This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A characterization of the groups PSLn(q)PSL_{n}(q) and PSUn(q)PSU_{n}(q) by their 22-fusion systems, qq odd

Julian Kaspczyk Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, UK Technische Universität Dresden, Institut für Algebra, 01069 Dresden, Germany [email protected]
Abstract.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number with (n,q)(2,3)(n,q)\neq(2,3). We characterize the groups PSLn(q)PSL_{n}(q) and PSUn(q)PSU_{n}(q) by their 22-fusion systems. This contributes to a programme of Aschbacher aiming at a simplified proof of the classification of finite simple groups.

Key words and phrases:
fusion systems, finite groups, finite simple groups, linear groups, unitary groups, groups of Lie type
2010 Mathematics Subject Classification:
20D05, 20D06, 20D20

1. Introduction

The classification of finite simple groups (CFSG) is one of the greatest achievements in the history of mathematics. Its proof required around 15,000 pages and spreads out over many hundred articles in various journals. Many mathematicians from all over the world were involved in the proof, whose final steps were published in 2004 by Aschbacher and Smith, after it was prematurely announced as finished already in 1983. Because of its extreme length, a simplified and shortened proof of the CFSG would be very valuable. There are three programmes working towards this goal: the Gorenstein-Lyons-Solomon programme (see [27]), the Meierfrankenfeld-Stellmacher-Stroth programme (see [43]) and Aschbacher’s programme.

The goal of Aschbacher’s programme is to obtain a new proof of the CFSG by using fusion systems. The standard examples of fusion systems are the fusion categories of finite groups over pp-subgroups (pp a prime). If GG is a finite group and SS is a pp-subgroup of GG for some prime pp, then the fusion category of GG over SS is defined to be the category S(G)\mathcal{F}_{S}(G) given as follows: the objects of S(G)\mathcal{F}_{S}(G) are precisely the subgroups of SS, the morphisms in S(G)\mathcal{F}_{S}(G) are precisely the group homomorphisms between subgroups of SS induced by conjugation in GG, and the composition of morphisms in S(G)\mathcal{F}_{S}(G) is the usual composition of group homomorphisms. Abstract fusion systems are a generalization of this concept. A fusion system over a finite pp-group SS, where pp is a prime, is a category whose objects are the subgroups of SS and whose morphisms behave as if they are induced by conjugation inside a finite group containing SS as a pp-subgroup. For the precise definition, we refer to [11, Part I, Definition 2.1]. A fusion system is called saturated if it satisfies certain axioms motivated by properties of fusion categories of finite groups over Sylow subgroups (see [11, Part I, Definition 2.2]). If GG is a finite group and S1,S2Sylp(G)S_{1},S_{2}\in\mathrm{Syl}_{p}(G) for some prime pp, then S1(G)\mathcal{F}_{S_{1}}(G) and S2(G)\mathcal{F}_{S_{2}}(G) are easily seen to be isomorphic (in the sense of [12, p. 560]). Given a finite group GG, a prime pp and a Sylow pp-subgroup SS of GG, we refer to S(G)\mathcal{F}_{S}(G) as the pp-fusion system of GG.

Originally considered by the representation theorist Puig, fusion systems have become an object of active research in finite group theory, representation theory and algebraic topology. It has always been a problem of great interest in the theory of fusion systems to translate group-theoretic concepts into suitable concepts for fusion systems. For example, there is a notion of normalizers and centralizers of pp-subgroups in fusion systems, a notion of the center of a fusion system, a notion of factor systems, a notion of normal subsystems of saturated fusion systems and a notion of simple saturated fusion systems (see [11, Parts I and II]). Roughly speaking, Aschbacher’s programme consists of the following two steps.

  1. 1.

    Classify the simple saturated fusion systems on finite 22-groups. Use the original proof of the CFSG as a “template”.

  2. 2.

    Use the first step to give a new and simplified proof of the CFSG.

There is the hope that several steps of the original proof of the CFSG become easier when working with fusion systems. For example, in the original proof of the CFSG, the study of centralizers of involutions plays an important role. The 22^{\prime}-cores of the involution centralizers, i.e. their largest normal odd order subgroups, cause serious difficulties and are obstructions to many arguments. Such difficulties are not present in fusion systems since cores do not exist in fusion systems. This is suggested by the well-known fact that the 22-fusion system of a finite group GG is isomorphic to the 22-fusion system of G/O(G)G/O(G), where O(G)O(G) denotes the 22^{\prime}-core of GG. For an outline of and recent progress on Aschbacher’s programme, we refer to [8].

So far, Aschbacher’s programme has focused mainly on Step 1, while not much has been done on Step 2. An important part of Step 2 is to identify finite simple groups from their 22-fusion systems. The present paper contributes to Step 2 of Aschbacher’s programme by characterizing the finite simple groups PSLn(q)PSL_{n}(q) and PSUn(q)PSU_{n}(q) in terms of their 22-fusion systems, where n2n\geq 2 and where qq is a nontrivial odd prime power with (n,q)(2,3)(n,q)\neq(2,3).

In order to state our results, we introduce some notation and recall some definitions. Let GG be a finite group. A component of GG is a quasisimple subnormal subgroup of GG, and a 22-component of GG is a perfect subnormal subgroup LL of GG such that L/O(L)L/O(L) is quasisimple. The natural homomorphism GG/O(G)G\rightarrow G/O(G) induces a one-to-one correspondence between the set of 22-components of GG and the set of components of G/O(G)G/O(G) (see [28, Proposition 4.7]). We use Z(G)Z^{*}(G) to denote the full preimage of the center Z(G/O(G))Z(G/O(G)) in GG. In Step 2 of Aschbacher’s programme, one may assume that a finite group GG is a minimal counterexample to the CFSG. Such a group GG has the following property.

Whenever xG is an involution and J is a 2-component of CG(x),\displaystyle\mbox{Whenever $x\in G$ is an involution and $J$ is a $2$-component of $C_{G}(x)$}, (𝒞𝒦\mathcal{CK})
then J/Z(J)J/Z^{*}(J) is a known finite simple group.

By a known finite simple group, we mean a finite simple group appearing in the statement of the CFSG.

For each integer n0n\neq 0, we use n2n_{2} to denote the 22-part of nn, i.e. the largest power of 22 dividing nn. Given odd integers a,ba,b with |a|,|b|>1|a|,|b|>1, we write aba\sim b provided that (a1)2=(b1)2(a-1)_{2}=(b-1)_{2} and (a+1)2=(b+1)2(a+1)_{2}=(b+1)_{2}. If qq is a nontrivial prime power and if nn is a positive integer, then we write PSLn+(q)PSL_{n}^{+}(q) for PSLn(q)PSL_{n}(q) and PSLn(q)PSL_{n}^{-}(q) for PSUn(q)PSU_{n}(q). With this notation, we can now state our main results.

Theorem A.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number. Let GG be a finite simple group. Suppose that GG satisfies (𝒞𝒦\mathcal{CK}) if n6n\geq 6. Then the 22-fusion system of GG is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q) if and only if one of the following holds:

  1. (i)

    GPSLnε(q)G\cong PSL_{n}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq\varepsilon q^{*}\sim q;

  2. (ii)

    n=2n=2, |PSL2(q)|2=8|PSL_{2}(q)|_{2}=8, and GA7G\cong A_{7};

  3. (iii)

    n=3n=3, (q+1)2=4(q+1)_{2}=4, and GM11G\cong M_{11}.

Our second main result is an extension of Theorem A. In order to state it, we briefly mention some concepts from the local theory of fusion systems. Let \mathcal{F} be a saturated fusion system on a finite pp-group SS for some prime pp, and let \mathcal{E} be a normal subsystem of \mathcal{F}. In [7, Chapter 6], Aschbacher introduced a subgroup CS()C_{S}(\mathcal{E}) of SS, which plays the role of the centralizer of \mathcal{E} in SS. In [7, Chapter 9], he defined a normal subsystem F()F^{*}(\mathcal{F}) of \mathcal{F}, called the generalized Fitting subsystem of \mathcal{F}, and proved that CS(F())=Z(F())C_{S}(F^{*}(\mathcal{F}))=Z(F^{*}(\mathcal{F})), where the latter denotes the center of F()F^{*}(\mathcal{F}).

Theorem B.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number. If n=2n=2, suppose that q1q\equiv 1 or 7mod87\mod 8. Let GG be a finite simple group, and let SS be a Sylow 22-subgroup of GG. Suppose that S(G)\mathcal{F}_{S}(G) has a normal subsystem \mathcal{E} on a subgroup TT of SS such that \mathcal{E} is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q) and such that CS()=1C_{S}(\mathcal{E})=1. Then S(G)\mathcal{F}_{S}(G) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). In particular, if n5n\leq 5 or if GG satisfies (𝒞𝒦\mathcal{CK}), then one of the properties (i)-(iii) from Theorem A holds.

Corollary C.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number. If n=2n=2, suppose that q1q\equiv 1 or 7mod87\mod 8. Let GG be a finite simple group, and let SS be a Sylow 22-subgroup of GG. Suppose that F(S(G))F^{*}(\mathcal{F}_{S}(G)) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). Then S(G)\mathcal{F}_{S}(G) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). In particular, if n5n\leq 5 or if GG satisfies (𝒞𝒦\mathcal{CK}), then one of the properties (i)-(iii) from Theorem A holds.

The paper is organized as follows. In Sections 2 and 3, we collect several results needed for the proofs of our main results. Preliminary results on abstract finite groups and abstract fusion systems are proved in Section 2. Section 3 presents some results on linear and unitary groups over finite fields, mainly focussing on 22-local properties and on the automorphisms of these groups.

In Section 4, we will verify Theorem A for the case n5n\leq 5. Our proofs strongly depend on work of Gorenstein and Walter [31] (for n=2n=2), on work of Alperin, Brauer and Gorenstein [2], [3] (for n=3n=3) and on work of Mason [40], [41], [42] (for n=4n=4 and n=5n=5).

For n6n\geq 6, we will prove Theorem A by induction over nn. In order to do so, we will consider a finite group GG realizing the 22-fusion system of PSLn(q)PSL_{n}(q), where qq is a nontrivial odd prime power and where n6n\geq 6 is a natural number such that Theorem A is true with mm instead of nn for any natural number mm with 6m<n6\leq m<n. We will also assume that O(G)=1O(G)=1 and that GG satisfies (𝒞𝒦\mathcal{CK}). To prove that Theorem A is satisfied for the natural number nn, we will prove the existence of a normal subgroup G0G_{0} of GG such that G0G_{0} is isomorphic to a nontrivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq\varepsilon q^{*}\sim q. This will happen in Sections 5-8.

In Section 5, we will introduce some notation and prove some preliminary lemmas. Section 6 describes the 22-components of the centralizers of involutions of GG. In Section 7, we will use signalizer functor methods to describe the components of the centralizers of certain involutions of GG. This will be used in Section 8 to construct the subgroup G0G_{0} of GG. One of the main tools here will be a version of the Curtis-Tits theorem [30, Chapter 13, Theorem 1.4] and a related theorem of Phan reproved by Bennett and Shpectorov in [14].

Finally, in Section 9, we will give a full proof of Theorem A (basically summarizing Sections 4-8), and we will prove Theorem B and Corollary C.

Notation and Terminology. Our notation and terminology are fairly standard. The reader is referred to [24], [28], [37] for unfamiliar definitions on groups and to [11], [19] for unfamiliar definitions on fusion systems.

However, we shall now explain some particularly important notation and definitions (before stating our main results, we already introduced some other important definitions).

Given a map α:AB\alpha:A\rightarrow B and an element or a subset XX of AA, we write XαX^{\alpha} for the image of XX under α\alpha. Also, if CAC\subseteq A and DBD\subseteq B such that CαDC^{\alpha}\subseteq D, we use α|C,D\alpha|_{C,D} to denote the map CD,ccαC\rightarrow D,c\mapsto c^{\alpha}. Given two maps α:AB\alpha:A\rightarrow B and β:BC\beta:B\rightarrow C, we write αβ\alpha\beta for the map AC,a(aα)βA\rightarrow C,a\mapsto(a^{\alpha})^{\beta}.

Sometimes, we will interprete the symbols ++ and - as the integers 11 and 1-1, respectively. For example, if nn is an integer and if ε\varepsilon is assumed to be an element of {+,}\{+,-\}, then nεmod4n\equiv\varepsilon\mod 4 shall express that n1mod4n\equiv 1\mod 4 if ε=+\varepsilon=+ and that n1mod4n\equiv-1\mod 4 if ε=\varepsilon=-.

Let GG be a finite group. We write G#G^{\#} for the set of non-identity elements of GG. Given an element gg of GG and an element or a subset XX of GG, we write XgX^{g} for g1Xgg^{-1}Xg. The inner automorphism GG,xxgG\rightarrow G,x\mapsto x^{g} is denoted by cgc_{g}. For subgroups QQ and HH of GG, we write AutH(Q)\mathrm{Aut}_{H}(Q) for the subgroup of Aut(Q)\mathrm{Aut}(Q) consisting of all automorphisms of QQ of the form ch|Q,Qc_{h}|_{Q,Q}, where hNH(Q)h\in N_{H}(Q).

We write L(G)L(G) for the subgroup of GG generated by the components of GG and L2(G)L_{2^{\prime}}(G) for the subgroup of GG generated by the 22-components of GG. We say that GG is core-free if O(G)=1O(G)=1. If GG is core-free and if LL is a subnormal subgroup of GG, then LL is said to be a solvable 22-component of GG if LSL2(3)L\cong SL_{2}(3) or PSL2(3)PSL_{2}(3).

Let nn be a natural number. Then we use E2nE_{2^{n}} to denote an elementary abelian 22-group of order 2n2^{n}, and we say that nn is the rank of E2nE_{2^{n}}. The maximal rank of an elementary abelian 22-subgroup of a finite 22-group SS is said to be the rank of SS. It is denoted by m(S)m(S).

Now let pp be a prime, and let \mathcal{F} be a fusion system on a finite pp-group SS. Then SS is said to be the Sylow group of \mathcal{F}, and \mathcal{F} is said to be nilpotent if =S(S)\mathcal{F}=\mathcal{F}_{S}(S). Given a fusion system 1\mathcal{F}_{1} on a finite pp-group S1S_{1}, we say that \mathcal{F} and 1\mathcal{F}_{1} are isomorphic if there is a group isomorphism φ:SS1\varphi:S\rightarrow S_{1} such that

Hom1(Qφ,Rφ)={(φ1|Qφ,Q)ψ(φ|R,Rφ)|ψHom(Q,R)}\mathrm{Hom}_{\mathcal{F}_{1}}(Q^{\varphi},R^{\varphi})=\{(\varphi^{-1}|_{Q^{\varphi},Q})\psi(\varphi|_{R,R^{\varphi}})\ |\ \psi\in\mathrm{Hom}_{\mathcal{F}}(Q,R)\}

for all Q,RSQ,R\leq S. In this case, we say that φ\varphi induces an isomorphism from \mathcal{F} to 1\mathcal{F}_{1}. Let QQ be a normal subgroup of SS. If PP and RR are subgroups of SS containing QQ and if α:PR\alpha:P\rightarrow R is a morphism in \mathcal{F} such that Qα=QQ^{\alpha}=Q, we write α/Q\alpha/Q for the group homomorphism P/QR/QP/Q\rightarrow R/Q induced by α\alpha. The fusion system /Q\mathcal{F}/Q on S/QS/Q with Hom/Q(P/Q,R/Q)={α/Q|αHom(P,R),Qα=Q}\mathrm{Hom}_{\mathcal{F}/Q}(P/Q,R/Q)=\{\alpha/Q\ |\ \alpha\in\mathrm{Hom}_{\mathcal{F}}(P,R),Q^{\alpha}=Q\} for all P,RSP,R\leq S containing QQ is said to be the factor system of \mathcal{F} modulo QQ.

Suppose now that \mathcal{F} is saturated. We write 𝔣𝔬𝔠()\mathfrak{foc}(\mathcal{F}) for the focal subgroup of \mathcal{F} and 𝔥𝔫𝔭()\mathfrak{hnp}(\mathcal{F}) for the hyperfocal subgroup of \mathcal{F}. We say that \mathcal{F} is quasisimple if /Z()\mathcal{F}/Z(\mathcal{F}) is simple and 𝔣𝔬𝔠()=S\mathfrak{foc}(\mathcal{F})=S. A component of \mathcal{F} is a subnormal quasisimple subsystem of \mathcal{F}. Given a normal subsystem \mathcal{E} of SS and a subgroup RR of SS, we write R\mathcal{E}R for the product of \mathcal{E} and RR, as defined in [7, Chapter 8].

2. Preliminaries on finite groups and fusion systems

In this section, we present some general results on finite groups and fusion systems.

2.1. Preliminaries on finite groups

Lemma 2.1.

([37, 3.2.8]) Let GG be a finite group, and let NN be a normal pp^{\prime}-subgroup of GG for some prime pp. Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G:=G/N\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}:=G/N. If RR is a pp-subgroup of GG, then we have NG¯(R¯)=NG(R)¯N_{\overline{G}}(\overline{R})=\overline{N_{G}(R)} and CG¯(R¯)=CG(R)¯C_{\overline{G}}(\overline{R})=\overline{C_{G}(R)}.

Corollary 2.2.

Let GG be a finite group, and let NN be a normal pp^{\prime}-subgroup of GG for some prime pp. Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G:=G/N\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}:=G/N. If xGx\in G has order pp, then we have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}.

Lemma 2.3.

Let GG be a finite group, and let ZZ be a cyclic central subgroup of GG. Then each E8E_{8}-subgroup of G/ZG/Z has an involution which is the image of an involution of GG.

Proof.

Let ZEGZ\leq E\leq G such that E/ZE8E/Z\cong E_{8}. Let RR be a Sylow 22-subgroup of EE. Then E=RZE=RZ. It suffices to show that RR has an involution not lying in RZR\cap Z. Assume that any involution of RR is an element of RZR\cap Z. Then RR has a unique involution since ZZ is cyclic. We have R/(RZ)RZ/Z=E/ZE8R/(R\cap Z)\cong RZ/Z=E/Z\cong E_{8}, and so RR is not cyclic. Applying [37, 5.3.7], we conclude that RR is generalized quaternion. In particular, Z(R)Z(R) has order 22, and so we have RZ=Z(R)R\cap Z=Z(R). Since RR is a generalized quaternion group, R/Z(R)R/Z(R) is dihedral. In particular, E/ZR/(RZ)=R/Z(R)≇E8E/Z\cong R/(R\cap Z)=R/Z(R)\not\cong E_{8}. This contradiction shows that RR has an involution not lying in RZR\cap Z, as required. ∎

The following proposition is well-known. We include a proof since we could not find a reference in which it appears in the form given here.

Proposition 2.4.

Let GG be a finite group, and let NN be a normal subgroup of GG with odd order. If LL is a 22-component of GG, then LN/NLN/N is a 22-component of G/NG/N. The map from the set of 22-components of GG to the set of 22-components of G/NG/N sending each 22-component LL of GG to LN/NLN/N is a bijection. Moreover, if NKGN\leq K\leq G and K/NK/N is a 22-component of G/NG/N, then O2(K)O^{2^{\prime}}(K) is the associated 22-component of GG.

Proof.

Let LL be a 22-component of GG. Hence, LL is a perfect subnormal subgroup of GG such that L/O(L)L/O(L) is quasisimple. Clearly, LN/NLN/N is perfect and subnormal in G/NG/N. Also, we have (LN/N)/O(LN/N)L/O(L)(LN/N)/O(LN/N)\cong L/O(L), and so (LN/N)/O(LN/N)(LN/N)/O(LN/N) is quasisimple. It follows that LN/NLN/N is a 22-component of G/NG/N.

Let NKGN\leq K\leq G such that K/NK/N is a 22-component of G/NG/N. In order to prove the second statement of the proposition, it is enough to show that there is precisely one 22-component LL of GG such that LN/N=K/NLN/N=K/N.

Since K/NK/N is subnormal in G/NG/N, we have that KK is subnormal in GG. Therefore, L:=O2(K)L:=O^{2^{\prime}}(K) is subnormal in GG. Since O2(K/N)=K/NO^{2^{\prime}}(K/N)=K/N, we have that K/N=LN/NK/N=LN/N. Clearly, O2(L)=LO^{2^{\prime}}(L)=L. We have L/O(L)(LN/N)/O(LN/N)=(K/N)/O(K/N)L/O(L)\cong(LN/N)/O(LN/N)=(K/N)/O(K/N), and so L/O(L)L/O(L) is quasisimple. Applying [28, Lemma 4.8], we conclude that LL is a 22-component of GG.

Now let L0L_{0} be a 22-component of GG such that K/N=L0N/NK/N=L_{0}N/N. Then K=L0NK=L_{0}N. In particular, L0L_{0} is a subgroup of KK with odd index in KK. Since L0L_{0} is subnormal in GG, we have that L0L_{0} is subnormal in KK. Applying [13, Lemma 1.1.11], we conclude that L0=O2(L0)=O2(K)=LL_{0}=O^{2^{\prime}}(L_{0})=O^{2^{\prime}}(K)=L. The proof of the second statement of the proposition is now complete. The third statement also follows from the above arguments. ∎

Lemma 2.5.

Let GG be a finite group, and let nn be a positive integer. Assume that L1L_{1}, …, LnL_{n} are the distinct 22-components of GG, and assume that LiGL_{i}\trianglelefteq G for all 1in1\leq i\leq n. Let xx be a 22-element of GG, and let LL be a 22-component of CG(x)C_{G}(x). Then LL is a 22-component of CLi(x)C_{L_{i}}(x) for some 1in1\leq i\leq n.

Proof.

By [32, Corollary 3.2], we have L2(CG(x))=L2(CL2(G)(x))L_{2^{\prime}}(C_{G}(x))=L_{2^{\prime}}(C_{L_{2^{\prime}}(G)}(x)), and by [32, Lemma 2.18 (iii)], we have L2(CL2(G)(x))=i=1nL2(CLi(x))L_{2^{\prime}}(C_{L_{2^{\prime}}(G)}(x))=\prod_{i=1}^{n}L_{2^{\prime}}(C_{L_{i}}(x)). Using basic properties of 22-components, as presented in [28, Proposition 4.7], it is not hard to deduce that LL is a 22-component of CLi(x)C_{L_{i}}(x) for some 1in1\leq i\leq n. ∎

The concepts introduced by the following two definitions will play a crucial role in the proof of Theorem A (see [32] for a detailed study of these concepts).

Definition 2.6.

Let GG be a finite group, kk be a positive integer and AA be an elementary abelian 22-subgroup of GG.

  1. (i)

    For each nontrivial elementary abelian 22-subgroup EE of GG, we define

    ΔG(E):=aE#O(CG(a)).\Delta_{G}(E):=\bigcap_{a\in E^{\#}}O(C_{G}(a)).
  2. (ii)

    We say that GG is kk-balanced with respect to AA if whenever EE is a subgroup of AA of rank kk and aa is a non-trivial element of AA, we have

    ΔG(E)CG(a)O(CG(a)).\Delta_{G}(E)\cap C_{G}(a)\leq O(C_{G}(a)).
  3. (iii)

    We say that GG is kk-balanced if whenever EE is an elementary abelian 22-subgroup of GG of rank kk and aa is an involution of GG centralizing EE, we have

    ΔG(E)CG(a)O(CG(a)).\Delta_{G}(E)\cap C_{G}(a)\leq O(C_{G}(a)).
  4. (iv)

    By saying that GG is balanced (respectively, balanced with respect to AA), we mean that GG is 11-balanced (respectively, 11-balanced with respect to AA).

Definition 2.7.

Let GG be a finite quasisimple group, and let kk be a positive integer. Then GG is said to be locally kk-balanced if whenever HH is a subgroup of Aut(G)\mathrm{Aut}(G) containing Inn(G)\mathrm{Inn}(G), we have

ΔH(E)=1\Delta_{H}(E)=1

for any elementary abelian 22-subgroup EE of HH of rank kk. We say that GG is locally balanced if GG is locally 11-balanced.

We need the following proposition for the proof of Theorem A. It includes [32, Theorem 6.10] and some additional statements, which should be also known. We include a proof for the convenience of the reader.

Proposition 2.8.

Let kk be a positive integer, and let GG be a finite group. For each elementary abelian 22-subgroup AA of GG of rank at least k+1k+1, let

WA:=ΔG(E)|EA,m(E)=k.W_{A}:=\langle\Delta_{G}(E)\ |\ E\leq A,m(E)=k\rangle.

Then, for any elementary abelian 22-subgroup AA of GG of rank at least k+1k+1, the following hold:

  1. (i)

    (WA)g=WAg(W_{A})^{g}=W_{A^{g}} for all gGg\in G.

  2. (ii)

    Suppose that AA has rank at least k+2k+2 and that GG is kk-balanced with respect to AA. Then WAW_{A} has odd order. Moreover, if A0A_{0} is a subgroup of AA of rank at least k+1k+1, then we have WA=WA0W_{A}=W_{A_{0}} and NG(A0)NG(WA)N_{G}(A_{0})\leq N_{G}(W_{A}).

In order to prove Proposition 2.8, we need the following theorem.

Theorem 2.9.

([32, Theorem 6.9]) Let kk be a positive integer, GG be a finite group and AA be an elementary abelian 22-subgroup of GG of rank at least k+2k+2. Suppose that GG is kk-balanced with respect to AA. Then we obtain an AA-signalizer functor on GG (in the sense of [25, Definition 4.37]) by defining

θ(CG(a)):=ΔG(E)CG(a):EA,m(E)=k\theta(C_{G}(a)):=\langle\Delta_{G}(E)\cap C_{G}(a):\ E\leq A,m(E)=k\rangle

for each aA#a\in A^{\#}.

We also need the following lemma.

Lemma 2.10.

Let the notation be as in Theorem 2.9. Suppose that A0A_{0} is subgroup of AA of rank k+1k+1. Then we have

θ(G,A):=θ(CG(a))|aA#=ΔG(E)|EA0,m(E)=k=:WA0.\theta(G,A):=\langle\theta(C_{G}(a))\ |\ a\in A^{\#}\rangle=\langle\Delta_{G}(E)\ |\ E\leq A_{0},m(E)=k\rangle=:W_{A_{0}}.
Proof.

To prove this, we follow arguments found on pp. 40-41 of [40].

Since θ\theta is an AA-signalizer functor on GG, θ(CG(a))\theta(C_{G}(a)) is AA-invariant and in particular A0A_{0}-invariant for each aA#a\in A^{\#}. Consequently, θ(G,A)\theta(G,A) is A0A_{0}-invariant. By the Solvable Signalizer Functor Theorem [37, 11.3.2], θ\theta is complete (in the sense of [25, Definition 4.37]). In particular, θ(G,A)\theta(G,A) has odd order. Applying [28, Proposition 11.23], we conclude that

θ(G,A)=Cθ(G,A)(E)|EA0,m(E)=k.\theta(G,A)=\langle C_{\theta(G,A)}(E)\ |\ E\leq A_{0},m(E)=k\rangle.

Since θ\theta is complete, we have Cθ(G,A)(a)=θ(CG(a))C_{\theta(G,A)}(a)=\theta(C_{G}(a)) for each aA#a\in A^{\#}. By definition of θ\theta and since GG is kk-balanced with respect to AA, we have θ(CG(a))O(CG(a))\theta(C_{G}(a))\leq O(C_{G}(a)) for each aA#a\in A^{\#}. So, if EE is a subgroup of A0A_{0} of rank kk, then

Cθ(G,A)(E)=aE#Cθ(G,A)(a)=aE#θ(CG(a))aE#O(CG(a))=ΔG(E).C_{\theta(G,A)}(E)=\bigcap_{a\in E^{\#}}C_{\theta(G,A)}(a)=\bigcap_{a\in E^{\#}}\theta(C_{G}(a))\leq\bigcap_{a\in E^{\#}}O(C_{G}(a))=\Delta_{G}(E).

It follows that θ(G,A)WA0\theta(G,A)\leq W_{A_{0}}.

Let EA0E\leq A_{0} with m(E)=km(E)=k. Clearly, ΔG(E)\Delta_{G}(E) is AA-invariant. As a consequence of [28, Proposition 11.23], we have

ΔG(E)=ΔG(E)CG(a)|aA#.\Delta_{G}(E)=\langle\Delta_{G}(E)\cap C_{G}(a)\ |\ a\in A^{\#}\rangle.

By definition of θ\theta, we have ΔG(E)CG(a)θ(CG(a))\Delta_{G}(E)\cap C_{G}(a)\leq\theta(C_{G}(a)) for each aA#a\in A^{\#}. It follows that ΔG(E)θ(G,A)\Delta_{G}(E)\leq\theta(G,A). Consequently, WA0θ(G,A)W_{A_{0}}\leq\theta(G,A). ∎

Proof of Proposition 2.8.

It is straightforward to verify (i).

To verify (ii), let AA be an elementary abelian 22-subgroup of GG of rank at least k+2k+2 such that GG is kk-balanced with respect to AA. Let θ\theta be the AA-signalizer functor on GG given by Theorem 2.9, and let θ(G,A):=θ(CG(a))|aA#\theta(G,A):=\langle\theta(C_{G}(a))\ |\ a\in A^{\#}\rangle. As a consequence of Lemma 2.10, we have θ(G,A)=WA\theta(G,A)=W_{A}. By the proof of Lemma 2.10, WA=θ(G,A)W_{A}=\theta(G,A) has odd order.

Now let A0A_{0} be a subgroup of AA of rank at least k+1k+1. By Lemma 2.10, WA=θ(G,A)WA0WAW_{A}=\theta(G,A)\leq W_{A_{0}}\leq W_{A}, and so WA=WA0W_{A}=W_{A_{0}}. Finally, if gNG(A0)g\in N_{G}(A_{0}), then (WA)g=(WA0)g=W(A0)g=WA0=WA(W_{A})^{g}=(W_{A_{0}})^{g}=W_{(A_{0})^{g}}=W_{A_{0}}=W_{A}, and hence NG(A0)NG(WA)N_{G}(A_{0})\leq N_{G}(W_{A}). ∎

2.2. Preliminaries on fusion systems

Lemma 2.11.

Let pp be a prime, GG be a finite group, NN be a normal subgroup of GG and SSylp(G)S\in\mathrm{Syl}_{p}(G). Then the canonical group isomorphism S/(SN)SN/NS/(S\cap N)\rightarrow SN/N induces an isomorphism from S(G)/(SN)\mathcal{F}_{S}(G)/(S\cap N) to SN/N(G/N)\mathcal{F}_{SN/N}(G/N).

Proof.

Let φ\varphi denote the canonical group isomorphism S/(SN)SN/NS/(S\cap N)\rightarrow SN/N. Let PP and QQ be two subgroups of SS such that SNS\cap N is contained in both PP and QQ. Set P~:=P/(SN)\widetilde{P}:=P/(S\cap N), Q~:=Q/(SN)\widetilde{Q}:=Q/(S\cap N), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P:=PN/N\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}:=PN/N and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q:=QN/N\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}:=QN/N. Moreover, define ~:=S(G)/(SN)\widetilde{\mathcal{F}}:=\mathcal{F}_{S}(G)/(S\cap N) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=SN/N(G/N)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}:=\mathcal{F}_{SN/N}(G/N). It is enough to show that

Hom\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)={(φ1|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,P~)α(φ|Q~,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)αHom~(P~,Q~)}.\mathrm{Hom}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q})=\{(\varphi^{-1}|_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\widetilde{P}})\alpha(\varphi|_{\widetilde{Q},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}})\mid\alpha\in\mathrm{Hom}_{\widetilde{\mathcal{F}}}(\widetilde{P},\widetilde{Q})\}.

Let αHom~(P~,Q~)\alpha\in\mathrm{Hom}_{\widetilde{\mathcal{F}}}(\widetilde{P},\widetilde{Q}). Then there exists gGg\in G with PgQP^{g}\leq Q and α=(cg|P,Q)/(SN)\alpha=(c_{g}|_{P,Q})/(S\cap N). By a direct calculation, (φ1|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,P~)α(φ|Q~,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)=cgN|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111QHom\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)(\varphi^{-1}|_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\widetilde{P}})\alpha(\varphi|_{\widetilde{Q},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}})=c_{gN}|_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}}\in\mathrm{Hom}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}).

Now let \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Hom\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\in\mathrm{Hom}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}). Then there exists gGg\in G with \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111PgN\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}}^{gN}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=cgN|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=c_{gN}|_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}}. Clearly, PgQNP^{g}\leq QN. Since SNQS\cap N\leq Q, we have that QQ is a Sylow pp-subgroup of QNQN. Since PgP^{g} is a pp-subgroup of QNQN, it follows that there exists an element nNn\in N with PgnQP^{gn}\leq Q. Set α:=(cgn|P,Q)/(SN)\alpha:=(c_{gn}|_{P,Q})/(S\cap N). Then a direct calculation shows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=(φ1|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P,P~)α(φ|Q~,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=({\varphi}^{-1}|_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P},\widetilde{P}})\alpha(\varphi|_{\widetilde{Q},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Q}}). ∎

Corollary 2.12.

([11, Part II, Exercise 2.1]) Let pp be a prime, GG be a finite group and SSylp(G)S\in\mathrm{Syl}_{p}(G). Then the canonical group isomorphism S\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S:=SOp(G)/Op(G)S\rightarrow\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}:=SO_{p^{\prime}}(G)/O_{p^{\prime}}(G) induces an isomorphism from S(G)\mathcal{F}_{S}(G) to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S(G/Op(G))\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}}(G/O_{p^{\prime}}(G)).

Lemma 2.13.

Let K1K_{1} and K2K_{2} be two quasisimple finite groups. If the 22-fusion systems of K1K_{1} and K2K_{2} are isomorphic, then the 22-fusion systems of K1/Z(K1)K_{1}/Z(K_{1}) and K2/Z(K2)K_{2}/Z(K_{2}) are isomorphic.

Proof.

Suppose that the 22-fusion systems of K1K_{1} and K2K_{2} are isomorphic. Let SiS_{i} be a Sylow 22-subgroup of KiK_{i} and i:=Si(Ki)\mathcal{F}_{i}:=\mathcal{F}_{S_{i}}(K_{i}) for i{1,2}i\in\{1,2\}. As a consequence of [23, Corollary 1], we have Z(i)=SiZ(Ki)Z(\mathcal{F}_{i})=S_{i}\cap Z^{*}(K_{i}) for i{1,2}i\in\{1,2\}. Since K1K_{1} and K2K_{2} are quasisimple, we have Z(Ki)=Z(Ki)Z^{*}(K_{i})=Z(K_{i}) and hence Z(i)=SiZ(Ki)Z(\mathcal{F}_{i})=S_{i}\cap Z(K_{i}) for i{1,2}i\in\{1,2\}. Since 12\mathcal{F}_{1}\cong\mathcal{F}_{2}, it follows that

1/(S1Z(K1))=1/Z(1)2/Z(2)=2/(S2Z(K2)).\mathcal{F}_{1}/(S_{1}\cap Z(K_{1}))=\mathcal{F}_{1}/Z(\mathcal{F}_{1})\cong\mathcal{F}_{2}/Z(\mathcal{F}_{2})=\mathcal{F}_{2}/(S_{2}\cap Z(K_{2})).

Applying Lemma 2.11, we may conclude that the 22-fusion system of K1/Z(K1)K_{1}/Z(K_{1}) is isomorphic to the 22-fusion system of K2/Z(K2)K_{2}/Z(K_{2}). ∎

Lemma 2.14.

Let SS be a finite 22-group, and let AA and BB be normal subgroups of SS such that SS is the internal direct product of AA and BB. Suppose that AQ8A\cong Q_{8}. Let \mathcal{F} be a (not necessarily saturated) fusion system on SS. Assume that AA and BB are strongly \mathcal{F}-closed and that there is an automorphism αAut(S)\alpha\in\mathrm{Aut}_{\mathcal{F}}(S) such that α|A,A\alpha|_{A,A} has order 33, while α|B,B=idB\alpha|_{B,B}=\mathrm{id}_{B}. Then each strongly \mathcal{F}-closed subgroup of SS contains or centralizes AA.

Proof.

Let CC be a strongly \mathcal{F}-closed subgroup of SS not containing AA. Our task is to show that CC centralizes AA.

Since AA and CC are strongly \mathcal{F}-closed, we have that ACA\cap C is strongly \mathcal{F}-closed. In particular, α\alpha normalizes ACA\cap C. It is easy to see that an automorphism of Q8Q_{8} with order 33 does not normalize any maximal subgroup of Q8Q_{8}. So, as α|A,A\alpha|_{A,A} has order 33 and normalizes ACA\cap C, we have that ACA\cap C has order 11 or 22.

By [37, 8.2.7], we have

[C,α]=[[C,α],α].[C,\langle\alpha\rangle]=[[C,\langle\alpha\rangle],\langle\alpha\rangle].

We claim that [C,α]AC[C,\langle\alpha\rangle]\leq A\cap C. Let cCc\in C and βα\beta\in\langle\alpha\rangle. Let aAa\in A and bBb\in B such that c=abc=ab. Since AA and BB commute and since β\beta normalizes AA and centralizes BB, we have

[c,β]=c1cβ=b1a1aβbβ=a1aβAC.[c,\beta]=c^{-1}c^{\beta}=b^{-1}a^{-1}a^{\beta}b^{\beta}=a^{-1}a^{\beta}\in A\cap C.

Thus [C,α]AC[C,\langle\alpha\rangle]\leq A\cap C, as asserted.

Since ACA\cap C has order 11 or 22, we have [AC,α]=1[A\cap C,\langle\alpha\rangle]=1. So it follows that

[C,α]=[[C,α],α][AC,α]=1.[C,\langle\alpha\rangle]=[[C,\langle\alpha\rangle],\langle\alpha\rangle]\leq[A\cap C,\langle\alpha\rangle]=1.

Now we prove that CC centralizes AA. Let cCc\in C and aAa\in A, bBb\in B with c=abc=ab. We have c1cα[C,α]=1c^{-1}c^{\alpha}\in[C,\langle\alpha\rangle]=1, whence cα=cc^{\alpha}=c. Thus ab=(ab)α=aαbab=(ab)^{\alpha}=a^{\alpha}b and hence a=aαa=a^{\alpha}. As remarked above, α\alpha does not normalize any maximal subgroup of AA. So aa cannot have order 44. By the structure of AQ8A\cong Q_{8}, it follows that aZ(A)a\in Z(A). This implies that c=abc=ab centralizes AA. ∎

We need the following definition in order to state the next proposition.

Definition 2.15.

A nonabelian finite simple group GG is said to be a Goldschmidt group provided that one of the following holds:

  1. (1)

    GG has an abelian Sylow 22-subgroup.

  2. (2)

    GG is isomorphic to a finite simple group of Lie type in characteristic 22 of Lie rank 11.

Proposition 2.16.

Let GG be a finite group, and let SS be a Sylow 22-subgroup of GG. Assume that for each 22-component LL of GG, the factor group L/Z(L)L/Z^{*}(L) is a known finite simple group. Let 𝔏2\mathfrak{L}_{2^{\prime}} denote the set of 22-components LL of GG such that L/Z(L)L/Z^{*}(L) is not a Goldschmidt group. Then the following hold:

  1. (i)

    Let LL be a 22-component of GG. Then SL(L)\mathcal{F}_{S\cap L}(L) is a component of S(G)\mathcal{F}_{S}(G) if and only if L𝔏2L\in\mathfrak{L}_{2^{\prime}}.

  2. (ii)

    The map from 𝔏2\mathfrak{L}_{2^{\prime}} to the set of components of S(G)\mathcal{F}_{S}(G) sending each element LL of 𝔏2\mathfrak{L}_{2^{\prime}} to SL(L)\mathcal{F}_{S\cap L}(L) is a bijection.

Proof.

Let LL be a 22-component of GG. Set 𝒢:=SL(L)\mathcal{G}:=\mathcal{F}_{S\cap L}(L). Since LL is subnormal in GG, we have that 𝒢\mathcal{G} is subnormal in S(G)\mathcal{F}_{S}(G) (see [11, Part I, Proposition 6.2]). Therefore, 𝒢\mathcal{G} is a component of S(G)\mathcal{F}_{S}(G) if and only if 𝒢\mathcal{G} is quasisimple. We have 𝔣𝔬𝔠(𝒢)=SL=SL\mathfrak{foc}(\mathcal{G})=S\cap L^{\prime}=S\cap L by the focal subgroup theorem [24, Chapter 7, Theorem 3.4], and so 𝒢\mathcal{G} is quasisimple if and only if 𝒢/Z(𝒢)\mathcal{G}/Z(\mathcal{G}) is simple. As a consequence of [23, Corollary 1], we have Z(𝒢)=SZ(L)Z(\mathcal{G})=S\cap Z^{*}(L). Lemma 2.11 implies that 𝒢/Z(𝒢)\mathcal{G}/Z(\mathcal{G}) is isomorphic to the 22-fusion system of L/Z(L)L/Z^{*}(L). By [10, Theorem 5.6.18], the 22-fusion system of L/Z(L)L/Z^{*}(L) is simple if and only if L𝔏2L\in\mathfrak{L}_{2^{\prime}}. So 𝒢\mathcal{G} is a component of S(G)\mathcal{F}_{S}(G) if and only if L𝔏2L\in\mathfrak{L}_{2^{\prime}}, and (i) holds.

(ii) follows from [9, (1.8)]. ∎

Lemma 2.17.

Let GG be a finite group with O(G)=1O(G)=1, and let SS be a Sylow 22-subgroup of GG. Let n1n\geq 1 be a natural number, and let L1,,LnL_{1},\dots,L_{n} be pairwise distinct subgroups of GG such that LiL_{i} is either a component or a solvable 22-component of GG for each 1in1\leq i\leq n. Set Q:=(SL1)(SLn)Q:=(S\cap L_{1})\cdots(S\cap L_{n}). Assume that QSQ\trianglelefteq S and that S(G)/Q\mathcal{F}_{S}(G)/Q is nilpotent. Then, if L0L_{0} is a component or a solvable 22-component of GG, we have L0=LiL_{0}=L_{i} for some 1in1\leq i\leq n.

Proof.

Let Ls(G)L^{s}(G) denote the subgroup of GG generated by the components and the solvable 22-components of GG. By [37, 6.5.2] and [28, Proposition 13.5], Ls(G)L^{s}(G) is the central product of the subgroups of GG which are components or solvable 22-components. Set L:=L1LnLs(G)L:=L_{1}\cdots L_{n}\trianglelefteq L^{s}(G).

Let 𝒢:=SLs(G)(Ls(G))\mathcal{G}:=\mathcal{F}_{S\cap L^{s}(G)}(L^{s}(G)). Clearly, SL=(SL1)(SLn)=QS\cap L=(S\cap L_{1})\cdots(S\cap L_{n})=Q. Lemma 2.11 implies that the 22-fusion system of Ls(G)/LL^{s}(G)/L is isomorphic to 𝒢/Q\mathcal{G}/Q. By hypothesis, S(G)/Q\mathcal{F}_{S}(G)/Q is nilpotent, and so 𝒢/Q\mathcal{G}/Q is nilpotent. So the 22-fusion system of Ls(G)/LL^{s}(G)/L is nilpotent. Applying [39, Theorem 1.4], we conclude that Ls(G)/LL^{s}(G)/L is 22-nilpotent.

Now let L0L_{0} be a component or a solvable 22-component of GG. If L0LL_{0}\leq L, then we have L0=LiL_{0}=L_{i} for some 1in1\leq i\leq n since otherwise L0Z(L)L_{0}\leq Z(L), which is impossible. So it suffices to show that L0LL_{0}\leq L.

If L0L_{0} is a component of GG, then L0/(L0L)L_{0}/(L_{0}\cap L) is both perfect and 22-nilpotent, which implies that L0LL_{0}\leq L, as needed.

Suppose now that L0L_{0} is a solvable 22-component of GG. Assume that L0LL_{0}\not\leq L. Then L0LZ(L0)L_{0}\cap L\leq Z(L_{0}). Since L0L_{0} is a solvable 22-component of GG, it follows that L0/(L0L)L_{0}/(L_{0}\cap L) is isomorphic to SL2(3)SL_{2}(3) or PSL2(3)PSL_{2}(3). On the other hand, L0/(L0L)L_{0}/(L_{0}\cap L) is 22-nilpotent. This contradiction shows that L0LL_{0}\leq L, as required. ∎∎

Corollary 2.18.

Let GG be a finite group, and let SS be a Sylow 22-subgroup of GG. Let n1n\geq 1 be a natural number, and let L1,,LnL_{1},\dots,L_{n} be pairwise distinct 22-components of GG. Assume that Q:=(SL1)(SLn)Q:=(S\cap L_{1})\cdots(S\cap L_{n}) is a normal subgroup of SS and that S(G)/Q\mathcal{F}_{S}(G)/Q is nilpotent. Then, if L0L_{0} is a 22-component of GG, we have L0=LiL_{0}=L_{i} for some 1in1\leq i\leq n.

Proposition 2.19.

Let pp be a prime, and let \mathcal{E} be a simple saturated fusion system on a finite pp-group TT. Suppose that \mathcal{E} is tamely realized (in the sense of [4, Section 2.2]) by a nonabelian known finite simple group KK such that Out(K)\mathrm{Out}(K) is pp-nilpotent. Assume moreover that GG is a nonabelian finite simple group containing a Sylow pp-subgroup SS with TST\leq S such that S(G)\mathcal{E}\trianglelefteq\mathcal{F}_{S}(G) and CS()=1C_{S}(\mathcal{E})=1. Then S(G)\mathcal{F}_{S}(G) is tamely realized by a subgroup LL of Aut(K)\mathrm{Aut}(K) containing Inn(K)\mathrm{Inn}(K) such that the index of Inn(K)\mathrm{Inn}(K) in LL is coprime to pp.

Proof.

Set :=S(G)\mathcal{F}:=\mathcal{F}_{S}(G). By a result of Bob Oliver, namely by [44, Corollary 2.4], \mathcal{F} is tamely realized by a subgroup LL of Aut(K)\mathrm{Aut}(K) containing Inn(K)\mathrm{Inn}(K). We are going to show that the index of Inn(K)\mathrm{Inn}(K) in LL is coprime to pp.

Let S0S_{0} be a Sylow pp-subgroup of LL. Then S0(L)\mathcal{F}\cong\mathcal{F}_{S_{0}}(L). Clearly, Op(G)=GO^{p}(G)=G, and so 𝔥𝔫𝔭()=S\mathfrak{hnp}(\mathcal{F})=S by the hyperfocal subgroup theorem [19, Theorem 1.33]. It follows that 𝔥𝔫𝔭(S0(L))=S0\mathfrak{hnp}(\mathcal{F}_{S_{0}}(L))=S_{0}.

By the hyperfocal subgroup theorem [19, Theorem 1.33], S0=𝔥𝔫𝔭(S0(L))=Op(L)S0S_{0}=\mathfrak{hnp}(\mathcal{F}_{S_{0}}(L))=O^{p}(L)\cap S_{0}. Consequently, Op(L)O^{p}(L) has pp^{\prime}-index in LL, whence Op(L)=LO^{p}(L)=L. So we have Op(L/Inn(K))=L/Inn(K)O^{p}(L/\mathrm{Inn}(K))=L/\mathrm{Inn}(K). On the other hand, L/Inn(K)L/\mathrm{Inn}(K) is pp-nilpotent since Out(K)\mathrm{Out}(K) is pp-nilpotent. It follows that L/Inn(K)L/\mathrm{Inn}(K) is a pp^{\prime}-group, as claimed. ∎

3. Auxiliary results on linear and unitary groups

In this section, we collect several results on linear and unitary groups needed for the proofs of our main results. Some of the results stated here are known, while others seem to be new. For the convenience of the reader, we also include proofs of known results when we could not find a reference in which they appear in the form stated here.

3.1. Basic definitions

We begin with some basic definitions. Let qq be a nontrivial prime power, and let nn be a positive integer. The general linear group GLn(q)GL_{n}(q) is the group of all invertible n×nn\times n matrices over 𝔽q\mathbb{F}_{q} under matrix multiplication. The special linear group SLn(q)SL_{n}(q) is the subgroup of GLn(q)GL_{n}(q) consisting of all n×nn\times n matrices over 𝔽q\mathbb{F}_{q} with determinant 11. The center of GLn(q)GL_{n}(q) consists of all scalar matrices λIn\lambda I_{n} with λ(𝔽q)\lambda\in(\mathbb{F}_{q})^{*}. We have Z(SLn(q))=SLn(q)Z(GLn(q))Z(SL_{n}(q))=SL_{n}(q)\cap Z(GL_{n}(q)). Set PGLn(q):=GLn(q)/Z(GLn(q))PGL_{n}(q):=GL_{n}(q)/Z(GL_{n}(q)) and PSLn(q):=SLn(q)/Z(SLn(q))PSL_{n}(q):=SL_{n}(q)/Z(SL_{n}(q)). By [35, Kapitel II, Satz 6.10] and [35, Kapitel II, Hauptsatz 6.13], SLn(q)SL_{n}(q) is quasisimple if n2n\geq 2 and (n,q)(2,2),(2,3)(n,q)\neq(2,2),(2,3).

As in [35, Kapitel II, Bemerkung 10.5 (b)], we consider the general unitary group GUn(q)GU_{n}(q) as the subgroup of GLn(q2)GL_{n}(q^{2}) consisting of all (aij)GLn(q2)(a_{ij})\in GL_{n}(q^{2}) satisfying the condition ((aij)q)(aij)t=In((a_{ij})^{q})(a_{ij})^{t}=I_{n}. The special unitary group SUn(q)SU_{n}(q) is the subgroup of GUn(q)GU_{n}(q) consisting of all elements of GUn(q)GU_{n}(q) with determinant 11. By [35, Kapitel II, Hilfssatz 8.8], we have SL2(q)SU2(q)SL_{2}(q)\cong SU_{2}(q). The center of GUn(q)GU_{n}(q) consists of all scalar matrices λIn\lambda I_{n}, where λ(𝔽q2)\lambda\in(\mathbb{F}_{q^{2}})^{*} and λq+1=1\lambda^{q+1}=1. We have Z(SUn(q))=SUn(q)Z(GUn(q))Z(SU_{n}(q))=SU_{n}(q)\cap Z(GU_{n}(q)). Set PGUn(q):=GUn(q)/Z(GUn(q))PGU_{n}(q):=GU_{n}(q)/Z(GU_{n}(q)) and PSUn(q):=SUn(q)/Z(SUn(q))PSU_{n}(q):=SU_{n}(q)/Z(SU_{n}(q)). By [33, Theorems 11.22 and 11.26], SUn(q)SU_{n}(q) is quasisimple if n2n\geq 2 and (n,q)(2,2),(2,3),(3,2)(n,q)\neq(2,2),(2,3),(3,2).

We write (P)GLn+(q)(P)GL_{n}^{+}(q) and (P)SLn+(q)(P)SL_{n}^{+}(q) for (P)GLn(q)(P)GL_{n}(q) and (P)SLn(q)(P)SL_{n}(q), respectively. Also, we write (P)GLn(q)(P)GL_{n}^{-}(q) for (P)GUn(q)(P)GU_{n}(q) and (P)SLn(q)(P)SL_{n}^{-}(q) for PSUn(q)PSU_{n}(q).

3.2. Central extensions of PSLn(q)PSL_{n}(q) and PSUn(q)PSU_{n}(q)

In the proofs of the following two lemmas, we use the terminology of [5, Section 33].

Lemma 3.1.

Let n3n\geq 3 be a natural number, and let qq be a nontrivial odd prime power. Let HH be a perfect central extension of PSLn(q)PSL_{n}(q). Then there is a subgroup ZZ(SLn(q))Z\leq Z(SL_{n}(q)) such that HSLn(q)/ZH\cong SL_{n}(q)/Z.

Proof.

By [29, pp. 312-313], the Schur multiplier of PSLn(q)PSL_{n}(q) is isomorphic to C(n,q1)Z(SLn(q))C_{(n,q-1)}\cong Z(SL_{n}(q)). From [5, 33.6], we see that this is just another way to say that SLn(q)SL_{n}(q) is the universal covering group of PSLn(q)PSL_{n}(q). Applying [5, 33.6] again, we conclude that HSLn(q)/ZH\cong SL_{n}(q)/Z for some ZZ(SLn(q))Z\leq Z(SL_{n}(q)). ∎

Lemma 3.2.

Let n3n\geq 3 be a natural number, and let qq be a nontrivial odd prime power. Let HH be a perfect central extension of PSUn(q)PSU_{n}(q). Assume that (n,q)(4,3)(n,q)\neq(4,3) or that Z(H)Z(H) is a 22-group. Then there is a subgroup ZZ(SUn(q))Z\leq Z(SU_{n}(q)) such that HSUn(q)/ZH\cong SU_{n}(q)/Z.

Proof.

Suppose that (n,q)(4,3)(n,q)\neq(4,3). By [29, pp. 312-313], the Schur multiplier of PSUn(q)PSU_{n}(q) is isomorphic to C(n,q+1)Z(SUn(q))C_{(n,q+1)}\cong Z(SU_{n}(q)). As in the proof of Lemma 3.1, we conclude that HSUn(q)/ZH\cong SU_{n}(q)/Z for some ZZ(SUn(q))Z\leq Z(SU_{n}(q)).

Suppose now that (n,q)=(4,3)(n,q)=(4,3) and that Z(H)Z(H) is a 22-group. Let G:=PSU4(3)G:=PSU_{4}(3), and let G~\widetilde{G} be the universal covering group of GG. Clearly, the Schur multiplier of GG is isomorphic to Z(G~)Z(\widetilde{G}). By [29, pp. 312-313], the Schur multiplier of GG is isomorphic to C4×C3×C3C_{4}\times C_{3}\times C_{3}. Thus Z(G~)C4×C3×C3Z(\widetilde{G})\cong C_{4}\times C_{3}\times C_{3}. Clearly, if ZZ(G~)Z\leq Z(\widetilde{G}), then Z(G~/Z)=Z(G~)/ZZ(\widetilde{G}/Z)=Z(\widetilde{G})/Z. Let QQ be the unique Sylow 33-subgroup of Z(G~)Z(\widetilde{G}). By [5, 33.6], G~\widetilde{G} is a central extension of SU4(3)SU_{4}(3) and of HH. Since SU4(3)SU_{4}(3) has a center of order 44, we have SU4(3)G~/QSU_{4}(3)\cong\widetilde{G}/Q. Let ZZ(G~)Z\leq Z(\widetilde{G}) with HG~/ZH\cong\widetilde{G}/Z. As Z(H)Z(H) is a 22-group, we have QZQ\leq Z, whence HG~/Z(G~/Q)/(Z/Q)H\cong\widetilde{G}/Z\cong(\widetilde{G}/Q)/(Z/Q) is isomorphic to a quotient of SU4(3)SU_{4}(3) by a central subgroup. ∎

3.3. Involutions

In this subsection, we collect several results on the involutions of the groups (P)GLnε(q)(P)GL_{n}^{\varepsilon}(q) and (P)SLnε(q)(P)SL_{n}^{\varepsilon}(q), where qq is a nontrivial odd prime power, n2n\geq 2 and ε{+,}\varepsilon\in\{+,-\}.

Lemma 3.3.

