This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

A Carleman-Type Inequality in Elliptic Periodic Homogenization

Yiping Zhang111Email:[email protected]
Academy of Mathematics and Systems Science, CAS;
University of Chinese Academy of Sciences;
Beijing 100190, P.R. China.
Abstract

In this paper, for a family of second-order elliptic equations with rapidly oscillating periodic coefficients, we are interested in a Carleman-type inequality for these solutions satisfying an additional growth condition in elliptic periodic homogenization, which implies a three-ball inequality without an error term at a macroscopic scale. Moreover, if we replace the additional growth condition by the doubling condition at a macroscopic scale, then the three-ball inequality without an error term holds at any scale. The proof relies on the convergence of H1H^{1}-norm for the solution and the compactness argument.

1 Introduction

Since T. Carleman’s pioneer work [8], Carleman estimates have been indispensable tools for obtaining a three-ball (or three-cylinder) inequality and proving the unique continuation property for partial differential equations. In general, the Carleman estimates are weighted integral inequalities with suitable weight functions satisfying some convexity properties. The three-ball inequality is obtained by applying the Carleman estimates by choosing a suitable function. For Carleman estimates and the unique continuation properties for the elliptic and parabolic operators, we refer readers to [3, 4, 12, 21, 10, 11, 22, 17] and their references therein for more results.

Over the last forty years, there is a vast and rich mathematical literature on homogenization. Most of these works are focused on qualitative results, such as proving the existence of a homogenized equation. However, until recently, nearly all of the quantitative theory, such as the convergence rates in L2L^{2} and H1H^{1}, the W1,pW^{1,p}-estimates, the Lipschitz estimates and the asymptotic expansion of the Green functions and fundamental solutions, were confined in periodic homogenization. There are many good expositions on this topic, see for instance the books [7, 13, 20] for periodic case, see also the book [1] for the stochastic case.

Recently, authors in [2, 16, 15, 18] care about the propagation of smallness in homogenization theory, such as the approximate three-ball inequality in [2, 15] in elliptic periodic homogenization and the approximate two-sphere one-cylinder inequality in [24] in parabolic case, and the nodal sets and doubling conditions in [16, 18] in elliptic homogenization, which are all related to the Carleman inequality in classical elliptic and parabolic theory and encourage us to deduce a Carleman-type inequality in elliptic periodic homogenization and left for further for the parabolic case.

In this paper, we would like to deduce a Carleman-type inequality in elliptic periodic homogenization. According to the author’s knowledge, this is the first attempt in homogenization theory. More precisely, We consider a family of second-order elliptic equations in divergence form with rapidly oscillating periodic coefficients,

εuε=:div(A(x/ε)uε)=0,\mathcal{L}_{\varepsilon}u_{\varepsilon}=:-\operatorname{div}\left(A(x/\varepsilon)\nabla u_{\varepsilon}\right)=0, (1.1)

where 1>ε>01>\varepsilon>0 and A(y)=(aij(y))A(y)=(a_{ij}(y)) is a real symmetric d×dd\times d matrix-valued function in d\mathbb{R}^{d} for d2d\geq 2. Assume that A(y)A(y) satisfies the following assumptions:

(i) Ellipticity: For some 0<μ<10<\mu<1 and all ydy\in\mathbb{R}^{d}, ξd\xi\in\mathbb{R}^{d}, it holds that

μ|ξ|2A(y)ξξμ1|ξ|2.\mu|\xi|^{2}\leq A(y)\xi\cdot\xi\leq\mu^{-1}|\xi|^{2}. (1.2)

(ii) Periodicity:

A(y+z)=A(y)for yd and zd.A(y+z)=A(y)\quad\text{for }y\in\mathbb{R}^{d}\text{ and }z\in\mathbb{Z}^{d}. (1.3)

(iii)Lipschitz continuity: There exist constants M~>0\tilde{M}>0 such that

|A(x)A(y)|M~|xy|,for any x,yd.|A(x)-A(y)|\leq\tilde{M}|x-y|,\ \text{for any }x,y\in\mathbb{R}^{d}. (1.4)

Let B(x,r)={yd:|yx|<r}B(x,r)=\left\{y\in\mathbb{R}^{d}:|y-x|<r\right\} and Br=B(0,r)B_{r}=B(0,r). For positive constants MM, N11N_{1}\geq 1 and N21N_{2}\geq 1, let uεH2(B3)u_{\varepsilon}\in H^{2}(B_{3}) be a solution of, and satisfies the following growth conditions,

B3|uε|2Mmax{(B2|uε|2)N1,(B2|uε|2)1/N2},\int_{B_{3}}|u_{\varepsilon}|^{2}\leq M\max\left\{\left(\int_{B_{2}}|u_{\varepsilon}|^{2}\right)^{N_{1}},\left(\int_{B_{2}}|u_{\varepsilon}|^{2}\right)^{1/N_{2}}\right\}, (1.5)

then we could obtain the following result:

Theorem 1.1.

Assume that the coefficient matrix AA is symmetric and satisfies the conditions (1.2)(1.2)-(1.4)(1.4), and let uεH2(B3)u_{\varepsilon}\in H^{2}(B_{3}) be a solution of (1.1)(1.1) and satisfies the growth condition (1.5)(1.5). Then, there exists ε0>0\varepsilon_{0}>0, depending only on dd, μ\mu, M~\tilde{M}, MM, N1N_{1} and N2N_{2} such that for 0<εε00<\varepsilon\leq\varepsilon_{0}, there holds the following Carleman-type inequality,

C02B3(λ4τ3φ3(uεη)2+λ2τφ|[(uεεχjεju0)η]|2)e2τφ𝑑x\displaystyle\frac{C_{0}}{2}\int_{B_{3}}\left(\lambda^{4}\tau^{3}\varphi^{3}(u_{\varepsilon}\eta)^{2}+\lambda^{2}\tau\varphi\left|\nabla\left[(u_{\varepsilon}-\varepsilon\chi_{j}^{\varepsilon}\partial_{j}u_{0})\eta\right]\right|^{2}\right)e^{2\tau\varphi}dx (1.6)
B3[ε(uεη+εχjεjηuε)]2e2τφ𝑑x,\displaystyle\quad\quad\leq\int_{B_{3}}\left[\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon})\right]^{2}e^{2\tau\varphi}dx,

with φ=eλ|x|2\varphi=e^{-\lambda|x|^{2}} and u0u_{0} given by Theorem 2.2, for all λλ0\lambda\geq\lambda_{0} and τ0τ100τ0+C(λ0,τ0)uεL2(B3)uεL2(B1)\tau_{0}\leq\tau\leq 100\tau_{0}+C(\lambda_{0},\tau_{0})\frac{||u_{\varepsilon}||_{L^{2}(B_{3})}}{||u_{\varepsilon}||_{L^{2}(B_{1})}} with λ0\lambda_{0} and τ0\tau_{0} defined in Proposition 2.6, depending only on μ\mu, where C(λ0,τ0)C(\lambda_{0},\tau_{0}) is a constant depending only on λ0\lambda_{0} and τ0\tau_{0}, and could be specified in the proof of Corollary 1.4 in Section 3. And ηC0(B5/2B1/2)\eta\in C^{\infty}_{0}(B_{5/2}\setminus B_{1/2}) is a fixed cutoff function such that

0η1,η=1 in B7/3B2/3¯.0\leq\eta\leq 1,\ \eta=1\text{ in }\overline{B_{7/3}\setminus B_{2/3}}. (1.7)

Throughout this paper, we always assume that η\eta is a fixed cutoff function defined in Theorem 1.1. We prove this theorem by compactness argument. For the compactness method used in homogenization theory, we refer readers to [5, 6] for more details.

Remark 1.2.

The growth condition (1.5)(1.5) allows that the function uεu_{\varepsilon} grows at a speed of polynomials of any degree. For example, if uεu_{\varepsilon} behaves like |x|k|x|^{k}, for any k+k\in\mathbb{N}^{+}, then it is easy to see that the conditions holds with MM depending only on uε/|x|kL(B3)\left\|u_{\varepsilon}/|x|^{k}\right\|_{L^{\infty}(B_{3})} and for any N1log3/log2N_{1}\geq\log 3/\log 2.

Due to the rapid oscillation of the coefficient matrix A(x/ε)A(x/\varepsilon), we could not expect a Carleman inequality in homogenization totally similar to the classical case. Moreover, it implies that the growth condition (1.5)(1.5) is necessary in compactness argument to obtain the Carleman-type inequality (1.6)(1.6) in Example 3.2. (Meanwhile, one may use other methods to derive a Carleman-type inequality in homogenization without the growth condition.)

Remark 1.3.

