This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A characterization of the unit ball by a Kähler-Einstein potential

Young-Jun Choi Department of Mathematics, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea [email protected] Kang-Hyurk Lee Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea [email protected]  and  Aeryeong Seo Department of Mathematics and RIRCM, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea [email protected] Dedicated to Professor Kang-Tae Kim on the occasion of his 65th birthday
Abstract.

We will show that a universal covering of a compact Kähler manifold with ample canonical bundle is the unit ball if it admits a global potential function of the Kähler-Einstein metric whose gradient length is a minimal constant. As an application, we will extend the Wong-Rosay theorem to a complex manifold without boundary.

Key words and phrases:
the Kähler-Einstein metric, complete holomorphic vector fields, the unit ball, automorphism groups
2010 Mathematics Subject Classification:
32Q20, 32M05, 53C55
This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA2201-01. The first named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2018R1C1B3005963, No. 2021R1A4A10324181262182065300102). The third named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2022R1F1A1063038)

1. Introduction

Most, but not all, negatively curved compact Kähler manifolds are covered by bounded symmetric domains. Thus it is natural to distinguish bounded symmetric domains from exceptional spaces, such as the universal covering of the Mostow-Siu surface ([15]). From this point of view, bounded symmetric domains have been characterized as a bounded domain with relevant conditions to the Cartan/Harish-Chandra realization of hermitian symmetric space of noncompact type ([18, 17, 6]), and as an irreducible complex manifold with nontrivial, holomorphic transformation group ([16, 7]). An important aspect in these studies is the fact that the Bergman metric of a bounded symmetric domain is the unique, biholomorphically invariant Kähler metric and its Ricci curvature is negative; thus a canonical bundle of any compact quotient is positive so ample. For the uniformization of a compact complex manifold with ample canonical bundle, it makes more sense to regard the Bergman metric as a complete Kähler-Einstein metric with negative Ricci curvature. In this paper, we shall characterize the unit ball (the bounded symmetric domain of rank 11) by an existence of a certain potential function of the Kähler-Einstein metric.

As pointed out by Kai-Ohsawa [11] (see also Theorem 2.5), a bounded homogeneous domain (so symmetric one also) admits a global potential function of its Bergman metric whose gradient length is constant, and a value of constant gradient length is indeed uniquely determined. We shall show that the unit ball has the minimal value for constant gradient length among bounded symmetric domains of the same dimension (Lemma 2.6). Moreover we can characterize the unit ball by the same minimal value condition among universal coverings of compact Kähler manifolds with ample canonical bundle.

Theorem 1.1.

Let XnX^{n} be a simply connected complex manifold of dimension nn which covers a compact complex manifold and admits a complete Kähler-Einstein metric ω\omega with negative Ricci curvature 𝖪-\mathsf{K}. Suppose that there is a global potential function φ:X\varphi:X\to\mathbb{R} of ω\omega satisfying

dφω22(n+1)𝖪.\left\|d\varphi\right\|_{\omega}^{2}\equiv\frac{2(n+1)}{\mathsf{K}}\;.

Then XX is biholomorphic to the unit ball 𝔹n={zn:z<1}\mathbb{B}^{n}=\left\{z\in\mathbb{C}^{n}:\left\|z\right\|<1\right\}.

By S. T. Yau [20], a compact Kähler manifold with ample canonical bundle has a Kähler-Einstein metric with negative Ricci curvature, so the lifted metric structure to its covering is complete. On the other way, Yau’s Schwarz Lemma ([19]) implies that a compact quotient of a complete Kähler-Einstein manifold with negative Ricci curvature is a Riemannian quotient, so its canonical bundle is positive. Thus Theorem 1.1 characterizes the unit ball in the class of universal coverings of compact Kähler manifolds with ample canonical bundle. Usually, 1-1 or (n+1)-(n+1) have been used as a normalized condition to the Ricci curvature for the uniqueness and the biholomorphical invariance, but we shall take an arbitrary negative constant 𝖪-\mathsf{K} because the minimal value 2(n+1)/𝖪2(n+1)/\mathsf{K} depends on 𝖪\mathsf{K} and we would like to indicate where the Ricci curvature is involved.

Due to the Nadel-Frankel theorem ([16, 7]), the manifold XX in Theorem 1.1 is a product space of a bounded symmetric domain and a complex manifold of discrete automorphism group (a rigid factor) since it covers a compact Kähler manifold with ample canonical bundle. On the other hand, the condition to the gradient length of the potential function φ\varphi allows us to construct a complete holomorphic vector field from the gradient vector field grad(φ)\mathrm{grad}(\varphi) (Theorem 3.2 in [2], see also Theorem 2.7 of this manuscript). We will mainly show in the proof (Section 3.1) that the specific construction of VV forces the rigid factor of XX to be trivial, so XX is equivalent to a bounded symmetric domain. Lemma 2.6, a characterization of the unit ball among bounded symmetric domains, implies that the unit ball is the only candidate to be biholomorphic to XX.

Theorem 1.1 gives an intrinsic generalization of the Wong-Rosay theorem ([18, 17]) which says that a smoothly bounded domain in n\mathbb{C}^{n} which admits a compact quotient is biholomorphically equivalent to the unit ball.

Let Ω\Omega be a bounded domain in n\mathbb{C}^{n} with C2C^{2}-smooth boundary. If the holomorphic automorphism group Aut(Ω)\mathrm{Aut}(\Omega) of Ω\Omega admits a discrete, torsion-free, cocompact subgroup Γ\Gamma, that is, the quotient complex space Γ\Ω\Gamma\backslash\Omega is compact, then there is a sequence {fj}Γ\left\{f_{j}\right\}\subset\Gamma whose orbit {fj(p)}\left\{f_{j}(p)\right\} for pΩp\in\Omega accumulates at a strongly pseudoconvex boundary point qΩq\in\partial\Omega. In [18, 17], it is proved that the asymptotic value of the ratio of Eisenman-Kobayashi and Carathéodory measures at a strongly pseudoconvex boundary point is 11. Since the ratio is invariant under automorphisms, one can see the ratio at pp is 11 so the domain Ω\Omega is biholomorphic to the unit ball. From an improvement by Efimov [5], we can directly construct a biholomorphism to the unit ball using the affine rescaling method even in case of a complex manifold with boundary (see [8]).

Here, we will try to extend the Wong-Rosay theorem to a complex manifold without boundary. Let us go back to the domain Ωn\Omega\subset\mathbb{C}^{n} and its cocompact subgroup ΓAut(Ω)\Gamma\subset\mathrm{Aut}(\Omega) as above. Admitting a compact quotient Γ\Ω\Gamma\backslash\Omega implies that Ω\Omega is pseudoconvex so has a complete Kähler-Einstein metric with Ricci curvature 𝖪-\mathsf{K} by Cheng-Yau [1] and Mok-Yau [14]. Then the gradient length dφω2\left\|d\varphi\right\|_{\omega}^{2} of the canonical potential function φ\varphi of ω\omega is uniformly bounded near a strongly pseudoconvex boundary point qq and the asymptotic value at qq is 2(n+1)/𝖪2(n+1)/\mathsf{K}:

limzqzΩdφω2(z)=2(n+1)𝖪\lim_{\genfrac{}{}{0.0pt}{}{z\to q}{z\in\Omega}}\left\|d\varphi\right\|_{\omega}^{2}(z)=\frac{2(n+1)}{\mathsf{K}}

(see Proposition 2.2). Using the method of potential rescaling as in [13], we can construct a global potential function φ~\tilde{\varphi} of ω\omega whose gradient length is the minimal constant:

dφ~ω22(n+1)𝖪.\left\|d\tilde{\varphi}\right\|_{\omega}^{2}\equiv\frac{2(n+1)}{\mathsf{K}}\;.

Since Ω\Omega is simply connected ([18]), Theorem 1.1 implies that Ω\Omega is the unit ball up to biholomorphic equivalence. More generally, we have

Theorem 1.2.