Let qq be a nontrivial odd prime power, and let n2n\geq 2. Let TT be an element of GLn(q)GL_{n}(q) such that T2=λInT^{2}=\lambda I_{n} for some λ𝔽q\lambda\in\mathbb{F}_{q}^{*}. Then one of the following holds:

  1. (i)

    There is some μ𝔽q\mu\in\mathbb{F}_{q}^{*} such that λ=μ2\lambda=\mu^{2}, and TT is GLn(q)GL_{n}(q)-conjugate to a diagonal matrix with diagonal entries in {μ,μ}\{\mu,-\mu\}.

  2. (ii)

    nn is even, λ\lambda is a non-square element of 𝔽q\mathbb{F}_{q}^{*}, and TT is GLn(q)GL_{n}(q)-conjugate to the matrix

    (In/2λIn/2).\begin{pmatrix}&I_{n/2}\ \\ \lambda I_{n/2}&\end{pmatrix}.

    Moreover, we have CGLn(q)(T)GLn2(q2)C_{GL_{n}(q)}(T)\cong GL_{\frac{n}{2}}(q^{2}).

Proof.

We identify the field 𝔽q\mathbb{F}_{q} with the subfield of 𝔽q2\mathbb{F}_{q^{2}} consisting of all x𝔽q2x\in\mathbb{F}_{q^{2}} satisfying xq=xx^{q}=x. It is easy to note that any element of 𝔽q\mathbb{F}_{q}^{*} is the square of an element of 𝔽q2\mathbb{F}_{q^{2}}^{*}. Let μ𝔽q2\mu\in\mathbb{F}_{q^{2}}^{*} with λ=μ2\lambda=\mu^{2}.

If μ𝔽q\mu\in\mathbb{F}_{q}, then basic linear algebra shows that TT is diagonalizable over 𝔽q\mathbb{F}_{q}, and it follows that (i) holds.

Assume now that μ𝔽q\mu\not\in\mathbb{F}_{q}. Then λ\lambda is a non-square element of 𝔽q\mathbb{F}_{q}^{*}. Let VV be an nn-dimensional vector space over 𝔽q\mathbb{F}_{q}, and let BB be an ordered basis of VV. Let φ\varphi be the element of GL(V)GL(V) such that φ\varphi is represented by TT with respect to BB. Clearly, (1,μ)(1,\mu) is an 𝔽q\mathbb{F}_{q}-basis of 𝔽q2\mathbb{F}_{q^{2}}. Using that φ2=λidV\varphi^{2}=\lambda\mathrm{id}_{V}, one can check that VV becomes a vector space over 𝔽q2\mathbb{F}_{q^{2}} by defining

(x+yμ)v:=xv+yvφ(x+y\mu)v:=xv+yv^{\varphi}

for all x,y𝔽qx,y\in\mathbb{F}_{q} and vVv\in V. Let mm be the dimension of VV over 𝔽q2\mathbb{F}_{q^{2}}, and let (v1,,vm)(v_{1},\dots,v_{m}) be an 𝔽q2\mathbb{F}_{q^{2}}-basis of VV. Then B0:=(v1,,vm,μv1,,μvm)B_{0}:=(v_{1},\dots,v_{m},\mu v_{1},\dots,\mu v_{m}) is an 𝔽q\mathbb{F}_{q}-basis of VV. In particular, n=2mn=2m is even. For 1im1\leq i\leq m, we have viφ=μviv_{i}^{\varphi}=\mu v_{i} and (μvi)φ=(vi)φ2=λvi(\mu v_{i})^{\varphi}=(v_{i})^{\varphi^{2}}=\lambda v_{i}. So, with respect to B0B_{0}, φ\varphi is represented by the matrix

M:=(In/2λIn/2).M:=\begin{pmatrix}&I_{n/2}\ \\ \lambda I_{n/2}&\end{pmatrix}.

It follows that TT and MM are GLn(q)GL_{n}(q)-conjugate.

Let ψ\psi be an automorphism of VV as an 𝔽q\mathbb{F}_{q}-vector space centralizing φ\varphi. For x,y𝔽qx,y\in\mathbb{F}_{q} and vVv\in V, we have

((x+yμ)v)ψ=(xv+yvφ)ψ=xvψ+yvψφ=(x+yμ)vψ,((x+y\mu)v)^{\psi}=(xv+yv^{\varphi})^{\psi}=xv^{\psi}+yv^{\psi\varphi}=(x+y\mu)v^{\psi},

whence ψ\psi is 𝔽q2\mathbb{F}_{q^{2}}-linear. Conversely, if ψ\psi is 𝔽q2\mathbb{F}_{q^{2}}-linear, then

viψφ=μviψ=(μvi)ψ=viφψv_{i}^{\psi\varphi}=\mu v_{i}^{\psi}=(\mu v_{i})^{\psi}=v_{i}^{\varphi\psi}

and hence ψφ=φψ\psi\varphi=\varphi\psi. It follows that the centralizer of φ\varphi in the general linear group of VV as an 𝔽q\mathbb{F}_{q}-vector space is equal to the general linear group of VV as an 𝔽q2\mathbb{F}_{q^{2}}-vector space. Thus CGLn(q)(T)GLn2(q2)C_{GL_{n}(q)}(T)\cong GL_{\frac{n}{2}}(q^{2}). So (ii) holds. ∎

Lemma 3.4.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number. Let TGUn(q)T\in GU_{n}(q).

  1. (i)

    If T2=λInT^{2}=\lambda I_{n} for some λ𝔽q2\lambda\in\mathbb{F}_{q^{2}}^{*}, then λ\lambda is a square in 𝔽q2\mathbb{F}_{q^{2}}^{*}.

  2. (ii)

    If T2=ρ2InT^{2}=\rho^{2}I_{n} for some ρ𝔽q2\rho\in\mathbb{F}_{q^{2}}^{*} with ρq+1=1\rho^{q+1}=1, then TT is GUn(q)GU_{n}(q)-conjugate to a diagonal matrix with diagonal entries in {ρ,ρ}\{\rho,-\rho\}.

  3. (iii)

    If T2=ρ2InT^{2}=\rho^{2}I_{n} for some ρ𝔽q2\rho\in\mathbb{F}_{q^{2}}^{*} with ρq+11\rho^{q+1}\neq 1, then nn is even, and we have CGUn(q)(T)GLn2(q2)C_{GU_{n}(q)}(T)\cong GL_{\frac{n}{2}}(q^{2}).

Proof.

Suppose that T2=λInT^{2}=\lambda I_{n} for some λ𝔽q2\lambda\in\mathbb{F}_{q^{2}}^{*}. Since T2GUn(q)T^{2}\in GU_{n}(q), we have that λq+1=1\lambda^{q+1}=1. It is easy to see that any element xx of 𝔽q2\mathbb{F}_{q^{2}}^{*} with xq+1=1x^{q+1}=1 is a square in 𝔽q2\mathbb{F}_{q^{2}}^{*}. So (i) holds.

A proof of (ii) and (iii) can be extracted from [47, pp. 314-315]. ∎

Proposition 3.5.

Let qq be a nontrivial odd prime power, and let n2n\geq 2 be a natural number. Let ρ\rho be an element of 𝔽q\mathbb{F}_{q}^{*} of order (n,q1)(n,q-1). For each even natural number ii with 2i<n2\leq i<n, let

ti~:=(IniIi)SLn(q)\widetilde{t_{i}}:=\begin{pmatrix}I_{n-i}&\\ &-I_{i}\end{pmatrix}\in SL_{n}(q)

and let tit_{i} be the image of ti~\widetilde{t_{i}} in PSLn(q)PSL_{n}(q).

  1. (i)

    Assume that nn is odd. Then each involution of PSLn(q)PSL_{n}(q) is PSLn(q)PSL_{n}(q)-conjugate to tit_{i} for some even 2i<n2\leq i<n.

  2. (ii)

    Assume that nn is even and that there is some μ𝔽q\mu\in\mathbb{F}_{q}^{*} with ρ=μ2\rho=\mu^{2}. For each odd natural number ii with 1i<n1\leq i<n, the matrix

    ti~:=(μIniμIi)\widetilde{t_{i}}:=\begin{pmatrix}\mu I_{n-i}&\\ &-\mu I_{i}\end{pmatrix}

    lies in SLn(q)SL_{n}(q). Let tit_{i} denote the image of ti~\widetilde{t_{i}} in PSLn(q)PSL_{n}(q) for each odd 1i<n1\leq i<n. Then each involution of PSLn(q)PSL_{n}(q) is PSLn(q)PSL_{n}(q)-conjugate to tit_{i} for some (even or odd) 1in21\leq i\leq\frac{n}{2}.

  3. (iii)

    Assume that nn is even and that ρ\rho is a non-square element of 𝔽q\mathbb{F}_{q}. Let

    w~:=(In/2ρIn/2).\widetilde{w}:=\begin{pmatrix}&I_{n/2}\ \\ \rho I_{n/2}&\end{pmatrix}.

    If w~SLn(q)\widetilde{w}\in SL_{n}(q), then each involution of PSLn(q)PSL_{n}(q) is PSLn(q)PSL_{n}(q)-conjugate to to tit_{i} for some even 2in22\leq i\leq\frac{n}{2} or to w:=w~Z(SLn(q))PSLn(q)w:=\widetilde{w}Z(SL_{n}(q))\in PSL_{n}(q). If w~SLn(q)\widetilde{w}\not\in SL_{n}(q), then each involution of PSLn(q)PSL_{n}(q) is PSLn(q)PSL_{n}(q)-conjugate to tit_{i} for some even 2in22\leq i\leq\frac{n}{2}.

Proof.

We follow arguments found in the proof of [46, Lemma 1.1].

Assume that nn is odd. Then Z(SLn(q))Z(SL_{n}(q)) has odd order, and therefore, any involution of PSLn(q)PSL_{n}(q) is the image of an involution of SLn(q)SL_{n}(q). As a consequence of Lemma 3.3, each involution of SLn(q)SL_{n}(q) is SLn(q)SL_{n}(q)-conjugate to ti~\widetilde{t_{i}} for some even 2i<n2\leq i<n. So (i) follows.

Assume now that nn is even and that ρ=μ2\rho=\mu^{2} for some μ𝔽q\mu\in\mathbb{F}_{q}^{*}. Note that Z(SLn(q))Z(SL_{n}(q)) equals ρIn\langle\rho I_{n}\rangle. We claim that μn=1\mu^{n}=-1. Since μ2n=ρn=1\mu^{2n}=\rho^{n}=1, we have that μn=1\mu^{n}=1 or 1-1. If μn=1\mu^{n}=1, then μρ\mu\in\langle\rho\rangle, and so ρ\rho is a square in ρ\langle\rho\rangle, which is impossible. So we have μn=1\mu^{n}=-1. It follows that ti~SLn(q)\widetilde{t_{i}}\in SL_{n}(q) for each odd 1i<n1\leq i<n. Now let TSLn(q)T\in SL_{n}(q) such that TZ(SLn(q))PSLn(q)TZ(SL_{n}(q))\in PSL_{n}(q) is an involution. Then we have T2=ρIn=μ2InT^{2}=\rho^{\ell}I_{n}=\mu^{2\ell}I_{n} for some 1(n,q1)1\leq\ell\leq(n,q-1). Using Lemma 3.3, we conclude that TT is SLn(q)SL_{n}(q)-conjugate to a diagonal matrix DSLn(q)D\in SL_{n}(q) with diagonal entries in {μ,μ}\{\mu^{\ell},-\mu^{\ell}\}. Let 1i<n1\leq i<n such that μ-\mu^{\ell} occurs precisely ii times as a diagonal entry of DD. If ii is odd, we may assume that D=μ1ti~D=\mu^{\ell-1}\widetilde{t_{i}}, and if ii is even, we may assume that D=μti~D=\mu^{\ell}\widetilde{t_{i}}. In either case, the image of DD in PSLn(q)PSL_{n}(q) is tit_{i}. Hence, TZ(SLn(q))TZ(SL_{n}(q)) is PSLn(q)PSL_{n}(q)-conjugate to tit_{i}. Noticing that tit_{i} is PSLn(q)PSL_{n}(q)-conjugate to tnit_{n-i}, we conclude that (ii) holds.

Now assume that nn is even and that ρ\rho is a non-square element of 𝔽q\mathbb{F}_{q}. Again let TT be an element of SLn(q)SL_{n}(q) such that TZ(SLn(q))PSLn(q)TZ(SL_{n}(q))\in PSL_{n}(q) is an involution. We have T2=ρInT^{2}=\rho^{\ell}I_{n} for some 1(n,q1)1\leq\ell\leq(n,q-1). Assume that \ell is even. Then Lemma 3.3 implies that TT or T-T is SLn(q)SL_{n}(q)-conjugate to ρ2ti~\rho^{\frac{\ell}{2}}\widetilde{t_{i}} for some even 2in22\leq i\leq\frac{n}{2}. It follows that TZ(SLn(q))TZ(SL_{n}(q)) is PSLn(q)PSL_{n}(q)-conjugate to tit_{i} for some even 2in22\leq i\leq\frac{n}{2}. Assume now that \ell is odd. As ρ\rho is not a square in 𝔽q\mathbb{F}_{q}, but ρ1\rho^{\ell-1} is a square in 𝔽q\mathbb{F}_{q}, ρ\rho^{\ell} cannot be a square in 𝔽q\mathbb{F}_{q}. Using Lemma 3.3, we may conclude that TT is GLn(q)GL_{n}(q)-conjugate to the matrix

M:=(0ρ100ρ10)SLn(q).M:=\begin{pmatrix}0&\rho^{\ell}&&&\\ 1&0&&&\\ &&\ddots&&\\ &&&0&\rho^{\ell}\\ &&&1&0\end{pmatrix}\in SL_{n}(q).

It is rather easy to see that TT and MM are even conjugate in SLn(q)SL_{n}(q). Let k:=12k:=\frac{\ell-1}{2}. It is not hard to show that the matrices

(0ρ10)and(0ρk+1ρk0)\begin{pmatrix}0&\rho^{\ell}\\ 1&0\end{pmatrix}\ \textnormal{and}\ \begin{pmatrix}0&\rho^{k+1}\\ \rho^{k}&0\end{pmatrix}

are SL2(q)SL_{2}(q)-conjugate. So it follows that MM and hence TT is SLn(q)SL_{n}(q)-conjugate to ρkM2\rho^{k}M_{2}, where

M2:=(0ρ100ρ10)SLn(q).M_{2}:=\begin{pmatrix}0&\rho&&&\\ 1&0&&&\\ &&\ddots&&\\ &&&0&\rho\\ &&&1&0\end{pmatrix}\in SL_{n}(q).

Consequently, the images of TT and M2M_{2} in PSLn(q)PSL_{n}(q) are conjugate. Furthermore, as det(M2)=det(w~)\mathrm{det}(M_{2})=\mathrm{det}(\widetilde{w}), we see that w~SLn(q)\widetilde{w}\in SL_{n}(q). Also, w~\widetilde{w} is SLn(q)SL_{n}(q)-conjugate to M2M_{2}, and so TZ(SLn(q))TZ(SL_{n}(q)) is PSLn(q)PSL_{n}(q)-conjugate to ww. ∎

Lemma 3.6.

Let qq be a nontrivial odd prime power and let n4n\geq 4 be an even natural number. Let ρ\rho be an element of 𝔽q\mathbb{F}_{q}^{*} of order (n,q1)(n,q-1). Suppose that ρ\rho is a non-square element of 𝔽q\mathbb{F}_{q} and that

w~:=(In/2ρIn/2)\widetilde{w}:=\begin{pmatrix}&I_{n/2}\\ \rho I_{n/2}&\end{pmatrix}

lies in SLn(q)SL_{n}(q). Denote the image of w~\widetilde{w} in PSLn(q)PSL_{n}(q) by ww. Set C:=CPSLn(q)(w)C:=C_{PSL_{n}(q)}(w). Let PP be a Sylow 22-subgroup of CC. Then the following hold:

  1. (i)

    CC has a unique 22-component JJ, and JJ is isomorphic to a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}).

  2. (ii)

    We have PJPP\cap J\trianglelefteq P, and the factor system P(C)/(PJ)\mathcal{F}_{P}(C)/(P\cap J) is nilpotent.

  3. (iii)

    If n6n\geq 6, then PP has rank at least 44.

Proof.

Set C0:=CSLn(q)(w~)/Z(SLn(q))CC_{0}:=C_{SL_{n}(q)}(\widetilde{w})/Z(SL_{n}(q))\leq C. By a direct argument, C0C_{0} has index 22 in CC. So the 22-components of CC are precisely the 22-components of C0C_{0}. One may deduce from Lemma 3.3 that CSLn(q)(w~)C_{SL_{n}(q)}(\widetilde{w}) has a normal subgroup J~\widetilde{J} isomorphic to SLn2(q2)SL_{\frac{n}{2}}(q^{2}) such that the corresponding factor group is cyclic. Let JJ be the image of J~\widetilde{J} in PSLn(q)PSL_{n}(q). Then JJ is isomorphic to a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}). Moreover, JC0J\trianglelefteq C_{0} and C0/JC_{0}/J is cyclic. Therefore, JJ is the only 22-component of C0C_{0} and hence the only 22-component of CC. Thus (i) holds.

We have PJPP\cap J\trianglelefteq P because JCJ\trianglelefteq C. By Lemma 2.11, the factor system P(C)/(PJ)\mathcal{F}_{P}(C)/(P\cap J) is isomorphic to the 22-fusion system of C/JC/J. Since C0C_{0} has index 22 in CC and C0/JC_{0}/J is abelian, we have that C/JC/J is 22-nilpotent. So C/JC/J has a nilpotent 22-fusion system, and (ii) follows.

We now prove (iii). Assume that n6n\geq 6. Let uu denote the image of

(0ρ100ρ10)SLn(q)\begin{pmatrix}0&\rho&&&\\ 1&0&&&\\ &&\ddots&&\\ &&&0&\rho\\ &&&1&0\end{pmatrix}\in SL_{n}(q)

in PSLn(q)PSL_{n}(q). It is easy to see that there exist a,b𝔽qa,b\in\mathbb{F}_{q} with a2ρb2ρ2=1a^{2}\rho-b^{2}\rho^{2}=1. Let ss be the image of

(bρaρabρbρaρabρ)SLn(q)\begin{pmatrix}-b\rho&a\rho&&&\\ -a&b\rho&&&\\ &&\ddots&&\\ &&&-b\rho&a\rho\\ &&&-a&b\rho\end{pmatrix}\in SL_{n}(q)

in PSLn(q)PSL_{n}(q). By a direct calculation, sCPSLn(q)(u)s\in C_{PSL_{n}(q)}(u). Another direct calculation shows that ss is an involution. Let z1z_{1} denote the image of

(I2In2)SLn(q)\begin{pmatrix}-I_{2}&\\ &I_{n-2}\end{pmatrix}\in SL_{n}(q)

in PSLn(q)PSL_{n}(q), and let z2z_{2} denote the image of

(I2I2In4)SLn(q)\begin{pmatrix}I_{2}&&\\ &-I_{2}&\\ &&I_{n-4}\end{pmatrix}\in SL_{n}(q)

in PSLn(q)PSL_{n}(q). Then one can easily verify that s,u,z1,z2CPSLn(q)(u)\langle s,u,z_{1},z_{2}\rangle\leq C_{PSL_{n}(q)}(u) is isomorphic to E16E_{16}. So a Sylow 22-subgroup of CPSLn(q)(u)C_{PSL_{n}(q)}(u) has rank at least 44. This is also true for PP as ww and uu are conjugate (see Proposition 3.5). ∎

Lemma 3.7.

Let n2n\geq 2 be a natural number and let ε{+,}\varepsilon\in\{+,-\}. Also, let TGLnε(3)Z(GLnε(3))T\in GL_{n}^{\varepsilon}(3)\setminus Z(GL_{n}^{\varepsilon}(3)) such that T2Z(GLnε(3))T^{2}\in Z(GL_{n}^{\varepsilon}(3)). Then CGLnε(3)(T)C_{GL_{n}^{\varepsilon}(3)}(T) is core-free.

Proof.

By Lemmas 3.3 and 3.4, we either have CGLnε(3)(T)GLiε(3)×GLniε(3)C_{GL_{n}^{\varepsilon}(3)}(T)\cong GL_{i}^{\varepsilon}(3)\times GL_{n-i}^{\varepsilon}(3) for some 1i<n1\leq i<n, or nn is even and CGLnε(3)(T)GLn/2(9)C_{GL_{n}^{\varepsilon}(3)}(T)\cong GL_{n/2}(9). So we have that CGLnε(3)(T)C_{GL_{n}^{\varepsilon}(3)}(T) is core-free. ∎

It is easy to deduce the following two corollaries from Lemma 3.7.

Corollary 3.8.

Let n2n\geq 2 be a natural number and let ε{+,}\varepsilon\in\{+,-\}. Then any involution centralizer in SLnε(3)SL_{n}^{\varepsilon}(3) is core-free.

Corollary 3.9.

Let n2n\geq 2 be a natural number and let ε{+,}\varepsilon\in\{+,-\}. Then any involution centralizer in PGLnε(3)PGL_{n}^{\varepsilon}(3) is core-free.

3.4. Sylow 22-subgroups and 22-fusion systems

In this subsection, we consider several properties of Sylow 22-subgroups and 22-fusion systems of linear and unitary groups.

Lemma 3.10.

([18, p. 142]) Let qq be a nontrivial odd prime power. Let k,sk,s\in\mathbb{N} such that 2k2^{k} is the 22-part of q1q-1 and that 2s2^{s} is the 22-part of q+1q+1. Then:

  1. (i)

    Assume that q1mod 4q\equiv 1\ \mathrm{mod}\ 4. Then

    {(λμ):λ,μare 2-elements of 𝔽q}(0 11 0)\left\{\begin{pmatrix}\lambda&\ \ \\ \ \ &\ \mu\\ \end{pmatrix}\ :\ \lambda,\mu\ \textnormal{are $2$-elements of }\mathbb{F}_{q}^{*}\right\}\cdot\left\langle\begin{pmatrix}0\ &\ 1\\ 1\ &\ 0\\ \end{pmatrix}\right\rangle

    is a Sylow 22-subgroup of GL2(q)GL_{2}(q). In particular, the Sylow 22-subgroups of GL2(q)GL_{2}(q) are isomorphic to the wreath product C2kC2C_{2^{k}}\wr C_{2}.

  2. (ii)

    If q3mod 4q\equiv 3\ \mathrm{mod}\ 4, then the Sylow 22-subgroups of GL2(q)GL_{2}(q) are semidihedral of order 2s+22^{s+2}.

Lemma 3.11.

([18, p. 143]) Let qq be a nontrivial odd prime power. Let k,sk,s\in\mathbb{N} such that 2k2^{k} is the 22-part of q1q-1 and that 2s2^{s} is the 22-part of q+1q+1. Then:

  1. (i)

    If q1mod 4q\equiv 1\ \mathrm{mod}\ 4, then the Sylow 22-subgroups of GU2(q)GU_{2}(q) are semidihedral of order 2k+22^{k+2}.

  2. (ii)

    If q3mod 4q\equiv 3\ \mathrm{mod}\ 4, then the Sylow 22-subgroups of GU2(q)GU_{2}(q) are isomorphic to the wreath product C2sC2C_{2^{s}}\wr C_{2}. If ε𝔽q2\varepsilon\in\mathbb{F}_{q^{2}}^{*} has order 2s2^{s}, then a Sylow 22-subgroup of GU2(q)GU_{2}(q) is concretely given by

    W:={(λμ):λ,με}(0 11 0).W:=\left\{\begin{pmatrix}\lambda\ &\ \ \\ \ \ &\ \mu\\ \end{pmatrix}\ :\ \lambda,\mu\in\langle\varepsilon\rangle\right\}\cdot\left\langle\begin{pmatrix}0\ &\ 1\\ 1\ &\ 0\\ \end{pmatrix}\right\rangle.
Lemma 3.12.

([35, Kapitel II, Satz 8.10 a)]) If qq is a nontrivial odd prime power, then a Sylow 22-subgroup of SL2(q)SL_{2}(q) is generalized quaternion of order (q21)2(q^{2}-1)_{2}.

Lemma 3.13.

([35, Kapitel II, Satz 8.10 b)]) If qq is a nontrivial odd prime power, then PSL2(q)PSL_{2}(q) has dihedral Sylow 22-subgroups of order 12(q21)2\frac{1}{2}(q^{2}-1)_{2}.

Lemma 3.14.

([18, Lemma 1]) Let qq be a nontrivial odd prime power and let ε{+,}\varepsilon\in\{+,-\}. Let rr be a positive integer. Let WrW_{r} be a Sylow 22-subgroup of GL2rε(q)GL_{2^{r}}^{\varepsilon}(q). Then WrC2W_{r}\wr C_{2} is isomorphic to a Sylow 22-subgroup of GL2r+1ε(q)GL_{2^{r+1}}^{\varepsilon}(q). A Sylow 22-subgroup of GL2r+1ε(q)GL_{2^{r+1}}^{\varepsilon}(q) is concretely given by

{(AB):A,BWr}(I2rI2r).\left\{\begin{pmatrix}A&\ \\ \ &B\\ \end{pmatrix}\ :\ A,B\in W_{r}\right\}\cdot\left\langle\begin{pmatrix}\ &I_{2^{r}}\\ I_{2^{r}}&\ \\ \end{pmatrix}\right\rangle.
Lemma 3.15.

([18, Theorem 1]) Let qq be a nontrivial odd prime power and let nn be a positive integer. Let ε{+,}\varepsilon\in\{+,-\}. Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}. Let WiSyl2(GL2riε(q))W_{i}\in\mathrm{Syl}_{2}(GL_{2^{r_{i}}}^{\varepsilon}(q)) for all 1it1\leq i\leq t. Then W1××WtW_{1}\times\dots\times W_{t} is isomorphic to a Sylow 22-subgroup of GLnε(q)GL_{n}^{\varepsilon}(q). A Sylow 22-subgroup of GLnε(q)GL_{n}^{\varepsilon}(q) is concretely given by

{(A1At):AiWi}.\left\{\begin{pmatrix}A_{1}&\ &\ \\ \ &\ddots&\ \\ \ &\ &A_{t}\end{pmatrix}\ :\ A_{i}\in W_{i}\right\}.
Lemma 3.16.

Let qq be a prime power with q3mod4q\equiv 3\mod 4. Let WW be a Sylow 22-subgroup of GL2(q)GL_{2}(q), and let mm\in\mathbb{N} such that |W|=2m|W|=2^{m}. Then:

  1. (i)

    WW is semidihedral. In particular, there are elements a,bWa,b\in W with ord(a)=2m1\mathrm{ord}(a)=2^{m-1} and ord(b)=2\mathrm{ord}(b)=2 such that ab=a2m21a^{b}=a^{2^{m-2}-1}.

  2. (ii)

    We have WSL2(q)=a2abW\cap SL_{2}(q)=\langle a^{2}\rangle\langle ab\rangle.

  3. (iii)

    Let 12m11\leq\ell\leq 2^{m-1}. If \ell is odd, then aa^{\ell} has determinant 1-1, and aba^{\ell}b has determinant 11. If \ell is even, then aa^{\ell} has determinant 11, and aba^{\ell}b has determinant 1-1.

  4. (iv)

    The involutions of WW are precisely the elements a2m2a^{2^{m-2}} and aba^{\ell}b, where 22m12\leq\ell\leq 2^{m-1} is even.

Proof.

By Lemma 3.10 (ii), we have (i).

Let W0:=WSL2(q)W_{0}:=W\cap SL_{2}(q). By Lemma 3.12, W0W_{0} is generalized quaternion. Also, W0W_{0} is a maximal subgroup of WW since SL2(q)SL_{2}(q) has index q1q-1 in GL2(q)GL_{2}(q) and q3mod4q\equiv 3\mod 4. By [24, Chapter 5, Theorem 4.3 (ii) (b)], we have Φ(W)=a2\Phi(W)=\langle a^{2}\rangle. So the maximal subgroups of WW are precisely the groups M1:=aM_{1}:=\langle a\rangle, M2:=a2bM_{2}:=\langle a^{2}\rangle\langle b\rangle and M3:=a2abM_{3}:=\langle a^{2}\rangle\langle ab\rangle. One can check that M1C2n1M_{1}\cong C_{2^{n-1}}, M2D2n1M_{2}\cong D_{2^{n-1}} and M3Q2n1M_{3}\cong Q_{2^{n-1}}. Consequently, W0=a2abW_{0}=\langle a^{2}\rangle\langle ab\rangle, and (ii) holds.

(iii) follows from (ii) since any element of WW0W\setminus W_{0} has determinant 1-1.

The proof of (iv) is an easy exercise. ∎

Lemma 3.17.

Let qq be a nontrivial odd prime power, nn a positive integer and ε{+,}\varepsilon\in\{+,-\}. Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}. Then there is a Sylow 22-subgroup WW of G:=GLnε(q)G:=GL_{n}^{\varepsilon}(q) containing all diagonal matrices in GG with 22-power order such that CW(WSLnε(q))C_{W}(W\cap SL_{n}^{\varepsilon}(q)) consists precisely of the matrices

(λ1I2r1λtI2rt),\begin{pmatrix}\lambda_{1}I_{2^{r_{1}}}\ &\ &\ \\ \ &\ddots\ &\ \\ \ &\ &\lambda_{t}I_{2^{r_{t}}}\end{pmatrix},

where λ1,,λt\lambda_{1},\dots,\lambda_{t} are 22-elements of 𝔽q\mathbb{F}_{q}^{*} if G=GLn(q)G=GL_{n}(q) and 22-elements of 𝔽q2\mathbb{F}_{q^{2}}^{*} with λiq+1=1\lambda_{i}^{q+1}=1 (for each 1it1\leq i\leq t) if G=GUn(q)G=GU_{n}(q).

Proof.

Using Lemmas 3.10 and 3.11, one can check that the centralizer of a Sylow 2-subgroup of SL2ε(q)SL_{2}^{\varepsilon}(q) inside a Sylow 2-subgroup of GL2ε(q)GL_{2}^{\varepsilon}(q) is the Sylow 2-subgroup of Z(GL2ε(q))Z(GL_{2}^{\varepsilon}(q)). Applying Lemma 3.14 and arguing by induction, one can see that a similar statement holds for the centralizer of a Sylow 2-subgroup of SL2rε(q)SL_{2^{r}}^{\varepsilon}(q) inside a Sylow 2-subgroup of GL2rε(q)GL_{2^{r}}^{\varepsilon}(q) for all r0r\geq 0. Now we may apply Lemma 3.15 to obtain a Sylow 2-subgroup of GG with the desired properties. ∎

Lemma 3.18.

Let qq be a nontrivial odd prime power, nn a positive integer and ε{+,}\varepsilon\in\{+,-\}. Let G:=SLnε(q)G:=SL_{n}^{\varepsilon}(q), and let SS be a Sylow 22-subgroup of GG. Then we have Z(S(G))=SZ(G)Z(\mathcal{F}_{S}(G))=S\cap Z(G).

Proof.

Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}. By Lemma 3.17, we may assume that Z(S)Z(S) consists precisely of the matrices

(λ1I2r1λtI2rt),\begin{pmatrix}\lambda_{1}I_{2^{r_{1}}}\ &\ &\ \\ \ &\ddots\ &\ \\ \ &\ &\lambda_{t}I_{2^{r_{t}}}\end{pmatrix},

where λ1,,λt\lambda_{1},\dots,\lambda_{t} are 2-elements of 𝔽q\mathbb{F}_{q}^{*} with λ12r1λt2rt=1\lambda_{1}^{2^{r_{1}}}\cdots\lambda_{t}^{2^{r_{t}}}=1 if G=SLn(q)G=SL_{n}(q) and 2-elements of 𝔽q2\mathbb{F}_{q^{2}}^{*} with λiq+1=1\lambda_{i}^{q+1}=1 (for each 1it1\leq i\leq t) and λ12r1λt2rt=1\lambda_{1}^{2^{r_{1}}}\cdots\lambda_{t}^{2^{r_{t}}}=1 if G=SUn(q)G=SU_{n}(q). Moreover, by Lemma 3.17, we may assume that SS contains each diagonal matrix in GG of 22-power order.

Let xx be an element of Z(S)Z(S) with diagonal blocks λ1I2r1,,λtI2rt\lambda_{1}I_{2^{r_{1}}},\dots,\lambda_{t}I_{2^{r_{t}}}. One can easily see that xx is GG-conjugate to any diagonal matrix in GG that is obtained from xx by permuting its diagonal entries. It follows that, if λiλj\lambda_{i}\neq\lambda_{j} for some 1ijt1\leq i\neq j\leq t, then xZ(S(G))x\not\in Z(\mathcal{F}_{S}(G)). This implies Z(S(G))=SZ(G)Z(\mathcal{F}_{S}(G))=S\cap Z(G). ∎

Proposition 3.19.

Let nn be a positive integer. Let q,qq,q^{*} be nontrivial odd prime powers, and let ε,ε{+,}\varepsilon,\varepsilon^{*}\in\{+,-\}. If εqεq\varepsilon q\sim\varepsilon^{*}q^{*}, then the 22-fusion systems of SLnε(q)SL_{n}^{\varepsilon}(q) and SLnε(q)SL_{n}^{\varepsilon^{*}}(q^{*}) are isomorphic.

Proof.

Assume that εε\varepsilon\neq\varepsilon^{*}. From εqεq\varepsilon q\sim\varepsilon^{*}q^{*}, it is easy to deduce that εqεqmod8\varepsilon q\equiv\varepsilon^{*}q^{*}\mod 8 and (q21)2=((q)21)2(q^{2}-1)_{2}=((q^{*})^{2}-1)_{2}. So, in view of the remarks at the bottom of p. 11 of [15], we may apply [15, Proposition 3.3 (a)] to conclude that the 2-fusion system of SLnε(q)SL_{n}^{\varepsilon}(q) is isomorphic to the 2-fusion system of SLnε(q)SL_{n}^{\varepsilon^{*}}(q^{*}).

Assume now that ε=ε\varepsilon=\varepsilon^{*}. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can easily see that there is an odd prime q0q_{0} with εqεqεq0\varepsilon q\sim\varepsilon q^{*}\sim-\varepsilon q_{0}. By the preceding paragraph, both the 2-fusion system of SLnε(q)SL_{n}^{\varepsilon}(q) and the 2-fusion system of SLnε(q)SL_{n}^{\varepsilon}(q^{*}) are isomorphic to the 2-fusion system of SLnε(q0)SL_{n}^{-\varepsilon}(q_{0}). Consequently, the 2-fusion systems of SLnε(q)SL_{n}^{\varepsilon}(q) and SLnε(q)SL_{n}^{\varepsilon^{*}}(q^{*}) are isomorphic. ∎

Proposition 3.20.

Let nn be a positive integer. Let q,qq,q^{*} be nontrivial odd prime powers, and let ε,ε{+,}\varepsilon,\varepsilon^{*}\in\{+,-\}. If εqεq\varepsilon q\sim\varepsilon^{*}q^{*}, then the 22-fusion systems of PSLnε(q)PSL_{n}^{\varepsilon}(q) and PSLnε(q)PSL_{n}^{\varepsilon^{*}}(q^{*}) are isomorphic.

Proof.

Let SS and SS^{*} be Sylow 22-subgroups of G:=SLnε(q)G:=SL_{n}^{\varepsilon}(q) and G:=SLnε(q)G^{*}:=SL_{n}^{\varepsilon^{*}}(q^{*}), respectively. By Proposition 3.19, :=S(G)\mathcal{F}:=\mathcal{F}_{S}(G) and :=S(G)\mathcal{F}^{*}:=\mathcal{F}_{S^{*}}(G^{*}) are isomorphic. Therefore, /Z()\mathcal{F}/Z(\mathcal{F}) and /Z()\mathcal{F}^{*}/Z(\mathcal{F}^{*}) are isomorphic. Lemma 3.18 implies that /(SZ(G))\mathcal{F}/(S\cap Z(G)) and /(SZ(G))\mathcal{F}^{*}/(S^{*}\cap Z(G^{*})) are isomorphic. Now the proposition follows from Lemma 2.11. ∎

The following lemma shows together with [10, Theorem 5.6.18] that the 22-fusion system of PSLn(q)PSL_{n}(q) is simple whenever qq is odd and n3n\geq 3.

Lemma 3.21.

Let qq be a nontrivial odd prime power and n2n\geq 2 a natural number such that (n,q)(2,3)(n,q)\neq(2,3). Moreover, let ε\varepsilon be an element of {+,}\{+,-\}. Then PSLnε(q)PSL_{n}^{\varepsilon}(q) is a Goldschmidt group if and only if n=2n=2 and q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8.

Proof.

Set G:=PSLnε(q)G:=PSL_{n}^{\varepsilon}(q).

Assume that n=2n=2. Then GPSL2(q)G\cong PSL_{2}(q). By Lemma 3.13, GG has dihedral Sylow 22-subgroups of order 12(q1)2(q+1)2\frac{1}{2}(q-1)_{2}(q+1)_{2}. So, if q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8, then GG has abelian Sylow 22-subgroups and is thus a Goldschmidt group. If q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, then the Sylow 22-subgroups of GG are dihedral of order at least 88 and hence nonabelian. Moreover, if q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, then [48, Theorem 37] shows that GG is not isomorphic to a finite simple group of Lie type in characteristic 22 of Lie rank 11. So GG is not a Goldschmidt group if q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8.

Assume now that n3n\geq 3. Again, we see from [48, Theorem 37] that there is no finite simple group of Lie type in characteristic 22 of Lie rank 11 which is isomorphic to GG. Also, GG has a subgroup isomorphic to SL2ε(q)SL2(q)SL_{2}^{\varepsilon}(q)\cong SL_{2}(q), and therefore, the Sylow 22-subgroups of GG are nonabelian. Consequently, GG is not a Goldschmidt group. ∎

Lemma 3.22.

Let nn be a positive integer, qq a nontrivial odd prime power and ε{+,}\varepsilon\in\{+,-\}. Let EE be the subgroup of SLnε(q)SL_{n}^{\varepsilon}(q) consisting of the diagonal matrices in SLnε(q)SL_{n}^{\varepsilon}(q) with diagonal entries in {1,1}\{1,-1\}. Then |E|=2n1|E|=2^{n-1}. Moreover, any elementary abelian 22-subgroup of SLnε(q)SL_{n}^{\varepsilon}(q) is conjugate to a subgroup of EE.

Proof.

It is straightforward to check that |E|=2n1|E|=2^{n-1}.

Let E0E_{0} be an elementary abelian 22-subgroup of SLnε(q)SL_{n}^{\varepsilon}(q). We show that E0E_{0} is conjugate to a subgroup of EE. Using Dirichlet’s theorem [21, Theorem 3.3.1], one can see that there is an odd prime number qq^{*} with qq-q\sim q^{*}, and Proposition 3.19 shows that the 22-fusion systems of SUn(q)SU_{n}(q) and SLn(q)SL_{n}(q^{*}) are isomorphic. Therefore, it is enough to consider the case ε=+\varepsilon=+.

Since E0E_{0} is an elementary abelian 22-group, any two elements of E0E_{0} commute, and any element of E0E_{0} is diagonalizable (see Lemma 3.3). It follows that E0E_{0} is simultaneously diagonalizable, and this implies that E0E_{0} is conjugate to a subgroup of EE. ∎

Lemma 3.23.

Let qq be a nontrivial odd prime power, n3n\geq 3 a natural number and SS a Sylow 22-subgroup of PSLn(q)PSL_{n}(q). Then AutPSLn(q)(S)=Inn(S)\mathrm{Aut}_{PSL_{n}(q)}(S)=\mathrm{Inn}(S).

Proof.

Let RSyl2(SLn(q))R\in\mathrm{Syl}_{2}(SL_{n}(q)) such that SS is the image of RR in PSLn(q)PSL_{n}(q). Let TT be a Sylow 22-subgroup of GLn(q)GL_{n}(q) with RTR\leq T. By [36, Theorem 1], we have NGLn(q)(R)=TCGLn(q)(T)N_{GL_{n}(q)}(R)=TC_{GL_{n}(q)}(T). So we have that AutSLn(q)(R)\mathrm{Aut}_{SL_{n}(q)}(R) is a 22-group. Since the image of NSLn(q)(R)N_{SL_{n}(q)}(R) in PSLn(q)PSL_{n}(q) equals NPSLn(q)(S)N_{PSL_{n}(q)}(S) (see [35, Kapitel I, Hilfssatz 7.7 c)]), it follows that AutPSLn(q)(S)\mathrm{Aut}_{PSL_{n}(q)}(S) is a 22-group, and this implies AutPSLn(q)(S)=Inn(S)\mathrm{Aut}_{PSL_{n}(q)}(S)=\mathrm{Inn}(S). ∎

3.5. kk-connectivity

In this subsection, we prove some connectivity properties of the Sylow 22-subgroups of SLn(q)SL_{n}(q) and PSLn(q)PSL_{n}(q), where qq is a nontrivial odd prime power and n6n\geq 6. We will work with the following definition (see [32, Section 8]):

Definition 3.24.

Let SS be a finite 22-group, and let kk be a positive integer. If AA and BB are elementary abelian subgroups of SS of rank at least kk, then AA and BB are said to be kk-connected if there is a sequence

A=A1,A2,,An=B(n1)A=A_{1},A_{2},\dots,A_{n}=B\ \ \ \ (n\geq 1)

of elementary abelian subgroups AiA_{i}, 1in1\leq i\leq n, of SS with rank at least kk such that

AiAi+1orAi+1AiA_{i}\subseteq A_{i+1}\ \textnormal{or}\ A_{i+1}\subseteq A_{i}

for all 1in11\leq i\leq n-1. The group SS is said to be kk-connected if any two elementary abelian subgroups of SS of rank at least kk are kk-connected.

Lemma 3.25.

([32, Lemma 8.4]) Let SS be a finite 22-group, and let kk be a positive integer. If SS has a normal elementary abelian subgroup of rank at least 2k1+12^{k-1}+1, then SS is kk-connected.

Lemma 3.26.

Let qq be a nontrivial odd prime power with q1mod 4q\equiv 1\ \mathrm{mod}\ 4, and let n6n\geq 6 be a natural number. Then the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) and those of SLn(q)SL_{n}(q) are 33-connected.

Proof.

Let W0W_{0} be the unique Sylow 22-subgroup of GL1(q)GL_{1}(q), and let W1W_{1} be the Sylow 22-subgroup of GL2(q)GL_{2}(q) given in Lemma 3.10 (i). For each r2r\geq 2, let WrW_{r} be the Sylow 22-subgroup of GL2r(q)GL_{2^{r}}(q) obtained from Wr1W_{r-1} by the construction given in the last statement of Lemma 3.14. Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}, and let WW be the Sylow 22-subgroup of GLn(q)GL_{n}(q) obtained from Wr1,,WrtW_{r_{1}},\dots,W_{r_{t}} by using the last statement of Lemma 3.15.

Let RR denote the subgroup of GLn(q)GL_{n}(q) consisting of all diagonal matrices DGLn(q)D\in GL_{n}(q), where D2Z(GLn(q))D^{2}\in Z(GL_{n}(q)) and any diagonal element of DD is a 22-element of 𝔽q\mathbb{F}_{q}^{*}. It is easy to note that RWR\trianglelefteq W.

Set R0:=RSLn(q)R_{0}:=R\cap SL_{n}(q). Then Ω1(R0)\Omega_{1}(R_{0}), the subgroup of R0R_{0} generated by all involutions of R0R_{0}, is elementary abelian of order 2n1252^{n-1}\geq 2^{5}, and Ω1(R0)WSLn(q)\Omega_{1}(R_{0})\trianglelefteq W\cap SL_{n}(q). Also, R0Z(SLn(q))/Z(SLn(q))R_{0}Z(SL_{n}(q))/Z(SL_{n}(q)) is a normal elementary abelian subgroup of (WSLn(q))Z(SLn(q))/Z(SLn(q))(W\cap SL_{n}(q))Z(SL_{n}(q))/Z(SL_{n}(q)), and one can easily check that the order of R0Z(SLn(q))/Z(SLn(q))R_{0}Z(SL_{n}(q))/Z(SL_{n}(q)) is at least 252^{5}. Lemma 3.25 implies that WSLn(q)W\cap SL_{n}(q) and its image in PSLn(q)PSL_{n}(q) are 33-connected. ∎

Lemma 3.25 and the proof of Lemma 3.26 show that we also have the following:

Lemma 3.27.

Let qq be a nontrivial odd prime power with q1mod 4q\equiv 1\ \mathrm{mod}\ 4, and let n6n\geq 6 be a natural number. Then the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) and those of SLn(q)SL_{n}(q) are 22-connected.

We now study the case q3mod4q\equiv 3\mod 4.

Lemma 3.28.

Let qq be a nontrivial odd prime power with q3mod 4q\equiv 3\ \mathrm{mod}\ 4, and let n6n\geq 6 be a natural number. Then the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) and those of SLn(q)SL_{n}(q) are 22-connected. If n10n\geq 10, then we even have that the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) and those of SLn(q)SL_{n}(q) are 33-connected.

Proof.

Let W0W_{0} denote the unique Sylow 22-subgroup of GL1(q)GL_{1}(q), and let W1W_{1} be a Sylow 22-subgroup of GL2(q)GL_{2}(q). By Lemma 3.10 (ii), W1W_{1} is semidihedral. Let mm\in\mathbb{N} with |W1|=2m|W_{1}|=2^{m}. Also, let h,aW1h,a\in W_{1} such that ord(h)=2m1\mathrm{ord}(h)=2^{m-1}, ord(a)=2\mathrm{ord}(a)=2 and ha=h2m21h^{a}=h^{2^{m-2}-1}. Set z:=I2=h2m2z:=-I_{2}=h^{2^{m-2}}. For each r2r\geq 2, let WrW_{r} be the Sylow 22-subgroup of GL2r(q)GL_{2^{r}}(q) obtained from Wr1W_{r-1} by the construction given in the last statement of Lemma 3.14. Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}, and let WW be the Sylow 22-subgroup of GLn(q)GL_{n}(q) obtained from Wr1,,WrtW_{r_{1}},\dots,W_{r_{t}} by using the last statement of Lemma 3.15.

Given a natural number 1\ell\geq 1 and elements x1,,xGL2(q)x_{1},\dots,x_{\ell}\in GL_{2}(q), we write diag(x1,,x)\mathrm{diag}(x_{1},\dots,x_{\ell}) for the block diagonal matrix

(x1x).\begin{pmatrix}x_{1}&&\\ &\ddots&\\ &&x_{\ell}\end{pmatrix}.

For each natural number r1r\geq 1, let ArA_{r} denote the subgroup of GL2r(q)GL_{2^{r}}(q) consisting of the matrices diag(x1,,x2r1)\mathrm{diag}(x_{1},\dots,x_{2^{r-1}}), where either xizx_{i}\in\langle z\rangle for all 1i2r11\leq i\leq 2^{r-1} or xix_{i} is an element of h\langle h\rangle with order 44 for all 1i2r11\leq i\leq 2^{r-1}. By induction over rr, one can see that ArWrA_{r}\trianglelefteq W_{r} for all r1r\geq 1. Also, let Ar~:=Ω1(Ar)\widetilde{A_{r}}:=\Omega_{1}(A_{r}) for all r1r\geq 1. Clearly, Ar~Wr\widetilde{A_{r}}\trianglelefteq W_{r} for all r1r\geq 1.

We now consider two cases.

Case 1: nn is even.

Let EE be the subgroup of GLn(q)GL_{n}(q) consisting of the matrices diag(x1,,xn2)\mathrm{diag}(x_{1},\dots,x_{\frac{n}{2}}), where either xizx_{i}\in\langle z\rangle for all 1in21\leq i\leq\frac{n}{2} or xix_{i} is an element of h\langle h\rangle with order 44 for all 1in21\leq i\leq\frac{n}{2}. Let E~:=Ω1(E)\widetilde{E}:=\Omega_{1}(E). Since AriWriA_{r_{i}}\trianglelefteq W_{r_{i}} for all 1it1\leq i\leq t, we have that EE and E~\widetilde{E} are normal subgroups of WW. Lemma 3.16 (iii) shows that EWSLn(q)E\leq W\cap SL_{n}(q).

As E~\widetilde{E} is elementary abelian of order 2n22^{\frac{n}{2}}, Lemma 3.25 implies that WSLn(q)W\cap SL_{n}(q) is 22-connected, and even 33-connected if n10n\geq 10. Since EZ(SLn(q))/Z(SLn(q))EZ(SL_{n}(q))/Z(SL_{n}(q)) is a normal elementary abelian subgroup of (WSLn(q))Z(SLn(q))/Z(SLn(q))(W\cap SL_{n}(q))Z(SL_{n}(q))/Z(SL_{n}(q)) with order 2n22^{\frac{n}{2}}, Lemma 3.25 also shows that a Sylow 22-subgroup is 22-connected, and even 33-connected if n10n\geq 10.

Case 2: nn is odd.

Now let EE denote the subgroup of GLn(q)GL_{n}(q) consisting of the matrices

(1x1xn12),\left(\begin{array}[]{c|cc}1&\begin{matrix}&&\end{matrix}\\ \hline\cr\begin{matrix}&\\ &\\ &\end{matrix}&\begin{matrix}x_{1}&&\\ &\ddots&\\ &&x_{\frac{n-1}{2}}\end{matrix}\end{array}\right),

where xizx_{i}\in\langle z\rangle for all 1in121\leq i\leq\frac{n-1}{2}. Since Ari~Wri\widetilde{A_{r_{i}}}\trianglelefteq W_{r_{i}} for all 2it2\leq i\leq t, we have that EE is a normal subgroup of WSLn(q)W\cap SL_{n}(q). Moreover, EE is elementary abelian of order 2n122^{\frac{n-1}{2}}. Lemma 3.25 implies that WSLn(q)W\cap SL_{n}(q) is 22-connected, and even 33-connected if n11n\geq 11. There is nothing else to show since the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) are isomorphic to those of SLn(q)SL_{n}(q) (as nn is odd). ∎

We show next that the groups SLn(q)SL_{n}(q), where 6n96\leq n\leq 9 and q3mod4q\equiv 3\mod 4, and the groups PSLn(q)PSL_{n}(q), where 7n97\leq n\leq 9 and q3mod4q\equiv 3\mod 4, also have 33-connected Sylow 22-subgroups.

Lemma 3.29.

Let qq be a nontrivial odd prime power with q3mod4q\equiv 3\mod 4. Then the Sylow 22-subgroups of SL6(q)SL_{6}(q) and those of SL7(q)SL_{7}(q) are 33-connected.

Proof.

Let W1W_{1} be a Sylow 22-subgroup of GL2(q)GL_{2}(q), let W2W_{2} be the Sylow 22-subgroup of GL4(q)GL_{4}(q) obtained from W1W_{1} by the construction given in the last statement of Lemma 3.14, and let WW be the Sylow 22-subgroup of GL6(q)GL_{6}(q) obtained from W1W_{1} and W2W_{2} by using the last statement of Lemma 3.15.

From Lemma 3.15, we see that the Sylow 22-subgroups of SL7(q)SL_{7}(q) are isomorphic to those of GL6(q)GL_{6}(q). So it is enough to show that WW and WSL6(q)W\cap SL_{6}(q) are 33-connected. Given elements x1,x2,x3GL2(q)x_{1},x_{2},x_{3}\in GL_{2}(q), we write diag(x1,x2,x3)\mathrm{diag}(x_{1},x_{2},x_{3}) for the block diagonal matrix

(x1x2x3).\begin{pmatrix}x_{1}&&\\ &x_{2}&\\ &&x_{3}\end{pmatrix}.

Let AA be the subgroup of WSL6(q)W\cap SL_{6}(q) consisting of the matrices diag(x1,x2,x3)\mathrm{diag}(x_{1},x_{2},x_{3}), where xiI2x_{i}\in\langle-I_{2}\rangle for 1i31\leq i\leq 3. Clearly, AE8A\cong E_{8}. We prove the following:

  1. (1)

    If EE is an elementary abelian subgroup of WW of rank at least 33, then EE is 33-connected to an elementary abelian subgroup of WSL6(q)W\cap SL_{6}(q) of rank at least 33.

  2. (2)

    If EE is an elementary abelian subgroup of WSL6(q)W\cap SL_{6}(q) of rank at least 33, then EE is 33-connected to AA in WSL6(q)W\cap SL_{6}(q).

By (1) and (2), any elementary abelian subgroup of WW of rank at least 33 is 33-connected to AA, and so WW is 33-connected. Similarly, (2) implies that WSL6(q)W\cap SL_{6}(q) is 33-connected.

Let Z:=diag(I2,I2,I2),diag(I2,I2,I2)Z:=\langle\mathrm{diag}(-I_{2},I_{2},I_{2}),\mathrm{diag}(I_{2},-I_{2},-I_{2})\rangle. Since ZZ(W)Z\leq Z(W), we have that any elementary abelian subgroup of WW of rank at least 33 is 33-connected to an E8E_{8}-subgroup of WW containing ZZ. Also, any elementary abelian subgroup of WSL6(q)W\cap SL_{6}(q) of rank at least 33 is 33-connected (in WSL6(q)W\cap SL_{6}(q)) to an E8E_{8}-subgroup of WSL6(q)W\cap SL_{6}(q) containing ZZ. Therefore, we only need to consider E8E_{8}-subgroups containing ZZ in order to prove (1) and (2).

So let EE be an E8E_{8}-subgroup of WW with ZEZ\leq E, and let sEZs\in E\setminus Z. Suppose that s=diag(s1,s2,s3)s=\mathrm{diag}(s_{1},s_{2},s_{3}), where s1,s2,s3W1s_{1},s_{2},s_{3}\in W_{1}. Then [E,A]=1[E,A]=1, and it is easy to deduce that EE is 33-connected to AA, so that EE satisfies (1). Also, if EWSL6(q)E\leq W\cap SL_{6}(q), it is easy to deduce that EE satisfies (2).

Suppose now that

s=(s1s2s3)s=\begin{pmatrix}s_{1}&&\\ &&s_{2}\\ &s_{3}&\end{pmatrix}

for some s1,s2,s3W1s_{1},s_{2},s_{3}\in W_{1}. Since s2=I6s^{2}=I_{6}, we have s2=s31s_{2}=s_{3}^{-1}. Let aa be an involution of W1W_{1} with aI2a\neq-I_{2}. Set s:=diag(I2,a,as2)s^{*}:=\mathrm{diag}(I_{2},a,a^{s_{2}}) and E:=Z,sE8E^{*}:=\langle Z,s^{*}\rangle\cong E_{8}. Clearly, EWSL6(q)E^{*}\leq W\cap SL_{6}(q). It is easy to check that [E,E]=1[E,E^{*}]=1, which implies that EE is 33-connected to EE^{*}. So EE satisfies (1). If EWSL6(q)E\leq W\cap SL_{6}(q), then EE is 33-connected to EE^{*} in WSL6(q)W\cap SL_{6}(q), and EE^{*} is 33-connected to AA in WSL6(q)W\cap SL_{6}(q) since [E,A]=1[E^{*},A]=1. Therefore, EE satisfies (2) when EWSL6(q)E\leq W\cap SL_{6}(q). ∎

Let qq be a nontrivial odd prime power with q3mod4q\equiv 3\mod 4. A Sylow 22-subgroup of PSL7(q)PSL_{7}(q) is isomorphic to a Sylow 22-subgroup of SL7(q)SL_{7}(q). So, by Lemma 3.29, the Sylow 22-subgroups of PSL7(q)PSL_{7}(q) are 33-connected.

