This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Bott periodicity theorem for p\ell^{p}-spaces and the coarse Novikov conjecture at infinity111Supported in part by NSFC (No. 11831006, 12171156).

Liang Guo    Zheng Luo    Qin Wang    Yazhou Zhang
Abstract

We formulate and prove a Bott periodicity theorem for an p\ell^{p}-space (1p<1\leq p<\infty). For a proper metric space XX with bounded geometry, we introduce a version of KK-homology at infinity, denoted by K(X)K_{*}^{\infty}(X), and the Roe algebra at infinity, denoted by C(X)C^{*}_{\infty}(X). Then the coarse assembly map descends to a map from limdK(Pd(X))\lim_{d\to\infty}K_{*}^{\infty}(P_{d}(X)) to K(C(X))K_{*}(C^{*}_{\infty}(X)), called the coarse assembly map at infinity. We show that to prove the coarse Novikov conjecture, it suffices to prove the coarse assembly map at infinity is an injection. As a result, we show that the coarse Novikov conjecture holds for any metric space with bounded geometry which admits a fibred coarse embedding into an p\ell^{p}-space. These include all box spaces of a residually finite hyperbolic group and a large class of warped cones of a compact space with an action by a hyperbolic group.

1 Introduction

The Novikov conjecture claims that the higher signatures of closed oriented smooth manifolds are invariant under orientation preserving homotopy equivalences. It is implied by the injectivity of the Baum-Connes assembly map [2]. The coarse Novikov conjecture, as a geometric analogue of the Novikov conjecture, is the injectivity part of the coarse Baum–Connes conjecture [12, 18]. It offers a technique to determine when an elliptic operators higher index on a noncompact complete Riemannian manifold is nonzero. A detailed survey on the coarse Novikov conjecture can be found in [31].

In [4], X. Chen, Q. Wang and G. Yu generalized Gromov’s notion of coarse embedding into Hilbert space and introduced the notion of fibred coarse embedding (see Definition 2.4) and showed that if a discrete metric space XX with bounded geometry admits a fibred coarse embedding into Hilbert space, then the maximal coarse Baum–Connes conjecture holds for XX. Later in [8], M. Finn-Sell showed that the coarse Novikov conjecture also holds for XX in such a case.

Our main theorem in this paper states as follows:

Theorem 1.1.

[Theorem 2.5] Let XX be a metric space with bounded geometry. If XX admits a fibred coarse embedding into an p\ell^{p}-space for some p[1,)p\in[1,\infty), then the coarse Novikov conjecture holds for XX, i.e. the coarse assembly map

μ:limdK(Pd(X))K(C(X))\mu:\lim_{d\to\infty}K_{*}(P_{d}(X))\to K_{*}(C^{*}(X))

is injective.

Warped cones over actions of hyperbolic groups and box spaces of residually finite hyperbolic groups are typical examples to which our main result appies. A sequence of nested normal subgroups {Γi}\{\Gamma_{i}\} of a residually finite group Γ\Gamma is said to be a filtration if the sequence has trivial intersection. The box space of Γ\Gamma associated to a filtration {Γi}\{\Gamma_{i}\}, denoted by 𝐁𝐨𝐱{Γi}Γ{\bf Box}_{\{\Gamma_{i}\}}\Gamma, is the coarse disjoint union Γ/Γi\bigsqcup\Gamma/\Gamma_{i}, where each quotient is equipped with the word length metric. Warped cones are metric spaces introduced by J. Roe [20] from discrete group actions on compact metric spaces. Typically, let Γ\Gamma be a finite generated group, MM a compact Riemannian manifold. The warped cone for (Γ,M)(\Gamma,M), denoted by 𝒪Γ(M)\mathcal{O}_{\Gamma}(M), is constructed from the action Γ\Gamma on MM by diffeomorphisms. It is a metric space whose underlying topological space is the open cone 𝒪M\mathcal{O}M on MM, but whose coarse geometry produces large groups of translations. The second section will have a comprehensive introduction for warped cones.

In [22], D. Sawicki and J. Wu found a relationship between fibred coarse embeddability of warped cones and existence of proper affine isometric actions of discrete groups on Banach spaces. They proved that if (Γ,M)(\Gamma,M) is free and admits a linearization by unitary operators in a Hilbert space \mathcal{H} and Γ\Gamma admits a proper affine isometric action on \mathcal{H} (i.e., Γ\Gamma is a-T-menable), then 𝒪Γ(M)\mathcal{O}_{\Gamma}(M) admits a fibred coarse embedding into Hilbert space. The result still holds if we replace the Hilbert space with an p\ell^{p}-space. The same question is also considered by Q. Wang and Z. Wang in [24]. They provided a different proof for the case of p\ell^{p} spaces and replace the condition ΓM\Gamma\curvearrowright M is free by that MM is required to contain a dense and free orbit of Γ\Gamma in their paper.

As corollaries, we have the following results:

Corollary 1.2.

Let Γ\Gamma be a finite generated discrete group and let MM be a compact manifold. Assume that the action of Γ\Gamma on MM is linearisable in an p\ell^{p}-space and ΓM\Gamma\curvearrowright M is free (or MM contains a dense free orbit). If Γ\Gamma admits a proper affine isometric action on an p\ell^{p}-space, then the coarse Novikov conjecture holds for the warped cone 𝒪Γ(M)\mathcal{O}_{\Gamma}(M).

Combining the result in [30, 21, 3], we also have

Corollary 1.3.

Let Γ\Gamma be a finitely generated residually finite hyperbolic group, and G=Γ^((Γn))G=\widehat{\Gamma}((\Gamma_{n})) the corresponding profinite completion. Then the coarse Novikov conjecture hold for 𝒪Γ(G)\mathcal{O}_{\Gamma}(G) and any box apace 𝐁𝐨𝐱{Γn}Γ{\bf Box}_{\{\Gamma_{n}\}}\Gamma.

We now give a short explaination about serveral key ingredients in our proof. We briefly recall the proof of the maximal coarse Baum-Connes conjecture for a metric space which admits a fibred coarse embedding into a Hilbert space in [4]. The authors firstly reduced the issue to proving the maximal coarse Baum-Connes conjecture at infinity for the coarse disjoint unions of finite metric spaces. By using a geometric Dirac-dual-Dirac argument, they further reduced the problem to a twisted version of coarse Baum-Connes conjecture at infinity by using a CC^{*}-algebra constructed in [11]. Then the theorem follows by using a cutting and pasting argument of G. Yu introduced in the Section 6 of [29]. We try to follow the outline of their proof, however there are servarl problems.