Let XnX^{n} be a complex manifold equipped with the complete Kähler-Einstein metric ω\omega with negative Ricci curvature 𝖪-\mathsf{K} and suppose that there is a discrete, torsion-free, cocompact subgroup Γ\Gamma of Aut(X)\mathrm{Aut}(X). If

  1. (1)

    there is a sequence {fj}Γ\left\{f_{j}\right\}\subset\Gamma with a localizing neighborhood UU;

  2. (2)

    there is a local potential function φ:U\varphi:U\to\mathbb{R} of ω\omega which has uniformly bounded gradient length and satisfies

    (1.1) limjdφω2(fj(x))=2(n+1)𝖪for any xX,\lim_{j\to\infty}\left\|d\varphi\right\|_{\omega}^{2}(f_{j}(x))=\frac{2(n+1)}{\mathsf{K}}\quad\text{for any $x\in X$,}

then XX is a quotient space of the unit ball 𝔹n\mathbb{B}^{n}. If UU is simply connected in addition, then XX is biholomorphic to the unit ball.

Here, a localizing neighborhood UU of {fj}\left\{f_{j}\right\} means that fj(K)Uf_{j}(K)\subset U for any compact subset KXK\subset X with sufficiently large jj. Thus the value dφω2(fj(x))\left\|d\varphi\right\|_{\omega}^{2}(f_{j}(x)) in (1.1) is defined well. In case of a domain Ωn\Omega\subset\mathbb{C}^{n} with a cocompact subgroup Γ\Gamma, an intersection ΩU\Omega\cap U for any open neighborhood UU of a strongly pseudoconvex boundary point qΩq\in\partial\Omega should be a localizing neighborhood of a sequence {fj}Aut(Ω)\left\{f_{j}\right\}\subset\mathrm{Aut}(\Omega) whose orbit accumulates at qq. As we mentioned, Condition (1.1) also holds for {fj}\left\{f_{j}\right\}.

In the proof of Theorem 1.2 (Section 3.2), we will apply the method of potential rescaling in [13, 2] to construct a global potential function with constant gradient length 2(n+1)/𝖪2(n+1)/\mathsf{K}. Then Theorem 1.1 allows us to conclude that the universal covering space is equivalent to the unit ball.

The organization of this paper is as follows. We will introduce the gradient length of potentials, some relevant identities and basic materials for the main results in Section 2; especially the characterization of the unit ball among bounded symmetric domains by the minimal length constant 2(n+1)/𝖪2(n+1)/\mathsf{K} (Section 2.3) and the existence of a complete holomorphic vector field in case of the minimal length constant (Section 2.4, see also [2]). Then we will prove Theorem 1.1 and Theorem 1.2 in Section 3.

2. A Kähler-Einstein potential with constant gradient length and the existence of a complete holomorphic vector field

We will discuss now a negatively curved, complete Kähler-Einstein manifold admitting a global potential function with constant gradient length. In Lemma 2.6, we will characterize the unit ball among bounded symmetric domains by a minimal constant of gradient length. Then the existence theorem of a complete holomorphic vector field in case of the minimal constant will be introduced.

Throughout this section, XnX^{n} is an nn-dimensional complex manifold and ω\omega is its complete Kähler-Einstein metric with negative Ricci curvature 𝖪-\mathsf{K}, that is,

Ric(ω)=𝖪ω\mathrm{Ric}(\omega)=-\mathsf{K}\omega\quad

where ω\omega also stands for its Kähler form. We will employ z=(z1,,zn)z=(z^{1},\ldots,z^{n}) as a local coordinate system for local expressions of quantities. In this local coordinates, (gαβ¯)(g_{\alpha\bar{\beta}}) stands for the metric tensor of ω\omega:

ω=1gαβ¯dzαdzβ¯\omega=\sqrt{-1}g_{\alpha\bar{\beta}}dz^{\alpha}\wedge dz^{\bar{\beta}}

where the indices α,β,\alpha,\beta,\ldots run from 11 to nn and the summation convention for duplicated indices is always assumed. We denote the complex conjugate of a tensor by taking the bar on the indices: zα¯=zα¯\overline{z^{\alpha}}=z^{\bar{\alpha}}, gαβ¯¯=gα¯β\overline{g_{\alpha\bar{\beta}}}=g_{\bar{\alpha}\beta}. We will also use the matrix (gαβ¯)(g_{\alpha\bar{\beta}}) and its inverse matrix (gβ¯α)(g^{\bar{\beta}\alpha}) to raise and lower indices:

φα=gαβ¯φβ¯,Rβμν¯α=gγ¯αRβγ¯μν¯.\varphi^{\alpha}=g^{\alpha\bar{\beta}}\varphi_{\bar{\beta}}\;,\quad{R}^{\phantom{\beta}\alpha}_{\beta\phantom{\alpha}\mu\bar{\nu}}=g^{\bar{\gamma}\alpha}R_{\beta\bar{\gamma}\mu\bar{\nu}}\;.

2.1. Gradient length of a potential function

A potential function φ\varphi of ω\omega is a local smooth function satisfying

ddcφ=ω.dd^{c}\varphi=\omega\;.

Here dc=12(¯)d^{c}=\frac{\sqrt{-1}}{2}(\bar{\partial}-\partial) so ddc=1¯dd^{c}=\sqrt{-1}\partial\bar{\partial}. Locally, a potential function is naturally given by

(2.1) φ=1𝖪logdet(gαβ¯)\varphi=\frac{1}{\mathsf{K}}\log\det(g_{\alpha\bar{\beta}})

since ω\omega is Kähler-Einstein and the Ricci form is written by

Ric(w)=ddclogdet(gαβ¯).\mathrm{Ric}(w)=-dd^{c}\log\det(g_{\alpha\bar{\beta}}).

For a bounded pseudoconvex domain Ω\Omega in n\mathbb{C}^{n} and its Kähler-Einstein metric ω\omega, the function given by (2.1) with respect to the standard coordinates of n\mathbb{C}^{n} is a global potential function of ω\omega, so called a canonical potential of (Ω,ω)(\Omega,\omega).

The gradient length of a potential function φ\varphi is the length of the 11-form dφd\varphi measured by ω\omega which is locally expressed by

dφω2=φαdzα+φβ¯dzβ¯ω2=2φαφβ¯gαβ¯=2φαφα\left\|d\varphi\right\|_{\omega}^{2}=\left\|\varphi_{\alpha}dz^{\alpha}+\varphi_{\bar{\beta}}dz^{\bar{\beta}}\right\|_{\omega}^{2}=2\varphi_{\alpha}\varphi_{\bar{\beta}}g^{\alpha\bar{\beta}}=2\varphi_{\alpha}\varphi^{\alpha}

where φα=φ/zα\varphi_{\alpha}=\partial\varphi/\partial z^{\alpha}, φβ¯=φ/zβ¯\varphi_{\bar{\beta}}=\partial\varphi/\partial z^{\bar{\beta}}. For the sake of simplicity, we will often employ

φω2=φαφα=12dφω2\left\|\partial\varphi\right\|_{\omega}^{2}=\varphi_{\alpha}\varphi^{\alpha}=\frac{1}{2}\left\|d\varphi\right\|_{\omega}^{2}

as a gradient length.

Remark 2.1.

If ω\omega^{\prime} is another complete Kähler-Einstein metric with Ricci curvature 𝖪-\mathsf{K}^{\prime}, then by the uniqueness of Kähler-Einstein metric ([19]), we have

𝖪ω=𝖪ω\mathsf{K}\omega=\mathsf{K}^{\prime}\omega^{\prime}

since the Ricci curvature tensor is invariant under the scalar multiplication to the metric so

𝖪ω=Ric(ω)=Ric(ω)=𝖪ω.-\mathsf{K}\omega=\mathrm{Ric}(\omega)=\mathrm{Ric}(\omega^{\prime})=-\mathsf{K}^{\prime}\omega^{\prime}\;.

Given potential φ\varphi^{\prime} of ω\omega^{\prime}, a corresponding potential of ω\omega is of the form φ=𝖪φ/𝖪\varphi=\mathsf{K}^{\prime}\varphi^{\prime}/\mathsf{K}, so we have a relation of their gradient length:

(2.2) φω2=(𝖪𝖪)2φω2=𝖪𝖪φω2.\left\|\partial\varphi\right\|_{\omega}^{2}=\left(\frac{\mathsf{K}^{\prime}}{\mathsf{K}}\right)^{2}\left\|\partial\varphi^{\prime}\right\|_{\omega}^{2}=\frac{\mathsf{K}^{\prime}}{\mathsf{K}}\left\|\partial\varphi^{\prime}\right\|_{\omega^{\prime}}^{2}\;.

