,1\leq j\leq a_{i}\}.

It is visualized as a collection of left justified cells arranged in rows with aia_{i} cells in the ii-th row.

Example 1.

Here is 𝒴((5,4,3,1))\mathcal{Y}((5,4,3,1)):

\ytableausetup

centertableaux \ytableaushort,\none, \none * 5,4,3,1

The hook 𝔥c\mathfrak{h}_{c} associated to a cell cc of 𝒴(λ)\mathcal{Y}(\lambda) consists of all cells to the right of cc and below cc, together with cc itself. The hooklength is the total number of cells in the hook. In the above diagram, the hooklength for the (1,1)(1,1)-cell is 88. A hook with hooklength tt is called a tt-hook.

Remark 2.

It would be more consistent to say “hooksize” rather than “hooklength”, but the usage is standard.

Of particular importance are the hooklengths corresponding to cells in the first column of 𝒴(λ)\mathcal{Y}(\lambda); we can use these to reconstruct λ\lambda. The set of first column hooklengths in Example 1 is {8,6,4,1}\{8,6,4,1\}.

2.4. Beta sets

The map which takes a partition λ\lambda to the set of first column hooklengths of 𝒴(λ)\mathcal{Y}(\lambda) gives a bijection between Λ\Lambda and fin()\wp_{\operatorname{fin}}(\mathbb{N}). In this paragraph we extend this to a bijection between Λ¯\underline{\Lambda} and fin(¯)\wp_{\operatorname{fin}}(\underline{\mathbb{N}}).

Define β:Λ¯fin(¯)\beta:\underline{\Lambda}\to\wp_{\operatorname{fin}}(\underline{\mathbb{N}}) by

β((a1,a2,,a))={a1+(1),a2+(2),,a}.\beta((a_{1},a_{2},\ldots,a_{\ell}))=\{a_{1}+(\ell-1),a_{2}+(\ell-2),\ldots,a_{\ell}\}.

The inverse β1:fin(¯)Λ¯\beta^{-1}:\wp_{\operatorname{fin}}(\underline{\mathbb{N}})\to\underline{\Lambda} is given by

β1({h1,,h})=(h1(1),h2(2),,h),\beta^{-1}(\{h_{1},\ldots,h_{\ell}\})=(h_{1}-(\ell-1),h_{2}-(\ell-2),\ldots,h_{\ell}),

for h1>>h0h_{1}>\cdots>h_{\ell}\geq 0. When λ\lambda is a partition, β(λ)\beta(\lambda) is the set of first column hooklengths of 𝒴(λ)\mathcal{Y}(\lambda). We also write ‘HλH_{\lambda}’ for β(λ)\beta(\lambda).

The “add a trailing zero” map zz translates under β\beta to

Z=βzβ1:fin(¯)fin(¯),Z=\beta\circ z\circ\beta^{-1}:\wp_{\operatorname{fin}}(\underline{\mathbb{N}})\to\wp_{\operatorname{fin}}(\underline{\mathbb{N}}),

which comes out to be

{x1,,x}{x1+1,,x+1,0}.\{x_{1},\ldots,x_{\ell}\}\mapsto\{x_{1}+1,\ldots,x_{\ell}+1,0\}.

Similarly we can translate uku^{k} to

Uk=βukβ1.U^{k}=\beta\circ u^{k}\circ\beta^{-1}.
Definition 1.

Let λ\lambda be a partition. A beta set of λ\lambda is a set of the form Zj(β(λ))Z^{j}(\beta(\lambda)) for some j¯j\in\underline{\mathbb{N}}.

Example 2.

Let λ=(5,4,3,1)\lambda=(5,4,3,1). Then Hλ={8,6,4,1}H_{\lambda}=\{8,6,4,1\}, so the beta sets of λ\lambda are:

{8,6,4,1}𝑍{9,7,5,2,0}𝑍{10,8,6,3,1,0}𝑍\{8,6,4,1\}\overset{Z}{\mapsto}\{9,7,5,2,0\}\overset{Z}{\mapsto}\{10,8,6,3,1,0\}\overset{Z}{\mapsto}\ldots
Definition 2.