For the first step, we need to use a Mayer-Vietoris argument and Five Lemma to reduce the problem to ’infinity’. First of all, a coarse Mayer-Vietoris argument in [13] enables us to just take into consideration of the coarse Baum-Connes conjecture for coarse disjoint unions of finite subsets. For the case when X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n} where each XnX_{n} is finite, one can use the following diagram, see [4]:

00limdK(Pd(XNd))n=NdK(Pd(Xn))K(𝒦)limdK(Pd(X))μK(Cmax(X))ΦlimdnK(Pd(Xn))nK(Pd(Xn))μK(Cmax,u,(Pd(Xn)))00.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 85.13464pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\&\\&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.63165pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 141.214pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 146.714pt\raise-28.3372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-85.13464pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X_{N_{d}}))\oplus\bigoplus_{n=N_{d}}^{\infty}K_{*}(P_{d}(X_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.73195pt\raise-32.68721pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\qquad\qquad\qquad\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.93204pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-69.27023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 129.93204pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(\mathcal{K})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 146.714pt\raise-68.63414pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-39.28038pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 68.24808pt\raise-74.58273pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 120.06609pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-105.96323pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 120.06609pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}_{max}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 146.714pt\raise-102.24178pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92639pt\hbox{$\scriptstyle{\Phi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 146.714pt\raise-113.57722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-40.75748pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}\frac{\prod_{n\in\mathbb{N}}K_{*}(P_{d}(X_{n}))}{\bigoplus_{n\in\mathbb{N}}K_{*}(P_{d}(X_{n}))}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 66.24808pt\raise-119.52582pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{\infty}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 109.13464pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-158.11613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 109.13464pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}_{max,u,\infty}(P_{d}(X_{n})))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 146.714pt\raise-158.11613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-5.5pt\raise-167.56058pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern 141.214pt\raise-167.56058pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces.

The vertical sequence on the right side is exact only when we take the maximal norm and the top horizantal map is an isomorphism. Then it suffices to prove the assembly map at infinity μ\mu_{\infty} is an isomorphism.

However, when we consider the coarse Novikov conjecture for certain spaces, the coarse Mayer-Vietories argument above does not work anymore as the Five Lemma fails if we only have the injectivity part of the assembly map μ\mu. The argument holds only for a coarse disjoint union of a sequence of finite metric spaces X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n}. One can still reduce the coarse Novikov conjecture for XX to ’infinity’ by using the following diagram, see [25, 26].

00limdK(Pd(XNd))n=NdK(Pd(Xn))K(𝒦)ilimdK(Pd(X))μK(C(X))ΦlimdnK(Pd(Xn))nK(Pd(Xn))μK(Cu,(Pd(Xn)))0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 85.13464pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\&\\&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.63165pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 141.214pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 146.714pt\raise-28.3372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-85.13464pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X_{N_{d}}))\oplus\bigoplus_{n=N_{d}}^{\infty}K_{*}(P_{d}(X_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.73195pt\raise-32.68721pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\qquad\qquad\qquad\cong}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.93204pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-69.27023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 129.93204pt\raise-38.8372pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(\mathcal{K})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 146.714pt\raise-59.30371pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.84306pt\hbox{$\scriptstyle{i_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 146.714pt\raise-68.63414pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-39.28038pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 68.24808pt\raise-74.58273pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 120.06609pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-105.96323pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 120.06609pt\raise-79.77023pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 146.714pt\raise-102.24178pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92639pt\hbox{$\scriptstyle{\Phi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 146.714pt\raise-113.57722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-40.75748pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}\frac{\prod_{n\in\mathbb{N}}K_{*}(P_{d}(X_{n}))}{\bigoplus_{n\in\mathbb{N}}K_{*}(P_{d}(X_{n}))}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 66.24808pt\raise-119.52582pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{\infty}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 109.13464pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-158.11613pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 109.13464pt\raise-124.71332pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}_{u,\infty}(P_{d}(X_{n})))}$}}}}}}}{\hbox{\kern-5.5pt\raise-167.56058pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern 143.714pt\raise-167.56058pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Notice that i:K(𝒦)K(C(X))i_{*}:K_{*}(\mathcal{K})\to K_{*}(C^{*}(X)) is injective only when XX is a coarse disjoint union of finite spaces, see [16]. By using a diagram chasing argument, to prove μ\mu is injective, it suffices to prove μ\mu_{\infty} is injective.

For the general case (especially the case when XX can not be seen as a coarse disjoint union of finite metric spaces), in order to make the whole progress work well, we introduce a notion of KK-homology at infinity for a locally compact Hausdorff space and a notion of Roe algebra at infinity for a proper metric space in Section 4 and construct the following diagram:

limdK(Pd(X))πμlimdK(Pd(X))μK(C(Pd(X)))ΦK(C(Pd(X))).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 39.28038pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-39.28038pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 45.2853pt\raise 4.97223pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.04167pt\hbox{$\scriptstyle{\pi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 63.28038pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-10.21783pt\raise-20.29373pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.45137pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 63.28038pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}^{\infty}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 102.56076pt\raise-20.29373pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\mu_{\infty}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 102.56076pt\raise-29.45137pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-35.8987pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 44.75261pt\raise-34.73051pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92639pt\hbox{$\scriptstyle{\Phi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 66.66206pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 66.66206pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X)))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

A metric space with bounded geometry is said to admit an infinite coarse component if there exists R>0R>0 such that the Rips complex PR(X)P_{R}(X) has an unbounded component. It is an opposite statement to the coarse disjoint union (see Proposition 5.5). We prove that π\pi_{*} is an injection if XX admits an infinite coarse component. Thus we can still reduce the Novikov conjecture for XX to proving μ\mu_{\infty} is injective in this case. Moreover, we show in Section 5 that our construction coincides with the construction in [4] for the coarse disjoint union case. This means that we can always reduce the coarse Novikov conjecture to ’infinity’ by using our construction (see Theorem 5.7).

For the second step, we need to construct a twisted version of the coarse Baum-Connes conjecture by using an algebra associated with B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}) for p[1,)p\in[1,\infty). As BB is of property (H) introduced by G. Kasparov and G. Yu in [14], we wanted to use the CC^{*}-algebra 𝒬((𝒜n^𝒦)n)\mathcal{Q}((\mathcal{A}_{n}\widehat{\otimes}\mathcal{K})_{n\in\mathbb{N}}) introduced in [14, 5] to solve this problem. For any a𝒬((𝒜n^𝒦)n)a\in\mathcal{Q}((\mathcal{A}_{n}\widehat{\otimes}\mathcal{K})_{n\in\mathbb{N}}), we shall need a CC^{*}-isomorphism t:𝒬((𝒜n^𝒦)n)𝒬((𝒜n^𝒦)n)t^{*}:\mathcal{Q}((\mathcal{A}_{n}\widehat{\otimes}\mathcal{K})_{n\in\mathbb{N}})\to\mathcal{Q}((\mathcal{A}_{n}\widehat{\otimes}\mathcal{K})_{n\in\mathbb{N}}) associated to an affine isometry tt on BB to translate the support of aa. However, 𝒬((𝒜n^𝒦)n)\mathcal{Q}((\mathcal{A}_{n}\widehat{\otimes}\mathcal{K})_{n\in\mathbb{N}}) is built by using a dense subspace of BB which may not be invarinat under tt. To solve this problem, we construct a new algebra 𝒜(B)\mathcal{A}(B) for an p\ell^{p}-space B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}) in Section 3. Our construction is inspired from the paper of S. Gong, J. Wu and G. Yu [10] for the case when p=2p=2. We construct a Bott homomorphism βx0:𝒮𝒜(B)\beta_{x_{0}}:\mathcal{S}\to\mathcal{A}(B) associated with a base point x0Bx_{0}\in B by using the p/2p/2-Hölder extension of the Mazur map introduced by E. Odell and T. Schlumprecht in [15] and extended by Q. Cheng in [6]. We show that the Bott homomorphism induces an isomorphism on KK-theory which does not depend on the choice of the base point, i.e., (βx0):K(𝒮)K(𝒜(B))(\beta_{x_{0}})_{*}:K_{*}(\mathcal{S})\to K_{*}(\mathcal{A}(B)) is an isomorphism for any x0Bx_{0}\in B (see Theorem 3.15).

