This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Characterization of MDS Symbol-pair Codes over Two Types of Alphabets

Xilin Tang [email protected] Weixian Li [email protected] Wei Zhao [email protected] Department of Mathematics, South China University of Technology, Guangzhou, Guangdong, 510640, PR China The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China University of Science and Technology of China, Anhui, 230026, PR China
Abstract

Symbol-pair codes are block codes with symbol-pair metrics designed to protect against pair-errors that may occur in high-density data storage systems. MDS symbol-pair codes are optimal in the sense that it can attain the highest pair-error correctability within the same code length and code size. Constructing MDS symbol-pair codes is one of the main topics in symbol-pair codes. In this paper, we characterize the symbol-pair distances of some constacyclic codes of arbitrary lengths over finite fields and a class of finite chain rings. Using the characterization of symbol-pair distance, we present several classes of MDS symbol-pair constacyclic codes and show that there is no other MDS symbol-pair code among the class of constacyclic codes except for what we present. Moreover, some of these MDS symbol-pair constacyclic codes over the finite chain rings cannot be obtained by previous work.

keywords:
Symbol-pair codes , MDS codes , constacyclic codes

1 Introduction

Modern high-density data storage systems may not read the transmitted information individually as classic information transmission due to physical limitations. Motivated by this fact, Cassuto and Blaum [1] developed symbol-pair code over symbol-pair read channel whose outputs are overlapping pairs of symbols. The efficient decoding algorithms for cyclic codes over symbol-pair read channels are shown in [2, 3, 4].

Let Ξ\Xi be an alphabet of qq elements with q2q\geq 2. A code 𝒞\mathcal{C} over Ξ\Xi of length nn is a subset of Ξn\Xi^{n}. The elements in 𝒞\mathcal{C} are called codewords. We use the bold letter to denote a vector in the sequel. Let 𝒙=(x0,x1,,xn1)\boldsymbol{x}=\left(x_{0},x_{1},\ldots,x_{n-1}\right), 𝒚=(y0,y1,,yn1)\boldsymbol{y}=\left(y_{0},y_{1},\ldots,y_{n-1}\right) be vectors in Ξn\Xi^{n}. A vector 𝒙\boldsymbol{x} transmitted in the symbol-pair read channel is read as

π(𝒙)=((x0,x1),(x1,x2),,(xn1,x0)).\pi\left(\boldsymbol{x}\right)=\left(\left(x_{0},x_{1}\right),\left(x_{1},x_{2}\right),\ldots,\left(x_{n-1},x_{0}\right)\right).

We call π(𝒙)\pi(\boldsymbol{x}) as a symbol-pair vector of 𝒙\boldsymbol{x}. The symbol-pair distance between 𝒙\boldsymbol{x} and 𝒚\boldsymbol{y} is defined as the Hamming distance between π(𝒙)\pi(\boldsymbol{x}) and π(𝒚)\pi(\boldsymbol{y}), i.e.i.e.,

dsp(𝒙,𝒚)=dH(π(𝒙),π(𝒚))=|{i:(xi,xi+1)(yi,yi+1)}|.\operatorname{d_{sp}}(\boldsymbol{x},\boldsymbol{y})=\operatorname{d_{H}}(\pi(\boldsymbol{x}),\pi(\boldsymbol{y}))=\left|\left\{i:\left(x_{i},x_{i+1}\right)\neq\left(y_{i},y_{i+1}\right)\right\}\right|.

The (minimum) symbol-pair distance of 𝒞\mathcal{C} is defined as

dsp(𝒞)=min{dsp(𝒙,𝒚)𝒙,𝒚𝒞and𝒙𝒚}.\operatorname{d_{sp}}(\mathcal{C})=\min\{\operatorname{d_{sp}}(\boldsymbol{x},\boldsymbol{y})\mid\boldsymbol{x},\boldsymbol{y}\in\mathcal{C}~{}\text{and}~{}\boldsymbol{x}\neq\boldsymbol{y}\}.

For a code 𝒞\mathcal{C} of length nn over Ξ\Xi with symbol-pair distance dsp\operatorname{d_{sp}}, the upper bound on the code size of 𝒞\mathcal{C}, called Singleton bound for symbol-pair codes [5], is

|𝒞|qndsp+2.|\mathcal{C}|\leq q^{n-\operatorname{d_{sp}}+2}. (1)

A symbol-pair code whose parameters satisfy (1) with equality is called maximum distance separable (MDS). According to (1), MDS symbol-pair codes possess the largest symbol-pair distance under the same code length and code size, which indicates that MDS symbol-pair codes are a class of optimal symbol-pair codes that can have high pair error-correcting capability since the symbol-pair distance is a tool to measure the pair error-correcting capability of the codes.

Constructing MDS symbol-pair codes is meaningful both in theoretical and practical. The research on constructing MDS symbol-pair codes is active in recent years [6, 7, 8, 9, 10, 11]. Many MDS symbol-pair codes are obtained by analyzing the generator polynomials of constacyclic codes. See [6, 7, 8, 12] for example. In [9], Dinh et al. characterize the symbol-pair distances of all constacyclic codes of length psp^{s} over 𝔽pm\mathbb{F}_{p^{m}} and obtain all the MDS symbol-pair codes of prime power lengths. These results are generalized in two different directions. One of the directions is to construct MDS symbol-pair constacyclic codes over different alphabets such as the finite chain ring 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} ([13, 10]). The other direction is extending the code length of constacyclic codes to some other special code lengths such as 2ps2p^{s} ([14, 11]).

Let λ\lambda be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}} and nn be a positive integer coprime to pp. Due to the complicated irreducible factorization of xnλx^{n}-\lambda in 𝔽pm[x]\mathbb{F}_{p^{m}}[x], the algebraic structure of λ\lambda-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} are not obtained completely. Therefore it is difficult to analyze the symbol-pair distance of constacyclic codes of length npsnp^{s}. In [15], the authors discussed the structure of a special class of constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}}. This work inspires us to analyze the symbol-pair distances of these constacyclic codes. Our motivation is to characterize the MDS symbol-pair codes among the larger class of constacyclic codes and obtain new MDS symbol-pair codes with more flexible parameters.

In this paper, we consider some constacyclic codes of length npsnp^{s} over two different alphabets, which are finite fields 𝔽pm\mathbb{F}_{p^{m}} and finite chain rings 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, where pp is a prime, mm is a positive integer and u2=0u^{2}=0. Let α0\alpha_{0} be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}} such that xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}. Denote α=α0ps\alpha=\alpha_{0}^{p^{s}}. Let β\beta be an element in 𝔽pm\mathbb{F}_{p^{m}}. We completely characterize the symbol-pair distances of α\alpha-constacyclic codes over 𝔽pm\mathbb{F}_{p^{m}} and (α+uβ)(\alpha+u\beta)-constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}. We present several classes of MDS symbol-pair constacyclic codes in Table 1 and Table 2. Some of these codes are obtained in previous work and we remark the references in the tables. Some of these codes are obtained in this paper.

Generator Polymial Dimension Pair Distance Remark Ref.
xα0x-\alpha_{0} ps1p^{s}-1 3 [9]
(xα0)2(x-\alpha_{0})^{2} ps2p^{s}-2 4 [9]
(xα0)4(x-\alpha_{0})^{4} 5 6 p=3p=3 s=2s=2 [9]
(xα0)k(x-\alpha_{0})^{k} pkp-k k+2k+2 s=1s=1 1kp21\leq k\leq p-2 [9]
(xα0)ps2(x-\alpha_{0})^{p^{s}-2} 2 psp^{s} [9]
x2α0x^{2}-\alpha_{0} 2ps22p^{s}-2 4 [14]
(x2α0)k(x^{2}-\alpha_{0})^{k} 2p2k2p-2k 2k+22k+2 s=1s=1 1kp21\leq k\leq p-2 [14]
(x2α0)ps1(x^{2}-\alpha_{0})^{p^{s}-1} 2 2ps2p^{s} [14]
Table 1: MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}}
Generator Polynomial Size Pair Distance Remark Ref.
(xα0)+ub(x)(x-\alpha_{0})+ub(x) p2m(ps1)p^{2m(p^{s}-1)} 3 [16]
(xα0)2+(x-\alpha_{0})^{2}+ u(xα0)kb(x)u(x-\alpha_{0})^{k}b(x) p2m(ps2)p^{2m(p^{s}-2)} 4 s2s\geq 2 k=0,1k=0,1 [16]
(xα0)4+(x-\alpha_{0})^{4}+ u(xα0)kb(x)u(x-\alpha_{0})^{k}b(x) p10mp^{10m} 6 p=3p=3 s=2s=2 0k30\leq k\leq 3 [16]
(xα0)j+(x-\alpha_{0})^{j}+ u(xα0)kb(x)u(x-\alpha_{0})^{k}b(x) p2m(pk)p^{2m(p-k)} j+2j+2 s=1s=1 1jp21\leq j\leq p-2 max{0,2jp}max\{0,2j-p\} k<j\leq k<j [16]
(xα0)ps2+(x-\alpha_{0})^{p^{s}-2}+ u(xα0)kb(x)u(x-\alpha_{0})^{k}b(x) p4mp^{4m} psp^{s} k=ps4,ps3k=p^{s}-4,p^{s}-3 [16]
(x2α0)+(x^{2}-\alpha_{0})+ ub(x)ub(x) p4m(ps1)p^{4m(p^{s}-1)} 4 Thm. 4.9
(x2α0)j+(x^{2}-\alpha_{0})^{j}+ u(x2α0)kb(x)u(x^{2}-\alpha_{0})^{k}b(x) p4m(pk)p^{4m(p-k)} 2j+22j+2 s=1s=1 1jp21\leq j\leq p-2 max{0,2jp}max\{0,2j-p\} k<j\leq k<j Thm. 4.9
(x2α0)ps1+(x^{2}-\alpha_{0})^{p^{s}-1}+ u(x2α0)ps2b(x)u(x^{2}-\alpha_{0})^{p^{s}-2}b(x) p4mp^{4m} 2ps2p^{s} Thm. 4.9
Table 2: MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, where b(x) is either zero or a unit in 𝔽pm[x]/xnpsα\mathbb{F}_{p^{m}}[x]/\langle x^{np^{s}}-\alpha\rangle

The codes in Table 1 are MDS symbol-pair α\alpha-constacyclic codes over 𝔽pm\mathbb{F}_{p^{m}}. For any positive integer nn, we prove that there is no other MDS symbol-pair α\alpha-constacyclic code of length npsnp^{s} except for the codes in Table 1.

The codes in Table 2 are MDS symbol-pair (α+uβ)(\alpha+u\beta)-constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}. Notice that the codes considered in [16] is a subcase of the codes we considered in this paper which confine n=1n=1. In [10], Dinh et al. gave two classes of MDS symbol-pair codes with parameters (2s,2m(2s1+4),32s2)(2^{s},2^{m(2^{s-1}+4)},3\cdot 2^{s-2}) and (3s,3m(23s1+4),23s1)(3^{s},3^{m(2\cdot 3^{s-1}+4)},2\cdot 3^{s-1}), but these two classes are actually not MDS symbol-pair codes. We will give a detailed analysis of these two classes of codes in section 4. Besides, we also obtain three new classes of MDS symbol-pair (α+uβ)(\alpha+u\beta)-constacyclic codes. Moreover, we prove that there is no other MDS symbol-pair (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} except for the codes we present in Table 2.