If λ\lambda is a partition of length k\ell\leq k, write HλkH_{\lambda}^{k} for the beta set of λ\lambda with cardinality kk, i.e.,

Hλk=Uk(Hλ)=Zk(Hλ).H_{\lambda}^{k}=U^{k}(H_{\lambda})=Z^{k-\ell}(H_{\lambda}).

In the example above, Hλ6={10,8,6,3,1,0}H_{\lambda}^{6}=\{10,8,6,3,1,0\}.

The β\beta-set version of the “remove all trailing zeros” retraction rr is

R=βrβ1:fin(¯)fin().R=\beta\circ r\circ\beta^{-1}:\wp_{\operatorname{fin}}(\underline{\mathbb{N}})\to\wp_{\operatorname{fin}}(\mathbb{N}).

It can be computed directly as follows. Given Xfin(¯)X\in\wp_{\operatorname{fin}}(\underline{\mathbb{N}}) with 0X0\in X, put

m=min(¯X),m=\min(\underline{\mathbb{N}}-X),

i.e., the smallest whole number not in XX. Then R(X)R(X) is obtained by removing {0,,m1}\{0,\ldots,m-1\} from XX and subtracting mm from the remaining members. Of course, if 0X0\notin X, then R(X)=XR(X)=X.

3. Cores

Definition 3.

A tt-core is a partition having no tt-hook in its Young diagram. Write 𝒞t\mathcal{C}_{t} for the set of tt-cores, and put

𝒞tk={λ𝒞t(λ)k}.\mathcal{C}_{t}^{k}=\{\lambda\in\mathcal{C}_{t}\mid\ell(\lambda)\leq k\}.

3.1. Hook Removal

Suppose λ\lambda is a partition whose Young diagram contains a tt-hook 𝔥\mathfrak{h}. One may remove 𝔥\mathfrak{h} from 𝒴(λ)\mathcal{Y}(\lambda) by simply deleting 𝔥\mathfrak{h}, then moving any disconnected cells one unit up and one unit to the left.

Example 3.

The removal of a 6-hook from the partition (5,4,3,1)(5,4,3,1):

\ydiagram

[*(white)] 5,0,1+2,0 *[*(black!25)]5,4,3,1     \leadsto     \ydiagram5,0,1+2 \leadsto     \ydiagram5,2

In fact, if we remove tt-hooks successively until no tt-hook remains, the final Young diagram does not depend on the choices of hooks at each step. The corresponding partition is called the tt-core of λ\lambda, and denoted ‘coretλ\operatorname{core}_{t}\lambda’.

Example 4.

We remove 66-hooks successively from the Young diagram of (5,4,3,1)(5,4,3,1) to obtain its 66-core, which is the partition (1)(1). In Example 3 we removed a 6-hook from (5,4,3,1)(5,4,3,1) to get (5,2)(5,2), continuing from there we remove the remaining 6-hook:

\ydiagram

[*(white)] 0,1+1 *[*(black!25)]5,2       \to    \ydiagram0,1+1

Lemma 2.

Let λ\lambda be a partition, and X={x1,,xk}X=\{x_{1},\ldots,x_{k}\} a β\beta-set for λ\lambda. Then 𝒴(λ)\mathcal{Y}(\lambda) has a tt-hook iff 1ik\exists\hskip 2.84544pt1\leq i\leq k so that xitx_{i}\geq t and xitXx_{i}-t\notin X. In this case, there is a tt-hook 𝔥\mathfrak{h} of 𝒴(λ)\mathcal{Y}(\lambda) so that

(3) {x1,,xit,,xk}\{x_{1},\ldots,x_{i}-t,\ldots,x_{k}\}

is a β\beta-set for λ\𝔥\lambda\backslash\mathfrak{h}.

Proof.

This is [james1984representation, Lemma 2.7.13]. ∎

Example 5.

The sequence of hook removals in Example 4 corresponds to the sequence

{8,6,4,1}R({8,0,4,1})={6,2}R({0,2})={1}\{8,6,4,1\}\leadsto R(\{8,0,4,1\})=\{6,2\}\leadsto R(\{0,2\})=\{1\}

of β\beta-sets.

3.2. β\beta-set Version

Fix t1t\geq 1.