Actually, it has been pointed out in G. Kasparov and G. Yu’s paper [14] that the Bott periodicity theorem holds for p\ell^{p}-spaces. Indeed, the Mazur map can be extended to a homeomorphism between p(,)\ell^{p}(\mathbb{N},\mathbb{R}) and 2(,)\ell^{2}(\mathbb{N},\mathbb{R}) and the Bott periodicity for 2(,)\ell^{2}(\mathbb{N},\mathbb{R}) has been proved in [11]. However, the constructions in [11] and [14] also rely on a dense subspace of p(,)\ell^{p}(\mathbb{N},\mathbb{R}) which is sightly different from ours.

This paper is organized as follows. In Section 2, we briefly recall the Roe algebra and Yu’s localization algebra, and states the coarse Novikov conjecture. After that we go over the concept of warped metric and warped cones introduced by John Roe [20]. In Section 3, we introduce an algebra 𝒜(B)\mathcal{A}(B) associated with B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}) and calculate its KK-theory. It will play an important role in the following proof. In Section 4, we introduce KK-homology at infinity, Roe algebra at infinity and the coarse Novikov conjecture at infinity for a proper metric space. In Section 5. we compare the case of coarse disjoint union and the case of spaces which admit an infinite coarse component, and reduce both cases to the coarse Novikov conjecture at infinity. In Section 6, we define twisted algebras at infinity and compute their KK-theories by using a cutting and pasting technique introduced by G. Yu in [29]. In Section 7, we define the Bott map and complete the proof.

2 The coarse Novikov conjecture

First of all, let us recall the definition of the Roe algebra and the coarse Baum-Connes assembly map for a proper metric space (cf. [2, 18, 19]) in this section.

Assume that (X,d)(X,d) is a proper metric space. For δ>0\delta>0, a δ\delta-net of XX is a discrete subset of XδXX_{\delta}\subset X such that there exists r>0r>0 such that d(x,x)>rd(x,x^{\prime})>r for all distinct x,xXδx,x^{\prime}\in X_{\delta} and xXδB(x,δ)=X\bigcup_{x\in X_{\delta}}B(x,\delta)=X. Moreover, XX is said to have bounded geometry if XX contains a net XδX_{\delta} with bounded geometry for some δ>0\delta>0, i.e., for any r>0r>0 there exists N>0N>0 such that any ball of radius rr in XδX_{\delta} contains at most NN elements.

We denote C0(X)C_{0}(X) to be the CC^{*}-algebra of all continuous functions on XX which vanish at infinity. A separable infinite-dimensional Hilbert space HXH_{X} is said to be an XX-module if HXH_{X} is equipped with a non-degenerate *-representation π:C0(X)(HX)\pi:C_{0}(X)\to\mathcal{B}(H_{X}). Moreover, HXH_{X} is said to be ample if no non-zero element of C0(X)C_{0}(X) acts as a compact operator.

Definition 2.1 ([18]).

Let HXH_{X} be an ample XX-module and T(HX)T\in\mathcal{B}(H_{X}).

  • (1)

    TT is said to be locally compact if fTfT and TfTf are compact operators for any fC0(X)f\in C_{0}(X);

  • (2)

    The support of TT, denoted by supp(T)\textup{supp}(T), is defined to be the set of all points (x,y)X×X(x,y)\in X\times X such that for all f,gC0(X)f,g\in C_{0}(X) with f(x)0f(x)\neq 0 and g(y)0g(y)\neq 0, we have that fTg0fTg\neq 0;

  • (3)

    The propagation of TT is defined to be

    Prop(T)=sup{d(x,y)(x,y)supp(T)}[0,].\textup{Prop}(T)=\sup\{d(x,y)\mid(x,y)\in\textup{supp}(T)\}\in[0,\infty].

    Moreover, TT is said to have finite propagation if Prop(T)<\textup{Prop}(T)<\infty.

  • (4)

    The algebraic Roe algebra of XX, denote by [X,HX]\mathbb{C}[X,H_{X}] (or simply [X]\mathbb{C}[X]), is defined to be the *-algebra of all finite propagation locally compact operators on HXH_{X}.

  • (5)

    The Roe algebra of XX, denoted by C(X,HX)C^{*}(X,H_{X}) (or simply C(X)C^{*}(X)), is the norm closure of [X]\mathbb{C}[X] in (HX)\mathcal{B}(H_{X}).

Note that C(X,HX)C^{*}(X,H_{X}) does not depend on the choice of XX-module HXH_{X} up to a non-canonical *-isomorphism [13]. Hence, it is convenient to discuss the following specific XX-module. Let ZXZ\subseteq X be a countable dense subset of XX and HH be a fixed infinite dimensional Hilbert space. We denote 𝒦(H)\mathcal{K}(H) to be the set of all compact operators on HH. We define HX=2(Z)HH_{X}=\ell^{2}(Z)\otimes H to be an ample XX-module equipped with the pointwise multiplication representation of C0(X)C_{0}(X) on 2(Z)\ell^{2}(Z). It is easy to check that HXH_{X} is ample.

Definition 2.2.

Define f[X]\mathbb{C}_{f}[X] to be the set of all bounded functions T:Z×Z𝒦(H)T:Z\times Z\to\mathcal{K}(H) satisfying the following conditions:

  • (1)

    for any bounded subset BXB\subset X, the set

    #{(x,y)(B×B)(X×X)T(x,y)0}<;\#\{(x,y)\in(B\times B)\cap(X\times X)\mid T(x,y)\neq 0\}<\infty;
  • (2)

    there exists L>0L>0 such that

    #{yZ|T(x,y)0}<L,#{yZT(y,x)0}<L\#\{y\in Z|T(x,y)\neq 0\}<L,\qquad\#\{y\in Z\mid T(y,x)\neq 0\}<L

    for all xZx\in Z;

  • (3)

    there exists R>0R>0 such that T(x,y)=0T(x,y)=0 whenever d(x,y)>Rd(x,y)>R for x,yZx,y\in Z.

Notice that f[X]\mathbb{C}_{f}[X] can be viewed as a dense *-subalgebra of [X,HX]\mathbb{C}[X,H_{X}] in C(X)C^{*}(X), where the algebraic operation of f[X]\mathbb{C}_{f}[X] is given by viewing Tf[X]T\in\mathbb{C}_{f}[X] as ZZ-by-ZZ matrix. In this sequel, we will use f[X]\mathbb{C}_{f}[X] to replace [X]\mathbb{C}[X] to define the Roe algebra of XX.

We next recall the assembly map μ\mu for the Roe algebras. Let XX be a proper metric space. Recall that the KK-homology groups Ki(X)=KKi(C0(X),)K_{i}(X)=KK_{i}(C_{0}(X),\mathbb{C}) (i=0,1)(i=0,1) are generated by certain cycles modulo certain equivalence relations

  • (1)

    a cycle for K0(X)K_{0}(X) is a pair (HX,F)(H_{X},F), where HXH_{X} is an XX-module and FF is a bounded linear operator acting on HXH_{X} such that FFIF^{*}F-I and FFIFF^{*}-I are locally compact, and φFFφ\varphi F-F\varphi is compact for all φC0(X)\varphi\in C_{0}(X);

  • (2)

    a cycle for K1(X)K_{1}(X) is a pair (HX,F)(H_{X},F), where HXH_{X} is an XX-module and FF is a self-adjoint operator acting on HXH_{X} such that F2IF^{2}-I is locally compact, and φFFφ\varphi F-F\varphi is compact for all φC0(X)\varphi\in C_{0}(X).