2.2. Boundary behavior of gradient length

Let us consider the Kähler-Einstein metric of the unit ball 𝔹n={zn:z<1}\mathbb{B}^{n}=\left\{z\in\mathbb{C}^{n}:\left\|z\right\|<1\right\}. The defining function ρ(z)=z21\rho(z)=\left\|z\right\|^{2}-1 gives a potential function

(2.3) φρ=log(ρ)=log(1z2)=1n+1log1(1z2)n+1,\varphi_{\rho}=-\log(-\rho)=-\log\left(1-\left\|z\right\|^{2}\right)=\frac{1}{n+1}\log\frac{1}{\left(1-\left\|z\right\|^{2}\right)^{n+1}}\;,

of the complete Kähler-Einstein metric ω𝔹n\omega_{\mathbb{B}^{n}} with Ricci curvature (n+1)-(n+1) (i.e. 𝖪=n+1\mathsf{K}=n+1), whose metric tensor is given by

gαβ¯𝔹n=n+1(1z2)2(δαβ¯(1z2)+zα¯zβ).g_{\alpha\bar{\beta}}^{\mathbb{B}^{n}}=\frac{n+1}{\left(1-\left\|z\right\|^{2}\right)^{2}}\left(\delta_{\alpha\bar{\beta}}(1-\left\|z\right\|^{2})+z^{\bar{\alpha}}z^{\beta}\right)\;.

One can easily see that φρ\varphi_{\rho} is the canonical potential function of ω𝔹n\omega^{\mathbb{B}^{n}}. From

g𝔹nαβ¯=(1z2)n+1(δαβ¯zαzβ¯),g^{\alpha\bar{\beta}}_{\mathbb{B}^{n}}=\frac{(1-\left\|z\right\|^{2})}{n+1}\left(\delta^{\alpha\bar{\beta}}-z^{\alpha}z^{\bar{\beta}}\right)\;,

we have

φρω2=z2.\left\|\partial\varphi_{\rho}\right\|_{\omega}^{2}=\left\|z\right\|^{2}\;.

This implies that the boundary value of φρω2\left\|\partial\varphi_{\rho}\right\|_{\omega}^{2} is 11. For the Kähler-Einstein metric ω=n+1𝖪ω𝔹n\omega=\frac{n+1}{\mathsf{K}}\omega_{\mathbb{B}^{n}} with Ricci curvature 𝖪-\mathsf{K} and its potential function φ=n+1𝖪φρ\varphi=\frac{n+1}{\mathsf{K}}\varphi_{\rho}, one can see that

φω2(z)n+1𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}(z)\to\frac{n+1}{\mathsf{K}}\;.

as zz tends to 𝔹n\partial\mathbb{B}^{n} from (2.2).

In Proposition 4.3 in [2], we proved that such boundary behavior of gradient length still holds for strongly pseudoconvex bounded domains. From [9], we can also have the same estimate near a strongly pseudoconvex boundary point.

Proposition 2.2.

Let Ωn\Omega\subset\mathbb{C}^{n} be a bounded pseudoconvex domain with CkC^{k} boundary where kmax{2n+9,3n+6}k\geq\max\left\{2n+9,3n+6\right\} and let φ\varphi be the canonical potential of the complete Kähler-Einstein metric ω\omega with Ricci curvature 𝖪-\mathsf{K}. If qΩq\in\partial\Omega is a strongly pseudoconvex boundary point, then

φω2(z)n+1𝖪\left\|\partial\varphi\right\|_{\omega}^{2}(z)\to\frac{n+1}{\mathsf{K}}

as zqz\to q.

Proof.

This is proved in [2] when Ω={zn:r(z)<0}\Omega=\{z\in\mathbb{C}^{n}:r(z)<0\} is a bounded strongly pseudoconvex domain with a smooth boundary by using the boundary behavior of the solution of the following complex Monge-Ampere equation [1]:

(2.4) (ω+ddcu)n\displaystyle\left(\omega+dd^{c}u\right)^{n} =e𝖪u+Fωn,\displaystyle=e^{\mathsf{K}u+F}\omega^{n},
ω+ddcu\displaystyle\omega+dd^{c}u >0,\displaystyle>0,

where ω=log(r)\omega=-\log(-r) and F=logdet(rαβ¯)(r+|dr|2)F=\log\det(r_{\alpha\bar{\beta}})(-r+\left\lvert dr\right\rvert^{2}). More precisely, if rr is a defining function, which is called an approximate solution of the complex Monge-Ampere equation, satisfying

F=logdet(rαβ¯)(r+|r|2)=O(|r|n+1),F=\log\det(r_{\alpha\bar{\beta}})(-r+\left\lvert\partial r\right\rvert^{2})=O(\left\lvert r\right\rvert^{n+1}),

then uu satisfies that

(2.5) |Dpu|(x)=O(|r|n+1/2pε)forε>0.\left\lvert D^{p}u\right\rvert(x)=O(\left\lvert r\right\rvert^{n+1/2-p-\varepsilon})\quad\text{for}\quad\varepsilon>0.

Since φ=log(r)+u\varphi=-\log(-r)+u, one can easily compute the boundary behavior of φ2\left\|\partial\varphi\right\|^{2}.

In case that Ω\Omega is a bounded pseudoconvex domain with the hypothesis, Gontard proved that there exists a local approximate solution rr in a neighborhood UnU\subset\mathbb{C}^{n} of qΩq\in\partial\Omega ([9]). He also proved that the local solution uu of (2.4) in UΩU\cap\Omega with a local approximate solution rr satisfies the boundary behavior (2.5). Then the same computation as in the previous case gives the conclusion. (For the detailed proof, see Section 4 in [2].) ∎

2.3. The minimal value of constant gradient length

For a bounded symmetric domain Ω\Omega in n\mathbb{C}^{n}, the Bergman metric ωΩ=ddclogKΩ\omega_{\Omega}=dd^{c}\log K_{\Omega} given by the Bergman kernel function KΩK_{\Omega} is the complete Kähler-Einstein metric. As an extended study of [4] for the L2L^{2}-cohomology vanishing, Donnelly [3] proved that the potential function logKΩ\log K_{\Omega} has bounded gradient length in order to get a kind of Kähler-hyperbolicity of the Bergman metric ([10]). In the paper of Kai-Ohsawa ([11]), they considered the Cayley transform to a Siegel domain of the second kind. Since a homogeneous Siegel domain of the second kind is affine-homogeneous, its Bergman kernel function generates a potential function with constant gradient length. Moreover a value of constant gradient length does not depend on any choice of potentials (see also Theorem 2.5). Under the normalized condition 𝖪-\mathsf{K} to the Ricci curvature, we will prove that the gradient length constant of the unit ball is minimal among bounded symmetric domains.

Let us denote by Δω\Delta_{\omega} the Laplace-Beltrami operator of ω\omega with non-positive eigenvalues which is locally written by

Δω=gαβ¯αβ¯\Delta_{\omega}=g^{\alpha\bar{\beta}}\nabla_{\alpha}\nabla_{\bar{\beta}}

where \nabla is the covariant derivative of ω\omega and α=/zα\nabla_{\alpha}=\nabla_{\partial/\partial z^{\alpha}}, β¯=/zβ¯\nabla_{\bar{\beta}}=\nabla_{\partial/\partial z^{\bar{\beta}}}.

Proposition 2.3 (Proposition 3.1 in [2]).

Let φ\varphi be a local potential function of a complete Kähler-Einstein manifold (Xn,ω)(X^{n},\omega) with negative Ricci curvature 𝖪-\mathsf{K}. Then

Δωφω2=2φω2+n𝖪φω2.\Delta_{\omega}\left\|\partial\varphi\right\|^{2}_{\omega}=\left\|\nabla^{\prime 2}\varphi\right\|_{\omega}^{2}+n-\mathsf{K}\left\|\partial\varphi\right\|^{2}_{\omega}\;.