The Carleman-type inequality (1.6)(1.6) continues to hold for the operator ~ε=div(Aε)+𝐛ε+cε+λ\tilde{\mathcal{L}}_{\varepsilon}=-\operatorname{div}(A^{\varepsilon}\nabla)+\mathbf{b}^{\varepsilon}\nabla+c^{\varepsilon}+\lambda with 𝐛L\mathbf{b}\in L^{\infty} and cLc\in L^{\infty} being 1-periodic (the operator ~ε\tilde{\mathcal{L}}_{\varepsilon} is positive by adding a large constant λ\lambda), since the L2L^{2}-norm as well as the H1H^{1}-norm convergence rates continue to hold for the solution uεu_{\varepsilon} to the operator ~ε\tilde{\mathcal{L}}_{\varepsilon} [23], and the Carleman inequality as well as the unique continuation property continue to hold for the homogenized operator ~0=div(A^)+(𝐛)+(c)+λ\tilde{\mathcal{L}}_{0}=-\operatorname{div}(\widehat{A}\nabla)+\mathcal{M}(\mathbf{b})\nabla+\mathcal{M}(c)+\lambda (Remark 2.7), where we have used the notations Fε=F(x/ε)F^{\varepsilon}=F(x/\varepsilon) for a function FF and (G)=YG(y)𝑑y\mathcal{M}(G)=\int_{Y}G(y)dy for a 1-periodic function GG.

The most trivial application of Theorem 1.1 is the following three-ball inequality at a macroscopic scale without an error term.

Corollary 1.4.

Assume that the coefficient matrix AA is symmetric and satisfies the conditions (1.2)(1.2)-(1.4)(1.4), and let uεH2(B3)u_{\varepsilon}\in H^{2}(B_{3}) be a solution of (1.1)(1.1) and satisfy the growth condition (1.5)(1.5). Then, for some constant CC, depending only on dd, μ\mu, M~\tilde{M}, and MM, there holds the following three-ball inequality without an error term,

uεL2(B2)CuεL2(B1)suεL2(B3)1s,||u_{\varepsilon}||_{L^{2}(B_{2})}\leq C||u_{\varepsilon}||^{s}_{L^{2}(B_{1})}||u_{\varepsilon}||^{1-s}_{L^{2}(B_{3})}, (1.8)

where s=αα+βs=\frac{\alpha}{\alpha+\beta} with α=12e4λ\alpha=1-2e^{-4\lambda} and β=2(e4λe8116λ)\beta=2(e^{-4\lambda}-e^{-\frac{81}{16}\lambda}) for any λλ0\lambda\geq\lambda_{0} with λ0\lambda_{0} defined in Theorem 1.1.

The Corollary above only implies the three-ball inequality at a macroscopic scale, in the following theorem, we could obtain the three-ball inequality at every scale by using Corollary 1.4 and the uniform doubling conditions proved in [18] in elliptic homogenization.

Theorem 1.5.

Assume that AA is symmetric and satisfies the conditions (1.2)(1.2)-(1.4)(1.4). Let uεH2(B4)u_{\varepsilon}\in H^{2}(B_{4}) be a solution to the equation ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B4B_{4}, and for some positive constant MM, uεu_{\varepsilon} satisfies the following doubling condition at a macroscopic scale,

B4|uε|2MB2μ|uε|2,\fint_{B_{4}}|u_{\varepsilon}|^{2}\leq M\fint_{B_{2\sqrt{\mu}}}|u_{\varepsilon}|^{2},

then for any 0<r1/20<r\leq 1/2, there holds the following three-sphere inequality without an error term,

uεL2(B2r)CuεL2(Br)suεL2(B4r)1s,||u_{\varepsilon}||_{L^{2}(B_{2r})}\leq C||u_{\varepsilon}||_{L^{2}(B_{r})}^{s}||u_{\varepsilon}||_{L^{2}(B_{4r})}^{1-s}, (1.9)

with the same ss defined in Corollary 1.4 and CC depending only on dd, μ\mu, M~\tilde{M} and MM.

The first result about the approximate three-ball inequality was obtained by Kenig and Zhu in [15] with the help of the asymptotic behavior of Green functions and the Lagrange interpolation technique, under the assumptions that the coefficient matrix AA is only Hölder continuous. Later on, an improvement of a sharp exponential error term (in the sense that if AA is only Hölder continuous, then the multiplicative factor must be at least exponential) in the error bound for the approximate three-ball inequality (under certain extra conditions) was discovered by Armstrong, Kuusi, and Smart in [2], as a consequence of the large-scale analyticity . Meanwhile, an approximate two-sphere one-cylinder inequality in parabolic periodic homogenization was obtained by the first author in [24], under the assumptions tha the coefficient matrix A(x,t)A(x,t) is only Hölder continuous, with the help of the asymptotic behavior of fundamental solutions and the Lagrange interpolation technique.

Recently, the three-ball inequality without an error term was discovered by Kenig, Zhu and Zhuge in [16] under the assumptions that AC0,1A\in C^{0,1} and uεu_{\varepsilon} satisfies a doubling condition at a macroscopic scale, with the help of the approximate three-ball inequality with a sharp exponential error term obtained in [2]. At this stage, we should compare the three-ball inequality obtained in [16] with the result proved in Theorem 1.5 in this paper. The result reads that:

Theorem. Assume that the coefficient matrix AA satisfies (1.2)(1.2)-(1.4)(1.4). For every τ>0\tau>0, there exists C>1C>1 and θ(0,1/2)\theta\in(0,1/2) depending only on dd, μ\mu and λ\lambda such that if uεu_{\varepsilon} is a weak solution of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B1B_{1} satisfying

B1|uε|2𝑑xMBθ|uε|2𝑑x,\int_{B_{1}}|u_{\varepsilon}|^{2}dx\leq M\int_{B_{\theta}}|u_{\varepsilon}|^{2}dx,

then for any r(0,1)r\in(0,1),

Bθ|uε|2𝑑xexp(exp(CMτ))Bθr|uε|2𝑑x\int_{B_{\theta}}|u_{\varepsilon}|^{2}dx\leq\exp(\exp(CM^{\tau}))\int_{B_{\theta r}}|u_{\varepsilon}|^{2}dx

and

Bθr|uε|2𝑑xexp(exp(CMτ))(Bθ2r|uε|2𝑑x)τ1(Br|uε|2𝑑x)1τ1\int_{B_{\theta r}}|u_{\varepsilon}|^{2}dx\leq\exp(\exp(CM^{\tau}))\left(\int_{B_{\theta^{2}r}}|u_{\varepsilon}|^{2}dx\right)^{\tau_{1}}\left(\int_{B_{r}}|u_{\varepsilon}|^{2}dx\right)^{1-\tau_{1}}

for any 0<τ1<10<\tau_{1}<1. It is clear that the authors in [16] have found an explicit estimate for the constant C(M)C(M) in the doubling condition and in the three-ball inequality, with an unknown θ\theta. However, in our Theorem 1.5, we could state θ\theta explicitly and obtain the three-ball inequality more directly with an unknown constant C(M)C(M). Throughout this paper, with Y=[0,1)dd/dY=[0,1)^{d}\cong\mathbb{R}^{d}/\mathbb{Z}^{d}, we use the following notation

Hperm(Y)=:{fHm(Y) and f is 1-periodic with Yfdy=0},H^{m}_{\text{per}}(Y)=:\left\{f\in H^{m}(Y)\text{ and }f\text{ is 1-periodic with }\fint_{Y}fdy=0\right\},

and we will write xi\partial_{x_{i}} as i\partial_{i}, Fε=F(x/ε)F^{\varepsilon}=F(x/\varepsilon) for a function FF and (G)=YG(y)𝑑y\mathcal{M}(G)=\int_{Y}G(y)dy for a 1-periodic function GG if the context is understand.

2 Preliminaries

Assume that A=A(y)A=A(y) satisfies the conditions (1.2)(1.2)-(1.3)(1.3). Let χ(y)Hper1(Y;d)\chi(y)\in H^{1}_{\text{per}}(Y;\mathbb{R}^{d}) denote the first order corrector for ε\mathcal{L}_{\varepsilon}, where χj\chi_{j} for j=1,,dj=1,\cdots,d is the unique 1-periodic function in Hper1(Y)H^{1}_{\text{per}}(Y) such that

{1(χj)=1(yj)in Y,Yχj𝑑y=0.\begin{cases}\mathcal{L}_{1}(\chi_{j})=-\mathcal{L}_{1}(y_{j})\quad\text{in }Y,\\ \fint_{Y}\chi_{j}dy=0.\end{cases} (2.1)

By the classical Schauder estimates, χC1,α\chi\in C^{1,\alpha} if AC0,αA\in C^{0,\alpha}. The homogenized operator for ε\mathcal{L}_{\varepsilon} is given by 0=div(A^)\mathcal{L}_{0}=-\operatorname{div}(\widehat{A}\nabla), where A^=(a^ij)d×d\widehat{A}=(\widehat{a}_{ij})_{d\times d} and

a^ij=Y[aij+aikyk(χj)](y)𝑑y.\widehat{a}_{ij}=\fint_{Y}\left[a_{ij}+a_{ik}\frac{\partial}{\partial y_{k}}\left(\chi_{j}\right)\right](y)dy. (2.2)

It is well-known that the homogenized matrix A^\widehat{A} also satisfies the ellipticity condition (1.2)(1.2) with the same μ\mu. What’s more, if AA is symmetric, the same is also true for A^\widehat{A}. We refer the readers to [20] for the proofs.