Let (HX,F)(H_{X},F) represent a cycle in K0(X)K_{0}(X). For any R>0R>0, one can always take a locally finite, uniformly bounded open cover {Ui}iI\{U_{i}\}_{i\in I} of XX such that the diameter of each UiU_{i} is no more than RR. Let {ϕi}iI\{\phi_{i}\}_{i\in I} be a continuous partition of unity subordinate to the open cover {Ui}iI\{U_{i}\}_{i\in I}. Define

F=iϕi12Fϕi12,F^{\prime}=\sum_{i}\phi^{\frac{1}{2}}_{i}F\phi^{\frac{1}{2}}_{i},

where the sum converges in the strong operator topology. It is not hard to see that (HX,F)(H_{X},F) and (HX,F)(H_{X},F^{\prime}) are equivalent via (HX,(1t)F+tF)(H_{X},(1-t)F+tF^{\prime}), where t[0,1]t\in[0,1]. Note that both FF^{\prime} and F21F^{\prime 2}-1 have finite propagation, so FF^{\prime} is a multiplier of C(X)C^{*}(X) and FF^{\prime} is invertible modulo C(X)C^{*}(X). Hence FF^{\prime} gives rise to an element, denoted by ([F])\partial([F^{\prime}]) in K0(C(X))K_{0}(C^{*}(X)), where

:K1(M(C(X))/C(X))K0(C(X))\partial:K_{1}(M(C^{*}(X))/C^{*}(X))\to K_{0}(C^{*}(X))

is the boundary map of KK-theory, and M(C(X))M(C^{*}(X)) is the multiplier algebra of C(X)C^{*}(X). We define the index of (HX,F)(H_{X},F) to be ([F])\partial([F^{\prime}]). Similarly, we can define the index map from K1(X)K_{1}(X) to K1(C(X))K_{1}(C^{*}(X)).

Now we are ready to introduce the coarse Baum–Connes assembly map for a metric space with bounded geometry.

Definition 2.3.

Let XX be a discrete metric space with bounded geometry. For each d0d\geq 0, the Rips complex of XX at scale dd, denoted by Pd(X)P_{d}(X), consists as a set of all formal sums

z=xXtxxz=\sum_{x\in X}t_{x}x

such that each txt_{x} is in [0,1][0,1], such that xXtx=1\sum_{x\in X}t_{x}=1, and such that the support of zz defined by supp(z):={xX|tx0}supp(z):=\{x\in X\,|\,t_{x}\neq 0\} has diameter at most dd.

We will next discuss the semi-simplicial metric of the Rips complex of XX. One can find more details of Rips complex in the section 7.2 of [27]. We shall first define the spherical metric dSd_{S} on Pd(X)P_{d}(X). On each path connected component of Pd(X)P_{d}(X), the spherical metric is the maximal metric whose restriction to each simplex {i=0ntixiti0,iti=1}\{\sum_{i=0}^{n}t_{i}x_{i}\mid t_{i}\geq 0,\sum_{i}t_{i}=1\} is the metric obtained by identifying the simplex with S+nS^{n}_{+} via the map

i=0ntixi(t0i=0nti2,,tni=0nti2),\sum_{i=0}^{n}t_{i}x_{i}\to\left(\frac{t_{0}}{\sqrt{\sum_{i=0}^{n}t_{i}^{2}}},\cdots,\frac{t_{n}}{\sqrt{\sum_{i=0}^{n}t_{i}^{2}}}\right),

where S+n={(x0,,xn)n+1xi0,i=0nxi2=1}S^{n}_{+}=\{(x_{0},\cdots,x_{n})\in\mathbb{R}^{n+1}\mid x_{i}\geq 0,\sum_{i=0}^{n}x_{i}^{2}=1\} endowed with the standard Riemannian metric on the unit nn-sphere.

For any x,yPd(Z)x,y\in P_{d}(Z), a semi-simplicial path δ\delta between xx and yy is a finite sequence of points

x=x0,y0,x1,y1,,xn,yn=yx=x_{0},y_{0},x_{1},y_{1},\cdots,x_{n},y_{n}=y

where xix_{i} and yiy_{i} are in XX for each i={1,,n}i=\{1,\cdots,n\}. The length of δ\delta is defined to be

l(δ)=i=0nd(xi,yi)+i=0n1dS(yi,xi+1)l(\delta)=\sum_{i=0}^{n}d(x_{i},y_{i})+\sum_{i=0}^{n-1}d_{S}(y_{i},x_{i+1})

We define the semi-spherical metric dPdd_{P_{d}} on Pd(X)P_{d}(X) by

dPd(x,y)=inf{l(δ) δ is a semi-simplicial path between x and y}.d_{P_{d}}(x,y)=\inf\{l(\delta)\mid\text{ $\delta$ is a semi-simplicial path between $x$ and $y$}\}.

One can check that (P0(X),dP0)(P_{0}(X),d_{P_{0}}) identifies isometrically with (X,d)(X,d). Moreover, it has been proved in [27, Proposition 7.2.11] that the canonical inclusion id:XPd(X)i_{d}:X\to P_{d}(X) is a coarse equivalence for each d0d\geq 0.

If d<dd<d^{\prime}, then Pd(X)P_{d}(X) is included in Pd(X)P_{d^{\prime}}(X) as a subcomplex via a simplicial map. Passing to inductive limit, we obtain the assembly map

μ:limdK(Pd(X))limdK(C(Pd(X)))K(C(X)).\mu:\lim_{d\to\infty}K_{*}(P_{d}(X))\to\lim_{d\to\infty}K_{*}(C^{*}(P_{d}(X)))\cong K_{*}(C^{*}(X)).
The coarse Novikov conjecture.

If XX is a discrete metric space with bounded geometry, then the coarse assembly map

μ:limdK(Pd(X))K(C(X))\mu:\lim_{d\to\infty}K_{*}(P_{d}(X))\to K_{*}(C^{*}(X))

is injective.

To state our main theorem, we will also need some preparations of coarse geometry and group actions. Recall that a metric space (X,d)(X,d) is said to admits a coarse embedding into a Hilbert space if there exists a map f:Xf:X\to\mathcal{H} and two non-decreasing unbounded functions ρ,ρ+:++\rho_{-},\rho_{+}:\mathbb{R}_{+}\to\mathbb{R}_{+} such that

ρ(dX(x,x))f(x)f(x)ρ+(dX(x,x)).\rho_{-}(d_{X}(x,x^{\prime}))\leq\|f(x)-f(x^{\prime})\|_{\mathcal{H}}\leq\rho_{+}(d_{X}(x,x^{\prime})).

The concept of fibred coarse embedding is introduced by X. Chen, Q. Wang and G. Yu in [4] as a generalization of coarse embedding. In this paper, we will only focus on the case when a space admits a fibred coarse embedding into a real p\ell^{p}-space as following:

Definition 2.4 ([4]).