Here, \nabla^{\prime} is the (1,0)(1,0)-part of \nabla. The length 2φω2\left\|\nabla^{\prime 2}\varphi\right\|_{\omega}^{2} can be locally written by

2φω2=(βαφ)dzαdzβω2=φα;βdzαdzβω2=φα;βφλ¯;μ¯gαλ¯gβμ¯=φα;βφα;β\left\|\nabla^{\prime 2}\varphi\right\|_{\omega}^{2}=\left\|(\nabla_{\beta}\nabla_{\alpha}\varphi)dz^{\alpha}\otimes dz^{\beta}\right\|_{\omega}^{2}=\left\|\varphi_{\alpha;\beta}dz^{\alpha}\otimes dz^{\beta}\right\|_{\omega}^{2}\\ =\varphi_{\alpha;\beta}\varphi_{\bar{\lambda};\bar{\mu}}g^{\alpha\bar{\lambda}}g^{\beta\bar{\mu}}=\varphi_{\alpha;\beta}\varphi^{\alpha;\beta}\;

and coincides with the trace of the semi-positive symmetric operator

(2.6) φ;β¯αφ;γβ¯zαdzγ{\varphi}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}{\varphi}^{\phantom{}\bar{\beta}}_{\phantom{\bar{\beta}};\gamma}\frac{\partial}{\partial z^{\alpha}}\otimes dz^{\gamma}

of T(1,0)XT^{(1,0)}X.

Suppose that φω2\left\|\partial\varphi\right\|_{\omega}^{2} is locally constant. Then we have

0=(φω2)=(φαφα);βdzβ=(φα;βφα+φαφ;βα)dzβ=(φα;βφα+φαδβα)dzβ=(φα;βφα+φβ)dzβ.0=\partial\left(\left\|\partial\varphi\right\|_{\omega}^{2}\right)=(\varphi_{\alpha}\varphi^{\alpha})_{;\beta}dz^{\beta}=\left(\varphi_{\alpha;\beta}\varphi^{\alpha}+\varphi_{\alpha}{\varphi}^{\phantom{}\alpha}_{\phantom{\alpha};\beta}\right)dz^{\beta}\\ =\left(\varphi_{\alpha;\beta}\varphi^{\alpha}+\varphi_{\alpha}{\delta}^{\phantom{}\alpha}_{\phantom{\alpha}\beta}\right)dz^{\beta}=\left(\varphi_{\alpha;\beta}\varphi^{\alpha}+\varphi_{\beta}\right)dz^{\beta}.

It follows that

(2.7) φα;βφα=φβ;αφα=φβ.\varphi_{\alpha;\beta}\varphi^{\alpha}=\varphi_{\beta;\alpha}\varphi^{\alpha}=-\varphi_{\beta}.

This means that at each point of XX where φ\varphi is defined, the gradient vector

grad(φ)=φαzα=gαβ¯φβ¯zα\mathrm{grad}(\varphi)=\varphi^{\alpha}\frac{\partial}{\partial z^{\alpha}}=g^{\alpha\bar{\beta}}\varphi_{\bar{\beta}}\frac{\partial}{\partial z^{\alpha}}

is an eigenvector of the semi-positive symmetric operator in (2.6) with the eigenvalue 11. Therefore 2φω21\left\|\nabla^{\prime 2}\varphi\right\|_{\omega}^{2}\geq 1. As a conclusion, we have

0=Δωφω2=2φω2+n𝖪φω21+n𝖪φω2.0=\Delta_{\omega}\left\|\partial\varphi\right\|_{\omega}^{2}=\left\|\nabla^{\prime 2}\varphi\right\|_{\omega}^{2}+n-\mathsf{K}\left\|\partial\varphi\right\|_{\omega}^{2}\geq 1+n-\mathsf{K}\left\|\partial\varphi\right\|_{\omega}^{2}\;.

This implies the following.

Proposition 2.4.

Let φ\varphi be a local potential function of the Kähler-Einstein metric ω\omega with negative Ricci curvature K-K. If the length φω\left\|\partial\varphi\right\|_{\omega} is constant, then

φω2n+1𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}\geq\frac{n+1}{\mathsf{K}}\;.

Now we will see that only the unit ball has a global Kähler-Einstein potential function whose gradient length attains the optimal (so minimal) constant (n+1)/𝖪(n+1)/\mathsf{K}.

2.3.1. A potential of the unit ball 𝔹n\mathbb{B}^{n}

Let ω𝔹n\omega_{\mathbb{B}^{n}} be the Kähler-Einstein metric of 𝔹n\mathbb{B}^{n} with Ricci curvature (n+1)-(n+1) and φρ\varphi_{\rho} be its canonical potential as in Section 2.2. One can construct a potential function

φ~=φρ+2log|1+z1|=1n+1log|1+z1|2(n+1)(1z2)n+1,\tilde{\varphi}=\varphi_{\rho}+2\log\left\lvert 1+z^{1}\right\rvert=\frac{1}{n+1}\log\frac{\left\lvert 1+z^{1}\right\rvert^{2(n+1)}}{\left(1-\left\|z\right\|^{2}\right)^{n+1}}\;,

applying the method of potential rescaling in [13] to a sequence of hyperbolic automorphisms whose orbit accumulates at (1,0,,0)𝔹n(1,0,\ldots,0)\in\partial\mathbb{B}^{n}. By Proposition 2.2 in [13], this φ~\tilde{\varphi} has a constant gradient length

φ~ω𝔹n21.\left\|\tilde{\varphi}\right\|_{\omega_{\mathbb{B}^{n}}}^{2}\equiv 1\;.

Therefore

φ=n+1𝖪φ~=1𝖪log|1+z1|2(n+1)(1z2)n+1\varphi=\frac{n+1}{\mathsf{K}}\tilde{\varphi}=\frac{1}{\mathsf{K}}\log\frac{\left\lvert 1+z^{1}\right\rvert^{2(n+1)}}{\left(1-\left\|z\right\|^{2}\right)^{n+1}}

is a potential function of the complete Kähler-Einstein metric ω\omega with Ricci curvature 𝖪-\mathsf{K} satisfying

φω2n+1𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}\equiv\frac{n+1}{\mathsf{K}}\;.

2.3.2. A potential for the bounded symmetric domain

Irreducible bounded symmetric domains consist of the following four classical type domains,

Ωp,qI\displaystyle\Omega_{p,q}^{\mathrm{I}} ={ZM(p,q):IpZZ>0},\displaystyle=\left\{Z\in M^{\mathbb{C}}(p,q):I_{p}-ZZ^{*}>0\right\}\;,
ΩmII\displaystyle\Omega^{\mathrm{II}}_{m} ={ZM(m,m):ImZZ>0,Zt=Z},\displaystyle=\left\{Z\in M^{\mathbb{C}}(m,m):I_{m}-ZZ^{*}>0,\,\,Z^{t}=-Z\right\}\;,
ΩmIII\displaystyle\Omega_{m}^{\mathrm{III}} ={ZM(m,m):ImZZ>0,Zt=Z},\displaystyle=\left\{Z\in M^{\mathbb{C}}(m,m):I_{m}-ZZ^{*}>0,\,\,Z^{t}=Z\right\}\;,
ΩmIV\displaystyle\Omega_{m}^{\mathrm{IV}} ={Z=(z1,,zm)m:ZZ<1, 0<12ZZ+|ZZt|2},\displaystyle=\left\{Z=(z_{1},\ldots,z_{m})\in{\mathbb{C}}^{m}:ZZ^{*}<1,\,0<1-2ZZ^{*}+\left|ZZ^{t}\right|^{2}\right\}\;,

and two exceptional type domains,

Ω16V,Ω27VI.\Omega_{16}^{\mathrm{V}}\;,\quad\Omega_{27}^{\mathrm{VI}}\;.

Here M(p,q)M^{\mathbb{C}}(p,q) denotes the set of p×qp\times q complex matrices and ZZ^{*} the complex conjugate transpose of the matrix ZM(p,q)Z\in M^{\mathbb{C}}(p,q).

Let Ω\Omega be an irreducible bounded symmetric domain in n\mathbb{C}^{n}. The Bergman kernel KΩK_{\Omega} is of the form

KΩ(z,z)=cNΩ(z,z)cΩK_{\Omega}(z,z)=cN_{\Omega}(z,z)^{-c_{\Omega}}

for the generic norm NΩN_{\Omega} of Ω\Omega and some positive constants cc, cΩc_{\Omega}. The constant cΩc_{\Omega}, the dimension nn and the rank rr are given by as follows.