Denote the so-called flux correctors bijb_{ij} by

bij(y)=a^ijaij(y)aik(y)χj(y)yk,b_{ij}(y)=\widehat{a}_{ij}-a_{ij}(y)-a_{ik}(y)\frac{\partial\chi_{j}(y)}{\partial{y_{k}}}, (2.3)

where 1i,jd1\leq i,j\leq d.

Lemma 2.1.

Suppose that AA satisfies the conditions (1.2)(1.2) and (1.3)(1.3). For 1i,j,kd1\leq i,j,k\leq d, there exists FijkHper1(Y)L(Y)F_{ijk}\in H^{1}_{\text{per}}(Y)\cap L^{\infty}(Y) such that

bij=ykFkij and Fkij=Fikj.b_{ij}=\frac{\partial}{\partial{y_{k}}}F_{kij}\ \text{ and }\ F_{kij}=-F_{ikj}. (2.4)
Proof.

See [14, Remark 2.1].∎

The following theorem states the existence of u0u_{0} in Theorem 1.1 and is used to control the second term on the left hand side of (1.6)(1.6).

Theorem 2.2.

Suppose that AA is symmetric and satisfies the conditions (1.2)(1.2) and (1.3)(1.3). Let uεH1(B3)u_{\varepsilon}\in H^{1}(B_{3}) be the weak solution of equation ε(uε)=0 in B3.\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0\text{ in }B_{3}. Then there exists u0H1(B11/4)u_{0}\in H^{1}(B_{11/4}) such that 0(u0)=0 in B11/4\mathcal{L}_{0}(u_{0})=0\text{ in }B_{11/4}, and

uεu0L2(B11/4)CεuεL2(B3),||u_{\varepsilon}-u_{0}||_{L^{2}(B_{11/4})}\leq C\sqrt{\varepsilon}||u_{\varepsilon}||_{L^{2}(B_{3})}, (2.5)

where CC depends only on dd and μ\mu.

Proof.

Due to the Caccioppoli’s inequality and the co-area formula, there exists r0[114,238]r_{0}\in[\frac{11}{4},\frac{23}{8}] such that

Br0|uε|2𝑑S+Br0|uε|2𝑑SCB3|uε|2𝑑x.\int_{\partial B_{r_{0}}}|u_{\varepsilon}|^{2}dS+\int_{\partial B_{r_{0}}}|\nabla u_{\varepsilon}|^{2}dS\leq C\int_{B_{3}}|u_{\varepsilon}|^{2}dx. (2.6)

Then, we could consider the following Dirichlet problem,

{ε(uε)=0 in Br0uεH1(Br0) with uεH1(Br0)CuεL2(B3).\begin{cases}\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0\text{ in }B_{r_{0}}\\ u_{\varepsilon}\in H^{1}(\partial B_{r_{0}})\text{ with }||u_{\varepsilon}||_{H^{1}(\partial B_{r_{0}})}\leq C||u_{\varepsilon}||_{L^{2}(B_{3})}.\end{cases} (2.7)

And let u0u_{0} satisfies the following equation,

{0(u0)=0 in Br0u0=uε on Br0.\begin{cases}\mathcal{L}_{0}(u_{0})=0\text{ in }B_{r_{0}}\\ u_{0}=u_{\varepsilon}\text{ on }\partial B_{r_{0}}.\end{cases} (2.8)

Since AA is symmetric, therefore, it follows from the homogenization theory that there holds (for the proof, see [20] for example)

uεu0L2(B11/4)uεu0L2(Br0)\displaystyle||u_{\varepsilon}-u_{0}||_{L^{2}(B_{11/4})}\leq||u_{\varepsilon}-u_{0}||_{L^{2}(B_{r_{0}})} (2.9)
\displaystyle\leq Cεu0L2(Br0)+CεuεH1(Br0)\displaystyle C\varepsilon||\nabla u_{0}||_{L^{2}(B_{r_{0}})}+C\sqrt{\varepsilon}||u_{\varepsilon}||_{H^{1}(\partial B_{r_{0}})}
\displaystyle\leq CεuεH1(Br0)CεuεL2(B3),\displaystyle C\sqrt{\varepsilon}||u_{\varepsilon}||_{H^{1}(\partial B_{r_{0}})}\leq C\varepsilon||u_{\varepsilon}||_{L^{2}(B_{3})},

where we have used the H1H^{1} estimate for u0u_{0} and (2.6)(2.6) in the third line in inequality (2.9)(2.9). Thus we have completed this proof. ∎

Remark 2.3.

In Theorem 2.2, if we additionally assume that AA is Lipschitz continuous, then there exists u0H1(B11/4)u_{0}\in H^{1}(B_{11/4}) such that 0(u0)=0 in B11/4\mathcal{L}_{0}(u_{0})=0\text{ in }B_{11/4}, and

uεu0L(B5/2)CεuεL2(B3).||u_{\varepsilon}-u_{0}||_{L^{\infty}(B_{5/2})}\leq C\varepsilon||u_{\varepsilon}||_{L^{2}(B_{3})}.

The main ideal of this proof is due to Lin and Shen [18], and we omit it here.

Next, we introduce the following well-known Div-Curl lemma whose proof may be found in [20].

Lemma 2.4.

Let {uk}\{u_{k}\} and {vk}\{v_{k}\} be two bounded sequences in L2(Ω;d)L^{2}(\Omega;\mathbb{R}^{d}) with Ω\Omega being a bounded Lipschitz domain. Suppose that
(i)(i) ukuu_{k}\rightharpoonup u and vkvv_{k}\rightharpoonup v weakly in L2(Ω;d)L^{2}(\Omega;\mathbb{R}^{d});
(ii)(ii) curl(uk)=0\operatorname{curl}(u_{k})=0 in Ω\Omega and div(vk)=f\operatorname{div}(v_{k})=f strongly in H1(Ω)H^{-1}(\Omega).
Then there holds

Ω(ukvk)φ𝑑xΩ(uv)φ𝑑x\int_{\Omega}(u_{k}\cdot v_{k})\varphi dx\rightarrow\int_{\Omega}(u\cdot v)\varphi dx

as kk\rightarrow\infty, for any scalar function φC01(Ω)\varphi\in C^{1}_{0}(\Omega).

The following interior Caccioppoli’s inequality with weights will be used in the proof of Theorem 1.1.

Lemma 2.5.

(interior Caccioppoli’s inequality with weights) Assume that AA satisfies the condition (1.2)(1.2), and uεH1(B3)u_{\varepsilon}\in H^{1}(B_{3}) is a weak solution of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B3B_{3}. Let 0s1<s2<s3<s430\leq s_{1}<s_{2}<s_{3}<s_{4}\leq 3, then there holds

Bs3\Bs2|uε|2e2τφ𝑑xC\displaystyle\int_{B_{s_{3}}\backslash B_{s_{2}}}|\nabla u_{\varepsilon}|^{2}e^{2\tau\varphi}dx\leq C (1s4s3+1s2s1)2Bs4\Bs1|uε|2e2τφ𝑑x\displaystyle\left(\frac{1}{s_{4}-s_{3}}+\frac{1}{s_{2}-s_{1}}\right)^{2}\int_{B_{s_{4}}\backslash B_{s_{1}}}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx (2.10)
+Cλ2τ2Bs4\Bs1|x|2|uε|2φ2e2τφ𝑑x,\displaystyle+C\lambda^{2}\tau^{2}\int_{B_{s_{4}}\backslash B_{s_{1}}}|x|^{2}|u_{\varepsilon}|^{2}\varphi^{2}e^{2\tau\varphi}dx,

where CC depends only on dd and μ\mu and φ=eλ|x|2\varphi=e^{-\lambda|x|^{2}} with λ\lambda and τ\tau being positive constants.

Proof.