Let p1p\geq 1 and let BB denote the real Banach space p(,)\ell^{p}(\mathbb{N},\mathbb{R}). A metric space (X,d)(X,d) is said to admit a fibred coarse embedding into BB if there exists

  • a field of Banach space (Bx)xX(B_{x})_{x\in X} over XX such that each BxB_{x} is isometric to BB;

  • a section s:XxXBxs:X\to\bigsqcup_{x\in X}B_{x}, i.e. s(x)Bxs(x)\in B_{x} for each xXx\in X;

  • two non-decreasing functions ρ\rho_{-} and ρ+\rho_{+} from +\mathbb{R}_{+} to +\mathbb{R}_{+} with limrρ±(r)=\lim_{r\to\infty}\rho_{\pm}(r)=\infty

such that, for any R>0R>0, there exists a bounded subset KXK\subset X for which there exists a trivialization

tx,R:(Bz)zB(x,R)B(x,R)×Bt_{x,R}:(B_{z})_{z\in B(x,R)}\to B(x,R)\times B

for each xX\Kx\in X\backslash K, that is, a map from (Bz)zB(x,R)(B_{z})_{z\in B(x,R)} to the constant field B(x,R)×BB(x,R)\times B such that tx,Rt_{x,R} restrict to the fibre VzV_{z} is an affine-isometry tx,R(z):VzVt_{x,R}(z):V_{z}\to V, satisfying the following conditions:

  • (1)

    for any z1,z2B(x,R)z_{1},z_{2}\in B(x,R),

    ρ(d(z1,z2))tx,R(z1)(s(z1))tx,R(z2)(s(z2))pρ+(d(z1,z2));\rho_{-}(d(z_{1},z_{2}))\leq\|t_{x,R}(z_{1})(s(z_{1}))-t_{x,R}(z_{2})(s(z_{2}))\|_{p}\leq\rho_{+}(d(z_{1},z_{2}));
  • (2)

    for any x,yX\Kx,y\subset X\backslash K with B(x,R)B(y,R)B(x,R)\cap B(y,R)\neq\emptyset, there exists an affine-isometry txy,R:VVt_{xy,R}:V\to V such that tx,R(z)ty,R1(z)=txy,Rt_{x,R}(z)\circ t^{-1}_{y,R}(z)=t_{xy,R} for all zB(x,R)B(y,R)z\in B(x,R)\cap B(y,R).∎

Notice that for xXx\in X and R>R>0R^{\prime}>R>0, if there exists two trivilizations tx,Rt_{x,R} and tx,Rt_{x,R^{\prime}} for B(x,R)B(x,R) and B(x,R)B(x,R^{\prime}), respectively. Without loss of generality, we may assume that

tx,R|B(x,R)=tx,R.t_{x,R^{\prime}}|_{B(x,R)}=t_{x,R}.

For the notational convenience, we denote txt_{x} and txyt_{xy} for all tx,Rt_{x,R} and txy,Rt_{xy,R}, respectively.

In the rest of this paper, we will prove the following theorem:

Theorem 2.5.

Let XX be a discrete metric space with bounded geometry. If XX admits a fibred coarse embedding into an p\ell^{p} space, then the coarse Novikov conjecture holds for XX.

2.1 Warped Cones and proper affine isometric group actions

In this subsection, we shall recall some basic notions of warped cones and proper affine group actions (cf. [20, 21]). These are prominent examples of spaces which admit a fibred coarse embedding into an p\ell^{p}-space.

Let (Y,dY)(Y,d_{Y}) be a compact metric space. The open cone of YY, denoted by 𝒪Y\mathcal{O}Y, is the set Y×[1,)Y\times[1,\infty) with the metric d𝒪Yd_{\mathcal{O}Y} defined by

d𝒪Y((y1,t1),(y2,t2))=|t1t2|+min{t1,t2}dY(y1,y2)diam(Y).d_{\mathcal{O}Y}((y_{1},t_{1}),(y_{2},t_{2}))=|t_{1}-t_{2}|+\min\{t_{1},t_{2}\}\cdot\frac{d_{Y}(y_{1},y_{2})}{\textup{diam}(Y)}.

Let (X,dX)(X,d_{X}) be a proper metric space, Γ\Gamma a finite generated countable group acting by homeomorphisms on XX and SΓS\subseteq\Gamma a finite generating set. The warped metric δΓ\delta_{\Gamma} on XX is defined to be the greatest metric satisfying that

δΓ(x,x)dX(x,x)andδΓ(sx,x)1\delta_{\Gamma}(x,x^{\prime})\leq d_{X}(x,x^{\prime})\quad\text{and}\quad\delta_{\Gamma}(sx,x)\leq 1

for any x,xXx,x^{\prime}\in X and sSs\in S. The warped metric on XX always exists and the coarse structure induced by the warped metric does not depend on the choice of generating set SS for Γ\Gamma (see [20, Proposition 1.7]). For any γΓ\gamma\in\Gamma, let |γ||\gamma| denote the word length of γ\gamma relative to the generating set SS. Let x,xXx,x^{\prime}\in X, the warped distance between from xx to yy is [20]

δΓ(x,x)=inf{i=0N1d(γixi,xi+1)+|γi||x=x0,x1,,xN=xX,γiΓ}.\delta_{\Gamma}(x,x^{\prime})=\inf\left\{\sum_{i=0}^{N-1}d(\gamma_{i}x_{i},x_{i+1})+|\gamma_{i}|\,\Big{|}\,x=x_{0},x_{1},\cdots,x_{N}=x^{\prime}\in X,\gamma_{i}\in\Gamma\right\}.
Definition 2.6 ([21]).

Let (Y,dY)(Y,d_{Y}) be a compact metric space and let Γ\Gamma be a finitely generated group acting on YY by homeomorphisms. The warped cone of YY, denoted by 𝒪Γ(Y)\mathcal{O}_{\Gamma}(Y), is the open cone 𝒪Y\mathcal{O}Y with the warped metric, where the warping group action is defined by γ(y,t)=(γy,t)\gamma(y,t)=(\gamma y,t).

Definition 2.7 (P. C. Baayen and J. De. Groot [1]).

A group action ΓY\Gamma\curvearrowright Y is said to admit a linearization in Banach space BB if and there exists an isometric representation of Γ\Gamma on BB and YY admits a bi-Lipschtz equivariant embedding into BB

One is referred to the section 3.1 in [22] for more informations about linearization.

For a residually finite group, it is well-known that the coarse geometric properties of the box sapces 𝐁𝐨𝐱(Γ){\bf Box}(\Gamma) are closely related to the analytic properties of Γ\Gamma. A summary of the relationship can be found in [3, 7]. Actually, similar results also appear in the relationship between the coarse geometric properties 𝒪ΓY\mathcal{O}_{\Gamma}Y and the dynamical and analytic properties of Γ\Gamma:

Theorem 2.8.

Let Γ\Gamma be a finte gnerated group and (Y,d)(Y,d) a compact metric apace. Assume that there is a free group action ΓY\Gamma\curvearrowright Y.

  1. (1)

    The warped cone 𝒪ΓY\mathcal{O}_{\Gamma}Y has property A if and only if the action ΓY\Gamma\curvearrowright Y is amenable.

  2. (2)

    Assume moreover the action ΓY\Gamma\curvearrowright Y admit a linearization in the real Banach space p(,)\ell^{p}(\mathbb{N},\mathbb{R}) for some p1p\geq 1. If Γ\Gamma admits a proper affine isometric action on p(,)\ell^{p}(\mathbb{N},\mathbb{R}), then 𝒪ΓY\mathcal{O}_{\Gamma}Y admits fibred coarse embedding into p(,)\ell^{p}(\mathbb{N},\mathbb{R}).