The remaining of this paper is organized as follows. In Section 2, we present some preliminaries and notations. In Section 3, we give the symbol-pair distances of all α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} and show all the MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} among these codes. In Section 4, we determine the symbol-pair distances of some of (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} and exhibit all the MDS symbol-pair codes among these codes.

2 Preliminaries

In this section, we give some notations and results that will be used in the sequel.

Let RR be a finite commutative ring with identity. A code 𝒞\mathcal{C} over RR is called linear if 𝒞\mathcal{C} is a submodule of RnR^{n}. The symbol-pair weight of a vector 𝒙\boldsymbol{x} in RnR^{n} is the symbol-pair distance between 𝒙\boldsymbol{x} and the all-zero vector 𝟎\boldsymbol{0} of RnR^{n}, denoted by wtsp(𝒙)\operatorname{wt_{sp}}(\boldsymbol{x}). The symbol-pair distance of a linear code is equal to the minimum symbol-pair weight of nonzero codewords of the linear code. For a unit λ\lambda of RR, the λ\lambda-constacyclic shift τλ\tau_{\lambda} on RnR^{n} is defined by:

τλ(x0,x1,,xn1)=(λxn1,x0,x1,,xn2).\tau_{\lambda}\left(x_{0},x_{1},\ldots,x_{n-1}\right)=\left(\lambda x_{n-1},x_{0},x_{1},\ldots,x_{n-2}\right).

A linear code 𝒞\mathcal{C} is said to be λ\lambda-constacyclic if τλ(𝒞)=𝒞\tau_{\lambda}(\mathcal{C})=\mathcal{C}. Each codeword 𝒄=(c0,c1,,cn1)\boldsymbol{c}=\left(c_{0},c_{1},\ldots,c_{n-1}\right) in 𝒞\mathcal{C} is customarily identified with its polynomial representation c(x)=c0+c1x++cn1xn1c(x)=c_{0}+c_{1}x+\cdots+c_{n-1}x^{n-1} in R[x]/xnλ{R[x]}/{\left\langle x^{n}-\lambda\right\rangle}. In the ring R[x]/xnλ{R[x]}/{\left\langle x^{n}-\lambda\right\rangle}, xc(x)xc(x) corresponds to performing a λ\lambda-constacyclic shift on 𝒄\boldsymbol{c}. The following theorem shows the algebraic property of constacyclic codes.

Proposition 2.1.

[17] A linear code 𝒞\mathcal{C} of length nn over RR is a λ\lambda-constacyclic code if and only if 𝒞\mathcal{C} is an ideal of the quotient ring R[x]/xnλ{R[x]}/{\left\langle x^{n}\!-\!\lambda\right\rangle}.

The ideal of R[x]/xnλ{R[x]}/{\left\langle x^{n}-\lambda\right\rangle} is generated by a factor of xnλx^{n}-\lambda. Let λ\lambda be a unit of RR. In this paper, we mainly consider the constacyclic codes of length npsnp^{s}, i.e., an ideal of the residue ring R[x]/xnpsλ{R[x]}/{\left\langle x^{np^{s}}-\lambda\right\rangle}. If RR is a Frobenius ring, one can find a unit λ0\lambda_{0} such that λ0ps=λ\lambda_{0}^{p^{s}}=\lambda. Therefore, we have xnpsλ=(xnλ0)psx^{np^{s}}-\lambda=(x^{n}-\lambda_{0})^{p^{s}}. In this paper, we make an assumption that xnλ0x^{n}-\lambda_{0} is irreducible in R[x]R[x]. The following result shows the irreducibility of binomials over finite fields.

Proposition 2.2.

[18] Let n2n\geq 2 be an integer and λ𝔽q\lambda\in\mathbb{F}_{q}^{*}. Then the binomial xnλx^{n}-\lambda is irreducible in 𝔽q[x]\mathbb{F}_{q}[x] if and only if the following two conditions are satisfied:

  1. 1.

    each prime factor of nn divides the order ee of λ\lambda in 𝔽q,\mathbb{F}_{q}^{*}, but not q1e\frac{q-1}{e};

  2. 2.

    q1(mod 4)q\equiv 1(\bmod\;4) if n0(mod 4)n\equiv 0(\bmod\;4).

According to Proposition 2.2, if nn satisfy the condition (ii) of Proposition 2.2 and all the prime factors of nn divide q1q-1, there exists λ𝔽q\lambda\in\mathbb{F}_{q}^{*} such that xnλx^{n}-\lambda is irreducible over 𝔽q\mathbb{F}_{q}.

2.1 Constacyclic Codes over 𝔽pm\mathbb{F}_{p^{m}}

Let α\alpha be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}}. We present some results of α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} in this subsection. Denote by \mathcal{F} the quotient ring 𝔽pm[x]/xnpsα{\mathbb{F}_{p^{m}}[x]}/{\left\langle x^{np^{s}}-\alpha\right\rangle}. The structures and the minimum Hamming distances of α\alpha-constacyclic codes are given in the following theorem.

Theorem 2.3.

[15, Theorem 3.6] Let 𝔽pm\mathbb{F}_{p^{m}} be a finite field and nn be a positive integer with gcd(n,p)=1\operatorname{gcd}(n,p)=1. Suppose that xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}} for α0𝔽pm\alpha_{0}\in\mathbb{F}_{p^{m}}^{*} and α=α0ps\alpha={\alpha_{0}}^{p^{s}}. Then the α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} are of the form 𝒞i=(xnα0)i\mathcal{C}_{i}=\langle\left(x^{n}-\alpha_{0}\right)^{i}\rangle, where 0ips0\leq i\leq p^{s}. And the minimum Hamming distance of 𝒞i\mathcal{C}_{i} is given by

dH(𝒞i)={1, if i=0,(θ+2)pk, if pspsk+θpsk1+1ipspsk+(θ+1)psk1, where 0θp2 and 0ks1,0 if i=ps.d_{H}(\mathcal{C}_{i})\!\!=\!\!\left\{\!\!\!\begin{array}[]{ll}1,&\text{ if }i=0,\\ (\theta+2)p^{k},&\text{ if }p^{s}\!-\!p^{s-k}\!+\!\theta p^{s-k-1}\!+\!1\!\leq\!i\!\leq\!p^{s}\!-\!p^{s-k}\!+\!(\theta\!+\!1)p^{s-k-1},\\ &\text{ where }0\leq\theta\leq p-2\text{ and }0\leq k\leq s-1,\\ 0&\text{ if }i=p^{s}.\end{array}\right.

For simplicity, we use the notation 𝒞i\mathcal{C}_{i} to denote the α\alpha-constacyclic codes of length npsnp^{s} with generator polynomial (xnα0)i(x^{n}-\alpha_{0})^{i}, where 0ips0\leq i\leq p^{s}. The following lemma shows a formula to compute the Hamming weight of the codeword (xnα0)i(x^{n}-\alpha_{0})^{i} in 𝒞i\mathcal{C}_{i}.

Lemma 2.4.

[19, Lemma 1] For any nonnegative integer i<ps,i<p^{s}, let i=is1ps1++i1p+i0i=i_{s-1}p^{s-1}+\cdots+i_{1}p+i_{0}, where 0i0,i1,,is1p10\leq i_{0},i_{1},\ldots,i_{s-1}\leq p-1, which means that (is1,,i0)(i_{s-1},\ldots,i_{0}) is the pp-adic expansion of ii. Then

wtH((xnα0)i)=j=0s1(ij+1).\operatorname{wt_{H}}((x^{n}-\alpha_{0})^{i})=\prod_{j=0}^{s-1}(i_{j}+1).

The following lemma shows the relationship between the symbol-pair distance and the Hamming distance.

Lemma 2.5.

[1, Theorem 2] For two codewords 𝐱,𝐲\boldsymbol{x},\boldsymbol{y} in a code 𝒞\mathcal{C} of length nn with 0<dH(𝐱,𝐲)<n0<\operatorname{d_{H}}(\boldsymbol{x},\boldsymbol{y})<n, define the set SH={jxjyj}S_{H}=\{j\mid x_{j}\neq y_{j}\}. Let SH=l=1LBlS_{H}=\cup_{l=1}^{L}B_{l} be a minimal partition of the set SHS_{H} to subsets of consecutive indices(indices may wrap around modulo nn). Then

dsp(𝒙,𝒚)=dH(𝒙,𝒚)+L.\operatorname{d_{sp}}(\boldsymbol{x},\boldsymbol{y})=\operatorname{d_{H}}(\boldsymbol{x},\boldsymbol{y})+L.

To calculate the symbol-pair distances, we will use the concept of the coefficient weight of polynomials, which was first proposed in [20]. For a polynomial f(x)=anxn++a1x+a0f(x)\!=\!a_{n}x^{n}+\cdots+a_{1}x+a_{0} of degree nn, the coefficient weight of ff, which denoted by cw(f)\operatorname{cw}(f), is

cw(f)={0, if f is a monomial min{|ij|:ai0,aj0,ij}, otherwise. \operatorname{cw}(f)=\left\{\begin{array}[]{ll}0,&\text{ if }f\text{ is a monomial }\\ \min\left\{|i-j|:a_{i}\neq 0,a_{j}\neq 0,i\neq j\right\},&\text{ otherwise. }\end{array}\right.

Intuitively, cw(f)\operatorname{cw}(f) is the smallest distance among exponents of nonzero terms of f(x)f(x). It is shown in [9] that if 0deg(g(x))cw(f(x))20\leq\operatorname{deg}(g(x))\leq\operatorname{cw}(f(x))-2 and deg(f(x))+deg(g(x))n2\operatorname{deg}(f(x))+\operatorname{deg}(g(x))\leq n-2, then

wtsp(f(x)g(x))=wtH(f(x))wtsp(g(x)).\operatorname{wt_{sp}}(f(x)g(x))=\operatorname{wt_{H}}(f(x))\cdot\operatorname{wt_{sp}}(g(x)). (2)

2.2 Constacyclic Codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}

Let α+uβ\alpha+u\beta be a unit in 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, i.e., α0\alpha\neq 0. This subsection gives the structures of (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}. Denote by \mathcal{R} the quotient ring (𝔽pm+u𝔽pm)[x]/xnpsαuβ(\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}})[x]/\left\langle x^{np^{s}}-\alpha-u\beta\right\rangle.

Note that the structures of the ideals of \mathcal{R} are quite different when the value of β\beta is equal to zero or not. The following lemma shows that all the ideals of \mathcal{R} are principal ideals in the case of β0\beta\neq 0.

Lemma 2.6.