We need the following lemma in order to prove that the Sylow 22-subgroups of SLn(q)SL_{n}(q) and PSLn(q)PSL_{n}(q) are 33-connected when n{8,9}n\in\{8,9\}.

Lemma 3.30.

Let qq be a nontrivial odd prime power with q3mod 4q\equiv 3\ \mathrm{mod}\ 4, and let VV be a Sylow 22-subgroup of GL4(q)GL_{4}(q). Let uVu\in V with u2=I4u^{2}=I_{4} or u2=I4u^{2}=-I_{4}. Then there is an involution vVu,I4v\in V\setminus\langle u,-I_{4}\rangle which commutes with uu.

Proof.

Fix a Sylow 22-subgroup W1W_{1} of GL2(q)GL_{2}(q), and let W2W_{2} be the Sylow 22-subgroup of GL4(q)GL_{4}(q) obtained from W1W_{1} by the construction given in the last statement of Lemma 3.14. By Sylow’s Theorem, we may assume that V=W2V=W_{2}. Let aa be an involution of W1W_{1} with aI2a\neq-I_{2}.

First, we consider the case that

u=(xy)u=\begin{pmatrix}x&\\ &y\end{pmatrix}

with elements x,yW1x,y\in W_{1}. If xI2x\not\in\langle-I_{2}\rangle or yI2y\not\in\langle-I_{2}\rangle, then

(I2I2)W2\begin{pmatrix}-I_{2}&\\ &I_{2}\end{pmatrix}\in W_{2}

is an involution commuting with uu and not lying in u,I4\langle u,-I_{4}\rangle. If x,yI2x,y\in\langle-I_{2}\rangle, then we may choose

v:=(aa).v:=\begin{pmatrix}a&\\ &a\end{pmatrix}.

Assume now that

u=(xy)u=\begin{pmatrix}&x\\ y&\end{pmatrix}

with elements x,yW1x,y\in W_{1}. Let

v:=(aax).v:=\begin{pmatrix}a&\\ &a^{x}\end{pmatrix}.

As aa is an involution of W1W_{1}, we have that vv is an involution of W2W_{2}. By a direct calculation (using that xyI2xy\in\langle-I_{2}\rangle), vv has the desired properties. ∎

Lemma 3.31.

Let qq be a nontrivial odd prime power with q3mod 4q\equiv 3\ \mathrm{mod}\ 4. Then the Sylow 22-subgroups of SL8(q)SL_{8}(q) and those of SL9(q)SL_{9}(q) are 33-connected.

Proof.

Fix a Sylow 22-subgroup W1W_{1} of GL2(q)GL_{2}(q), let W2W_{2} be the Sylow 22-subgroup of GL4(q)GL_{4}(q) obtained from W1W_{1} by the construction given in the last statement of Lemma 3.14, and let WW be the Sylow 22-subgroup of GL8(q)GL_{8}(q) obtained from W2W_{2} by the construction given in the last statement of Lemma 3.14. Set S:=WSL8(q)S:=W\cap SL_{8}(q).

From Lemma 3.15, we see that the Sylow 22-subgroups of SL9(q)SL_{9}(q) are isomorphic to those of GL8(q)GL_{8}(q). So it is enough to show that WW and SS are 33-connected.

Given a natural number 1\ell\geq 1 and x1,,xx_{1},\dots,x_{\ell} of GL2(q)GL4(q)GL_{2}(q)\cup GL_{4}(q), we write diag(x1,,x)\mathrm{diag}(x_{1},\dots,x_{\ell}) for the block diagonal matrix

(x1x).\begin{pmatrix}x_{1}&&\\ &\ddots&\\ &&x_{\ell}\end{pmatrix}.

Set

A:={diag(x1,x2,x3,x4)|xiI2 1i4}SA:=\left\{\mathrm{diag}(x_{1},x_{2},x_{3},x_{4})\ |\ x_{i}\in\langle-I_{2}\rangle\ \forall\ 1\leq i\leq 4\right\}\leq S

and

Z:=I8S.Z:=\langle-I_{8}\rangle\leq S.

Clearly, AE16A\cong E_{16}. Since ZZ(W)Z\leq Z(W), we have that any elementary abelian subgroup of WW of rank at least 33 is 33-connected to an E8E_{8}-subgroup of WW containing ZZ. Similarly, any elementary abelian subgroup of SS of rank at least 33 is 33-connected to an E8E_{8}-subgroup of SS containing ZZ. So it suffices to prove that any E8E_{8}-subgroup EE of WW with ZEZ\leq E is 33-connected to AA, where EE is even 33-connected in SS to AA if ESE\leq S. Thus let EE be an E8E_{8}-subgroup of WW containing ZZ, and let x,yEx,y\in E with E=Z,x,yE=\langle Z,x,y\rangle.

We consider a number of cases. Below, aa will always denote an involution of W1W_{1} with aI2a\neq-I_{2}.

Case 1: x=diag(I4,I4)x=\mathrm{diag}(-I_{4},I_{4}) and y=diag(b1,b2)y=\mathrm{diag}(b_{1},b_{2}) for some b1,b2W2b_{1},b_{2}\in W_{2}.

We determine an involution y1CW(E)Z,xy_{1}\in C_{W}(E)\setminus\langle Z,x\rangle such that Z,x,y1E8\langle Z,x,y_{1}\rangle\cong E_{8} is 33-connected to AA. In the case that ESE\leq S, we determine y1y_{1} such that y1Sy_{1}\in S and such that Z,x,y1\langle Z,x,y_{1}\rangle is 33-connected to AA in SS. The existence of such an involution y1y_{1} easily implies that EE is 33-connected to AA, and even 33-connected to AA in SS if ESE\leq S. The involution y1y_{1} is given by the following table in dependence of yy. In each row, r1,r2,r3,r4r_{1},r_{2},r_{3},r_{4} are assumed to be elements of W1W_{1} such that yy is equal to the matrix given in the column “yy” and such that the conditions in the column “Conditions” (if any) are satisfied. The column “y1y_{1}” gives the involution y1y_{1} with the desired properties. For each row, one can verify the stated properties of y1y_{1} by a direct calculation or by using the previous rows.

Case yy Conditions y1y_{1}
1.1 (r1r2r3r4)\begin{pmatrix}r_{1}&&&\\ &r_{2}&&\\ &&r_{3}&\\ &&&r_{4}\end{pmatrix} yy
1.2 (r1r2r3r4)\begin{pmatrix}r_{1}&&&\\ &r_{2}&&\\ &&&r_{3}\\ &&r_{4}&\end{pmatrix} r1,r2I2\langle r_{1},r_{2}\rangle\not\leq\langle-I_{2}\rangle (r1r2I4)\begin{pmatrix}r_{1}&&\\ &r_{2}&\\ &&I_{4}\end{pmatrix}
1.3 (r1r2r3r4)\begin{pmatrix}r_{1}&&&\\ &r_{2}&&\\ &&&r_{3}\\ &&r_{4}&\end{pmatrix} r1,r2I2r_{1},r_{2}\leq\langle-I_{2}\rangle (aaI4)\begin{pmatrix}a&&\\ &a&\\ &&I_{4}\end{pmatrix}
1.4 (r1r2r3r4)\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&r_{3}&\\ &&&r_{4}\end{pmatrix} r3,r4I2\langle r_{3},r_{4}\rangle\not\leq\langle-I_{2}\rangle (I4r3r4)\begin{pmatrix}I_{4}&&\\ &r_{3}&\\ &&r_{4}\end{pmatrix}
1.5 (r1r2r3r4)\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&r_{3}&\\ &&&r_{4}\end{pmatrix} r3,r4I2r_{3},r_{4}\leq\langle-I_{2}\rangle (I4aa)\begin{pmatrix}I_{4}&&\\ &a&\\ &&a\end{pmatrix}
1.6 (r1r2r3r4)\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&&r_{3}\\ &&r_{4}&\end{pmatrix} (r1r2I4)\begin{pmatrix}&r_{1}&\\ r_{2}&&\\ &&I_{4}\end{pmatrix}

Case 2: x=diag(a1,a2)x=\mathrm{diag}(a_{1},a_{2}) and y=diag(b1,b2)y=\mathrm{diag}(b_{1},b_{2}) for some a1,a2,b1,b2W2a_{1},a_{2},b_{1},b_{2}\in W_{2}.

Set x1:=diag(I4,I4)x_{1}:=\mathrm{diag}(-I_{4},I_{4}). Since E=Z,x,yE8E=\langle Z,x,y\rangle\cong E_{8}, the elements xx and yy cannot be both contained in Z,x1\langle Z,x_{1}\rangle. Without loss of generality, we may assume that yZ,x1y\not\in\langle Z,x_{1}\rangle. Then E1:=Z,x1,yE8E_{1}:=\langle Z,x_{1},y\rangle\cong E_{8}. The group E1E_{1} is 33-connected to AA by Case 1, and it is 33-connected to EE since EE and E1E_{1} commute. Hence, EE is 33-connected to AA. Clearly, if ESE\leq S, then EE is even 33-connected in SS to AA.

Case 3: There are a1,a2,b1,b2W2a_{1},a_{2},b_{1},b_{2}\in W_{2} with

{x,y}={(a1a2),(b1b2)}.\{x,y\}=\left\{\begin{pmatrix}a_{1}&\\ &a_{2}\end{pmatrix},\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}\right\}.

Without loss of generality, we assume that

x=(a1a2)andy=(b1b2).x=\begin{pmatrix}a_{1}&\\ &a_{2}\end{pmatrix}\ \textnormal{and}\ y=\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}.

Since xx and yy are commuting involutions, we have b1=b21b_{1}=b_{2}^{-1} and a2=a1b1a_{2}={a_{1}}^{b_{1}}. By Lemma 3.30, there is an involution a1~W2a1,I4\widetilde{a_{1}}\in W_{2}\setminus\langle a_{1},-I_{4}\rangle which commutes with a1a_{1}. Set

y1:=(a1~a1~b1).y_{1}:=\begin{pmatrix}\widetilde{a_{1}}&\\ &{\widetilde{a_{1}}}^{b_{1}}\end{pmatrix}.

It is easy to see that y1Sy_{1}\in S, and y1y_{1} is an involution since a1~\widetilde{a_{1}} is an involution of W2W_{2}. We have [x,y1]=1[x,y_{1}]=1 since a1~\widetilde{a_{1}} commutes with a1a_{1} and a1~b1\widetilde{a_{1}}^{b_{1}} commutes with a1b1=a2{a_{1}}^{b_{1}}=a_{2}. A direct calculation using that b1=b21b_{1}=b_{2}^{-1} shows that we also have [y,y1]=1[y,y_{1}]=1. Thus E=Z,x,yE=\langle Z,x,y\rangle commutes with E1:=Z,x,y1E_{1}:=\langle Z,x,y_{1}\rangle. Since a1~a1,I4\widetilde{a_{1}}\not\in\langle a_{1},-I_{4}\rangle, we have y1Z,xy_{1}\not\in\langle Z,x\rangle and hence E1E8E_{1}\cong E_{8}. Applying Case 2, it follows that EE is 33-connected to AA (and even 33-connected in SS to AA when ESE\leq S).

Case 4: There are a1,a2,b1,b2W2a_{1},a_{2},b_{1},b_{2}\in W_{2} with

x=(a1a2)andy=(b1b2).x=\begin{pmatrix}&a_{1}\\ a_{2}&\end{pmatrix}\ \textnormal{{and}}\ y=\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}.

This case can be reduced to Case 3 since E=Z,x,y=Z,x,xyE=\langle Z,x,y\rangle=\langle Z,x,xy\rangle. ∎

Let qq be a nontrivial odd prime power with q3mod4q\equiv 3\mod 4. A Sylow 22-subgroup of PSL9(q)PSL_{9}(q) is isomorphic to a Sylow 22-subgroup of SL9(q)SL_{9}(q). So, by Lemma 3.31, the Sylow 22-subgroups of PSL9(q)PSL_{9}(q) are 33-connected.

Lemma 3.32.

Let qq be a nontrivial odd prime power with q3mod 4q\equiv 3\ \mathrm{mod}\ 4. Then the Sylow 22-subgroups of PSL8(q)PSL_{8}(q) are 33-connected.

Proof.

Let W1W_{1} be a Sylow 22-subgroup of GL2(q)GL_{2}(q). Let W2W_{2} be the Sylow 22-subgroup of GL4(q)GL_{4}(q) obtained from W1W_{1} by the construction given in the last statement of Lemma 3.14, and let W3W_{3} be the Sylow 22-subgroup of GL8(q)GL_{8}(q) obtained from W2W_{2} by the construction given in the last statement of Lemma 3.14. Set S:=W3SL8(q)S:=W_{3}\cap SL_{8}(q). For each subgroup or element XX of SL8(q)SL_{8}(q), let \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X} denote the image of XX in PSL8(q)PSL_{8}(q). We prove that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S} is 33-connected.

Given a natural number 1\ell\geq 1 and x1,,xx_{1},\dots,x_{\ell} of GL2(q)GL4(q)GL_{2}(q)\cup GL_{4}(q), we write diag(x1,,x)\mathrm{diag}(x_{1},\dots,x_{\ell}) for the block diagonal matrix

(x1x).\begin{pmatrix}x_{1}&&\\ &\ddots&\\ &&x_{\ell}\end{pmatrix}.

Set

A:={diag(x1,x2,x3,x4)|xiI2 1i4}S.A:=\left\{\mathrm{diag}(x_{1},x_{2},x_{3},x_{4})\ |\ x_{i}\in\langle-I_{2}\rangle\ \forall\ 1\leq i\leq 4\right\}\leq S.

We have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AE8\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\cong E_{8}.

Set

Z:=diag(I4,I4).Z:=\left\langle\mathrm{diag}(-I_{4},I_{4})\right\rangle.

We have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ZZ(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z}\leq Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}). Using this, it is easy to note that any elementary abelian subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S} of rank at least 33 is 33-connected to an E8E_{8}-subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S} containing \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z}. Hence, it suffices to prove that any E8E_{8}-subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S} containing \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z} is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}.

Let x,ySx,y\in S and B:=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111yB:=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle. Suppose that BE8B\cong E_{8}. Considering a number of cases, we will prove that BB is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. Below, aa will always denote an involution of W1W_{1} with aI2a\neq-I_{2}.

Case 1: x=diag(r1,r2,r3,r4)andy=diag(m1,m2)x=\mathrm{diag}(r_{1},r_{2},r_{3},r_{4})\ \textnormal{{and}}\ y=\mathrm{diag}(m_{1},m_{2}) for some r1,r2,r3,r4W1r_{1},r_{2},r_{3},r_{4}\in W_{1} and m1,m2W2m_{1},m_{2}\in W_{2}.

We consider a number of subcases. These subcases are given by the rows of the table below. In each row, we assume that s1,s2,s3,s4s_{1},s_{2},s_{3},s_{4} are elements of W1W_{1} such that yy is equal to the matrix given in the column “yy”. We also assume that the conditions in the column “Conditions” (if any) are satisfied. The column “y1y_{1}” gives an element of SS such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y} is an involution in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111xC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E})\setminus\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle and such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. The existence of such an element y1y_{1} easily implies that BB is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}.

Case yy Conditions y1y_{1}
1.1 (s1s2s3s4)\begin{pmatrix}s_{1}&&&\\ &s_{2}&&\\ &&s_{3}&\\ &&&s_{4}\end{pmatrix} yy
1.2 (s1s2s3s4)\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&s_{3}&\\ &&&s_{4}\end{pmatrix} xAx\not\in A (I4I2I2)\begin{pmatrix}I_{4}&&\\ &-I_{2}&\\ &&I_{2}\end{pmatrix}
1.3 (s1s2s3s4)\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&s_{3}&\\ &&&s_{4}\end{pmatrix} xAx\in A (aas21I4)\begin{pmatrix}a&&\\ &a^{s_{2}^{-1}}&\\ &&I_{4}\end{pmatrix}
1.4 (s1s2s3s4)\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix} xAx\not\in A (I2I2I2I2)\begin{pmatrix}I_{2}&&&\\ &-I_{2}&&\\ &&I_{2}&\\ &&&-I_{2}\end{pmatrix}
1.5 (s1s2s3s4)\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix} xAx\in A (aas21aas41)\begin{pmatrix}a&&&\\ &a^{s_{2}^{-1}}&&\\ &&a&\\ &&&a^{s_{4}^{-1}}\end{pmatrix}

The subcase that yy has the form

(s1s2s3s4)\begin{pmatrix}s_{1}&&&\\ &s_{2}&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix}

can be easily reduced to Cases 1.2 and 1.3.

Case 2: There are r1,r2,r3,r4W1r_{1},r_{2},r_{3},r_{4}\in W_{1} and m1,m2W2m_{1},m_{2}\in W_{2} with

x=(r1r2r3r4)andy=(m1m2).x=\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&r_{3}&\\ &&&r_{4}\end{pmatrix}\ \textnormal{{and}}\ y=\begin{pmatrix}m_{1}&\\ &m_{2}\end{pmatrix}.

Case 2.1: There are s1,s2,s3,s4W1s_{1},s_{2},s_{3},s_{4}\in W_{1} with

y=(s1s2s3s4)ory=(s1s2s3s4).y=\begin{pmatrix}s_{1}&&&\\ &s_{2}&&\\ &&s_{3}&\\ &&&s_{4}\end{pmatrix}\ \textnormal{{or}}\ y=\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&s_{3}&\\ &&&s_{4}\end{pmatrix}.

Noticing that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle, this case can be reduced to Case 1.

Case 2.2: There are s1,s2,s3,s4W1s_{1},s_{2},s_{3},s_{4}\in W_{1} with

y=(s1s2s3s4).y=\begin{pmatrix}s_{1}&&&\\ &s_{2}&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix}.

Since BE8B\cong E_{8}, we have εxy=x\varepsilon x^{y}=x, where ε{+,}\varepsilon\in\{+,-\}. By a direct calculation, we have

xy=(s11r1s2s21r2s1r4s4r3s3).x^{y}=\begin{pmatrix}&s_{1}^{-1}r_{1}s_{2}&&\\ s_{2}^{-1}r_{2}s_{1}&&&\\ &&r_{4}^{s_{4}}&\\ &&&r_{3}^{s_{3}}\end{pmatrix}.

As x=εxyx=\varepsilon x^{y}, we have r1=εs11r1s2r_{1}=\varepsilon s_{1}^{-1}r_{1}s_{2}, r2=εs21r2s1r_{2}=\varepsilon s_{2}^{-1}r_{2}s_{1}, r3=εr4s4r_{3}=\varepsilon r_{4}^{s_{4}} and r4=εr3s3r_{4}=\varepsilon r_{3}^{s_{3}}. Note that εs1r1=s2\varepsilon s_{1}^{r_{1}}=s_{2} and εs2r2=s1\varepsilon s_{2}^{r_{2}}=s_{1}.

We now consider a number of subsubcases. These subsubcases are given by the rows of the table below. The columns “Condition 1” and “Condition 2” describe the subsubcase under consideration. The column “y1y_{1}” gives an element y1Sy_{1}\in S such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y} is an involution in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111xC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E})\setminus\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle and such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. In each subsubcase, one can see from the above calculations and from the previous cases that y1y_{1} indeed has the stated properties. The existence of such an element y1y_{1} easily implies that BB is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} in all subsubcases.

Case Condition 1 Condition 2 y1y_{1}
2.2.1 x2=I8=y2x^{2}=I_{8}=y^{2} r3,r4I2\langle r_{3},r_{4}\rangle\not\leq\langle-I_{2}\rangle (εs1s2εr3r4)\begin{pmatrix}\varepsilon s_{1}&&&\\ &s_{2}&&\\ &&\varepsilon r_{3}&\\ &&&r_{4}\end{pmatrix}
2.2.2 x2=I8=y2x^{2}=I_{8}=y^{2} r3,r4I2\langle r_{3},r_{4}\rangle\leq\langle-I_{2}\rangle (r1r2εaas3)\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&\varepsilon a&\\ &&&a^{s_{3}}\end{pmatrix}
2.2.3 x2=I8=y2x^{2}=-I_{8}=y^{2} (εs1s2εr3r4)\begin{pmatrix}\varepsilon s_{1}&&&\\ &s_{2}&&\\ &&\varepsilon r_{3}&\\ &&&r_{4}\end{pmatrix}
2.2.4 x2=I8,y2=I8x^{2}=I_{8},y^{2}=-I_{8} r3,r4I2\langle r_{3},r_{4}\rangle\not\leq\langle-I_{2}\rangle (I4εr3r4)\begin{pmatrix}I_{4}&&\\ &\varepsilon r_{3}&\\ &&r_{4}\end{pmatrix}
2.2.5 x2=I8,y2=I8x^{2}=I_{8},y^{2}=-I_{8} r3,r4I2\langle r_{3},r_{4}\rangle\leq\langle-I_{2}\rangle (I4εaεas3)\begin{pmatrix}I_{4}&&\\ &\varepsilon a&\\ &&\varepsilon a^{s_{3}}\end{pmatrix}

The case that x2=I8x^{2}=-I_{8} and y2=I8y^{2}=I_{8} can be easily reduced to Cases 2.2.4 and 2.2.5.

Case 2.3: There are s1,s2,s3,s4W1s_{1},s_{2},s_{3},s_{4}\in W_{1} with

y=(s1s2s3s4).y=\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix}.

Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle, this case can be reduced to Case 2.2.

Case 3: There are r1,r2,r3,r4W1r_{1},r_{2},r_{3},r_{4}\in W_{1} and m1,m2W2m_{1},m_{2}\in W_{2} with

x=(r1r2r3r4)andy=(m1m2).x=\begin{pmatrix}r_{1}&&&\\ &r_{2}&&\\ &&&r_{3}\\ &&r_{4}&\end{pmatrix}\ \textnormal{{and}}\ y=\begin{pmatrix}m_{1}&\\ &m_{2}\end{pmatrix}.

This case can be reduced to Case 2.

Case 4: There are r1,r2,r3,r4W1r_{1},r_{2},r_{3},r_{4}\in W_{1} and m1,m2W2m_{1},m_{2}\in W_{2} with

x=(r1r2r3r4)andy=(m1m2).x=\begin{pmatrix}&r_{1}&&\\ r_{2}&&&\\ &&&r_{3}\\ &&r_{4}&\end{pmatrix}\ \textnormal{{and}}\ y=\begin{pmatrix}m_{1}&\\ &m_{2}\end{pmatrix}.

In view of Cases 1-3, we may assume that

y=(s1s2s3s4)y=\begin{pmatrix}&s_{1}&&\\ s_{2}&&&\\ &&&s_{3}\\ &&s_{4}&\end{pmatrix}

for some s1,s2,s3,s4W1s_{1},s_{2},s_{3},s_{4}\in W_{1}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle, we can now reduce the given case to Case 1.

Case 5: There are a1,a2,b1,b2W2a_{1},a_{2},b_{1},b_{2}\in W_{2} with

{x,y}={(a1a2),(b1b2)}.\{x,y\}=\left\{\begin{pmatrix}a_{1}&\\ &a_{2}\end{pmatrix},\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}\right\}.

Without loss of generality, we assume that

x=(a1a2)andy=(b1b2).x=\begin{pmatrix}a_{1}&\\ &a_{2}\end{pmatrix}\ \textnormal{and}\ y=\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}.

We have x2I8x^{2}\in\langle-I_{8}\rangle since B=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111yE8B=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle\cong E_{8}, and hence a12I4{a_{1}}^{2}\in\langle-I_{4}\rangle. So, by Lemma 3.30, there is an involution a1~W2a1,I4\widetilde{a_{1}}\in W_{2}\setminus\langle a_{1},-I_{4}\rangle which commutes with a1a_{1}. Set

y1:=(a1~a1~b1).y_{1}:=\begin{pmatrix}\widetilde{a_{1}}&\\ &\widetilde{a_{1}}^{b_{1}}\end{pmatrix}.

Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y} is an involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S}. As [x,y]I8[x,y]\in\langle-I_{8}\rangle, we have a1b1{a2,a2}{a_{1}}^{b_{1}}\in\{a_{2},-a_{2}\}. Since a1a_{1} and a1~\widetilde{a_{1}} commute, it follows that a1~b1\widetilde{a_{1}}^{b_{1}} and a2a_{2} commute. So we have [x,y1]=1[x,y_{1}]=1 and hence [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}]=1. Using that y2I8y^{2}\in\langle-I_{8}\rangle, one can easily verify that [y,y1]=1[y,y_{1}]=1 and hence [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}]=1. As a1~a1,I4\widetilde{a_{1}}\not\in\langle a_{1},-I_{4}\rangle, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\not\in\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle.

Now \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle is an E8E_{8}-subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111S\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{S} which commutes with BB and which is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} by Cases 1-4. Thus BB is 33-connected to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}.

Case 6: There are a1,a2,b1,b2W2a_{1},a_{2},b_{1},b_{2}\in W_{2} with

x=(a1a2)andy=(b1b2).x=\begin{pmatrix}&a_{1}\\ a_{2}&\end{pmatrix}\ \textnormal{{and}}\ y=\begin{pmatrix}&b_{1}\\ b_{2}&\end{pmatrix}.

Noticing that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Z},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle, we can reduce this case to Case 5. ∎

We summarize the above lemmas in the following corollary.

Corollary 3.33.

Let qq be a nontrivial odd prime power and n6n\geq 6. Then the following hold:

  1. (i)

    The Sylow 22-subgroups of SLn(q)SL_{n}(q) and those of PSLn(q)PSL_{n}(q) are 22-connected.

  2. (ii)

    The Sylow 22-subgroups of SLn(q)SL_{n}(q) are 33-connected.

  3. (iii)

    If q1mod 4q\equiv 1\ \mathrm{mod}\ 4 or n7n\geq 7, then the Sylow 22-subgroups of PSLn(q)PSL_{n}(q) are 33-connected.

Unfortunately, the Sylow 22-subgroups of PSL6(q)PSL_{6}(q) are not 33-connected when q3mod4q\equiv 3\mod 4 (this is not terribly difficult to observe).

Corollary 3.34.

Let qq be a nontrivial odd prime power and n6n\geq 6. Let G=SLn(q)G=SL_{n}(q), or G=PSLn(q)G=PSL_{n}(q) and n7n\geq 7 if q3mod4q\equiv 3\mod 4. For any Sylow 22-subgroup SS of GG and any elementary abelian subgroup AA of SS with m(A)3m(A)\leq 3, there is some elementary abelian subgroup BB of SS with A<BA<B and m(B)=4m(B)=4.

Proof.

By Corollary 3.33, SS is 22-connected and 33-connected. Applying [32, Lemma 8.7], the claim follows. ∎

3.6. Generation

Next we discuss some generational properties of (P)SLn(q)(P)SL_{n}(q) and (P)SUn(q)(P)SU_{n}(q), where n3n\geq 3 and qq is a nontrivial odd prime power. We need the following definition (see [32, Section 8]).

Definition 3.35.

Let GG be a finite group, let SS be a Sylow 22-subgroup of GG, and let kk be a positive integer. We say that GG is kk-generated if

G=ΓS,k(G):=NG(T)|TS,m(T)k.G=\Gamma_{S,k}(G):=\langle N_{G}(T)\ |\ T\leq S,m(T)\geq k\rangle.

The following two lemmas will later prove to be useful.

Lemma 3.36.

(see [6]) Let qq be a nontrivial odd prime power. Then the groups SL3(q)SL_{3}(q), PSL3(q)PSL_{3}(q), SU3(q)SU_{3}(q) and PSU3(q)PSU_{3}(q) are 22-generated.

Lemma 3.37.

Let qq be a nontrivial odd prime power, and let n4n\geq 4 be a natural number. Moreover, let ε{+,}\varepsilon\in\{+,-\} and ZZ(SLnε(q))Z\leq Z(SL_{n}^{\varepsilon}(q)). Assume that one of the following holds:

  1. (i)

    n5n\geq 5,

  2. (ii)

    qεmod 8q\equiv\varepsilon\ \mathrm{mod}\ 8,

  3. (iii)

    Z=1Z=1.

Then SLnε(q)/ZSL_{n}^{\varepsilon}(q)/Z is 33-generated.

We need the following lemma in order to prove Lemma 3.37.

Lemma 3.38.

(see [45], [14]) Let q>2q>2 be a prime power, and let n3n\geq 3 be a natural number. Let ε{+,}\varepsilon\in\{+,-\}. Define

U1:={(AIn2):ASL2ε(q)}U_{1}:=\left\{\begin{pmatrix}A&\\ &I_{n-2}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q)\right\}

and

Un1:={(In2A):ASL2ε(q)}.U_{n-1}:=\left\{\begin{pmatrix}I_{n-2}&\\ &A\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q)\right\}.

Moreover, for each 2in22\leq i\leq n-2, let

Ui:={(Ii1AIni1):ASL2ε(q)}.U_{i}:=\left\{\begin{pmatrix}I_{i-1}&&\\ &A&\\ &&I_{n-i-1}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q)\right\}.

Then the following hold:

  1. (i)

    We have SLnε(q)=Ui: 1in1SL_{n}^{\varepsilon}(q)=\langle U_{i}\ :\ 1\leq i\leq n-1\rangle.

  2. (ii)

    For each 1in21\leq i\leq n-2, there is a monomial matrix mim_{i} in SLnε(q)SL_{n}^{\varepsilon}(q) with Uimi=Ui+1U_{i}^{m_{i}}=U_{i+1}.

Proof of Lemma 3.37.

Let qq be a nontrivial odd prime power, and let n4n\geq 4 be a natural number. Moreover, let ε{+,}\varepsilon\in\{+,-\} and ZZ(SLnε(q))Z\leq Z(SL_{n}^{\varepsilon}(q)). Suppose that one of the conditions n5n\geq 5, qεmod 8q\equiv\ \varepsilon\ \mathrm{mod}\ 8 or Z=1Z=1 is satisfied. We have to show that SLnε(q)/ZSL_{n}^{\varepsilon}(q)/Z is 33-generated.

Let U1,,Un1U_{1},\dots,U_{n-1} denote the SL2ε(q)SL_{2}^{\varepsilon}(q)-subgroups of SLnε(q)SL_{n}^{\varepsilon}(q) corresponding to the 2×22\times 2 blocks along the main diagonal (as in Lemma 3.38). Let EE be the subgroup of SLnε(q)SL_{n}^{\varepsilon}(q) consisting of the diagonal matrices in SLnε(q)SL_{n}^{\varepsilon}(q) with diagonal entries in {1,1}\{-1,1\}.

Assume that n5n\geq 5. Then one can easily see that, for each i{1,,n1}i\in\{1,\dots,n-1\}, there is an E8E_{8}-subgroup EiE_{i} of EE with EiZ(SLnε(q))=1E_{i}\cap Z(SL_{n}^{\varepsilon}(q))=1 and [Ei,Ui]=1[E_{i},U_{i}]=1. Hence, UiZ/ZU_{i}Z/Z centralizes EiZ/ZE8E_{i}Z/Z\cong E_{8} for each i{1,,n1}i\in\{1,\dots,n-1\}. Now, if SS is a Sylow 22-subgroup of SLnε(q)/ZSL_{n}^{\varepsilon}(q)/Z containing EZ/ZEZ/Z, we have UiZ/ZΓS,3(SLnε(q)/Z)U_{i}Z/Z\leq\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z) for each i{1,,n1}i\in\{1,\dots,n-1\}, and Lemma 3.38 (i) implies that SLnε(q)/ZSL_{n}^{\varepsilon}(q)/Z is 33-generated.

We now consider the case n=4n=4. By hypothesis, Z=1Z=1 or qεmod 8q\equiv\varepsilon\ \mathrm{mod}\ 8. Let

U:={(A00001):ASL3ε(q)}.U:=\left\{\left(\begin{array}[]{c|c}A&\begin{matrix}0\\ 0\end{matrix}\\ \hline\cr\begin{matrix}0&0\end{matrix}&1\end{array}\right)\ :\ A\in SL_{3}^{\varepsilon}(q)\right\}.

If Z=1Z=1, set y:=I4y:=-I_{4}. If qεmod 8q\equiv\varepsilon\ \mathrm{mod}\ 8, let λ\lambda be an element of 𝔽q2\mathbb{F}_{q^{2}}^{*} of order 88 such that λqε=1\lambda^{q-\varepsilon}=1. Note that λ𝔽q\lambda\in\mathbb{F}_{q}^{*} if ε=+\varepsilon=+. Also, if qεmod 8q\equiv\varepsilon\ \mathrm{mod}\ 8 and |Z|=2|Z|=2, let y:=λ2I4SL4ε(q)y:=\lambda^{2}I_{4}\in SL_{4}^{\varepsilon}(q), and if qεmod 8q\equiv\varepsilon\ \mathrm{mod}\ 8 and |Z|=4|Z|=4, let y:=diag(λ,λ,λ,λ)SL4ε(q)y:=\mathrm{diag}(\lambda,\lambda,\lambda,-\lambda)\in SL_{4}^{\varepsilon}(q).

Let S0S_{0} be a Sylow 22-subgroup of UU containing EUE\cap U. Let S~\widetilde{S} be a Sylow 22-subgroup of SL4ε(q)SL_{4}^{\varepsilon}(q) containing S0S_{0} and yy. Denote the image of S~\widetilde{S} in SL4ε(q)/ZSL_{4}^{\varepsilon}(q)/Z by SS. We have SUZ/Z=S0Z/ZSyl2(UZ/Z)S\cap UZ/Z=S_{0}Z/Z\in\mathrm{Syl}_{2}(UZ/Z). By Lemma 3.36, UZ/ZUSL3ε(q)UZ/Z\cong U\cong SL_{3}^{\varepsilon}(q) is 22-generated. So we have

UZ/Z=ΓS0Z/Z,2(UZ/Z)=NUZ/Z(T)|TS0Z/Z,m(T)2.UZ/Z=\Gamma_{S_{0}Z/Z,2}(UZ/Z)=\langle N_{UZ/Z}(T)\ |\ T\leq S_{0}Z/Z,m(T)\geq 2\rangle.

Let TS0Z/ZT\leq S_{0}Z/Z with m(T)2m(T)\geq 2 and T^:=T,yZ\widehat{T}:=\langle T,yZ\rangle. Clearly, yZyZ is an involution of SS not contained in UZ/ZUZ/Z and centralizing UZ/ZUZ/Z. Therefore, we have that m(T^)3m(\widehat{T})\geq 3 and NUZ/Z(T)NSLnε(q)/Z(T^)N_{UZ/Z}(T)\leq N_{SL_{n}^{\varepsilon}(q)/Z}(\widehat{T}). It follows that UZ/ZΓS,3(SLnε(q)/Z)UZ/Z\leq\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z). In particular, UiZ/ZΓS,3(SLnε(q)/Z)U_{i}Z/Z\leq\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z) for i{1,2}i\in\{1,2\}.

From Lemma 3.38 (ii), we see that there is some mSL4ε(q)m\in SL_{4}^{\varepsilon}(q) such that U2m=U3{U_{2}}^{m}=U_{3} and such that mm normalizes E,y\langle E,y\rangle. So mZmZ normalizes EZ/Z,yZ\langle EZ/Z,yZ\rangle. It is easy to note that EZ/Z,yZE8\langle EZ/Z,yZ\rangle\cong E_{8}, and so we have mZΓS,3(SLnε(q)/Z)mZ\in\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z). It follows that U3Z/Z=(U2Z/Z)mZΓS,3(SLnε(q)/Z)U_{3}Z/Z=(U_{2}Z/Z)^{mZ}\leq\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z).

So we have UiZ/ZΓS,3(SLnε(q)/Z)U_{i}Z/Z\leq\Gamma_{S,3}(SL_{n}^{\varepsilon}(q)/Z) for i{1,2,3}i\in\{1,2,3\}, and Lemma 3.38 (i) implies that SLnε(q)/ZSL_{n}^{\varepsilon}(q)/Z is 33-generated. ∎

3.7. Automorphisms of (P)SLn(q)(P)SL_{n}(q)

Fix a prime number pp, a positive integer ff and a natural number n2n\geq 2. Set q:=pfq:=p^{f} and T:=SLn(q)T:=SL_{n}(q). We now briefly describe the structure of Aut(T/Z)\mathrm{Aut}(T/Z), where ZZ(T)Z\leq Z(T), referring to [20] and [17, Section 2.1] for further details.

Let Inndiag(T):=AutGLn(q)(T)\mathrm{Inndiag}(T):=\mathrm{Aut}_{GL_{n}(q)}(T). Note that

Inndiag(T)/Inn(T)C(n,q1).\mathrm{Inndiag}(T)/\mathrm{Inn}(T)\cong C_{(n,q-1)}.

The map

ϕ:TT,(aij)(aijp)\phi:T\rightarrow T,(a_{ij})\mapsto({a_{ij}}^{p})

is an automorphism of TT with order ff. One can check that ϕ\phi normalizes Inndiag(T)\mathrm{Inndiag}(T). Set

PΓLn(q):=Inndiag(T)ϕ.P\Gamma L_{n}(q):=\mathrm{Inndiag}(T)\langle\phi\rangle.

It is easy to note that ϕInndiag(T)=1\langle\phi\rangle\cap\mathrm{Inndiag}(T)=1, so that PΓLn(q)P\Gamma L_{n}(q) is the inner semidirect product of Inndiag(T)\mathrm{Inndiag}(T) and ϕ\langle\phi\rangle.

The map

ι:TT,a(at)1\iota:T\rightarrow T,a\mapsto(a^{t})^{-1}

is an automorphism of TT with order 22. If n=2n=2, then ι\iota turns out to be an inner automorphism of TT, while we have ιPΓLn(q)\iota\not\in P\Gamma L_{n}(q) when n3n\geq 3. By a direct calculation, ι\iota normalizes Inndiag(T)\mathrm{Inndiag}(T) and commutes with ϕ\phi. In particular, A:=PΓLn(q)ιA:=P\Gamma L_{n}(q)\langle\iota\rangle is a subgroup of Aut(T)\mathrm{Aut}(T), and we have

A/Inndiag(T)Cf×Ca,A/\mathrm{Inndiag}(T)\cong C_{f}\times C_{a},

where a=1a=1 if n=2n=2 and a=2a=2 if n3n\geq 3.

Now let ZZ be a central subgroup of TT. It can be easily checked that the natural homomorphism Aut(T)Aut(T/Z)\mathrm{Aut}(T)\rightarrow\mathrm{Aut}(T/Z) is injective. The image of Inndiag(T)\mathrm{Inndiag}(T) under this homomorphism will be denoted by Inndiag(T/Z)\mathrm{Inndiag}(T/Z). By abuse of notation, we denote the image of PΓLn(q)P\Gamma L_{n}(q) in Aut(T/Z)\mathrm{Aut}(T/Z) again by PΓLn(q)P\Gamma L_{n}(q) and the images of ι\iota and ϕ\phi again by ι\iota and ϕ\phi, respectively.

With this notation, we have

Aut(T/Z)=PΓLn(q)ι.\mathrm{Aut}(T/Z)=P\Gamma L_{n}(q)\langle\iota\rangle.

Note that the natural homomorphism Aut(T)Aut(T/Z)\mathrm{Aut}(T)\rightarrow\mathrm{Aut}(T/Z) is an isomorphism and that it induces an isomorphism Out(T)Out(T/Z)\mathrm{Out}(T)\rightarrow\mathrm{Out}(T/Z).

The elements of Inndiag(T/Z)Inn(T/Z)\mathrm{Inndiag}(T/Z)\setminus\mathrm{Inn}(T/Z) are said to be the (non-trivial) diagonal automorphisms of T/ZT/Z. An automorphism of T/ZT/Z is called a field automorphism if it is conjugate to ϕi\phi^{i} for some 1i<f1\leq i<f. The automorphisms of the form αι\alpha\iota, where αInndiag(T/Z)\alpha\in\mathrm{Inndiag}(T/Z), are said to be the graph automorphisms of T/ZT/Z. An automorphism of T/ZT/Z is said to be a graph-field automorphism if it is conjugate to an automorphism of the form ϕiι\phi^{i}\iota for some 1i<f1\leq i<f. We remark that these definitions are particular cases of more general definitions, see [48, Chapter 10].

Proposition 3.39.

Let qq be a nontrivial prime power, and let n2n\geq 2. Then Out(PSLn(q))\mathrm{Out}(PSL_{n}(q)) is 22-nilpotent.

Proof.

From the above remarks, it is easy to see that Out(PSLn(q))\mathrm{Out}(PSL_{n}(q)) is supersolvable. By [38, Lemma 2.4 (4)], any supersolvable finite group is 22-nilpotent, and so the proposition follows. ∎

The following proposition also follows from the above remarks.

Proposition 3.40.

Let n2n\geq 2 be a natural number. Then Out(SLn(3))\mathrm{Out}(SL_{n}(3)) is a 22-group.

3.8. Automorphisms of (P)SUn(q)(P)SU_{n}(q)

Let pp be a prime number, ff be a positive integer and n3n\geq 3 be a natural number. Set q:=pfq:=p^{f} and T:=SUn(q)T:=SU_{n}(q). We now briefly describe the structure of Aut(T/Z)\mathrm{Aut}(T/Z), where ZZ(T)Z\leq Z(T), referring to [20] and [17, Section 2.3] for further details.

Let Inndiag(T):=AutGUn(q)(SUn(q))\mathrm{Inndiag}(T):=\mathrm{Aut}_{GU_{n}(q)}(SU_{n}(q)). It is rather easy to note that

Inndiag(T)/Inn(T)C(n,q+1).\mathrm{Inndiag}(T)/\mathrm{Inn}(T)\cong C_{(n,q+1)}.

The map

ϕ:TT,(aij)(aijp)\phi:T\rightarrow T,(a_{ij})\mapsto({a_{ij}}^{p})

is an automorphism of TT with order 2f2f. One can check that ϕ\phi normalizes Inndiag(T)\mathrm{Inndiag}(T). Set

PΓUn(q):=Inndiag(T)ϕ.P\Gamma U_{n}(q):=\mathrm{Inndiag}(T)\langle\phi\rangle.

It is rather easy to note that ϕInndiag(T)=1\langle\phi\rangle\cap\mathrm{Inndiag}(T)=1, so that PΓUn(q)P\Gamma U_{n}(q) is the inner semidirect product of Inndiag(T)\mathrm{Inndiag}(T) and ϕ\langle\phi\rangle. Note that

PΓUn(q)/Inndiag(T)C2f.P\Gamma U_{n}(q)/\mathrm{Inndiag}(T)\cong C_{2f}.

Now let ZZ be a central subgroup of TT. It can be easily checked that the natural homomorphism Aut(T)Aut(T/Z)\mathrm{Aut}(T)\rightarrow\mathrm{Aut}(T/Z) is injective. The image of Inndiag(T)\mathrm{Inndiag}(T) under this homomorphism will be denoted by Inndiag(T/Z)\mathrm{Inndiag}(T/Z). By abuse of notation, we denote the image of PΓUn(q)P\Gamma U_{n}(q) in Aut(T/Z)\mathrm{Aut}(T/Z) again by PΓUn(q)P\Gamma U_{n}(q) and the image of ϕ\phi again by ϕ\phi.

With this notation, we have

Aut(T/Z)=PΓUn(q).\mathrm{Aut}(T/Z)=P\Gamma U_{n}(q).

Note that the natural homomorphism Aut(T)Aut(T/Z)\mathrm{Aut}(T)\rightarrow\mathrm{Aut}(T/Z) is an isomorphism and that it induces an isomorphism Out(T)Out(T/Z)\mathrm{Out}(T)\rightarrow\mathrm{Out}(T/Z).

The elements of Inndiag(T/Z)Inn(T/Z)\mathrm{Inndiag}(T/Z)\setminus\mathrm{Inn}(T/Z) are said to be the (non-trivial) diagonal automorphisms of T/ZT/Z. An automorphism of T/ZT/Z is called a field automorphism if it is conjugate to ϕi\phi^{i} for some 1i<2f1\leq i<2f such that ϕi\phi^{i} has odd order. The automorphisms of the form αϕi\alpha\phi^{i}, where ϕi\phi^{i} has even order and αInndiag(T/Z)\alpha\in\mathrm{Inndiag}(T/Z), are said to be the graph automorphisms of T/ZT/Z. There are no graph-field automorphisms of T/ZT/Z.

Proposition 3.41.

Let qq be a nontrivial prime power, and let n3n\geq 3. Then Out(PSUn(q))\mathrm{Out}(PSU_{n}(q)) is 22-nilpotent.

Proof.

We see from the above remarks that Out(PSUn(q))\mathrm{Out}(PSU_{n}(q)) is supersolvable. So Out(PSUn(q))\mathrm{Out}(PSU_{n}(q)) is 22-nilpotent by [38, Lemma 2.4 (4)]. ∎

The following proposition also follows from the above remarks.

Proposition 3.42.

Let n3n\geq 3 be a natural number. Then Out(SUn(3))\mathrm{Out}(SU_{n}(3)) is a 22-group.

3.9. Some lemmas

We now prove several results on the automorphism groups of (P)SLn(q)(P)SL_{n}(q) and (P)SUn(q)(P)SU_{n}(q), where n2n\geq 2 and qq is a nontrivial odd prime power.

Lemma 3.43.

Let qq be a nontrivial odd prime power. Also, let T:=SL2(q)T:=SL_{2}(q) and SSyl2(T)S\in\mathrm{Syl}_{2}(T). Suppose that α\alpha and β\beta are 22-elements of Aut(T)\mathrm{Aut}(T) such that Sα=S=SβS^{\alpha}=S=S^{\beta} and α|S,S=β|S,S\alpha|_{S,S}=\beta|_{S,S}. Then α=β\alpha=\beta.

Proof.

Let γ:=αβ1CAut(T)(S)\gamma:=\alpha\beta^{-1}\in C_{\mathrm{Aut}(T)}(S). We have CInndiag(T)(S)=1C_{\mathrm{Inndiag}(T)}(S)=1 by [29, Lemma 4.10.10]. Therefore, it suffices to show that γInndiag(T)\gamma\in\mathrm{Inndiag}(T). Clearly, the images of α\alpha and β1\beta^{-1} in Aut(T)/Inndiag(T)\mathrm{Aut}(T)/\mathrm{Inndiag}(T) are 22-elements of Aut(T)/Inndiag(T)\mathrm{Aut}(T)/\mathrm{Inndiag}(T). Since Aut(T)/Inndiag(T)\mathrm{Aut}(T)/\mathrm{Inndiag}(T) is abelian,

γInndiag(T)=(αInndiag(T))(β1Inndiag(T))\gamma\cdot\mathrm{Inndiag}(T)=(\alpha\cdot\mathrm{Inndiag}(T))\cdot(\beta^{-1}\cdot\mathrm{Inndiag}(T))

is still a 22-element of Aut(T)/Inndiag(T)\mathrm{Aut}(T)/\mathrm{Inndiag}(T). By [29, Lemma 4.10.10], CAut(T)(S)C_{\mathrm{Aut}(T)}(S) is a 22^{\prime}-group, and so γ\gamma has odd order. Therefore, γInndiag(T)\gamma\cdot\mathrm{Inndiag}(T) has odd order. It follows that γInndiag(T)\gamma\in\mathrm{Inndiag}(T), as required. ∎

Lemma 3.44.

Let q=pfq=p^{f}, where pp is an odd prime and ff is a positive integer. Let T:=PSL2(q)T:=PSL_{2}(q), and let α\alpha be an involution of Aut(T)\mathrm{Aut}(T). Suppose that CT(α)C_{T}(\alpha) has a 22-component KK. Then we have 2f2\mid f, (f,p)(2,3)(f,p)\neq(2,3) and KPSL2(pf2)K\cong PSL_{2}(p^{\frac{f}{2}}). In particular, KK is a component of CT(α)C_{T}(\alpha).

Proof.

Note that CT(α)CInn(T)(α)C_{T}(\alpha)\cong C_{\mathrm{Inn}(T)}(\alpha).

Assume that αInndiag(T)\alpha\in\mathrm{Inndiag}(T). Noticing that Inndiag(T)PGL2(q)\mathrm{Inndiag}(T)\cong PGL_{2}(q), we see from Lemma 3.3 that CInndiag(T)(α)C_{\mathrm{Inndiag}(T)}(\alpha) is solvable. Thus CT(α)CInn(T)(α)C_{T}(\alpha)\cong C_{\mathrm{Inn}(T)}(\alpha) is solvable, and CT(α)C_{T}(\alpha) has no 22-components, a contradiction to the choice of α\alpha.

So we have αInndiag(T)\alpha\not\in\mathrm{Inndiag}(T). By the structure of Aut(PSL2(q))\mathrm{Aut}(PSL_{2}(q)) and since α\alpha has order 22, we can write α\alpha as a product of an inner-diagonal automorphism and a field automorphism of order 22. In particular, ff must be even. Consulting [29, Proposition 4.9.1 (d)], we see that α\alpha itself is a field automorphism. So we can apply [29, Proposition 4.9.1 (b)] to conclude that CInndiag(T)(α)Inndiag(PSL2(pf2))PGL2(pf2)C_{\mathrm{Inndiag}(T)}(\alpha)\cong\mathrm{Inndiag}(PSL_{2}(p^{\frac{f}{2}}))\cong PGL_{2}(p^{\frac{f}{2}}). Consequently, KK is isomorphic to a 22-component of PGL2(pf2)PGL_{2}(p^{\frac{f}{2}}). It follows that (f,p)(2,3)(f,p)\neq(2,3) and KPSL2(pf2)K\cong PSL_{2}(p^{\frac{f}{2}}). ∎

Before we state the next lemma, we introduce some notational conventions for adjoint Chevalley groups. Given a nontrivial prime power qq, we denote A1(q)A_{1}(q) also by B1(q)B_{1}(q) and by C1(q)C_{1}(q). Moreover, B2(q)B_{2}(q) will be also denoted by C2(q)C_{2}(q), and A3(q)A_{3}(q) will be also denoted by D3(q)D_{3}(q). We also set D2(q):=A1(q)×A1(q)D_{2}(q):=A_{1}(q)\times A_{1}(q) and D22(q):=A1(q2){}^{2}D_{2}(q):=A_{1}(q^{2}).

Lemma 3.45.

Let q=pfq=p^{f}, where pp is an odd prime and ff is a positive integer. Let n3n\geq 3 be a natural number and ε{+,}\varepsilon\in\{+,-\}. Let T:=PSLnε(q)T:=PSL_{n}^{\varepsilon}(q), and let α\alpha be an involution of Aut(T)\mathrm{Aut}(T). Suppose that CT(α)C_{T}(\alpha) has a 22-component KK. Then KK is in fact a component, and one of the following holds:

  1. (i)

    KSLiε(q)K\cong SL_{i}^{\varepsilon}(q) for some 2i<n2\leq i<n, where i>2i>2 if q=3q=3;

  2. (ii)

    nn is even, and KK is isomorphic to a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2});

  3. (iii)

    ε=+\varepsilon=+, ff is even, KPSLn(pf2)K\cong PSL_{n}(p^{\frac{f}{2}}) or KPSUn(pf2)K\cong PSU_{n}(p^{\frac{f}{2}});

  4. (iv)

    q3q\neq 3, n=3n=3 or 44, and KPSL2(q)K\cong PSL_{2}(q);

  5. (v)

    nn is odd, n5n\geq 5 and KBn12(q)K\cong B_{\frac{n-1}{2}}(q);

  6. (vi)

    nn is even and KCn2(q)K\cong C_{\frac{n}{2}}(q);

  7. (vii)

    nn is even, n6n\geq 6 and KDn2(q)K\cong D_{\frac{n}{2}}(q);

  8. (viii)

    nn is even, n6n\geq 6 and KK\cong Dn22(q){}^{2}D_{\frac{n}{2}}(q).

Here, the (twisted) Chevalley groups appearing in (v)-(viii) are adjoint.

Proof.

It can be shown that any involution of Aut(T)\mathrm{Aut}(T) is an inner-diagonal automorphism, a field automorphism, a graph automorphism, or a graph-field automorphism (see [17, Section 3.1.3] or [29, Section 4.9]).

Case 1: αInndiag(T)\alpha\in\mathrm{Inndiag}(T), or α\alpha is a graph automorphism.

Set C:=CInndiag(T)(α)C^{*}:=C_{\mathrm{Inndiag}(T)}(\alpha) and L:=Op(C)L^{*}:=O^{p^{\prime}}(C^{*}). One can see from [29, Theorem 4.2.2 and Table 4.5.1] that C/LC^{*}/L^{*} is solvable and that one of the following holds:

  1. (1)

    LL^{*} is the central product of two subgroups isomorphic to SLiε(q)SL_{i}^{\varepsilon}(q) and SLniε(q)SL_{n-i}^{\varepsilon}(q) for some natural number ii with 1in21\leq i\leq\frac{n}{2},

  2. (2)

    nn is even and LL^{*} is isomorphic to a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}),

  3. (3)

    nn is odd and LBn12(q)L^{*}\cong B_{\frac{n-1}{2}}(q),

  4. (4)

    nn is even and LCn2(q)L^{*}\cong C_{\frac{n}{2}}(q),

  5. (5)

    nn is even and LDn2(q)L^{*}\cong D_{\frac{n}{2}}(q),

  6. (6)

    nn is even and LL^{*}\cong Dn22(q){}^{2}D_{\frac{n}{2}}(q),

where the (twisted) Chevalley groups appearing in the last four cases are adjoint. Since CT(α)C_{T}(\alpha) is isomorphic to CInn(T)(α)CC_{\mathrm{Inn}(T)}(\alpha)\trianglelefteq C^{*}, we have that KK is isomorphic to a 22-component of CC^{*} and thus isomorphic to a 22-component of LL^{*}. Therefore, one of the conditions (i)-(viii) is satisfied.

Case 2: α\alpha is a field automorphism or a graph-field automorphism.

Again, let C:=CInndiag(T)(α)C^{*}:=C_{\mathrm{Inndiag}(T)}(\alpha). Since the field automorphisms of PSUn(q)PSU_{n}(q) have odd order and PSUn(q)PSU_{n}(q) has no graph-field automorphisms, we have ε=+\varepsilon=+. Also, ff is even since α\alpha is a field automorphism or a graph-field automorphism of order 22. From [29, Proposition 4.9.1 (a), (b)], we see that CPGLn(pf2)C^{*}\cong PGL_{n}(p^{\frac{f}{2}}) if α\alpha is a field automorphism and that CPGUn(pf2)C^{*}\cong PGU_{n}(p^{\frac{f}{2}}) if α\alpha is a graph-field automorphism. Since KK is isomorphic to a 22-component of CC^{*}, it follows that (iii) is satisfied. ∎

Corollary 3.46.

Let q=pfq=p^{f}, where pp is an odd prime and ff is a positive integer. Let n2n\geq 2 be a natural number and ε{+,}\varepsilon\in\{+,-\}. Let ZZ be a central subgroup of SLnε(q)SL_{n}^{\varepsilon}(q) and let T:=SLnε(q)/ZT:=SL_{n}^{\varepsilon}(q)/Z. Let α\alpha be an involution of Aut(T)\mathrm{Aut}(T), and let KK be a 22-component of CT(α)C_{T}(\alpha). Then the following hold:

  1. (i)

    KK is a component of CT(α)C_{T}(\alpha), and K/Z(K)K/Z(K) is a known finite simple group.

  2. (ii)

    K/Z(K)≇M11K/Z(K)\not\cong M_{11}.