Definition 4.

A subset XX of ¯\underline{\mathbb{N}} is tt-reduced, provided whenever xXx\in X with xtx\geq t, we have xtXx-t\in X. Write t\mathcal{R}_{t} for the set of finite tt-reduced subsets of \mathbb{N}, and ¯t\underline{\mathcal{R}}_{t} for the set of finite tt-reduced subsets of ¯\underline{\mathbb{N}}.

For example, X={0,1,3,4,6}X=\{0,1,3,4,6\} is 33-reduced but not 22-reduced. We view fin(¯)\wp_{\operatorname{fin}}(\underline{\mathbb{N}}), and thus ¯t\underline{\mathcal{R}}_{t}, inside fin(¯)\mathcal{M}_{\operatorname{fin}}(\underline{\mathbb{N}}) via recognizing a subset of  ¯\underline{\mathbb{N}} as a multiset on ¯\underline{\mathbb{N}}. Note that the retraction RR maps ¯t\underline{\mathcal{R}}_{t} to t\mathcal{R}_{t}.

Let

ft:¯/tf_{t}:\underline{\mathbb{N}}\to\mathbb{Z}/t\mathbb{Z}

be the usual remainder mod tt map, and let

ρt=(ft):fin(¯)fin(/t)\rho_{t}=(f_{t})_{*}:\mathcal{M}_{\operatorname{fin}}(\underline{\mathbb{N}})\to\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/t\mathbb{Z})

be the induced map on multisets.

The subset ¯t\underline{\mathcal{R}}_{t} is a transversal for ρt\rho_{t}, in the sense that for each Ffin(¯)F\in\mathcal{M}_{\operatorname{fin}}(\underline{\mathbb{N}}) there is a unique F0¯tF_{0}\in\underline{\mathcal{R}}_{t} with ρt(F)=ρt(F0)\rho_{t}(F)=\rho_{t}(F_{0}).

Remark 3.

For Xfin(¯)X\in\wp_{\operatorname{fin}}(\underline{\mathbb{N}}), the map XX0X\mapsto X_{0} is traditionally visualized in terms of a base tt abacus, having tt runners labeled 0 to t1t-1, on which beads may be stacked. Given XX, beads are arranged on the abacus corresponding to their base tt place value of members of XX. To bring XX to tt-reduced form, one simply slides the beads up. This is James’ abacus method from [james1984representation, page 78].


For example, given X={8,6,4,1}X=\{8,6,4,1\} and t=6t=6, the abacus method

0¯1¯2¯3¯4¯5¯0¯1¯2¯3¯4¯5¯\begin{array}[]{cccccc}\overline{0}&\overline{1}&\overline{2}&\overline{3}&\overline{4}&\overline{5}\\ \hline\cr\circ&\bullet&\circ&\circ&\bullet&\circ\\ \bullet&\circ&\bullet&\circ&\circ&\circ\end{array}\hskip 28.45274pt\leadsto\hskip 28.45274pt\begin{array}[]{cccccc}\overline{0}&\overline{1}&\overline{2}&\overline{3}&\overline{4}&\overline{5}\\ \hline\cr\bullet&\bullet&\bullet&\circ&\bullet&\circ\\ \circ&\circ&\circ&\circ&\circ&\circ\\ \end{array}

gives X0={4,2,1,0}.X_{0}=\{4,2,1,0\}.

The map ρt\rho_{t} has a “minimal” section

ct:fin(/t)fin(¯)c_{t}:\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/t\mathbb{Z})\to\mathcal{M}_{\operatorname{fin}}(\underline{\mathbb{N}})

with image equal to ¯t\underline{\mathcal{R}}_{t}, described as follows. Given Ffin(/t)F\in\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/t\mathbb{Z}), put

ct(F)=i=0t1{at+i0aF(i)}.c_{t}(F)=\bigcup_{i=0}^{t-1}\{at+i\mid 0\leq a\leq F(i)\}.

Thus the map FF0F\mapsto F_{0} above is ctρtc_{t}\circ\rho_{t}.

Definition 5.