The proof is standard. Choose a cutoff function 0ρ(x)10\leq\rho(x)\leq 1, such that ρ(x)=1\rho(x)=1 if xBs3Bs2x\in B_{s_{3}}\setminus B_{s_{2}} and ρ(x)=0\rho(x)=0 if xBs4Bs1x\notin B_{s_{4}}\setminus B_{s_{1}} with |ρ|C(1s3s4+1s1s2)|\nabla\rho|\leq C\left(\frac{1}{s_{3}-s_{4}}+\frac{1}{s_{1}-s_{2}}\right). Then testing the equation ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B3B_{3} with uεe2τφρ2u_{\varepsilon}e^{2\tau\varphi}\rho^{2} yields that

B3Aεuεuεe2τφρ22λτB3Aεuεxuεφe2τφρ2+2B3Aεuερuερe2τφ=0.\int_{B_{3}}A^{\varepsilon}\nabla u_{\varepsilon}\nabla u_{\varepsilon}e^{2\tau\varphi}\rho^{2}-2\lambda\tau\int_{B_{3}}A^{\varepsilon}\nabla u_{\varepsilon}\cdot xu_{\varepsilon}\varphi e^{2\tau\varphi}\rho^{2}+2\int_{B_{3}}A^{\varepsilon}\nabla u_{\varepsilon}\nabla\rho u_{\varepsilon}\rho e^{2\tau\varphi}=0. (2.11)

Then, it follows from the Cauchy inequality that

B3|uε|2ρ2e2τφCλ2τ2B3|x|2|uε|2φ2ρ2e2τφ+CB3|uε|2|ρ|2e2τφ.\int_{B_{3}}|\nabla u_{\varepsilon}|^{2}\rho^{2}e^{2\tau\varphi}\leq C\lambda^{2}\tau^{2}\int_{B_{3}}|x|^{2}|u_{\varepsilon}|^{2}\varphi^{2}\rho^{2}e^{2\tau\varphi}+C\int_{B_{3}}|u_{\varepsilon}|^{2}|\nabla\rho|^{2}e^{2\tau\varphi}. (2.12)

Thus, we have completed this proof after noting the choice of ρ\rho. ∎

At the end of this section, we introduce the following Carleman inequality for the homogenized operator 0=div(A^)\mathcal{L}_{0}=-\operatorname{div}(\widehat{A}\nabla), whose proof may be found in [9].

Proposition 2.6.

(Carleman inequality) Assume that AA is symmetric and satisfies the conditions (1.2)(1.2)-(1.4)(1.4), then there exist three positive constants C0C_{0} , λ0\lambda_{0} and τ0\tau_{0} that can depend only on μ\mu, such that

C0B3(λ4τ3φ3(vη~)2+λ2τφ|(vη~)|2)e2τφ𝑑xB3[0(vη~)]2e2τφ𝑑x,C_{0}\int_{B_{3}}\left(\lambda^{4}\tau^{3}\varphi^{3}(v\tilde{\eta})^{2}+\lambda^{2}\tau\varphi|\nabla(v\tilde{\eta})|^{2}\right)e^{2\tau\varphi}dx\leq\int_{B_{3}}\left[\mathcal{L}_{0}(v\tilde{\eta})\right]^{2}e^{2\tau\varphi}dx, (2.13)

with φ=eλ|x|2\varphi=e^{-\lambda|x|^{2}}, for all vH2(B3)v\in H^{2}(B_{3}), η~C0(B3B1/2)\tilde{\eta}\in C^{\infty}_{0}(B_{3}\setminus B_{1/2}), λλ0\lambda\geq\lambda_{0} and ττ0\tau\geq\tau_{0}.

Remark 2.7.

The Carleman inequality (2.13)(2.13) continues to hold for the operator ~=div(A~)+𝐁+c\tilde{\mathcal{L}}=-\operatorname{div}(\tilde{A}\nabla)+\mathbf{B}\cdot\nabla+c with symmetric A~\tilde{A} satisfying the ellipticity condition and being Lipschitz continuous, 𝐁L(B3)d\mathbf{B}\in L^{\infty}(B_{3})^{d} and cL(Ω)c\in L^{\infty}(\Omega), where the constants C0C_{0}, λ0\lambda_{0} and τ0\tau_{0} depends only on μ\mu and the L(B3)L^{\infty}(B_{3})-norm of 𝐁\mathbf{B} and cc.

3 Carleman inequality

To proceed further, we first need to calculate the term ε(uεη+εχjεjηuε)\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}) on the right hand side of (1.6)(1.6), which will be stated in the following lemma.

Lemma 3.1.

Suppose that AA is symmetric and satisfies the conditions (1.2)(1.2)-(1.4)(1.4), and let uεH2(B3)u_{\varepsilon}\in H^{2}(B_{3}) be a solution to the equation ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B3B_{3}, then there holds

ε(uεη+εχjεjηuε)\displaystyle-\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}) (3.1)
=\displaystyle= 2Aεuεη+Aε2ηuε+Aεyχjεjηuε+2Aεuεyχjεjη\displaystyle 2A^{\varepsilon}\nabla u_{\varepsilon}\nabla\eta+A^{\varepsilon}\nabla^{2}\eta u_{\varepsilon}+A^{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta u_{\varepsilon}+2A^{\varepsilon}\nabla u_{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\partial_{j}\eta
+divy(Aεχjε)jηuε+εAεχjε2jηuε+2εAεχjεjηuεin L2(B3).\displaystyle+\operatorname{div}_{y}(A^{\varepsilon}\chi_{j}^{\varepsilon})\nabla\partial_{j}\eta u_{\varepsilon}+\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla^{2}\partial_{j}\eta u_{\varepsilon}+2\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta\nabla u_{\varepsilon}\quad\text{in }L^{2}(B_{3}).
Proof.

Since uεH2(B3)u_{\varepsilon}\in H^{2}(B_{3}) satisfies ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B3B_{3}, then it is easy to see that

ε(uεη)\displaystyle-\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta) =div(Aεuεη+Aεηuε)\displaystyle=\operatorname{div}(A^{\varepsilon}\nabla u_{\varepsilon}\eta+A^{\varepsilon}\nabla\eta u_{\varepsilon}) (3.2)
=2Aεuεη+1εyiaijεjηuε+Aε2ηuε.\displaystyle=2A^{\varepsilon}\nabla u_{\varepsilon}\nabla\eta+\frac{1}{\varepsilon}\partial_{y_{i}}a_{ij}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}+A^{\varepsilon}\nabla^{2}\eta u_{\varepsilon}.

In order to cancel out the term 1εyiaijεjηuε\frac{1}{\varepsilon}\partial_{y_{i}}a_{ij}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}, we need to consider the term εχjεjηuε\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}. Then, in view of the definition of the first order corrector χj\chi_{j} in (2.1)(2.1), we come to the following equality,

ε(εχjεjηuε)=\displaystyle-\mathcal{L}_{\varepsilon}(\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon})= div(Aεyχjεjηuε+εAεχjεjηuε+εAεχjεjηuε)\displaystyle\operatorname{div}(A^{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}+\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta u_{\varepsilon}+\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\partial_{j}\eta\nabla u_{\varepsilon}) (3.3)
=\displaystyle= 1εyiaijεjηuε+Aεyχjεjηuε+2Aεyχjεjηuε\displaystyle-\frac{1}{\varepsilon}\partial_{y_{i}}a_{ij}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}+A^{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta u_{\varepsilon}+2A^{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\partial_{j}\eta\nabla u_{\varepsilon}
+divy(Aεχjε)jηuε+εAεχjε2jηuε+2εAεχjεjηuε,\displaystyle+\operatorname{div}_{y}(A^{\varepsilon}\chi_{j}^{\varepsilon})\nabla\partial_{j}\eta u_{\varepsilon}+\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla^{2}\partial_{j}\eta u_{\varepsilon}+2\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta\nabla u_{\varepsilon},

where we have used the following equality

div(εAεχjεjηuε)=εAεχjεjηuε+Aεuεyχjεjη,\operatorname{div}(\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\partial_{j}\eta\nabla u_{\varepsilon})=\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta\nabla u_{\varepsilon}+A^{\varepsilon}\nabla u_{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\partial_{j}\eta,

in the above equation. Consequently, we have

ε(uεη+εχjεjηuε)\displaystyle-\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}) (3.4)
=\displaystyle= 2Aεuεη+Aε2ηuε+Aεyχjεjηuε+2Aεuεyχjεjη\displaystyle 2A^{\varepsilon}\nabla u_{\varepsilon}\nabla\eta+A^{\varepsilon}\nabla^{2}\eta u_{\varepsilon}+A^{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta u_{\varepsilon}+2A^{\varepsilon}\nabla u_{\varepsilon}\nabla_{y}\chi_{j}^{\varepsilon}\partial_{j}\eta
+divy(Aεχjε)jηuε+εAεχjε2jηuε+2εAεχjεjηuε,\displaystyle+\operatorname{div}_{y}(A^{\varepsilon}\chi_{j}^{\varepsilon})\nabla\partial_{j}\eta u_{\varepsilon}+\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla^{2}\partial_{j}\eta u_{\varepsilon}+2\varepsilon A^{\varepsilon}\chi_{j}^{\varepsilon}\nabla\partial_{j}\eta\nabla u_{\varepsilon},