[21, Theorem 3.3] Let xnα0x^{n}-\alpha_{0} be an irreducible polynomial in 𝔽pm[x]\mathbb{F}_{p^{m}}[x], α=α0ps\alpha=\alpha_{0}^{p^{s}}, and β\beta be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}}. Then the ring =(𝔽pm+u𝔽pm)[x]/xnpsαuβ\mathcal{R}=(\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}})[x]/\left\langle x^{np^{s}}-\alpha-u\beta\right\rangle is a chain ring whose ideal chain is as follows

=1xnα0(xnα0)2ps1(xnα0)2ps=0.\mathcal{R}=\langle 1\rangle\supsetneq\langle x^{n}-\alpha_{0}\rangle\supsetneq\cdots\supsetneq\langle\left(x^{n}-\alpha_{0}\right)^{2p^{s}-1}\rangle\supsetneq\langle\left(x^{n}-\alpha_{0}\right)^{2p^{s}}\rangle=\langle 0\rangle.

In other words, (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} are precisely the ideals 𝒟i=(xnα0)i\mathcal{D}_{i}=\langle\left(x^{n}-\alpha_{0}\right)^{i}\rangle of \mathcal{R}, where 0i2ps0\leq i\leq 2p^{s}. The number of codewords of (α+uβ)(\alpha+u\beta)-constacyclic code 𝒟i\mathcal{D}_{i} is pmn(2psi)p^{mn(2p^{s}-i)}. In particular, (xnα0)ps=u\langle\left(x^{n}-\alpha_{0}\right)^{p^{s}}\rangle=\langle u\rangle.

For the remaining case of β=0\beta=0, there are three types of ideals in \mathcal{R}.

Lemma 2.7.

[22, Corollary 3.10] Let xnα0x^{n}-\alpha_{0} be an irreducible polynomial in 𝔽pm[x]\mathbb{F}_{p^{m}}[x], α=α0ps\alpha=\alpha_{0}^{p^{s}}, and =𝔽pm[x]/xnpsα\mathcal{F}=\mathbb{F}_{p^{m}}[x]/\langle x^{np^{s}}-\alpha\rangle. Then all α\alpha-constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} of length npsnp^{s}, i.e.i.e. all ideals of the ring +u\mathcal{F}+u\mathcal{F}, are given by the following three types:

(I) 𝒟=(xnα0)k\mathcal{D}=\langle(x^{n}-\alpha_{0})^{k}\rangle, where 0kps0\leq k\leq p^{s}, with |𝒟|=p2mn(psk)|\mathcal{D}|=p^{2mn(p^{s}-k)}

(II) 𝒟=(xnα0)jb(x)+u(xnα0)k\mathcal{D}=\langle\left(x^{n}-\alpha_{0}\right)^{j}b(x)+u\left(x^{n}-\alpha_{0}\right)^{k}\rangle, where 0kps10\leq k\leq p^{s}-1, ps+k2jps1\left\lceil\frac{p^{s}+k}{2}\right\rceil\leq j\leq p^{s}-1 and either b(x)b(x) is 0 or b(x)b(x) is a unit in \mathcal{F}, with |𝒟|=pmn(psk)|\mathcal{D}|=p^{mn(p^{s}-k)}.

(III) 𝒟=(xnα0)jb(x)+u(xnα0)k,(xnα0)k+t\mathcal{D}=\langle\left(x^{n}-\alpha_{0}\right)^{j}b(x)+u\left(x^{n}-\alpha_{0}\right)^{k},\left(x^{n}-\alpha_{0}\right)^{k+t}\rangle, where 0kps20\leq k\leq p^{s}-2, 1tpsk11\leq t\leq p^{s}-k-1, k+t2jk+tk+\left\lceil\frac{t}{2}\right\rceil\leq j\leq k+t, and either b(x)b(x) is 0 or b(x)b(x) is a unit in \mathcal{F}, with |𝒟|=pmn(2ps2kt)|\mathcal{D}|=p^{mn(2p^{s}-2k-t)}.

Note that 𝔽pm\mathbb{F}_{p^{m}} is a subfield of 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}. We define the subfield subcode of codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} as the set of codewords whose components are in 𝔽pm\mathbb{F}_{p^{m}}. We use the notation 𝒟|F\left.\mathcal{D}\right|_{F} to denote the subfield subcode of 𝒟\mathcal{D} and dsp(𝒟F)\operatorname{d_{sp}}\left(\mathcal{D}_{F}\right) to denote the symbol-pair distance of 𝒟|F\left.\mathcal{D}\right|_{F}. We can represent the polynomial c(x)c(x) over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} as c(x)=a(x)+ub(x)c(x)=a(x)+ub(x), where a(x),b(x)𝔽pm[x]a(x),b(x)\in\mathbb{F}_{p^{m}}[x]. Observing that ci=ai+ubi=0c_{i}=a_{i}+ub_{i}=0 if and only if ai=bi=0a_{i}=b_{i}=0, where cic_{i}, aia_{i} and bib_{i} are coefficients of xix^{i} in polynomials c(x)c(x), a(x)a(x) and b(x)b(x), respectively. It follows that wtsp(c(x))max{wtsp(a(x)),wtsp(b(x))}\operatorname{wt_{sp}}(c(x))\geq\max\left\{\operatorname{{wt}_{sp}}(a(x)),\operatorname{{wt}_{sp}}(b(x))\right\}.

3 MDS Symbol-pair codes over 𝔽pm\mathbb{F}_{p^{m}}

3.1 Symbol-pair distances of constacyclic codes

Denote 𝒞i=(xnα)i\mathcal{C}_{i}=\langle(x^{n}-\alpha)^{i}\rangle as the α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}}, where 0ips0\leq i\leq p^{s}. In this subsection, we give a complete characterization of the symbol-pair distances of 𝒞i\mathcal{C}_{i}. The symbol-pair distances for the cases that n=1n=1 and n2n\geq 2 are different, and we only give the analysis of the case for n2n\geq 2. For the related results of the case of n=1n=1, we refer the readers to [9].

We discuss the symbol-pair distance of 𝒞i\mathcal{C}_{i} depends on the value of ii. For the trivial cases that i=0i=0 and i=psi=p^{s}, we have

dsp(𝒞0)=dsp()=2\operatorname{d_{sp}}(\mathcal{C}_{0})=\operatorname{d_{sp}}(\mathcal{F})=2

and

dsp(𝒞ps)=dsp(0)=0.\operatorname{d_{sp}}(\mathcal{C}_{p^{s}})=\operatorname{d_{sp}}(\langle 0\rangle)=0.

In order to consider the symbol-pair distances of 𝒞i\mathcal{C}_{i} for 1ips11\leq i\leq p^{s}-1, we divide the set {i,1ips1}\{i\in\mathbb{N},1\leq i\leq p^{s}-1\} into s(p1)s(p-1) parts, i.e.,

0ks10θp2{i,pspsk+θpsk1+1ipspsk+(θ+1)psk1}\displaystyle\cup_{\begin{subarray}{c}0\leq k\leq s-1\\ 0\leq\theta\leq p-2\end{subarray}}\{i\in\mathbb{N},p^{s}-p^{s-k}+\theta p^{s-k-1}+1\leq i\leq p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}\}
={i,1ips1}.\displaystyle=\{i\in\mathbb{N},1\leq i\leq p^{s}-1\}.

Note that dsp(𝒞i)dsp(𝒞j)\operatorname{d_{sp}}(\mathcal{C}_{i})\leq\operatorname{d_{sp}}(\mathcal{C}_{j}) if iji\leq j since 𝒞i𝒞j\mathcal{C}_{i}\supseteq\mathcal{C}_{j}. In order to determine the symbol-pair distances of 𝒞i\mathcal{C}_{i} for pspsk+θpsk1+1ipspsk+(θ+1)psk1p^{s}-p^{s-k}+\theta p^{s-k-1}+1\leq i\leq p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}, where 0ks10\leq k\leq s-1 and 0θp20\leq\theta\leq p-2, we consider an upper bound UU on the symbol-pair distance of 𝒞pspsk+(θ+1)psk1\mathcal{C}_{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}} and a lower bound LL on the symbol-pair distance of 𝒞pspsk+θpsk1+1\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1}. Observing that 𝒞pspsk+θpsk1+1𝒞pspsk+(θ+1)psk1\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1}\supseteq\mathcal{C}_{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}}, therefore,

Ldsp(𝒞pspsk+θpsk1+1)dsp(𝒞pspsk+(θ+1)psk1)U.L\leq\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1})\leq\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}})\leq U.

If L=UL=U, then we obtain the symbol-pair distances of 𝒞i\mathcal{C}_{i} for each ii belongs to the interval [pspsk+θpsk1+1,pspsk+(θ+1)psk1][p^{s}-p^{s-k}+\theta p^{s-k-1}+1,p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}]. The following lemma shows the corresponding upper bound.

Lemma 3.1.

Let n,k,θn,k,\theta be integers such that n2n\geq 2, 0ks10\leq k\leq s-1 and 0θp20\leq\theta\leq p-2. Then dsp(𝒞pspsk+(θ+1)psk1)2(θ+2)pk\operatorname{d_{sp}}\left(\mathcal{C}_{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}}\right)\leq 2(\theta+2)p^{k}.

Proof..

By Lemma 2.4, we have

wtH((xnα0)pspsk+(θ+1)psk1)=(θ+2)pk.\operatorname{wt_{H}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}})=(\theta+2)p^{k}.

Since

cw((xnα0)pspsk+(θ+1)psk1)n2,\operatorname{cw}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}})\geq n\geq 2,

it follows that

wtsp((xnα0)pspsk+(θ+1)psk1)=2(θ+2)pk.\operatorname{wt_{sp}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}})=2(\theta+2)p^{k}.

Thus

dsp(𝒞pspsk+(θ+1)psk1)2(θ+2)pk.\operatorname{d_{sp}}\left(\mathcal{C}_{p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}}\right)\leq 2(\theta+2)p^{k}.

The lower bounds of symbol-pair distances of 𝒞pspsk+θpsk1+1\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1} is more complicated and we consider it in four subcases:

  1. 1.

    θ=0\theta=0, k=0k=0;

  2. 2.

    θ=0\theta=0, 1ks21\leq k\leq s-2;

  3. 3.

    1θp21\leq\theta\leq p-2, 0ks20\leq k\leq s-2;

  4. 4.

    0θp20\leq\theta\leq p-2, k=s1k=s-1.

We start with the first case of k=0k=0 and θ=0\theta=0.

Lemma 3.2.

The pair distance dsp(𝒞1)\operatorname{d_{sp}}(\mathcal{C}_{1}) of 𝒞1=xnλ0𝔽pm[x]/xnpsλ\mathcal{C}_{1}=\langle x^{n}-\lambda_{0}\rangle\subseteq\mathbb{F}_{p^{m}}[x]/\langle x^{np^{s}}-\lambda\rangle is greater than or equal to 44.

Proof..