Table 1. Invariants
Ω\Omega Ωp,qI\Omega_{p,q}^{\mathrm{I}} Ωm,mII\Omega_{m,m}^{\mathrm{II}} Ωm,mIII\Omega^{\mathrm{III}}_{m,m} ΩmIV\Omega_{m}^{\mathrm{IV}} Ω16V\Omega_{16}^{\mathrm{V}} Ω27VI\Omega_{27}^{\mathrm{VI}}
cΩc_{\Omega} p+qp+q 2(m1)2(m-1) m+1m+1 mm 1212 1818
nn pqpq m(m1)2\frac{m(m-1)}{2} m(m+1)2\frac{m(m+1)}{2} mm 1616 2727
rr pp [m2]\left[\frac{m}{2}\right] mm 22 22 33

By abuse of notation, we will denote the Bergman kernel function by KΩK_{\Omega}, that is, KΩ(z)=KΩ(z,z)K_{\Omega}(z)=K_{\Omega}(z,z). Let us consider the Bergman metric ωΩ\omega_{\Omega} of Ω\Omega,

ωΩ=ddclogKΩ,\omega_{\Omega}=dd^{c}\log K_{\Omega}\;,

which is also a complete Kähler-Einstein metric with Ricci curvature 1-1 (i.e. 𝖪=1\mathsf{K}=1). We remark that the potential function logKΩ\log K_{\Omega} does not have a constant gradient length.

Let us consider a Cayley transform σ:ΩS\sigma:\Omega\to S where SS is a Siegel domain of the second kind. Then the Bergman kernel function KSK_{S} of SS gives a potential function σlogKS\sigma^{*}\log K_{S} of (Ω,ωΩ)(\Omega,\omega_{\Omega}) with constant gradient length.

Theorem 2.5 (Kai-Ohsawa [11]).

The potential function σlogKS\sigma^{*}\log K_{S} of ωΩ\omega_{\Omega} has a constant gradient length LΩL_{\Omega}:

(σlogKS)ωΩ2LΩ.\left\|\partial(\sigma^{*}\log K_{S})\right\|_{\omega_{\Omega}}^{2}\equiv L_{\Omega}\;.

If there is another potential function φ\varphi with constant φωΩ2\left\|\partial\varphi\right\|_{\omega_{\Omega}}^{2}, then φωΩ2LΩ\left\|\partial\varphi\right\|_{\omega_{\Omega}}^{2}\equiv L_{\Omega}.

For a maximal totally geodesic polydisc Δr\Delta^{r} in Ω\Omega where rr is the rank of Ω\Omega, we may assume that

Δr={(z1,,zr,0,0):|zα|<1 for α=1,,r}\Delta^{r}=\left\{(z^{1},\ldots,z^{r},0\ldots,0):\left\lvert z^{\alpha}\right\rvert<1\text{ for $\alpha=1,\ldots,r$}\right\}

by a change of coordinates of n\mathbb{C}^{n}. Then we can take a Cayley transform σ:ΩS\sigma\colon\Omega\to S such that

  1. (1)

    SS is a Siegel domain of the second kind in n\mathbb{C}^{n},

  2. (2)

    the restriction σ|Δr:ΔrrS\sigma|_{\Delta^{r}}\colon\Delta^{r}\to\mathbb{H}^{r}\subset S is a Cayley transformation of the polydisc to the rr-product of the right half plane ={ζ:Reζ<0}\mathbb{H}=\left\{\zeta\in\mathbb{C}:\mathrm{Re}\,\zeta<0\right\},

    r={(w1,,wr,0,,0):Rewα<0 for α=1,,r},\mathbb{H}^{r}=\{(w^{1},\ldots,w^{r},0,\ldots,0):\mathrm{Re}\,w^{\alpha}<0\text{ for $\alpha=1,\ldots,r$}\}\;,

    more precisely

    (2.8) σ(z1,,zr,0,,0)=(z11z1+1,,zr1zr+1,0,,0).\sigma(z^{1},\ldots,z^{r},0,\ldots,0)=\left(\frac{z^{1}-1}{z^{1}+1},\ldots,\frac{z^{r}-1}{z^{r}+1},0,\ldots,0\right)\;.

Note that at w=(w1,,wr,0,,0)rw=(w^{1},\ldots,w^{r},0,\ldots,0)\in\mathbb{H}^{r}, the Bergman kernel KSK_{S} of SS is written by

(2.9) KS(w,w)=C(Kr(w,w))cΩ/2=C(K(w1,w1)K(wr,wr))cΩ/2K_{S}(w,w)=C\left(K_{\mathbb{H}^{r}}(w,w)\right)^{c_{\Omega}/2}=C\left(K_{\mathbb{H}}(w^{1},w^{1})\cdots K_{\mathbb{H}}(w^{r},w^{r})\right)^{c_{\Omega}/2}

for some positive constant CC where KK_{\mathbb{H}} is the Bergman kernel of \mathbb{H}.

By a straightforward calculation, the Bergman metric is cΩδαβ¯c_{\Omega}\delta_{\alpha\bar{\beta}} at 0Ω0\in\Omega, so we get

LΩ=(σlogKS)ωΩ2(0)=log(KSσ)ωΩ2(0)=α=1nzαlog(KSσ)dzαωΩ2(0)=1cΩα=1n|zα|z=0log(KSσ)|21cΩα=1r|zα|z=0log(KSσ)|2.L_{\Omega}=\left\|\partial(\sigma^{*}\log K_{S})\right\|_{\omega_{\Omega}}^{2}(0)=\left\|\partial\log(K_{S}\circ\sigma)\right\|_{\omega_{\Omega}}^{2}(0)\\ =\left\|\sum_{\alpha=1}^{n}\frac{\partial}{\partial z^{\alpha}}\log(K_{S}\circ\sigma)dz^{\alpha}\right\|_{\omega_{\Omega}}^{2}(0)=\frac{1}{{c_{\Omega}}}\sum_{\alpha=1}^{n}\left|\left.\frac{\partial}{\partial z^{\alpha}}\right|_{z=0}\log(K_{S}\circ\sigma)\right|^{2}\\ \geq\frac{1}{{c_{\Omega}}}\sum_{\alpha=1}^{r}\left|\left.\frac{\partial}{\partial z^{\alpha}}\right|_{z=0}\log(K_{S}\circ\sigma)\right|^{2}\;.

Since σ(0)=(1,,1,0,,0)r\sigma(0)=(-1,\ldots,-1,0,\ldots,0)\in\mathbb{H}^{r} and K(ζ)=2/(ζ+ζ¯)2K_{\mathbb{H}}(\zeta)=2/\left(\zeta+\bar{\zeta}\right)^{2}, Equation (2.8) and the identity in (2.9) implies that

zα|z=0log(KSσ)=cΩ(ζ|ζ=1logK)=cΩ.\left.\frac{\partial}{\partial z^{\alpha}}\right|_{z=0}\log(K_{S}\circ\sigma)=c_{\Omega}\left(\left.\frac{\partial}{\partial\zeta}\right|_{\zeta=-1}\log K_{\mathbb{H}}\right)=c_{\Omega}\;.

Therefore we have

LΩrcΩ.L_{\Omega}\geq rc_{\Omega}\;.

This gives a characterization of the unit ball among bounded symmetric domains.

Lemma 2.6.

Let Ω\Omega be a bounded symmetric domain in n\mathbb{C}^{n} with the complete Kähler-Einstein metric ω\omega with Ricci curvature 𝖪-\mathsf{K} and let φ\varphi be a potential function of ω\omega with constant φω2\left\|\partial\varphi\right\|_{\omega}^{2}. Then if Ω\Omega is not the unit ball up to biholomorphic equivalence, then

φω2>n+1𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}>\frac{n+1}{\mathsf{K}}\;.
Proof.

Since the Ricci curvature of the Bergman metric ωΩ\omega_{\Omega} is 1-1, so ω=(1/𝖪)ωΩ\omega=(1/\mathsf{K})\omega_{\Omega} is the complete Kähler-Einstein metric with Ricci curvature 𝖪-\mathsf{K} and φ=(1/𝖪)σlogKS\varphi=(1/\mathsf{K})\sigma^{*}\log K_{S} is a potential function of ω\omega satisfying

φω2=1𝖪σlogKSωΩ2LΩ𝖪rcΩ𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}=\frac{1}{\mathsf{K}}\left\|\sigma^{*}\log K_{S}\right\|_{\omega_{\Omega}}^{2}\equiv\frac{L_{\Omega}}{\mathsf{K}}\geq\frac{rc_{\Omega}}{\mathsf{K}}\;.