which completes the proof of Lemma 3.1. ∎

Now we are ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. We prove the result by contraction. Suppose that there exist sequence {εk}+\{\varepsilon_{k}\}\subset\mathbb{R}^{+}, {Ak}\{A_{k}\} being symmetric and satisfying (1.2)(1.2)-(1.4)(1.4), {uk}H2(B3)\{u_{k}\}\subset H^{2}(B_{3}), {uk,0}H1(B11/4)\{u_{k,0}\}\in H^{1}(B_{11/4}) given by Theorem 2.2, {λk}\{\lambda_{k}\} satisfying λkλ0\lambda_{k}\geq\lambda_{0} and {τk}\{\tau_{k}\} satisfying τ0τkC(λ0,τ0)ukL2(B3)ukL2(B1)+100τ0\tau_{0}\leq\tau_{k}\leq C(\lambda_{0},\tau_{0})\frac{||u_{k}||_{L^{2}(B_{3})}}{||u_{k}||_{L^{2}(B_{1})}}+100\tau_{0}, such that εk0\varepsilon_{k}\rightarrow 0, and

div(Ak(x/εk)uk)=0 in B3,\operatorname{div}(A_{k}(x/\varepsilon_{k})\nabla u_{k})=0\text{ in }B_{3}, (3.5)
B3|uk|2Mmax{(B2|uk|2)N1,(B2|uk|2)1/N2}\int_{B_{3}}|u_{k}|^{2}\leq M\max\left\{\left(\int_{B_{2}}|u_{k}|^{2}\right)^{N_{1}},\left(\int_{B_{2}}|u_{k}|^{2}\right)^{1/N_{2}}\right\} (3.6)
div(Ak^uk,0)=0 in B11/4,\operatorname{div}(\widehat{A_{k}}\nabla u_{k,0})=0\text{ in }B_{11/4}, (3.7)

with

ukuk,0L2(B11/4)CεkukL2(B3),||u_{k}-u_{k,0}||_{L^{2}(B_{11/4})}\leq C\sqrt{\varepsilon_{k}}||u_{k}||_{L^{2}(B_{3})}, (3.8)

and

C02B3(λk4τk3φk3(ukη)2+λk2τkφk|[(ukεkχk,jεkjuk,0)η]|2)e2τkφk𝑑x\displaystyle\frac{C_{0}}{2}\int_{B_{3}}\left(\lambda_{k}^{4}\tau_{k}^{3}\varphi_{k}^{3}(u_{k}\eta)^{2}+\lambda_{k}^{2}\tau_{k}\varphi_{k}\left|\nabla\left[(u_{k}-\varepsilon_{k}\chi_{k,j}^{\varepsilon_{k}}\partial_{j}u_{k,0})\eta\right]\right|^{2}\right)e^{2\tau_{k}\varphi_{k}}dx (3.9)
>B3[div(Akεk(ukη+εkχk.jεkjηuk))]2e2τkφk𝑑x,\displaystyle\quad\quad>\int_{B_{3}}\left[\operatorname{div}\left(A_{k}^{\varepsilon_{k}}\nabla(u_{k}\eta+\varepsilon_{k}\chi_{k.j}^{\varepsilon_{k}}\partial_{j}\eta u_{k})\right)\right]^{2}e^{2\tau_{k}\varphi_{k}}dx,

where χk,j\chi_{k,j} is the jj-th corrector defined in (2.1)(2.1) for the operator AkA_{k}. Since Ak^\widehat{A_{k}} is symmetric and bounded in d×d\mathbb{R}^{d\times d}, we may assume that

Ak^H\widehat{A_{k}}\rightarrow H (3.10)

for some symmetric matrix HH satisfying the ellipticity condition (1.2)(1.2). Due to λk4φk3=λk4e3λk|x|20\lambda_{k}^{4}\varphi_{k}^{3}=\lambda_{k}^{4}e^{-3\lambda_{k}|x|^{2}}\rightarrow 0 and λk2φk=λk2eλk|x|20\lambda_{k}^{2}\varphi_{k}=\lambda_{k}^{2}e^{-\lambda_{k}|x|^{2}}\rightarrow 0 as λk\lambda_{k}\rightarrow\infty if |x|>1/2|x|>1/2, then we could assume that

lim supkλk=λ<+.\limsup_{k\rightarrow\infty}\lambda_{k}=\lambda_{\infty}<+\infty. (3.11)

By multiplying a constant to uku_{k}, we may assume that

ukL2(B3)=1.||u_{k}||_{L^{2}(B_{3})}=1. (3.12)

By Caccioppoli’s inequality, this implies that {uk}\{u_{k}\} is bounded in H1(Br)H^{1}(B_{r}) for any 0<r<30<r<3. Therefore, by passing to a subsequence still denoted by {uk}\{u_{k}\}, we may further assume that

uku weakly in H1(Br),u_{k}\rightharpoonup u\text{ weakly in }H^{1}(B_{r}), (3.13)
uku strongly in L2(Br),u_{k}\rightarrow u\text{ strongly in }L^{2}(B_{r}), (3.14)
Ak(x/εk)ukF weakly in L2(Br)A_{k}(x/\varepsilon_{k})\nabla u_{k}\rightharpoonup F\text{ weakly in }L^{2}(B_{r}) (3.15)

for any 0<r<30<r<3, where uHloc1(B3)u\in H^{1}_{\text{loc}}(B_{3}) and FLloc2(B3)F\in L^{2}_{\text{loc}}(B_{3}). It follows from the theory of homogenization (see e.g. [20]) that F=HuF=H\nabla u and

div(Hu)=0 in B3 with uL2(B3)1.\operatorname{div}(H\nabla u)=0\text{ in }B_{3}\text{ with }||u||_{L^{2}(B_{3})}\leq 1. (3.16)

If we write χk,j(y)\chi_{k,j}(y) with j=1,,dj=1,\cdots,d as the first order corrector for div(Ak(x/εk))-\operatorname{div}(A_{k}(x/\varepsilon_{k})\nabla), then it is easy to see that

div[Ak(x/εk)(ukuεkχk,j(x/εk)ju)]\displaystyle\operatorname{div}[A_{k}(x/\varepsilon_{k})\nabla(u_{k}-u-\varepsilon_{k}\chi_{k,j}(x/\varepsilon_{k})\partial_{j}u)] (3.17)
=\displaystyle= div(Hu)div(Ak(x/εk)u)div(Ak(x/εk)χk,j(x/εk)ju)\displaystyle\operatorname{div}(H\nabla u)-\operatorname{div}(A_{k}(x/\varepsilon_{k})\nabla u)-\operatorname{div}(A_{k}(x/\varepsilon_{k})\nabla\chi_{k,j}(x/\varepsilon_{k})\partial_{j}u)
εkdiv(Ak(x/εk)χk,j(x/εk)ju)\displaystyle-\varepsilon_{k}\operatorname{div}(A_{k}(x/\varepsilon_{k})\chi_{k,j}(x/\varepsilon_{k})\nabla\partial_{j}u)
=\displaystyle= div((HAk^)u)div((Ak(x/εk)Ak^+Ak(x/εk)χk(x/εk))u)\displaystyle\operatorname{div}((H-\widehat{A_{k}})\nabla u)-\operatorname{div}((A_{k}(x/\varepsilon_{k})-\widehat{A_{k}}+A_{k}(x/\varepsilon_{k})\nabla\chi_{k}(x/\varepsilon_{k}))\nabla u)
εkdiv(Ak(x/εk)χk,j(x/εk)ju)\displaystyle-\varepsilon_{k}\operatorname{div}(A_{k}(x/\varepsilon_{k})\chi_{k,j}(x/\varepsilon_{k})\nabla\partial_{j}u)
=\displaystyle= div((HAk^)u)εkxl{Fk,lijij2u}εkdiv(Ak(x/εk)χk,j(x/εk)ju) in B3,\displaystyle\operatorname{div}((H-\widehat{A_{k}})\nabla u)-\varepsilon_{k}\partial_{x_{l}}\left\{F_{k,lij}\partial^{2}_{ij}u\right\}-\varepsilon_{k}\operatorname{div}(A_{k}(x/\varepsilon_{k})\chi_{k,j}(x/\varepsilon_{k})\nabla\partial_{j}u)\text{ in }B_{3},

where Fk,lij=Fk,iljHper1(Y)L(Y)F_{k,lij}=-F_{k,ilj}\in H^{1}_{\text{per}}(Y)\cap L^{\infty}(Y) given by Lemma 2.1 after replacing the coefficient matrix AA by AkA_{k} in this lemma.