Given Xfin(¯)X\in\wp_{\operatorname{fin}}(\underline{\mathbb{N}}), put

Coret(X)=R(ct(ρt(X))).\operatorname{Core}_{t}(X)=R(c_{t}(\rho_{t}(X))).
Proposition 1.

If λ\lambda is a pseudopartition, then

coret(r(λ))=β1(Coret(β(λ))).\operatorname{core}_{t}(r(\lambda))=\beta^{-1}(\operatorname{Core}_{t}(\beta(\lambda))).
Proof.

Let X=β(λ)X=\beta(\lambda), and suppose X0X_{0} is obtained from XX by a sequence of steps, where each step replaces some xitx_{i}\geq t with xitx_{i}-t, so long as xitXx_{i}-t\notin X. By Lemma 2, X0X_{0} is a β\beta-set for coret(r(λ))\operatorname{core}_{t}(r(\lambda)).

By construction, X0¯tX_{0}\in\underline{\mathcal{R}}_{t}, with ρt(X)=ρt(X0)\rho_{t}(X)=\rho_{t}(X_{0}). By the above, we must have ct(ρt(X))=X0c_{t}(\rho_{t}(X))=X_{0}. It follows that R(ct(ρt(X)))=β(coret(r(λ)))R(c_{t}(\rho_{t}(X)))=\beta(\operatorname{core}_{t}(r(\lambda))), and the proposition follows. ∎

Example 6.

Let t=6t=6. For λ=(5,4,3,1)\lambda=(5,4,3,1), X=Hλ={8,6,4,1}X=H_{\lambda}=\{8,6,4,1\}. Put F=ρt(X)F=\rho_{t}(X). Then suppF={0,1,2,4}\operatorname{supp}F=\{0,1,2,4\}, and FF takes value 11 at each point in its support. Thus

ct(X)={0}{1}{2}{4}={4,2,1,0},c_{t}(X)=\{0\}\cup\{1\}\cup\{2\}\cup\{4\}=\{4,2,1,0\},

and therefore

core6(5,4,3,1)=β1(R(Core6(X)))=β1({1})=(1).\begin{split}\operatorname{core}_{6}(5,4,3,1)&=\beta^{-1}(R(\operatorname{Core}_{6}(X)))\\ &=\beta^{-1}(\{1\})\\ &=(1).\end{split}

For a partition λ\lambda of length no greater than kk, let

(4) Hλ,tk=ρt(Hλk)((/tk)).H_{\lambda,t}^{k}=\rho_{t}(H_{\lambda}^{k})\in\big{(}\!\tbinom{\mathbb{Z}/t\mathbb{Z}}{k}\!\big{)}.
Proposition 2.

The map 𝒜t:𝒞tk((/tk))\mathscr{A}_{t}:\mathcal{C}_{t}^{k}\to\big{(}\!\tbinom{\mathbb{Z}/t\mathbb{Z}}{k}\!\big{)} taking λHλ,tk\lambda\mapsto H_{\lambda,t}^{k} is a bijection. Thus

#𝒞tk=(k+t1k).\#\mathcal{C}_{t}^{k}=\binom{k+t-1}{k}.

(Compare [zhong2020bijections, Theorem 2.4].)

Proof.

We have

𝒜t=ρtβuk.\mathscr{A}_{t}=\rho_{t}\circ\beta\circ u^{k}.

Let us see that

(5) 𝒜t1=rβ1ct:((/tk))𝒞tk.\mathscr{A}_{t}^{-1}=r\circ\beta^{-1}\circ c_{t}:\big{(}\!\tbinom{\mathbb{Z}/t\mathbb{Z}}{k}\!\big{)}\to\mathcal{C}_{t}^{k}.

is in fact inverse to 𝒜t\mathscr{A}_{t}. On the one hand,

ρtβukrβ1ct=ρtUkRct=ρtct=id on ((/tk)).\begin{split}\rho_{t}\>\beta\>u^{k}\>r\>\beta^{-1}\>c_{t}&=\rho_{t}\>U^{k}\>R\>c_{t}\\ &=\rho_{t}\>c_{t}\\ &=\operatorname{id}\text{ on $\big{(}\!\tbinom{\mathbb{Z}/t\mathbb{Z}}{k}\!\big{)}$}.\\ \end{split}