Table 1 shows that rcΩ>n+1rc_{\Omega}>n+1 if Ω\Omega is irreducible and ΩΩ1,nI=𝔹n\Omega\neq\Omega^{\mathrm{I}}_{1,n}=\mathbb{B}^{n}. Thus the assertion follows for an irreducible Ω\Omega.

Suppose that Ω\Omega is a product of bounded symmetric domains Ω1\Omega_{1} and Ω2\Omega_{2}, that is, Ω=Ω1×Ω2\Omega=\Omega_{1}\times\Omega_{2}. Let ωk\omega_{k} (k=1,2k=1,2) be the complete Kähler-Einstein metric of Ωk\Omega_{k} with Ricci curvature 𝖪-\mathsf{K}. By the uniqueness of the Kähler-Einstein metric, we have

ω=π1ω1+π2ω2\omega=\pi_{1}^{*}\omega_{1}+\pi_{2}^{*}\omega_{2}

as a Kähler form where πk:Ω1×Ω2Ωk\pi_{k}:\Omega_{1}\times\Omega_{2}\to\Omega_{k} is the projection. Taking a potential function φk\varphi_{k} of ωk\omega_{k} with constant gradient length, we have a potential function φ=π1φ1+π2φ2\varphi=\pi_{1}^{*}\varphi_{1}+\pi_{2}^{*}\varphi_{2} of ω\omega satisfying

φω2φ1ω12+φ2ω22.\left\|\partial\varphi\right\|_{\omega}^{2}\equiv\left\|\partial\varphi_{1}\right\|_{\omega_{1}}^{2}+\left\|\partial\varphi_{2}\right\|_{\omega_{2}}^{2}\;.

Proposition 2.4 implies that φω2\left\|\partial\varphi\right\|_{\omega}^{2} is greater than (n+1)/𝖪(n+1)/\mathsf{K}. This completes the proof. ∎

2.4. Existence of a complete holomorphic vector field

In [13, 2], it was proved that there is a complete holomorphic vector field on a negatively curved complete Kähler-Einstein manifold admitting a global potential function with minimal constant gradient length.

Theorem 2.7 (Theorem 3.2 in [2]).

Let ω\omega be a complete Kähler-Einstein metric of XnX^{n} with Ricci curvature K-K. If there is a global potential φ\varphi of ω\omega satisfying

φω2n+1𝖪,\left\|\partial\varphi\right\|_{\omega}^{2}\equiv\frac{n+1}{\mathsf{K}}\;,

then the (1,0)(1,0)-vector field

V=1e𝖪φn+1grad(φ)V=\sqrt{-1}e^{\frac{\mathsf{K}\varphi}{n+1}}\mathrm{grad}(\varphi)

is a complete holomorphic vector field.

The completeness of VV means that the real tangent vector field given by ReV=V+V¯\mathrm{Re}\,V=V+\overline{V} is complete. Therefore the holomorphicity of VV implies that ReV\mathrm{Re}\,V generates infinitesimally an 11-parameter family of automorphisms of XX which is nontrivial because VV is nowhere vanishing, namely, Vω=e𝖪φn+1grad(φ)ω=e𝖪φn+1φω\left\|V\right\|_{\omega}=e^{\frac{\mathsf{K}\varphi}{n+1}}\left\|\mathrm{grad}(\varphi)\right\|_{\omega}=e^{\frac{\mathsf{K}\varphi}{n+1}}\left\|\partial\varphi\right\|_{\omega} is nowhere zero. In [13, 2], we assumed that the Ricci curvature is (n+1)-(n+1) for n=dimXn=\dim X and φ\varphi satisfies ddcφ=(n+1)ωdd^{c}\varphi=(n+1)\omega for a technical simplicity. In what follows in this section, we will show Theorem 2.7 briefly.

The completeness of VV: Since ω\omega is a complete metric, the (1,0)(1,0)-vector field W=1grad(φ)W=\sqrt{-1}\mathrm{grad}(\varphi) with constant length (n+1)/𝖪(n+1)/\mathsf{K} is complete. Moreover the corresponding real vector field ReW\mathrm{Re}\,W is tangent to each level set of φ\varphi since

(ReW)φ=1φαφα1φα¯φα¯=0.(\mathrm{Re}\,W)\varphi=\sqrt{-1}\varphi^{\alpha}\varphi_{\alpha}-\sqrt{-1}\varphi^{\bar{\alpha}}\varphi_{\bar{\alpha}}=0\;.

This means that an integral curve γ:X\gamma:\mathbb{R}\to X of ReW\mathrm{Re}\,W lies on a level subset {φ=c}\left\{\varphi=c\right\}. Since V=e𝖪φn+1W=cWV=e^{\frac{\mathsf{K}\varphi}{n+1}}W=c^{\prime}W on {φ=c}\left\{\varphi=c\right\} for c=𝖪c/(n+1)c^{\prime}=\mathsf{K}c/(n+1), the curve γ~:X\tilde{\gamma}:\mathbb{R}\to X given by γ~(t)=γ(ct)\tilde{\gamma}(t)=\gamma(c^{\prime}t) is an integral curve of VV. This implies that VV is complete.

The holomorphicity of VV: Let us written the vector field VV by

V=1VαzαwhereVα=e𝖪φn+1φα.V=\sqrt{-1}V^{\alpha}\frac{\partial}{\partial z^{\alpha}}\quad\text{where}\quad V^{\alpha}=e^{\frac{\mathsf{K}\varphi}{n+1}}\varphi^{\alpha}\;.

In order to prove that VV is holomorphic, we will see that ′′V\nabla^{\prime\prime}V is vanishing where ′′\nabla^{\prime\prime} is the (0,1)(0,1)-part of the Kähler connection \nabla, so coincides with ¯\bar{\partial} on T(1,0)XT^{(1,0)}X. The tensor field ′′V\nabla^{\prime\prime}V is given by

′′V=1V;β¯αzαdzβ¯\nabla^{\prime\prime}V=\sqrt{-1}{V}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}\frac{\partial}{\partial z^{\alpha}}\otimes dz^{\bar{\beta}}

where

V;β¯α=𝖪n+1e𝖪φn+1φβ¯φα+e𝖪φn+1φ;β¯α=e𝖪φn+1(𝖪n+1φβ¯φα+φ;β¯α).{V}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}=\frac{\mathsf{K}}{n+1}e^{\frac{\mathsf{K}\varphi}{n+1}}\varphi_{\bar{\beta}}\varphi^{\alpha}+e^{\frac{\mathsf{K}\varphi}{n+1}}{\varphi}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}=e^{\frac{\mathsf{K}\varphi}{n+1}}\left(\frac{\mathsf{K}}{n+1}\varphi_{\bar{\beta}}\varphi^{\alpha}+{\varphi}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}\right)\;.

A straightforward computation gives that

′′Vω2=e2𝖪φn+1((𝖪n+1)2(φαφα)2+𝖪n+1φβ¯φαφα;β¯+𝖪n+1φ;β¯αφβ¯φα+φα;βφα;β)=e2𝖪φn+1((𝖪n+1)2φω42𝖪n+1φω2+1)=e2𝖪φn+1(𝖪n+1φω21)20.\left\|\nabla^{\prime\prime}V\right\|_{\omega}^{2}\\ =e^{\frac{2\mathsf{K}\varphi}{n+1}}\left(\left(\frac{\mathsf{K}}{n+1}\right)^{2}(\varphi_{\alpha}\varphi^{\alpha})^{2}+\frac{\mathsf{K}}{n+1}\varphi_{\bar{\beta}}\varphi^{\alpha}{\varphi}^{\phantom{\alpha};\bar{\beta}}_{\alpha\phantom{;\bar{\beta}}}+\frac{\mathsf{K}}{n+1}{\varphi}^{\phantom{}\alpha}_{\phantom{\alpha};\bar{\beta}}\varphi^{\bar{\beta}}\varphi_{\alpha}+\varphi^{\alpha;\beta}\varphi_{\alpha;\beta}\right)\\ =e^{\frac{2\mathsf{K}\varphi}{n+1}}\left(\left(\frac{\mathsf{K}}{n+1}\right)^{2}\left\|\partial\varphi\right\|^{4}_{\omega}-2\frac{\mathsf{K}}{n+1}\left\|\partial\varphi\right\|^{2}_{\omega}+1\right)\\ =e^{\frac{2\mathsf{K}\varphi}{n+1}}\left(\frac{\mathsf{K}}{n+1}\left\|\partial\varphi\right\|^{2}_{\omega}-1\right)^{2}\equiv 0\;.