Consequently, it follows from the interior W1,pW^{1,p} estimate [19], (3.10)(3.10) and (3.14)(3.14) that

(ukuεkχk,j(x/εk)ju)Lp(Br)0, for any 1<p< and r<3.||\nabla(u_{k}-u-\varepsilon_{k}\chi_{k,j}(x/\varepsilon_{k})\partial_{j}u)||_{L^{p}(B_{r})}\rightarrow 0,\text{ for any }1<p<\infty\text{ and }r<3. (3.18)

Next, note that

uk,0uL2(B11/4)uk,0ukL2(B11/4)+ukuL2(B11/4)0, as k,||u_{k,0}-u||_{L^{2}(B_{11/4})}\leq||u_{k,0}-u_{k}||_{L^{2}(B_{11/4})}+||u_{k}-u||_{L^{2}(B_{11/4})}\rightarrow 0,\text{ as }k\rightarrow\infty, (3.19)

and uk,0uu_{k,0}-u satisfies

div(Ak^(uk,0u))=(HAk^)2u in B11/4.\operatorname{div}(\widehat{A_{k}}\nabla(u_{k,0}-u))=(H-\widehat{A_{k}})\nabla^{2}u\quad\text{ in }B_{11/4}. (3.20)

Then, it follows from the interior HkH^{k} estimates for harmonic functions and (3.19)(3.19) that

uk,0uHk(Br)0,k𝐍+ and r<11/4.||u_{k,0}-u||_{H^{k}(B_{r})}\rightarrow 0,\ \forall k\in\mathbf{N}^{+}\text{ and }r<11/4. (3.21)

Therefore, there holds

(ukuεkχk,j(x/εk)juk,0)Lp(Br)0 for any r<11/4 and 1<p<.\displaystyle||\nabla(u_{k}-u-\varepsilon_{k}\chi_{k,j}(x/\varepsilon_{k})\partial_{j}u_{k,0})||_{L^{p}(B_{r})}\rightarrow 0\text{ for any }r<11/4\text{ and }1<p<\infty. (3.22)

In view of Lemma 3.1, we have

div(Ak(x/εk)(ukη+εχk,j(x/εk)jηuk))\displaystyle\operatorname{div}\left(A_{k}(x/\varepsilon_{k})\nabla(u_{k}\eta+\varepsilon\chi_{k,j}(x/\varepsilon_{k})\partial_{j}\eta u_{k})\right) (3.23)
=\displaystyle= 2Akεkukη+Akεk2ηuk+Akεkyχk,jεkjηuk+2Akεkukyχk,jεkjη\displaystyle 2A_{k}^{\varepsilon_{k}}\nabla u_{k}\nabla\eta+A_{k}^{\varepsilon_{k}}\nabla^{2}\eta u_{k}+A^{\varepsilon_{k}}_{k}\nabla_{y}\chi_{k,j}^{\varepsilon_{k}}\nabla\partial_{j}\eta u_{k}+2A_{k}^{\varepsilon_{k}}\nabla u_{k}\nabla_{y}\chi_{k,j}^{\varepsilon_{k}}\partial_{j}\eta
+divy(Akεkχk,jεk)jηuk+εkAkεkχk,jεk2jηuk+2εkAkεkχk,jεkjηuk.\displaystyle+\operatorname{div}_{y}(A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}})\nabla\partial_{j}\eta u_{k}+{\varepsilon_{k}}A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}}\nabla^{2}\partial_{j}\eta u_{k}+2{\varepsilon_{k}}A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}}\nabla\partial_{j}\eta\nabla u_{k}.

It is easy to see that

2Akεkukη+Akεk2ηuk+Akεkyχk,jεkjηuk\displaystyle 2A_{k}^{\varepsilon_{k}}\nabla u_{k}\nabla\eta+A_{k}^{\varepsilon_{k}}\nabla^{2}\eta u_{k}+A^{\varepsilon_{k}}_{k}\nabla_{y}\chi_{k,j}^{\varepsilon_{k}}\nabla\partial_{j}\eta u_{k} (3.24)
2Huη+H2ηu weakly in L2(B3).\displaystyle\quad\rightharpoonup 2H\nabla u\nabla\eta+H\nabla^{2}\eta u\text{ weakly in }L^{2}(B_{3}).

Since Yyχk,j(y)𝑑y=0\int_{Y}\nabla_{y}\chi_{k,j}(y)dy=0 and Akεkukyχk,jεkjηL2(B3)C||A_{k}^{\varepsilon_{k}}\nabla u_{k}\nabla_{y}\chi_{k,j}^{\varepsilon_{k}}\partial_{j}\eta||_{L^{2}(B_{3})}\leq C with CC independent of kk, then it follows from the so-called div-curve Lemma (Lemma 2.4) that

Akεkukyχk,jεkjη0 weakly in L2(B3).A_{k}^{\varepsilon_{k}}\nabla u_{k}\nabla_{y}\chi_{k,j}^{\varepsilon_{k}}\partial_{j}\eta\rightharpoonup 0\text{ weakly in }L^{2}(B_{3}). (3.25)

Meanwhile, we could easily obtain the following weak convergence,

divy(Akεkχk,jεk)jηuk+εkAkεkχk,jεk2jηuk+2εkAkεkχk,jεkjηuk\displaystyle\operatorname{div}_{y}(A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}})\nabla\partial_{j}\eta u_{k}+{\varepsilon_{k}}A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}}\nabla^{2}\partial_{j}\eta u_{k}+2{\varepsilon_{k}}A_{k}^{\varepsilon_{k}}\chi_{k,j}^{\varepsilon_{k}}\nabla\partial_{j}\eta\nabla u_{k} (3.26)
0 weakly in L2(B3).\displaystyle\quad\quad\rightharpoonup 0\text{ weakly in }L^{2}(B_{3}).

Consequently, combining (3.23)(3.23)-(3.26)(3.26) yields that

div(Ak(x/εk)(ukη+εχk,j(x/εk)jηuk))\displaystyle\operatorname{div}\left(A_{k}(x/\varepsilon_{k})\nabla(u_{k}\eta+\varepsilon\chi_{k,j}(x/\varepsilon_{k})\partial_{j}\eta u_{k})\right) (3.27)
2Huη+H2ηu=div(H(uη)) weakly in L2(B3).\displaystyle\rightharpoonup 2H\nabla u\nabla\eta+H\nabla^{2}\eta u=\operatorname{div}(H\nabla(u\eta))\text{ weakly in }L^{2}(B_{3}).

To proceed, we first consider that, there exists some constant τ>0\tau_{\infty}>0, such that

lim supkτk=τ<+.\limsup_{k\rightarrow\infty}\tau_{k}=\tau_{\infty}<+\infty. (3.28)

Then, letting kk\rightarrow\infty along (3.11)(3.11) and (3.28)(3.28) on the both sides of (3.9)(3.9) yields that

C02B3(λ4τ3φ3(uη)2+λ2τφ|(uη)|2)e2τφ𝑑x\displaystyle\frac{C_{0}}{2}\int_{B_{3}}\left(\lambda_{\infty}^{4}\tau_{\infty}^{3}\varphi_{\infty}^{3}(u\eta)^{2}+\lambda_{\infty}^{2}\tau_{\infty}\varphi_{\infty}\left|\nabla\left(u\eta\right)\right|^{2}\right)e^{2\tau_{\infty}\varphi_{\infty}}dx (3.29)
B3[div(H(uη))]2e2τφ𝑑x\displaystyle\geq\int_{B_{3}}\left[\operatorname{div}(H\nabla(u\eta))\right]^{2}e^{2\tau_{\infty}\varphi_{\infty}}dx
C0B3(λ4τ3φ3(uη)2+λ2τφ|(uη)|2)e2τφ𝑑x,\displaystyle\geq C_{0}\int_{B_{3}}\left(\lambda_{\infty}^{4}\tau_{\infty}^{3}\varphi_{\infty}^{3}(u\eta)^{2}+\lambda_{\infty}^{2}\tau_{\infty}\varphi_{\infty}\left|\nabla\left(u\eta\right)\right|^{2}\right)e^{2\tau_{\infty}\varphi_{\infty}}dx,

where we have used the Carleman inequality (Proposition 2.6) for the matrix coefficient HH in the last inequality in (3.29)(3.29) and φ=eλ|x|2\varphi_{\infty}=e^{-\lambda_{\infty}|x|^{2}}. It follows from (3.29)(3.29) and the unique continuation for harmonic function that

u0 in B3,u\equiv 0\text{ in }B_{3}, (3.30)

which contradicts to the conditions (3.6)(3.6), (3.12)(3.12) and (3.14)(3.14).