Verify that a codeword with symbol-pair weight two must be of form uxjux^{j}, which is invertible in \mathcal{F}. Hence there is no codeword in 𝒞1\mathcal{C}_{1} with symbol-pair weight two. Note that a codeword with symbol-pair weight three has the form u0xj+u1xj+1u_{0}x^{j}+u_{1}x^{j+1}, where 0jnps10\leq j\leq np^{s}-1. It follows that xnα0x^{n}-\alpha_{0} divides u0xj+u1xj+1=(u0+u1x)xju_{0}x^{j}+u_{1}x^{j+1}=(u_{0}+u_{1}x)x^{j}, hence xnα0x^{n}-\alpha_{0} divides u0+u1xu_{0}+u_{1}x, which is impossible since the degree of xnα0x^{n}-\alpha_{0} is greater than that of u0+u1xu_{0}+u_{1}x. Hence there is no codeword in 𝒞1\mathcal{C}_{1} with symbol-pair weight three. Therefore, we obtain dsp(𝒞1)4\operatorname{d_{sp}}(\mathcal{C}_{1})\geq 4. ∎

The following lemma shows the lower bound of the minimum pair-distance of 𝒞pspsk+1\mathcal{C}_{p^{s}-p^{s-k}+1} in the case that θ=0\theta=0 and 1ks21\leq k\leq s-2.

Lemma 3.3.

Let n,kn,k be integers such that n2n\geq 2 and 1ks21\leq k\leq s-2. Then dsp(𝒞pspsk+1)4pk\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+1})\geq 4p^{k}.

Proof..

Let c(x)c(x) be any nonzero codeword in 𝒞pspsk+1\mathcal{C}_{p^{s}-p^{s-k}+1}. Then there is a nonzero element f(x)f(x) in \mathcal{F} such that c(x)=(xnα0)pspsk+1f(x)c(x)=\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+1}f(x) with deg(f)<npsn(pspsk+1)=n(psk1)\operatorname{deg}(f)<np^{s}-n(p^{s}-p^{s-k}+1)=n(p^{s-k}-1). Let g(x)=(xnα0)f(x)g(x)=\left(x^{n}-\alpha_{0}\right)f(x). Then deg(g)<npsk\operatorname{deg}(g)<np^{s-k}, wtH(g(x))2\operatorname{wt_{H}}(g(x))\geq 2, and

c(x)\displaystyle c(x) =(xnα0)pspskg(x)\displaystyle=\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}}g(x)
=[j=0pk1(pk1j)(α0)psk(pkj1)xnpskj]g(x).\displaystyle=\left[\sum_{j=0}^{p^{k}-1}\binom{p^{k}-1}{j}\left(-\alpha_{0}\right)^{p^{s-k}\left(p^{k}-j-1\right)}x^{np^{s-k}j}\right]g(x).

We discuss the symbol-pair weight of c(x)c(x) in the following three cases.

Case 1: If deg(g)npsk2\operatorname{deg}(g)\leq np^{s-k}-2, then

cw((xnα0)pspsk)=npskdeg(g)+2\operatorname{cw}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}})=np^{s-k}\geq\operatorname{deg}(g)+2

and

deg((xnα0)pspsk)+deg(g)nps2.\operatorname{deg}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}})+\operatorname{deg}(g)\leq np^{s}-2.

By equation (2), we have

wtsp(c(x))=wtH((xnα0)pspsk)wtsp(g(x))=pkwtsp(g(x)).\begin{array}[]{rl}\operatorname{wt_{sp}}\left(c(x)\right)&=\operatorname{wt_{H}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}})\cdot\operatorname{wt_{sp}}\left(g(x)\right)\\ &=p^{k}\operatorname{wt_{sp}}\left(g(x)\right).\\ \end{array}

According to Lemma 3.2, wtsp(g(x))dsp(𝒞1)4\operatorname{wt_{sp}}(g(x))\geq\operatorname{d_{sp}}(\mathcal{C}_{1})\geq 4, which deduces that wtsp(c(x))4pk\operatorname{wt_{sp}}\left(c(x)\right)\geq 4p^{k}.

Case 2: If deg(g)=npsk1\operatorname{deg}(g)=np^{s-k}-1 and g(0)=0g(0)=0, then there is an integer l>0l>0 such that g(x)=xlg(x)g(x)=x^{l}g^{\prime}(x), where deg(g)npsk2\operatorname{deg}(g^{\prime})\leq np^{s-k}-2. Clearly,

wtsp(c(x))=wtsp((xnα0)pspskg(x))=wtsp((xnα0)pspskxlg(x))=wtsp((xnα0)pspskg(x)).\begin{array}[]{rl}\operatorname{wt_{sp}}(c(x))&=\operatorname{wt_{sp}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}}g(x))\\ &=\operatorname{wt_{sp}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}}x^{l}g^{\prime}(x))\\ &=\operatorname{wt_{sp}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}}g^{\prime}(x)).\end{array}

Similar to the proof in Case 1, we have wtsp(c(x))4pk\operatorname{wt_{sp}}\left(c(x)\right)\geq 4p^{k}.

Case 3: If deg(g)=npsk1\operatorname{deg}(g)\!=\!np^{s-k}-1 and g(0)0g(0)\neq 0, then g(x)=(xnα0)f(x)g(x)\!=\!\left(x^{n}-\alpha_{0}\right)f(x) is an element in xnα0\langle x^{n}-\alpha_{0}\rangle of the ring 𝔽pm[x]/xnpskα0npsk{\mathbb{F}_{p^{m}}[x]}/{\langle x^{np^{s-k}}-{\alpha_{0}}^{np^{s-k}}\rangle}, i.e.i.e., a codeword of an α0npsk\alpha_{0}^{np^{s-k}}- constacyclic code of length npsknp^{s-k} over 𝔽pm\mathbb{F}_{p^{m}}. According to Lemma 3.2, wtsp(g(x))4\operatorname{wt_{sp}}(g(x))\geq 4, which implies that g(x)g(x) cannot be the form r0+r1xnpsk1r_{0}+r_{1}x^{np^{s-k}-1}, where r0,r10r_{0},r_{1}\neq 0. Hence wtH(g(x))3\operatorname{wt_{H}}(g(x))\geq 3. When wtH(g(x))4\operatorname{wt_{H}}(g(x))\geq 4, we have

wtsp(c(x))wtH(c(x))=wtH((xnα0)pspsk)wtH(g(x))4pk.\begin{array}[]{rl}\operatorname{wt_{sp}}(c(x))&\geq\operatorname{wt_{H}}(c(x))\\ &=\operatorname{wt_{H}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}})\cdot\operatorname{wt_{H}}(g(x))\\ &\geq 4p^{k}.\end{array}

When wtH(g(x))=3\operatorname{wt_{H}}(g(x))=3, we assume that

g(x)=r0+r1xl+r2xnpsk1g(x)=r_{0}+r_{1}x^{l}+r_{2}x^{np^{s-k}-1},

where 0<l<npsk10<l<np^{s-k}-1 and r0,r1,r20r_{0},r_{1},r_{2}\neq 0. Let SHS_{H} be a set of the exponents of nonzero terms of c(x)c(x). Then the minimal partition of the set SHS_{H} to subsets of consecutive indices may be the following three cases:
if l=1l=1,

SH=1jpk1{npskj1,npskj,npskj+1}{0,1,nps1};S_{H}=\cup_{1\leq j\leq p^{k}-1}\{np^{s-k}j-1,np^{s-k}j,np^{s-k}j+1\}\cup\{0,1,np^{s}-1\};

if l=npsk2l=np^{s-k}-2,

SH=1jpk1{npskj2,npskj1,npskj}{0,nps1,nps2};S_{H}=\cup_{1\leq j\leq p^{k}-1}\{np^{s-k}j-2,np^{s-k}j-1,np^{s-k}j\}\cup\{0,np^{s}-1,np^{s}-2\};

if 1<l<npsk21<l<np^{s-k}-2,

SH=1jpk1({npskj1,npskj}{npskj+l}){0,nps1}{l}.S_{H}=\cup_{1\leq j\leq p^{k}-1}(\{np^{s-k}j-1,np^{s-k}j\}\cup\{np^{s-k}j+l\})\cup\{0,np^{s}-1\}\cup\{l\}.

According to the above three cases, we have dsp(𝒞pspsk+1)4pk\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+1})\geq 4p^{k}. This completes the proof. ∎

The following lemma is considering the case of 0ks20\leq k\leq s-2 and 1θp21\leq\theta\leq p-2.

Lemma 3.4.

Let n,k,θn,k,\theta be integers such that n2n\geq 2, 0ks20\leq k\leq s-2, and 1θp21\leq\theta\leq p-2. Then dsp(𝒞pspsk+θpsk1+1)2(θ+2)pk\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1})\geq 2(\theta+2)p^{k}.

Proof..

Let c(x)c(x) be any nonzero codeword in 𝒞pspsk+θpsk1+1\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1}. Then there is a nonzero element f(x)f(x) in \mathcal{F} such that c(x)=(xnα0)pspsk+θpsk1+1f(x)c(x)\!\!=\!\!\left(x^{n}\!-\alpha_{0}\right)^{p^{s}-p^{s-k}+\theta p^{s-k-1}+1}\!f(x) with deg(f)<n[(pθ)psk11]\operatorname{deg}(f)<n[(p-\theta)p^{s-k-1}-1]. Let g(x)=(xnα0)f(x)g(x)=\left(x^{n}-\alpha_{0}\right)f(x). Then deg(g)<n(pθ)psk1\operatorname{deg}(g)<n(p-\theta)p^{s-k-1}, wtH(g(x))2\operatorname{wt_{H}}(g(x))\geq 2, and

c(x)=(xnα0)pspsk+θpsk1g(x)=(xnpsk1α0psk1)pk+1p+θg(x).\begin{array}[]{rl}c(x)=&\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+\theta p^{s-k-1}}g(x)\\ =&(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}g(x).\end{array}

Suppose that 𝒯={i1,,iη}\mathcal{T}=\{i_{1},\cdots,i_{\eta}\} is a set of the exponents of nonzero terms of g(x)g(x). For an integer ii, let 𝒮i\mathcal{S}_{i} be a set of integers congruent to ii modulo npsk1np^{s-k-1}, i.e.i.e., 𝒮i={jji(modnpsk1)}\mathcal{S}_{i}=\{j\mid j\equiv i\;(\bmod\;np^{s-k-1})\}. We consider two cases that 𝒯𝒮i1\mathcal{T}\subset\mathcal{S}_{i_{1}} and 𝒯𝒮i1\mathcal{T}\not\subset\mathcal{S}_{i_{1}}.

Case 1: When 𝒯𝒮i1\mathcal{T}\subset\mathcal{S}_{i_{1}}. We assume that g(x)=t=1ηrtxi1+npsk1utg(x)=\sum_{t=1}^{\eta}r_{t}x^{i_{1}+np^{s-k-1}u_{t}}, where 0=u1<<uη0=u_{1}<\ldots<u_{\eta}. Thus

c(x)=(xnpsk1α0psk1)pk+1p+θg(x)=[(xnpsk1α0psk1)pk+1p+θt=1ηrtxnpsk1ut]xi1.\begin{array}[]{rl}c(x)=&(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}g(x)\\ =&\left[(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}\sum_{t=1}^{\eta}r_{t}x^{np^{s-k-1}u_{t}}\right]x^{i_{1}}.\end{array}

It follows that cw(c(x))npsk1np4\operatorname{cw}(c(x))\geq np^{s-k-1}\geq np\geq 4. Hence

wtsp(c(x))=2wtH(c(x))2dH(𝒞pspsk+θpsk1+1)2(θ+2)pk.\operatorname{wt_{sp}}(c(x))=2\cdot\operatorname{wt_{H}}(c(x))\geq 2\cdot\operatorname{d_{H}}(\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1})\geq 2(\theta+2)p^{k}.