  3. (iii)

    Assume that K/Z(K)PSLkε(q)K/Z(K)\cong PSL_{k}^{\varepsilon^{*}}(q^{*}) for some positive integer 2kn2\leq k\leq n, some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon^{*}\in\{+,-\}. Then one of the following holds:

    1. (a)

      q=qq^{*}=q;

    2. (b)

      q=q2q^{*}=q^{2}, n4n\geq 4 is even, k=n2k=\frac{n}{2}, and ε=+\varepsilon^{*}=+ if n6n\geq 6;

    3. (c)

      ff is even, k=nk=n, q=pf2q^{*}=p^{\frac{f}{2}}.

Proof.

Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T:=T/Z(T)PSLnε(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}:=T/Z(T)\cong PSL_{n}^{\varepsilon}(q). Let α¯\overline{\alpha} be the automorphism of T¯\overline{T} induced by α\alpha.

Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} is a 22-component of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. It is easy to note that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is a normal subgroup of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}). So \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} is a 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}). Lemmas 3.44 and 3.45 imply that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}) and that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a known finite simple group. Applying [37, 6.5.1], we conclude that KK^{\prime} is a component of CT(α)C_{T}(\alpha). We have K=KK=K^{\prime} since KK is a 22-component of CT(α)C_{T}(\alpha), and so it follows that KK is a component of CT(α)C_{T}(\alpha). Also, K/Z(K)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)K/Z(K)\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}), so that K/Z(K)K/Z(K) is a known finite simple group. Hence (i) holds.

If K/Z(K)M11K/Z(K)\cong M_{11}, then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)M11\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cong M_{11}, which is not possible by Lemmas 3.44 and 3.45. So (ii) holds.

Suppose that K/Z(K)PSLkε(q)K/Z(K)\cong PSL_{k}^{\varepsilon^{*}}(q^{*}) for some positive integer 2kn2\leq k\leq n, some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon^{*}\in\{+,-\}. By Lemmas 3.44 and 3.45, one of the following holds:

  1. (1)

    \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)PSLiε(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cong PSL_{i}^{\varepsilon}(q) for some 2i<n2\leq i<n;

  2. (2)

    nn is even and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is isomorphic to PSLn2(q2)PSL_{\frac{n}{2}}(q^{2});

  3. (3)

    ff is even, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KPSLn(pf2)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong PSL_{n}(p^{\frac{f}{2}}) or PSUn(pf2)PSU_{n}(p^{\frac{f}{2}});

  4. (4)

    q3q\neq 3, n=3n=3 or 44, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KPSL2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong PSL_{2}(q);

  5. (5)

    nn is odd, n5n\geq 5, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KBn12(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong B_{\frac{n-1}{2}}(q);

  6. (6)

    nn is even, n4n\geq 4, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KCn2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong C_{\frac{n}{2}}(q);

  7. (7)

    nn is even, n6n\geq 6, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KDn2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong D_{\frac{n}{2}}(q);

  8. (8)

    nn is even, n6n\geq 6, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong Dn22(q){}^{2}D_{\frac{n}{2}}(q).

Here, the (twisted) Chevalley groups appearing in (5)-(8) are adjoint. On the other hand, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)PSLkε(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cong PSL_{k}^{\varepsilon^{*}}(q^{*}). Now, if (1) holds, then PSLkε(q)PSLiε(q)PSL_{k}^{\varepsilon^{*}}(q^{*})\cong PSL_{i}^{\varepsilon}(q) for some 2i<n2\leq i<n, and [48, Theorem 37] shows that this is only possible when q=qq^{*}=q, so that (a) holds. Similarly, if (2) holds, then we have (b). Moreover, (3) implies (c) and (4) implies (a). As Theorem [48, Theorem 37] shows, the cases (5) and (6) cannot occur, while (7) and (8) can only occur when n=6n=6. As above, one can see that if n=6n=6 and (7) or (8) holds, then we have (a). ∎

Lemma 3.47.

Let n3n\geq 3 and ε{+,}\varepsilon\in\{+,-\}. Then SLnε(3)SL_{n}^{\varepsilon}(3) is locally balanced (in the sense of Definition 2.7).

Proof.

Set T:=SLnε(3)T:=SL_{n}^{\varepsilon}(3). Let HH be a subgroup of Aut(T)\mathrm{Aut}(T) containing Inn(T)\mathrm{Inn}(T), and let xx be an involution of HH. It is enough to show that O(CH(x))=1O(C_{H}(x))=1.

Assume that O(CH(x))1O(C_{H}(x))\neq 1. Then xInndiag(T)x\in\mathrm{Inndiag}(T) by [29, Theorem 7.7.1]. By Propositions 3.40 and 3.42, Out(T)\mathrm{Out}(T) is a 22-group. This implies O(CH(x))=O(CInn(T)(x))=O(CInndiag(T)(x))O(C_{H}(x))=O(C_{\mathrm{Inn}(T)}(x))=O(C_{\mathrm{Inndiag}(T)}(x)). Since xx is an involution of Inndiag(T)PGLnε(3)\mathrm{Inndiag}(T)\cong PGL_{n}^{\varepsilon}(3), we have O(CInndiag(T)(x))=1O(C_{\mathrm{Inndiag}(T)}(x))=1 by Corollary 3.9. Thus O(CH(x))=1O(C_{H}(x))=1. This contradiction completes the proof. ∎

Lemma 3.48.

Let n3n\geq 3 be a natural number, let qq be a nontrivial odd power, and let ε{+,}\varepsilon\in\{+,-\}. Then any non-trivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q) is locally 22-balanced (in the sense of Definition 2.7).

Proof.

By [25, Theorem 4.61] or [29, Theorem 7.7.4], PSLnε(q)PSL_{n}^{\varepsilon}(q) is locally 22-balanced. Let KK be a non-trivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q). As we have seen, there is an isomorphism Aut(K)Aut(PSLnε(q))\mathrm{Aut}(K)\rightarrow\mathrm{Aut}(PSL_{n}^{\varepsilon}(q)) mapping Inn(K)\mathrm{Inn}(K) to Inn(PSLnε(q))\mathrm{Inn}(PSL_{n}^{\varepsilon}(q)). So the local 22-balance of KK follows from the local 22-balance of PSLnε(q)PSL_{n}^{\varepsilon}(q). ∎

Lemma 3.49.

Let qq be a nontrivial odd prime power and n4n\geq 4 be a natural number. Let ZZ(SLn(q))Z\leq Z(SL_{n}(q)) and T:=SLn(q)/ZT:=SL_{n}(q)/Z. Let K1K_{1} be the image of

{(AIn2):ASL2(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2}\end{pmatrix}\ :\ A\in SL_{2}(q)\right\}

in TT, and let K2K_{2} be the image of

{(I2B):BSLn2(q)}\left\{\begin{pmatrix}I_{2}&\\ &B\end{pmatrix}\ :\ B\in SL_{n-2}(q)\right\}

in TT. Let α\alpha be an automorphism of TT with odd order such that α\alpha normalizes K1K_{1} and centralizes K2K_{2}. Then α|K1,K1\alpha|_{K_{1},K_{1}} is an inner automorphism.

Proof.

By hypothesis, q=pfq=p^{f} for some odd prime number pp and some positive integer ff. We have αPΓLn(q)\alpha\in P\Gamma L_{n}(q) since α\alpha has odd order and |Aut(T)/PΓLn(q)|=2|\mathrm{Aut}(T)/P\Gamma L_{n}(q)|=2. So there are some mGLn(q)m\in GL_{n}(q) and some 1rf1\leq r\leq f such that, for each element (aij)(a_{ij}) of SLn(q)SL_{n}(q), α\alpha maps (aij)Z(a_{ij})Z to ((aij)pr)mZ((a_{ij})^{p^{r}})^{m}Z.

Let xx be the image of diag(1,1,1,,1)SLn(q)\mathrm{diag}(-1,-1,1,\dots,1)\in SL_{n}(q) in TT. Then xx is the unique involution of K1K_{1}, and so we have xα=xx^{\alpha}=x. This easily implies that

m=(m1m2)m=\begin{pmatrix}m_{1}&\\ &m_{2}\end{pmatrix}

for some m1GL2(q)m_{1}\in GL_{2}(q) and some m2GLn2(q)m_{2}\in GL_{n-2}(q).

Since α\alpha centralizes K2K_{2}, we have ((aij)pr)m2=(aij)((a_{ij})^{p^{r}})^{m_{2}}=(a_{ij}) for all (aij)SLn2(q)(a_{ij})\in SL_{n-2}(q). Therefore, the automorphism SLn2(q)SLn2(q),(aij)(aij)prSL_{n-2}(q)\rightarrow SL_{n-2}(q),(a_{ij})\mapsto(a_{ij})^{p^{r}} is an element of Inndiag(SLn2(q))\mathrm{Inndiag}(SL_{n-2}(q)). This implies r=fr=f.

Thus, under the isomorphism Aut(SL2(q))Aut(K1)\mathrm{Aut}(SL_{2}(q))\rightarrow\mathrm{Aut}(K_{1}) induced by the canonical isomorphism SL2(q)K1SL_{2}(q)\rightarrow K_{1}, the automorphism α|K1,K1\alpha|_{K_{1},K_{1}} of K1K_{1} corresponds to the inner-diagonal automorphism α~:SL2(q)SL2(q),aam1\widetilde{\alpha}:SL_{2}(q)\rightarrow SL_{2}(q),a\mapsto a^{m_{1}}, and this automorphism has odd order since α\alpha has odd order. The index of Inn(SL2(q))\mathrm{Inn}(SL_{2}(q)) in Inndiag(SL2(q))\mathrm{Inndiag}(SL_{2}(q)) is 22, and so it follows that α~Inn(SL2(q))\widetilde{\alpha}\in\mathrm{Inn}(SL_{2}(q)). Consequently, α|K1,K1Inn(K1)\alpha|_{K_{1},K_{1}}\in\mathrm{Inn}(K_{1}). ∎

By using similar arguments as in the proof of Lemma 3.49, one can prove the following lemma.

Lemma 3.50.

Let qq be a nontrivial odd prime power and n4n\geq 4 be a natural number. Let ZZ(SUn(q))Z\leq Z(SU_{n}(q)) and T:=SUn(q)/ZT:=SU_{n}(q)/Z. Let K1K_{1} be the image of

{(AIn2):ASU2(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2}\end{pmatrix}\ :\ A\in SU_{2}(q)\right\}

in TT, and let K2K_{2} be the image of

{(I2B):BSUn2(q)}\left\{\begin{pmatrix}I_{2}&\\ &B\end{pmatrix}\ :\ B\in SU_{n-2}(q)\right\}

in TT. Let α\alpha be an automorphism of TT with odd order such that α\alpha normalizes K1K_{1} and centralizes K2K_{2}. Then α|K1,K1\alpha|_{K_{1},K_{1}} is an inner automorphism.

Our next goal is to prove the following lemma.

Lemma 3.51.

Let qq and qq^{*} be nontrivial odd prime powers. Let LL be a group isomorphic to SL2(q)SL_{2}(q^{*}). Let QQ be a Sylow 22-subgroup of LL. Moreover, let VV be a Sylow 22-subgroup of GL2(q)GL_{2}(q) and V0:=VSL2(q)V_{0}:=V\cap SL_{2}(q). Suppose that there is a group isomorphism ψ:V0Q\psi:V_{0}\rightarrow Q. Let v1,v2,v3v_{1},v_{2},v_{3} be elements of VV such that v3=v1v2v_{3}=v_{1}v_{2} and such that the square of any element of {v1,v2,v3}\{v_{1},v_{2},v_{3}\} lies in Z(GL2(q))Z(GL_{2}(q)). For each i{1,2,3}i\in\{1,2,3\}, let αi\alpha_{i} be a 22-element of Aut(L)\mathrm{Aut}(L) normalizing QQ such that

αi|Q,Q=ψ1(cvi|V0,V0)ψ.\alpha_{i}|_{Q,Q}=\psi^{-1}(c_{v_{i}}|_{V_{0},V_{0}})\psi.

Then we have

i=13O(CL(αi))=1.\bigcap_{i=1}^{3}O(C_{L}(\alpha_{i}))=1.

To prove Lemma 3.51, we need to prove some other lemmas.

Lemma 3.52.

Let qq be a nontrivial odd prime power with q1mod 4q\equiv 1\ \mathrm{mod}\ 4, and let kk\in\mathbb{N} with (q1)2=2k(q-1)_{2}=2^{k}. Let GG be a group isomorphic to SL2(q)SL_{2}(q) and QSyl2(G)Q\in\mathrm{Syl}_{2}(G). Then the following hold:

  1. (i)

    There are elements a,bQa,b\in Q such that ord(a)=2k\mathrm{ord}(a)=2^{k}, ord(b)=4\mathrm{ord}(b)=4, ab=a1a^{b}=a^{-1} and b2=a2k1b^{2}=a^{2^{k-1}}.

  2. (ii)

    Let aa and bb be as in (i). Then there is a group isomorphism φ:GSL2(q)\varphi:G\rightarrow SL_{2}(q) such that

    aφ=(λ00λ1)a^{\varphi}=\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}

    for some λ𝔽q\lambda\in\mathbb{F}_{q}^{*} with order 2k2^{k} and

    bφ=(0110).b^{\varphi}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}.
Proof.

(i) follows from Lemma 3.12.

We now prove (ii). Assume that k3k\geq 3. By Lemma 3.10 (i),

{(μ00μ1):μ is a 2-element of 𝔽q}(0110)\left\{\begin{pmatrix}\mu&0\\ 0&\mu^{-1}\end{pmatrix}\ :\ \textnormal{$\mu$ is a $2$-element of $\mathbb{F}_{q}^{*}$}\right\}\left\langle\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\right\rangle

is a Sylow 22-subgroup of SL2(q)SL_{2}(q). Choose a group isomorphism ψ:GSL2(q)\psi:G\rightarrow SL_{2}(q) such that Qψ=RQ^{\psi}=R. Clearly, since k3k\geq 3, QQ has only one cyclic subgroup of order 2k2^{k}. This implies that

aψ=(λ00λ1)a^{\psi}=\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}

for some λ𝔽q\lambda\in\mathbb{F}_{q}^{*} with order 2k2^{k}. Since bab\not\in\langle a\rangle, we have

bψ=(0μμ10)b^{\psi}=\begin{pmatrix}0&\mu\\ -\mu^{-1}&0\end{pmatrix}

for some 22-element μ\mu of 𝔽q\mathbb{F}_{q}^{*}. Composing ψ\psi with the automorphism

SL2(q)SL2(q),A(μ1001)A(μ001)SL_{2}(q)\rightarrow SL_{2}(q),\ A\mapsto\begin{pmatrix}\mu^{-1}&0\\ 0&1\end{pmatrix}A\begin{pmatrix}\mu&0\\ 0&1\end{pmatrix}

we get a group isomorphism φ:GSL2(q)\varphi:G\rightarrow SL_{2}(q) with the desired properties. This completes the proof of (ii) for the case k3k\geq 3.

Assume now that k=2k=2. Let ψ:GSL2(q)\psi:G\rightarrow SL_{2}(q) be a group isomorphism. We have (aψ)2=I2(a^{\psi})^{2}=-I_{2} since I2-I_{2} is the only involution of SL2(q)SL_{2}(q) and ord(a2)=2\mathrm{ord}(a^{2})=2. So, by Lemma 3.3, we may assume that

aψ=(λ00λ1)a^{\psi}=\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}

for some λ𝔽q\lambda\in\mathbb{F}_{q}^{*} with order 44. Since ab=a1a^{b}=a^{-1}, we have

(λ00λ1)bψ=(λ100λ).\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}^{b^{\psi}}=\begin{pmatrix}\lambda^{-1}&0\\ 0&\lambda\end{pmatrix}.

This implies that

bψ=(0μμ10)b^{\psi}=\begin{pmatrix}0&\mu\\ -\mu^{-1}&0\end{pmatrix}

for some μ𝔽q\mu\in\mathbb{F}_{q}^{*}. Again we may compose ψ\psi with a suitable diagonal automorphism of SL2(q)SL_{2}(q) to obtain a group isomorphism φ:GSL2(q)\varphi:G\rightarrow SL_{2}(q) with the desired properties. ∎

By using similar arguments as in the proof of Lemma 3.52, one can prove the following lemma.

Lemma 3.53.

Let qq be a nontrivial odd prime power with q3mod4q\equiv 3\mod 4, and let ss\in\mathbb{N} with (q+1)2=2s(q+1)_{2}=2^{s}. Let GG be a group isomorphic to SU2(q)SU_{2}(q) and QSyl2(G)Q\in\mathrm{Syl}_{2}(G). Then the following hold:

  1. (i)

    There are elements a,bQa,b\in Q such that ord(a)=2s\mathrm{ord}(a)=2^{s}, ord(b)=4\mathrm{ord}(b)=4, ab=a1a^{b}=a^{-1} and b2=a2s1b^{2}=a^{2^{s-1}}.

  2. (ii)

    Let aa and bb be as in (i). Then there is a group isomorphism φ:GSU2(q)\varphi:G\rightarrow SU_{2}(q) such that

    aφ=(λ00λ1)a^{\varphi}=\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}

    for some λ𝔽q2\lambda\in\mathbb{F}_{q^{2}}^{*} with order 2s2^{s} and

    bφ=(0110).b^{\varphi}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}.
Lemma 3.54.

Let qq be a nontrivial odd prime power with q1mod 4q\equiv 1\ \mathrm{mod}\ 4. Let ρ\rho be a generating element of the Sylow 22-subgroup of 𝔽q\mathbb{F}_{q}^{*}, and let

a:=(ρρ1),b:=(0110).a:=\begin{pmatrix}\rho&\\ &\rho^{-1}\end{pmatrix},\ \ \ \ b:=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}.

Let VV be the Sylow 22-subgroup of GL2(q)GL_{2}(q) given by Lemma 3.10 (i), and let v,wVv,w\in V such that v2,w2,(vw)2Z(GL2(q))v^{2},w^{2},(vw)^{2}\in Z(GL_{2}(q)). Then one of the following holds:

  1. (i)

    {v,w,vw}Z(GL2(q))\{v,w,vw\}\cap Z(GL_{2}(q))\neq\emptyset.

  2. (ii)

    There exist r,s{v,w,vw}r,s\in\{v,w,vw\} with ar=aa^{r}=a, br=b3b^{r}=b^{3} and as=a1a^{s}=a^{-1}.

Proof.

It is easy to note that (i) holds if vv and ww are diagonal matrices.

Suppose now that vv or ww is not a diagonal matrix. If neither vv nor ww is a diagonal matrix, then vwvw is a diagonal matrix. So there exist r,s{v,w,vw}r,s\in\{v,w,vw\} such that

r=(λ1λ2),s=(μ1μ2),r=\begin{pmatrix}\lambda_{1}&\\ &\lambda_{2}\end{pmatrix},\ \ \ \ s=\begin{pmatrix}&\mu_{1}\\ \mu_{2}\end{pmatrix},

where λ1\lambda_{1}, λ2\lambda_{2}, μ1\mu_{1} and μ2\mu_{2} are 22-elements of 𝔽q\mathbb{F}_{q}^{*}.

If λ1=λ2\lambda_{1}=\lambda_{2}, then (i) holds. Assume now that λ1λ2\lambda_{1}\neq\lambda_{2}. Then λ2=λ1\lambda_{2}=-\lambda_{1} since r2Z(GL2(q))r^{2}\in Z(GL_{2}(q)), and a direct calculation shows that ar=aa^{r}=a, br=b3b^{r}=b^{3} and as=a1a^{s}=a^{-1}. ∎

Lemma 3.55.

Let qq be a nontrivial odd prime power with q3mod 4q\equiv 3\ \mathrm{mod}\ 4, and let kk\in\mathbb{N} with (q+1)2=2k(q+1)_{2}=2^{k}. Let VV be a Sylow 22-subgroup of GL2(q)GL_{2}(q).

  1. (i)

    There exist x,yVx,y\in V with ord(x)=2k+1\mathrm{ord}(x)=2^{k+1}, ord(y)=2\mathrm{ord}(y)=2 and xy=x1+2kx^{y}=x^{-1+2^{k}}. We have VSL2(q)=x2xyV\cap SL_{2}(q)=\langle x^{2}\rangle\langle xy\rangle.

  2. (ii)

    Let xx and yy be as above, and let a:=x2a:=x^{2} and b:=xyb:=xy. Let v,wVv,w\in V with v2,w2,(vw)2Z(GL2(q))v^{2},w^{2},(vw)^{2}\in Z(GL_{2}(q)). Then one of the following holds:

    1. (a)

      {v,w,vw}Z(GL2(q))\{v,w,vw\}\cap Z(GL_{2}(q))\neq\emptyset.

    2. (b)

      There exist r,s{v,w,vw}r,s\in\{v,w,vw\} such that ar=aa^{r}=a, br=b3b^{r}=b^{3} and as=a1a^{s}=a^{-1}.

Proof.

(i) follows from Lemma 3.16 (i), (ii).

We now prove (ii). We have Z(V)=x2kZ(V)=\langle x^{2^{k}}\rangle by Lemma [24, Chapter 5, Theorem 4.3]. Thus Z(GL2(q))V=x2kZ(GL_{2}(q))\cap V=\langle x^{2^{k}}\rangle. Clearly, {v,w,vw}xx2k1\{v,w,vw\}\cap\langle x\rangle\subseteq\langle x^{2^{k-1}}\rangle.

If v,wxv,w\in\langle x\rangle, then v,wx2k1v,w\in\langle x^{2^{k-1}}\rangle, and it easily follows that (a) holds.

Assume now that vxv\not\in\langle x\rangle or wxw\not\in\langle x\rangle. If neither vv nor ww lies in x\langle x\rangle, then vwxvw\in\langle x\rangle. Consequently, {v,w,vw}\{v,w,vw\} has an element rr of the form x2k1x^{\ell 2^{k-1}} for some 141\leq\ell\leq 4 and an element ss of the form xiyx^{i}y for some 1i2k+11\leq i\leq 2^{k+1}. If =2\ell=2 or 44, then (a) holds. Assume now that =1\ell=1 or 33. It is clear that ar=aa^{r}=a. Furthermore, we have

br\displaystyle b^{r} =(xy)x2k1\displaystyle=(xy)^{x^{\ell 2^{k-1}}}
=xyx2k1\displaystyle=xy^{x^{\ell 2^{k-1}}}
=xx2k1yx2k1y2\displaystyle=xx^{-\ell 2^{k-1}}yx^{\ell 2^{k-1}}y^{2}
=x12k1(xy)2k1y\displaystyle=x^{1-\ell 2^{k-1}}(x^{y})^{\ell 2^{k-1}}y
=x12k1(x1+2k)2k1y\displaystyle=x^{1-\ell 2^{k-1}}(x^{-1+2^{k}})^{\ell 2^{k-1}}y
=x12k+22k1y\displaystyle=x^{1-\ell 2^{k}+\ell 2^{2k-1}}y
=x12ky\displaystyle=x^{1-\ell 2^{k}}y
= oddx1+2ky.\displaystyle\stackrel{{\scriptstyle\textnormal{$\ell$ odd}}}{{=}}x^{1+2^{k}}y.

On the other hand, we have

b3=(xy)3=x2kxy=x1+2ky.b^{3}=(xy)^{3}=x^{2^{k}}xy=x^{1+2^{k}}y.

Consequently, br=b3b^{r}=b^{3}. Finally, we also have

as=(x2)xiy=(x2)y=(xy)2=(x1+2k)2=x2=a1.a^{s}=(x^{2})^{x^{i}y}=(x^{2})^{y}=(x^{y})^{2}=(x^{-1+2^{k}})^{2}=x^{-2}=a^{-1}.

Thus (b) holds. ∎

Proof of Lemma 3.51.

If αj|Q,Q=idQ\alpha_{j}|_{Q,Q}=\mathrm{id}_{Q} for some j{1,2,3}j\in\{1,2,3\}, then αj=idL\alpha_{j}=\mathrm{id}_{L} by Lemma 3.43, which implies that

i=13O(CL(αi))O(CL(αj))=O(L)=1.\bigcap_{i=1}^{3}O(C_{L}(\alpha_{i}))\leq O(C_{L}(\alpha_{j}))=O(L)=1.

Suppose now that αi\alpha_{i} acts nontrivially on QQ for all i{1,2,3}i\in\{1,2,3\}. Let mm\in\mathbb{N} with |Q|=2m|Q|=2^{m}. Using Lemma 3.54 (together with Sylow’s theorem) and Lemma 3.55, we see that there exist a,bQa,b\in Q and i,j{1,2,3}i,j\in\{1,2,3\} such that the following hold:

  1. (i)

    ord(a)=2m1\mathrm{ord}(a)=2^{m-1}, ord(b)=4\mathrm{ord}(b)=4, ab=a1a^{b}=a^{-1}, b2=a2m2b^{2}=a^{2^{m-2}};

  2. (ii)

    aαi=aa^{\alpha_{i}}=a, bαi=b3b^{\alpha_{i}}=b^{3}, aαj=a1a^{\alpha_{j}}=a^{-1}.

Clearly, bαj=abb^{\alpha_{j}}=a^{\ell}b for some 12m11\leq\ell\leq 2^{m-1}.

Assume that q1mod 4q^{*}\equiv 1\ \mathrm{mod}\ 4. By Lemma 3.52, there is group isomorphism φ:LSL2(q)\varphi:L\rightarrow SL_{2}(q^{*}) with

aφ=(λ00λ1)a^{\varphi}=\begin{pmatrix}\lambda&0\\ 0&\lambda^{-1}\end{pmatrix}

for some generator λ\lambda of the Sylow 22-subgroup of (𝔽q)(\mathbb{F}_{q^{*}})^{*} and

bφ=(0110).b^{\varphi}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}.

Set βk:=φ1αkφ\beta_{k}:=\varphi^{-1}\alpha_{k}\varphi for k{1,2,3}k\in\{1,2,3\}. Let ii and jj be as in (ii). Also, let

mi:=(11).m_{i}:=\begin{pmatrix}1&\\ &-1\end{pmatrix}.

Then βi\beta_{i} and cmic_{m_{i}} normalize QφQ^{\varphi}, and we have βi|Qφ,Qφ=cmi|Qφ,Qφ\beta_{i}|_{Q^{\varphi},Q^{\varphi}}=c_{m_{i}}|_{Q^{\varphi},Q^{\varphi}}. Applying Lemma 3.43, we conclude that βi=cmi\beta_{i}=c_{m_{i}}.

Clearly,

(0110)βj=(0μμ10)\begin{pmatrix}0&1\\ -1&0\end{pmatrix}^{\beta_{j}}=\begin{pmatrix}0&\mu\\ -\mu^{-1}&0\end{pmatrix}

for some 22-element μ\mu of (𝔽q)(\mathbb{F}_{q^{*}})^{*}. Set

mj:=(0μ10).m_{j}:=\begin{pmatrix}0&\mu\\ -1&0\end{pmatrix}.

Then βj\beta_{j} and cmjc_{m_{j}} normalize QφQ^{\varphi}, and we have βj|Qφ,Qφ=cmj|Qφ,Qφ\beta_{j}|_{Q^{\varphi},Q^{\varphi}}=c_{m_{j}}|_{Q^{\varphi},Q^{\varphi}}. Applying Lemma 3.43, we conclude that βj=cmj\beta_{j}=c_{m_{j}}.

It follows that CSL2(q)(βi)CSL2(q)(βj)=Z(SL2(q))C_{SL_{2}(q^{*})}(\beta_{i})\cap C_{SL_{2}(q^{*})}(\beta_{j})=Z(SL_{2}(q^{*})). So we have CL(αi)CL(αj)=Z(L)C_{L}(\alpha_{i})\cap C_{L}(\alpha_{j})=Z(L), and this implies that

k=13O(CL(αk))=1\bigcap_{k=1}^{3}O(C_{L}(\alpha_{k}))=1

since |Z(L)|=2|Z(L)|=2.

If q3mod4q^{*}\equiv 3\mod 4, then a very similar argumentation shows that the same conclusion holds. Here, one has to use Lemma 3.53 instead of Lemma 3.52, together with the fact that SL2(q)SU2(q)SL_{2}(q^{*})\cong SU_{2}(q^{*}). ∎

We bring this section to a close with a proof of the following lemma, which will play an important role in the proof of Theorem B.

Lemma 3.56.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\} and n2n\geq 2 a natural number. Set T:=Inn(PSLnε(q))T:=\mathrm{Inn}(PSL_{n}^{\varepsilon}(q)). Let AA be a subgroup of Aut(PSLnε(q))\mathrm{Aut}(PSL_{n}^{\varepsilon}(q)) such that TAT\leq A and such that the index of TT in AA is odd. Let SS be a Sylow 22-subgroup of TT. Then we have S(T)=S(A)\mathcal{F}_{S}(T)=\mathcal{F}_{S}(A).

To prove Lemma 3.56, we need to prove some other lemmas first.

Lemma 3.57.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, and let rr be positive integer. Also, let WW be a Sylow 22-subgroup of GL2rε(q)GL_{2^{r}}^{\varepsilon}(q). Then Aut(W)\mathrm{Aut}(W) is a 22-group.

Proof.

We proceed by induction over rr.

Suppose that r=1r=1. If qεmod4q\equiv-\varepsilon\mod 4, then WW is semidihedral by Lemmas 3.10 and 3.11, and so Aut(W)\mathrm{Aut}(W) is a 22-group by [19, Proposition 4.53]. If qεmod4q\equiv\varepsilon\mod 4, then WC2kC2W\cong C_{2^{k}}\wr C_{2} for some positive integer kk by Lemmas 3.10 and 3.11, and so Aut(W)\mathrm{Aut}(W) is a 22-group as a consequence of [22, Theorem 2].

Assume now that r>1r>1 and that the lemma is true with r1r-1 instead of rr. Let W0W_{0} be a Sylow 22-subgroup of GL2r1ε(q)GL_{2^{r-1}}^{\varepsilon}(q). Hence, Aut(W0)\mathrm{Aut}(W_{0}) is a 22-group. By Lemma 3.14, we have WW0C2W\cong W_{0}\wr C_{2}. Applying [22, Theorem 2], we conclude that Aut(W)\mathrm{Aut}(W) is a 22-group. ∎

Lemma 3.58.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, and let n3n\geq 3 be a natural number. Let T:=SLnε(q)T:=SL_{n}^{\varepsilon}(q), and let SS be a Sylow 22-subgroup of Inndiag(T)\mathrm{Inndiag}(T). Then AutPΓLnε(q)(S)\mathrm{Aut}_{P\Gamma L_{n}^{\varepsilon}(q)}(S) is a 22-group.

Proof.

Let αNPΓLnε(q)(S)\alpha\in N_{P\Gamma L_{n}^{\varepsilon}(q)}(S). It suffices to show that cα|S,Sc_{\alpha}|_{S,S} is a 22-automorphism of SS.

Let 0r1<<rt0\leq r_{1}<\dots<r_{t} such that n=2r1++2rtn=2^{r_{1}}+\dots+2^{r_{t}}. Let WiSyl2(GL2riε(q))W_{i}\in\mathrm{Syl}_{2}(GL_{2^{r_{i}}}^{\varepsilon}(q)) for all 1it1\leq i\leq t. By Lemma 3.15,

{(A1At):AiWi}\left\{\begin{pmatrix}A_{1}&\ &\ \\ \ &\ddots&\ \\ \ &\ &A_{t}\end{pmatrix}\ :\ A_{i}\in W_{i}\right\}

is a Sylow 22-subgroup of GLnε(q)GL_{n}^{\varepsilon}(q).

Clearly, {cw|T,T|wW}\{c_{w}|_{T,T}\ |\ w\in W\} is a Sylow 22-subgroup of Inndiag(T)\mathrm{Inndiag}(T). Without loss of generality, we assume that S={cw|T,T|wW}S=\{c_{w}|_{T,T}\ |\ w\in W\}.

Let pp be the odd prime number and ff be the positive integer with q=pfq=p^{f}. Since αPΓLnε(q)\alpha\in P\Gamma L_{n}^{\varepsilon}(q), there exist some mGLnε(q)m\in GL_{n}^{\varepsilon}(q) and some natural number \ell, where 1f1\leq\ell\leq f if ε=+\varepsilon=+ and 12f1\leq\ell\leq 2f if ε=\varepsilon=-, such that

(aij)α=((aij)p)m(a_{ij})^{\alpha}=((a_{ij})^{p^{\ell}})^{m}

for all (aij)T(a_{ij})\in T.

Let

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:GLnε(q)GLnε(q),(aij)((aij)p)m.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}:GL_{n}^{\varepsilon}(q)\rightarrow GL_{n}^{\varepsilon}(q),(a_{ij})\mapsto((a_{ij})^{p^{\ell}})^{m}.

It is easy to note that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} is an automorphism of GLnε(q)GL_{n}^{\varepsilon}(q). Using this, one can see that α1(cw|T,T)α=cw\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111|T,T\alpha^{-1}(c_{w}|_{T,T})\alpha=c_{w^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}}|_{T,T} for all wWw\in W.

Let wWw\in W. Since α\alpha normalizes SS, there is some w~W\widetilde{w}\in W with cw\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111|T,T=α1(cw|T,T)α=cw~|T,Tc_{w^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}}|_{T,T}=\alpha^{-1}(c_{w}|_{T,T})\alpha=c_{\widetilde{w}}|_{T,T}. It follows that w\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111w~Z(GLnε(q))WZ(GLnε(q))w^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}\in\widetilde{w}Z(GL_{n}^{\varepsilon}(q))\subseteq WZ(GL_{n}^{\varepsilon}(q)). This implies w\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Ww^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}\in W since WW is the unique Sylow 22-subgroup of WZ(GLnε(q))WZ(GL_{n}^{\varepsilon}(q)). In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} induces an automorphism of WW.

Let

di:=(I2r1I2riI2rt)d_{i}:=\begin{pmatrix}I_{2^{r_{1}}}&&&&\\ &\ddots&&&\\ &&-I_{2^{r_{i}}}&&\\ &&&\ddots&\\ &&&&I_{2^{r_{t}}}\end{pmatrix}

for each 1it1\leq i\leq t. Then did_{i} is a central involution of WW for each 1it1\leq i\leq t. So we have that (di)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=(di)m(d_{i})^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}=(d_{i})^{m} is a central involution of WW for each 1it1\leq i\leq t. As we see from Lemma 3.17, this already implies that (di)m=di(d_{i})^{m}=d_{i} for each 1it1\leq i\leq t. So there is some miGL2riε(q)m_{i}\in GL_{2^{r_{i}}}^{\varepsilon}(q) for each 1it1\leq i\leq t such that

m=(m1mt).m=\begin{pmatrix}m_{1}&&\\ &\ddots&\\ &&m_{t}\end{pmatrix}.

Now

WrWr,(aij)((aij)p)miW_{r}\rightarrow W_{r},(a_{ij})\mapsto((a_{ij})^{p^{\ell}})^{m_{i}}

is an automorphism of WrW_{r} for each 1rt1\leq r\leq t. Applying Lemma 3.57, we conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111|W,W\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}|_{W,W} is a 22-automorphism of WW. Since α1(cw|T,T)α=cw\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111|T,T\alpha^{-1}(c_{w}|_{T,T})\alpha=c_{w^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}}|_{T,T} for all wWw\in W, it follows that cα|S,Sc_{\alpha}|_{S,S} is a 22-automorphism of SS, as required. ∎

Corollary 3.59.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, and let n3n\geq 3 be a natural number. Let T:=PSLnε(q)T:=PSL_{n}^{\varepsilon}(q), and let SS be a Sylow 22-subgroup of Inndiag(T)\mathrm{Inndiag}(T). Then AutPΓLnε(q)(S)\mathrm{Aut}_{P\Gamma L_{n}^{\varepsilon}(q)}(S) is a 22-group.

Lemma 3.60.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, and n3n\geq 3 be a natural number. Let SS be a Sylow 22-subgroup of SLnε(q)Z(GLnε(q))/Z(GLnε(q))SL_{n}^{\varepsilon}(q)Z(GL_{n}^{\varepsilon}(q))/Z(GL_{n}^{\varepsilon}(q)), and let S1S_{1} be a Sylow 22-subgroup of PGLnε(q)PGL_{n}^{\varepsilon}(q) containing SS. Then NPGLnε(q)(S)=NPGLnε(q)(S1)N_{PGL_{n}^{\varepsilon}(q)}(S)=N_{PGL_{n}^{\varepsilon}(q)}(S_{1}).

Proof.

Let T1T_{1} be a Sylow 22-subgroup of GLnε(q))GL_{n}^{\varepsilon}(q)) such that S1=T1Z(GLnε(q))/Z(GLnε(q))S_{1}=T_{1}Z(GL_{n}^{\varepsilon}(q))/Z(GL_{n}^{\varepsilon}(q)). Let T:=T1SLnε(q)T:=T_{1}\cap SL_{n}^{\varepsilon}(q). Clearly, we have S=TZ(GLnε(q))/Z(GLnε(q))S=TZ(GL_{n}^{\varepsilon}(q))/Z(GL_{n}^{\varepsilon}(q)). It is rather easy to show NPGLnε(q)(S)=NGLnε(q)(T)Z(GLnε(q))/Z(GLnε(q))N_{PGL_{n}^{\varepsilon}(q)}(S)=N_{GL_{n}^{\varepsilon}(q)}(T)Z(GL_{n}^{\varepsilon}(q))/Z(GL_{n}^{\varepsilon}(q)). By [36, Theorem 1], NGLnε(q)(T)=T1CGLnε(q)(T1)NGLnε(q)(T1)N_{GL_{n}^{\varepsilon}(q)}(T)=T_{1}C_{GL_{n}^{\varepsilon}(q)}(T_{1})\leq N_{GL_{n}^{\varepsilon}(q)}(T_{1}). It follows that NPGLnε(q)(S)NPGLnε(q)(S1)N_{PGL_{n}^{\varepsilon}(q)}(S)\leq N_{PGL_{n}^{\varepsilon}(q)}(S_{1}). It is clear that we also have NPGLnε(q)(S1)NPGLnε(q)(S)N_{PGL_{n}^{\varepsilon}(q)}(S_{1})\leq N_{PGL_{n}^{\varepsilon}(q)}(S). ∎

Corollary 3.61.

Let qq be a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, and let n3n\geq 3 be a natural number. Let T:=PSLnε(q)T:=PSL_{n}^{\varepsilon}(q), let SS be a Sylow 22-subgroup of Inn(T)\mathrm{Inn}(T), and let S1S_{1} be a Sylow 22-subgroup of Inndiag(T)\mathrm{Inndiag}(T) containing SS. Then NInndiag(T)(S)=NInndiag(T)(S1)N_{\mathrm{Inndiag}(T)}(S)=N_{\mathrm{Inndiag}(T)}(S_{1}).

We are now ready to prove Lemma 3.56.

Proof of Lemma 3.56.

Assume that n=2n=2 and q3q\equiv 3 or 5mod85\mod 8. Then SC2×C2S\cong C_{2}\times C_{2} by Lemma 3.13. There is only one non-nilpotent fusion system on SS. Since TT and AA are not 22-nilpotent, we have that S(T)\mathcal{F}_{S}(T) and S(A)\mathcal{F}_{S}(A) are not nilpotent (see [39, Theorem 1.4]). It follows that S(T)=S(A)\mathcal{F}_{S}(T)=\mathcal{F}_{S}(A).

From now on, we assume that either n3n\geq 3, or n=2n=2 and q1q\equiv 1 or 7mod87\mod 8. Let P,QSP,Q\leq S and aAa\in A such that PaQP^{a}\leq Q. We are going to show that ca|P,Qc_{a}|_{P,Q} is a morphism in S(T)\mathcal{F}_{S}(T). By the Frattini argument, we have a=wua=wu for some wNA(S)w\in N_{A}(S) and some uTu\in T. We prove that cw|S,SInn(S)c_{w}|_{S,S}\in\mathrm{Inn}(S). This clearly implies that ca|P,Qc_{a}|_{P,Q} is a morphism in S(T)\mathcal{F}_{S}(T).

Suppose that n=2n=2. Then SS is dihedral of order at least 88 by Lemma 3.13, and so Aut(S)\mathrm{Aut}(S) is a 22-group by [19, Proposition 4.53]. This implies that AutA(S)=Inn(S)\mathrm{Aut}_{A}(S)=\mathrm{Inn}(S), whence cw|S,SInn(S)c_{w}|_{S,S}\in\mathrm{Inn}(S).

Suppose now that n3n\geq 3. Let S1S_{1} be a Sylow 22-subgroup of Inndiag(PSLnε(q))\mathrm{Inndiag}(PSL_{n}^{\varepsilon}(q)) containing SS. Since TT has odd index in AA, we have that APΓLnε(q)A\leq P\Gamma L_{n}^{\varepsilon}(q). By the Frattini argument, w=w1w2w=w_{1}w_{2} for some w1NPΓLnε(q)(S1)w_{1}\in N_{P\Gamma L_{n}^{\varepsilon}(q)}(S_{1}) and some w2Inndiag(PSLnε(q))w_{2}\in\mathrm{Inndiag}(PSL_{n}^{\varepsilon}(q)). Since w1w_{1} normalizes both S1S_{1} and TT, we have that w1w_{1} normalizes SS. And since w=w1w2w=w_{1}w_{2} normalizes SS, we also have that w2w_{2} normalizes SS. So w2w_{2} normalizes S1S_{1} by Corollary 3.61. Consequently, w=w1w2NPΓLnε(q)(S1)w=w_{1}w_{2}\in N_{P\Gamma L_{n}^{\varepsilon}(q)}(S_{1}). By Corollary 3.59, cw|S1,S1c_{w}|_{S_{1},S_{1}} is a 22-automorphism of S1S_{1}. So cw|S,Sc_{w}|_{S,S} is a 22-automorphism of SS. Since SSyl2(A)S\in\mathrm{Syl}_{2}(A) and wAw\in A, this implies that cw|S,SInn(S)c_{w}|_{S,S}\in\mathrm{Inn}(S), as required. ∎

4. The case n5n\leq 5

In this section, we verify Theorem A for the case n5n\leq 5.

Proposition 4.1.

Let qq be a nontrivial odd prime power, and let GG be a finite simple group. Then the following are equivalent:

  1. (i)

    the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL2(q)PSL_{2}(q);

  2. (ii)

    the Sylow 22-subgroups of GG are isomorphic to those of PSL2(q)PSL_{2}(q);

  3. (iii)

    GPSL2ε(q)G\cong PSL_{2}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some odd prime power q5q^{*}\geq 5 with εqq\varepsilon q^{*}\sim q, or |PSL2(q)|2=8|PSL_{2}(q)|_{2}=8 and GA7G\cong A_{7}.

In particular, Theorem A holds for n=2n=2.

Proof.

The implication (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii): Assume that the Sylow 22-subgroups of GG are isomorphic to those of PSL2(q)PSL_{2}(q). Hence, GG has dihedral Sylow 22-subgroups of order 12(q1)2(q+1)2\frac{1}{2}(q-1)_{2}(q+1)_{2}. Applying a result of Gorenstein and Walter [31, Theorem 1], we may conclude that GPSL2(q)G\cong PSL_{2}(q^{*}) for some odd prime power q5q^{*}\geq 5, or GA7G\cong A_{7}. Suppose that the former holds. Then (q1)2(q+1)2=2|G|2=(q1)2(q+1)2(q^{*}-1)_{2}(q^{*}+1)_{2}=2|G|_{2}=(q-1)_{2}(q+1)_{2}, whence either qqq^{*}\sim q or qq-q^{*}\sim q. Since PSL2(q)PSU2(q)PSL_{2}(q^{*})\cong PSU_{2}(q^{*}), this implies that the first statement in (iii) is satisfied. If GA7G\cong A_{7}, then |PSL2(q)|2=|G|2=8|PSL_{2}(q)|_{2}=|G|_{2}=8, so that the second statement in (iii) is satisfied.

(iii) \Rightarrow (i): Assume that (iii) holds. Set G1:=GG_{1}:=G and G2:=PSL2(q)G_{2}:=PSL_{2}(q). For i{1,2}i\in\{1,2\}, let SiSyl2(Gi)S_{i}\in\mathrm{Syl}_{2}(G_{i}) and i:=Si(Gi)\mathcal{F}_{i}:=\mathcal{F}_{S_{i}}(G_{i}). Clearly, S1S_{1} and S2S_{2} are dihedral groups of the same order. Let i{1,2}i\in\{1,2\}. By [24, Chapter 5, Theorem 4.3], any subgroup of SiS_{i} is cyclic or dihedral. By [19, Proposition 4.53], a dihedral subgroup of SiS_{i} with order greater than 44 cannot be i\mathcal{F}_{i}-essential. Since the automorphism group of a finite cyclic 22-group is itself a 22-group, a cyclic subgroup of SiS_{i} cannot be i\mathcal{F}_{i}-essential either. So we have that any i\mathcal{F}_{i}-essential subgroup of SiS_{i} is a Klein four group. Alperin’s fusion theorem [11, Part I, Theorem 3.5] implies that

i=Auti(P)|PSi,PC2×C2orP=SiSi.\mathcal{F}_{i}=\langle\mathrm{Aut}_{\mathcal{F}_{i}}(P)\ |\ P\leq S_{i},P\cong C_{2}\times C_{2}\ \textnormal{or}\ P=S_{i}\rangle_{S_{i}}.

If |Si|=4|S_{i}|=4, then Auti(Si)\mathrm{Aut}_{\mathcal{F}_{i}}(S_{i}) is the unique subgroup of Aut(Si)\mathrm{Aut}(S_{i}) with order 33, because otherwise Auti(Si)=Inn(Si)\mathrm{Aut}_{\mathcal{F}_{i}}(S_{i})=\mathrm{Inn}(S_{i}), so that [39, Theorem 1.4] would imply that GiG_{i} is 22-nilpotent. If |Si|8|S_{i}|\geq 8, then Auti(Si)=Inn(Si)\mathrm{Aut}_{\mathcal{F}_{i}}(S_{i})=\mathrm{Inn}(S_{i}) since Aut(Si)\mathrm{Aut}(S_{i}) is a 22-group by [19, Proposition 4.53], and for any Klein four subgroup PP of SiS_{i}, we have Auti(P)=Aut(P)\mathrm{Aut}_{\mathcal{F}_{i}}(P)=\mathrm{Aut}(P) by [24, Chapter 7, Theorem 7.3]. As S1S2S_{1}\cong S_{2} and as the preceding observations do not depend on whether ii is 11 or 22, we may conclude that 12\mathcal{F}_{1}\cong\mathcal{F}_{2}, as required. ∎

Proposition 4.2.

Let qq be a nontrivial odd prime power, and let GG be a finite simple group. Then the following are equivalent:

  1. (i)

    the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL3(q)PSL_{3}(q);

  2. (ii)

    the Sylow 22-subgroups of GG are isomorphic to those of PSL3(q)PSL_{3}(q);

  3. (iii)

    GPSL3ε(q)G\cong PSL_{3}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some nontrivial odd prime power qq^{*} with εqq\varepsilon q^{*}\sim q, or (q+1)2=4(q+1)_{2}=4 and GM11G\cong M_{11}.

In particular, Theorem A holds for n=3n=3.

Proof.

The implication (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii): Assume that the Sylow 22-subgroups of GG are isomorphic to those of PSL3(q)PSL_{3}(q). Hence, a Sylow 22-subgroup of GG is wreathed (i.e. isomorphic to C2kC2C_{2^{k}}\wr C_{2} for some positive integer kk) if q1mod4q\equiv 1\mod 4, and semidihedral if q3mod4q\equiv 3\mod 4. Applying work of Alperin, Brauer and Gorenstein, namely [2, Third Main Theorem] and [3, First Main Theorem], we may conclude that either GPSL3ε(q)G\cong PSL_{3}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some nontrivial odd prime power qq^{*} with εqqmod4\varepsilon q^{*}\equiv q\mod 4, or q3mod4q\equiv 3\mod 4 and GM11G\cong M_{11}. If the former holds, then ((qε)2)2(q+ε)2=|G|2=((q1)2)2(q+1)2((q^{*}-\varepsilon)_{2})^{2}(q^{*}+\varepsilon)_{2}=|G|_{2}=((q-1)_{2})^{2}(q+1)_{2}, and it easily follows that εqq\varepsilon q^{*}\sim q. If GM11G\cong M_{11}, then 16=|G|2=((q1)2)2(q+1)216=|G|_{2}=((q-1)_{2})^{2}(q+1)_{2} and hence (q+1)2=4(q+1)_{2}=4.

(iii) \Rightarrow (i): Assume that (iii) holds. If q1mod4q\equiv 1\mod 4, then Proposition 3.20 implies that the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL3(q)PSL_{3}(q). Alternatively, this can be seen from [19, Proposition 5.87]. Now suppose that q3mod4q\equiv 3\mod 4. If (q+1)24(q+1)_{2}\neq 4, then we could apply Proposition 3.20 again, but we are going to argue in a more elementary way. Let G1:=GG_{1}:=G and G2:=PSL3(q)G_{2}:=PSL_{3}(q). For i{1,2}i\in\{1,2\}, let SiSyl2(Gi)S_{i}\in\mathrm{Syl}_{2}(G_{i}) and i:=Si(Gi)\mathcal{F}_{i}:=\mathcal{F}_{S_{i}}(G_{i}). Clearly, S1S_{1} and S2S_{2} are semidihedral groups of the same order. Let i{1,2}i\in\{1,2\}. By [24, Chapter 5, Theorem 4.3], any proper subgroup of SiS_{i} is cyclic, dihedral or generalized quaternion. By [19, Proposition 4.53], dihedral subgroups of SiS_{i} with order greater than 44 and generalized quaternion subgroups of SiS_{i} with order greater than 88 cannot be i\mathcal{F}_{i}-essential. Since the automorphism group of a finite cyclic 22-group is itself a 22-group, a cyclic subgroup of SiS_{i} cannot be i\mathcal{F}_{i}-essential either. Alperin’s fusion theorem [11, Part I, Theorem 3.5] implies that

i=Auti(P)|PC2×C2,PQ8,orP=SiSi.\mathcal{F}_{i}=\langle\mathrm{Aut}_{\mathcal{F}_{i}}(P)\ |\ P\cong C_{2}\times C_{2},P\cong Q_{8},\ \textnormal{or}\ P=S_{i}\rangle_{S_{i}}.

Since Aut(Si)\mathrm{Aut}(S_{i}) is a 22-group by [19, Proposition 4.53], we have Auti(Si)=Inn(Si)\mathrm{Aut}_{\mathcal{F}_{i}}(S_{i})=\mathrm{Inn}(S_{i}). From [2, pp. 10-11, Proposition 1], one can see that Auti(P)=Aut(P)\mathrm{Aut}_{\mathcal{F}_{i}}(P)=\mathrm{Aut}(P) for any subgroup PP of SiS_{i} isomorphic to C2×C2C_{2}\times C_{2} or Q8Q_{8}. As S1S2S_{1}\cong S_{2} and as the preceding observations do not depend on whether ii is 11 or 22, we may conclude that 12\mathcal{F}_{1}\cong\mathcal{F}_{2}, as required. ∎

The next two lemmas are required to verify Theorem A for the case n=4n=4.

Lemma 4.3.

Let qq be an odd prime power with q3mod8q\equiv 3\mod 8. Assume that G=A10G=A_{10} or A11A_{11}. Then the 22-fusion system of GG is not isomorphic to the 22-fusion system of PSL4(q)PSL_{4}(q).

Proof.

Set x:=(1 2)(3 4)Gx:=(1\ 2)(3\ 4)\in G and y:=(1 2)(3 4)(5 6)(7 8)Gy:=(1\ 2)(3\ 4)(5\ 6)(7\ 8)\in G. Let gGg\in G be an involution. Then the cycle type of gg is either that of xx or that of yy. So, by [37, 4.3.1], gg is conjugate to xx or yy in the ambient symmetric group, which easily implies that gg is also GG-conjugate to xx or yy. The involutions xx and yy are not GG-conjugate as they have different cycle types. It follows that GG has precisely two conjugacy classes of involutions with representatives xx and yy.

By a direct calculation,

S:=(1 2 3 4)(9 10),(1 2)(3 4),(5 6 7 8)(9 10),(5 6)(7 8),(1 5)(2 6)(3 7)(4 8)S:=\langle(1\ 2\ 3\ 4)(9\ 10),(1\ 2)(3\ 4),(5\ 6\ 7\ 8)(9\ 10),(5\ 6)(7\ 8),(1\ 5)(2\ 6)(3\ 7)(4\ 8)\rangle

is a Sylow 2-subgroup of GG. Another calculation confirms that SS has precisely 14 involutions whose cycle type is that of xx and precisely 29 involutions whose cycle type is that of yy. So there are precisely two S(G)\mathcal{F}_{S}(G)-conjugacy classes of involutions, one of which has 14 elements, while the other one has 29 elements. In order to prove that S(G)\mathcal{F}_{S}(G) is not isomorphic to the 2-fusion system of PSL4(q)PSL_{4}(q), we show that the 22-fusion system of PSL4(q)PSL_{4}(q) has a conjugacy class of involutions with precisely 1717 elements.

Let W1W_{1} be a Sylow 2-subgroup of GL2(q)GL_{2}(q), and let W2W_{2} be the Sylow 2-subgroup of GL4(q)GL_{4}(q) obtained from W1W_{1} by the construction given in the last statement of Lemma 3.14. Let W:=W2SL4(q)Syl2(SL4(q))W:=W_{2}\cap SL_{4}(q)\in\mathrm{Syl}_{2}(SL_{4}(q)), and let RR be the image of WW in PSL4(q)PSL_{4}(q). The involutions of W2W_{2} are precisely the elements

(ab)and(cc1),\begin{pmatrix}a\ &\ \\ \ &\ b\end{pmatrix}\ \ \textnormal{and}\ \ \begin{pmatrix}\ &\ c\\ c^{-1}\ &\ \end{pmatrix},

where a,b,cW1a,b,c\in W_{1} and max{ord(a),ord(b)}=2\mathrm{max}\{\mathrm{ord}(a),\mathrm{ord}(b)\}=2. Bearing in mind that W1W_{1} is semidihedral of order 1616, which holds because of q3mod8q\equiv 3\mod 8, we may see from Lemma 3.16 that WW has precisely 35 involutions. As one of them is I4-I_{4}, and as the product of I4-I_{4} with an involution of WW different from I4-I_{4} is again an involution, we may conclude that RR has precisely 17 involutions that are images of involutions of WW. Since any noncentral involution of SL4(q)SL_{4}(q) is SL4(q)SL_{4}(q)-conjugate to a diagonal matrix having diagonal entries 11,11,1-1,1-1, we have that all the noncentral involutions of SL4(q)SL_{4}(q) are SL4(q)SL_{4}(q)-conjugate. Thus the 17 involutions of RR induced by involutions of WW are PSL4(q)PSL_{4}(q)-conjugate. As an element of PSL4(q)PSL_{4}(q) induced by an involution cannot be conjugate to an element of PSL4(q)PSL_{4}(q) not induced by an involution, it follows that there is an R(PSL4(q))\mathcal{F}_{R}(PSL_{4}(q))-conjugacy class of involutions with precisely 17 elements. ∎

Lemma 4.4.