Here, we used the identity in (2.7). This implies that VV is holomorphic.

3. Proofs of main results

In this section, we will prove Theorem 1.1 and Theorem 1.2. Throughout this section, XnX^{n} is a complex manifold with a complete Kähler-Einstein metric ω\omega of Ricci curvature 𝖪-\mathsf{K} and Γ\Gamma is a discrete, torsion-free, cocompact subgroup of Aut(X)\mathrm{Aut}(X).

3.1. Proof of Theorem 1.1

Suppose that XX is simply connected and there is a global potential function φ\varphi of ω\omega with

(3.1) φω2n+1𝖪.\left\|\partial\varphi\right\|_{\omega}^{2}\equiv\frac{n+1}{\mathsf{K}}\;.

By Lemma 2.6, it is sufficient to show that XX is biholomorphic to a bounded symmetric domain, i.e. a hermitian symmetric space of noncompact type.

Since (X,ω)(X,\omega) is Ricci negative and Γ\Gamma acts on XX as an isometric transformation group, the quotient Γ\X\Gamma\backslash X has a negative anti-canonical class so c1(Γ\X)<0c_{1}(\Gamma\backslash X)<0. By the Nadel-Frankel theorem (Theorem 0.1 in [7]), there is a finite covering XΓ\XX^{\prime}\to\Gamma\backslash X such that XX^{\prime} is holomorphically factorized by

X=X1×X2X^{\prime}=X^{\prime}_{1}\times X^{\prime}_{2}

where X1X^{\prime}_{1} is locally symmetric and X2X^{\prime}_{2} is locally rigid (the universal covering of X2X_{2}^{\prime} has a discrete automorphism group). Then we have the factorization

X=X1×X2X=X_{1}\times X_{2}

where XkX_{k} is the universal covering of XkX^{\prime}_{k}; therefore

  1. (1)

    X1X_{1} is a hermitian symmetric space of noncompact type;

  2. (2)

    Aut(X2)\mathrm{Aut}(X_{2}) is discrete.

We will show that X2X_{2} is a trivial factor so that X=X1X=X_{1}.

Suppose that X2X_{2} is not trivial. Since X1X_{1} is a hermitian symmetric space of noncompact type, so it admits a complete Kähler-Einstein metric ω1\omega_{1} with Ric(ω1)=𝖪ω1\mathrm{Ric}(\omega_{1})=-\mathsf{K}\omega_{1}. Moreover since c1(X2)<0c_{1}(X^{\prime}_{2})<0 by Corollary 4.5 in [7], the covering X2X_{2} also admits a complete Kähler-Einstein metric ω2\omega_{2} with Ric(ω2)=𝖪ω2\mathrm{Ric}(\omega_{2})=-\mathsf{K}\omega_{2} by Yau [20]. Therefore ω\omega should be the product metric of ω1\omega_{1} and ω2\omega_{2} because of the uniqueness of negatively curved complete Kähler-Einstein metric.

By the assumption as in (3.1) and Theorem 2.7, the (1,0)(1,0)-vector field

V=ie𝖪φn+1grad(φ)V=ie^{\frac{\mathsf{K}\varphi}{n+1}}\mathrm{grad}(\varphi)

is a complete holomorphic vector field of XX. Let 𝒱=V+V¯\mathcal{V}=V+\overline{V} be the corresponding real tangent vector field and let {𝒱t:t}\left\{\mathcal{V}_{t}:t\in\mathbb{R}\right\} be its flow so that each 𝒱t\mathcal{V}_{t} belongs to the identity component of Aut(X)\mathrm{Aut}(X) and Isom(X,ω)\mathrm{Isom}(X,\omega). By the de Rham decomposition on a product space of simply connected Riemannian manifolds (Theorem 3.5 in Chapter VI of [12]), 𝒱t\mathcal{V}_{t} can be split to isometries of X1X_{1} and X2X_{2}; thus there is 𝒱k,tIsom(Xk,ωk)\mathcal{V}_{k,t}\in\mathrm{Isom}(X_{k},\omega_{k}) such that

𝒱t(x1,x2)=(𝒱1,t(x1),𝒱2,t(x2))\mathcal{V}_{t}(x_{1},x_{2})=(\mathcal{V}_{1,t}(x_{1}),\mathcal{V}_{2,t}(x_{2}))

for any (x1,x2)X1×X2(x_{1},x_{2})\in X_{1}\times X_{2}. That means that we can regard 𝒱2,t\mathcal{V}_{2,t} as an isometry of (X2,ω)(X_{2},\omega). Since 𝒱t:XX\mathcal{V}_{t}:X\to X is holomorphic, the restriction 𝒱2,t:X2X2\mathcal{V}_{2,t}:X_{2}\to X_{2} is also holomorphic, so constitutes a holomorphic transformation group of X2X_{2}. Therefore 𝒱2,t\mathcal{V}_{2,t} is just the identity mapping of X2X_{2} because Aut(X2)\mathrm{Aut}(X_{2}) is discrete. Now we can conclude that the infinitesimal generator 𝒱\mathcal{V} should be tangent to each fiber X1X_{1} of XX so orthogonal to each fiber X2X_{2}. This also holds for grad(φ)\mathrm{grad}(\varphi). The identity grad(φ),ω=¯φ()\left\langle\mathrm{grad}(\varphi),\,\cdot\,\right\rangle_{\omega}=\bar{\partial}\varphi(\,\cdot\,) says that dφ(v)=dcφ(v)=0d\varphi(v)=d^{c}\varphi(v)=0 for any vector vv in the complexified tangent bundle TX2\mathbb{C}TX_{2} of X2X_{2}.

Let WW be a (1,0)(1,0)-vector field tangent to X2X_{2}. The Lie bracket [W,W¯][W,\overline{W}] is also tangent to X2X_{2}, so we have dcφ(W)=dcφ(W¯)=dcφ([W,W¯])=0d^{c}\varphi(W)=d^{c}\varphi(\overline{W})=d^{c}\varphi([W,\overline{W}])=0. This means that the Kähler form ω\omega annihilates the nontrivial subbundle TX2\mathbb{C}TX_{2} since

ω(W,W¯)=ddcφ(W,W¯)=W(dcφW¯)W¯(dcφ(W))dcφ([W,W¯])=0.\omega(W,\overline{W})=dd^{c}\varphi(W,\overline{W})=W\left(d^{c}\varphi\overline{W}\right)-\overline{W}\left(d^{c}\varphi(W)\right)-d^{c}\varphi([W,\overline{W}])=0\;.

This is a contradiction, so X2X_{2} is trivial. ∎

3.2. Proof of Theorem 1.2

Let UU be a localizing neighborhood UU of a sequence {fj}Γ\left\{f_{j}\right\}\subset\Gamma, that is, if KXK\subset X is compact, then

fj(K)Uf_{j}(K)\subset U

for sufficiently large jj. Suppose that there is a local potential function φ:U\varphi:U\to\mathbb{R} of ω\omega satisfying

(3.2) φω<Con U\left\|\partial\varphi\right\|_{\omega}<C\quad\text{on $U$}

for some constant CC, and

(3.3) limjφω2(fj(x))=n+1𝖪\lim_{j\to\infty}\left\|\partial\varphi\right\|_{\omega}^{2}(f_{j}(x))=\frac{n+1}{\mathsf{K}}

for any xXx\in X.

Let us fix a point x0Xx_{0}\in X and consider a ω\omega-distance ball BRB_{R} centered at x0x_{0} with radius R>0R>0. Then BRB_{R} is relatively compact in XX so fj(BR)Uf_{j}(B_{R})\subset U eventually for jj. Therefore we can consider a sequence {φj}\left\{\varphi_{j}\right\} of functions on BRB_{R} defined by

φj=φfj(φfj)(x0).\varphi_{j}=\varphi\circ f_{j}-(\varphi\circ f_{j})(x_{0})\;.