Case 2: When 𝒯𝒮i1\mathcal{T}\not\subset\mathcal{S}_{i_{1}}. We only show that when 𝒯𝒮i1𝒮i2\mathcal{T}\subset\mathcal{S}_{i_{1}}\cup\mathcal{S}_{i_{2}} with i1i2(modnpsk1)i_{1}\not\equiv i_{2}\;(\bmod\;np^{s-k-1}), the rest is similar. Let g(x)=g1(x)+g2(x)g(x)=g_{1}(x)+g_{2}(x), g1(x)=t=1η1rt(1)xi1+npsk1utg_{1}(x)=\sum_{t=1}^{\eta_{1}}r_{t}^{(1)}x^{i_{1}+np^{s-k-1}u_{t}} and g2(x)=t=1η2rt(2)xi2+npsk1vtg_{2}(x)=\sum_{t=1}^{\eta_{2}}r_{t}^{(2)}x^{i_{2}+np^{s-k-1}v_{t}}, where 0=u1<<uη10=u_{1}<\ldots<u_{\eta_{1}} and 0=v1<<vη20=v_{1}<\ldots<v_{\eta_{2}}. Then

c(x)=(xnpsk1α0psk1)pk+1p+θ(g1(x)+g2(x))=[(xnpsk1α0psk1)pk+1p+θt=1η1rt(1)xnpsk1ut]xi1+[(xnpsk1α0psk1)pk+1p+θt=1η2rt(2)xnpsk1vt]xi2.\begin{array}[]{rl}c(x)=&(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}\left(g_{1}(x)+g_{2}(x)\right)\\ =&\left[(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}\sum_{t=1}^{\eta_{1}}r_{t}^{(1)}x^{np^{s-k-1}u_{t}}\right]x^{i_{1}}\\ &+\left[(x^{np^{s-k-1}}-\alpha_{0}^{p^{s-k-1}})^{p^{k+1}-p+\theta}\sum_{t=1}^{\eta_{2}}r_{t}^{(2)}x^{np^{s-k-1}v_{t}}\right]x^{i_{2}}.\\ \end{array}

Let SHS_{H} be a set of the exponents of nonzero terms of c(x)c(x). Then

SH={i1+npsk1wjwj(1),1jl1}{i2+npsk1wjwj(2),1jl2},\begin{array}[]{rl}S_{H}=&\{i_{1}+np^{s-k-1}w_{j}\mid w_{j}^{(1)}\in\mathbb{N},1\leq j\leq l_{1}\}\\ &\cup\{i_{2}+np^{s-k-1}w_{j}\mid w_{j}^{(2)}\in\mathbb{N},1\leq j\leq l_{2}\},\end{array}

where lt=wtH((xnα0)pspsk+θpsk1gt(x))l_{t}=\operatorname{wt_{H}}(\left(x^{n}-\alpha_{0}\right)^{p^{s}-p^{s-k}+\theta p^{s-k-1}}g_{t}(x)) for t=1,2t=1,2. By Theorem 2.3, dH(𝒞pspsk+θpsk1)(θ+1)pk\operatorname{d_{H}}(\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}})\geq(\theta+1)p^{k}, and hence l1,l2(θ+1)pkl_{1},l_{2}\geq(\theta+1)p^{k}. Since npsk14np^{s-k-1}\geq 4, SHS_{H} is at least partitioned into (θ+1)pk(\theta+1)p^{k} subsets of consecutive indices. By Theorem 2.5,

wtsp(c(x))3(θ+1)pk2(θ+2)pk.\operatorname{wt_{sp}}(c(x))\geq 3(\theta+1)p^{k}\geq 2(\theta+2)p^{k}.

Therefore, we have proved that wtsp(c(x))2(θ+2)pk\operatorname{wt_{sp}}(c(x))\geq 2(\theta+2)p^{k} holds in all cases, that is, dsp(𝒞pspsk+θpsk1+1)2(θ+2)pk\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p^{s-k}+\theta p^{s-k-1}+1})\geq 2(\theta+2)p^{k}.

The following lemma is about the case of k=s1k=s-1 and 0θp20\leq\theta\leq p-2.

Lemma 3.5.

Let n,θn,\theta be integers such that n2n\geq 2 and 1θp11\leq\theta\leq p-1. Then dsp(𝒞psp+θ)2(θ+1)ps1\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p+\theta})\geq 2(\theta+1)p^{s-1}.

Proof..

Let c(x)c(x) be any nonzero codeword in 𝒞psp+θ\mathcal{C}_{p^{s}-p+\theta}. Then there is a nonzero element f(x)f(x) in \mathcal{F} such that c(x)=(xnα0)psp+θf(x)c(x)=\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}f(x) with deg(f)<n(pθ)\operatorname{deg}(f)<n(p-\theta). Suppose that 𝒯={i1,,iη}\mathcal{T}=\{i_{1},\cdots,i_{\eta}\} is a set of the exponents of nonzero terms of f(x)f(x). For an integer ii, let 𝒮i\mathcal{S}_{i} be a set of integers congruent to ii modulo nn, i.e.i.e., 𝒮i={jji(modn)}\mathcal{S}_{i}=\{j\mid j\equiv i\;(\bmod\;n)\}. We consider the set 𝒯\mathcal{T} in two cases.

Case 1: When 𝒯𝒮i1\mathcal{T}\subset\mathcal{S}_{i_{1}}. We may assume that f(x)=t=1ηrtxi1+nutf(x)=\sum_{t=1}^{\eta}r_{t}x^{i_{1}+nu_{t}}, where 0=u1<<uη0=u_{1}<\ldots<u_{\eta}. Then

c(x)=[(xnα0)psp+θt=1ηrtxnut]xi1.c(x)=\left[\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}\sum_{t=1}^{\eta}r_{t}x^{nu_{t}}\right]x^{i_{1}}.

It follows that cw(c(x))n2\operatorname{cw}(c(x))\geq n\geq 2, and hence,

wtsp(c(x))=2wtH(c(x))2dH(𝒞psp+θ)2(θ+1)ps1.\operatorname{wt_{sp}}(c(x))=2\cdot\operatorname{wt_{H}}(c(x))\geq 2\cdot\operatorname{d_{H}}(\mathcal{C}_{p^{s}-p+\theta})\geq 2(\theta+1)p^{s-1}.

Case 2: When 𝒯𝒮i1\mathcal{T}\not\subset\mathcal{S}_{i_{1}}. We may assume that 𝒯𝒮i1𝒮i2\mathcal{T}\subset\mathcal{S}_{i_{1}}\cup\mathcal{S}_{i_{2}}, where i1i2(modn)i_{1}\not\equiv i_{2}\;(\bmod\;n). Let f(x)=f1(x)+f2(x)f(x)=f_{1}(x)+f_{2}(x), f1(x)=t=1η1rt(1)xi1+nutf_{1}(x)=\sum_{t=1}^{\eta_{1}}r_{t}^{(1)}x^{i_{1}+nu_{t}}, and f2(x)=t=1η2rt(2)xi2+nvtf_{2}(x)=\sum_{t=1}^{\eta_{2}}r_{t}^{(2)}x^{i_{2}+nv_{t}}, where 0=u1<<uη10=u_{1}<\ldots<u_{\eta_{1}} and 0=v1<<vη20=v_{1}<\ldots<v_{\eta_{2}}. Then

c(x)=[(xnα0)psp+θt=1η1rt(1)xnut]xi1+[(xnα0)psp+θt=1η2rt(2)xnvt]xi2.\begin{array}[]{rl}c(x)=&\left[\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}\sum_{t=1}^{\eta_{1}}r_{t}^{(1)}x^{nu_{t}}\right]x^{i_{1}}\\ &+\left[\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}\sum_{t=1}^{\eta_{2}}r_{t}^{(2)}x^{nv_{t}}\right]x^{i_{2}}.\end{array}

Since i1i2(modn)i_{1}\not\equiv i_{2}\;(\bmod\;n),

wtH(c(x))=wtH([(xnα0)psp+θt=1η1rt(1)xnut]xi1)+wtH([(xnα0)psp+θt=1η2rt(2)xnvt]xi2)2dH(𝒞psp+θ)=2(θ+1)ps1,\begin{array}[]{rl}\operatorname{wt_{H}}(c(x))=&\operatorname{wt_{H}}\left([\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}\sum_{t=1}^{\eta_{1}}r_{t}^{(1)}x^{nu_{t}}]x^{i_{1}}\right)\\ &+\operatorname{wt_{H}}\left([\left(x^{n}-\alpha_{0}\right)^{p^{s}-p+\theta}\sum_{t=1}^{\eta_{2}}r_{t}^{(2)}x^{nv_{t}}]x^{i_{2}}\right)\\ \geq&2\cdot\operatorname{d_{H}}(\mathcal{C}_{p^{s}-p+\theta})\\ =&2(\theta+1)p^{s-1},\end{array}

which implies that wtsp(c(x))wtH(c(x))2(θ+1)ps1\operatorname{wt_{sp}}(c(x))\geq\operatorname{wt_{H}}(c(x))\geq 2(\theta+1)p^{s-1}. Combining the two cases discussed above, it follows that dsp(𝒞psp+θ)2(θ+1)ps1\operatorname{d_{sp}}(\mathcal{C}_{p^{s}-p+\theta})\geq 2(\theta+1)p^{s-1}. ∎

Combining the upper bound given in Lemma 3.1 and the lower bounds given in Lemma 3.2, 3.3, 3.4, and 3.5, the symbol-pair distances of α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} can be completely determined. In order to maintain the integrity of the theorem, we present the symbol-pair distances for both the cases that n=1n=1 and n2n\geq 2.

Theorem 3.6.

Let α0\alpha_{0} be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}} and α=α0ps\alpha=\alpha_{0}^{p^{s}}. Given an α\alpha-constacyclic code of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}}. If it has the form as 𝒞i=(xnα0)i\mathcal{C}_{i}=\langle\left(x^{n}-\alpha_{0}\right)^{i}\rangle\subseteq\mathcal{F}, for i{0,1,,ps}i\in\left\{0,1,\ldots,p^{s}\right\}, then the symbol-pair distance dsp(𝒞i)\operatorname{d_{sp}}(\mathcal{C}_{i}) is completely determined by:

  1. 1.

    (Trivial cases) dsp(𝒞0)=2\operatorname{d_{sp}}(\mathcal{C}_{0})=2 and dsp(𝒞ps)=0\operatorname{d_{sp}}(\mathcal{C}_{p^{s}})=0.

  2. 2.