Let qq be an odd prime power with q5mod8q\equiv 5\mod 8. Assume that G=M22G=M_{22}, M23M_{23} or McLMcL. Then the 22-fusion system of GG is not isomorphic to the 22-fusion system of PSL4(q)PSL_{4}(q).

Proof.

Let SSyl2(G)S\in\mathrm{Syl}_{2}(G) and :=S(G)\mathcal{F}:=\mathcal{F}_{S}(G). Let xx be an element of SS with order 44 such that x\langle x\rangle is fully \mathcal{F}-centralized. In other words, we have CS(x)Syl2(CG(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{G}(x)). If G=M22G=M_{22} or M23M_{23}, then by [1], CG(x)C_{G}(x) is a 22-group, whence C(x)=CS(x)(CG(x))=CS(x)(CS(x))C_{\mathcal{F}}(\langle x\rangle)=\mathcal{F}_{C_{S}(x)}(C_{G}(x))=\mathcal{F}_{C_{S}(x)}(C_{S}(x)). If G=McLG=McL, then by [1], GG has precisely one conjugacy class of elements of order 44, so that all elements of SS with order 44 are \mathcal{F}-conjugate.

Consequently, we either have that C(x)C_{\mathcal{F}}(\langle x\rangle) is nilpotent for all elements xSx\in S with order 4 such that x\langle x\rangle is fully \mathcal{F}-centralized, or all elements of SS with order 4 are \mathcal{F}-conjugate. We are going to show that the 22-fusion system of PSL4(q)PSL_{4}(q) has neither of these properties.

Let λ\lambda be an element of 𝔽q\mathbb{F}_{q}^{*} of order 44 and let yy be the image of diag(1,1,λ,λ1)\mathrm{diag}(1,1,\lambda,\lambda^{-1}) in PSL4(q)PSL_{4}(q). Clearly, yy has order 44. Let RR be a Sylow 2-subgroup of PSL4(q)PSL_{4}(q) containing a Sylow 22-subgroup of C:=CPSL4(q)(y)C:=C_{PSL_{4}(q)}(y). Clearly, yRy\in R. Let us denote R(PSL4(q))\mathcal{F}_{R}(PSL_{4}(q)) by 𝒢\mathcal{G}. Then y\langle y\rangle is fully 𝒢\mathcal{G}-centralized. The centralizer CC is not 22-nilpotent since it has a subgroup isomorphic to SL2(q)SL_{2}(q). So, by [39, Theorem 1.4], C𝒢(y)=CR(y)(C)C_{\mathcal{G}}(\langle y\rangle)=\mathcal{F}_{C_{R}(y)}(C) is not nilpotent.

Let mm denote the matrix

(0λ100λ10)SL(4,q).\begin{pmatrix}0&\lambda&\ &\ \\ 1&0&\ &\ \\ \ &\ &0&-\lambda\\ \ &\ &1&0\end{pmatrix}\in SL(4,q).

A direct calculation, using q5mod 8q\equiv 5\ \mathrm{mod}\ 8, shows that mm has no eigenvalues, whence mm is in particular not diagonalizable. The image of mm in PSL4(q)PSL_{4}(q) has order 4, but it is not PSL4(q)PSL_{4}(q)-conjugate to yy. Therefore, PSL4(q)PSL_{4}(q) has more than one conjugacy class of elements with order 44. Thus there is more than one 𝒢\mathcal{G}-conjugacy class of elements with order 44. ∎

Proposition 4.5.

Let qq be a nontrivial odd prime power and let GG be a finite simple group. Then the following are equivalent:

  1. (i)

    the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL4(q)PSL_{4}(q);

  2. (ii)

    GPSL4ε(q)G\cong PSL_{4}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some nontrivial odd prime power qq^{*} with εqq\varepsilon q^{*}\sim q.

In particular, Theorem A holds for n=4n=4.

Proof.

The implication (ii) \Rightarrow (i) is given by Proposition 3.20.

(i) \Rightarrow (ii): Assume that the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL4(q)PSL_{4}(q). Then the Sylow 22-subgroups of GG are isomorphic to those of PSL4(q)PSL_{4}(q). Applying Mason’s results [41, Theorem 1.1 and Corollary 1.3] and [40, Theorems 1.1 and 3.15], the latter together with [29, Theorem 4.10.5 (f)], we see that one of the following holds:

  1. (1)

    GPSL4ε(q)G\cong PSL_{4}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqqmod4\varepsilon q^{*}\equiv q\mod 4;

  2. (2)

    GA10G\cong A_{10} or A11A_{11}, and q3mod 4q\equiv 3\ \mathrm{mod}\ 4;

  3. (3)

    GM22G\cong M_{22}, M23M_{23} or McLMcL, and q5mod 8q\equiv 5\ \mathrm{mod}\ 8.

Let q0q_{0} be a nontrivial odd prime power, ε0{+,}\varepsilon_{0}\in\{+,-\}, and k0,s0k_{0},s_{0}\in\mathbb{N} such that 2k0=(q0ε0)22^{k_{0}}=(q_{0}-\varepsilon_{0})_{2} and 2s0=(q0+ε0)22^{s_{0}}=(q_{0}+\varepsilon_{0})_{2}. Then we have

|PSL4ε0(q0)|2=|GL4ε0(q0)|22k0(4,2k0)=2(|GL2ε0(q0)|2)22k0(4,2k0)=23k0+2s0+1(4,2k0).|PSL_{4}^{\varepsilon_{0}}(q_{0})|_{2}=\frac{|GL_{4}^{\varepsilon_{0}}(q_{0})|_{2}}{2^{k_{0}}(4,2^{k_{0}})}=\frac{2(|GL_{2}^{\varepsilon_{0}}(q_{0})|_{2})^{2}}{2^{k_{0}}(4,2^{k_{0}})}=\frac{2^{3k_{0}+2s_{0}+1}}{(4,2^{k_{0}})}.

Let k,sk,s\in\mathbb{N} such that 2k=(q1)22^{k}=(q-1)_{2} and 2s=(q+1)22^{s}=(q+1)_{2}.

Suppose that (1) holds, and let k,sk^{*},s^{*}\in\mathbb{N} such that 2k=(qε)22^{k^{*}}=(q^{*}-\varepsilon)_{2} and 2s=(q+ε)22^{s^{*}}=(q^{*}+\varepsilon)_{2}. Then we have

23k+2s+1(4,2k)=|G|2=23k+2s+1(4,2k).\frac{2^{3k^{*}+2s^{*}+1}}{(4,2^{k^{*}})}=|G|_{2}=\frac{2^{3k+2s+1}}{(4,2^{k})}.

Since εqqmod4\varepsilon q^{*}\equiv q\mod 4, this easily implies εqq\varepsilon q^{*}\sim q.

Suppose that (2) holds. Then 27=|G|2=23+2s2^{7}=|G|_{2}=2^{3+2s}, whence s=2s=2 and thus q3mod8q\equiv 3\mod 8. This is a contradiction to Lemma 4.3. So (2) does not hold.

Also, (3) cannot hold because of Lemma 4.4. ∎

Proposition 4.6.

Let qq be a nontrivial odd prime power, and let GG be a finite simple group. Then the following are equivalent:

  1. (i)

    the 22-fusion system of GG is isomorphic to the 22-fusion system of PSL5(q)PSL_{5}(q);

  2. (ii)

    the Sylow 22-subgroups of GG are isomorphic to those of PSL5(q)PSL_{5}(q);

  3. (iii)

    GPSL5ε(q)G\cong PSL_{5}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq\varepsilon q^{*}\sim q.

In particular, Theorem A holds for n=5n=5.

Proof.

The implication (i) \Rightarrow (ii) is clear, and the implication (iii) \Rightarrow (i) is given by Proposition 3.20.

(ii) \Rightarrow (iii): Assume that the Sylow 22-subgroups of GG are isomorphic to those of PSL5(q)PSL_{5}(q). Applying work of Mason [42, Theorem 1.1], it follows that GPSL5ε(q)G\cong PSL_{5}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some nontrivial odd prime power qq^{*}. In view of Lemma 3.15, it is easy to see that a Sylow 22-subgroup of GG is isomorphic to a Sylow 22-subgroup of GL4ε(q)GL_{4}^{\varepsilon}(q^{*}), while a Sylow 22-subgroup of PSL5(q)PSL_{5}(q) is isomorphic to a Sylow 22-subgroup of GL4(q)GL_{4}(q). Now it is easy to deduce from Lemmas 3.10, 3.11 and 3.14 that a Sylow 22-subgroup of GG has a center of order (qε)2(q^{*}-\varepsilon)_{2}, while a Sylow 22-subgroup of PSL5(q)PSL_{5}(q) has a center of order (q1)2(q-1)_{2}. It follows that (qε)2=(q1)2(q^{*}-\varepsilon)_{2}=(q-1)_{2}. Let k,s,k,sk,s,k^{*},s^{*}\in\mathbb{N} with 2k=(q1)2,2s=(q+1)2,2k=(qε)22^{k}=(q-1)_{2},2^{s}=(q+1)_{2},2^{k^{*}}=(q^{*}-\varepsilon)_{2} and 2s=(q+ε)22^{s^{*}}=(q^{*}+\varepsilon)_{2}. Then

24k+2s+1=|GL4ε(q)|2=|G|2=|GL4(q)|2=24k+2s+1.2^{4k^{*}+2s^{*}+1}=|GL_{4}^{\varepsilon}(q^{*})|_{2}=|G|_{2}=|GL_{4}(q)|_{2}=2^{4k+2s+1}.

Since 2k=2k2^{k^{*}}=2^{k}, we thus have k=kk=k^{*} and s=ss=s^{*}. This implies εqq\varepsilon q^{*}\sim q. ∎

5. The case n6n\geq 6: Preliminary discussion and notation

Given a natural number k6k\geq 6, we say that P(k)P(k) is satisfied if whenever q0q_{0} is a nontrivial odd prime power and HH is a finite simple group satisfying (𝒞𝒦\mathcal{CK}) and realizing the 22-fusion system of PSLk(q0)PSL_{k}(q_{0}), we have HPSLkε(q)H\cong PSL_{k}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq0\varepsilon q^{*}\sim q_{0}.

In order to establish Theorem A for n6n\geq 6, we are going to prove by induction that P(k)P(k) is satisfied for all k6k\geq 6. From now on until the end of Section 8, we will assume the following hypothesis.

Hypothesis 5.1.

Let n6n\geq 6 be a natural number such that P(k)P(k) is satisfied for all natural numbers kk with 6k<n6\leq k<n, and let qq be a nontrivial odd prime power. Moreover, let GG be a finite group satisfying the following properties:

  1. (i)

    GG realizes the 22-fusion system of PSLn(q)PSL_{n}(q);

  2. (ii)

    O(G)=1O(G)=1;

  3. (iii)

    GG satisfies (𝒞𝒦\mathcal{CK}).

We will prove the following theorem.

Theorem 5.2.

There is a normal subgroup G0G_{0} of GG isomorphic to a nontrivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq\varepsilon q^{*}\sim q. In particular, P(n)P(n) is satisfied.

The proof of Theorem 5.2 will occupy Sections 5-8. In this section, we introduce some notation and prove some preliminary results needed for the proof.

For each A{1,,n}A\subseteq\{1,\dots,n\} of even order, let tAt_{A} be the image of the diagonal matrix diag(d1,,dn)\mathrm{diag}(d_{1},\dots,d_{n}) in PSLn(q)PSL_{n}(q), where

di={1if iA1if iAd_{i}=\begin{cases}-1&\,\text{if $i\in A$}\\ 1&\,\text{if $i\not\in A$}\end{cases}

for each 1in1\leq i\leq n. If ii is an even natural number with 2i<n2\leq i<n and A={ni+1,,n}A=\{n-i+1,\dots,n\}, then we write tit_{i} for tAt_{A}. We denote t2t_{2} by tt, and we write uu for t{1,2}t_{\{1,2\}}.

We assume ρ\rho to be an element of 𝔽q\mathbb{F}_{q}^{*} of order (n,q1)(n,q-1). If ρ\rho is a square in 𝔽q\mathbb{F}_{q}, then we assume μ\mu to be a fixed element of 𝔽q\mathbb{F}_{q} with ρ=μ2\rho=\mu^{2}.

If nn is even, ρ\rho is a square in 𝔽q\mathbb{F}_{q}, and ii is an odd natural number with 1i<n1\leq i<n, then

(μIniμIi)\begin{pmatrix}\mu I_{n-i}&\\ &-\mu I_{i}\end{pmatrix}

is an element of SLn(q)SL_{n}(q) by Proposition 3.5, and we will denote its image in PSLn(q)PSL_{n}(q) by tit_{i}.

If nn is even and ρ\rho is a non-square element of 𝔽q\mathbb{F}_{q}, then we denote the matrix

(In/2ρIn/2)\begin{pmatrix}&I_{n/2}\\ \rho I_{n/2}&\end{pmatrix}

by w~\widetilde{w}, and if w~SLn(q)\widetilde{w}\in SL_{n}(q), then we use ww to denote its image in PSLn(q)PSL_{n}(q).

Note that, by Proposition 3.5, any involution of PSLn(q)PSL_{n}(q) is conjugate to tit_{i} for some 1i<n1\leq i<n such that tit_{i} is defined, or to ww (if defined).

Next, we construct a Sylow 22-subgroup of CPSLn(q)(t)C_{PSL_{n}(q)}(t) containing some “nice” elements of PSLn(q)PSL_{n}(q). Take a Sylow 22-subgroup VV of GL2(q)GL_{2}(q) containing each diagonal matrix in GL2(q)GL_{2}(q) with 22-elements of 𝔽q\mathbb{F}_{q}^{*} along the main diagonal. Similarly, we assume V2V_{2} to be a Sylow 22-subgroup of GLn4(q)GL_{n-4}(q) containing each diagonal matrix in GLn4(q)GL_{n-4}(q) with 22-elements of 𝔽q\mathbb{F}_{q}^{*} along the main diagonal. Now let WW be a Sylow 22-subgroup of GLn2(q)GL_{n-2}(q) containing

{(AB):AV,BV2}.\left\{\begin{pmatrix}A&\\ &B\end{pmatrix}\ :\ A\in V,B\in V_{2}\right\}.

If n=6n=6, then we assume that V=V2V=V_{2} and that WW is the Sylow 22-subgroup

{(AB):A,BV}(I2I2)\left\{\begin{pmatrix}A&\\ &B\\ \end{pmatrix}\ :\ A,B\in V\right\}\cdot\left\langle\begin{pmatrix}&I_{2}\\ I_{2}&\\ \end{pmatrix}\right\rangle

of GL4(q)GL_{4}(q).

Let t~:=diag(1,,1,1,1)SLn(q)\widetilde{t}:=\mathrm{diag}(1,\dots,1,-1,-1)\in SL_{n}(q). Then we have

CSLn(q)(t~)={(AB):AGLn2(q),BGL2(q),det(A)det(B)=1}.C_{SL_{n}(q)}(\widetilde{t})=\left\{\begin{pmatrix}A&\\ &B\end{pmatrix}\ :\ A\in GL_{n-2}(q),B\in GL_{2}(q),\mathrm{det}(A)\mathrm{det}(B)=1\right\}.

It is easy to note that

T~:={(AB):AW,BV,det(A)det(B)=1}\widetilde{T}:=\left\{\begin{pmatrix}A&\\ &B\end{pmatrix}\ :\ A\in W,B\in V,\mathrm{det}(A)\mathrm{det}(B)=1\right\}

is a Sylow 22-subgroup of CSLn(q)(t~)C_{SL_{n}(q)}(\widetilde{t}). Let TT denote the image of T~\widetilde{T} in PSLn(q)PSL_{n}(q). As the centralizer of tt in PSLn(q)PSL_{n}(q) is the image of CSLn(q)(t~)C_{SL_{n}(q)}(\widetilde{t}) in PSLn(q)PSL_{n}(q), we have that TT is a Sylow 22-subgroup of CPSLn(q)(t)C_{PSL_{n}(q)}(t). We assume SS to be a Sylow 22-subgroup of PSLn(q)PSL_{n}(q) containing TT. Since CS(t)=TSyl2(CPSLn(q)(t))C_{S}(t)=T\in\mathrm{Syl_{2}}(C_{PSL_{n}(q)}(t)), we have that t\langle t\rangle is fully S(PSLn(q))\mathcal{F}_{S}(PSL_{n}(q))-centralized.

Let K1K_{1} be the image of

{(AI2):ASLn2(q)}\left\{\begin{pmatrix}A&\\ &I_{2}\end{pmatrix}\ :\ A\in SL_{n-2}(q)\right\}

in PSLn(q)PSL_{n}(q), and let K2K_{2} be the image of

{(In2B):BSL2(q)}\left\{\begin{pmatrix}I_{n-2}&\\ &B\end{pmatrix}\ :\ B\in SL_{2}(q)\right\}

in PSLn(q)PSL_{n}(q). Clearly, K1K_{1} and K2K_{2} are normal subgroups of CPSLn(q)(t)C_{PSL_{n}(q)}(t) isomorphic to SLn2(q)SL_{n-2}(q) and SL2(q)SL_{2}(q), respectively. Define X1X_{1} to be the image of

{(AI2):AWSLn2(q)}\left\{\begin{pmatrix}A&\\ &I_{2}\end{pmatrix}\ :\ A\in W\cap SL_{n-2}(q)\right\}

in PSLn(q)PSL_{n}(q), and define X2X_{2} to be the image of

{(In2B):BVSL2(q)}\left\{\begin{pmatrix}I_{n-2}&\\ &B\end{pmatrix}\ :\ B\in V\cap SL_{2}(q)\right\}

in PSLn(q)PSL_{n}(q).

Note that X1=TK1Syl2(K1)X_{1}=T\cap K_{1}\in\mathrm{Syl}_{2}(K_{1}) and X2=TK2Syl2(K2)X_{2}=T\cap K_{2}\in\mathrm{Syl}_{2}(K_{2}). Define

𝒞i:=Xi(Ki)\mathcal{C}_{i}:=\mathcal{F}_{X_{i}}(K_{i})

for i{1,2}i\in\{1,2\}. By [11, Part I, Proposition 6.2], 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} are normal subsystems of T(CPSLn(q)(t))\mathcal{F}_{T}(C_{PSL_{n}(q)}(t)).

Lemma 5.3.

Let :=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(PSL_{n}(q)). If q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, then the components of C(t)C_{\mathcal{F}}(\langle t\rangle) are precisely the subsystems 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2}. If q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8, then 𝒞1\mathcal{C}_{1} is the only component of C(t)C_{\mathcal{F}}(\langle t\rangle).

Proof.

Set C:=CPSLn(q)(t)C:=C_{PSL_{n}(q)}(t). It is easy to note that the 22-components of CC are precisely the quasisimple elements of {K1,K2}\{K_{1},K_{2}\}. As n6n\geq 6 and as K1SLn2(q)K_{1}\cong SL_{n-2}(q) and K2SL2(q)K_{2}\cong SL_{2}(q), it follows that the 22-components of CC are K1K_{1} and K2K_{2} if q3q\neq 3, and that K1K_{1} is the only 22-component of CC if q=3q=3.

By Lemma 3.21, K1/Z(K1)K_{1}/Z(K_{1}) is not a Goldschmidt group. If q3q\neq 3, then the lemma just cited also shows that K2/Z(K2)K_{2}/Z(K_{2}) is a Goldschmidt group if and only if q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8.

Now we apply Proposition 2.16 to conclude that TK1(K1)\mathcal{F}_{T\cap K_{1}}(K_{1}) and TK2(K2)\mathcal{F}_{T\cap K_{2}}(K_{2}) are precisely the components of T(C)\mathcal{F}_{T}(C) if q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, and that TK1(K1)\mathcal{F}_{T\cap K_{1}}(K_{1}) is the only component of T(C)\mathcal{F}_{T}(C) if q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. This completes the proof because C(t)=T(C)C_{\mathcal{F}}(\langle t\rangle)=\mathcal{F}_{T}(C), 𝒞1=TK1(K1)\mathcal{C}_{1}=\mathcal{F}_{T\cap K_{1}}(K_{1}) and 𝒞2=TK2(K2)\mathcal{C}_{2}=\mathcal{F}_{T\cap K_{2}}(K_{2}). ∎

Lemma 5.4.

Let :=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(PSL_{n}(q)). Then the factor system C(t)/X1X2C_{\mathcal{F}}(\langle t\rangle)/X_{1}X_{2} is nilpotent.

Proof.

Set C:=CPSLn(q)(t)C:=C_{PSL_{n}(q)}(t). It is easy to note that X1X2=K1K2TX_{1}X_{2}=K_{1}K_{2}\cap T. By Lemma 2.11, C(t)/X1X2C_{\mathcal{F}}(\langle t\rangle)/X_{1}X_{2} is isomorphic to the 22-fusion system of C/K1K2C/K_{1}K_{2}. The factor group C/K1K2C/K_{1}K_{2} is abelian. This easily implies that C/K1K2C/K_{1}K_{2} has a nilpotent 22-fusion system. Hence C(t)/X1X2C_{\mathcal{F}}(\langle t\rangle)/X_{1}X_{2} is nilpotent. ∎

Lemma 5.5.

Let AWA\in W and BVB\in V such that det(A)det(B)=1\mathrm{det}(A)\mathrm{det}(B)=1. Let

m:=(AB)Z(SLn(q))T.m:=\begin{pmatrix}A&\\ &B\end{pmatrix}Z(SL_{n}(q))\in T.

Then we have mZ(𝒞1m)m\in Z(\mathcal{C}_{1}\langle m\rangle) if and only if AZ(GLn2(q))A\in Z(GL_{n-2}(q)).

Proof.

By [34, Proposition 1], we have 𝒞1m=X1m(K1m)\mathcal{C}_{1}\langle m\rangle=\mathcal{F}_{X_{1}\langle m\rangle}(K_{1}\langle m\rangle).

If AZ(GLn2(q))A\in Z(GL_{n-2}(q)), then mm is central in K1mK_{1}\langle m\rangle, which implies that mm lies in the center of 𝒞1m\mathcal{C}_{1}\langle m\rangle.

We show now that if AZ(GLn2(q))A\not\in Z(GL_{n-2}(q)), then mZ(𝒞1m)m\not\in Z(\mathcal{C}_{1}\langle m\rangle). Assume to the contrary that AZ(GLn2(q))A\not\in Z(GL_{n-2}(q)), but mZ(𝒞1m)m\in Z(\mathcal{C}_{1}\langle m\rangle). Clearly, mZ(X1m)m\in Z(X_{1}\langle m\rangle). So mm centralizes X1X_{1}. It easily follows that AA centralizes WSLn2(q)W\cap SL_{n-2}(q). Using Sylow’s theorem, we may see from Lemma 3.17 that any element A0A_{0} of WW which centralizes WSLn2(q)W\cap SL_{n-2}(q) without being central in GLn2(q)GL_{n-2}(q) is SLn2(q)SL_{n-2}(q)-conjugate to an element of WW different from A0A_{0}. As AA centralizes WSLn2(q)W\cap SL_{n-2}(q), but AZ(GLn2(q))A\not\in Z(GL_{n-2}(q)), it follows that AA is SLn2(q)SL_{n-2}(q)-conjugate to an element AWA^{\prime}\in W with AAA\neq A^{\prime}. As det(A)=det(A)\mathrm{det}(A)=\mathrm{det}(A^{\prime}), we have A=AAA^{\prime}=A^{\prime\prime}A for some AWSLn2(q)A^{\prime\prime}\in W\cap SL_{n-2}(q). Now, it follows that mm is K1K_{1}-conjugate to

(AB)Z(SLn(q))=(AI2)(AB)Z(SLn(q))X1m.\begin{pmatrix}A^{\prime}&\\ &B\end{pmatrix}Z(SL_{n}(q))=\begin{pmatrix}A^{\prime\prime}&\\ &I_{2}\end{pmatrix}\begin{pmatrix}A&\\ &B\end{pmatrix}Z(SL_{n}(q))\in X_{1}\langle m\rangle.

So mm is K1K_{1}-conjugate to an element of X1mX_{1}\langle m\rangle which is different from mm. Therefore, mZ(𝒞1m)m\not\in Z(\mathcal{C}_{1}\langle m\rangle), a contradiction. ∎

Lemma 5.6.

Set :=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(PSL_{n}(q)) and 𝒢:=C(t)\mathcal{G}:=C_{\mathcal{F}}(\langle t\rangle). Then 𝔥𝔫𝔭(C𝒢(X1))=X2\mathfrak{hnp}(C_{\mathcal{G}}(X_{1}))=X_{2}.

Proof.

Set C:=CPSLn(q)(t)C:=C_{PSL_{n}(q)}(t). Note that C=K1K2C^{\prime}=K_{1}K_{2}.

By [24, Chapter 7, Theorem 3.4], we have 𝔣𝔬𝔠(C𝒢(X1))=CT(X1)CC(X1)CT(X1)C=CT(X1)X1X2=Z(X1)X2\mathfrak{foc}(C_{\mathcal{G}}(X_{1}))=C_{T}(X_{1})\cap C_{C}(X_{1})^{\prime}\leq C_{T}(X_{1})\cap C^{\prime}=C_{T}(X_{1})\cap X_{1}X_{2}=Z(X_{1})X_{2}. As 𝔥𝔫𝔭(C𝒢(X1))𝔣𝔬𝔠(C𝒢(X1))\mathfrak{hnp}(C_{\mathcal{G}}(X_{1}))\leq\mathfrak{foc}(C_{\mathcal{G}}(X_{1})), it follows that 𝔥𝔫𝔭(C𝒢(X1))Z(X1)X2\mathfrak{hnp}(C_{\mathcal{G}}(X_{1}))\leq Z(X_{1})X_{2}.

Let PP be a subgroup of CT(X1)C_{T}(X_{1}) and let φ\varphi be a 22^{\prime}-element of AutCC(X1)(P)\mathrm{Aut}_{C_{C}(X_{1})}(P). By [37, 8.2.7], we have

[P,φ]=[P,φ,φ][𝔥𝔫𝔭(C𝒢(X1))P,φ][Z(X1)X2P,φ].[P,\langle\varphi\rangle]=[P,\langle\varphi\rangle,\langle\varphi\rangle]\leq[\mathfrak{hnp}(C_{\mathcal{G}}(X_{1}))\cap P,\langle\varphi\rangle]\leq[Z(X_{1})X_{2}\cap P,\langle\varphi\rangle].

Since φAutCC(X1)(P)\varphi\in\mathrm{Aut}_{C_{C}(X_{1})}(P), K2CK_{2}\trianglelefteq C and X2=TK2X_{2}=T\cap K_{2}, it follows [P,φ]X2[P,\langle\varphi\rangle]\leq X_{2}. Consequently, 𝔥𝔫𝔭(C𝒢(X1))X2\mathfrak{hnp}(C_{\mathcal{G}}(X_{1}))\leq X_{2}.

On the other hand, since K2O2(CC(X1))K_{2}\leq O^{2}(C_{C}(X_{1})), we have X2𝔥𝔫𝔭(C𝒢(X1))X_{2}\leq\mathfrak{hnp}(C_{\mathcal{G}}(X_{1})) by [19, Theorem 1.33]. ∎

Lemma 5.7.

Set C:=CPSLn(q)(t)C:=C_{PSL_{n}(q)}(t). Then AutC(X1)\mathrm{Aut}_{C}(X_{1}) is a 22-group.

Proof.

Let mNC(X1)m\in N_{C}(X_{1}). We have

m=(M1M2)Z(SLn(q))m=\begin{pmatrix}M_{1}&\\ &M_{2}\end{pmatrix}Z(SL_{n}(q))

for some M1GLn2(q)M_{1}\in GL_{n-2}(q) and some M2GL2(q)M_{2}\in GL_{2}(q) with det(M1)det(M2)=1\mathrm{det}(M_{1})\mathrm{det}(M_{2})=1. Let AWSLn2(q)A\in W\cap SL_{n-2}(q) and

x:=(AI2)Z(SLn(q))X1.x:=\begin{pmatrix}A&\\ &I_{2}\end{pmatrix}Z(SL_{n}(q))\in X_{1}.

As mm normalizes X1X_{1}, we have

(AM1I2)Z(SLn(q))=xmX1.\begin{pmatrix}A^{M_{1}}&\\ &I_{2}\end{pmatrix}Z(SL_{n}(q))=x^{m}\in X_{1}.

This easily implies that AM1WSLn2(q)A^{M_{1}}\in W\cap SL_{n-2}(q). It follows that M1M_{1} normalizes WSLn2(q)W\cap SL_{n-2}(q). By [36, Theorem 1], we have NGLn2(q)(WSLn2(q))=WCGLn2(q)(W)N_{GL_{n-2}(q)}(W\cap SL_{n-2}(q))=WC_{GL_{n-2}(q)}(W). It follows that cm|X1,X1c_{m}|_{X_{1},X_{1}} is a 22-automorphism. ∎

Define T1T_{1} to be the image of

{(AIn2):AVSL2(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2}\end{pmatrix}\ :\ A\in V\cap SL_{2}(q)\right\}

in PSLn(q)PSL_{n}(q) and T2T_{2} to be the image of

{(I2BI2):BV2SLn4(q)}\left\{\begin{pmatrix}I_{2}&&\\ &B&\\ &&I_{2}\end{pmatrix}\ :\ B\in V_{2}\cap SL_{n-4}(q)\right\}

in PSLn(q)PSL_{n}(q). Clearly, T1T_{1} and T2T_{2} are subgroups of X1X_{1}. Recall that we use uu to denote t{1,2}X1t_{\{1,2\}}\in X_{1}. The following lemma sheds light on some properties of the centralizer fusion system C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle).

Lemma 5.8.

The following hold.

  1. (i)

    We have CX1(u)Syl2(CK1(u))C_{X_{1}}(u)\in\mathrm{Syl}_{2}(C_{K_{1}}(u)). In particular, u\langle u\rangle is fully 𝒞1\mathcal{C}_{1}-centralized.

  2. (ii)

    𝔣𝔬𝔠(C𝒞1(u))=T1T2\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle))=T_{1}T_{2}.

  3. (iii)

    If n=6n=6 and q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8, then T1T_{1} and T2T_{2} are the only subgroups of 𝔣𝔬𝔠(C𝒞1(u))\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle)) which are isomorphic to Q8Q_{8} and strongly closed in C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle).

  4. (iv)

    If n7n\geq 7 and q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8, then T1T_{1} is the only subgroup of the intersection 𝔣𝔬𝔠(C𝒞1(u))CX1(T2)\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle))\cap C_{X_{1}}(T_{2}) which is isomorphic to Q8Q_{8} and strongly closed in C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle).

  5. (v)

    Let C1C_{1} be the image of

    {(AIn2):ASL2(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2}\end{pmatrix}\ :\ A\in SL_{2}(q)\right\}

    in PSLn(q)PSL_{n}(q) and C2C_{2} be the image of

    {(I2BI2):ASLn4(q)}\left\{\begin{pmatrix}I_{2}&&\\ &B&\\ &&I_{2}\end{pmatrix}\ :\ A\in SL_{n-4}(q)\right\}

    in PSLn(q)PSL_{n}(q). Then any component of C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle) lies in {T1(C1),T2(C2)}\{\mathcal{F}_{T_{1}}(C_{1}),\mathcal{F}_{T_{2}}(C_{2})\}. Moreover, T1(C1)\mathcal{F}_{T_{1}}(C_{1}) is a component if and only if q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, and T2(C2)\mathcal{F}_{T_{2}}(C_{2}) is a component if and only if n7n\geq 7 or q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8.

Proof.

Clearly, CK1(u)C_{K_{1}}(u) is the image of

{(ABI2):AGL2(q),BGLn4(q),det(A)det(B)=1}\left\{\begin{pmatrix}A&&\\ &B&\\ &&I_{2}\end{pmatrix}\ :\ A\in GL_{2}(q),B\in GL_{n-4}(q),\mathrm{det}(A)\mathrm{det}(B)=1\right\}

in PSLn(q)PSL_{n}(q). Let W~\widetilde{W} be the image of

{(ABI2):AV,BV2,det(A)det(B)=1}\left\{\begin{pmatrix}A&&\\ &B&\\ &&I_{2}\end{pmatrix}\ :\ A\in V,B\in V_{2},\mathrm{det}(A)\mathrm{det}(B)=1\right\}

in PSLn(q)PSL_{n}(q). Clearly, we have W~CX1(u)\widetilde{W}\leq C_{X_{1}}(u). It is easy to note that W~\widetilde{W} is a Sylow 22-subgroup of CK1(u)C_{K_{1}}(u). Thus CX1(u)=W~Syl2(CK1(u))C_{X_{1}}(u)=\widetilde{W}\in\mathrm{Syl}_{2}(C_{K_{1}}(u)). Hence (i) holds.

We have C𝒞1(u)=CX1(u)(CK1(u))=W~(CK1(u))C_{\mathcal{C}_{1}}(\langle u\rangle)=\mathcal{F}_{C_{X_{1}}(u)}(C_{K_{1}}(u))=\mathcal{F}_{\widetilde{W}}(C_{K_{1}}(u)). The focal subgroup theorem [24, Chapter 7, Theorem 3.4] implies that 𝔣𝔬𝔠(C𝒞1(u))=W~(CK1(u))\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle))=\widetilde{W}\cap(C_{K_{1}}(u))^{\prime}. It is easy to see that (CK1(u))=C1C2(C_{K_{1}}(u))^{\prime}=C_{1}C_{2}, where C1C_{1} and C2C_{2} are as in (v). We thus have 𝔣𝔬𝔠(C𝒞1(u))=T1T2\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle))=T_{1}T_{2}. Hence (ii) holds.

Now we turn to the proofs of (iii) and (iv). Assume that q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. Clearly, C1C_{1} and C2C_{2} are normal subgroups of CK1(u)C_{K_{1}}(u) and we have T1=C1W~T_{1}=C_{1}\cap\widetilde{W}, T2=C2W~T_{2}=C_{2}\cap\widetilde{W}. This implies that T1T_{1} and T2T_{2} are strongly closed in C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle). By Lemma 3.12, we have T1Q8T_{1}\cong Q_{8} and, if n=6n=6, we also have T2Q8T_{2}\cong Q_{8}. Clearly, any strongly C𝒞1(u)C_{\mathcal{C}_{1}}(\langle u\rangle)-closed subgroup of 𝔣𝔬𝔠(C𝒞1(u))=T1T2\mathfrak{foc}(C_{\mathcal{C}_{1}}(\langle u\rangle))=T_{1}T_{2} is strongly closed in T1T2(C1C2)\mathcal{F}_{T_{1}T_{2}}(C_{1}C_{2}). Hence, in order to prove (iii), it suffices to show that if n=6n=6, then T1T_{1} and T2T_{2} are the only strongly T1T2(C1C2)\mathcal{F}_{T_{1}T_{2}}(C_{1}C_{2})-closed subgroups of T1T2T_{1}T_{2} which are isomorphic to Q8Q_{8}. Similarly, in order to prove (iv), it suffices to show that if n7n\geq 7, then T1T_{1} is the only subgroup of T1T2T_{1}T_{2} which centralizes T2T_{2}, which is isomorphic to Q8Q_{8}, and which is strongly closed in T1T2(C1C2)\mathcal{F}_{T_{1}T_{2}}(C_{1}C_{2}).

Continue to assume that q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. In order to prove the two statements just mentioned, we need some observations. As C1SL2(q)C_{1}\cong SL_{2}(q), we have that C1C_{1} is not 22-nilpotent. So T1(C1)\mathcal{F}_{T_{1}}(C_{1}) is not nilpotent by [39, Theorem 1.4]. Again by [39, Theorem 1.4], it follows that AutC1(T1)\mathrm{Aut}_{C_{1}}(T_{1}) is not a 22-group. So AutC1(T1)\mathrm{Aut}_{C_{1}}(T_{1}) has an element of order 33. Similarly, if n=6n=6, then AutC2(T2)\mathrm{Aut}_{C_{2}}(T_{2}) has an element of order 33. It follows that there is an element αAutC1C2(T1T2)\alpha\in\mathrm{Aut}_{C_{1}C_{2}}(T_{1}T_{2}) such that α|T1,T1\alpha|_{T_{1},T_{1}} has order 33, while α|T2,T2=idT2\alpha|_{T_{2},T_{2}}=\mathrm{id}_{T_{2}}. Moreover, if n=6n=6, then there is an element βAutC1C2(T1T2)\beta\in\mathrm{Aut}_{C_{1}C_{2}}(T_{1}T_{2}) such that β|T1,T1=idT1\beta|_{T_{1},T_{1}}=\mathrm{id}_{T_{1}}, while β|T2,T2\beta|_{T_{2},T_{2}} has order 33.

Continue to assume that q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. If n=6n=6, then the observations in the preceding two paragraphs show together with Lemma 2.14 that T1T_{1} and T2T_{2} are the only strongly T1T2(C1C2)\mathcal{F}_{T_{1}T_{2}}(C_{1}C_{2})-closed subgroups of T1T2T_{1}T_{2} which are isomorphic to Q8Q_{8}. As observed above, this is enough to conclude that (iii) holds. If n7n\geq 7, then we may apply the observations in the preceding two paragraphs together with Lemma 2.14 to conclude that if T0T_{0} is a strongly T1T2(C1C2)\mathcal{F}_{T_{1}T_{2}}(C_{1}C_{2})-closed subgroup of T1T2T_{1}T_{2} such that T0Q8T_{0}\cong Q_{8} and such that T0T_{0} centralizes T2T_{2}, then T0=T1T_{0}=T_{1}. As observed above, this is enough to conclude that (iv) holds.

It remains to prove (v). It is easy to note that the 22-components of CK1(u)C_{K_{1}}(u) are precisely the quasisimple elements of {C1,C2}\{C_{1},C_{2}\}. So (v) can be obtained from Proposition 2.16 and Lemma 3.21. ∎

Let GG be as in Hypothesis 5.1. The group GG realizes the 22-fusion system of PSLn(q)PSL_{n}(q). So, if RR is a Sylow 22-subgroup of GG, then S(PSLn(q))R(G)\mathcal{F}_{S}(PSL_{n}(q))\cong\mathcal{F}_{R}(G). For the sake of simplicity, we will identify SS with a Sylow 22-subgroup RR of GG and S(PSLn(q))\mathcal{F}_{S}(PSL_{n}(q)) with R(G)\mathcal{F}_{R}(G). Hence we will work under the following hypothesis.

Hypothesis 5.9.

We will treat GG as a group with SSyl2(G)S\in\mathrm{Syl}_{2}(G) and S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)).

The following lemma will play a key role in the proof of Theorem 5.2.

Lemma 5.10.

Let xx be an involution of SS such that CS(x)Syl2(CG(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{G}(x)). Let 𝒞\mathcal{C} be a component of CS(x)(CG(x))\mathcal{F}_{C_{S}(x)}(C_{G}(x)), and let kk be a natural number with 3k<n3\leq k<n. Then the following hold.

  1. (i)

    There is a unique 22-component YY of CG(x)C_{G}(x) such that 𝒞=CS(x)Y(Y)\mathcal{C}=\mathcal{F}_{C_{S}(x)\cap Y}(Y).

  2. (ii)

    If 𝒞\mathcal{C} is isomorphic to the 22-fusion system of SLk(q)SL_{k}(q), then we either have that Y/O(Y)SLkε(q)/O(SLkε(q))Y/O(Y)\cong SL_{k}^{\varepsilon}(q^{*})/O(SL_{k}^{\varepsilon}(q^{*})) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with qεqq\sim\varepsilon q^{*}; or k=3k=3, (q+1)2=4(q+1)_{2}=4, and Y/Z(Y)M11Y/Z^{*}(Y)\cong M_{11}.

  3. (iii)

    If 𝒞\mathcal{C} is isomorphic to the 22-fusion system of a nontrivial quotient of SLk(q2)SL_{k}(q^{2}), then Y/O(Y)Y/O(Y) is isomorphic to a nontrivial quotient of SLkε(q)SL_{k}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with q2εqq^{2}\sim\varepsilon q^{*}.

In order to prove Lemma 5.10, we need the following observation.

Lemma 5.11.

Let k6k\geq 6 be a natural number satisfying P(k)P(k). If q0q_{0} is a nontrivial odd prime power and HH is a known finite simple group realizing the 22-fusion system of PSLk(q0)PSL_{k}(q_{0}), then HPSLkε(q)H\cong PSL_{k}^{\varepsilon}(q^{*}) for some ε{+,}\varepsilon\in\{+,-\} and some nontrivial odd prime power qq^{*} with εqq0\varepsilon q^{*}\sim q_{0}.

Proof.

It suffices to show that any known finite simple group HH satisfies (𝒞𝒦\mathcal{CK}). Without using the CFSG, this is a priori not clear. It can be deduced from [29, Proposition 5.2.9] if HH is alternating, from [29, Table 4.5.1] if HH is a finite simple group of Lie type in odd characteristic, and from [29, Table 5.3] if HH is sporadic. If HH is a finite simple group of Lie type in characteristic 22, then HH satisfies (𝒞𝒦\mathcal{CK}) since, in this case, no involution centralizer in HH has a 22-component (see [5, 47.8 (3)]). ∎

Proof of Lemma 5.10.

Since GG satisfies (𝒞𝒦\mathcal{CK}), we have that Y/Z(Y)Y/Z^{*}(Y) is a known finite simple group for each 22-component YY of CG(x)C_{G}(x). Proposition 2.16 implies that there is a unique 22-component YY of CG(x)C_{G}(x) with 𝒞=CS(x)Y(Y)\mathcal{C}=\mathcal{F}_{C_{S}(x)\cap Y}(Y). Thus (i) holds.

Suppose that 𝒞\mathcal{C} is isomorphic to the 22-fusion system of SLk(q0)/ZSL_{k}(q_{0})/Z, where either q0=qq_{0}=q and Z=1Z=1, or q0=q2q_{0}=q^{2} and ZZ(SLk(q2))Z\leq Z(SL_{k}(q^{2})). In order to prove (ii) and (iii), we need the following three claims.

(1) The 22-fusion systems of Y/Z(Y)Y/Z^{*}(Y) and PSLk(q0)PSL_{k}(q_{0}) are isomorphic.

As 𝒞=CS(x)Y(Y)\mathcal{C}=\mathcal{F}_{C_{S}(x)\cap Y}(Y), we have that the 22-fusion system of YY is isomorphic to the 22-fusion system of SLk(q0)/ZSL_{k}(q_{0})/Z. So, by Corollary 2.12, the 22-fusion system of Y/O(Y)Y/O(Y) is isomorphic to the 22-fusion system of SLk(q0)/ZSL_{k}(q_{0})/Z. Lemma 2.13 implies that the 22-fusion systems of Y/Z(Y)Y/Z^{*}(Y) and PSLk(q0)PSL_{k}(q_{0}) are isomorphic.

(2) We have Y/Z(Y)PSLkε(q)Y/Z^{*}(Y)\cong PSL_{k}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with q0εqq_{0}\sim\varepsilon q^{*}; or k=3k=3, (q0+1)2=4(q_{0}+1)_{2}=4 and Y/Z(Y)M11Y/Z^{*}(Y)\cong M_{11}.

If k=3k=3, then it follows from (1) and Proposition 4.2. If k{4,5}k\in\{4,5\}, then it follows from (1) together with Propositions 4.5 and 4.6. Assume now that k6k\geq 6. By Hypothesis 5.1 and since k<nk<n, we have that kk satisfies P(k)P(k). Since Y/Z(Y)Y/Z^{*}(Y) is a known finite simple group, the claim follows from (1) and Lemma 5.11.

(3) Suppose that Y/Z(Y)PSLkε(q)Y/Z^{*}(Y)\cong PSL_{k}^{\varepsilon}(q^{*}), where qq^{*} and ε\varepsilon are as in (2). Then we have Y/O(Y)SLkε(q)/UY/O(Y)\cong SL_{k}^{\varepsilon}(q^{*})/U, where UZ(SLkε(q))U\leq Z(SL_{k}^{\varepsilon}(q^{*})) and the index of UU in Z(SLkε(q))Z(SL_{k}^{\varepsilon}(q^{*})) is equal to the 22-part of |Z(SLk(q0))/Z||Z(SL_{k}(q_{0}))/Z|.

The group Y/O(Y)Y/O(Y) is a perfect central extension of PSLkε(q)PSL_{k}^{\varepsilon}(q^{*}). Since Y/O(Y)Y/O(Y) is core-free, the center of Y/O(Y)Y/O(Y) is a 22-group. So, by Lemmas 3.1 and 3.2, there is a central subgroup UU of SLkε(q)SL_{k}^{\varepsilon}(q^{*}) with Y/O(Y)SLkε(q)/UY/O(Y)\cong SL_{k}^{\varepsilon}(q^{*})/U. The claim now follows from

|PSLk(q0)|2|Z(SLk(q0))/Z|2\displaystyle|PSL_{k}(q_{0})|_{2}|Z(SL_{k}(q_{0}))/Z|_{2} =|SLk(q0)/Z|2\displaystyle=|SL_{k}(q_{0})/Z|_{2}
=|Y|2\displaystyle=|Y|_{2}
=|Y/Z(Y)|2|Z(Y/O(Y))|\displaystyle=|Y/Z^{*}(Y)|_{2}|Z(Y/O(Y))|
=|PSLk(q0)|2|Z(SLkε(q))/U|.\displaystyle=|PSL_{k}(q_{0})|_{2}|Z(SL_{k}^{\varepsilon}(q^{*}))/U|.

Here, the second equality follows from the fact that YY realizes 𝒞\mathcal{C}, the third one holds since |Z(Y)|2=|Z(Y)/O(Y)|2=|Z(Y/O(Y))|2=|Z(Y/O(Y))||Z^{*}(Y)|_{2}=|Z^{*}(Y)/O(Y)|_{2}=|Z(Y/O(Y))|_{2}=|Z(Y/O(Y))|, and the fourth one follows from (1).

Assume that q0=qq_{0}=q and Z=1Z=1. By (2) and (3), one of the following hold: either k=3k=3, (q+1)2=4(q+1)_{2}=4 and Y/Z(Y)M11Y/Z^{*}(Y)\cong M_{11}; or Y/O(Y)SLkε(q)/UY/O(Y)\cong SL_{k}^{\varepsilon}(q^{*})/U, where qq^{*} is a nontrivial odd prime power, ε{+,}\varepsilon\in\{+,-\}, qεqq\sim\varepsilon q^{*}, UZ(SLkε(q))U\leq Z(SL_{k}^{\varepsilon}(q^{*})) and the index of UU in Z(SLkε(q))Z(SL_{k}^{\varepsilon}(q^{*})) is equal to the 22-part of |Z(SLk(q))||Z(SL_{k}(q))|. Assume that the latter holds. As qεqq\sim\varepsilon q^{*}, we have (q1)2=(εq1)2=(qε)2(q-1)_{2}=(\varepsilon q^{*}-1)_{2}=(q^{*}-\varepsilon)_{2}. Since |Z(SLk(q))|=(k,q1)|Z(SL_{k}(q))|=(k,q-1) and |Z(SLkε(q))|=(k,qε)|Z(SL_{k}^{\varepsilon}(q^{*}))|=(k,q^{*}-\varepsilon), it follows that the 22-part of |Z(SLk(q))||Z(SL_{k}(q))| is equal to the 22-part of |Z(SLkε(q))||Z(SL_{k}^{\varepsilon}(q^{*}))|. It follows that U=O(Z(SLkε(q)))=O(SLkε(q))U=O(Z(SL_{k}^{\varepsilon}(q^{*})))=O(SL_{k}^{\varepsilon}(q^{*})). This completes the proof of (ii).

Assume now that q0=q2q_{0}=q^{2}. Then, since q21mod 4q^{2}\equiv 1\ \mathrm{mod}\ 4 , (2) und (3) imply that Y/O(Y)Y/O(Y) is isomorphic to a nontrivial quotient of SLkε(q)SL_{k}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with q2εqq^{2}\sim\varepsilon q^{*}. Thus (iii) holds. ∎

6. 22-components of involution centralizers

In this section, we continue to assume Hypotheses 5.1 and 5.9. We will use the notation introduced in the last section without further explanation.

The main goal of this section is to describe the 22-components and the solvable 22-components of the centralizers of involutions of GG.

6.1. The subgroups KK and LL of CG(t)C_{G}(t)

We start by considering CG(t)C_{G}(t). Let :=S(G)=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)). Since t\langle t\rangle is fully \mathcal{F}-centralized, we have that T=CS(t)Syl2(CG(t))T=C_{S}(t)\in\mathrm{Syl}_{2}(C_{G}(t)). Also, note that T(CG(t))=C(t)=T(CPSLn(q)(t))\mathcal{F}_{T}(C_{G}(t))=C_{\mathcal{F}}(\langle t\rangle)=\mathcal{F}_{T}(C_{PSL_{n}(q)}(t)).

Proposition 6.1.

There is a unique 22-component KK of CG(t)C_{G}(t) such that 𝒞1=TK(K)\mathcal{C}_{1}=\mathcal{F}_{T\cap K}(K). We have K/O(K)SLn2ε(q)/O(SLn2ε(q))K/O(K)\cong SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with qεqq\sim\varepsilon q^{*}. Moreover, KK is a normal subgroup of CG(t)C_{G}(t).

Proof.

Set :=S(G)\mathcal{F}:=\mathcal{F}_{S}(G). By Lemma 5.3, 𝒞1\mathcal{C}_{1} is a component of C(t)C_{\mathcal{F}}(\langle t\rangle). Lemma 5.10 (i) implies that there is a unique 22-component KK of CG(t)C_{G}(t) such that 𝒞1=TK(K)\mathcal{C}_{1}=\mathcal{F}_{T\cap K}(K). By definition, the component 𝒞1\mathcal{C}_{1} is isomorphic to the 22-fusion system of SLn2(q)SL_{n-2}(q). Lemma 5.10 (ii) implies that K/O(K)SLn2ε(q)/O(SLn2ε(q))K/O(K)\cong SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with qεqq\sim\varepsilon q^{*}.

It remains to show that KK is a normal subgroup of CG(t)C_{G}(t). Suppose that K~\widetilde{K} is a 22-component of CG(t)C_{G}(t) such that KK~K\cong\widetilde{K}. Set 𝒞~:=TK~(K~)\widetilde{\mathcal{C}}:=\mathcal{F}_{T\cap\widetilde{K}}(\widetilde{K}). Since K~\widetilde{K} is subnormal in CG(t)C_{G}(t), it easily follows from [11, Part I, Proposition 6.2] that 𝒞~\widetilde{\mathcal{C}} is subnormal in C(t)C_{\mathcal{F}}(\langle t\rangle). Moreover, 𝒞~𝒞1\widetilde{\mathcal{C}}\cong\mathcal{C}_{1} as K~K\widetilde{K}\cong K. Hence 𝒞~\widetilde{\mathcal{C}} is a component of C(t)C_{\mathcal{F}}(\langle t\rangle). But as a consequence of Lemma 5.3, there is no component of C(t)C_{\mathcal{F}}(\langle t\rangle) which is isomorphic to 𝒞1\mathcal{C}_{1} and different from 𝒞1\mathcal{C}_{1}. So we have 𝒞1=𝒞~\mathcal{C}_{1}=\widetilde{\mathcal{C}}. The uniqueness in the first statement of the proposition implies that K=K~K=\widetilde{K}. Consequently, CG(t)C_{G}(t) has no 22-component which is different from KK and isomorphic to KK. So KK is characteristic and hence normal in CG(t)C_{G}(t). ∎

From now on, KK, qq^{*} and ε\varepsilon will always have the meanings given to them by Proposition 6.1.

Our next goal is to prove the existence and uniqueness of a normal subgroup \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(t)/O(CG(t))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(t)/O(C_{G}(t)) such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LSL2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cong SL_{2}(q^{*}), and to show that the image \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} of KK in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are the only subgroups of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} which are components or solvable 22-components of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. First, we need to prove some lemmas.

Lemma 6.2.

Let AWA\in W and BVB\in V such that det(A)det(B)=1\mathrm{det}(A)\mathrm{det}(B)=1. Let

m:=(AB)Z(SLn(q))T.m:=\begin{pmatrix}A&\\ &B\end{pmatrix}Z(SL_{n}(q))\in T.

Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(t)/O(CG(t))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(t)/O(C_{G}(t)). Then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} if and only if AZ(GLn2(q))A\in Z(GL_{n-2}(q)).

Proof.

By Lemma 5.5, we have mZ(𝒞1m)m\in Z(\mathcal{C}_{1}\langle m\rangle) if and only if AZ(GLn2(q))A\in Z(GL_{n-2}(q)). Let 𝒞1¯\overline{\mathcal{C}_{1}} be the subsystem of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) corresponding to 𝒞1\mathcal{C}_{1} under the isomorphism from T(CG(t))\mathcal{F}_{T}(C_{G}(t)) to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) given by Corollary 2.12. Then we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111mZ(𝒞1¯\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\in Z(\overline{\mathcal{C}_{1}}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle) if and only if AZ(GLn2(q))A\in Z(GL_{n-2}(q)). So it is enough to show that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111mZ(𝒞1¯\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\in Z(\overline{\mathcal{C}_{1}}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle) if and only if \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. It is easy to note that 𝒞1¯=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\overline{\mathcal{C}_{1}}=\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). As a consequence of Proposition 6.1, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. By [34, Proposition 1], we have

𝒞1¯\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m).\overline{\mathcal{C}_{1}}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle=\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle).

Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} is a 22-element of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, we have O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m)=O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)=1O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle)=O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})=1. Applying [23, Corollary 1], it follows that the center of the product 𝒞1¯\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\overline{\mathcal{C}_{1}}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle is equal to the center of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle. It follows that that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111mZ(𝒞1¯\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\in Z(\overline{\mathcal{C}_{1}}\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\rangle) if and only if \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}, as required. ∎

Lemma 6.3.

Suppose that q=3q^{*}=3. Let C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Then:

  1. (i)

    The factor group \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C/\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}/\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a 22-group.

  2. (ii)

    The centralizer C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) is core-free.

  3. (iii)

    The factor group C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is core-free.

Proof.

Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C/\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}/\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is isomorphic to a subgroup of Out(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\mathrm{Out}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). Since q=3q^{*}=3, we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KSLn2ε(3)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong SL_{n-2}^{\varepsilon}(3). By Propositions 3.40 and 3.42, Out(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\mathrm{Out}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a 22-group. So (i) holds.

Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0:=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}:=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). As a consequence of (i), C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) is a 22-group. Hence, in order to prove (ii), it suffices to show that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) is core-free. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}, we have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). It follows that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K))=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cong C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}))=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). By Corollary 3.8, C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) is core-free. This easily implies that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is core-free. It follows that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is core-free. Consequently, O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))=O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K))=1O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}))=O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}))=1. So (ii) follows.

Finally, (iii) is true since C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) is a 22-group and C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C0(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}_{0}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is core-free. ∎

Lemma 6.4.

Let \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(t)/O(CG(t))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(t)/O(C_{G}(t)). Then there is a unique pair (A1+,A2+)({A_{1}}^{+},{A_{2}}^{+}) of normal subgroups A1+{A_{1}}^{+}, A2+{A_{2}}^{+} of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime} such that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=A1+×A2+C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}={A_{1}}^{+}\times{A_{2}}^{+}, A1+SL2ε(q){A_{1}}^{+}\cong SL_{2}^{\varepsilon}(q^{*}), A2+SLn4ε(q){A_{2}}^{+}\cong SL_{n-4}^{\varepsilon}(q^{*}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in{A_{1}}^{+}. Moreover, the following hold.