This is indeed a sequence of potentials of ω\omega on BRB_{R} since fjIsom(X,ω)f_{j}\in\mathrm{Isom}(X,\omega) implies

ddcφj=ddc(fjφ)=fjddcφ=fjω=ω.dd^{c}\varphi_{j}=dd^{c}(f_{j}^{*}\varphi)=f_{j}^{*}dd^{c}\varphi=f_{j}^{*}\omega=\omega\;.

We will show that

{φj}\left\{\varphi_{j}\right\} admits a subsequence converging on BRB_{R} in the local CC^{\infty}-topology.

If it holds, using the compact exhaustion X=RjBRjX=\bigcup_{R_{j}\to\infty}B_{R_{j}} and the diagonal processing, we have a global potential function φ\varphi_{\infty} of ω\omega as a subsequential limit of {φj}\left\{\varphi_{j}\right\} in the local CC^{\infty}-topology of XX. When we assume φjφ\varphi_{j}\to\varphi_{\infty} passing to a subsequence, it follows

φω(x)=limjφjω(x)=limjφω(fj(x))=n+1𝖪\left\|\partial\varphi_{\infty}\right\|_{\omega}(x)=\lim_{j\to\infty}\left\|\partial\varphi_{j}\right\|_{\omega}(x)=\lim_{j\to\infty}\left\|\partial\varphi\right\|_{\omega}(f_{j}(x))=\frac{n+1}{\mathsf{K}}

for any xXx\in X from fjIsom(X,ω)f_{j}\in\mathrm{Isom}(X,\omega) and the assumption of (3.3). Lifting φ\varphi_{\infty} to the universal covering X~\widetilde{X} of XX and applying Theorem 1.1, we can see that X~\widetilde{X} is biholomorphic to the unit ball. In case of simply connected UU, XX is also simply connected from the completeness of ω\omega (see Lemma in pg. 256 in [18]). Therefore it remains to show the assertion.

Let us take R>RR^{\prime}>R and consider φj\varphi_{j} as a potential function on BRB_{R^{\prime}} for sufficiently large jj so that fj(BR)Uf_{j}(B_{R^{\prime}})\subset U. Then we have

12dφjω=φjω=(fφ)ω=φωf<C\frac{1}{2}\left\|d\varphi_{j}\right\|_{\omega}=\left\|\partial\varphi_{j}\right\|_{\omega}=\left\|\partial(f^{*}\varphi)\right\|_{\omega}=\left\|\partial\varphi\right\|_{\omega}\circ f<C

uniformly on BRB_{R^{\prime}}. Since φj(x0)=0\varphi_{j}(x_{0})=0 for any jj, we can conclude that {φj}\left\{\varphi_{j}\right\} is uniformly bounded on BRB_{R^{\prime}}.

On order to show a subsequential convergence of {φj}\left\{\varphi_{j}\right\} on BRBRB_{R}\subset B_{R^{\prime}} in the local CC^{\infty}-topology of BRB_{R}, it suffices to prove that for each point xBRx\in B_{R}, there is a neighborhood UxU_{x} of xx such that {φj}\left\{\varphi_{j}\right\} converges subsequentially in the local CC^{\infty}-topology of UxU_{x} since BRB_{R} is relatively compact.

Take a sufficiently small, local coordinate neighborhood UxBRU_{x}\subset B_{R^{\prime}} of a given xBRx\in B_{R} so that there is a local potential function φx\varphi_{x} of ω\omega on UxU_{x} whose gradient length dφxω\left\|d\varphi_{x}\right\|_{\omega} is bounded. Then we have a sequence {φjφx}\left\{\varphi_{j}-\varphi_{x}\right\} of uniformly bounded plurisubharmonic functions on UxU_{x}. Now we can find ψj:Ux\psi_{j}:U_{x}\to\mathbb{R} such that

ηj=φjφx+1ψj\eta_{j}=\varphi_{j}-\varphi_{x}+\sqrt{-1}\psi_{j}

is holomorphic solving dψj=2dc(φjφx)d\psi_{j}=2d^{c}(\varphi_{j}-\varphi_{x}) on UxU_{x}. When we normalize ψj\psi_{j} by ψj(x)=0\psi_{j}(x)=0, the sequence {ψj}\left\{\psi_{j}\right\} is also uniformly bounded on UxU_{x} since

dψjω=2dc(φjφx)ω=d(φjφx)ωdφjω+dφxω.\left\|d\psi_{j}\right\|_{\omega}=\left\|2d^{c}(\varphi_{j}-\varphi_{x})\right\|_{\omega}=\left\|d(\varphi_{j}-\varphi_{x})\right\|_{\omega}\leq\left\|d\varphi_{j}\right\|_{\omega}+\left\|d\varphi_{x}\right\|_{\omega}.

The sequence {ηj}\left\{\eta_{j}\right\} of holomorphic functions on UxU_{x} is uniformly bounded now; thus it admits a uniformly convergent subsequence on any compact subset of UxU_{x}. Simultaneously, {φj}\left\{\varphi_{j}\right\} converges subsequentially in the local CC^{\infty}-topology of UxU_{x}. This proves the assertion. ∎

References

  • [1] S. Y. Cheng and S. T. Yau. On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math., 33(4):507–544, 1980.
  • [2] Y.-J. Choi and K.-H. Lee. Existence of a complete holomorphic vector field via the Kähler-Einstein metric. Ann. Global Anal. Geom., 60(1):97–109, 2021.
  • [3] H. Donnelly. L2L_{2} cohomology of the Bergman metric for weakly pseudoconvex domains. Illinois J. Math., 41(1):151–160, 1997.
  • [4] H. Donnelly and C. Fefferman. L2L^{2}-cohomology and index theorem for the Bergman metric. Ann. of Math. (2), 118(3):593–618, 1983.
  • [5] A. M. Efimov. A generalization of the Wong-Rosay theorem for the unbounded case. Mat. Sb., 186(7):41–50, 1995.
  • [6] S. Frankel. Complex geometry of convex domains that cover varieties. Acta Math., 163(1-2):109–149, 1989.
  • [7] S. Frankel. Locally symmetric and rigid factors for complex manifolds via harmonic maps. Ann. of Math. (2), 141(2):285–300, 1995.
  • [8] H. Gaussier, K.-T. Kim, and S. G. Krantz. A note on the Wong-Rosay theorem in complex manifolds. Complex Var. Theory Appl., 47(9):761–768, 2002.
  • [9] S. Gontard. On the Kähler-Einstein metric at strictly pseudoconvex points. Complex Var. Elliptic Equ., 64(10):1773–1795, 2019.
  • [10] M. Gromov. Kähler hyperbolicity and L2L_{2}-Hodge theory. J. Differential Geom., 33(1):263–292, 1991.
  • [11] C. Kai and T. Ohsawa. A note on the Bergman metric of bounded homogeneous domains. Nagoya Math. J., 186:157–163, 2007.
  • [12] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol I. Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963.
  • [13] K.-H. Lee. A method of potential scaling in the study of pseudoconvex domains with noncompact automorphism group. J. Math. Anal. Appl., 499(1):124997, 15, 2021.
  • [14] N. Mok and S.-T. Yau. Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. In The mathematical heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980), volume 39 of Proc. Sympos. Pure Math., pages 41–59. Amer. Math. Soc., Providence, RI, 1983.
  • [15] G. D. Mostow and Y. T. Siu. A compact Kähler surface of negative curvature not covered by the ball. Ann. of Math. (2), 112(2):321–360, 1980.
  • [16] A. M. Nadel. Semisimplicity of the group of biholomorphisms of the universal covering of a compact complex manifold with ample canonical bundle. Ann. of Math. (2), 132(1):193–211, 1990.
  • [17] J.-P. Rosay. Sur une caractérisation de la boule parmi les domaines de 𝐂n{\bf C}^{n} par son groupe d’automorphismes. Ann. Inst. Fourier (Grenoble), 29(4):ix, 91–97, 1979.
  • [18] B. Wong. Characterization of the unit ball in 𝐂n{\bf C}^{n} by its automorphism group. Invent. Math., 41(3):253–257, 1977.
  • [19] S. T. Yau. A general Schwarz lemma for Kähler manifolds. Amer. J. Math., 100(1):197–203, 1978.
  • [20] S. T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 31(3):339–411, 1978.