    When n=1n=1,

    dsp(𝒞i)={3pk, if i=pspsk+1 and 0ks2;4pk, if pspsk+2ipspsk+psk1 and 0ks2;2(θ+2)pk, if pspsk+θpsk1+1ipspsk+(θ+1)psk1,0ks2 and 1θp2;(θ+2)ps1, if i=psp+θ and 1θp2;ps, if i=ps1.\operatorname{d_{sp}}(\mathcal{C}_{i})=\left\{\begin{array}[]{ll}3p^{k},&\text{ if }i=p^{s}-p^{s-k}+1\text{ and }0\leq k\leq s-2;\\ 4p^{k},&\text{ if }p^{s}-p^{s-k}+2\leq i\leq p^{s}-p^{s-k}+p^{s-k-1}\\ &\text{ and }0\leq k\leq s-2;\\ 2(\theta+2)p^{k},&\text{ if }p^{s}-p^{s-k}+\theta p^{s-k-1}+1\leq i\leq\\ &\quad p^{s}-p^{s-k}+(\theta+1)p^{s-k-1},\\ &\quad 0\leq k\leq s-2\text{ and }1\leq\theta\leq p-2;\\ (\theta+2)p^{s-1},&\text{ if }i=p^{s}-p+\theta\text{ and }1\leq\theta\leq p-2;\\ p^{s},&\text{ if }i=p^{s}-1.\end{array}\right.
  3. 3.

    When n2n\geq 2,

    dsp(𝒞i)=2(θ+2)pk,\operatorname{d_{sp}}(\mathcal{C}_{i})=2(\theta+2)p^{k},

    where pspsk+θpsk1+1ipspsk+(θ+1)psk1p^{s}-p^{s-k}+\theta p^{s-k-1}+1\leq i\leq p^{s}-p^{s-k}+(\theta+1)p^{s-k-1}, 0ks10\leq k\leq s-1 and 0θp20\leq\theta\leq p-2.

3.2 MDS codes

In Table 1, we summarize the MDS symbol-pair codes given in the previous literature. In this subsection , we use the result of symbol-pair distances obtained in the former subsection to prove that when xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}, there are no other MDS symbol-pair codes except for these in Table 1.

Theorem 3.7.

Let α0\alpha_{0} be a nonzero element of 𝔽pm\mathbb{F}_{p^{m}} and α=α0ps\alpha=\alpha_{0}^{p^{s}}. When xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}, there are no other nontrivial MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} except the MDS codes shown in Table 1.

Proof..

When xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}, the α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} are 𝒞i=(xnα0)i\mathcal{C}_{i}=\langle\left(x^{n}-\alpha_{0}\right)^{i}\rangle, where 0ips0\leq i\leq p^{s}. Note that |𝒞i|=|(xnα0)i|=pm(npsni)|\mathcal{C}_{i}|=|\langle(x^{n}-\alpha_{0})^{i}\rangle|=p^{m(np^{s}-ni)} and the Singleton Bounds for symbol-pair constacyclic codes force |𝒞i|pm(npsdsp(𝒞i)+2)|\mathcal{C}_{i}|\leq p^{m(np^{s}-\operatorname{d_{sp}}(\mathcal{C}_{i})+2)}, i.e.i.e., nidsp(𝒞i)2ni\geq\operatorname{d_{sp}}(\mathcal{C}_{i})-2 for i{0,1,,ps1}i\in\{0,1,\ldots,p^{s}-1\}. Therefore, 𝒞i\mathcal{C}_{i} is an MDS symbol-pair code if and only if nidsp(𝒞i)+2=0ni-\operatorname{d_{sp}}(\mathcal{C}_{i})+2=0. If nn is equal to 1 or 2, all the MDS codes have been constructed by Dinh et al.[9, 14] and listed in Table 1. If n3n\geq 3, let i=pspsk+θpsk1+γi=p^{s}-p^{s-k}+\theta p^{s-k-1}+\gamma with 0ks10\leq k\leq s-1, 0θp20\leq\theta\leq p-2, and 1γpsk11\leq\gamma\leq p^{s-k-1}. By Theorem 3.6, we have dsp(𝒞i)=2(θ+2)pk\operatorname{d_{sp}}(\mathcal{C}_{i})=2(\theta+2)p^{k}, hence

nidsp(𝒞i)+2\displaystyle ni-\operatorname{d_{sp}}(\mathcal{C}_{i})+2
=\displaystyle= n(pspsk+θpsk1+γ)2(θ+2)pk+2\displaystyle n(p^{s}-p^{s-k}+\theta p^{s-k-1}+\gamma)-2(\theta+2)p^{k}+2
=\displaystyle= [npsk2(θ+2)](pk1)+(npsk12)θ+nγ2\displaystyle[np^{s-k}-2(\theta+2)](p^{k}-1)+(np^{s-k-1}-2)\theta+n\gamma-2
\displaystyle\geq n2>0.\displaystyle n-2>0.

Therefore, there is no other MDS symbol-pair α\alpha-constacyclic code. ∎

4 MDS Symbol-pair codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}

4.1 The pair distances of constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}

Let α0,β𝔽pm\alpha_{0},\beta\in\mathbb{F}_{p^{m}} and α00\alpha_{0}\neq 0. Denote α\alpha as α=α0ps\alpha=\alpha_{0}^{p^{s}}. In this section, we characterize the relationship between the symbol-pair distances of α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} and the symbol-pair distances of (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, where nn is a positive integer coprime to pp and xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}. We analyze the symbol-pair distances in the cases that β0\beta\neq 0 and β=0\beta=0. When β0\beta\neq 0, =(𝔽pm+u𝔽pm)[x]/xnpsαuβ\mathcal{R}=(\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}})[x]/\left\langle x^{np^{s}}-\alpha-u\beta\right\rangle is a chain ring and all the ideals of \mathcal{R} are 𝒟i=(xnα0)i\mathcal{D}_{i}=\langle(x^{n}-\alpha_{0})^{i}\rangle, where 0i2ps0\leq i\leq 2p^{s}.

Theorem 4.1.

Let α0\alpha_{0} be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}} satisfying that xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}. Denote α=α0ps\alpha=\alpha_{0}^{p^{s}}. Let β\beta be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}}. The symbol-pair distance of 𝒟i=(xnα0)i\mathcal{D}_{i}=\langle(x^{n}-\alpha_{0})^{i}\rangle is

dsp(𝒟i)={2,if 0ips;dsp((xnα0)ipsF),if ps+1i2ps.\operatorname{d_{sp}}(\mathcal{D}_{i})=\left\{\begin{array}[]{ll}2,&\text{if }0\leq i\leq p^{s};\\ \operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle_{F}),&\text{if }p^{s}+1\leq i\leq 2p^{s}.\\ \end{array}\right.
Proof..

When 0ips0\leq i\leq p^{s}, we have u(x)=(xnα0)ps𝒟iu(x)=\left(x^{n}-\alpha_{0}\right)^{p^{s}}\in\mathcal{D}_{i} and the symbol-pair weight of u(x)u(x) is 22. Combining with dsp(Di)2\operatorname{d_{sp}}(D_{i})\geq 2, we have the symbol-pair distance of 𝒟i\mathcal{D}_{i} is 22.

When ps+1i2psp^{s}+1\leq i\leq 2p^{s}, we have

(xnα0)i=u(xnα0)ips,\langle(x^{n}-\alpha_{0})^{i}\rangle=\langle u(x^{n}-\alpha_{0})^{i-p^{s}}\rangle,

which means that the codewords in the code (xnα0)i\langle(x^{n}-\alpha_{0})^{i}\rangle over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} are precisely the codewords in the code (xnα0)ips\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle over 𝔽pm\mathbb{F}_{p^{m}} multiplied with uu. Therefore, the symbol-pair distance of 𝒟i\mathcal{D}_{i} is equal to that of (xnα0)ipsF\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle_{F}. ∎

The symbol-pair distance of 𝒟i\mathcal{D}_{i} is more complicated when β=0\beta=0, and we analysis it in three cases according to the three types of α\alpha-constacyclic codes shown in Theorem 2.7.

Theorem 4.2.

Let 𝒟\mathcal{D} be an α\alpha-constacyclic code of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} with type I in Theorem 2.7, i.e.i.e., 𝒟=(xnα0)k\mathcal{D}=\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle for 0kps0\leq k\leq p^{s}. Then dsp(𝒟)=dsp((xnα0)kF)\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle_{F}).

Proof..

Notice that 𝒟u(xnα0)k\mathcal{D}\supseteq\langle u\left(x^{n}-\alpha_{0}\right)^{k}\rangle, and hence

dsp(𝒟)dsp(u(xnα0)k)=dsp((xnα0)kF).\operatorname{d_{sp}}(\mathcal{D})\leq\operatorname{d_{sp}}(\langle u\left(x^{n}-\alpha_{0}\right)^{k}\rangle)=\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle_{F}). (3)

Next, for any nonzero codeword c(x)c(x) in 𝒟\mathcal{D}, there are f0(x),fu(x)f_{0}(x),f_{u}(x) in 𝔽pm[x]\mathbb{F}_{p^{m}}[x] such that

c(x)=[f0(x)+ufu(x)](xnα0)k=f0(x)(xnα0)k+ufu(x)(xnα0)k.\begin{array}[]{rl}c(x)&=[f_{0}(x)+uf_{u}(x)]\left(x^{n}-\alpha_{0}\right)^{k}\\ &=f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{k}+uf_{u}(x)\left(x^{n}-\alpha_{0}\right)^{k}.\end{array}

It follows that

wtsp(c(x))\displaystyle\operatorname{wt_{sp}}(c(x)) max{wtsp(f0(x)(xnα0)k),wtsp(fu(x)(xnα0)k)}\displaystyle\geq\max\{\operatorname{wt_{sp}}(f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{k}),\operatorname{wt_{sp}}(f_{u}(x)\left(x^{n}-\alpha_{0}\right)^{k})\}
dsp((xnα0)kF).\displaystyle\geq\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle_{F}). (4)

Combining (3) and (4), we have

dsp(𝒟)=dsp((xnα0)kF).\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle_{F}).

The following theorem shows the symbol-pair distances of the constacyclic codes corresponding to the second type.

Theorem 4.3.

Let 𝒟\mathcal{D} be an α\alpha-constacyclic code of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} with type II in Theorem 2.7, i.e.i.e., 𝒟=(xnα0)jb(x)+u(xnα0)k\mathcal{D}=\langle(x^{n}-\alpha_{0})^{j}b(x)+u(x^{n}-\alpha_{0})^{k}\rangle, where 0kps10\leq k\leq p^{s}-1, ps+k2jps1\left\lceil\frac{p^{s}+k}{2}\right\rceil\leq j\leq p^{s}-1 and either b(x)b(x) is 0 or b(x)b(x) is a unit in \mathcal{F}. Then

dsp(𝒟)={dsp((xnα0)kF),if b(x)=0;dsp((xnα0)psj+kF),if b(x) is a unit in .\operatorname{d_{sp}}(\mathcal{D})=\left\{\begin{array}[]{ll}\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{k}\rangle_{F}),&\text{if }b(x)=0;\\ \operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{p^{s}-j+k}\rangle_{F}),&\text{if }b(x)\text{ is a unit in }\mathcal{F}.\\ \end{array}\right.
Proof..

If b(x)=0b(x)=0, then 𝒟=u(xnα0)k\mathcal{D}=\langle u\left(x^{n}-\alpha_{0}\right)^{k}\rangle. Hence

dsp(𝒟)=dsp(u(xnα0)k)=dsp((xnα0)kF).\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle u\left(x^{n}-\alpha_{0}\right)^{k}\rangle)=\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{k}\rangle_{F}).