On the other hand,

rβ1ctρtβuk=β1Rctρtβuk=coretruk=coret=id on 𝒞tk.\begin{split}r\>\beta^{-1}\>c_{t}\>\rho_{t}\>\beta\>u^{k}&=\beta^{-1}\>R\>c_{t}\>\rho_{t}\>\beta\>u^{k}\\ &=\operatorname{core}_{t}\circ\>r\>u^{k}\\ &=\operatorname{core}_{t}\\ &=\operatorname{id}\text{ on $\mathcal{C}_{t}^{k}$}.\qed\end{split}

Note that

Hcoretλ,tk=Hλ,tk.H^{k}_{\operatorname{core}_{t}\lambda,t}=H_{\lambda,t}^{k}.
Lemma 3.

For i(λ)i\geq\ell(\lambda), we have

Hλ,ti+t(j)=Hλ,ti(j)+1.H_{\lambda,t}^{i+t}(j)=H_{\lambda,t}^{i}(j)+1.

By definition,

Hλi+t=Zt(Hλi)=(Hλi+t){t1,t2,,0}.\begin{split}H_{\lambda}^{i+t}&=Z^{t}(H_{\lambda}^{i})\\ &=(H_{\lambda}^{i}+t)\cup\{t-1,t-2,\ldots,0\}.\\ \end{split}

Hence the multiplicity of jj in (Hλi+tmodt)(H_{\lambda}^{i+t}\mod t) is one more than its multiplicity in HλiH_{\lambda}^{i}.

4. Reducing a tt-core modulo a divisor of tt

In this section we enumerate the fibres of the retractions

coreb:𝒞ak𝒞bk,\operatorname{core}_{b}:\mathcal{C}_{a}^{k}\to\mathcal{C}_{b}^{k},

when bb is a divisor of aa. In particular, we demonstrate that the size of these fibres is quasipolynomial in kk. This could be regarded as a warm-up for our main theorems.

Definition 6.

A function f:f:\mathbb{N}\rightarrow\mathbb{\mathbb{Q}} is a quasipolynomial, provided there exists a positive integer pp so that for each 0i<p0\leq i<p, the function

nf(i+np)n\mapsto f(i+np)

where n¯n\in\underline{\mathbb{N}} is a polynomial. The degree of ff is the maximum of the degrees of these polynomials. The integer pp is a period of ff.

This definition is equivalent to the one in [Stanley, Section 4.4].
Let

fba:/a/bf_{b}^{a}:\mathbb{Z}/a\mathbb{Z}\to\mathbb{Z}/b\mathbb{Z}

be the usual remainder mod bb map, and let

ρba=(fba):fin(/a)fin(/b)\rho_{b}^{a}=(f_{b}^{a})_{*}:\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/a\mathbb{Z})\to\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/b\mathbb{Z})

be the induced map on multisets. We use the same notation for the restriction

ρba:((/ak))((/bk)).\rho_{b}^{a}:\big{(}\!\tbinom{\mathbb{Z}/a\mathbb{Z}}{k}\!\big{)}\to\big{(}\!\tbinom{\mathbb{Z}/b\mathbb{Z}}{k}\!\big{)}.
Proposition 3.

The following diagram commutes:

𝒞ak{\mathcal{C}_{a}^{k}}𝒞bk{\mathcal{C}_{b}^{k}}((/ak)){\big{(}\!\tbinom{\mathbb{Z}/a\mathbb{Z}}{k}\!\big{)}}((/bk)){\big{(}\!\tbinom{\mathbb{Z}/b\mathbb{Z}}{k}\!\big{)}}coreb\scriptstyle{\operatorname{core}_{b}}𝒜a\scriptstyle{\mathscr{A}_{a}}𝒜b\scriptstyle{\mathscr{A}_{b}}ρba\scriptstyle{\rho_{b}^{a}}
Proof.