The first term of the theorem above is proved by combining [20, Theorem 3.4] and [22, Theorem 4.2]. The second term is proved in [22, Theorem 3.2] for the case of p=2p=2. Actually their prove also holds for any p1p\geq 1. One can also find another proof in [24, Theorem 3.2] for the case of p2p\neq 2.

In the last of this section, we introduce a typical example constructed by profinite completion:

Examples 2.9.

Let Γ\Gamma be a residually finite group and {Γn}n=1\{\Gamma_{n}\}_{n=1}^{\infty} a decreasing sequence of finite index normal subgroups with n=1Γn={e}\bigcap_{n=1}^{\infty}\Gamma_{n}=\{e\}. We denote the quotient group by Gn=Γ/ΓnG_{n}=\Gamma/\Gamma_{n}. The identity map of Γ\Gamma induces an group homomorphism GnGn1G_{n}\to G_{n-1} for each nn\in\mathbb{N}. Then we have the following sequence:

GnG2G11.\cdots\to G_{n}\to\cdots\to G_{2}\to G_{1}\to 1.

We denote Γ^((Γn))\widehat{\Gamma}((\Gamma_{n})) the inverse limit of this sequence and call it the profinite completion of Γ\Gamma with respect to (Γn)(\Gamma_{n}). It is well-known that Γ^((Γn))\widehat{\Gamma}((\Gamma_{n})) is a compact metrizable group containing Γ\Gamma as a dense subgroup and Γ\Gamma acts freely on Γ^((Γn))\widehat{\Gamma}((\Gamma_{n})) by left multiplication and admit a linearization in p(,)\ell^{p}(\mathbb{N},\mathbb{R}) for any 1p<1\leq p<\infty ([22, Lemma 3.19]).

If Γ\Gamma admits a proper affine isometric action on p(,)\ell^{p}(\mathbb{N},\mathbb{R}) for some p1p\geq 1, then the warped cone 𝒪Γ(Γ^((Γn)))\mathcal{O}_{\Gamma}(\widehat{\Gamma}((\Gamma_{n}))) admits a fibred coarse embedding into p(,)\ell^{p}(\mathbb{N},\mathbb{R}).

Combining with Theorem 2.5, we have the following corollaries:

Corollary 2.10.

Let Γ\Gamma be a countable discrete group, YY be a compact metric space with a free Γ\Gamma-action. If this action admits a linearization in the p(,)\ell^{p}(\mathbb{N},\mathbb{R}) and Γ\Gamma admits a proper affine isometric action on p(,)\ell^{p}(\mathbb{N},\mathbb{R}) for some p1p\geq 1, then the coarse Novikov conjecture holds for 𝒪ΓY\mathcal{O}_{\Gamma}Y.

G. Yu proved hyperbolic groups always admits a proper affine isometric action on p(,)\ell^{p}(\mathbb{N},\mathbb{R}) for a sufficiently large p1p\geq 1 in [30, Theorem 1.1]. In particular, we have the following:

Corollary 2.11.

Let Γ\Gamma be a finitely generated residually finite hyperbolic group, and G=Γ^((Γn))G=\widehat{\Gamma}((\Gamma_{n})) the corresponding profinite completion. Then the coarse Novikov conjecture holds for 𝒪Γ(G)\mathcal{O}_{\Gamma}(G).

3 A Bott periodicity theorem for p\ell^{p} spaces

In this section, we will introduce a CC^{*}-algebra 𝒜(B)\mathcal{A}(B) associated to a given real Banach space B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}) and calculate its KK-theory.

In [14], G. Kasparov and G. Yu introduced a CC^{*}-algebra for Banach space with Property (H). They pointed out that its KK-theory can be calculated if the base space is an p\ell^{p}-space. We provide a detailed proof in this section. We would like to mention that our construction is slightly different from theirs. The CC^{*}-algebra 𝒜(X)\mathcal{A}(X) in [14] is generated by some certain functions on a dense subspace VV of BB. To build the twisted algebras in Section 6, for any affine isometry in Definition 2.4, we shall need a CC^{*}-isomorphism associated to the affine isometry to translate the support of a function in 𝒜(X)\mathcal{A}(X). However, the affine isometries in Definition 2.4 may not preserve the dense subspace in [14]. Our construction 𝒜(B)\mathcal{A}(B) will circumvent this problem.

3.1 A Clifford algebras for a Hilbert space

In this subsection, we will recall the definition of Clifford algebras for Hilbert spaces.

Let \mathcal{H} be an infinite dimensional separable real Hilbert space. For each n0n\geq 0, denote

n=n times,\mathcal{H}^{\odot n}_{\mathbb{C}}=\mathbb{C}\odot\underbrace{\mathcal{H}\odot\mathcal{H}\odot\cdots\odot\mathcal{H}}_{\text{n times}},

where \odot means the algebraic tensor product over \mathbb{R} and 0=\mathcal{H}^{\otimes 0}_{\mathbb{C}}=\mathbb{C}. Then n\mathcal{H}^{\odot n}_{\mathbb{C}} is equipped with a natural structure of complex vector space. We define the complex inner product on n\mathcal{H}_{\mathbb{C}}^{\odot n} by the formula:

z1v1vn,z2w1wn=z1z2¯v1,w1vn,wn,\langle z_{1}\otimes v_{1}\otimes\cdots\otimes v_{n},z_{2}\otimes w_{1}\otimes\cdots\otimes w_{n}\rangle=z_{1}\cdot\overline{z_{2}}\cdot\langle v_{1},w_{1}\rangle\cdot\ldots\cdot\langle v_{n},w_{n}\rangle,

and denote n\mathcal{H}_{\mathbb{C}}^{\otimes n} the completion of n\mathcal{H}^{\odot n}_{\mathbb{C}} under the inner product about. We denote 1v1vn1\otimes v_{1}\otimes\cdots\otimes v_{n} simply by v1vnv_{1}\otimes\cdots\otimes v_{n}.

Denote KnK^{n} the closed subspace of n\mathcal{H}^{\otimes n}_{\mathbb{C}} which is spanned by

{v1vksgn(σ)vσ(1)vσ(n)|v1,,vn,σ is a k-permutation}.\left\{v_{1}\otimes\cdots\otimes v_{k}-\text{sgn}(\sigma)v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma(n)}\,\big{|}\,v_{1},\cdots,v_{n}\in\mathcal{H},\text{$\sigma$ is a $k$-permutation}\right\}.

Define the kk-th complex exterior power of \mathcal{H} to be the quotient Hilbert space

n=n/Kn,\wedge^{n}\mathcal{H}_{\mathbb{C}}=\mathcal{H}^{\otimes n}_{\mathbb{C}}/K^{n},

where the equivalence class in n\wedge^{n}\mathcal{H}_{\mathbb{C}} is always denoted by v1vnv_{1}\wedge\cdots\wedge v_{n}. Let {e1,,en,}\{e_{1},\cdots,e_{n},\cdots\} be an orthonormal basis of \mathcal{H}. Then the set {ei1ei2eini1<i2<<in}\{e_{i_{1}}\wedge e_{i_{2}}\wedge\cdots\wedge e_{i_{n}}\mid i_{1}<i_{2}<\cdots<i_{n}\} gives an orthonormal basis of k\wedge^{k}\mathcal{H}_{\mathbb{C}}. Define the antisymmetric Fock space:

=kk.\wedge^{*}\mathcal{H}_{\mathbb{C}}=\bigoplus_{k\in\mathbb{N}}\wedge^{k}\mathcal{H}_{\mathbb{C}}.