  1. (i)

    A1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T{A_{1}}^{+}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

  2. (ii)

    A2+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T{A_{2}}^{+}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

  3. (iii)

    There is a group isomorphism φ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KSLn2ε(q)/O(SLn2ε(q))\varphi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})) under which A1+{A_{1}}^{+} corresponds to the image of

    {(AIn4):ASL2ε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-4}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q^{*})\right\}

    in SLn2ε(q)/O(SLn2ε(q))SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})) and under which A2+{A_{2}}^{+} corresponds to the image of

    {(I2B):BSLn4ε(q)}\left\{\begin{pmatrix}I_{2}&\\ &B\end{pmatrix}\ :\ B\in SL_{n-4}^{\varepsilon}(q^{*})\right\}

    in SLn2ε(q)/O(SLn2ε(q))SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})).

Proof.

For each subsystem 𝒢\mathcal{G} of T(CG(t))\mathcal{F}_{T}(C_{G}(t)), we use \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} to denote the subsystem of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) corresponding to 𝒢\mathcal{G} under the isomorphism from T(CG(t))\mathcal{F}_{T}(C_{G}(t)) to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) given by Corollary 2.12. Note that 𝒞1¯=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\overline{\mathcal{C}_{1}}=\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}).

Set H:=SLn2ε(q)/O(SLn2ε(q))H:=SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})). For each even natural number ii with 2in22\leq i\leq n-2, let hih_{i} be the image of hi~:=diag(1,,1,1,,1)SLn2ε(q)\widetilde{h_{i}}:=\mathrm{diag}(-1,\dots,-1,1,\dots,1)\in SL_{n-2}^{\varepsilon}(q^{*}) in HH, where 1-1 occurs precisely ii times as a diagonal entry.

We claim that there is a group isomorphism φ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KH\varphi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow H such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uφ=hi{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}}^{\varphi}=h_{i} for some even 2i<n22\leq i<n-2. By Proposition 6.1, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KK/O(K)H\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong K/O(K)\cong H. As a consequence of Lemmas 3.3 and 3.4, any involution of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) is conjugate to hi~\widetilde{h_{i}} for some even 2in22\leq i\leq n-2. Since any involution of HH is induced by an involution of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}), it follows that any involution of HH is conjugate to hih_{i} for some even 2in22\leq i\leq n-2. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u} is an involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}, it follows that there is an isomorphism φ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KH\varphi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow H mapping \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u} to hih_{i} for some even 2in22\leq i\leq n-2. Assume that i=n2i=n-2. Then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u} is central in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. Thus \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uZ(𝒞1¯)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in Z(\overline{\mathcal{C}_{1}}) and hence uZ(𝒞1)u\in Z(\mathcal{C}_{1}). This is a contradiction to Lemma 3.18 and the definition of 𝒞1\mathcal{C}_{1}. So we have i<n2i<n-2.

Set h:=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uφ=hih:={\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}}^{\varphi}=h_{i}. Also, let H1H_{1} be the image of

{(AIn2i):ASLiε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2-i}\end{pmatrix}\ :\ A\in SL_{i}^{\varepsilon}(q^{*})\right\}

in HH, and let H2H_{2} be the image of

{(IiB):BSLn2iε(q)}\left\{\begin{pmatrix}I_{i}&\\ &B\end{pmatrix}\ :\ B\in SL_{n-2-i}^{\varepsilon}(q^{*})\right\}

in HH. For j{1,2}j\in\{1,2\}, let Aj+{A_{j}}^{+} be the subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} corresponding to HjH_{j} under φ\varphi.

We now proceed in a number of steps in order to complete the proof.

(1) We have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=A1+A2+C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}={A_{1}}^{+}{A_{2}}^{+}, [A1+,A2+]=1[{A_{1}}^{+},{A_{2}}^{+}]=1, A1+,A2+C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u){A_{1}}^{+},{A_{2}}^{+}\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in{A_{1}}^{+} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{2}}^{+}.

It is easy to note that CH(h)C_{H}(h)^{\prime} is the central product of H1H_{1} and H2H_{2} and that H1H_{1} and H2H_{2} are normal in CH(h)C_{H}(h). Therefore, C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime} is the central product of A1+{A_{1}}^{+} and A2+{A_{2}}^{+}, and A1+,A2+{A_{1}}^{+},{A_{2}}^{+} are normal in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). By definition of H1H_{1} and H2H_{2}, we have hH1h\in H_{1} and hH2h\not\in H_{2}. Thus \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in{A_{1}}^{+} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{2}}^{+}.

(2) We have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)Syl2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})\in\mathrm{Syl}_{2}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})), and {\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+(A1+),\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+(A2+)}\{\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}}({A_{1}}^{+}),\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}}({A_{2}}^{+})\} contains every component of C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle).

By Lemma 5.8 (i), we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle is fully 𝒞1¯\overline{\mathcal{C}_{1}}-centralized. So we have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)Syl2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})\in\mathrm{Syl}_{2}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})).

Set P:=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)φSyl2(CH(h))P:=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\varphi}\in\mathrm{Syl}_{2}(C_{H}(h)). It is easy to note that the 22-components of CH(h)C_{H}(h) are precisely the quasisimple elements of {H1,H2}\{H_{1},H_{2}\}. Proposition 2.16 implies that the components of P(CH(h))\mathcal{F}_{P}(C_{H}(h)) are precisely the quasisimple elements of {PH1(H1),PH2(H2)}\{\mathcal{F}_{P\cap H_{1}}(H_{1}),\mathcal{F}_{P\cap H_{2}}(H_{2})\}.

Thus the components of C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle)=\mathcal{F}_{C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})) are precisely the quasisimple elements of {\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+(A1+),\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+(A2+)}\{\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}}({A_{1}}^{+}),\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}}({A_{2}}^{+})\}.

(3) \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+} are subgroups of 𝔣𝔬𝔠(C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))\mathfrak{foc}(C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle)) and are strongly closed in C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle).

We have 𝔣𝔬𝔠(C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)\mathfrak{foc}(C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle))=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime} by the focal subgroup theorem [24, Chapter 7, Theorem 3.4]. So the claim follows from (1).

(4) Suppose that n=6n=6 and q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. Then we have i=2i=2 and hence A1+SL2ε(q)A2+{A_{1}}^{+}\cong SL_{2}^{\varepsilon}(q^{*})\cong{A_{2}}^{+}. Moreover, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

Since n=6n=6 and 2i<n2=42\leq i<n-2=4, we have i=2i=2. Thus A1+H1SL2ε(q)H2A2+{A_{1}}^{+}\cong H_{1}\cong SL_{2}^{\varepsilon}(q^{*})\cong H_{2}\cong{A_{2}}^{+}. By Proposition 6.1, we have qεqq\sim\varepsilon q^{*}, whence q3q^{*}\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+Syl2(A1+)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}\in\mathrm{Syl}_{2}({A_{1}}^{+}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+Syl2(A2+)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}\in\mathrm{Syl}_{2}({A_{2}}^{+}). Lemma 3.12 implies that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+Q8\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}\cong Q_{8}\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}. By Lemma 5.8 (iii), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} are the only subgroups of 𝔣𝔬𝔠(C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))\mathfrak{foc}(C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle)) which are isomorphic to Q8Q_{8} and strongly closed in C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle). So, by (3), {\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+}={\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T}\{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}\}=\{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\}. We have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}, and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{2}}^{+} by (1). It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

(5) Suppose that n=6n=6 and q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, or that n7n\geq 7. Then we have i=2i=2, and hence A1+SL2ε(q){A_{1}}^{+}\cong SL_{2}^{\varepsilon}(q^{*}) and A2+SLn4ε(q){A_{2}}^{+}\cong SL_{n-4}^{\varepsilon}(q^{*}). Moreover, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

We begin by proving that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. As a consequence of Lemma 5.8 (v), C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle) has a component with Sylow group \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. Applying (2), we may conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+} or \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in A_{1}^{+} by (1), but \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}.

We show next that i=2i=2. Using Proposition 3.19, or using the order formulas for |SLn4(q)||SL_{n-4}(q^{*})| and |SUn4(q)||SU_{n-4}(q^{*})| given by [33, Proposition 1.1 and Corollary 11.29], we see that

|SLn4ε(q)|2=|SLn4(q)|2=|T2|=|A2+|2=|H2|2=|SLn2iε(q)|2.|SL_{n-4}^{\varepsilon}(q^{*})|_{2}=|SL_{n-4}(q)|_{2}=|T_{2}|=|{A_{2}}^{+}|_{2}=|H_{2}|_{2}=|SL_{n-2-i}^{\varepsilon}(q^{*})|_{2}.

Using the order formulas cited above, we may conclude that n2i=n4n-2-i=n-4, whence i=2i=2. In particular, A1+SL2ε(q){A_{1}}^{+}\cong SL_{2}^{\varepsilon}(q^{*}) and A2+SLn4ε(q){A_{2}}^{+}\cong SL_{n-4}^{\varepsilon}(q^{*}).

It remains to prove \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. If q1q\equiv 1 or 7mod 87\ \mathrm{mod}\ 8, then Lemma 5.8 (v) shows that C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle) has a component with Sylow group \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}, but \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{2}}^{+}, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T} by (2).

Now suppose that q3q\equiv 3 or 5mod 85\ \mathrm{mod}\ 8. Then we have q3q^{*}\equiv 3 or 5mod 85\ \mathrm{mod}\ 8 since qεqq\sim\varepsilon q^{*}. So, by Lemma 3.12, a Sylow 22-subgroup of A1+{A_{1}}^{+} is isomorphic to Q8Q_{8}. In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+Q8\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}\cong Q_{8}. By (3), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+} is a subgroup of 𝔣𝔬𝔠(C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))\mathfrak{foc}(C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle)) and is strongly closed in C𝒞1¯(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\overline{\mathcal{C}_{1}}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle). Moreover, by (1), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{2}}^{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. Lemma 5.8 (iv) now implies that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\cap{A_{1}}^{+}.

(6) C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=A1+×A2+C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}={A_{1}}^{+}\times{A_{2}}^{+}.

We have A1+SL2ε(q){A_{1}}^{+}\cong SL_{2}^{\varepsilon}(q^{*}) by (4) and (5), and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uZ(A1+)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in Z({A_{1}}^{+}) by (1). It follows that Z(A1+)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uZ({A_{1}}^{+})=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\rangle. By (1), A1+A2+Z(A1+){A_{1}}^{+}\cap{A_{2}}^{+}\leq Z({A_{1}}^{+}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+A2+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{1}}^{+}\cap{A_{2}}^{+}. It follows that A1+A2+=1{A_{1}}^{+}\cap{A_{2}}^{+}=1. So (1) implies that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=A1+×A2+C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}={A_{1}}^{+}\times{A_{2}}^{+}.

(7) Assume that A1{A_{1}}^{\circ} and A2{A_{2}}^{\circ} are normal subgroups of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime} such that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=A1×A2C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}={A_{1}}^{\circ}\times{A_{2}}^{\circ}, A1SL2ε(q){A_{1}}^{\circ}\cong SL_{2}^{\varepsilon}(q^{*}), A2SLn4ε(q){A_{2}}^{\circ}\cong SL_{n-4}^{\varepsilon}(q^{*}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in{A_{1}}^{\circ}. Then A1=A1+{A_{1}}^{\circ}={A_{1}}^{+} and A2=A2+{A_{2}}^{\circ}={A_{2}}^{+}.

Let j{1,2}j\in\{1,2\}. As a consequence of (4) and (5), Aj+{A_{j}}^{+} is either quasisimple or isomorphic to SL2(3)SL_{2}(3). In either case, it is easy to see that Aj+{A_{j}}^{+} is indecomposable, i.e. Aj+{A_{j}}^{+} cannot be written as an internal direct product of two proper normal subgroups. Moreover, |A1+/(A1+)||{A_{1}}^{+}/({A_{1}}^{+})^{\prime}| and |Z(A2+)||Z({A_{2}}^{+})| as well as |A2+/(A2+)||{A_{2}}^{+}/({A_{2}}^{+})^{\prime}| and |Z(A1+)||Z({A_{1}}^{+})| are coprime. A consequence of the Krull-Remak-Schmidt theorem, namely [35, Kapitel I, Satz 12.6], implies that {A1+,A2+}={A1,A2}\{{A_{1}}^{+},{A_{2}}^{+}\}=\{{A_{1}}^{\circ},{A_{2}}^{\circ}\}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA1+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\in{A_{1}}^{+} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uA2\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}\not\in{A_{2}}^{\circ}, we have A1+=A1{A_{1}}^{+}={A_{1}}^{\circ} and A2+=A2{A_{2}}^{+}={A_{2}}^{\circ}.

(8) The isomorphism φ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KH\varphi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow H maps A1+{A_{1}}^{+} to the image of

{(AIn4):ASL2ε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-4}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q^{*})\right\}

in HH and A2+{A_{2}}^{+} to the image of

{(I2B):BSLn4ε(q)}\left\{\begin{pmatrix}I_{2}&\\ &B\end{pmatrix}\ :\ B\in SL_{n-4}^{\varepsilon}(q^{*})\right\}

in HH.

By (4) and (5), we have i=2i=2. So the claim follows from the definitions of A1+{A_{1}}^{+} and A2+{A_{2}}^{+}. ∎

From now on, A1+{A_{1}}^{+} and A2+{A_{2}}^{+} will always have the meanings given to them by Lemma 6.4.

Lemma 6.5.

Let C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Then A1+{A_{1}}^{+} and A2+{A_{2}}^{+} are normal subgroups of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}).

Proof.

We have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) as \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. Thus C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})^{\prime}\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Having this observed, the lemma is immediate from Lemma 6.4. ∎

Let C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Next we introduce certain preimages of A1+{A_{1}}^{+} and A2+{A_{2}}^{+} in CC(u)C_{C}(u). By Corollary 2.2, we have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. We may see from Proposition 2.4 that there is a bijection from the set of 22-components of CC(u)C_{C}(u) to the set of 22-components of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) sending each 22-component AA of CC(u)C_{C}(u) to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}.

Suppose that q3q^{*}\neq 3. Then A1+{A_{1}}^{+} is a component and hence a 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). We use A1A_{1} to denote the 22-component of CC(u)C_{C}(u) corresponding to A1+{A_{1}}^{+} under the bijection described above.

Suppose that q3q^{*}\neq 3 or n7n\geq 7. Then A2+{A_{2}}^{+} is a component and hence a 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). We use A2A_{2} to denote the 22-component of CC(u)C_{C}(u) corresponding to A2+{A_{2}}^{+} under the bijection described above.

Suppose that q=3q^{*}=3. By Lemma 6.3 (ii), O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u))=1O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}))=1. So the factor group CC(u)/(CC(u)O(C))C_{C}(u)/(C_{C}(u)\cap O(C)) is core-free, whence O(CC(u))=CC(u)O(C)O(C_{C}(u))=C_{C}(u)\cap O(C). Let O(CC(u))A1CC(u)O(C_{C}(u))\leq A_{1}\leq C_{C}(u) such that A1/O(CC(u))A_{1}/O(C_{C}(u)) corresponds to A1+{A_{1}}^{+} under the natural group isomorphism CC(u)/O(CC(u))C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{C}(u)/O(C_{C}(u))\rightarrow C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Furthermore, if n=6n=6, let O(CC(u))A2CC(u)O(C_{C}(u))\leq A_{2}\leq C_{C}(u) such that A2/O(CC(u))A_{2}/O(C_{C}(u)) corresponds to A2+{A_{2}}^{+} under the natural group isomorphism CC(u)/O(CC(u))C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{C}(u)/O(C_{C}(u))\rightarrow C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}).

Lemma 6.6.

We have T1A1T_{1}\leq A_{1} and T2A2T_{2}\leq A_{2}.

Proof.

Let i{1,2}i\in\{1,2\}. Set C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C).

Let CC(u)O(C)Ai~CC(u)C_{C}(u)\cap O(C)\leq\widetilde{A_{i}}\leq C_{C}(u) such that Ai~/(CC(u)O(C))\widetilde{A_{i}}/(C_{C}(u)\cap O(C)) corresponds to Ai+{A_{i}}^{+} under the natural group isomorphism CC(u)/(CC(u)O(C))C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{C}(u)/(C_{C}(u)\cap O(C))\rightarrow C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). We have TiCC(u)T_{i}\leq C_{C}(u) and, by Lemma 6.4, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111TAi+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\leq{A_{i}}^{+}. Thus TiAi~T_{i}\leq\widetilde{A_{i}}. If Ai+SL2(3){A_{i}}^{+}\cong SL_{2}(3), then we have Ai=Ai~A_{i}=\widetilde{A_{i}} and thus TiAiT_{i}\leq A_{i}. Assume now that Ai+{A_{i}}^{+} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Then AiA_{i} is the 22-component of CC(u)C_{C}(u) associated to the 22-component Ai~/(CC(u)O(C))\widetilde{A_{i}}/(C_{C}(u)\cap O(C)) of CC(u)/(CC(u)O(C))C_{C}(u)/(C_{C}(u)\cap O(C)). So, by Proposition 2.4, Ai=O2(Ai~)A_{i}=O^{2^{\prime}}(\widetilde{A_{i}}), and hence TiAiT_{i}\leq A_{i}. ∎

Lemma 6.7.

There is an element gGg\in G such that T1g=X2{T_{1}}^{g}=X_{2} and X2g=T1{X_{2}}^{g}=T_{1}. For each such gGg\in G, we have ug=tu^{g}=t and tg=ut^{g}=u.

Proof.

The first statement easily follows from S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)). By Lemma 3.12, the groups T1T_{1} and X2X_{2} are generalized quaternion. So uu is the only involution of T1T_{1} and tt is the only involution of X2X_{2}. Thus ug=tu^{g}=t and tg=ut^{g}=u for any gGg\in G with T1g=X2{T_{1}}^{g}=X_{2} and X2g=T1{X_{2}}^{g}=T_{1}. ∎

With the above lemmas at hand, we can now prove the following proposition.

Proposition 6.8.

Take an element gGg\in G such that T1g=X2{T_{1}}^{g}=X_{2} and X2g=T1{X_{2}}^{g}=T_{1}. Set C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Let L:=A1gL:={A_{1}}^{g}. Then the following hold.

  1. (i)

    LCC(u)L\leq C_{C}(u).

  2. (ii)

    \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is subnormal in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LSL2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cong SL_{2}(q^{*}).

  3. (iii)

    The subgroups \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are the only subgroups of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} which are components or solvable 22-components of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are normal subgroups of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}.

Proof.

By Lemma 6.7, we have tg=ut^{g}=u and ug=tu^{g}=t. Hence CC(u)g=CC(u)C_{C}(u)^{g}=C_{C}(u). As A1A_{1} is a subgroup of CC(u)C_{C}(u), we thus have L=A1gCC(u)L={A_{1}}^{g}\leq C_{C}(u). So (i) holds.

Before proving (ii), we show that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a normal subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} containing \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}. Since C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, we have C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. Because of Lemma 6.6, we have X2=T1gA1g=LX_{2}={T_{1}}^{g}\leq{A_{1}}^{g}=L. Thus \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. By the definition of X2X_{2} and by Lemma 6.2, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). Thus \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}).

Note that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X} is generalized quaternion by Lemma 3.12 and in particular nonabelian.

We now prove (ii) for the case q3q^{*}\neq 3. Then A1A_{1} is a 22-component of CC(u)C_{C}(u). As gg normalizes CC(u)C_{C}(u) and L=A1gL={A_{1}}^{g}, it follows that LL is a 22-component of CC(u)C_{C}(u). So \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is a 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Moreover, we have A1/O(A1)SL2(q)A_{1}/O(A_{1})\cong SL_{2}(q^{*}) since A1/(A1O(C))\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A=A1+SL2(q)A_{1}/(A_{1}\cap O(C))\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}={A_{1}}^{+}\cong SL_{2}(q^{*}). Hence L/O(L)L/O(L) is isomorphic to SL2(q)SL_{2}(q^{*}). The group C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)/O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})/O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) is normal in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L/O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}/O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}), and it is nonabelian since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L/O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}/O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) is quasisimple, it follows that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. So C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) has odd index in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is a 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), we have O2(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LO^{2^{\prime}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is subnormal in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) and C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is subnormal in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). Hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is subnormal in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is core-free, we have O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)=1O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})=1. It follows that O(L)=LO(C)O(L)=L\cap O(C) and hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LL/O(L)SL2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cong L/O(L)\cong SL_{2}(q^{*}). So we have proved (ii) for the case q3q^{*}\neq 3.

Assume now that q=3q^{*}=3. Then O(CC(u))=CC(u)O(C)O(C_{C}(u))=C_{C}(u)\cap O(C), O(CC(u))A1CC(u)O(C_{C}(u))\leq A_{1}\leq C_{C}(u), and A1/O(CC(u))A_{1}/O(C_{C}(u)) corresponds to A1+SL2(3){A_{1}}^{+}\cong SL_{2}(3) under the natural isomorphism CC(u)/O(CC(u))C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{C}(u)/O(C_{C}(u))\rightarrow C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). By Lemma 6.5, A1+{A_{1}}^{+} is normal in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Hence, A1/O(CC(u))A_{1}/O(C_{C}(u)) is a normal subgroup of CC(u)/O(CC(u))C_{C}(u)/O(C_{C}(u)) isomorphic to SL2(3)SL_{2}(3). Since gg normalizes CC(u)C_{C}(u) and L=A1gL={A_{1}}^{g}, it follows that O(CC(u))LO(C_{C}(u))\leq L and that L/O(CC(u))L/O(C_{C}(u)) is a normal subgroup of CC(u)/O(CC(u))C_{C}(u)/O(C_{C}(u)) isomorphic to SL2(3)SL_{2}(3). Since L/O(CC(u))L/O(C_{C}(u)) corresponds to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} under the natural isomorphism CC(u)/O(CC(u))C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{C}(u)/O(C_{C}(u))\rightarrow C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), it follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is a normal subgroup of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) isomorphic to SL2(3)SL_{2}(3). Recall that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} has order 2424 and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X} has order 88, C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) either equals \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} or has index 33 in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. However, if the latter holds, then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a normal subgroup of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) of order 33, which is a contradiction to Lemma 6.3 (iii). Thus \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L=C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}=C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) and C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), it follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is normal in C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) and hence subnormal in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. So we have proved (ii) for the case q=3q^{*}=3.

We now prove (iii). Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}. Also \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X} since |\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X|=|SL2(q)|2=|SL2(q)|2=|\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L|2|\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}|=|SL_{2}(q)|_{2}=|SL_{2}(q^{*})|_{2}=|\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}|_{2} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. As a consequence of Lemma 5.4, the fusion system \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)/(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X)\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})/(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}) is nilpotent. Applying Lemma 2.17, we may conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are the only subgroups of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} which are components or solvable 22-components of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are not isomorphic, both are characteristic and hence normal in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. ∎

It is not difficult to observe that the definition of LL in Proposition 6.8 is independent of the choice of gg. From now on, LL will always have the meaning given to it by the above proposition.

6.2. 22-components of centralizers of involutions conjugate to tit_{i}, i2i\neq 2

Having described the components and the solvable 22-components of the group CG(t)/O(CG(t))C_{G}(t)/O(C_{G}(t)), we now turn our attention to centralizers of involutions of GG not conjugate to tt.

First we recall some notation from Section 5. Let 1i<n1\leq i<n. If ii is even, then tit_{i} denotes the image of

(IniIi)\begin{pmatrix}I_{n-i}&\\ &-I_{i}\end{pmatrix}

in PSLn(q)PSL_{n}(q). We use ρ\rho to denote an element of 𝔽q\mathbb{F}_{q}^{*} with order (n,q1)(n,q-1), and if ρ\rho is a square in 𝔽q\mathbb{F}_{q}, then μ\mu denotes an element of 𝔽q\mathbb{F}_{q}^{*} with μ2=ρ\mu^{2}=\rho. If nn is even, ρ\rho is a square in 𝔽q\mathbb{F}_{q} and ii is odd, then tit_{i} is defined to be the image of

(μIniμIi)SLn(q)\begin{pmatrix}\mu I_{n-i}&\\ &-\mu I_{i}\end{pmatrix}\in SL_{n}(q)

in PSLn(q)PSL_{n}(q). It is easy to note that tit_{i} lies in TT and hence in SS whenever tit_{i} is defined.

Let 𝒮\mathcal{S} denote the set of all subgroups EE of PSLn(q)PSL_{n}(q) such that there is some elementary abelian 22-subgroup E~SLn(q)\widetilde{E}\leq SL_{n}(q) with E=E~Z(SLn(q))/Z(SLn(q))E=\widetilde{E}Z(SL_{n}(q))/Z(SL_{n}(q)). For each 3in3\leq i\leq n, we define 𝒮i\mathcal{S}_{i} to be the set of all elements EE of 𝒮\mathcal{S} such that EE contains a PSLn(q)PSL_{n}(q)-conjugate of tjt_{j} for some even 2j<i2\leq j<i.

Lemma 6.9.

Let 1i<n1\leq i<n such that tit_{i} is defined. Assume that i2i\neq 2, and that in2i\leq\frac{n}{2} if nn is even. Let PP be a Sylow 22-subgroup of CPSLn(q)(ti)C_{PSL_{n}(q)}(t_{i}) and :=P(CPSLn(q)(ti))\mathcal{F}:=\mathcal{F}_{P}(C_{PSL_{n}(q)}(t_{i})). Then the following hold.

  1. (i)

    Assume that i{1,n1}i\not\in\{1,n-1\}. Then \mathcal{F} has precisely two components. Denoting them in a suitable way by 1\mathcal{E}_{1} and 2\mathcal{E}_{2}, the following hold.

    1. (a)

      1\mathcal{E}_{1} is isomorphic to the 22-fusion system of SLni(q)SL_{n-i}(q).

    2. (b)

      2\mathcal{E}_{2} is isomorphic to the 22-fusion system of SLi(q)SL_{i}(q).

    3. (c)

      Let Y1Y_{1} be the Sylow group of 1\mathcal{E}_{1} and let Y2Y_{2} be the Sylow group of 2\mathcal{E}_{2}. Then Y1Y2Y_{1}Y_{2} is normal in PP and /Y1Y2\mathcal{F}/Y_{1}Y_{2} is nilpotent. The group YiY_{i}, where i{1,2}i\in\{1,2\}, contains a PSLn(q)PSL_{n}(q)-conjugate of tt. Moreover, any elementary abelian subgroup of Y1Y_{1} of rank at least 22 is contained in 𝒮ni\mathcal{S}_{n-i}, and any elementary abelian subgroup of Y2Y_{2} of rank at least 22 is contained in 𝒮i\mathcal{S}_{i}.

  2. (ii)

    Assume that i=1i=1 or i=n1i=n-1. Then \mathcal{F} has a unique component. This component is isomorphic to the 22-fusion system of SLn1(q)SL_{n-1}(q). If YY is its Sylow group, then YPY\trianglelefteq P and /Y\mathcal{F}/Y is nilpotent. Moreover, any elementary abelian subgroup of YY of rank at least 22 is contained in 𝒮n1\mathcal{S}_{n-1}.

Proof.

Assume that i{1,n1}i\not\in\{1,n-1\}. By hypothesis, we have i2i\neq 2, and in2i\leq\frac{n}{2} if nn is even. It follows that i3i\geq 3 and ni3n-i\geq 3. Let J1J_{1} be the image of

{(AIi):ASLni(q)}\left\{\begin{pmatrix}A&\\ &I_{i}\end{pmatrix}\ :\ A\in SL_{n-i}(q)\right\}

in PSLn(q)PSL_{n}(q), and let J2J_{2} be the image of

{(IniA):ASLi(q)}\left\{\begin{pmatrix}I_{n-i}&\\ &A\end{pmatrix}\ :\ A\in SL_{i}(q)\right\}

in PSLn(q)PSL_{n}(q). It is easy to note that J1J_{1} and J2J_{2} are the only 22-components of CPSLn(q)(ti)C_{PSL_{n}(q)}(t_{i}). Applying Proposition 2.16 and Lemma 3.21, we may conclude that 1:=PJ1(J1)\mathcal{E}_{1}:=\mathcal{F}_{P\cap J_{1}}(J_{1}) and 2:=PJ2(J2)\mathcal{E}_{2}:=\mathcal{F}_{P\cap J_{2}}(J_{2}) are the only components of =P(CPSLn(q)(ti))\mathcal{F}=\mathcal{F}_{P}(C_{PSL_{n}(q)}(t_{i})). Clearly, 1\mathcal{E}_{1} is isomorphic to the 22-fusion system of SLni(q)SL_{n-i}(q), while 2\mathcal{E}_{2} is isomorphic to the 22-fusion system of SLi(q)SL_{i}(q). Set Y1:=PJ1Y_{1}:=P\cap J_{1} and Y2:=PJ2Y_{2}:=P\cap J_{2}. It is easy to note that Y1Y2=PJ1J2Y_{1}Y_{2}=P\cap J_{1}J_{2}. As J1J2CPSLn(q)(ti)J_{1}J_{2}\trianglelefteq C_{PSL_{n}(q)}(t_{i}), it follows that Y1Y2PY_{1}Y_{2}\trianglelefteq P. By Lemma 2.11, /Y1Y2\mathcal{F}/Y_{1}Y_{2} is isomorphic to the 22-fusion system of CPSLn(q)(ti)/J1J2C_{PSL_{n}(q)}(t_{i})/J_{1}J_{2}, and it is easy to note that CPSLn(q)(ti)/J1J2C_{PSL_{n}(q)}(t_{i})/J_{1}J_{2} is 22-nilpotent. So /Y1Y2\mathcal{F}/Y_{1}Y_{2} is nilpotent by [39, Theorem 1.4]. It is clear from the definitions of J1J_{1} and J2J_{2} that both J1J_{1} and J2J_{2} contain a PSLn(q)PSL_{n}(q)-conjugate of tt. Hence YkY_{k} has an element which is PSLn(q)PSL_{n}(q)-conjugate to tt for k{1,2}k\in\{1,2\}. Clearly, any elementary abelian 22-subgroup of JkJ_{k}, k{1,2}k\in\{1,2\}, lies in 𝒮\mathcal{S}. Moreover, any noncentral involution of J1J_{1} is PSLn(q)PSL_{n}(q)-conjugate to tjt_{j} for some even 2j<ni2\leq j<n-i, and any noncentral involution of J2J_{2} is PSLn(q)PSL_{n}(q)-conjugate to tjt_{j} for some even 2j<i2\leq j<i. This implies that any elementary abelian subgroup of Y1Y_{1} of rank at least 22 is contained in 𝒮ni\mathcal{S}_{n-i}, and that any elementary abelian subgroup of Y2Y_{2} of rank at least 22 is contained in 𝒮i\mathcal{S}_{i}. This completes the proof of (i).

We omit the proof of (ii) since it is very similar to the one of (i). ∎

Proposition 6.10.

Let 1i<n1\leq i<n such that tit_{i} is defined. Assume that i{1,2,n1}i\not\in\{1,2,n-1\}, and that in2i\leq\frac{n}{2} if nn is even. Let xx be an involution of SS which is GG-conjugate to tit_{i}. Then CG(x)C_{G}(x) has precisely two 22-components. Denoting them in a suitable way by J1J_{1} and J2J_{2}, the following hold.

  1. (i)

    J1/O(J1)J_{1}/O(J_{1}) is isomorphic to SLniε(q)/O(SLniε(q))SL_{n-i}^{\varepsilon}(q^{*})/O(SL_{n-i}^{\varepsilon}(q^{*})), where ε\varepsilon and qq^{*} are as in Proposition 6.1.

  2. (ii)

    J2/O(J2)SLiε(q)/O(SLiε(q))J_{2}/O(J_{2})\cong SL_{i}^{\varepsilon}(q^{*})/O(SL_{i}^{\varepsilon}(q^{*})), where ε\varepsilon and qq^{*} are as in Proposition 6.1.

  3. (iii)

    Any elementary abelian 22-subgroup of J1J_{1} of rank at least 22 is GG-conjugate to a subgroup of SS lying in 𝒮ni\mathcal{S}_{n-i}, and any elementary abelian 22-subgroup of J2J_{2} of rank at least 22 is GG-conjugate to a subgroup of SS lying in 𝒮i\mathcal{S}_{i}.

Proof.

Let :=S(G)=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)). It suffices to prove the proposition under the assumption that x\langle x\rangle is fully \mathcal{F}-centralized, and we will assume that this is the case. So we have CS(x)Syl2(CG(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{G}(x)) and CS(x)Syl2(CPSLn(q)(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{PSL_{n}(q)}(x)). Also, CS(x)(CG(x))=C(x)=CS(x)(CPSLn(q)(x))\mathcal{F}_{C_{S}(x)}(C_{G}(x))=C_{\mathcal{F}}(\langle x\rangle)=\mathcal{F}_{C_{S}(x)}(C_{PSL_{n}(q)}(x)).

Clearly, xx is PSLn(q)PSL_{n}(q)-conjugate to tit_{i}. So Lemma 6.9 (i) shows together with Lemma 5.10 (i) that there exist two distinct 22-components J1J_{1} and J2J_{2} of CG(x)C_{G}(x) satisfying the following conditions, where Y1:=CS(x)J1Y_{1}:=C_{S}(x)\cap J_{1} and Y2:=CS(x)J2Y_{2}:=C_{S}(x)\cap J_{2}.

  1. (1)

    Y1(J1)\mathcal{F}_{Y_{1}}(J_{1}) is isomorphic to the 22-fusion system of SLni(q)SL_{n-i}(q).

  2. (2)

    Y2(J2)\mathcal{F}_{Y_{2}}(J_{2}) is isomorphic to the 22-fusion system of SLi(q)SL_{i}(q).

  3. (3)

    Y1Y2Y_{1}Y_{2} is normal in CS(x)C_{S}(x), and C(x)/Y1Y2C_{\mathcal{F}}(\langle x\rangle)/Y_{1}Y_{2} is nilpotent.

  4. (4)

    For k{1,2}k\in\{1,2\}, YkY_{k} contains a GG-conjugate of tt.

  5. (5)

    Any elementary abelian abelian subgroup of Y1Y_{1} of rank at least 22 lies in 𝒮ni\mathcal{S}_{n-i}, and any elementary abelian subgroup of Y2Y_{2} of rank at least 22 lies in 𝒮i\mathcal{S}_{i}.

By (3) and Corollary 2.18, J1J_{1} and J2J_{2} are the only 22-components of CG(x)C_{G}(x). It remains to show that J1J_{1} and J2J_{2} satisfy (i)-(iii). As YkSyl2(Jk)Y_{k}\in\mathrm{Syl}_{2}(J_{k}) for k{1,2}k\in\{1,2\}, (5) implies (iii).

We now prove (ii). The proof of (i) will be omitted since it is very similar to the proof of (ii).

Let ss be an element of J1J_{1} which is GG-conjugate to tt. Set C:=CG(s)C:=C_{G}(s), C^:=C/O(C)\widehat{C}:=C/O(C) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(x)/O(CG(x))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(x)/O(C_{G}(x)).

Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} are distinct components of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, we have [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}]=1 by [37, 6.5.3]. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111s\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{s}\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}, it follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111s)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{s}). As a consequence of Corollary 2.2 and Proposition 2.4, CG(x)CC_{G}(x)\cap C has a 22-component HH with \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}.

By assumption, ss is GG-conjugate to tt. So, by Proposition 6.8, C^\widehat{C} has a unique normal subgroup K+K^{+} isomorphic to SLn2ε(q)/O(SLn2ε(q))SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})) and a unique normal subgroup L+L^{+} isomorphic to SL2(q)SL_{2}(q^{*}). Moreover, K+K^{+} and L+L^{+} are the only subgroups of C^\widehat{C} which are components or solvable 22-components of C^\widehat{C}.

Clearly, H^\widehat{H} is a 22-component of CC^(x^)C_{\widehat{C}}(\widehat{x}). Lemma 2.5 implies that H^\widehat{H} is a 22-component of CK+(x^)C_{K^{+}}(\widehat{x}) or of CL+(x^)C_{L^{+}}(\widehat{x}). By Corollary 3.46 (i), we even have that H^\widehat{H} is a component of CK+(x^)C_{K^{+}}(\widehat{x}) or CL+(x^)C_{L^{+}}(\widehat{x}). It is easy to note that H^/Z(H^)H/Z(H)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J)\widehat{H}/Z(\widehat{H})\cong H/Z^{*}(H)\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}). By Corollary 3.46 (ii), we have H^/Z(H^)≇M11\widehat{H}/Z(\widehat{H})\not\cong M_{11}, and so \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J)≇M11\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J})\not\cong M_{11}. Now (2) and Lemma 5.10 (ii) imply that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JSLiε0(q0)/O(SLiε0(q0))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}\cong SL_{i}^{\varepsilon_{0}}(q_{0})/O(SL_{i}^{\varepsilon_{0}}(q_{0})) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\} with qε0q0q\sim\varepsilon_{0}q_{0}. Hence H^/Z(H^)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J)PSLiε0(q0)\widehat{H}/Z(\widehat{H})\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J})\cong PSL_{i}^{\varepsilon_{0}}(q_{0}). Note that εqqε0q0\varepsilon q^{*}\sim q\sim\varepsilon_{0}q_{0} and in particular (q21)2=(q021)2({q^{*}}^{2}-1)_{2}=({q_{0}}^{2}-1)_{2}. Applying Corollary 3.46 (iii), we may conclude that q0=qq_{0}=q^{*} and ε0=ε\varepsilon_{0}=\varepsilon. Consequently, we have J2/O(J2)SLiε(q)/O(SLiε(q))J_{2}/O(J_{2})\cong SL_{i}^{\varepsilon}(q^{*})/O(SL_{i}^{\varepsilon}(q^{*})). So we have proved (ii). ∎

The proof of the following proposition runs along the same lines as that of the previous result.

Proposition 6.11.

Suppose that nn is odd and i=n1i=n-1, or that nn is even, i=1i=1 and t1t_{1} is defined. Let xx be an involution of SS which is GG-conjugate to tit_{i}. Then CG(x)C_{G}(x) has precisely one 22-component JJ. We have J/O(J)SLn1ε(q)/O(SLn1ε(q))J/O(J)\cong SL_{n-1}^{\varepsilon}(q^{*})/O(SL_{n-1}^{\varepsilon}(q^{*})), where ε\varepsilon and qq^{*} are as in Proposition 6.1. Moreover, any elementary abelian 22-subgroup of JJ of rank at least 22 is GG-conjugate to a subgroup of SS lying in 𝒮n1\mathcal{S}_{n-1}.

Proof.

Let :=S(G)=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)). It suffices to prove the proposition under the assumption that x\langle x\rangle is fully \mathcal{F}-centralized, and we will assume that this is the case. So we have CS(x)Syl2(CG(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{G}(x)) and CS(x)Syl2(CPSLn(q)(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{PSL_{n}(q)}(x)). Also, CS(x)(CG(x))=C(x)=CS(x)(CPSLn(q)(x))\mathcal{F}_{C_{S}(x)}(C_{G}(x))=C_{\mathcal{F}}(\langle x\rangle)=\mathcal{F}_{C_{S}(x)}(C_{PSL_{n}(q)}(x)).

Clearly, xx is PSLn(q)PSL_{n}(q)-conjugate to tit_{i}. Lemma 6.9 (ii) implies that C(x)C_{\mathcal{F}}(\langle x\rangle) has a unique component \mathcal{E}, and that \mathcal{E} is isomorphic to the 22-fusion system of SLn1(q)SL_{n-1}(q). Applying Lemma 5.10 (i), we may conclude that CG(x)C_{G}(x) has a unique 22-component JJ with =CS(x)J(J)\mathcal{E}=\mathcal{F}_{C_{S}(x)\cap J}(J). By Lemma 5.10 (ii), J/O(J)SLn1ε0(q0)/O(SLn1ε0(q0))J/O(J)\cong SL_{n-1}^{\varepsilon_{0}}(q_{0})/O(SL_{n-1}^{\varepsilon_{0}}(q_{0})) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\} with ε0q0q\varepsilon_{0}q_{0}\sim q.

Set Y:=CS(x)JY:=C_{S}(x)\cap J. By Lemma 6.9 (ii), YCS(x)Y\trianglelefteq C_{S}(x) and C(x)/YC_{\mathcal{F}}(\langle x\rangle)/Y is nilpotent. Applying Corollary 2.18, we may conclude that JJ is the only 22-component of CG(x)C_{G}(x). Using Lemma 6.9 (ii), we see that any elementary abelian subgroup of YY of rank at least 22 lies in 𝒮n1\mathcal{S}_{n-1}. As YSyl2(J)Y\in\mathrm{Syl}_{2}(J), it follows that any elementary abelian 22-subgroup of JJ of rank at least 22 is GG-conjugate to a subgroup of SS lying in 𝒮n1\mathcal{S}_{n-1}.

It remains to show that ε0=ε\varepsilon_{0}=\varepsilon and q0=qq_{0}=q^{*}. Define s:=tis:=t_{i} if i=1i=1 and s:=tAs:=t_{A}, where A:={1,,n1}A:=\{1,\dots,n-1\}, if i=n1i=n-1. Then we have sCG(t)s\in C_{G}(t), and ss is GG-conjugate to xx. Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(t)/O(CG(t))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(t)/O(C_{G}(t)). Lemma 6.2 shows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111s\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{s} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. Hence, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111s)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{s}). As a consequence of Corollary 2.2 and Proposition 2.4, CG(t)CG(s)C_{G}(t)\cap C_{G}(s) has a 22-component HH with \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. Set C:=CG(s)C:=C_{G}(s) and C^:=C/O(C)\widehat{C}:=C/O(C). Then H^\widehat{H} is a 22-component of CC^(t^)C_{\widehat{C}}(\widehat{t}). Since ss is GG-conjugate to xx, C^\widehat{C} has precisely one component J+J^{+}, and J+J^{+} is isomorphic to SLn1ε0(q0)/O(SLn1ε0(q0))SL_{n-1}^{\varepsilon_{0}}(q_{0})/O(SL_{n-1}^{\varepsilon_{0}}(q_{0})). By Lemma 2.5, H^\widehat{H} is a 22-component of CJ+(t^)C_{J^{+}}(\widehat{t}). We see from Corollary 3.46 (i) that H^\widehat{H} is in fact a component of CJ+(t^)C_{J^{+}}(\widehat{t}). It is easy to see that H^/Z(H^)H/Z(H)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K/Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)PSLn2ε(q)\widehat{H}/Z(\widehat{H})\cong H/Z^{*}(H)\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}/Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cong PSL_{n-2}^{\varepsilon}(q^{*}). Note that ε0q0qεq\varepsilon_{0}q_{0}\sim q\sim\varepsilon q^{*} and in particular (q021)2=(q21)2({q_{0}}^{2}-1)_{2}=({q^{*}}^{2}-1)_{2}. Using this, we may deduce from Corollary 3.46 (iii) that q0=qq_{0}=q^{*} and ε0=ε\varepsilon_{0}=\varepsilon. ∎

6.3. 22-components of centralizers of involutions conjugate to ww

Recall that we assume ρ\rho to be an element of 𝔽q\mathbb{F}_{q}^{*} with order (n,q1)(n,q-1). Recall moreover that if nn is even and ρ\rho is a non-square element of 𝔽q\mathbb{F}_{q}, then w~\widetilde{w} denotes the matrix

(In/2ρIn/2)\begin{pmatrix}&I_{n/2}\\ \rho I_{n/2}&\end{pmatrix}

and, if w~SLn(q)\widetilde{w}\in SL_{n}(q), then ww denotes its image in PSLn(q)PSL_{n}(q).

Lemma 6.12.

Suppose that ww is defined. Let PP be a Sylow 22-subgroup of CPSLn(q)(w)C_{PSL_{n}(q)}(w), and let \mathcal{F} denote the fusion system P(CPSLn(q))(w))\mathcal{F}_{P}(C_{PSL_{n}(q)})(w)). Then \mathcal{F} has precisely one component. This component is isomorphic to the 22-fusion system of a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}). If YY is its Sylow subgroup, then we have YPY\trianglelefteq P, and /Y\mathcal{F}/Y is nilpotent.

Proof.

By Lemma 3.6 (i), CPSLn(q)(w)C_{PSL_{n}(q)}(w) has precisely one 22-component JJ, and JJ is isomorphic to a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}). Applying Proposition 2.16 and Lemma 3.21, we may conclude that PJ(J)\mathcal{F}_{P\cap J}(J) is the only component of \mathcal{F}. The last statement of the lemma is given by Lemma 3.6 (ii). ∎

Proposition 6.13.

Suppose that ww is defined. Let xx be an involution of SS which is PSLn(q)PSL_{n}(q)-conjugate to ww. Then CG(x)C_{G}(x) has precisely one 22-component, say JJ. The group J/O(J)J/O(J) is isomorphic to a nontrivial quotient of SLn2ε0(q0)SL_{\frac{n}{2}}^{\varepsilon_{0}}(q_{0}) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\} with q2ε0q0q^{2}\sim\varepsilon_{0}q_{0}.

Proof.

Let :=S(G)=S(PSLn(q))\mathcal{F}:=\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)). It suffices to prove the proposition under the assumption that x\langle x\rangle is fully \mathcal{F}-centralized, and we will assume that this is the case. So we have CS(x)Syl2(CG(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{G}(x)) and CS(x)Syl2(CPSLn(q)(x))C_{S}(x)\in\mathrm{Syl}_{2}(C_{PSL_{n}(q)}(x)). Also, CS(x)(CG(x))=C(x)=CS(x)(CPSLn(q)(x))\mathcal{F}_{C_{S}(x)}(C_{G}(x))=C_{\mathcal{F}}(\langle x\rangle)=\mathcal{F}_{C_{S}(x)}(C_{PSL_{n}(q)}(x)).

As xx is PSLn(q)PSL_{n}(q)-conjugate to ww, Lemma 6.12 implies that C(x)C_{\mathcal{F}}(\langle x\rangle) has precisely one component, say \mathcal{E}, and that \mathcal{E} is isomorphic to the 22-fusion system of a nontrivial quotient of SLn2(q2)SL_{\frac{n}{2}}(q^{2}). By Lemma 5.10 (i), CG(x)C_{G}(x) has a unique 22-component JJ such that =CS(x)J(J)\mathcal{E}=\mathcal{F}_{C_{S}(x)\cap J}(J). Set Y:=CS(x)JY:=C_{S}(x)\cap J. As a consequence of Lemma 6.12, we have YCS(x)Y\trianglelefteq C_{S}(x), and the factor system C(x)/YC_{\mathcal{F}}(\langle x\rangle)/Y is nilpotent. So, by Corollary 2.18, JJ is the only 22-component of CG(x)C_{G}(x). Lemma 5.10 (iii) shows that J/O(J)J/O(J) is isomorphic to a nontrivial quotient of SLn2ε0(q0)SL_{\frac{n}{2}}^{\varepsilon_{0}}(q_{0}) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\} with q2ε0q0q^{2}\sim\varepsilon_{0}q_{0}. ∎

7. The components of CG(t)C_{G}(t)

The goal of this section is to determine the isomorphism types of KK and LL. In order to do so, we will apply the signalizer functor techniques introduced by Gorenstein and Walter in [32]. In particular, we will see that LL is isomorphic to SL2(q)SL_{2}(q^{*}). This will enable us in Section 8 to prove that a certain collection of conjugates of LL generates a subgroup G0G_{0} of GG which is isomorphic to a nontrivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q^{*}) and normal in GG. This will complete the proof of Theorem 5.2.

7.1. 33-generation of involution centralizers

For each 3in3\leq i\leq n, we define 𝒰i\mathcal{U}_{i} to be the set of all subgroups UU of PSLn(q)PSL_{n}(q) such that UU has a subgroup EE with E𝒮iE\in\mathcal{S}_{i} and m(E)3m(E)\geq 3. The following lemma will be important later in this section.

Lemma 7.1.

Let 1i<n1\leq i<n such that tit_{i} is defined. Suppose that in2i\leq\frac{n}{2} if nn is even. Let xx be an involution of SS such that xx is GG-conjugate to tit_{i} and such that x\langle x\rangle is fully S(G)\mathcal{F}_{S}(G)-centralized. Then CG(x)C_{G}(x) is 33-generated in the sense of Definition 3.35. Moreover, if i4i\geq 4, then we have

CG(x)=NCG(x)(U)|UCS(x),U𝒰i.C_{G}(x)=\langle N_{C_{G}(x)}(U)\ |\ U\leq C_{S}(x),U\in\mathcal{U}_{i}\rangle.

If i=2i=2, then we have

CG(x)=NCG(x)(U)|UCS(x),U𝒰n2.C_{G}(x)=\langle N_{C_{G}(x)}(U)\ |\ U\leq C_{S}(x),U\in\mathcal{U}_{n-2}\rangle.
Proof.

Set C:=CG(x)C:=C_{G}(x) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Recall that L2(C)L_{2^{\prime}}(C) denotes the subgroup of CC generated by the 22-components of CC and that L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) denotes the product of all components of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L=L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}=L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}).

First we consider the case (n,i)(6,3)(n,i)\neq(6,3). Then, by Propositions 6.1, 6.10 and 6.11, CC has a 22-component JJ such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JSLkε(q)/O(SLkε(q))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}\cong SL_{k}^{\varepsilon}(q^{*})/O(SL_{k}^{\varepsilon}(q^{*})) for some k4k\geq 4 and such that any elementary abelian subgroup of Y:=CS(x)JY:=C_{S}(x)\cap J of rank at least 22 lies in 𝒮k\mathcal{S}_{k}. If i4i\geq 4, then we may assume that k=ik=i, and if i=2i=2, then k=n2k=n-2.

Clearly, YSyl2(J)Y\in\mathrm{Syl}_{2}(J). By Lemma 3.37, we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is 33-generated. So we have

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY,m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y,m(U)\geq 3\rangle.

Set X:=CS(x)L2(C)X:=C_{S}(x)\cap L_{2^{\prime}}(C). By the Frattini argument, L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JNL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Y)L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}N_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Y}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}). It follows that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|U=X, or UY and m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ \textnormal{$U=X$, or $U\leq Y$ and $m(U)\geq 3$}\rangle.

Lemma 2.1 implies that CC is generated by O(C)O(C) together with the normalizers NC(U)N_{C}(U), where U=XU=X, or UYU\leq Y and m(U)3m(U)\geq 3.

Let EE denote the subgroup of SS generated by tt, t{n2,n1}t_{\{n-2,n-1\}}, t{n3,n2}t_{\{n-3,n-2\}} and t{n4,n3}t_{\{n-4,n-3\}}. Clearly, EE16E\cong E_{16}. Since xx is GG-conjugate to tit_{i} and ECG(ti)E\leq C_{G}(t_{i}), there is a subgroup ExE_{x} of CS(x)C_{S}(x) which is GG-conjugate to EE. By [28, Proposition 11.23], we have

O(C)=CO(C)(D)|DEx,DE8.O(C)=\langle C_{O(C)}(D)\ |\ D\leq E_{x},D\cong E_{8}\rangle.

As remarked above, any elementary abelian subgroup of YY of rank at least 22 lies in 𝒮k\mathcal{S}_{k}. So, if UYU\leq Y and m(U)3m(U)\geq 3, then U𝒰kU\in\mathcal{U}_{k}. Also X𝒰kX\in\mathcal{U}_{k}. Clearly, any E8E_{8}-subgroup of ExE_{x} lies in 𝒮k\mathcal{S}_{k} and hence in 𝒰k\mathcal{U}_{k}. We therefore have

C=NC(U)|UCS(x),U𝒰k.C=\langle N_{C}(U)\ |\ U\leq C_{S}(x),U\in\mathcal{U}_{k}\rangle.

Consequently, CC is 33-generated, and the last two statements of the lemma are satisfied.

Suppose now that (n,i)=(6,3)(n,i)=(6,3). By Proposition 6.10, CC has precisely two 22-components J1J_{1} and J2J_{2}, and we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JPSL3ε(q)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}\cong PSL_{3}^{\varepsilon}(q^{*})\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}. Set Y1:=CS(x)J1Y_{1}:=C_{S}(x)\cap J_{1} and Y2:=CS(x)J2Y_{2}:=C_{S}(x)\cap J_{2}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is 22-generated by Lemma 3.36, we have

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY1,m(U)2.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y_{1},m(U)\geq 2\rangle.

Let yy be an involution of Y2Y_{2}. We have [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}]=1 by [37, 6.5.3], and so \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}. As Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J)=1Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J})=1, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\not\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}. Now let UY1U\leq Y_{1} with m(U)2m(U)\geq 2. Then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle has rank at least 33. Moreover, it is clear that N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U}) normalizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}\rangle. Thus

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY1Y2,m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y_{1}Y_{2},m(U)\geq 3\rangle.

Interchanging the roles of J1J_{1} and J2J_{2}, we also see that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY1Y2,m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y_{1}Y_{2},m(U)\geq 3\rangle.

By the Frattini argument, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JN\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Y)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Y}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Y}). Lemma 2.1 implies that CC is generated by O(C)O(C) together with the normalizers NC(U)N_{C}(U), where UY1Y2U\leq Y_{1}Y_{2} and m(U)3m(U)\geq 3. For any E16E_{16}-subgroup AA of CS(x)C_{S}(x), we have

O(C)=CO(C)(B)|BA,BE8.O(C)=\langle C_{O(C)}(B)\ |\ B\leq A,B\cong E_{8}\rangle.

by [28, Proposition 11.23]. It follows that CC is 33-generated. The proof is now complete. ∎

Lemma 7.2.

Suppose that ww is defined. Let xx be an involution of SS which is PSLn(q)PSL_{n}(q)-conjugate to ww. Then CG(x)C_{G}(x) is 33-generated.

Proof.

Set C:=CG(x)C:=C_{G}(x) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). By Proposition 6.13, CC has a unique 22-component JJ, and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is isomorphic to a nontrivial quotient of SLn2ε0(q0)SL_{\frac{n}{2}}^{\varepsilon_{0}}(q_{0}) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\} with q2ε0q0q^{2}\sim\varepsilon_{0}q_{0}. Note that q0ε0mod8q_{0}\equiv\varepsilon_{0}\mod 8.

First we prove that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is 33-generated. Let RR be a Sylow 22-subgroup of CC and Y:=RJY:=R\cap J. We consider two cases.

Case 1: n8n\geq 8.

By Lemma 3.37, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is 33-generated. Hence

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY,m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y,m(U)\geq 3\rangle.

By the Frattini argument, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JN\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Y)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{Y}). So \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is 33-generated.

Case 2: n=6n=6.

We have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111JPSL3ε0(q0)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}\cong PSL_{3}^{\varepsilon_{0}}(q_{0}). By Lemma 3.36, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} is 22-generated. Applying the Frattini argument, we may conclude that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UY,m(U)2.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq Y,m(U)\geq 2\rangle.

Now let UYU\leq Y with m(U)2m(U)\geq 2. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x} is a central involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} and Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J)Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}) is trivial, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111J\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\not\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J} and hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\not\in\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U}. It follows \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle has rank at least 33. Moreover, as \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x} is central in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, we have N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x)N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\leq N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle). Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111x\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111R\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{x}\rangle\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{R}. It follows that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111U)|UR,m(U)3.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}=\langle N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{U})\ |\ U\leq R,m(U)\geq 3\rangle.

Hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is 33-generated.