Going down, then right, then up the diagram is the composition

𝒜b1ρba𝒜a=rβ1cbρbaρaβuk=β1Rcbρbβuk=coreb.\begin{split}\mathscr{A}_{b}^{-1}\>\rho_{b}^{a}\>\mathscr{A}_{a}&=r\>\beta^{-1}\>c_{b}\>\rho_{b}^{a}\>\rho_{a}\>\beta\>u^{k}\\ &=\beta^{-1}R\>c_{b}\>\rho_{b}\>\beta\>u^{k}\\ &=\operatorname{core}_{b}.\\ \end{split}

(We have used Proposition 1 and Equation (5).) ∎

Lemma 4.

For Gfin(/b)G\in\mathcal{M}_{\operatorname{fin}}(\mathbb{Z}/b\mathbb{Z}), we have

#(ρba)1(G)=j/b((abG(j))).\#(\rho^{a}_{b})^{-1}(G)=\prod_{j\in\mathbb{Z}/b\mathbb{Z}}\big{(}\!\tbinom{\frac{a}{b}}{G(j)}\!\big{)}.
Proof.

This follows from Lemma 1. ∎

Given σ𝒞b\sigma\in\mathcal{C}_{b}, let

Nσ(k)=#{λ𝒞acorebλ=σ,(λ)k}.N_{\sigma}(k)=\#\{\lambda\in\mathcal{C}_{a}\mid\operatorname{core}_{b}\lambda=\sigma,\ell(\lambda)\leq k\}.
Theorem 5.

There is a quasipolynomial Qσ(k)Q_{\sigma}(k) of degree aba-b and period bb, so that for k(σ)k\geq\ell(\sigma), we have Nσ(k)=Qσ(k)N_{\sigma}(k)=Q_{\sigma}(k). The leading coefficient of Qσ(k)Q_{\sigma}(k) is 1(ab1)!b\dfrac{1}{(\frac{a}{b}-1)!^{b}}.

Proof.

Let c=abc=\frac{a}{b}. By Proposition 3 and Lemma 4, for (σ)i<(σ)+b\ell(\sigma)\leq i<~{}\ell(\sigma)+~{}b we have

Nσ(i+nb)\displaystyle N_{\sigma}(i+nb) =j=0b1((cHσ,bi+nb(j)))\displaystyle=\prod\limits_{j=0}^{b-1}\big{(}\!\tbinom{c}{H_{\sigma,b}^{i+nb}(j)}\!\big{)}
=j=0b1((cHσ,bi(j)+n))\displaystyle=\prod\limits_{j=0}^{b-1}\big{(}\!\tbinom{c}{H_{\sigma,b}^{i}(j)+n}\!\big{)}
=j=0b1(n+Hσ,bi(j)+c1Hσ,bi(j)+n)\displaystyle=\prod\limits_{j=0}^{b-1}\binom{n+H_{\sigma,b}^{i}(j)+c-1}{H_{\sigma,b}^{i}(j)+n}
=j=0b1(n+Hσ,bi(j)+c1c1).\displaystyle=\prod\limits_{j=0}^{b-1}\binom{n+H_{\sigma,b}^{i}(j)+c-1}{c-1}.

Now each

(n+Hσ,bi(j)+c1c1)\binom{n+H_{\sigma,b}^{i}(j)+c-1}{c-1}

is a polynomial function of nn of degree c1c-1 and leading term

nc1(c1)!.\frac{n^{c-1}}{(c-1)!}.

Therefore Nσ(i+nb)N_{\sigma}(i+nb) is a polynomial in nn of degree aba-b and leading coefficient 1(ab1)!b\dfrac{1}{(\frac{a}{b}-1)!^{b}}. Thus the restriction of Nσ(k)N_{\sigma}(k) to the coset i+b¯i+b\underline{\mathbb{N}} is a polynomial, and the theorem follows.

This shows that for k(σ)k\geq\ell(\sigma), Nσ(k)N_{\sigma}(k) is a quasipolynomial of degree aba-b and leading coefficient 1(ab1)!b\dfrac{1}{(\frac{a}{b}-1)!^{b}}. ∎

Example 7.

Let a=6,b=2a=6,b=2, and σ=(4,3,2,1)𝒞2\sigma=(4,3,2,1)\in\mathcal{C}_{2}. Then (σ)=4\ell(\sigma)=4 and c=ab=3.c=\frac{a}{b}=3. We have

Hσ4={7,5,3,1} and Hσ5={8,6,4,2,0}.H_{\sigma}^{4}=\{7,5,3,1\}\text{ and }H_{\sigma}^{5}=\{8,6,4,2,0\}.