For any vv\in\mathcal{H}, we define the creation operator C(v)C(v) by

C(v)(v1vk)=vv1vk.C(v)(v_{1}\wedge\cdots\wedge v_{k})=v\wedge v_{1}\wedge\cdots\wedge v_{k}.

It is not hard to check that the adjoint operator defined by

C(v)(v1vk)=i=1k(1)i+1v,viv1vi^vk.C^{*}(v)(v_{1}\wedge\cdots\wedge v_{k})=\sum_{i=1}^{k}(-1)^{i+1}\langle v,v_{i}\rangle v_{1}\wedge\cdots\wedge\widehat{v_{i}}\wedge\cdots\wedge v_{k}.

We define a self-adjoint operator

v^:=C(v)+C(v)()\hat{v}:=C(v)+C^{*}(v)\in\mathcal{B}(\wedge^{*}\mathcal{H}_{\mathbb{C}})

for each vv\in\mathcal{H}, then we have that

w^v^+v^w^=2w,v.\hat{w}\hat{v}+\hat{v}\hat{w}=2\langle w,v\rangle.

The complex Cliiford algebra Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}) to be subalgebra of ()\mathcal{B}(\wedge^{*}\mathcal{H}_{\mathbb{C}}) generated by {v^v}\{\hat{v}\mid v\in\mathcal{H}\}.

If VV is a linear subspace of \mathcal{H}, then V\wedge^{*}V_{\mathbb{C}} is clearly a subspace of \wedge^{*}\mathcal{H}_{\mathbb{C}}. Thus Cliff(V)\textup{Cliff}_{\mathbb{C}}(V) can be naturally viewed as a subalgebra of Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}).

Proposition 3.1.

Let {Vn}n\{V_{n}\}_{n\in\mathbb{N}} be an increasing sequence of finite-dimensional Hilbert space such that nVn\bigcup_{n\in\mathbb{N}}V_{n} is dense in \mathcal{H}. Then

limnCliff(Vn)Cliff().\lim_{n\to\infty}\textup{Cliff}_{\mathbb{C}}(V_{n})\cong\textup{Cliff}_{\mathbb{C}}(\mathcal{H}).
Proof.

For each nn\in\mathbb{N}, we can view Cliff(Vn)\textup{Cliff}_{\mathbb{C}}(V_{n}) as a subalgebra of Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}). It suffices to prove

nCliff(Vn)¯=Cliff(),\overline{\bigcup_{n\in\mathbb{N}}\textup{Cliff}_{\mathbb{C}}(V_{n})}=\textup{Cliff}_{\mathbb{C}}(\mathcal{H}),

which follows directly from the fact that v^Cliff()=v\|\hat{v}\|_{\textup{Cliff}_{\mathbb{C}}(\mathcal{H})}=\|v\|_{\mathcal{H}} and nVn¯=\overline{\bigcup_{n\in\mathbb{N}}V_{n}}=\mathcal{H}. ∎

Remark 3.2.

Actually, there is another way to construct the Clifford algebra for \mathcal{H}. Let 𝒯()=n=0n\mathcal{T}(\mathcal{H})=\oplus_{n=0}^{\infty}\mathcal{H}^{\odot n}_{\mathbb{C}} be tha complex algebraic tensor algebra of \mathcal{H}. Let II be the ideal of 𝒯()\mathcal{T}(\mathcal{H}) which is generated by {vvv21v}\left\{v\otimes v-\|v\|_{\mathcal{H}}^{2}\cdot 1\mid v\in\mathcal{H}\right\}. Denote l()\mathbb{C}l(\mathcal{H}) the quotient algebra 𝒯()/I\mathcal{T}(\mathcal{H})/I. As a linear space, 𝒯()\mathcal{T}(\mathcal{H}) is also a dense subspace of the Hilbert space n=0n\oplus_{n=0}^{\infty}\mathcal{H}^{\otimes n}_{\mathbb{C}}. Denote by H(l())H(\mathbb{C}l(\mathcal{H})) the completion of l()\mathbb{C}l(\mathcal{H}) under the inner product induced by n=0n\oplus_{n=0}^{\infty}\mathcal{H}^{\otimes n}_{\mathbb{C}}. Then l()\mathbb{C}l(\mathcal{H}) has a canonical faithful representation by the left multiplication on H(l())H(\mathbb{C}l(\mathcal{H})). Then the Clifford algebra

Cliff()=l()¯\textup{Cliff}_{\mathbb{C}}(\mathcal{H})=\overline{\mathbb{C}l(\mathcal{H})^{\|\cdot\|}}

where the norm \|\cdot\| is given by the canonical representation on H(l())H(\mathbb{C}l(\mathcal{H})).

3.2 A CC^{*}-algebra associated with a real p\ell^{p} space

Fix 1p<1\leq p<\infty and denote B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}) to be the real Banach space. Specially, we denote =2(,)\mathcal{H}=\ell^{2}(\mathbb{N},\mathbb{R}) the real Hilbert space. We define the sign function sgn:\text{sgn}:\mathbb{R}\to\mathbb{R} by the formula

sgn(a)={0,a=0;a|a|1,a0.\text{sgn}(a)=\left\{\begin{aligned} &0&&,a=0;\\ &a|a|^{-1}&&,a\neq 0.\end{aligned}\right.

Denote by S(B)S(B) the closed unit sphere of BB. Recall the Mazur map ψ:S(B)S()\psi:S(B)\to S(\mathcal{H}), defined by

ψ(a1,,an,)=(sgn(a1)|a1|p/2,,sgn(an)|an|p/2,),\psi(a_{1},\cdots,a_{n},\cdots)=(sgn(a_{1})|a_{1}|^{p/2},\cdots,\text{sgn}(a_{n})|a_{n}|^{p/2},\cdots),

is a uniform homeomorphism, i.e., the rr-oscillation of ψ\psi and ψ1\psi^{-1} tend to 0 as rr tends to 0, where the rr-oscillation of ψ\psi is defined to be

ωr(ψ)=supx,xS(B),xxprψ(x)ψ(x).\omega_{r}(\psi)=\sup_{x,x^{\prime}\in S(B),\|x-x^{\prime}\|_{p}\leq r}\|\psi(x)-\psi(x^{\prime})\|.

We consider the p/2p/2-Hölder extension of the Mazur map ψ\psi, which is a map ϕ:B\phi:B\to\mathcal{H} defined by

ϕ(x)={0,x=0;xpp/2ψ(xp1x),x0.\phi(x)=\left\{\begin{aligned} &0&&,x=0;\\ &\|x\|^{p/2}_{p}\psi\left(\|x\|_{p}^{-1}x\right)&&,x\neq 0.\end{aligned}\right.

Actually, we have the following uniform homeomorphism extension theorem due to E. Odell and T. Schlumprecht [15, Proposition 2.9] and Q. Cheng [6, Theorem 2.4]:

Proposition 3.3 ([15, 6]).