Applying Lemma 2.1, we may conclude that CC is generated by O(C)O(C) together with the normalizers NC(U)N_{C}(U), where URU\leq R and m(U)3m(U)\geq 3. By Lemma 3.6 (iii), RR has an elementary abelian 22-subgroup of rank 44, say AA. By [28, Proposition 11.23], we have

O(C)=CO(C)(B)|BA,BE8.O(C)=\langle C_{O(C)}(B)\ |\ B\leq A,B\cong E_{8}\rangle.

So CC is 33-generated. ∎

Corollary 7.3.

Let xx be an involution of SS. Then CG(x)C_{G}(x) is 33-generated.

Proof.

As a consequence of Proposition 3.5, xx is GG-conjugate to tit_{i} for some 1i<n1\leq i<n such that tit_{i} is defined or PSLn(q)PSL_{n}(q)-conjugate to ww (if defined). So the statement follows from Lemmas 7.1 and 7.2. ∎

7.2. The case q=3q^{*}=3

Recall that our goal is to determine the isomorphism types of KK and LL. First we will deal with the case q=3q^{*}=3. We will prove that, in this case, O(CG(t))=1O(C_{G}(t))=1.

Lemma 7.4.

Let xx be an involution of SS, and let JJ be a 22-component of CG(x)C_{G}(x). Let 1i<n1\leq i<n such that tit_{i} is defined. Suppose that q=3q^{*}=3 and that xx is GG-conjugate to tit_{i}. Then J/O(J)J/O(J) is locally balanced.

Proof.

By Propositions 6.8 (iii), 6.10 and 6.11, we have J/O(J)SLkε(3)J/O(J)\cong SL_{k}^{\varepsilon}(3) for some 3k<n3\leq k<n. So J/O(J)J/O(J) is locally balanced by Lemma 3.47. ∎

Lemma 7.5.

Let PP and QQ be subgroups of SS.

  1. (i)

    If P𝒮P\in\mathcal{S} and m(P)2m(P)\leq 2, then there is a subgroup \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P} of SS such that P<\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111PP<\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P𝒮\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}\in\mathcal{S} and m(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P)=3m(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P})=3.

  2. (ii)

    If PP and QQ are elements of 𝒮\mathcal{S} of rank at least 33, then there exist some m1m\geq 1 and a sequence

    P=P1,,Pm=Q,P=P_{1},\dots,P_{m}=Q,

    where PiP_{i}, 1im1\leq i\leq m, is a subgroup of SS of rank at least 22 lying in 𝒮\mathcal{S} and where

    PiPi+1orPi+1PiP_{i}\subseteq P_{i+1}\ \textnormal{or}\ P_{i+1}\subseteq P_{i}

    for all 1i<m1\leq i<m.

Proof.

Suppose that P𝒮P\in\mathcal{S} and m(P)2m(P)\leq 2. Let S~\widetilde{S} be a Sylow 22-subgroup of SLn(q)SL_{n}(q) such that SS is the image of S~\widetilde{S} in PSLn(q)PSL_{n}(q). Note that S~\widetilde{S} is unique. Since PP is an element of 𝒮\mathcal{S}, there exists some elementary abelian 22-subgroup P~\widetilde{P} of SLn(q)SL_{n}(q) such that PP is the image of P~\widetilde{P} in PSLn(q)PSL_{n}(q). Clearly, P~S~\widetilde{P}\leq\widetilde{S}. We have m(P~)3m(\widetilde{P})\leq 3 as m(P)2m(P)\leq 2. By Corollary 3.34, P~\widetilde{P} is contained in an E16E_{16}-subgroup of S~\widetilde{S}. This implies (i).

We now prove (ii). Suppose that PP and QQ are elements of 𝒮\mathcal{S} of rank at least 33. There are elementary abelian subgroups P~\widetilde{P} and Q~\widetilde{Q} of SLn(q)SL_{n}(q) such that PP is the image of P~\widetilde{P} in PSLn(q)PSL_{n}(q) and such that QQ is the image of Q~\widetilde{Q} in PSLn(q)PSL_{n}(q). Clearly, P~,Q~S~\widetilde{P},\widetilde{Q}\leq\widetilde{S}. Also m(P~),m(Q~)3m(\widetilde{P}),m(\widetilde{Q})\geq 3. Since S~\widetilde{S} is 33-connected by Corollary 3.33, there exist some m1m\geq 1 and a sequence

P~=P~1,,P~n=Q~,\widetilde{P}=\widetilde{P}_{1},\dots,\widetilde{P}_{n}=\widetilde{Q},

where P~i\widetilde{P}_{i} (1im1\leq i\leq m) is an elementary abelian subgroup of S~\widetilde{S} of rank at least 33 and where

P~iP~i+1orP~i+1P~i\widetilde{P}_{i}\subseteq\widetilde{P}_{i+1}\ \textnormal{or}\ \widetilde{P}_{i+1}\subseteq\widetilde{P}_{i}

for all 1i<m1\leq i<m. Let PiP_{i}, 1im1\leq i\leq m, denote the image of P~i\widetilde{P}_{i} in SS. Then the sequence

P=P1,,Pm=QP=P_{1},\dots,P_{m}=Q

has the desired properties. ∎

Lemma 7.6.

Suppose that q=3q^{*}=3. For each elementary abelian subgroup EE of SS of rank at least 22, let

WE:=O(CG(x))|xE#.W_{E}:=\langle O(C_{G}(x))\ |\ x\in E^{\#}\rangle.

Let PP and QQ be subgroups of SS with P,Q𝒮P,Q\in\mathcal{S} and m(P),m(Q)3m(P),m(Q)\geq 3. Then WP=WQW_{P}=W_{Q}.

Proof.

By Lemma 7.5 (ii), there exist some m1m\geq 1 and a sequence

P=P1,,Pm=Q,P=P_{1},\dots,P_{m}=Q,

where PiP_{i}, 1im1\leq i\leq m, is a subgroup of SS of rank at least 22 lying in 𝒮\mathcal{S} and where

PiPi+1orPi+1PiP_{i}\subseteq P_{i+1}\ \textnormal{or}\ P_{i+1}\subseteq P_{i}

for all 1i<m1\leq i<m. By Lemma 7.5 (i), there is a subgroup \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P} of SS such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P𝒮\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}\in\mathcal{S}, m(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P)3m(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P})\geq 3 and Pi\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111PP_{i}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P} for each 1im1\leq i\leq m.

Let 1im1\leq i\leq m and let xx be an involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}. Also let JJ be a 22-component of CG(x)C_{G}(x). As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P𝒮\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}\in\mathcal{S}, we have that xx is GG-conjugate to tjt_{j} for some even 2j<n2\leq j<n. Therefore, by Lemma 7.4, J/O(J)J/O(J) is locally balanced. Applying [32, Corollary 5.6], we may conclude that GG is balanced with respect to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}.

Let 1i<m1\leq i<m. We have m(PiPi+1)2m(P_{i}\cap P_{i+1})\geq 2 since PiPi+1P_{i}\subseteq P_{i+1} or Pi+1PiP_{i+1}\subseteq P_{i} and m(Pi),m(Pi+1)2m(P_{i}),m(P_{i+1})\geq 2. Hence m(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P)2m(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P})\geq 2. Proposition 2.8 (ii) implies

WPi=W\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P=W\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P=W\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111P=WPi+1.W_{P_{i}}=W_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}}=W_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}\cap\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}}=W_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{P}}=W_{P_{i+1}}.

Consequently, WP=WQW_{P}=W_{Q}, as wanted. ∎

Proposition 7.7.

Suppose that q=3q^{*}=3. Let xx be an involution of SS which is GG-conjugate to tit_{i} for some even 2i<n2\leq i<n. Then we have O(CG(x))=1O(C_{G}(x))=1. In particular, O(CG(t))=1O(C_{G}(t))=1.

Proof.

We follow the pattern of the proof of [32, Theorem 9.1]. Let EE be the subgroup of SS consisting of all tAt_{A}, where A{1,,n}A\subseteq\{1,\dots,n\} has even order. For each elementary abelian 22-subgroup AA of GG of rank at least 22, let

WA:=O(CG(y))|yA#.W_{A}:=\langle O(C_{G}(y))\ |\ y\in A^{\#}\rangle.

Set W0:=WEW_{0}:=W_{E} and M:=NG(W0)M:=N_{G}(W_{0}). We accomplish the proof step by step.

(1) NG(S)MN_{G}(S)\leq M.

Let gNG(S)g\in N_{G}(S). Clearly, E𝒮E\in\mathcal{S}, and it is easy to note EgE^{g} still lies in 𝒮\mathcal{S}. Lemma 7.6 implies that W0=WEgW_{0}=W_{E^{g}}. On the other hand, we have (W0)g=WEg(W_{0})^{g}=W_{E^{g}} by Proposition 2.8 (i). So we have (W0)g=W0(W_{0})^{g}=W_{0} and hence gMg\in M.

(2) Let yy be an involution of SS such that yy is GG-conjugate to tjt_{j} for some even 2j<n2\leq j<n. Then yy is MM-conjugate to tjt_{j}.

We have y𝒮\langle y\rangle\in\mathcal{S}. By Lemma 7.5 (i), there is a subgroup AA of SS with yA\langle y\rangle\leq A, A𝒮A\in\mathcal{S} and m(A)=3m(A)=3. As a consequence of Lemma 3.22, there is an element gg of GG with AgEA^{g}\leq E. By Lemma 7.6 and Proposition 2.8 (i), we have (W0)g=(WA)g=WAg=W0(W_{0})^{g}=(W_{A})^{g}=W_{A^{g}}=W_{0}. Thus gMg\in M.

We have ygEy^{g}\in E, and ygy^{g} is GG-conjugate and hence PSLn(q)PSL_{n}(q)-conjugate to tjt_{j}. It is rather easy to show that an element of EE is NPSLn(q)(E)N_{PSL_{n}(q)}(E)-conjugate to tjt_{j} if it is PSLn(q)PSL_{n}(q)-conjugate to tjt_{j}. So ygy^{g} is NPSLn(q)(E)N_{PSL_{n}(q)}(E)-conjugate and hence NG(E)N_{G}(E)-conjugate to tjt_{j}. As NG(E)MN_{G}(E)\leq M, it follows that ygy^{g} is MM-conjugate to tjt_{j}. Hence yy is MM-conjugate to tjt_{j}.

(3) Let yy be an involution of SS such that yy is GG-conjugate to tjt_{j} for some even 2j<n2\leq j<n. Then CG(y)MC_{G}(y)\leq M.

Because of (2), we may assume that y\langle y\rangle is fully S(G)\mathcal{F}_{S}(G)-centralized. Then, by Lemma 7.1, CG(y)C_{G}(y) is generated by the normalizers NCG(y)(U)N_{C_{G}(y)}(U), where UU is a subgroup of CS(y)C_{S}(y) such that there exists BUB\leq U with B𝒮B\in\mathcal{S} and m(B)3m(B)\geq 3. It suffices to show that each such normalizer lies in MM.

Let UU and BB be as above and let gNCG(y)(U)g\in N_{C_{G}(y)}(U). By Lemma 7.6 and Proposition 2.8 (i), we have (W0)g=(WB)g=WBg=W0(W_{0})^{g}=(W_{B})^{g}=W_{B^{g}}=W_{0}. Thus gMg\in M and hence NCG(y)(U)MN_{C_{G}(y)}(U)\leq M, as required.

(4) Let yy be an involution of SS. Then CG(y)MC_{G}(y)\leq M.

We can see from Lemmas 3.14 and 3.15 that Z(S)Z(S) has an involution ss which is GG-conjugate to tjt_{j} for some even 2j<n2\leq j<n. Let PP be a Sylow 22-subgroup of CG(y)C_{G}(y) with sPs\in P. By (1), sMs\in M and hence sPMs\in P\cap M. Now let rNP(PM)r\in N_{P}(P\cap M). Then srPMs^{r}\in P\cap M. As a consequence of (1) and (2), srs^{r} and ss are MM-conjugate to tjt_{j}. Therefore, there is some mMm\in M with sr=sms^{r}=s^{m}. We have rm1CG(s)rm^{-1}\in C_{G}(s), and so rm1Mrm^{-1}\in M by (3). Hence rMr\in M. Consequently, NP(PM)=PMN_{P}(P\cap M)=P\cap M. It follows that P=PMP=P\cap M.

Let UPU\leq P with m(U)3m(U)\geq 3 and let gNCG(y)(U)g\in N_{C_{G}(y)}(U). By Lemma 2.3, any E8E_{8}-subgroup of SS has an involution which is the image of an involution of SLn(q)SL_{n}(q). Since m(U)3m(U)\geq 3, it follows that UU has an element uu which is GG-conjugate to tkt_{k} for some even 2k<n2\leq k<n. By the preceding paragraph, u,ugUPMu,u^{g}\in U\leq P\leq M. As a consequence of (1) and (2), uu and ugu^{g} are MM-conjugate to tkt_{k}. So there is some mMm\in M with ug=umu^{g}=u^{m}. Hence gm1CG(u)gm^{-1}\in C_{G}(u). From (3), we see that CG(u)MC_{G}(u)\leq M, and so gm1Mgm^{-1}\in M. Thus gMg\in M and hence NCG(y)(U)MN_{C_{G}(y)}(U)\leq M. Since CG(y)C_{G}(y) is 33-generated by Corollary 7.3, it follows that CG(y)MC_{G}(y)\leq M.

(5) M=G.M=G.

Assume that MGM\neq G. By [28, Proposition 17.11], we may deduce from (1) and (4) that MM is strongly embedded in GG, i.e. MMgM\cap M^{g} has odd order for any gGMg\in G\setminus M. Applying [49, Chapter 6, 4.4], it follows that GG has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that GG has at least two conjugacy classes of involutions. This contradiction shows that M=GM=G.

(6) Conclusion.

Let yE#y\in E^{\#} and let JJ be a 22-component of CG(y)C_{G}(y). By Lemma 7.4, J/O(J)J/O(J) is locally balanced. So, by [32, Corollary 5.6], GG is balanced with respect to EE. Proposition 2.8 (ii) implies that W0W_{0} has odd order. By (5), we have M=GM=G and hence W0GW_{0}\trianglelefteq G. As O(G)=1O(G)=1 by Hypothesis 5.1, it follows that W0=1W_{0}=1. So we have O(CG(y))=1O(C_{G}(y))=1 for all yE#y\in E^{\#}, and the statement of the proposition follows. ∎

Proposition 7.7 implies that if q=3q^{*}=3, then KSLn2ε(3)K\cong SL_{n-2}^{\varepsilon}(3) and LSL2(3)L\cong SL_{2}(3). Our next goal is to find the isomorphism types of KK and LL for the case q3q^{*}\neq 3.

In general, O(CPSLn(q)(t))O(C_{PSL_{n}(q)}(t)) is not trivial. So, if qq^{*} is not assumed to be 33, we have no chance to prove that O(CG(t))=1O(C_{G}(t))=1. However, we will be able to show that

ΔG(F)=aF#O(CG(a))=1\Delta_{G}(F)=\bigcap_{a\in F^{\#}}O(C_{G}(a))=1

for any Klein four subgroup FF of GG consisting of elements of the form tAt_{A}, where A{1,,n}A\subseteq\{1,\dots,n\} has even order. This will later enable us to determine the isomorphism types of KK and LL for the case q3q^{*}\neq 3.

7.3. 22-balance of GG

In this subsection, we prove that GG is 22-balanced when q3q^{*}\neq 3.

Lemma 7.8.

Set C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Let FF be a Klein four subgroup of CC. Then [ΔC¯(F¯),\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K]=1[\Delta_{\overline{C}}(\overline{F}),\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}]=1.

Proof.

We closely follow arguments found in the proof of [32, Theorem 5.2].

First we consider the case that FF has a nontrivial element yy such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. Then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} normalizes O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})) and, as \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})) also normalizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. It follows that

[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))]\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KO(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)).[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))]\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cap O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})).

Hence, [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))][\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))] is a subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} with odd order. By [37, 1.5.5], \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} normalizes [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))][\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))]. It follows that

[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))]O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K).[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))]\leq O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}).

As O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)=1O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})=1, this implies that O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})) centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. By definition of Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}), we have Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F})\leq O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})). Consequently, Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}) centralizes K¯\overline{K}.

Now we treat the case that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)=1C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})=1. For each subgroup or element XX of CC, let X^\widehat{X} denote the image of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X} in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). Since C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)=1C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})=1, we have F^\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F\widehat{F}\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}, and so F^\widehat{F} is a Klein four subgroup of C^\widehat{C}. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KSLn2ε(q)/O(SLn2ε(q))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\cong SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})), we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} is locally 22-balanced (see Lemma 3.48). Using this together with the fact that the group C^=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C/C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\widehat{C}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}/C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is isomorphic to a subgroup of Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) containing Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}), we may conclude that ΔC^(F^)=1\Delta_{\widehat{C}}(\widehat{F})=1. By [32, Proposition 3.11], if XX is a finite group, BB a 22-subgroup of XX and NXN\trianglelefteq X, then the image of O(CX(B))O(C_{X}(B)) in X/NX/N lies in O(CX/N(BN/N))O(C_{X/N}(BN/N)). Thus, if yy is an involution of FF, then the image of O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})) in C^\widehat{C} lies in O(CC^(y^))O(C_{\widehat{C}}(\widehat{y})). It follows that the image of Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}) in C^\widehat{C} is contained in ΔC^(F^)=1\Delta_{\widehat{C}}(\widehat{F})=1. Hence Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). ∎

Lemma 7.9.

Let C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Then C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) is a 22-group.

Proof.

For convenience, we denote C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) by C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}). Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C} is core-free, we have that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) is core-free. So it is enough to prove that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) is 22-nilpotent. By [39, Theorem 1.4], it suffices to show that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) has a nilpotent 22-fusion system.

Let XX denote the subgroup of TT consisting of all elements of TT of the form

(AB)Z(SLn(q))\begin{pmatrix}A&\\ &B\end{pmatrix}Z(SL_{n}(q))

with AWZ(GLn2(q))A\in W\cap Z(GL_{n-2}(q)), BVZ(GL2(q))B\in V\cap Z(GL_{2}(q)) and det(A)det(B)=1\mathrm{det}(A)\mathrm{det}(B)=1.

Let AWA\in W and BVB\in V with det(A)det(B)=1\mathrm{det}(A)\mathrm{det}(B)=1 and

m:=(AB)Z(SLn(q))T.m:=\begin{pmatrix}A&\\ &B\end{pmatrix}Z(SL_{n}(q))\in T.

Assume that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. Then we have AZ(GLn2(q))A\in Z(GL_{n-2}(q)) by Lemma 6.2. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m} also centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}. Thus mm centralizes X2X_{2}, and so BB centralizes VSL2(q)V\cap SL_{2}(q). Lemma 3.17 implies that BZ(GL2(q))B\in Z(GL_{2}(q)). So we have mXm\in X. Conversely, if AZ(GLn2(q))A\in Z(GL_{n-2}(q)) and BZ(GL2(q))B\in Z(GL_{2}(q)), then \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111mC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\in C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) as a consequence of Lemmas 6.2 and 3.43. It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111TC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}.

Let :=S(PSLn(q))=S(G)\mathcal{F}:=\mathcal{F}_{S}(PSL_{n}(q))=\mathcal{F}_{S}(G). Since XX is central in CPSLn(q)(t)C_{PSL_{n}(q)}(t), the only subsystem of C(t)C_{\mathcal{F}}(\langle t\rangle) on XX is the nilpotent fusion system on XX. It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111X(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L))\mathcal{F}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})) is nilpotent. So C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) has a nilpotent 22-fusion system, as required. ∎

In the following lemma, A1A_{1} and A2A_{2} have the meanings given to them after Lemma 6.5.

Lemma 7.10.

Set C:=CG(t)C:=C_{G}(t). Suppose that q3q^{*}\neq 3. Then A1A_{1}, A2A_{2} and LL are the only 22-components of CC(u)C_{C}(u). Moreover, the following hold:

  1. (i)

    A1A_{1} is the only 22-component of CC(u)C_{C}(u) containing uu.

  2. (ii)

    A2A_{2} is the only 22-component of CC(u)C_{C}(u) containing neither uu nor tt.

  3. (iii)

    LL is the only 22-component of CC(u)C_{C}(u) containing tt.

Proof.

By definition, A1A_{1} and A2A_{2} are 22-components of CC(u)C_{C}(u). Also, it is clear from the definition of LL (see Proposition 6.8) that LL is a 22-component of CC(u)C_{C}(u).

Set \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). As a consequence of Lemma 6.4, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} are the only 22-components of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). Moreover, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). So Lemma 2.5 shows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} are the only 22-components of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). As we have observed after Lemma 6.5, there is a bijection from the set of 22-components of CC(u)C_{C}(u) to the set of 22-components of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) sending each 22-component AA of CC(u)C_{C}(u) to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. Therefore, A1A_{1}, A2A_{2} and LL are the only 22-components of CC(u)C_{C}(u).

It remains to prove (i), (ii) and (iii). We have T1A1T_{1}\leq A_{1} by Lemma 6.6 and thus uA1u\in A_{1}. From the definition of LL, it is clear that tLt\in L. Moreover, uLu\not\in L since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111t\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{t} is the only involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. Similarly, tA1t\not\in A_{1}. Also, it is easy to see from Lemma 6.4 that uu and tt cannot be elements of A2A_{2}. ∎

Lemma 7.11.

Suppose that q3q^{*}\neq 3. Let FF be a Klein four subgroup of TT. Then we have ΔG(F)CG(t)O(CG(t))\Delta_{G}(F)\cap C_{G}(t)\leq O(C_{G}(t)).

Proof.

Set C:=CG(t)C:=C_{G}(t), D:=ΔG(F)CD:=\Delta_{G}(F)\cap C and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). We are going to show that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} is trivial.

A direct calculation shows that DΔC(F)D\leq\Delta_{C}(F). For each aF#a\in F^{\#}, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111OO(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{O}\leq O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a})) as a consequence of Corollary 2.2. Therefore, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Δ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\leq\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}), and hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111DΔ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}). Lemma 7.8 implies that [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}]=1. In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111DC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. Fix a subgroup D0D_{0} of CC(u)C_{C}(u) with \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}. Also, let gGg\in G with ug=tu^{g}=t and tg=ut^{g}=u (such an element exists by Lemma 6.7). Note that (D0)g(CC(u))g=CC(u)(D_{0})^{g}\leq(C_{C}(u))^{g}=C_{C}(u).

We accomplish the proof step by step.

(1) A1A_{1}, A2A_{2} and LL are normal subgroups of CC(u)C_{C}(u).

This is immediate from Lemma 7.10.

(2) There is a group isomorphism Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A})\rightarrow\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) which maps Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) to Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) and Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) to Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}).

Let AutD0(L/O(L))\mathrm{Aut}_{D_{0}}(L/O(L)) denote the image of AutD0(L)\mathrm{Aut}_{D_{0}}(L) under the natural group homomorphism Aut(L)Aut(L/O(L))\mathrm{Aut}(L)\rightarrow\mathrm{Aut}(L/O(L)). Also, let Aut(D0)g(A1/O(A1))\mathrm{Aut}_{(D_{0})^{g}}(A_{1}/O(A_{1})) denote the image of Aut(D0)g(A1)\mathrm{Aut}_{(D_{0})^{g}}(A_{1}) under the natural group homomorphism Aut(A1)Aut(A1/O(A1))\mathrm{Aut}(A_{1})\rightarrow\mathrm{Aut}(A_{1}/O(A_{1})).

From Lemma 7.10, it is clear that (A1)g1=L(A_{1})^{g^{-1}}=L. The group isomorphism cg1|A1,Lc_{g^{-1}}|_{A_{1},L} induces a group isomorphism A1/O(A1)L/O(L)A_{1}/O(A_{1})\rightarrow L/O(L), and this group isomorphism induces a group isomorphism Aut(A1/O(A1))Aut(L/O(L))\mathrm{Aut}(A_{1}/O(A_{1}))\rightarrow\mathrm{Aut}(L/O(L)). By a direct calculation, the group isomorphism just mentioned maps Aut(D0)g(A1/O(A1))\mathrm{Aut}_{(D_{0})^{g}}(A_{1}/O(A_{1})) to AutD0(L/O(L))\mathrm{Aut}_{D_{0}}(L/O(L)) and Inn(A1/O(A1))\mathrm{Inn}(A_{1}/O(A_{1})) to Inn(L/O(L))\mathrm{Inn}(L/O(L)).

We have A1/(A1O(C))\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ASL2(q)A_{1}/(A_{1}\cap O(C))\cong\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\cong SL_{2}(q^{*}). As SL2(q)SL_{2}(q^{*}) is core-free, it follows that A1O(C)=O(A1)A_{1}\cap O(C)=O(A_{1}). So the natural group homomorphism A1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AA_{1}\rightarrow\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} induces a group isomorphism A1/O(A1)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AA_{1}/O(A_{1})\rightarrow\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. This group isomorphism induces a group isomorphism Aut(A1/O(A1))Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Aut}(A_{1}/O(A_{1}))\rightarrow\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}). By a direct calculation, the group isomorphism just mentioned maps Aut(D0)g(A1/O(A1))\mathrm{Aut}_{(D_{0})^{g}}(A_{1}/O(A_{1})) to Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) and Inn(A1/O(A1))\mathrm{Inn}(A_{1}/O(A_{1})) to Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}). In a very similar way, we obtain an isomorphism Aut(L/O(L))Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}(L/O(L))\rightarrow\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) which maps AutD0(L/O(L))\mathrm{Aut}_{D_{0}}(L/O(L)) to Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)=Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})=\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) and Inn(L/O(L))\mathrm{Inn}(L/O(L)) to Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}).

As a consequence of the preceding observations, there is a group isomorphism Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)Aut(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A})\rightarrow\mathrm{Aut}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) which maps Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) to Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}) and Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) to Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}), as asserted.

(3) Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A})\leq\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}).

As observed above, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}. In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. This implies that [D0,A2]O(C)[D_{0},A_{2}]\leq O(C). As D0D_{0} normalizes A2A_{2} by (1), we also have that [D0,A2]A2[D_{0},A_{2}]\leq A_{2}. Consequently, [D0,A2]O(A2)[D_{0},A_{2}]\leq O(A_{2}). Because of Lemma 7.10, we have (A2)g=A2(A_{2})^{g}=A_{2}. It follows that [(D0)g,A2]O(A2)[(D_{0})^{g},A_{2}]\leq O(A_{2}). This easily implies [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A]O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}]\leq O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}). As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ASLn4ε(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\cong SL_{n-4}^{\varepsilon}(q^{*}) by Lemma 6.4, we have O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A})\leq Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}). It follows that [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A]=[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A][Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A),\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}]=[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}]\leq[Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}),\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}]=1. The Three Subgroups Lemma [37, 1.5.6] implies [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111]=[\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}]=[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}]=1. Hence, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. By (1), \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} normalizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. Clearly, Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) has odd order. The assertion now follows from Lemmas 6.4 (iii), 3.49 and 3.50.

(4) \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111DyF#O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq\bigcap_{y\in F^{\#}}O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})).

As a consequence of (2) and (3), we have Aut\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)Inn(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\mathrm{Aut}_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})\leq\mathrm{Inn}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}). This implies \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}). By [37, 6.5.3], \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). As observed above, [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K]=1[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}]=1 and hence \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111DC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}). It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} is a subgroup of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K})). By Lemma 7.9, C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L})\cap C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}) is a 22-group. As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} has odd order and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\trianglelefteq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}, this implies that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}. Now we see that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\displaystyle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D} \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LΔ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F)\displaystyle\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cap\Delta_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F})
=yF#(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LO(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)))\displaystyle=\bigcap_{y\in F^{\#}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\cap O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})))
=yF#(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)))\displaystyle=\bigcap_{y\in F^{\#}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})\cap O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})))
=yF#O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)).\displaystyle=\bigcap_{y\in F^{\#}}O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})).

(5) Conclusion.

As FF is a Klein four subgroup of TT, we have F=y1,y2F=\langle y_{1},y_{2}\rangle for two commuting involutions y1y_{1} and y2y_{2} of TT. For i{1,2}i\in\{1,2\}, we have

yi=(AiBi)Z(SLn(q))y_{i}=\begin{pmatrix}A_{i}&\\ &B_{i}\end{pmatrix}Z(SL_{n}(q))

for some AiWA_{i}\in W and BiVB_{i}\in V with det(Ai)det(Bi)=1\mathrm{det}(A_{i})\mathrm{det}(B_{i})=1. Let y3:=y1y2,A3:=A1A2y_{3}:=y_{1}y_{2},A_{3}:=A_{1}A_{2} and B3:=B1B2B_{3}:=B_{1}B_{2}. As y1,y2,y3y_{1},y_{2},y_{3} are involutions, we have (Bi)2Z(GL2(q))(B_{i})^{2}\in Z(GL_{2}(q)) for each i{1,2,3}i\in\{1,2,3\}.

It is easy to note that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111XSyl2(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{X}\in\mathrm{Syl}_{2}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}). If BVSL2(q)B\in V\cap SL_{2}(q) and

y:=(In2B)Z(SLn(q))X2,y:=\begin{pmatrix}I_{n-2}&\\ &B\end{pmatrix}Z(SL_{n}(q))\in X_{2},

then

yyi=(In2BBi)Z(SLn(q))y^{y_{i}}=\begin{pmatrix}I_{n-2}&\\ &B^{B_{i}}\end{pmatrix}Z(SL_{n}(q))

for each i{1,2,3}i\in\{1,2,3\}. Applying Lemma 3.51, we deduce that

yF#O(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))=1.\bigcap_{y\in F^{\#}}O(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))=1.

So we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D=1\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}=1 by (4). This completes the proof. ∎

Lemma 7.12.

Suppose that q3q^{*}\neq 3. Then GG is 22-balanced.

Proof.

Let FF be a Klein four subgroup of GG and let aa be an involution of GG centralizing FF. We have to show that ΔG(F)CG(a)O(CG(a))\Delta_{G}(F)\cap C_{G}(a)\leq O(C_{G}(a)).

Assume that aa is GG-conjugate to tt. Then there is some gGg\in G with ag=ta^{g}=t and FgTF^{g}\leq T. By Lemma 7.11, we have ΔG(Fg)CG(t)O(CG(t))\Delta_{G}(F^{g})\cap C_{G}(t)\leq O(C_{G}(t)). Clearly ΔG(F)g=ΔG(Fg)\Delta_{G}(F)^{g}=\Delta_{G}(F^{g}). It follows that ΔG(F)CG(a)O(CG(a))\Delta_{G}(F)\cap C_{G}(a)\leq O(C_{G}(a)).

Assume now that aa is not GG-conjugate to tt. Let JJ be a 22-component of CG(a)C_{G}(a). By Propositions 6.10, 6.11 and 6.13, either J/O(J)SLkε(q)/O(SLkε(q))J/O(J)\cong SL_{k}^{\varepsilon}(q^{*})/O(SL_{k}^{\varepsilon}(q^{*})) for some k3k\geq 3, or J/O(J)J/O(J) is isomorphic to a nontrivial quotient of SLn2ε0(q0)SL_{\frac{n}{2}}^{\varepsilon_{0}}(q_{0}) for some nontrivial odd prime power q0q_{0} and some ε0{+,}\varepsilon_{0}\in\{+,-\}. So J/O(J)J/O(J) is locally 22-balanced by Lemma 3.48. Applying [32, Theorem 5.2], we may conclude that ΔCG(a)(F)O(CG(a))\Delta_{C_{G}(a)}(F)\leq O(C_{G}(a)). A direct calculation shows that ΔG(F)CG(a)ΔCG(a)(F)\Delta_{G}(F)\cap C_{G}(a)\leq\Delta_{C_{G}(a)}(F). Hence ΔG(F)CG(a)O(CG(a))\Delta_{G}(F)\cap C_{G}(a)\leq O(C_{G}(a)). ∎

7.4. The case q3q^{*}\neq 3: Triviality of ΔG(F)\Delta_{G}(F)

Lemma 7.13.

Suppose that q3q^{*}\neq 3. Assume moreover that q1mod 4q\equiv 1\ \mathrm{mod}\ 4 or n7n\geq 7. Then we have ΔG(F)=1\Delta_{G}(F)=1 for each Klein four subgroup FF of SS.

Proof.

We follow the pattern of the proof of [32, Theorem 9.1].

For each elementary abelian 22-subgroup AA of GG of rank at least 33, we define

WA:=ΔG(F)|FA,m(F)=2.W_{A}:=\langle\Delta_{G}(F)\ |\ F\leq A,m(F)=2\rangle.

Let PP and QQ be elementary abelian subgroups of SS of rank at least 33. We claim that WP=WQW_{P}=W_{Q}. By Corollary 3.33 (iii), SS is 33-connected. So there exist a natural number m1m\geq 1 and a sequence

P=P1,,Pm=QP=P_{1},\dots,P_{m}=Q

such that PiP_{i}, 1im1\leq i\leq m, is an elementary abelian subgroup of SS of rank at least 33 and such that

PiPi+1orPi+1PiP_{i}\subseteq P_{i+1}\ \textnormal{or}\ P_{i+1}\subseteq P_{i}

for all 1i<m1\leq i<m. By Lemma 7.12, GG is 22-balanced. Proposition 2.8 (ii) implies that WPi=WPi+1W_{P_{i}}=W_{P_{i+1}} for all 1i<m1\leq i<m. Therefore, WP=WQW_{P}=W_{Q}, as asserted.

We use W0W_{0} to denote WPW_{P}, where PP is an elementary abelian subgroup of SS of rank at least 33. Let M:=NG(W0)M:=N_{G}(W_{0}). We accomplish the proof step by step.

(1) NG(S)MN_{G}(S)\leq M.

Let gNG(S)g\in N_{G}(S). Take an elementary abelian subgroup PP of SS with m(P)3m(P)\geq 3. By Proposition 2.8 (i), we have (W0)g=(WP)g=WPg=W0(W_{0})^{g}=(W_{P})^{g}=W_{P^{g}}=W_{0}. Thus gMg\in M.

(2) Let xx be an involution of SS. Then CG(x)MC_{G}(x)\leq M.

By Corollary 3.34, there is an elementary abelian subgroup PP of SS with xPx\in P and m(P)=4m(P)=4. Clearly, PCG(x)P\leq C_{G}(x). Let RR be a Sylow 22-subgroup of CG(x)C_{G}(x) containing PP. By Corollary 7.3, CG(x)C_{G}(x) is 33-generated. Hence, CG(x)C_{G}(x) is generated by the normalizers NCG(x)(U)N_{C_{G}(x)}(U), where URU\leq R and m(U)3m(U)\geq 3. It suffices to show that each such normalizer lies in MM.

So let UU be a subgroup of RR with m(U)3m(U)\geq 3, and let gNCG(x)(U)g\in N_{C_{G}(x)}(U). Let QQ be an elementary abelian subgroup of UU with m(Q)=3m(Q)=3, and let hGh\in G with RhSR^{h}\leq S. Then WQh=WQgh=WPh=W0W_{Q^{h}}=W_{Q^{gh}}=W_{P^{h}}=W_{0}. Proposition 2.8 (i) implies that WQ=WQg=WP=W0W_{Q}=W_{Q^{g}}=W_{P}=W_{0}. Applying Proposition 2.8 (i) again, it follows that (W0)g=(WQ)g=WQg=W0(W_{0})^{g}=(W_{Q})^{g}=W_{Q^{g}}=W_{0}. Hence gMg\in M and thus NCG(x)(U)MN_{C_{G}(x)}(U)\leq M.

(3) M=GM=G.

Assume that MGM\neq G. By [28, Proposition 17.11], we may deduce from (1) and (2) that MM is strongly embedded in GG, i.e. MMgM\cap M^{g} has odd order for any gGMg\in G\setminus M. Applying [49, Chapter 6, 4.4], it follows that GG has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that GG has at least two conjugacy classes of involutions. This contradiction shows that M=GM=G.

(4) Conclusion.

Let FF be a Klein four subgroup of SS. By Corollary 3.34, there is an elementary abelian subgroup PP of SS with FPF\leq P and m(P)=4m(P)=4. Clearly, ΔG(F)WP\Delta_{G}(F)\leq W_{P}. Since GG is 22-balanced, WPW_{P} has odd order by Proposition 2.8 (ii). Since WP=W0W_{P}=W_{0}, we have WPGW_{P}\trianglelefteq G by (3). As O(G)=1O(G)=1 by Hypothesis 5.1, it follows that WP=1W_{P}=1. Hence ΔG(F)=1\Delta_{G}(F)=1. ∎

Next, we deal with the case that n=6n=6, q3mod4q\equiv 3\mod 4 and q3q^{*}\neq 3. We show that, in this case, ΔG(F)=1\Delta_{G}(F)=1 for each Klein four subgroup FF of SS consisting of elements of the form tAt_{A}, where A{1,,n}A\subseteq\{1,\dots,n\} has even order. We need the following lemma.

Lemma 7.14.

Suppose that q3q^{*}\neq 3. Set :=n4\ell:=n-4. Let EE be the subgroup of TT consisting of all tAt_{A}, where A{1,,n}A\subseteq\{1,\dots,n\} has even order. Let E1E_{1} denote the subgroup of X1X_{1} consisting of all tAt_{A}, where AA is a subset of {1,,n2}\{1,\dots,n-2\} of even order. Then we may choose elements m1,,mNK(E1)m_{1},\dots,m_{\ell}\in N_{K}(E_{1}) and an E8E_{8}-subgroup E0E_{0} of EE with

K=O(K),L2(CK(E0)),L2(CK(E0))m1,,L2(CK(E0))m.K=\langle O(K),L_{2^{\prime}}(C_{K}(E_{0})),L_{2^{\prime}}(C_{K}(E_{0}))^{m_{1}},\dots,L_{2^{\prime}}(C_{K}(E_{0}))^{m_{\ell}}\rangle.
Proof.

Set C:=CG(t)C:=C_{G}(t) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Let H:=SLn2ε(q)/O(SLn2ε(q))H:=SL_{n-2}^{\varepsilon}(q^{*})/O(SL_{n-2}^{\varepsilon}(q^{*})). Let D~\widetilde{D} be the subgroup of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) consisting of all diagonal matrices in SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) with diagonal entries in {1,1}\{1,-1\}, and let DD denote the image of D~\widetilde{D} in HH. Denote by H1H_{1} the image of

{(AIn4):ASL2ε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-4}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q^{*})\right\}

in HH.

We claim that there is a group isomorphism ψ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KH\psi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow H which maps \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E} to DD and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} to H1H_{1}. By Lemma 6.4 (iii), there is a group isomorphism φ:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111KH\varphi:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}\rightarrow H under which \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} corresponds to H1H_{1}. Since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u} is the only involution of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}, we have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uφ{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}}^{\varphi} is the image of diag(1,1,1,,1)SLn2ε(q)\mathrm{diag}(-1,-1,1,\dots,1)\in SL_{n-2}^{\varepsilon}(q^{*}) in HH. Clearly, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E} is elementary abelian of order 2n32^{n-3}. Using Lemma 3.22, we conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Eφ{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}}^{\varphi} is HH-conjugate to DD. So there is some αInn(H)\alpha\in\mathrm{Inn}(H) mapping \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Eφ{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}}^{\varphi} to DD. We may assume that α\alpha centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111uφ{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}}^{\varphi}. Then H1α=H1{H_{1}}^{\alpha}=H_{1}, and the isomorphism ψ:=φα\psi:=\varphi\alpha maps \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E} to DD and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} to H1H_{1}, as desired.

Using Lemma 3.38, we can find elements x1,,xNH(D)x_{1},\dots,x_{\ell}\in N_{H}(D) such that H=H1H=\langle H_{1}, H1x1{H_{1}}^{x_{1}}, …, H1x{H_{1}}^{x_{\ell}}\rangle. Therefore, KK has elements m1m_{1}, \dots, mm_{\ell} such that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m,,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}=\langle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A},{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}},\dots,{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}}\rangle

and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m,,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111mN\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m},\dots,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}\in N_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}). From Lemma 2.1, we see that N\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E1)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111NN_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}_{1})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{N}. So we may assume miNK(E1)m_{i}\in N_{K}(E_{1}) for i{1,,}i\in\{1,\dots,\ell\}. Let E0:=u,t{3,4},t{4,5}E_{0}:=\langle u,t_{\{3,4\}},t_{\{4,5\}}\rangle. By Lemma 6.5, we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}). In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E} normalizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}. Moreover, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111T\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}. We have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ASL2(q)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\cong SL_{2}(q^{*}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111TSyl2(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{T}\in\mathrm{Syl}_{2}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}) (see Lemma 6.4). Applying Lemma 3.43, we conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}). As \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\trianglelefteq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111AC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111u)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A}\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E})\leq C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{u}), we even have that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111A\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{A} is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}). It follows that

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K=L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)),L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E))\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m,,L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E))\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}=\langle L_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E})),L_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}))^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}},\dots,L_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}))^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}}\rangle.

Let kKk\in K such that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111kC\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}\in C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}). As KCK\trianglelefteq C, we have [k,E0]O(C)K=O(K)[k,E_{0}]\leq O(C)\cap K=O(K). Thus kO(K)CC/O(K)(E0O(K)/O(K))kO(K)\in C_{C/O(K)}(E_{0}O(K)/O(K)). By Lemma 2.1, there is an element zCC(E0)z\in C_{C}(E_{0}) such that kO(K)=zO(K)kO(K)=zO(K). Observing that zCK(E0)z\in C_{K}(E_{0}) and that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111k=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111z\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{k}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{z}, we may conclude that C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. If 1i1\leq i\leq\ell, then L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E))\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m=L2(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111m=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LL_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}))^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}}=L_{2^{\prime}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}}={\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}}^{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{m}}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}, where the second equality follows from Proposition 2.4. It follows that

K=O(K),L2(CK(E0)),L2(CK(E0))m1,,L2(CK(E0))m.K=\langle O(K),L_{2^{\prime}}(C_{K}(E_{0})),L_{2^{\prime}}(C_{K}(E_{0}))^{m_{1}},\dots,L_{2^{\prime}}(C_{K}(E_{0}))^{m_{\ell}}\rangle.

This completes the proof. ∎

Lemma 7.15.

Suppose that n=6n=6, q3mod 4q\equiv 3\ \mathrm{mod}\ 4 and q3q^{*}\neq 3. Let EE denote the subgroup of SS consisting of all tAt_{A}, where AA is a subset of {1,,n}\{1,\dots,n\} of even order. Then ΔG(F)=1\Delta_{G}(F)=1 for any Klein four subgroup FF of EE.

Proof.

We follow the pattern of the proof of [32, Theorem 9.1].

Set W0:=ΔG(F)|FE,m(F)=2W_{0}:=\langle\Delta_{G}(F)\ |\ F\leq E,m(F)=2\rangle and M:=NG(W0)M:=N_{G}(W_{0}). Since TT is the image of

{(AB):AW,BV,det(A)det(B)=1}\left\{\begin{pmatrix}A&\\ &B\end{pmatrix}\ :\ A\in W,B\in V,\mathrm{det}(A)\mathrm{det}(B)=1\right\}

in PSLn(q)PSL_{n}(q), we have TSyl2(PSLn(q))T\in\mathrm{Syl}_{2}(PSL_{n}(q)) by Lemma 3.15. Hence S=TS=T and thus tZ(S)t\in Z(S). By choice of WW (see Section 5), we have

W={(AB):A,BV}(I2I2)W=\left\{\begin{pmatrix}A&\\ &B\\ \end{pmatrix}\ :\ A,B\in V\right\}\cdot\left\langle\begin{pmatrix}&I_{2}\\ I_{2}&\\ \end{pmatrix}\right\rangle

We accomplish the proof step by step.

(1) For each subgroup E0E_{0} of EE with order at least 88, we have NG(E0)MN_{G}(E_{0})\leq M.

Clearly, EE16E\cong E_{16}. Therefore, the statement follows from the 22-balance of GG (see Lemma 7.12) and Proposition 2.8 (ii).

(2) NG(S)MN_{G}(S)\leq M.

First we prove SMS\leq M. By (1), we have EME\leq M. As q3mod 4q\equiv 3\ \mathrm{mod}\ 4 and S=TS=T, any element of SS can be written as a product of an element of EE and an element of SS induced by a matrix of the form

(AB)\begin{pmatrix}A&\\ &B\end{pmatrix}

with AWSL4(q)A\in W\cap SL_{4}(q) and BVSL2(q)B\in V\cap SL_{2}(q). So, in order to prove that SMS\leq M, it suffices to show that each element of SS induced by a matrix of this form lies in MM. If BVSL2(q)B\in V\cap SL_{2}(q), then the image of

(I4B)\begin{pmatrix}I_{4}&\\ &B\end{pmatrix}

in SS centralizes the group t{1,2},t{2,3},t{3,4}E8\langle t_{\{1,2\}},t_{\{2,3\}},t_{\{3,4\}}\rangle\cong E_{8}. So it is contained in MM by (1). Hence, in order to prove that SMS\leq M, it suffices to show that if AWSL4(q)A\in W\cap SL_{4}(q), then the image of

(AI2)\begin{pmatrix}A&\\ &I_{2}\end{pmatrix}

in SS lies in MM. So assume that AWSL4(q)A\in W\cap SL_{4}(q). By the structure of WW, there are elements M1M_{1}, M2M_{2} of VV such that det(M1)=det(M2)\mathrm{det}(M_{1})=\mathrm{det}(M_{2}) and

A=(M1M2)orA=(M1M2)(I2I2).A=\begin{pmatrix}M_{1}&\\ &M_{2}\end{pmatrix}\ \textnormal{or}\ A=\begin{pmatrix}M_{1}&\\ &M_{2}\end{pmatrix}\begin{pmatrix}&I_{2}\\ I_{2}&\end{pmatrix}.

The image of

(M1M2I2)\begin{pmatrix}M_{1}&&\\ &M_{2}&\\ &&I_{2}\end{pmatrix}

in SS can be written as a product of an element of EE and an element of SS induced by a matrix of the form

(M1~M2~I2)\begin{pmatrix}\widetilde{M_{1}}&&\\ &\widetilde{M_{2}}&\\ &&I_{2}\end{pmatrix}

with M1~,M2~VSL2(q)\widetilde{M_{1}},\widetilde{M_{2}}\in V\cap SL_{2}(q). The images of

(M1~I4)and(I2M2~I2)\begin{pmatrix}\widetilde{M_{1}}&\\ &I_{4}\end{pmatrix}\ \textnormal{and}\ \begin{pmatrix}I_{2}&&\\ &\widetilde{M_{2}}&\\ &&I_{2}\end{pmatrix}

in SS centralize the groups t{3,4},t{4,5},t{5,6}\langle t_{\{3,4\}},t_{\{4,5\}},t_{\{5,6\}}\rangle and t{1,2},t{2,5},t{5,6}\langle t_{\{1,2\}},t_{\{2,5\}},t_{\{5,6\}}\rangle, respectively. So they are elements of MM. It follows that the image of

(M1M2I2)\begin{pmatrix}M_{1}&&\\ &M_{2}&\\ &&I_{2}\end{pmatrix}

in SS lies in MM. The image of the block matrix

(I2I2I2)\begin{pmatrix}&I_{2}&\\ I_{2}&&\\ &&I_{2}\end{pmatrix}

in SS normalizes EE and is thus contained in MM. It follows that the image of

(AI2)\begin{pmatrix}A&\\ &I_{2}\end{pmatrix}

in SS lies in MM. Consequently, SMS\leq M.

By Lemma 3.23, AutPSLn(q)(S)=Inn(S)\mathrm{Aut}_{PSL_{n}(q)}(S)=\mathrm{Inn}(S). As S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), it follows that AutG(S)=Inn(S)\mathrm{Aut}_{G}(S)=\mathrm{Inn}(S), and so NG(S)=SCG(S)N_{G}(S)=SC_{G}(S). We have seen above that SMS\leq M, and we have CG(S)MC_{G}(S)\leq M by (1). Hence NG(S)MN_{G}(S)\leq M.

(3) CG(t)MC_{G}(t)\leq M.

Let E1E_{1} be the subgroup of X1X_{1} consisting of all tAt_{A}, where AA is a subset of {1,,n2}\{1,\dots,n-2\} of even order. As a consequence of Lemma 7.14, there is an E8E_{8}-subgroup E0E_{0} of EE such that K=O(K),CK(E0),NK(E1)K=\langle O(K),C_{K}(E_{0}),N_{K}(E_{1})\rangle. By (1), CK(E0)C_{K}(E_{0}) and NK(E1)N_{K}(E_{1}) are subgroups of MM. By [28, Proposition 11.23], we have

O(K)=CO(K)(B)|BE,m(B)=3.O(K)=\langle C_{O(K)}(B)\ |\ B\leq E,m(B)=3\rangle.

Therefore, O(K)MO(K)\leq M by (1). Consequently, KMK\leq M. By the Frattini argument,

CG(t)=KNCG(t)(X1).C_{G}(t)=KN_{C_{G}(t)}(X_{1}).

So it suffices to show that NCG(t)(X1)MN_{C_{G}(t)}(X_{1})\leq M. Since S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), we may conclude from Lemma 5.7 that AutCG(t)(X1)\mathrm{Aut}_{C_{G}(t)}(X_{1}) is a 22-group. Hence, NCG(t)(X1)/CCG(t)(X1)N_{C_{G}(t)}(X_{1})/C_{C_{G}(t)}(X_{1}) is a 22-group. As X1T=SSyl2(CG(t))X_{1}\trianglelefteq T=S\in\mathrm{Syl}_{2}(C_{G}(t)), it follows that NCG(t)(X1)=SCCG(t)(X1)N_{C_{G}(t)}(X_{1})=SC_{C_{G}(t)}(X_{1}). We have SMS\leq M by (2), and CCG(t)(X1)CG(E1)MC_{C_{G}(t)}(X_{1})\leq C_{G}(E_{1})\leq M by (1). Consequently, NCG(t)(X1)MN_{C_{G}(t)}(X_{1})\leq M, as required.

(4) Let xx be an involution of SS which is GG-conjugate to tt. Then xx is MM-conjugate to tt.

It is easy to see that if an element of TT is PSLn(q)PSL_{n}(q)-conjugate to tt, then it is CPSLn(q)(t)C_{PSL_{n}(q)}(t)-conjugate to an element of EE. As S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)) and S=TS=T, it follows that xx is CG(t)C_{G}(t)-conjugate and hence MM-conjugate to an element yy of EE. It is rather easy to show that if an element of EE is PSLn(q)PSL_{n}(q)-conjugate to tt, then it is NPSLn(q)(E)N_{PSL_{n}(q)}(E)-conjugate to tt. So, as S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), we have that yy is NG(E)N_{G}(E)-conjugate to tt. By (1), NG(E)MN_{G}(E)\leq M, and so xx is MM-conjugate to tt.

(5) Let xx be an involution of SS. Then CG(x)MC_{G}(x)\leq M.

Let RR be a Sylow 22-subgroup of CG(x)C_{G}(x) with CS(x)RC_{S}(x)\leq R. We have tZ(S)CS(x)t\in Z(S)\leq C_{S}(x) and tMt\in M. Thus tRMt\in R\cap M. Let rNR(RM)r\in N_{R}(R\cap M). Then y:=trRMy:=t^{r}\in R\cap M. As a consequence of (4), yy is MM-conjugate to tt. So there is an element mm of MM such that tr=y=tmt^{r}=y=t^{m}. We have rm1CG(t)Mrm^{-1}\in C_{G}(t)\leq M by (3), and so rRMr\in R\cap M. Hence, NR(RM)=RMN_{R}(R\cap M)=R\cap M, and thus R=RMR=R\cap M.

By Corollary 7.3, CG(x)C_{G}(x) is 33-generated. Therefore, CG(x)C_{G}(x) is generated by the normalizers NCG(x)(U)N_{C_{G}(x)}(U), where URU\leq R and m(U)3m(U)\geq 3. It suffices to show that each such normalizer lies in MM.

So let URU\leq R with m(U)3m(U)\geq 3, and let gNCG(x)(U)g\in N_{C_{G}(x)}(U). Take an elementary abelian subgroup QQ of UU of rank 33. Lemma 2.3 shows that any E8E_{8}-subgroup of SS has an involution which is the image of an involution of SLn(q)SL_{n}(q). This implies that QQ has an element ss which is GG-conjugate to tt. Since s,sgURMs,s^{g}\in U\leq R\leq M, we see from (4) that ss and sgs^{g} are MM-conjugate to tt. So there are elements m,mMm,m^{\prime}\in M such that s=tms=t^{m} and sg=tms^{g}=t^{m^{\prime}}. We have tm=sg=(tm)g=tmgt^{m^{\prime}}=s^{g}=(t^{m})^{g}=t^{mg}. Thus mgm1CG(t)Mmgm^{\prime-1}\in C_{G}(t)\leq M, and hence gMg\in M. It follows that NCG(x)(U)MN_{C_{G}(x)}(U)\leq M.

(6) M=GM=G.

Assume that MGM\neq G. By [28, Proposition 17.11], we may deduce from (2) and (5) that MM is strongly embedded in GG, i.e. MMgM\cap M^{g} has odd order for any gGMg\in G\setminus M. Applying [49, Chapter 6, 4.4], it follows that GG has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that GG has precisely two conjugacy classes of involutions. This contradiction shows that M=GM=G.

(7) Conclusion.

Let FF be a Klein four subgroup of EE. Clearly, ΔG(F)W0\Delta_{G}(F)\leq W_{0}. By (6), we have W0GW_{0}\trianglelefteq G. Since GG is 22-balanced, W0W_{0} has odd order by Proposition 2.8 (ii). As O(G)=1O(G)=1 by Hypothesis 5.1, it follows that W0=1W_{0}=1. Hence ΔG(F)=1\Delta_{G}(F)=1. ∎

7.5. Quasisimplicity of the 22-components of CG(t)C_{G}(t)

In this subsection, we determine the isomorphism types of KK and LL.

Lemma 7.16.

Let xx and yy be two commuting involutions of GG. Set C:=CG(x)C:=C_{G}(x) and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=C/O(C)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C/O(C). Then any 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}) is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}).

Proof.

By [32, Corollary 3.2], L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))=L2(CL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))L_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))=L_{2^{\prime}}(C_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})). We know from Section 6 that L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) is a KK-group, i.e. the composition factors of L(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}) are known finite simple groups. Applying [26, Theorem 3.5], we conclude that L2(CL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))=L(CL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y))L_{2^{\prime}}(C_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}))=L(C_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y})). Therefore, any 22-component of CL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}) is a component of CL(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{L(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C})}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}). So any 22-component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}) is a component of C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111y)C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{y}).

Instead of using [26, Theorem 3.5], the lemma could be proved directly by using Corollary 3.46 (i) and the results of Section 6. ∎

Proposition 7.17.

KK is isomorphic to a quotient of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) by a central subgroup of odd order.

Proof.

The proof is inspired from the proof of [32, Theorem 10.1].

For q=3q^{*}=3, the proposition follows from Proposition 7.7. From now on, we assume that q3q^{*}\neq 3.

Set C:=CG(t)C:=C_{G}(t). Let EE denote the subgroup of TT consisting of all tAt_{A}, where A{1,,n}A\subseteq\{1,\dots,n\} has even order. We assume m1,,mm_{1},\dots,m_{\ell}, where :=n4\ell:=n-4, to be elements of KK and E0E_{0} to be an E8E_{8}-subgroup of EE with

K=O(K),L2(CK(E0)),L2(CK(E0))m1,,L2(CK(E0))m.K=\langle O(K),L_{2^{\prime}}(C_{K}(E_{0})),L_{2^{\prime}}(C_{K}(E_{0}))^{m_{1}},\dots,L_{2^{\prime}}(C_{K}(E_{0}))^{m_{\ell}}\rangle.