Hence, Hσ,24(j)={0 for j=04 for j=1H_{\sigma,2}^{4}(j)=\begin{cases}0\text{ for }j=0\\ 4\text{ for }j=1\end{cases} and Hσ,25(j)={5 for j=00 for j=1.H_{\sigma,2}^{5}(j)=\begin{cases}5\text{ for }j=0\\ 0\text{ for }j=1.\end{cases}
By Theorem 5, for n0n\geq 0,

Nσ(4+2n)\displaystyle N_{\sigma}(4+2n) =(n+22)(n+62)\displaystyle=\binom{n+2}{2}\binom{n+6}{2}
=14(n4+14n3+65n2+112n+60)\displaystyle=\frac{1}{4}(n^{4}+14n^{3}+65n^{2}+112n+60)

and

Nσ(5+2n)\displaystyle N_{\sigma}(5+2n) =(n+72)(n+22)\displaystyle=\binom{n+7}{2}\binom{n+2}{2}
=14(n4+16n3+83n2+152n+84).\displaystyle=\frac{1}{4}(n^{4}+16n^{3}+83n^{2}+152n+84).

5. Converting to a Multiset Matching Problem

In this section we recall the map cores,t\operatorname{core}_{s,t} from the introduction, and interpret the fibre counting problem in terms of multisets. By the usual Chinese Remainder Theorem, we may view /m\mathbb{Z}/m\mathbb{Z} as the fibre product of /s\mathbb{Z}/s\mathbb{Z} and /t\mathbb{Z}/t\mathbb{Z} over /d\mathbb{Z}/d\mathbb{Z}. So we then investigate the effect of the functor S((Sk))S\leadsto\big{(}\!\tbinom{S}{k}\!\big{)} on a fibre product. This study allows us to express  Nσ,τ(k)N_{\sigma,\tau}(k) in terms of classical combinatorial constants arising in margin problems for integral matrices. Moreover we give a factorization of Nσ,τ(k)N_{\sigma,\tau}(k), which allows a reduction to the case where s,ts,t are relatively prime.

5.1. The Map cores,t\operatorname{core}_{s,t}

Let s,ts,t\in\mathbb{N}, and put d=gcd(s,t)d=\gcd(s,t) and m=lcm(s,t)m=\operatorname{lcm}(s,t). Consider the map

cores,t:𝒞m𝒞s×𝒞t\operatorname{core}_{s,t}:\mathcal{C}_{m}\rightarrow\mathcal{C}_{s}\times\mathcal{C}_{t}

taking an mm-core λ\lambda to (coresλ,coretλ)(\operatorname{core}_{s}\lambda,\operatorname{core}_{t}\lambda). As in Proposition 3, we have a commutative diagram

(6) 𝒞mk{\mathcal{C}_{m}^{k}}𝒞sk×𝒞tk{\mathcal{C}_{s}^{k}\times\mathcal{C}_{t}^{k}}((/mk)){\big{(}\!\tbinom{\mathbb{Z}/m\mathbb{Z}}{k}\!\big{)}}((/sk))×((/tk)){\big{(}\!\tbinom{\mathbb{Z}/s\mathbb{Z}}{k}\!\big{)}\times\big{(}\!\tbinom{\mathbb{Z}/t\mathbb{Z}}{k}\!\big{)}}cores,t\scriptstyle{\operatorname{core}_{s,t}}𝒜m\scriptstyle{\mathscr{A}_{m}}𝒜s×𝒜t\scriptstyle{\mathscr{A}_{s}\times\mathscr{A}_{t}}ρs,t\scriptstyle{\rho_{s,t}}

where the maps out of 𝒞mk\mathcal{C}_{m}^{k} and 𝒞sk×𝒞tk\mathcal{C}_{s}^{k}\times\mathcal{C}_{t}^{k} are the bijections of Proposition 2, and

ρs,t=ρsm×ρtm.\rho_{s,t}=\rho^{m}_{s}\times\rho^{m}_{t}.