Next, we consider the case

lim supkτk+.\limsup_{k\rightarrow\infty}\tau_{k}\rightarrow+\infty. (3.31)

In view of τ0τkC(λ0,τ0)ukL2(B3)ukL2(B1)+100τ0\tau_{0}\leq\tau_{k}\leq C(\lambda_{0},\tau_{0})\frac{||u_{k}||_{L^{2}(B_{3})}}{||u_{k}||_{L^{2}(B_{1})}}+100\tau_{0}, then it follows from (3.12)(3.12) that

ukL2(B1)0.||u_{k}||_{L^{2}(B_{1})}\rightarrow 0.

Then, we could obtain

u0 in B1,u\equiv 0\text{ in }B_{1},

which implies that

u0 in B3,u\equiv 0\text{ in }B_{3},

due to the unique continuation for harmonic function. Thus leads to a contraction again.∎

The growth condition (3.6)(3.6) plays an important role in compactness argument. In the following example, we could construct a counterexample without the growth condition (3.6)(3.6).

Example 3.2.

If we consider Ak=ΔA_{k}=\Delta for any k1k\geq 1, then there exists a sequence of harmonic functions {uk}\{u_{k}\} such that

Δuk=0 in B4,B3|uk|2𝑑x=1 and B1|uk|2𝑑x0 as k.\Delta u_{k}=0\text{ in }B_{4},\ \int_{B_{3}}|u_{k}|^{2}dx=1\text{ and }\int_{B_{1}}|u_{k}|^{2}dx\rightarrow 0\text{ as }k\rightarrow\infty.

Actually, we could choose uku_{k} to be a harmonic polynomial of degree kk with B3|uk|2𝑑x=1\int_{B_{3}}|u_{k}|^{2}dx=1, then it is easy to see that Δuk=0\Delta u_{k}=0 in d\mathbb{R}^{d} and B1|uk|2𝑑x=32k0\int_{B_{1}}|u_{k}|^{2}dx=3^{-2k}\rightarrow 0 as kk\rightarrow\infty. Consequently, this example shows that the growth condition (3.6)(3.6) is necessary in the compactness argument to guarantee the Carleman-type inequality in elliptic periodic homogenization. However, we do not know that whether a Carleman-type inequality would hold without the growth condition (3.6)(3.6).

The proof of Corollary 1.4 is standard if we have obtained the Carleman-type inequality (1.6)(1.6). And we give it just for completeness.

Proof of Corollary 1.4. We just need to consider the case 0<εε00<\varepsilon\leq\varepsilon_{0}, since the three-ball inequality (1.8)(1.8) continues to hold for uεu_{\varepsilon} if εε0\varepsilon\geq\varepsilon_{0} without the growth condition (1.5)(1.5). According to (1.6)(1.6) and the choice of the cutoff function η\eta, we have

C02B2B1λ4τ3φ3|uε|2e2τφ𝑑xB3[ε(uεη+εχjεjηuε)]2e2τφ𝑑x,\displaystyle\frac{C_{0}}{2}\int_{B_{2}\setminus B_{1}}\lambda^{4}\tau^{3}\varphi^{3}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx\leq\int_{B_{3}}\left[\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon})\right]^{2}e^{2\tau\varphi}dx, (3.32)

But, in view of Lemma 3.1, there hold

supp(ε(uεη+εχjεjηuε)){1/2|x|2/3}{7/3|x|5/2}\text{supp}(\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}))\subset\{1/2\leq|x|\leq 2/3\}\cup\{7/3\leq|x|\leq 5/2\} (3.33)

and

(ε(uεη+εχjεjηuε))2C(|uε|2+|uε|2).(\mathcal{L}_{\varepsilon}(u_{\varepsilon}\eta+\varepsilon\chi_{j}^{\varepsilon}\partial_{j}\eta u_{\varepsilon}))^{2}\leq C(|u_{\varepsilon}|^{2}+|\nabla u_{\varepsilon}|^{2}). (3.34)

Thus, we have

B2B1λ4τ3φ3|uε|2e2τφ𝑑x\displaystyle\int_{B_{2}\setminus B_{1}}\lambda^{4}\tau^{3}\varphi^{3}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx C{B2/3B1/2}{B5/2B7/3}(|uε|2+|uε|2)e2τφ𝑑x\displaystyle\leq C\int_{\left\{B_{2/3}\setminus B_{1/2}\right\}\cup\left\{B_{5/2}\setminus B_{7/3}\right\}}(|u_{\varepsilon}|^{2}+|\nabla u_{\varepsilon}|^{2})e^{2\tau\varphi}dx (3.35)
C{B3/4B1/3}{B3B9/4}(1+λ2τ2φ2)|uε|2e2τφ𝑑x,\displaystyle\leq C\int_{\left\{B_{3/4}\setminus B_{1/3}\right\}\cup\left\{B_{3}\setminus B_{9/4}\right\}}(1+\lambda^{2}\tau^{2}\varphi^{2})|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx,

where we have used the interior Caccioppoli’s inequality with weights in Lemma 2.5 in the above inequality. Therefore, fixing λ\lambda and changing τ0\tau_{0} if necessary, (3.35)(3.35) implies that, for τ0τkC(λ0,τ0)ukL2(B3)ukL2(B1)+100τ0\tau_{0}\leq\tau_{k}\leq C(\lambda_{0},\tau_{0})\frac{||u_{k}||_{L^{2}(B_{3})}}{||u_{k}||_{L^{2}(B_{1})}}+100\tau_{0},

CB2|uε|2e2τφ𝑑x(C+1)B1|uε|2e2τφ𝑑x+B3B9/4|uε|2e2τφ𝑑x.\displaystyle C\int_{B_{2}}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx\leq(C+1)\int_{B_{1}}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx+\int_{B_{3}\setminus B_{9/4}}|u_{\varepsilon}|^{2}e^{2\tau\varphi}dx. (3.36)

In view of φ=exp{λ|x|2}\varphi=\exp\left\{-\lambda|x|^{2}\right\}, then it follows from that

CB2|uε|2𝑑xeατ(C+1)B1|uε|2𝑑x+eβτB3|uε|2𝑑x,\displaystyle C\int_{B_{2}}|u_{\varepsilon}|^{2}dx\leq e^{\alpha\tau}(C+1)\int_{B_{1}}|u_{\varepsilon}|^{2}dx+e^{-\beta\tau}\int_{B_{3}}|u_{\varepsilon}|^{2}dx, (3.37)

where

α=12e4λ and β=2(e4λe8116λ).\alpha=1-2e^{-4\lambda}\quad\text{ and }\quad\beta=2\left(e^{-4\lambda}-e^{\frac{81}{16}\lambda}\right). (3.38)

We now temporarily introduce the following notations,

P=(C+1)B1|uε|2𝑑x,Q=CB2|uε|2𝑑x and R=B1|uε|2𝑑x.P=(C+1)\int_{B_{1}}|u_{\varepsilon}|^{2}dx,\ Q=C\int_{B_{2}}|u_{\varepsilon}|^{2}dx\text{ and }R=\int_{B_{1}}|u_{\varepsilon}|^{2}dx.

Then (3.37)(3.37) becomes

QeατP+eβτR, for τ0τkC(λ0,τ0)ukL2(B3)ukL2(B1)+100τ0.Q\leq e^{\alpha\tau}P+e^{-\beta\tau}R,\text{ for }\tau_{0}\leq\tau_{k}\leq C(\lambda_{0},\tau_{0})\frac{||u_{k}||_{L^{2}(B_{3})}}{||u_{k}||_{L^{2}(B_{1})}}+100\tau_{0}.

We could choose C(λ0,τ0)C(\lambda_{0},\tau_{0}) such that

τ~=ln(R/P)α+βC(λ0,τ0)ukL2(B3)ukL2(B1).\tilde{\tau}=\frac{\ln(R/P)}{\alpha+\beta}\leq C(\lambda_{0},\tau_{0})\frac{||u_{k}||_{L^{2}(B_{3})}}{||u_{k}||_{L^{2}(B_{1})}}.