Such elements m1,,mm_{1},\dots,m_{\ell} and such a subgroup E0E_{0} exist by Lemma 7.14.

The proof will be accomplished step by step.

(1) Let ff be an involution of E0E_{0}. Then L2(CK(E0))L2(CC(f))L_{2^{\prime}}(C_{K}(E_{0}))\leq L_{2^{\prime}}(C_{C}(f)).

As KCK\trianglelefteq C, we have CK(E0)CC(E0)C_{K}(E_{0})\trianglelefteq C_{C}(E_{0}). This implies L2(CK(E0))L2(CC(E0))L_{2^{\prime}}(C_{K}(E_{0}))\leq L_{2^{\prime}}(C_{C}(E_{0})). By [32, Theorem 3.1], we have L2(CCC(f)(E0))L2(CC(f))L_{2^{\prime}}(C_{C_{C}(f)}(E_{0}))\leq L_{2^{\prime}}(C_{C}(f)). Clearly, CCC(f)(E0)=CC(E0)C_{C_{C}(f)}(E_{0})=C_{C}(E_{0}). It follows that L2(CK(E0))L2(CC(E0))L2(CC(f))L_{2^{\prime}}(C_{K}(E_{0}))\leq L_{2^{\prime}}(C_{C}(E_{0}))\leq L_{2^{\prime}}(C_{C}(f)).

(2) Let FF be a Klein four subgroup of E0E_{0}. Set D:=[CO(K)(F),L2(CK(E0))]D:=[C_{O(K)}(F),L_{2^{\prime}}(C_{K}(E_{0}))]. Then D=1D=1.

Clearly, L2(CK(E0))L_{2^{\prime}}(C_{K}(E_{0})) normalizes CO(K)(F)C_{O(K)}(F). Also, O2(L2(CK(E0)))=L2(CK(E0))O^{2^{\prime}}(L_{2^{\prime}}(C_{K}(E_{0})))=L_{2^{\prime}}(C_{K}(E_{0})), and CO(K)(F)C_{O(K)}(F) is a 22^{\prime}-group. Applying [28, Proposition 4.3 (i)], we conclude that D=[D,L2(CK(E0))]D=[D,L_{2^{\prime}}(C_{K}(E_{0}))].

Now let ff be an involution of FF. We are going to show that DO(CG(f))D\leq O(C_{G}(f)). Set M:=L2(CC(f))M:=L_{2^{\prime}}(C_{C}(f)). By (1), L2(CK(E0))ML_{2^{\prime}}(C_{K}(E_{0}))\leq M. Also, DCC(F)CC(f)D\leq C_{C}(F)\leq C_{C}(f) and MCC(f)M\trianglelefteq C_{C}(f). It follows that D=[D,L2(CK(E0))][CC(f),M]MD=[D,L_{2^{\prime}}(C_{K}(E_{0}))]\leq[C_{C}(f),M]\leq M.

Let \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C:=CG(f)/O(CG(f))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}:=C_{G}(f)/O(C_{G}(f)). By Corollary 2.2, C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111t)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CC_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{t})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}. As a consequence of Proposition 2.4, L2(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111t))=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ML_{2^{\prime}}(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{t}))=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M}. Lemma 7.16 implies that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111M=L(C\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111t))\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M}=L(C_{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{t})). It easily follows that O(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111M)O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M}) is central in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111M\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M}.

From the definition of DD, it is clear that DO(K)D\leq O(K). So we have DMO(K)O(M)D\leq M\cap O(K)\leq O(M). It follows that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111OO(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111M)Z(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111M)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}\leq\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{O}\leq O(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M})\leq Z(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{M}). In particular, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L} centralizes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{D}. Thus D=[D,L2(CK(E0))]O(CG(f))D=[D,L_{2^{\prime}}(C_{K}(E_{0}))]\leq O(C_{G}(f)).

Since ff was arbitrarily chosen, it follows that DΔG(F)D\leq\Delta_{G}(F). By Lemmas 7.13 and 7.15, we have ΔG(F)=1\Delta_{G}(F)=1. Consequently, D=1D=1, as wanted.

(3) O(K)Z(K)O(K)\leq Z(K).

By [28, Proposition 11.23], we have

O(K)=CO(K)(F):FE0,m(F)=2.O(K)=\langle C_{O(K)}(F):F\leq E_{0},m(F)=2\rangle.

Because of (2), it follows that O(K)O(K) centralizes L2(CK(E0))L_{2^{\prime}}(C_{K}(E_{0})). By choice of E0E_{0}, we have

K=O(K),L2(CK(E0)),L2(CK(E0))m1,,L2(CK(E0))mK=\langle O(K),L_{2^{\prime}}(C_{K}(E_{0})),L_{2^{\prime}}(C_{K}(E_{0}))^{m_{1}},\dots,L_{2^{\prime}}(C_{K}(E_{0}))^{m_{\ell}}\rangle

for some m1,,mKm_{1},\dots,m_{\ell}\in K. It follows that K=O(K)CK(O(K))K=O(K)C_{K}(O(K)). Therefore, CK(O(K))C_{K}(O(K)) has odd index in KK. We have O2(K)=KO^{2^{\prime}}(K)=K since KK is a 22-component of CC. It follows that K=CK(O(K))K=C_{K}(O(K)). Consequently, O(K)Z(K)O(K)\leq Z(K).

(4) Conclusion.

Applying [28, Lemma 4.11], we deduce from (3) that KK is a component of CC. Therefore, KK is quasisimple. We have

K/Z(K)(K/O(K))/Z(K/O(K))PSLn2ε(q).K/Z(K)\cong(K/O(K))/Z(K/O(K))\cong PSL_{n-2}^{\varepsilon}(q^{*}).

Applying Lemmas 3.1 and 3.2, we conclude that KSLn2ε(q)/ZK\cong SL_{n-2}^{\varepsilon}(q^{*})/Z for some central subgroup ZZ of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}). Using Proposition 3.19, or using the order formulas for |SLn2ε(q)||SL_{n-2}^{\varepsilon}(q^{*})| and |SLn2(q)||SL_{n-2}(q)| given by [33, Proposition 1.1 and Corollary 11.29], we see that

|SLn2ε(q)|2=|SLn2(q)|2=|X1|=|K|2=|SLn2ε(q)/Z|2.|SL_{n-2}^{\varepsilon}(q^{*})|_{2}=|SL_{n-2}(q)|_{2}=|X_{1}|=|K|_{2}=|SL_{n-2}^{\varepsilon}(q^{*})/Z|_{2}.

Thus ZZ has odd order. ∎

Proposition 7.18.

We have LSL2(q)L\cong SL_{2}(q^{*}) and LCG(t)L\trianglelefteq C_{G}(t). Moreover, LL is the only normal subgroup of CG(t)C_{G}(t) which is isomorphic to SL2(q)SL_{2}(q^{*}).

Proof.

For q=3q^{*}=3, this follows from Propositions 7.7 and 6.8.

Assume now that q3q^{*}\neq 3. Let K~:=KO(CG(t))\widetilde{K}:=KO(C_{G}(t)). By the last statement in Proposition 2.4, K=O2(K~)K=O^{2^{\prime}}(\widetilde{K}). Let i{1,2}i\in\{1,2\}. Since AiA_{i} is a 22-component of CCG(t)(u)C_{C_{G}(t)}(u), we have Ai=O2(Ai)A_{i}=O^{2^{\prime}}(A_{i}). Also, AiK~A_{i}\leq\widetilde{K}, and so AiO2(K~)=KA_{i}\leq O^{2^{\prime}}(\widetilde{K})=K. It follows that AiA_{i} is a 22-component of CK(u)C_{K}(u).

By Proposition 7.17, we have KSLn2ε(q)/ZK\cong SL_{n-2}^{\varepsilon}(q^{*})/Z for some central subgroup ZZ of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) with odd order. It is easy to see that if mm is a non-central involution of SLn2ε(q)/ZSL_{n-2}^{\varepsilon}(q^{*})/Z and JJ is a 22-component of its centralizer in SLn2ε(q)/ZSL_{n-2}^{\varepsilon}(q^{*})/Z, then JSLkε(q)J\cong SL_{k}^{\varepsilon}(q^{*}) for some k2k\geq 2. Since uu is a non-central involution of KK and A1/O(A1)SL2(q)A_{1}/O(A_{1})\cong SL_{2}(q^{*}), it follows that A1SL2(q)A_{1}\cong SL_{2}(q^{*}). By definition of LL (see Proposition 6.8), LL is isomorphic to A1A_{1}. So we have LSL2(q)L\cong SL_{2}(q^{*}).

Let L0L_{0} be the 22-component of CG(t)C_{G}(t) associated to LO(CG(t))/O(CG(t))LO(C_{G}(t))/O(C_{G}(t)). By [37, 6.5.2], we have [L0,K]=1[L_{0},K]=1. Hence L0CCG(t)(u)L_{0}\leq C_{C_{G}(t)}(u). So L0L_{0} is a 22-component of CCG(t)(u)C_{C_{G}(t)}(u). Clearly A1L0A2A_{1}\neq L_{0}\neq A_{2}. Lemma 7.10 implies that L0=LL_{0}=L. From Proposition 6.8 (iii), we see that L=L0CG(t)L=L_{0}\trianglelefteq C_{G}(t).

Proposition 6.8 (iii) also shows that KK and LL are the only 22-components of CG(t)C_{G}(t). So LL is the only normal subgroup of CG(t)C_{G}(t) isomorphic to SL2(q)SL_{2}(q^{*}). ∎

8. The subgroup G0G_{0}

Let AA be a subset of {1,,n}\{1,\dots,n\} with order 22. Then tAt_{A} is GG-conjugate to tt. Proposition 7.18 implies that CG(tA)C_{G}(t_{A}) has a unique normal subgroup isomorphic to SL2(q)SL_{2}(q^{*}). We denote this subgroup by LAL_{A}, and we define G0G_{0} to be the subgroup of GG generated by the groups LAL_{A}, where A={i,i+1}A=\{i,i+1\} for some 1i<n1\leq i<n. We are going to prove that G0GG_{0}\trianglelefteq G and that G0G_{0} is isomorphic to a nontrivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q^{*}). This will complete the proof of Theorem 5.2.

By Proposition 7.17, KK is isomorphic to a quotient of SLn2ε(q)SL_{n-2}^{\varepsilon}(q^{*}) by a central subgroup of odd order. By the proof of Proposition 7.18, A1A_{1} and A2A_{2} are 22-components of CK(u)C_{K}(u) if q3q^{*}\neq 3.

Lemma 8.1.

Let ZZ(SLn2ε(q))Z\leq Z(SL_{n-2}^{\varepsilon}(q^{*})) with KH:=SLn2ε(q)/ZK\cong H:=SL_{n-2}^{\varepsilon}(q^{*})/Z. Let H1H_{1} be the image of

{(AIn4):ASL2ε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-4}\end{pmatrix}\ :\ A\in SL_{2}^{\varepsilon}(q^{*})\right\}

in HH and H2H_{2} the image of

{(I2A):ASLn4ε(q)}\left\{\begin{pmatrix}I_{2}&\\ &A\end{pmatrix}\ :\ A\in SL_{n-4}^{\varepsilon}(q^{*})\right\}

in HH. Then there is a group isomorphism φ:KH\varphi:K\rightarrow H which maps A1A_{1} to H1H_{1} and A2A_{2} to H2H_{2}.

Proof.

For q=3q^{*}=3, this follows from Proposition 7.7 and Lemma 6.4 (iii).

Assume now that q3q^{*}\neq 3. Let φ:KH\varphi:K\rightarrow H be a group isomorphism. For each even natural number kk with 2k<n22\leq k<n-2, let hkh_{k} be the image of

(IkIn2k)\begin{pmatrix}-I_{k}&\\ &I_{n-2-k}\end{pmatrix}

in HH. It is easy to note that each non-central involution of HH is conjugate to hkh_{k} for some even 2k<n22\leq k<n-2. As uu is a non-central involution of KK, we may assume that uφ=tku^{\varphi}=t_{k} for some even 2k<n22\leq k<n-2.

Let H1~\widetilde{H_{1}} be the image of

{(AIn2k):ASLkε(q)}\left\{\begin{pmatrix}A&\\ &I_{n-2-k}\end{pmatrix}\ :\ A\in SL_{k}^{\varepsilon}(q^{*})\right\}

in HH and H2~\widetilde{H_{2}} be the image of

{(IkA):ASLn2kε(q)}\left\{\begin{pmatrix}I_{k}&\\ &A\end{pmatrix}\ :\ A\in SL_{n-2-k}^{\varepsilon}(q^{*})\right\}

in HH. It is easy to note that the 22-components of CH(tk)C_{H}(t_{k}) are precisely the quasisimple elements of {H1~,H2~}\{\widetilde{H_{1}},\widetilde{H_{2}}\}. Also, tkH1~t_{k}\in\widetilde{H_{1}}, but tkH2~t_{k}\not\in\widetilde{H_{2}}. On the other hand, A1A_{1} and A2A_{2} are the 22-components of CK(u)C_{K}(u), and we have uA1u\in A_{1}. This implies (A1)φ=H1~(A_{1})^{\varphi}=\widetilde{H_{1}} and (A2)φ=H2~(A_{2})^{\varphi}=\widetilde{H_{2}}. Since A1LSL2(q)A_{1}\cong L\cong SL_{2}(q^{*}), we have k=2k=2, and hence H1~=H1\widetilde{H_{1}}=H_{1} and H2~=H2\widetilde{H_{2}}=H_{2}. ∎

Lemma 8.2.

Let 1i<j<n1\leq i<j<n. Set A:={i,i+1}A:=\{i,i+1\} and B:={j,j+1}B:=\{j,j+1\}. Then:

  1. (i)

    If i+1<ji+1<j, then [LA,LB]=1[L_{A},L_{B}]=1.

  2. (ii)

    Suppose that j=i+1j=i+1. Then there is a group isomorphism from LA,LB\langle L_{A},L_{B}\rangle to SL3ε(q)SL_{3}^{\varepsilon}(q^{*}) under which LAL_{A} corresponds to the subgroup

    {(M00001):MSL2ε(q)}\left\{\left(\begin{array}[]{c|c}M&\begin{matrix}0\\ 0\end{matrix}\\ \hline\cr\begin{matrix}0&0\end{matrix}&1\end{array}\right)\ :\ M\in SL_{2}^{\varepsilon}(q^{*})\right\}

    of SL3ε(q)SL_{3}^{\varepsilon}(q^{*}) and under which LBL_{B} corresponds to the subgroup

    {(10000M):MSL2ε(q)}\left\{\left(\begin{array}[]{c|cc}1&\begin{matrix}0&0\end{matrix}\\ \hline\cr\begin{matrix}0\\ 0\end{matrix}&M\end{array}\right)\ :\ M\in SL_{2}^{\varepsilon}(q^{*})\right\}

    of SL3ε(q)SL_{3}^{\varepsilon}(q^{*}).

  3. (iii)

    Suppose that 1in31\leq i\leq n-3 and that j=i+1j=i+1. Set k:=i+2k:=i+2 and C:={k,k+1}C:=\{k,k+1\}. Then LA,LB,LC\langle L_{A},L_{B},L_{C}\rangle is isomorphic to SL4ε(q)SL_{4}^{\varepsilon}(q^{*}).

Proof.

Let HH, H1H_{1}, H2H_{2} and φ\varphi be as in Lemma 8.1. For each D{1,,n2}D\subseteq\{1,\dots,n-2\} of even order, let hDh_{D} be the image of the matrix diag(d1,,dn2)SLn2ε(q)\mathrm{diag}(d_{1},\dots,d_{n-2})\in SL_{n-2}^{\varepsilon}(q^{*}) in HH, where d=1d_{\ell}=-1 if D\ell\in D and d=1d_{\ell}=1 if {1,,n2}D\ell\in\{1,\dots,n-2\}\setminus D. Note that uφ=h{1,2}u^{\varphi}=h_{\{1,2\}}. Let JJ be the subgroup of HH consisting of all hDh_{D}, where D{1,,n2}D\subseteq\{1,\dots,n-2\} has even order, and let E1E_{1} denote the subgroup of X1X_{1} consisting of all tDt_{D}, where D{1,,n2}D\subseteq\{1,\dots,n-2\} has even order. From Lemma 3.22, we see that (E1)φ(E_{1})^{\varphi} is CH(uφ)C_{H}(u^{\varphi})-conjugate to JJ. Upon replacing φ\varphi by a composite of φ\varphi and an inner automorphism of HH, we may (and will) assume that (E1)φ=J(E_{1})^{\varphi}=J.

From the definition of LL (Proposition 6.8), it is easy to see that L{1,2}=A1L_{\{1,2\}}=A_{1}.

We now prove (i). Assume that i+1<ji+1<j. Since S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), there is some gGg\in G with (tA)g=t{1,2}=u(t_{A})^{g}=t_{\{1,2\}}=u and (tB)g=t{3,4}(t_{B})^{g}=t_{\{3,4\}}. So it suffices to show that [L{1,2},L{3,4}]=1[L_{\{1,2\}},L_{\{3,4\}}]=1. Let hh denote the image of t{3,4}t_{\{3,4\}} under φ\varphi. Then hH2h\in H_{2} since t{3,4}T2A2t_{\{3,4\}}\in T_{2}\leq A_{2}. Therefore, and since hh is conjugate to uφ=h{1,2}u^{\varphi}=h_{\{1,2\}}, we may choose φ\varphi such that h=h{3,4}h=h_{\{3,4\}} (and for the rest of the proof of (i), we will assume that φ\varphi has been chosen in this way). We see from Lemma 3.38 (ii) that there is an aHa\in H with (h{1,2})a=h{3,4}(h_{\{1,2\}})^{a}=h_{\{3,4\}} and (H1)aH2(H_{1})^{a}\leq H_{2}. In particular, [H1,(H1)a]=1[H_{1},(H_{1})^{a}]=1. If kk is the preimage of aa under φ\varphi, then uk=t{3,4}u^{k}=t_{\{3,4\}} and [A1,(A1)k]=1[A_{1},(A_{1})^{k}]=1. We also have (A1)k=L{3,4}(A_{1})^{k}=L_{\{3,4\}} and thus [L{1,2},L{3,4}]=1[L_{\{1,2\}},L_{\{3,4\}}]=1.

We now prove (ii). Assume that j=i+1j=i+1. Since S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), there is some gGg\in G with (tA)g=t{1,2}(t_{A})^{g}=t_{\{1,2\}} and (tB)g=t{2,3}(t_{B})^{g}=t_{\{2,3\}}. Therefore, it is enough to prove (ii) under the assumption that i=1i=1, and we will assume that this is the case. We see from Lemmas 6.4 (ii) and 6.6 that X1A2=T2X_{1}\cap A_{2}=T_{2}. Thus t{2,3}A2t_{\{2,3\}}\not\in A_{2}. Let hh denote the image of t{2,3}t_{\{2,3\}} under φ\varphi. Then hH2h\not\in H_{2}. Therefore, and since hh is conjugate to uφ=h{1,2}u^{\varphi}=h_{\{1,2\}}, we may choose φ\varphi such that h=h{2,3}h=h_{\{2,3\}} (and for the rest of the proof of (ii), we will assume that φ\varphi has been chosen in this way). Let H1~\widetilde{H_{1}} be the image of

{(1MIn5):MSL2ε(q)}\left\{\begin{pmatrix}1&&\\ &M&\\ &&I_{n-5}\end{pmatrix}\ :\ M\in SL_{2}^{\varepsilon}(q^{*})\right\}

in HH. By Lemma 3.38 (ii), there is some aHa\in H with (h{1,2})a=h{2,3}(h_{\{1,2\}})^{a}=h_{\{2,3\}} and (H1)a=H1~(H_{1})^{a}=\widetilde{H_{1}}. Let kk be the preimage of aa under φ\varphi. Then uk=t{2,3}u^{k}=t_{\{2,3\}} and hence L{2,3}=(L{1,2})k=(A1)kL_{\{2,3\}}=(L_{\{1,2\}})^{k}=(A_{1})^{k}. We see now that φ\varphi induces an isomorphism from L{1,2},L{2,3}\langle L_{\{1,2\}},L_{\{2,3\}}\rangle to H1,H1~\langle H_{1},\widetilde{H_{1}}\rangle mapping L{1,2}L_{\{1,2\}} to H1H_{1} and L{2,3}L_{\{2,3\}} to H1~\widetilde{H_{1}}. With this observation, it is easy to complete the proof of (ii).

We now prove (iii). Assume that 1in31\leq i\leq n-3 and that j=i+1j=i+1. Let kk and CC be as in the statement of (iii). Since S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), there is some gGg\in G with (tA)g=t{1,2}=u(t_{A})^{g}=t_{\{1,2\}}=u, (tB)g=t{2,3}(t_{B})^{g}=t_{\{2,3\}} and (tC)g=t{3,4}(t_{C})^{g}=t_{\{3,4\}}. Therefore, it is enough to show that L{1,2},L{2,3},L{3,4}\langle L_{\{1,2\}},L_{\{2,3\}},L_{\{3,4\}}\rangle is isomorphic to SL4ε(q)SL_{4}^{\varepsilon}(q^{*}). Let h:=(t{2,3})φh:=(t_{\{2,3\}})^{\varphi} and h~:=(t{3,4})φ\widetilde{h}:=(t_{\{3,4\}})^{\varphi}. As in the proof of (ii), we can choose φ\varphi such that h=h{2,3}h=h_{\{2,3\}}. Also, h~=hD\widetilde{h}=h_{D} for some D{1,,n2}D\subseteq\{1,\dots,n-2\} of order 22. We have t{3,4}T2A2t_{\{3,4\}}\in T_{2}\leq A_{2} and hence hD=h~H2h_{D}=\widetilde{h}\in H_{2}. Therefore, D{1,2}=D\cap\{1,2\}=\emptyset. We claim that D{2,3}={3}D\cap\{2,3\}=\{3\}. Assume not. Then D{2,3}=D\cap\{2,3\}=\emptyset, and it is easy to find an element aNH(J)a\in N_{H}(J) with ha=h{1,2}=uφh^{a}=h_{\{1,2\}}=u^{\varphi} and (h~)a=h{3,4}H2(\widetilde{h})^{a}=h_{\{3,4\}}\in H_{2}. So there is some kNK(E1)k\in N_{K}(E_{1}) with (t{2,3})k=u(t_{\{2,3\}})^{k}=u and (t{3,4})kT2(t_{\{3,4\}})^{k}\in T_{2}. On the other hand, it is easy to see from S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)) that there is no gKg\in K with (t{2,3})g=u(t_{\{2,3\}})^{g}=u and (t{3,4})gT2(t_{\{3,4\}})^{g}\in T_{2}. This contradiction shows that D{2,3}={3}D\cap\{2,3\}=\{3\}. So we can choose φ\varphi such that h=h{2,3}h=h_{\{2,3\}} and h~=h{3,4}\widetilde{h}=h_{\{3,4\}}. Now the proof of (iii) can be completed by using similar arguments as in the proof of (ii). ∎

Proposition 8.3.

G0G_{0} is isomorphic to a nontrivial quotient of SLnε(q)SL_{n}^{\varepsilon}(q^{*}).

Proof.

Assume that ε=+\varepsilon=+. By Lemma 8.2, the groups L{1,2},,L{n1,n}L_{\{1,2\}},\dots,L_{\{n-1,n\}} form a weak Curtis-Tits system in GG of type SLn(q)SL_{n}(q^{*}) (in the sense of [30, p. 9]). Applying a version of the Curtis-Tits theorem, namely [30, Chapter 13, Theorem 1.4], we conclude that G0G_{0} is isomorphic to a quotient of SLn(q)SL_{n}(q^{*}).

Assume now that ε=\varepsilon=-. Then Lemma 8.2 shows that G0G_{0} has a weak Phan system of rank n1n-1 over 𝔽q2\mathbb{F}_{{q^{*}}^{2}} (in the sense of [14, p. 288]). If q3q^{*}\neq 3, then [14, Theorem 1.2] implies that G0G_{0} is isomorphic to a quotient of SUn(q)SU_{n}(q^{*}). If q=3q^{*}=3, the same follows from [14, Theorem 1.3] and Lemma 8.2 (iii). ∎

Lemma 8.4.

Let RR be a Sylow 22-subgroup of G0G_{0}. Then RSyl2(G)R\in\mathrm{Syl}_{2}(G) and R(G0)=R(G)\mathcal{F}_{R}(G_{0})=\mathcal{F}_{R}(G).

Proof.

Since qεqq\sim\varepsilon q^{*}, we have that the 22-fusion system of PSLnε(q)PSL_{n}^{\varepsilon}(q^{*}) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q) (see Proposition 3.20). Clearly, G0/Z(G0)PSLnε(q)G_{0}/Z(G_{0})\cong PSL_{n}^{\varepsilon}(q^{*}). So the 22-fusion system of G0/Z(G0)G_{0}/Z(G_{0}) is isomorphic to the 22-fusion system of GG. It easily follows that |G0|2=|G0/Z(G0)|2=|G|2|G_{0}|_{2}=|G_{0}/Z(G_{0})|_{2}=|G|_{2}, and Lemma 2.11 shows that the 22-fusion system of G0G_{0} is isomorphic to that of G0/Z(G0)G_{0}/Z(G_{0}) and hence to that of GG. This completes the proof. ∎

Lemma 8.5.

The following hold.

  1. (i)

    If q3q^{*}\neq 3, then O2(O2(CG(t)))=KLO^{2^{\prime}}(O^{2}(C_{G}(t)))=KL.

  2. (ii)

    If q=3q^{*}=3, then O2(CG(t))=KLO^{2}(C_{G}(t))=KL.

Proof.

Set C:=CG(t)C:=C_{G}(t).

Assume that q3q^{*}\neq 3. Then KLKL is perfect. This implies that KL=O2(O2(KL))O2(O2(C))KL=O^{2^{\prime}}(O^{2}(KL))\leq O^{2^{\prime}}(O^{2}(C)). Since TKL=(TK)(TL)=X1X2T\cap KL=(T\cap K)(T\cap L)=X_{1}X_{2}, Lemmas 5.4 and 2.11 show that C/KLC/KL has a nilpotent 22-fusion system. So C/KLC/KL is 22-nilpotent by [39, Theorem 1.4]. This implies O2(O2(C))KLO^{2^{\prime}}(O^{2}(C))\leq KL.

We assume now that q=3q^{*}=3. Then KL=O2(KL)KL=O^{2}(KL) since KK is perfect and LSL2(3)L\cong SL_{2}(3). Thus KLO2(C)KL\leq O^{2}(C). In order to prove equality, it suffices to show that C/KLC/KL is a 22-group. By Proposition 7.7 and Lemma 6.3 (i), C/KCC(K)C/KC_{C}(K) is a 22-group. By [37, 6.5.2], we have LCC(K)L\leq C_{C}(K). It is enough to show that CC(K)/LC_{C}(K)/L is a 22-group.

We have O2(CC(K))TO2(CC(X1))T=X2O^{2}(C_{C}(K))\cap T\leq O^{2}(C_{C}(X_{1}))\cap T=X_{2} by Lemma 5.6 and the hyperfocal subgroup theorem [19, Theorem 1.33]. On the other hand, X2L=O2(L)O2(CC(K))X_{2}\leq L=O^{2}(L)\leq O^{2}(C_{C}(K)). Consequently, X2=O2(CC(K))TSyl2(O2(CC(K)))X_{2}=O^{2}(C_{C}(K))\cap T\in\mathrm{Syl}_{2}(O^{2}(C_{C}(K))). Set U:=CO2(CC(K))(X2)U:=C_{O^{2}(C_{C}(K))}(X_{2}). We have X2CX_{2}\trianglelefteq C since X2X_{2} is the unique Sylow 22-subgroup of LSL2(3)L\cong SL_{2}(3). So we have UCU\trianglelefteq C. Hence Z(X2)=X2USyl2(U)Z(X_{2})=X_{2}\cap U\in\mathrm{Syl}_{2}(U). Applying [37, 7.2.2], we conclude that UU is 22-nilpotent. We have O(U)=1O(U)=1 since UCU\trianglelefteq C and O(C)=1O(C)=1 by Proposition 7.7. It follows that U=Z(X2)U=Z(X_{2}).

Clearly, O2(CC(K))/UO^{2}(C_{C}(K))/U is isomorphic to a subgroup of Aut(X2)\mathrm{Aut}(X_{2}). We have |O2(CC(K))/U|2=4|O^{2}(C_{C}(K))/U|_{2}=4 since Q8X2Syl2(O2(CC(K)))Q_{8}\cong X_{2}\in\mathrm{Syl}_{2}(O^{2}(C_{C}(K))) and U=Z(X2)U=Z(X_{2}). Also, |O2(CC(K))/U|12|O^{2}(C_{C}(K))/U|\geq 12 since LO2(CC(K))L\leq O^{2}(C_{C}(K)). As Aut(X2)Aut(Q8)S4\mathrm{Aut}(X_{2})\cong\mathrm{Aut}(Q_{8})\cong S_{4} by [37, 5.3.3], it follows that |O2(CC(K))/U|=12|O^{2}(C_{C}(K))/U|=12. This implies O2(CC(K))=LO^{2}(C_{C}(K))=L. So CC(K)/LC_{C}(K)/L is a 22-group, as required. ∎

Lemma 8.6.

We have KLG0KL\leq G_{0}.

Proof.

We have tX2L=L{n1,n}G0t\in X_{2}\leq L=L_{\{n-1,n\}}\leq G_{0}. Let RSyl2(G0)R\in\mathrm{Syl}_{2}(G_{0}) with tRt\in R such that t\langle t\rangle is fully centralized in 𝒢:=R(G0)\mathcal{G}:=\mathcal{F}_{R}(G_{0}). By Lemma 8.4, RSyl2(G)R\in\mathrm{Syl}_{2}(G) and 𝒢=R(G)\mathcal{G}=\mathcal{F}_{R}(G). Therefore, CR(t)Syl2(CG(t))C_{R}(t)\in\mathrm{Syl}_{2}(C_{G}(t)) and C𝒢(t)=CR(t)(CG(t))C_{\mathcal{G}}(\langle t\rangle)=\mathcal{F}_{C_{R}(t)}(C_{G}(t)). Also, T=CS(t)Syl2(CG(t))T=C_{S}(t)\in\mathrm{Syl}_{2}(C_{G}(t)) and CS(G)(t)=T(CG(t))C_{\mathcal{F}_{S}(G)}(\langle t\rangle)=\mathcal{F}_{T}(C_{G}(t)). So, by Lemma 5.3, C𝒢(t)C_{\mathcal{G}}(\langle t\rangle) has a component isomorphic to the 22-fusion system of SLn2(q)SL_{n-2}(q).

Let ZZ(SLnε(q))Z\leq Z(SL_{n}^{\varepsilon}(q^{*})) with G0SLnε(q)/ZG_{0}\cong SL_{n}^{\varepsilon}(q^{*})/Z. By the proof of Lemma 8.4, Z(G0)Z(G_{0}) has odd order.

Let x~\widetilde{x} be an element of SLnε(q)SL_{n}^{\varepsilon}(q^{*}) such that x:=x~Zx:=\widetilde{x}Z is an involution of SLnε(q)/ZSL_{n}^{\varepsilon}(q^{*})/Z. Set C:=CSLnε(q)/Z(x)C:=C_{SL_{n}^{\varepsilon}(q^{*})/Z}(x). It is easy to note that the 22-components of CC are precisely the images of the 22-components of CSLnε(q)(x~)C_{SL_{n}^{\varepsilon}(q^{*})}(\widetilde{x}) in SLnε(q)/ZSL_{n}^{\varepsilon}(q^{*})/Z. Using this, it is not hard to see from Lemmas 3.3 and 3.4 that one of the following holds:

  1. (1)

    q3q^{*}\neq 3, O2(O2(C))=K0L0O^{2^{\prime}}(O^{2}(C))=K_{0}L_{0}, where K0K_{0} and L0L_{0} are subnormal subgroups of CC such that K0SLniε(q)K_{0}\cong SL_{n-i}^{\varepsilon}(q^{*}) and L0SLiε(q)L_{0}\cong SL_{i}^{\varepsilon}(q^{*}) for some 1i<n1\leq i<n. Moreover, the 22-components of CC are precisely the quasisimple elements of {K0,L0}\{K_{0},L_{0}\}.

  2. (2)

    q=3q^{*}=3, O2(C)=K0L0O^{2}(C)=K_{0}L_{0}, where K0K_{0} and L0L_{0} are subnormal subgroups of CC such that K0SLniε(q)K_{0}\cong SL_{n-i}^{\varepsilon}(q^{*}) and L0SLiε(q)L_{0}\cong SL_{i}^{\varepsilon}(q^{*}) for some 1i<n1\leq i<n. Moreover, the 22-components of CC are precisely the quasisimple elements of {K0,L0}\{K_{0},L_{0}\}.

  3. (3)

    CC has precisely one 22-component, and this 22-component is isomorphic to a nontrivial quotient of SLn/2((q)2)SL_{n/2}((q^{*})^{2}).

As seen above, C𝒢(t)=CR(t)(CG0(t))C_{\mathcal{G}}(\langle t\rangle)=\mathcal{F}_{C_{R}(t)}(C_{G_{0}}(t)) has a component isomorphic to the 22-fusion system of SLn2(q)SL_{n-2}(q). By Proposition 2.16, this component is induced by a 22-component of CG0(t)C_{G_{0}}(t). In view of the preceding observations, we can conclude that CG0(t)C_{G_{0}}(t) has subgroups K0K_{0} and L0L_{0} with K0SLn2ε(q)K_{0}\cong SL_{n-2}^{\varepsilon}(q^{*}) and L0SL2(q)L_{0}\cong SL_{2}(q^{*}) such that O2(O2(CG0(t)))=K0L0O^{2^{\prime}}(O^{2}(C_{G_{0}}(t)))=K_{0}L_{0} if q3q^{*}\neq 3 and O2(CG0(t))=K0L0O^{2}(C_{G_{0}}(t))=K_{0}L_{0} if q=3q^{*}=3.

Clearly, O2(O2(CG0(t)))O2(O2(CG(t)))O^{2^{\prime}}(O^{2}(C_{G_{0}}(t)))\leq O^{2^{\prime}}(O^{2}(C_{G}(t))) and O2(CG0(t))O2(CG(t))O^{2}(C_{G_{0}}(t))\leq O^{2}(C_{G}(t)). Lemma 8.5 implies that K0L0KLK_{0}L_{0}\leq KL. If nn is odd, then it is easy to see that |K0L0|=|K0||L0||K||L|=|KL||K_{0}L_{0}|=|K_{0}||L_{0}|\geq|K||L|=|KL|. If nn is even, then one can easily see that |K0L0|=12|K0||L0|12|K||L|=|KL||K_{0}L_{0}|=\frac{1}{2}|K_{0}||L_{0}|\geq\frac{1}{2}|K||L|=|KL|. Consequently, K0L0KLK_{0}L_{0}\leq KL and |K0L0||KL||K_{0}L_{0}|\geq|KL|. It follows that KL=K0L0G0KL=K_{0}L_{0}\leq G_{0}. ∎

Corollary 8.7.

Let xx be an involution of G0G_{0} which is GG-conjugate to tt. Let L0L_{0} be the unique normal SL2(q)SL_{2}(q^{*})-subgroup of CG(x)C_{G}(x), and let K0K_{0} be the component of CG(x)C_{G}(x) different from L0L_{0}. Then we have K0L0G0K_{0}L_{0}\leq G_{0}.

Proof.

Since tG0t\in G_{0}, we see from Lemma 8.4 that there is some gG0g\in G_{0} with x=tgx=t^{g}. Clearly, (K0L0)=(KL)g(K_{0}L_{0})=(KL)^{g}, and so K0L0G0K_{0}L_{0}\leq G_{0} by Lemma 8.6. ∎

Lemma 8.8.

We have NG(S)NG(G0)N_{G}(S)\leq N_{G}(G_{0}).

Proof.

Set M:=NG(G0)M:=N_{G}(G_{0}). Let sNS(SM)s\in N_{S}(S\cap M), and let 1in11\leq i\leq n-1. We have t{i,i+1}SL{i,i+1}SG0SMt_{\{i,i+1\}}\in S\cap L_{\{i,i+1\}}\leq S\cap G_{0}\leq S\cap M, and hence (t{i,i+1})sSMM(t_{\{i,i+1\}})^{s}\in S\cap M\leq M. Since G0G_{0} has odd index in MM by Lemma 8.4, we even have (t{i,i+1})sG0(t_{\{i,i+1\}})^{s}\in G_{0}. Corollary 8.7 implies that (L{i,i+1})sG0(L_{\{i,i+1\}})^{s}\leq G_{0}. So we have sMs\in M by the definition of G0G_{0}. Thus NS(SM)=SMN_{S}(S\cap M)=S\cap M and hence SMS\leq M. It is clear that CG(S)MC_{G}(S)\leq M. Using Lemma 3.23, we conclude that NG(S)=SCG(S)MN_{G}(S)=SC_{G}(S)\leq M. ∎

Lemma 8.9.

If xx is an involution of SS, then CG(x)NG(G0)C_{G}(x)\leq N_{G}(G_{0}).

Proof.

Set M:=NG(G0)M:=N_{G}(G_{0}).

We begin by proving that CG(t)MC_{G}(t)\leq M. We have KG0MK\leq G_{0}\leq M by Lemma 8.6 and CG(t)=KNCG(t)(X1)C_{G}(t)=KN_{C_{G}(t)}(X_{1}) by the Frattini argument. Also, NCG(t)(X1)=TCCG(t)(X1)N_{C_{G}(t)}(X_{1})=TC_{C_{G}(t)}(X_{1}) as a consequence of Lemma 5.7, and TMT\leq M by Lemma 8.8. So it suffices to show that CCG(t)(X1)MC_{C_{G}(t)}(X_{1})\leq M.

Let zCCG(t)(X1)z\in C_{C_{G}(t)}(X_{1}). In order to prove zMz\in M, it is enough to show that (L{i,i+1})zG0(L_{\{i,i+1\}})^{z}\leq G_{0} for all 1i<n1\leq i<n. If 1i<n1\leq i<n and in2i\neq n-2, we have zCG(t{i,i+1})z\in C_{G}(t_{\{i,i+1\}}) and hence (L{i,i+1})z=L{i,i+1}G0(L_{\{i,i+1\}})^{z}=L_{\{i,i+1\}}\leq G_{0}. It remains to show that (L{n2,n1})zG0(L_{\{n-2,n-1\}})^{z}\leq G_{0}. Since S(G)=S(PSLn(q))\mathcal{F}_{S}(G)=\mathcal{F}_{S}(PSL_{n}(q)), there is some gGg\in G with tg=ut^{g}=u, ug=tu^{g}=t and (t{2,3})g=t{n2,n1}(t_{\{2,3\}})^{g}=t_{\{n-2,n-1\}}. From the definition of LL (Proposition 6.8), it is easy to see that L{1,2}=A1KL_{\{1,2\}}=A_{1}\leq K. Since u=t{1,2}u=t_{\{1,2\}} and t{2,3}t_{\{2,3\}} are KK-conjugate, we thus have L{2,3}KL2(CG(t))L_{\{2,3\}}\leq K\leq L_{2^{\prime}}(C_{G}(t)). Hence L{n2,n1}=(L{2,3})gL2(CG(t))g=L2(CG(u))L_{\{n-2,n-1\}}=(L_{\{2,3\}})^{g}\leq L_{2^{\prime}}(C_{G}(t))^{g}=L_{2^{\prime}}(C_{G}(u)). Since zz centralizes uu, it follows that (L{n2,n1})zL2(CG(u))(L_{\{n-2,n-1\}})^{z}\leq L_{2^{\prime}}(C_{G}(u)). From Corollary 8.7, we see that L2(CG(u))G0L_{2^{\prime}}(C_{G}(u))\leq G_{0}. So we have (L{n2,n1})zG0(L_{\{n-2,n-1\}})^{z}\leq G_{0}, and it follows that CCG(t)(X1)MC_{C_{G}(t)}(X_{1})\leq M. Consequently, CG(t)MC_{G}(t)\leq M.

Since G0G_{0} has odd index in MM by Lemma 8.4, we see from Lemma 8.8 that SG0S\leq G_{0}. Also, S(G0)=S(G)\mathcal{F}_{S}(G_{0})=\mathcal{F}_{S}(G) by Lemma 8.4. As CG(t)MC_{G}(t)\leq M, it follows that CG(x)MC_{G}(x)\leq M for any involution xx of SS which is GG-conjugate to tt.

Assume now that xx is an involution of SS which is GG-conjugate to tit_{i} for some even natural number ii with 4i<n4\leq i<n such that in2i\leq\frac{n}{2} if nn is even. We are going to show that CG(x)MC_{G}(x)\leq M. Arguing by induction over ii and using the preceding observations, we may assume that for each even 2j<i2\leq j<i and each involution yy of SS which is GG-conjugate to tjt_{j}, we have CG(y)MC_{G}(y)\leq M. Furthermore, we may assume that x\langle x\rangle is fully S(G)\mathcal{F}_{S}(G)-centralized since S(G)=S(G0)\mathcal{F}_{S}(G)=\mathcal{F}_{S}(G_{0}).

As a consequence of Lemma 7.1, CG(x)C_{G}(x) is generated by the normalizers NCG(x)(U)N_{C_{G}(x)}(U), where UU is a subgroup of CS(x)C_{S}(x) containing a GG-conjugate of tjt_{j} for some even 2j<i2\leq j<i. We show that each such normalizer is contained in MM. Thus let UU be a subgroup of CS(x)C_{S}(x) and let yy be an element of UU which is GG-conjugate to tjt_{j} for some even 2j<i2\leq j<i. Also, let gNCG(x)(U)g\in N_{C_{G}(x)}(U). Then ygUCS(x)Sy^{g}\in U\leq C_{S}(x)\leq S. Since S(G0)=S(G)\mathcal{F}_{S}(G_{0})=\mathcal{F}_{S}(G), we have that yy and ygy^{g} are G0G_{0}-conjugate. Hence, there is some mG0m\in G_{0} with yg=ymy^{g}=y^{m}. We have mg1CG(y)Mmg^{-1}\in C_{G}(y)\leq M. This implies gMg\in M since mG0Mm\in G_{0}\leq M. So we have NCG(x)(U)MN_{C_{G}(x)}(U)\leq M and hence CG(x)MC_{G}(x)\leq M.

Assume now that xx is an arbitrary involution of SS. We are going to prove that CG(x)MC_{G}(x)\leq M. Since S(G)=S(G0)\mathcal{F}_{S}(G)=\mathcal{F}_{S}(G_{0}), we may assume that x\langle x\rangle is fully S(G)\mathcal{F}_{S}(G)-centralized. By Corollary 7.3, CG(x)C_{G}(x) is 33-generated. Therefore, CG(x)C_{G}(x) is generated by the normalizers NCG(x)(U)N_{C_{G}(x)}(U), where UCS(x)U\leq C_{S}(x) and m(U)3m(U)\geq 3. Take some UCS(x)U\leq C_{S}(x) with m(U)3m(U)\geq 3. By Lemma 2.3, any E8E_{8}-subgroup of SS has an involution which is the image of an involution of SLn(q)SL_{n}(q). It follows that UU has an element yy which is GG-conjugate to tkt_{k} for some even 2k<n2\leq k<n. By the preceding observations, CG(y)MC_{G}(y)\leq M. Arguing as above, we can conclude that NCG(x)(U)MN_{C_{G}(x)}(U)\leq M. It follows that CG(x)MC_{G}(x)\leq M. ∎

Proposition 8.10.

We have G0GG_{0}\trianglelefteq G.

Proof.

Suppose that M:=NG(G0)M:=N_{G}(G_{0}) is a proper subgroup of GG. By [28, Proposition 17.11], we may deduce from Lemmas 8.8 and 8.9 that MM is strongly embedded in GG. Therefore, by [49, Chapter 6, 4.4], GG has only one conjugacy class of involutions. On the other hand, we see from Proposition 3.5 that GG has at least two conjugacy classes of involutions. This contradiction shows that M=GM=G. Hence G0GG_{0}\trianglelefteq G. ∎

With Propositions 8.3 and 8.10, we have completed the proof of Theorem 5.2.

9. Proofs of the main results

Proof of Theorem A.

By Section 4, Theorem A is true for n5n\leq 5.

Suppose now that n6n\geq 6. Let qq be a nontrivial odd prime power, and let GG be a finite simple group satisfying (𝒞𝒦\mathcal{CK}).

Recall that a natural number k6k\geq 6 is said to satisfy P(k)P(k) if whenever q0q_{0} is a nontrivial odd prime power and HH is a finite simple group satisfying (𝒞𝒦\mathcal{CK}) and realizing the 22-fusion system of PSLk(q0)PSL_{k}(q_{0}), we have HPSLkε(q)H\cong PSL_{k}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq0\varepsilon q^{*}\sim q_{0}. Theorem 5.2 shows that P(k)P(k) is satisfied for all natural numbers k6k\geq 6.

Therefore, if the 22-fusion system of GG is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q), then condition (i) of Theorem A is satisfied.

Conversely, if one of the conditions (i), (ii), (iii) of Theorem A is satisfied, then this can only be condition (i), and Proposition 3.20 implies that the 22-fusion system of GG is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). ∎

Proof of Theorem B.

Let qq be a nontrivial odd prime power and let n2n\geq 2 be a natural number, where q1q\equiv 1 or 7mod87\mod 8 if n=2n=2. Let GG be a finite simple group and SSyl2(G)S\in\mathrm{Syl}_{2}(G). Suppose that S(G)\mathcal{F}_{S}(G) has a normal subsystem \mathcal{E} on a subgroup TT of SS such that \mathcal{E} is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q) and such that CS()=1C_{S}(\mathcal{E})=1. We have to show that S(G)\mathcal{F}_{S}(G) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q).

By Lemma 3.21, PSLn(q)PSL_{n}(q) is not a Goldschmidt group. Applying [10, Theorem 5.6.18], we conclude that \mathcal{E} is simple. We see from [16, Theorem B] that \mathcal{E} is tamely realized by some finite simple group of Lie type KK.

By Theorem A, we have KPSLnε(q)K\cong PSL_{n}^{\varepsilon}(q^{*}) for some nontrivial odd prime power qq^{*} and some ε{+,}\varepsilon\in\{+,-\} with εqq\varepsilon q^{*}\sim q.

By Propositions 3.39 and 3.41, we have that Out(K)\mathrm{Out}(K) is 22-nilpotent. Now Proposition 2.19 implies that S(G)\mathcal{F}_{S}(G) is tamely realized by a subgroup LL of Aut(K)\mathrm{Aut}(K) containing Inn(K)\mathrm{Inn}(K) such that the index of Inn(K)\mathrm{Inn}(K) in LL is odd. By Lemma 3.56, the 22-fusion system of LL is isomorphic to the 22-fusion system of Inn(K)K\mathrm{Inn}(K)\cong K and hence isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). So S(G)\mathcal{F}_{S}(G) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). ∎

Proof of Corollary C.

Let qq be a nontrivial odd prime power and let n2n\geq 2 be a natural number, where q1q\equiv 1 or 7mod87\mod 8 if n=2n=2. Let GG be a finite simple group and let SS be a Sylow 22-subgroup of GG. Suppose that F(S(G))F^{*}(\mathcal{F}_{S}(G)) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q).

We have F(S(G))S(G)F^{*}(\mathcal{F}_{S}(G))\trianglelefteq\mathcal{F}_{S}(G) and CS(F(S(G)))=Z(F(S(G)))=1C_{S}(F^{*}(\mathcal{F}_{S}(G)))=Z(F^{*}(\mathcal{F}_{S}(G)))=1. So Theorem B implies that S(G)\mathcal{F}_{S}(G) is isomorphic to the 22-fusion system of PSLn(q)PSL_{n}(q). ∎

Acknowledgements

This paper is based on the author’s PhD thesis, written at the University of Aberdeen under the supervision of Professor Ellen Henke and Professor Benjamin Martin. The author is deeply grateful to them for their guidance and support. Moreover, the author would like to thank Professor Ron Solomon for helpful discussions.

References

  • [1] Rachel Abbott, John Bray, Steve Linton, Simon Nickerson, Simon Norton, Richard Parker, Ibrahim Suleiman, Jonathan Tripp, Peter Walsh, and Robert Wilson, ATLAS of Finite Group Representations - Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/, 2021, [Online; accessed 11-May-2021].
  • [2] J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 22-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1–261. MR 284499
  • [3] by same author, Finite simple groups of 22-rank two, Scripta Math. 29 (1973), no. 3-4, 191–214. MR 401902
  • [4] Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87–152. MR 2948790
  • [5] M. Aschbacher, Finite group theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008
  • [6] Michael Aschbacher, Finite groups with a proper 22-generated core, Trans. Amer. Math. Soc. 197 (1974), 87–112. MR 364427
  • [7] by same author, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR 2752788
  • [8] by same author, On fusion systems of component type, Mem. Amer. Math. Soc. 257 (2019), no. 1236, v+182. MR 3898993
  • [9] by same author, The 2-fusion system of an almost simple group, J. Algebra 561 (2020), 5–16. MR 4135537
  • [10] by same author, Quaternion fusion packets, Contemporary Mathematics, vol. 765, American Mathematical Society, [Providence], RI, [2021] ©2021. MR 4240597
  • [11] Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834
  • [12] Michael Aschbacher and Bob Oliver, Fusion systems, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no. 4, 555–615. MR 3544261
  • [13] Adolfo Ballester-Bolinches, Ramón Esteban-Romero, and Mohamed Asaad, Products of finite groups, De Gruyter Expositions in Mathematics, vol. 53, Walter de Gruyter GmbH & Co. KG, Berlin, 2010. MR 2762634
  • [14] Curtis D. Bennett and Sergey Shpectorov, A new proof of a theorem of Phan, J. Group Theory 7 (2004), no. 3, 287–310. MR 2062999
  • [15] Carles Broto, Jesper M. Møller, and Bob Oliver, Equivalences between fusion systems of finite groups of Lie type, J. Amer. Math. Soc. 25 (2012), no. 1, 1–20. MR 2833477
  • [16] by same author, Automorphisms of fusion systems of finite simple groups of Lie type, Mem. Amer. Math. Soc. 262 (2019), no. 1267, 1–120. MR 4071770
  • [17] Timothy C. Burness and Michael Giudici, Classical groups, derangements and primes, Australian Mathematical Society Lecture Series, vol. 25, Cambridge University Press, Cambridge, 2016. MR 3443032
  • [18] Roger Carter and Paul Fong, The Sylow 22-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151. MR 166271
  • [19] David A. Craven, The theory of fusion systems, Cambridge Studies in Advanced Mathematics, vol. 131, Cambridge University Press, Cambridge, 2011, An algebraic approach. MR 2808319
  • [20] Jean Dieudonné, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua, Mem. Amer. Math. Soc. 2 (1951), vi+122. MR 45125
  • [21] Benjamin Fine and Gerhard Rosenberger, Number theory, Birkhäuser Boston, Inc., Boston, MA, 2007, An introduction via the distribution of primes. MR 2261276
  • [22] Francesco Fumagalli, On the group of automorphisms of finite wreath products, Rend. Sem. Mat. Univ. Padova 115 (2006), 15–28. MR 2245584
  • [23] George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822
  • [24] Daniel Gorenstein, Finite groups, second ed., Chelsea Publishing Co., New York, 1980. MR 569209
  • [25] by same author, Finite simple groups, University Series in Mathematics, Plenum Publishing Corp., New York, 1982, An introduction to their classification. MR 698782
  • [26] by same author, The classification of finite simple groups. Vol. 1, The University Series in Mathematics, Plenum Press, New York, 1983, Groups of noncharacteristic 22 type. MR 746470
  • [27] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
  • [28] by same author, The classification of the finite simple groups. Number 2. Part I. Chapter G, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1996, General group theory. MR 1358135
  • [29] by same author, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998, Almost simple KK-groups. MR 1490581
  • [30] by same author, The classification of the finite simple groups. Number 8. Part III. Chapters 12–17. The generic case, completed, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 2018. MR 3887657
  • [31] Daniel Gorenstein and John H. Walter, The characterization of finite groups with dihedral Sylow 22-subgroups. I, J. Algebra 2 (1965), 85–151. MR 177032
  • [32] by same author, Balance and generation in finite groups, J. Algebra 33 (1975), 224–287. MR 357583
  • [33] Larry C. Grove, Classical groups and geometric algebra, Graduate Studies in Mathematics, vol. 39, American Mathematical Society, Providence, RI, 2002. MR 1859189
  • [34] Ellen Henke, Products in fusion systems, J. Algebra 376 (2013), 300–319. MR 3003728
  • [35] B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967. MR 0224703
  • [36] A. S. Kondrat’ev, Normalizers of Sylow 2-subgroups in finite simple groups, Mat. Zametki 78 (2005), no. 3, 368–376. MR 2227510
  • [37] Hans Kurzweil and Bernd Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004, An introduction, Translated from the 1998 German original. MR 2014408
  • [38] Changwen Li, Xuemei Zhang, and Xiaolan Yi, On partially τ\tau-quasinormal subgroups of finite groups, Hacet. J. Math. Stat. 43 (2014), no. 6, 953–961. MR 3331152
  • [39] Markus Linckelmann, Introduction to fusion systems, Group representation theory, EPFL Press, Lausanne, 2007, pp. 79–113. MR 2336638
  • [40] David R. Mason, Finite simple groups with Sylow 22-subgroup dihedral wreath Z2Z_{2}, J. Algebra 26 (1973), 10–68. MR 318294
  • [41] by same author, Finite simple groups with Sylow 22-subgroups of type PSL(4,q),q{\rm PSL}(4,\,q),\,q odd, J. Algebra 26 (1973), 75–97. MR 318295
  • [42] by same author, Finite simple groups with Sylow 22-subgroups of type PSL(5,q),qPSL(5,q),q odd, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 251–269. MR 396737
  • [43] Ulrich Meierfrankenfeld, Bernd Stellmacher, and Gernot Stroth, Finite groups of local characteristic pp: an overview, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, pp. 155–192. MR 1994966
  • [44] Bob Oliver, Reductions to simple fusion systems, Bull. Lond. Math. Soc. 48 (2016), no. 6, 923–934. MR 3608937
  • [45] Kok-wee Phan, A theorem on special linear groups, J. Algebra 16 (1970), 509–518. MR 269732
  • [46] by same author, A characterization of the finite groups PSL(n,q){\rm PSL}(n,\,q), Math. Z. 124 (1972), 169–185. MR 296173
  • [47] Kok Wee Phan, A characterization of the finite groups PSU(n,q){\rm PSU}(n,\,q), J. Algebra 37 (1975), no. 2, 313–339. MR 390044
  • [48] Robert Steinberg, Lectures on Chevalley groups, University Lecture Series, vol. 66, American Mathematical Society, Providence, RI, 2016, Notes prepared by John Faulkner and Robert Wilson, Revised and corrected edition of the 1968 original [ MR0466335], With a foreword by Robert R. Snapp. MR 3616493
  • [49] Michio Suzuki, Group theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986, Translated from the Japanese. MR 815926