Let Nσ,τ(k)N_{\sigma,\tau}(k) be the cardinality of the fibre of cores,t\operatorname{core}_{s,t} over (σ,τ)(\sigma,\tau) for kk\in\mathbb{N}. Thus

Nσ,τ(k)=#{λ𝒞mkcoresλ=σ,coretλ=τ}.N_{\sigma,\tau}(k)=\#\{\lambda\in\mathcal{C}_{m}^{k}\mid\operatorname{core}_{s}\lambda=\sigma,\operatorname{core}_{t}\lambda=\tau\}.

By the commutativity of (6), counting fibres of cores,t\operatorname{core}_{s,t} is equivalent to counting fibres of ρs,t\rho_{s,t}.

5.2. Matchings

For finite sets S,TS,T, consider the projection maps prS:S×TS\operatorname{pr}_{S}:S\times T\to S and prT:S×TT\operatorname{pr}_{T}:S\times T\to T. There are corresponding multiset maps

(prS):((S×Tk))((Sk)),(prT):((S×Tk))((Tk)).(\operatorname{pr}_{S})_{*}:\big{(}\!\tbinom{S\times T}{k}\!\big{)}\to\big{(}\!\tbinom{S}{k}\!\big{)},\hskip 5.69046pt\hskip 5.69046pt(\operatorname{pr}_{T})_{*}:\big{(}\!\tbinom{S\times T}{k}\!\big{)}\to\big{(}\!\tbinom{T}{k}\!\big{)}.

and

pr:((S×Tk))((Sk))×((Tk))\operatorname{pr}:\big{(}\!\tbinom{S\times T}{k}\!\big{)}\to\big{(}\!\tbinom{S}{k}\!\big{)}\times\big{(}\!\tbinom{T}{k}\!\big{)}

given by pr=(prS)×(prT).\operatorname{pr}=(\operatorname{pr}_{S})_{*}\times(\operatorname{pr}_{T})_{*}.

Definition 7.

Let F((Sk))F\in\big{(}\!\tbinom{S}{k}\!\big{)} and G((Tk))G\in\big{(}\!\tbinom{T}{k}\!\big{)}. We say that Φ((S×Tk))\Phi\in\big{(}\!\tbinom{S\times T}{k}\!\big{)} is a matching from FF to GG, provided pr(Φ)=(F,G)\operatorname{pr}(\Phi)=(F,G).

Say |S|=m|S|=m and |T|=n|T|=n, with S={x1,,xm}S=\{x_{1},\ldots,x_{m}\} and T={y1,,yn}T=\{y_{1},\ldots,y_{n}\}, Given F,GF,G as above, define vectors

F=(F(x1),,F(xm))\vec{F}=(F(x_{1}),\ldots,F(x_{m}))

and

G=(G(y1),,G(yn)).\vec{G}=(G(y_{1}),\ldots,G(y_{n})).

So kk is the sum of the components of F\vec{F}, and also the sum of the components of G\vec{G}.

One says that an m×nm\times n matrix AA has row margins F\vec{F}, if F(xi)F(x_{i}) is the sum of the entries of the iith row for each ii. Similarly AA has column margins G\vec{G}, if G(yi)G(y_{i}) is the sum of the entries of the jjth column for each  jj.

Proposition 4.

Given F((Sk))F\in\big{(}\!\tbinom{S}{k}\!\big{)} and G((Tk))G\in\big{(}\!\tbinom{T}{k}\!\big{)}, there is a bijection between the set of matchings from FF to GG and the set of non-negative integral matrices with row margins F\vec{F} and column margins G\vec{G}.

Proof.

Suppose that (mij)(m_{ij}) is such a matrix. Then

Φ(xi,yj)=mij\Phi(x_{i},y_{j})=m_{ij}

is a matching from FF to GG, and this gives the required bijection. ∎

Write MF,GM_{F,G} for the number of matrices with nonnegative integer entries having row margins F\vec{F} and column margins G\vec{G}. According to [brualdi2006combinatorial, Corollary 8.1.4], if the sum of the components of F\vec{F} equals the sum of the components of G\vec{G}, then MF,G1M_{F,G}\geq 1.