If τ~τ0\tilde{\tau}\geq\tau_{0}, then τ=τ~\tau=\tilde{\tau} in yields that

Q2Pαα+βRαα+β.Q\leq 2P^{\frac{\alpha}{\alpha+\beta}}R^{\frac{\alpha}{\alpha+\beta}}. (3.39)

If τ~<τ0\tilde{\tau}<\tau_{0}, R<e(α+β)τ0PR<e^{(\alpha+\beta)\tau_{0}}P and then

QCR=CRαα+βRαα+βCeατ0Pαα+βRαα+β.Q\leq CR=CR^{\frac{\alpha}{\alpha+\beta}}R^{\frac{\alpha}{\alpha+\beta}}\leq Ce^{\alpha\tau_{0}}P^{\frac{\alpha}{\alpha+\beta}}R^{\frac{\alpha}{\alpha+\beta}}. (3.40)

In conclusion, we find that in any case one of inequalities (3.39)(3.39) and (3.40)(3.40) holds. That is, in terms of the original notations,

uεL2(B2)CuεL2(B1)suεL2(B3)1s,||u_{\varepsilon}||_{L^{2}(B_{2})}\leq C||u_{\varepsilon}||_{L^{2}(B_{1})}^{s}||u_{\varepsilon}||_{L^{2}(B_{3})}^{1-s}, (3.41)

with s=αα+βs=\frac{\alpha}{\alpha+\beta}. Note that the constant CC, in (3.37)(3.37), may depend on λ\lambda, then the constant CC, in (3.41)(3.41), may also depend on λ\lambda. However, if λ\lambda\rightarrow\infty, the inequality (1.8)(1.8), with C=M1/2C=M^{1/2}, follows directly from the growth condition (1.5)(1.5). Therefore, we could choose the constant CC, in (1.8)(1.8), that does not depend on λ\lambda.∎

We are now ready to give the proof of Theorem 1.5 with the help of Corollary 1.4 and the uniform doubling conditions proved in [18].

Proof of Theorem 1.5. It follows from [18, Thm 1.2] that there holds the following uniform doubling condition for uεu_{\varepsilon},

Br|uε|2𝑑xC~(M)Br/2|uε|2𝑑x\fint_{B_{r}}|u_{\varepsilon}|^{2}dx\leq\tilde{C}(M)\fint_{B_{r/2}}|u_{\varepsilon}|^{2}dx (3.42)

for any 0<r20<r\leq 2, with C~(M)\tilde{C}(M) depends only on dd, M~\tilde{M}, μ\mu and MM.

It follows from Theorem 1.1 and Corollary 1.4 that there exists ε0(M)\varepsilon_{0}(M), depending only on dd, M~\tilde{M}, μ\mu and MM, such that if vH2(B4)v\in H^{2}(B_{4}) solves ε(v)=0\mathcal{L}_{\varepsilon}(v)=0 in B4B_{4} and vv satisfies the following doubling condition

B4|v|2𝑑xC~(M)B2|v|2𝑑x,\fint_{B_{4}}|v|^{2}dx\leq\tilde{C}(M)\fint_{B_{2}}|v|^{2}dx,

then there holds the following three-sphere inequality,

vL2(B2)CvL2(B1)svL2(B4)1s,||v||_{L^{2}(B_{2})}\leq C||v||_{L^{2}(B_{1})}^{s}||v||_{L^{2}(B_{4})}^{1-s}, (3.43)

with s=αα+βs=\frac{\alpha}{\alpha+\beta} for α\alpha and β\beta defined in (3.38)(3.38)

To prove the inequality (1.9)(1.9), we first consider the case (ε/ε0(M))r1/2(\varepsilon/\varepsilon_{0}(M))\leq r\leq 1/2. Let

vε(x)=uε(rx),v_{\varepsilon}(x)=u_{\varepsilon}(rx), (3.44)

then it is to check that vεv_{\varepsilon} satisfies

div(A(xε/r)vε)=0 in B4,\operatorname{div}\left(A\left(\frac{x}{\varepsilon/r}\right)\nabla v_{\varepsilon}\right)=0\text{ in }B_{4},

with

B4|vε|2𝑑xC~(N)B4|vε|2𝑑x,\fint_{B_{4}}|v_{\varepsilon}|^{2}dx\leq\tilde{C}(N)\fint_{B_{4}}|v_{\varepsilon}|^{2}dx,

and (ε/r)ε0(M)(\varepsilon/r)\leq\varepsilon_{0}(M), then it follows from (3.43)(3.43) and vε(x)=uε(rx)v_{\varepsilon}(x)=u_{\varepsilon}(rx) that

uεL2(B2r)CuεL2(Br)suεL2(B4r)1s.||u_{\varepsilon}||_{L^{2}(B_{2r})}\leq C||u_{\varepsilon}||_{L^{2}(B_{r})}^{s}||u_{\varepsilon}||_{L^{2}(B_{4r})}^{1-s}. (3.45)

Suppose now that 0<r(ε/ε0(M))0<r\leq(\varepsilon/\varepsilon_{0}(M)), then εrε0(M)1\frac{\varepsilon}{r}\geq\varepsilon_{0}(M)^{-1}. Therefore, it follows from the classical theory for elliptic equation with Liphschitz coefficient matrix that (3.45)(3.45) also holds true, with the same exponent ss. Thus, we have completed this proof of Theorem 1.5.

Acknowledgements

The author thanks Prof. Zhongwei Shen and Yao Xu for helpful discussions.

References

  • [1] Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat. Quantitative stochastic homogenization and large-scale regularity, volume 352. Springer, 2019.
  • [2] Scott Armstrong, Tuomo Kuusi, and Charles Smart. Large-scale analyticity and unique continuation for periodic elliptic equations. Comm. Pure Appl. Math., 2020.
  • [3] N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9), 36:235–249, 1957.
  • [4] N. Aronszajn, A. Krzywicki, and J. Szarski. A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat., 4:417–453 (1962), 1962.
  • [5] Marco Avellaneda and Fang-Hua Lin. Compactness methods in the theory of homogenization. Comm. Pure Appl. Math., 40(6):803–847, 1987.
  • [6] Marco Avellaneda and Fang-Hua Lin. Compactness methods in the theory of homogenization. II. Equations in nondivergence form. Comm. Pure Appl. Math., 42(2):139–172, 1989.
  • [7] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymptotic analysis for periodic structures, volume 374. American Mathematical Soc., 1978.
  • [8] T. Carleman. Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat., Astr. Fys., 26(17):9, 1939.
  • [9] Mourad Choulli. Applications of elliptic Carleman inequalities to Cauchy and inverse problems. SpringerBriefs in Mathematics. Springer, [Cham]; BCAM Basque Center for Applied Mathematics, Bilbao, 2016. BCAM SpringerBriefs.
  • [10] Luis Escauriaza. Carleman inequalities and the heat operator. Duke Math. J., 104(1):113–127, 2000.
  • [11] Luis Escauriaza and Francisco Javier Fernández. Unique continuation for parabolic operators. Ark. Mat., 41(1):35–60, 2003.
  • [12] David Jerison and Carlos E. Kenig. Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. of Math. (2), 121(3):463–494, 1985. With an appendix by E. M. Stein.
  • [13] Vasili Vasilievitch Jikov, Sergei M Kozlov, and Olga Arsenievna Oleinik. Homogenization of differential operators and integral functionals. Springer Science & Business Media, 1994.
  • [14] Carlos Kenig, Fanghua Lin, and Zhongwei Shen. Periodic homogenization of green and neumann functions. Comm. Pure Appl. Math., 67(8):1219–1262, 2014.
  • [15] Carlos Kenig and Jiuyi Zhu. Propagation of Smallness in Elliptic Periodic Homogenization. SIAM J. Math. Anal., 53(1):111–132, 2021.
  • [16] Carlos E. Kenig, Jiuyi Zhu, and Jinping Zhuge. Doubling inequalities and nodal sets in periodic elliptic homogenization. arXiv: 2101.04841, 2101.
  • [17] Herbert Koch and Daniel Tataru. Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Comm. Partial Differential Equations, 34(4-6):305–366, 2009.
  • [18] Fanghua Lin and Zhongwei Shen. Nodal sets and doubling conditions in elliptic homogenization. Acta Math. Sin. (Engl. Ser.), 35(6):815–831, 2019.
  • [19] Zhongwei Shen. W1,pW^{1,p} estimates for elliptic homogenization problems in nonsmooth domains. Indiana Univ. Math. J., 57(5):2283–2298, 2008.
  • [20] Zhongwei Shen. Periodic homogenization of elliptic systems. Springer, 2018.
  • [21] Christopher D. Sogge. Strong uniqueness theorems for second order elliptic differential equations. Amer. J. Math., 112(6):943–984, 1990.
  • [22] Sergio Vessella. Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates. Inverse Problems, 24(2):023001, 81, 2008.
  • [23] Qiang Xu. Uniform regularity estimates in homogenization theory of elliptic system with lower order terms. J. Math. Anal. Appl., 438(2):1066–1107, 2016.
  • [24] Yiping Zhang. Approximate two-sphere one-cylinder inequality in parabolic periodic homogenization. arXiv:2005.00989, 2020.