Assume that b(x)b(x) is a unit in \mathcal{F}. Since

(xnα0)psj[(xnα0)jb(x)+u(xnα0)k]=u(xnα0)psj+k,\left(x^{n}-\alpha_{0}\right)^{p^{s}-j}\left[\left(x^{n}-\alpha_{0}\right)^{j}b(x)+u\left(x^{n}-\alpha_{0}\right)^{k}\right]=u\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k},

it follows that

u(xnα0)psj+k𝒟,\langle u\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k}\rangle\subseteq\mathcal{D},

hence

dsp(𝒟)\displaystyle\operatorname{d_{sp}}(\mathcal{D})\leq dsp(u(xnα0)psj+k)\displaystyle\operatorname{d_{sp}}(\langle u\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k}\rangle)
=\displaystyle= dsp((xnα0)psj+kF).\displaystyle\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k}\rangle_{F}). (5)

For any nonzero codeword c(x)c(x) in 𝒟\mathcal{D}, there are f0(x)f_{0}(x), fu(x)f_{u}(x) in 𝔽pm[x]\mathbb{F}_{p^{m}}[x] such that

c(x)\displaystyle c(x) =[f0(x)+ufu(x)][(xnα0)jb(x)+u(xnα0)k]\displaystyle=[f_{0}(x)+uf_{u}(x)]\left[\left(x^{n}-\alpha_{0}\right)^{j}b(x)+u\left(x^{n}-\alpha_{0}\right)^{k}\right]
=f0(x)(xnα0)jb(x)+u[f0(x)(xnα0)k+fu(x)(xnα0)jb(x)].\displaystyle=f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{j}b(x)+u\left[f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{k}+f_{u}(x)\left(x^{n}-\alpha_{0}\right)^{j}b(x)\right].

It follows that

wtsp(c(x))\displaystyle\operatorname{wt_{sp}}(c(x))\geq max{wtsp(f0(x)(xnα0)jb(x)),\displaystyle\max\{\operatorname{wt_{sp}}(f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{j}b(x)),
wtsp(f0(x)(xnα0)k+fu(x)(xnα0)jb(x))}.\displaystyle\operatorname{wt_{sp}}(f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{k}+f_{u}(x)\left(x^{n}-\alpha_{0}\right)^{j}b(x))\}.

If (xnα0)psjf0(x)\left(x^{n}-\alpha_{0}\right)^{p^{s}-j}\mid f_{0}(x), let f0(x)=(xnα0)psjf0(x)f_{0}(x)=\left(x^{n}-\alpha_{0}\right)^{p^{s}-j}f_{0}^{{}^{\prime}}(x). Then

wtsp(c(x))\displaystyle\operatorname{wt_{sp}}(c(x)) wtsp(r(x)(xnα0)psj+k)\displaystyle\geq\operatorname{wt_{sp}}(r(x)\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k})
dsp((xnα0)psj+kF),\displaystyle\geq\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{p^{s}-j+k}\rangle_{F}), (6)

where

r(x)r(x) =\!=\! f0(x)f_{0}^{{}^{\prime}}(x) ++ fu(x)(xnα0)2jpskb(x)f_{u}(x)\left(x^{n}-\alpha_{0}\right)^{2j-p^{s}-k}b(x).

If (xnα0)psjf0(x)\left(x^{n}-\alpha_{0}\right)^{p^{s}-j}\nmid f_{0}(x), then

wtsp(c(x))wtsp(f0(x)(xnα0)jb(x))\operatorname{wt_{sp}}(c(x))\geq\operatorname{wt_{sp}}(f_{0}(x)\left(x^{n}-\alpha_{0}\right)^{j}b(x)).

Since jpsj+kj\geq p^{s}-j+k,

wtsp(c(x))dsp((xnα0)psj+kF).\operatorname{wt_{sp}}(c(x))\geq\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{p^{s}-j+k}\rangle_{F}). (7)

According to (5), (6) and (7), we have

dsp(𝒟)=dsp((xnα0)psj+kF)\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle\left(x^{n}-\alpha_{0}\right)^{p^{s}-j+k}\rangle_{F}).

Remark 4.4.

Our results of symbol-pair distances of constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} generalize the results of [13], which consider the constacyclic codes under the condition of n=1n=1.

Remark 4.5.

According to Theorem 4.3, when b(x)b(x) is a unit, the symbol-pair distance of the constacyclic code 𝒟=(xα0)jb(x)+u(xα0)k\mathcal{D}=\langle(x-\alpha_{0})^{j}b(x)+u(x-\alpha_{0})^{k}\rangle with k<2jpsk<2j-p^{s} is equal to dsp((xα0)psj+kF)\operatorname{d_{sp}}(\langle(x-\alpha_{0})^{p^{s}-j+k}\rangle_{F}), but not as [13] claimed that equal to dsp((xα0)jF)\operatorname{d_{sp}}(\langle(x-\alpha_{0})^{j}\rangle_{F}). We illustrate an example to show this fact in the following.

Example 4.6.

Consider a cyclic code 𝒟=(x1)7+u(x1)\mathcal{D}=\langle(x-1)^{7}+u(x-1)\rangle of length 99 over the finite ring 𝔽3+u𝔽3\mathbb{F}_{3}+u\mathbb{F}_{3}, where u2=0u^{2}=0. By Theorem 12 in [13],

dsp(𝒟)=dsp((x1)7F)=9.\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle(x-1)^{7}\rangle_{F})=9.

However, there is a codeword

u(x1)3=(x1)2[(x1)7+u(x1)]𝒟,u(x-1)^{3}=(x-1)^{2}[(x-1)^{7}+u(x-1)]\in\mathcal{D},

and

wtsp(u(x1)3)=4\operatorname{wt_{sp}}(u(x-1)^{3})=4,

which means the symbol-pair distance of 𝒟\mathcal{D} cannot be 99. Actually, according to Theorem 4.3

dsp(𝒟)=dsp((x1)3F)=4.\operatorname{d_{sp}}(\mathcal{D})=\operatorname{d_{sp}}(\langle(x-1)^{3}\rangle_{F})=4.

The following theorem shows the symbol-pair distances of the constacyclic codes corresponding to the type III in Theorem 2.7. The proof is similar to that of the former theorem, and we omit it here.

Theorem 4.7.

Let 𝒟\mathcal{D} be an α\alpha-constacyclic code of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} with type III in Theorem 2.7, i.e.i.e., 𝒟=(xnα0)jb(x)+u(xnα0)k,(xnα0)k+t\mathcal{D}\!\!=\!\!\langle\!(x^{n}\!\!-\!\alpha_{0})^{j}b(x)\!+\!u(x^{n}\!\!-\!\alpha_{0})^{k}\!\!,(x^{n}\!\!-\!\alpha_{0})^{k+t}\rangle, where 0kps20\leq k\leq p^{s}-2, 1tpsk11\leq t\leq p^{s}-k-1, k+t2jk+tk+\left\lceil\frac{t}{2}\right\rceil\leq j\leq k+t, and either b(x)b(x) is 0 or b(x)b(x) is a unit in \mathcal{F}. Then

dsp(𝒟)={dsp((xnα0)kF),ifb(x)=0;dsp((xnα0)2k+tjF),ifb(x) is a unit in .\operatorname{d_{sp}}(\mathcal{D})=\left\{\begin{array}[]{ll}\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{k}\rangle_{F}),&\text{if}~{}b(x)=0;\\ \operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{2k+t-j}\rangle_{F}),&\text{if}~{}b(x)\text{ is a unit in }\mathcal{F}.\\ \end{array}\right.

4.2 MDS codes

In this subsection, we utilize the symbol-pair distances of (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} shown in the former subsection to obtain the MDS symbol-pair codes.

The following theorem shows that no nontrivial MDS symbol-pair (α+uβ)(\alpha+u\beta)-constacyclic code exists when β0\beta\neq 0.

Theorem 4.8.

Let α0,β\alpha_{0},\beta be nonzero elements in 𝔽pm\mathbb{F}_{p^{m}}. Denote α=α0ps\alpha=\alpha_{0}^{p^{s}}. Suppose that xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}. Let 𝒟i=(xnα0)i\mathcal{D}_{i}=\langle(x^{n}-\alpha_{0})^{i}\rangle\subseteq\mathcal{R} be an (α+uβ)(\alpha+u\beta)-constacyclic code of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, where 0i2ps0\leq i\leq 2p^{s}. Then 𝒟i\mathcal{D}_{i} is an MDS symbol-pair code if and only if i=0i=0.

Proof..

By Theorem 2.6,

|𝒟i|=|(xnα0)i|=pmn(2psi).|\mathcal{D}_{i}|=|\langle(x^{n}-\alpha_{0})^{i}\rangle|=p^{mn(2p^{s}-i)}.

The Singleton Bound shows

|𝒟i||R|npsdsp(𝒞i)+2,|\mathcal{D}_{i}|\leq|R|^{np^{s}-\operatorname{d_{sp}}(\mathcal{C}_{i})+2},

which is equivalent to

ni2dsp(𝒟i)4.ni\geq 2\operatorname{d_{sp}}(\mathcal{D}_{i})-4.

Therefore, 𝒟i\mathcal{D}_{i} is an MDS symbol-pair code if and only if

ni=2dsp(𝒟i)4.ni=2\operatorname{d_{sp}}(\mathcal{D}_{i})-4. (8)

If 0ips0\leq i\leq p^{s}, we have dsp(𝒟i)=2\operatorname{d_{sp}}\left(\mathcal{D}_{i}\right)=2 by Theorem 4.1. According to (8), we obtain i=0i=0. If ps+1i2ps1p^{s}+1\leq i\leq 2p^{s}-1, then dsp(𝒟i)=dsp((xnα0)ipsF)\operatorname{d_{sp}}(\mathcal{D}_{i})=\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle_{F}). Applying the Singleton bound on the constacyclic code (xnα0)ipsF\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle_{F}, we obtain

n(ips)dsp((xnα0)ipsF)2.n(i-p^{s})\geq\operatorname{d_{sp}}(\langle(x^{n}-\alpha_{0})^{i-p^{s}}\rangle_{F})-2. (9)

Reformulate (9) we have

ni\displaystyle ni\geq dsp(𝒟i)2+nps2dsp(𝒟i)2\displaystyle\operatorname{d_{sp}}(\mathcal{D}_{i})-2+np^{s}\geq 2\operatorname{d_{sp}}(\mathcal{D}_{i})-2
>\displaystyle> 2dsp(𝒟i)4,\displaystyle 2\operatorname{d_{sp}}(\mathcal{D}_{i})-4,

which implies no MDS symbol-pair constacyclic code when ii is in the range ps+1i2ps1p^{s}+1\leq i\leq 2p^{s}-1.

The following theorem is considering the case of β=0\beta=0 and we obtain three new classes of MDS symbol-pair α\alpha-constacyclic codes over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}.

Theorem 4.9.

Let α0\alpha_{0} be a nonzero element in 𝔽pm\mathbb{F}_{p^{m}} and α=α0ps\alpha=\alpha_{0}^{p^{s}}. There are three classes of MDS symbol-pair α\alpha-constacyclic codes of length 2ps2p^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} as follows:

  1. 1.

    𝒟=(x2α0)+ub(x)\mathcal{D}=\langle(x^{2}-\alpha_{0})+ub(x)\rangle, where b(x)b(x) is either zero or a unit in \mathcal{F};

  2. 2.

    𝒟=(x2α0)ps1+u(x2α0)ps2b(x)\mathcal{D}=\langle(x^{2}-\alpha_{0})^{p^{s}-1}+u(x^{2}-\alpha_{0})^{p^{s}-2}b(x)\rangle, where b(x)b(x) is either zero or a unit in \mathcal{F};

  3. 3.

    𝒟=(x2α0)j+u(x2α0)kb(x)\mathcal{D}=\langle(x^{2}-\alpha_{0})^{j}+u(x^{2}-\alpha_{0})^{k}b(x)\rangle, where s=1s=1, 1jp11\leq j\leq p-1, max{0,2jp}k<jmax\{0,2j-p\}\leq k<j, and b(x)b(x) is either zero or a unit in \mathcal{F}.

Proof..

(i) By Lemma 2.7, the size of 𝒟\mathcal{D} is p4m(ps1)p^{4m(p^{s}-1)}. According to Theorem 4.2 and 4.7, the symbol-pair distance of 𝒟\mathcal{D} is 4. It achieves the Singleton bound

|𝒟|=p4m(ps1)=p2m(2ps4+2)|\mathcal{D}|=p^{4m(p^{s}-1)}=p^{2m(2p^{s}-4+2)}

with equality. Therefore, 𝒟\mathcal{D} is an MDS code.

(ii) By Lemma 2.7, the size of 𝒟\mathcal{D} is p4mp^{4m}. According to Theorem 4.2 and 4.3, the symbol-pair distance of 𝒟\mathcal{D} is 2ps2p^{s}. It achieves the Singleton bound

|𝒟|=p4m=p2m(2ps2ps+2)|\mathcal{D}|=p^{4m}=p^{2m(2p^{s}-2p^{s}+2)}

with equality. Therefore, 𝒟\mathcal{D} is an MDS code.

(iii) By Lemma 2.7, the size of 𝒟\mathcal{D} is p4m(pj)p^{4m(p-j)}. According to Theorem 4.2, 4.3 and 4.7, the symbol-pair distance of 𝒟\mathcal{D} is 2j+22j+2. It achieves the Singleton bound

|𝒟|=p4m(pj)=p2m(2p2j2+2)|\mathcal{D}|=p^{4m(p-j)}=p^{2m(2p-2j-2+2)}

with equality. Therefore, 𝒟\mathcal{D} is an MDS code. ∎

Remark 4.10.

In [10], Dinh et al. gave two more classes of MDS symbol-pair codes with parameters (2s,2m(2s1+4),32s2)(2^{s},2^{m(2^{s-1}+4)},3\cdot 2^{s-2}) and (3s,3m(23s1+4),23s1)(3^{s},3^{m(2\cdot 3^{s-1}+4)},2\cdot 3^{s-1}).

The first α\alpha-constacyclic code of length 2s2^{s} over 𝔽2m+u𝔽2m\mathbb{F}_{2^{m}}+u\mathbb{F}_{2^{m}} is

𝒟=(xnα0)2s3+u(xnα0)2s14,\mathcal{D}=\langle\left(x^{n}-\alpha_{0}\right)^{2^{s}-3}+u\left(x^{n}-\alpha_{0}\right)^{2^{s-1}-4}\rangle,

where s3s\geq 3. By Remark 4.5, the symbol-pair distance of 𝒞\mathcal{C} is dsp((xα0)2s11F)=4\mathrm{d}_{\mathrm{sp}}(\langle(x-\alpha_{0})^{2^{s-1}-1}\rangle_{F})=4, but not dsp((xα0)2s3F)=32s2\mathrm{d}_{\mathrm{sp}}(\langle(x-\alpha_{0})^{2^{s}-3}\rangle_{F})=3\cdot 2^{s-2}. Hence it is not MDS.

The second α\alpha-constacyclic code of length 3s3^{s} over 𝔽3m+u𝔽3m\mathbb{F}_{3^{m}}+u\mathbb{F}_{3^{m}} is

𝒟=(xnα0)3s5+u(xnα0)3s14,\mathcal{D}=\langle\left(x^{n}-\alpha_{0}\right)^{3^{s}-5}+u\left(x^{n}-\alpha_{0}\right)^{3^{s-1}-4}\rangle,

where s3s\geq 3. By Remark 4.5, the symbol-pair distance of 𝒞\mathcal{C} is dsp((xα0)3s1+1F)=6\mathrm{d}_{\mathrm{sp}}(\langle(x-\alpha_{0})^{3^{s-1}+1}\rangle_{F})=6, but not dsp((xα0)3s5F)=23s1\mathrm{d}_{\mathrm{sp}}(\langle(x-\alpha_{0})^{3^{s}-5}\rangle_{F})=2\cdot 3^{s-1}. Hence it is also not MDS.

Combining Theorem 4.9 and previous work, the MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} are listed in Table 2. When the polynomial xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}, we draw the following conclusion. The proof is similar to Theorem 3.7 and omitted here.

Theorem 4.11.

Let α0\alpha_{0} be a nonzero element of 𝔽pm\mathbb{F}_{p^{m}} and α=α0ps\alpha=\alpha_{0}^{p^{s}}. Let β\beta be an element of 𝔽pm\mathbb{F}_{p^{m}}. When xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}, there are no other nontrivial MDS symbol-pair α+uβ\alpha+u\beta-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} except the MDS codes shown in Table 2.

5 Conclusion

Let 𝔽pm\mathbb{F}_{p^{m}} be a finite field and 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} be a finite ring with u2=0u^{2}=0. We determine the symbol-pair distances of α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} and (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, where n,sn,s are positive integers with gcd(n,p)=1\operatorname{gcd}(n,p)=1, β𝔽pm\beta\in\mathbb{F}_{p^{m}}, and α=α0ps𝔽pm\alpha={\alpha_{0}}^{p^{s}}\in\mathbb{F}_{p^{m}} such that xnα0x^{n}-\alpha_{0} is irreducible over 𝔽pm\mathbb{F}_{p^{m}}. Moreover, we show that the non-trivial MDS symbol-pair α\alpha-constacyclic codes of length npsnp^{s} over 𝔽pm\mathbb{F}_{p^{m}} only exist when n=1,2n=1,2. Similarly, the non-trivial MDS symbol-pair (α+uβ)(\alpha+u\beta)-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} only exist when β=0\beta=0 and n=1,2n=1,2. Some of these MDS symbol-pair codes we present in this paper are new and have relatively large pair distance. It is an interesting problem to consider the case that xnα0x^{n}-\alpha_{0} is reducible over 𝔽pm\mathbb{F}_{p^{m}}.

References

References

  • [1] Y. Cassuto, M. Blaum, Codes for symbol-pair read channels, IEEE Trans. Inf. Theory 57 (12) (2011) 8011–8020.
  • [2] E. Yaakobi, J. Bruck, P. H. Siegel, Decoding of cyclic codes over symbol-pair read channels, in: IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, 2012, pp. 2891–2895.
  • [3] M. Takita, M. Hirotomo, M. Morll, A decoding algorithm for cyclic codes over symbol-pair read channels, IEICE Trans. Fundam.Electron., Commun. Comput. Sci. E98.A (12) (2015) 2415–2422.
  • [4] M. Morii, M. Hirotomo, M. Takita, Error-trapping decoding for cyclic codes over symbol-pair read channels, in: Int. Symp. Inf.Theory Appl., Monterey, CA, USA, 2016, pp. 681–685.
  • [5] Y. M. Chee, L. Ji, H. M. Kiah, C. Wang, J. Yin, Maximum distance separable codes for symbol-pair read channels, IEEE Trans. Inf. Theory 59 (11) (2013) 7259–7267.
  • [6] S. Li, G. Ge, Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes, Des. Codes Cryptogr. 84 (3) (2016) 359–372.
  • [7] B. Chen, L. Lin, H. Liu, Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions, IEEE Trans. Inf. Theory 63 (12) (2017) 7661–7666.
  • [8] X. Kai, S. Zhu, Y. Zhao, H. Luo, Z. Chen, New MDS symbol-pair codes from repeated-root codes, IEEE Commun. Lett. 22 (3) (2018) 462–465.
  • [9] H. Q. Dinh, B. T. Nguyen, A. K. Singh, S. Sriboonchitta, On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths, IEEE Trans. Inf. Theory 64 (4) (2018) 2417–2430.
  • [10] H. Q. Dinh, P. Kumam, P. Kumar, S. Satpati, A. K. Singh, W. Yamaka, MDS symbol-pair repeated-root constacylic codes of prime power lengths over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, IEEE Access 7 (2019) 145039–145048.
  • [11] H. Q. Dinh, B. T. Nguyen, S. Sriboonchitta, MDS symbol-pair cyclic codes of length 2ps2p^{s} over 𝔽pm\mathbb{F}_{p^{m}}, IEEE Trans. Inf. Theory 66 (1) (2020) 240–262.
  • [12] W. Zhao, S. Yang, K. W. Shum, X. Tang, Repeated-root constacyclic codes with pair-metric, IEEE Commun. Lett. (2020). doi:10.1109/lcomm.2020.3041271.
  • [13] H. Q. Dinh, B. T. Nguyen, A. K. Singh, S. Sriboonchitta, Hamming and symbol-pair distances of repeated-root constacyclic codes of prime power lengths over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, IEEE Commun. Lett. 22 (12) (2018) 2400–2403.
  • [14] H. Q. Dinh, X. Wang, H. Liu, S. Sriboonchitta, On the symbol-pair distances of repeated-root constacyclic codes of length 2ps2p^{s}, Discrete Math. 342 (11) (2019) 3062 – 3078.
  • [15] H. Özadam, F. Özbudak, Two generalizations on the minimum hamming distance of repeated-root constacyclic codes (2009). arXiv:0906.4008.
  • [16] A. Sharma, T. Sidana, On the structure and distances of repeated-root constacyclic codes of prime power lengths over finite commutative chain rings, IEEE Transactions on Information Theory 65 (2) (2019) 1072–1084. doi:10.1109/tit.2018.2864293.
  • [17] W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
  • [18] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, 2008.
  • [19] J. Massey, J. Costello, D.J., J. Justesen, Polynomial weights and code constructions, IEEE Trans. Inf. Theory 19 (1) (1973) 101–110.
  • [20] H. Q. Dinh, Complete distances of all negacyclic codes of length 2s2^{s} over 2a\mathbb{Z}_{2^{a}}, IEEE Trans. Inf. Theory 53 (1) (2007) 147–161.
  • [21] W. Zhao, X. Tang, Z. Gu, All α+uβ\alpha+u\beta-constacyclic codes of length npsnp^{s} over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}, Finite Fields Appl. 50 (2018) 1–16.
  • [22] Y. Cao, Y. Cao, J. Gao, F. Fu, Constacyclic codes of length psnp^{s}n over 𝔽pm+u𝔽pm\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}} (2015). arXiv:1512.01406v2.