For any R>0R>0, the extended Mazur map restricted on the ball ϕ|BallB(0,R):BallB(0,R)Ball(0,Rp/2)\phi|_{Ball_{B}(0,R)}:Ball_{B}(0,R)\to Ball_{\mathcal{H}}(0,R^{p/2}) is a uniform homeomorphism, i.e.,

ωr(ϕ|BallB(0,R))0 as r0.\omega_{r}\left(\phi|_{Ball_{B}(0,R)}\right)\to 0\text{ as }r\to 0.

As a corollary, ϕ\phi forms a homeomorphism between BB and \mathcal{H}. When p=2p=2, the extended Mazur map is the identity map on \mathcal{H}.

Denote by +=[0,)\mathbb{R}_{+}=[0,\infty). Let C(B×+,Cliff())C(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})) be the algebra of all continuous functions from B×+B\times\mathbb{R}_{+} to Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R}). We view Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}) as a subalgebra of Cliff()\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R}) in the following paper.

Definition 3.4.

Define Cb,0(B×+,Cliff())C_{b,0}(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})) to be the subalgebra of C(B×+,Cliff())C(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})) consisting of all bounded functions ff such that

f(x,0)Cliff()Cliff()f(x,0)\in\textup{Cliff}_{\mathbb{C}}(\mathcal{H})\subseteq\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})

for all xBx\in B.

Definition 3.5.

For any x0Bx_{0}\in B, we define the Clifford operator Cx0C(B×+,Cliff())C_{x_{0}}\in C(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})) by

Cx0(x,t)=(ϕ(xx0),t)Cliff()C_{x_{0}}(x,t)=(\phi(x-x_{0}),t)\in\mathcal{H}\oplus\mathbb{R}\subseteq\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})

for any xBx\in B and t+t\in\mathbb{R}_{+}.

We denote C0()evC_{0}(\mathbb{R})_{ev} (or C0()oddC_{0}(\mathbb{R})_{odd}, respectively) the subset of C0()C_{0}(\mathbb{R}) of all even (or odd, respectively) functions. For any Hilbert space HH, we next define the functional calculus of Cliff(H)\textup{Cliff}_{\mathbb{C}}(H): for any fC0()evf\in C_{0}(\mathbb{R})_{ev} and vCliff(H)v\in\mathcal{H}\subset\textup{Cliff}_{\mathbb{C}}(H), we define f(v)=f(v)Cliff(H)f(v)=f(\|v\|)\in\mathbb{C}\subset\textup{Cliff}_{\mathbb{C}}(H) and for gC0()oddg\in C_{0}(\mathbb{R})_{odd}, we define the functional calculus by

g(v)={0,v=0g(v)vv,v0,g(v)=\left\{\begin{aligned} &0&&,v=0\\ &g(\|v\|)\frac{v}{\|v\|}&&,v\neq 0,\end{aligned}\right.

where g(v)g(v) is an element of Cliff(H)\textup{Cliff}_{\mathbb{C}}(H).

Lemma 3.6.

For any x0Bx_{0}\in B and fC0()f\in C_{0}(\mathbb{R}), the Bott map βx0\beta_{x_{0}} is defined by functional calculus such that

(βx0(f))(x,t)=f(Cx0(x,t)),(\beta_{x_{0}}(f))(x,t)=f(C_{x_{0}}(x,t)),

for each xBx\in B and t+t\in\mathbb{R}_{+}. Then βx0\beta_{x_{0}} gives a graded homomorphism from C0()C_{0}(\mathbb{R}) to Cb,0(B×+,Cliff())C_{b,0}(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})).

Proof.

Combining the definition of the functional calculus and the fact that ϕ\phi is continuous, it is obvious that βx0(f)\beta_{x_{0}}(f) is continuous. ∎

Definition 3.7.

The algebra 𝒜(B)\mathcal{A}(B) is the CC^{*}-subalgebra Cb,0(B×+,Cliff())C_{b,0}(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R})) generated by

{βx(f)xB,fC0()}.\{\beta_{x}(f)\mid x\in B,f\in C_{0}(\mathbb{R})\}.

Let WW be a subspace of BB, the algebra 𝒜(B,W)\mathcal{A}(B,W) is defined to be the CC^{*}-subalgebra of 𝒜(B)\mathcal{A}(B) generated by

{βx(f)xWB,fC0()}.\{\beta_{x}(f)\mid x\in W\subseteq B,f\in C_{0}(\mathbb{R})\}.
Lemma 3.8.

Fix f𝒮f\in\mathcal{S}.

  1. (1)

    For any ε>0\varepsilon>0, there exists δ>0\delta>0 such that

    βx(f)βy(f)ε\|\beta_{x}(f)-\beta_{y}(f)\|\leq\varepsilon

    whenever x,yBx,y\in B satisfies xypδ\|x-y\|_{p}\leq\delta.

  2. (2)

    As a corollary, let {xn}B\{x_{n}\}\in B be a sequence which converges to x0Bx_{0}\in B. Then

    limnβxn(f)βx0(f)=0\lim_{n\to\infty}\|\beta_{x_{n}}(f)-\beta_{x_{0}}(f)\|=0

    for each fC0()f\in C_{0}(\mathbb{R}).

Proof.

Let f0f_{0} and f1f_{1} be the even part and odd part of ff. There exists R>0R>0 such that |f(t)|ε/2|f(t)|\leq\varepsilon/2 for all |t|>R|t|>R.

Case 1. For the even part, by definition, for each x,y,zBx,y,z\in B, we have that

(βx(f0)βy(f0))(z,t)=|f0(Cx(z,t))f0(Cy(z,t))|.\|(\beta_{x}(f_{0})-\beta_{y}(f_{0}))(z,t)\|=|f_{0}(\|C_{x}(z,t)\|)-f_{0}(\|C_{y}(z,t)\|)|.

If (z,t)(z,t) satisfies that both Cx(z,t)\|C_{x}(z,t)\| and Cy(z,t)\|C_{y}(z,t)\| are greater than RR, then

|f0(Cx(z,t))f0(Cy(z,t))||f0(Cx(z,t))|+|f0(Cy(z,t))|ε.|f_{0}(\|C_{x}(z,t)\|)-f_{0}(\|C_{y}(z,t)\|)|\leq|f_{0}(\|C_{x}(z,t)\|)|+|f_{0}(\|C_{y}(z,t)\|)|\leq\varepsilon.

Notice that Cx(z,t)=(ϕ(zx)2+t2)1/2=(zxpp+t2)1/2\|C_{x}(z,t)\|=(\|\phi(z-x)\|^{2}+t^{2})^{1/2}=(\|z-x\|^{p}_{p}+t^{2})^{1/2}. If one of Cx(z,t)\|C_{x}(z,t)\| or Cy(z,t)\|C_{y}(z,t)\| is less than RR, without loss of generality, assume that Cx(z,t)<R\|C_{x}(z,t)\|<R. Then zxpp<R2\|z-x\|^{p}_{p}<R^{2}. Notice that

|Cx(z,t)Cy(z,t)|=(zxpp+t2)1/2(zypp+t2)1/2(zxppzypp)1/2,\begin{split}\left|\|C_{x}(z,t)\|-\|C_{y}(z,t)\|\right|&=\left(\|z-x\|^{p}_{p}+t^{2}\right)^{1/2}-\left(\|z-y\|^{p}_{p}+t^{2}\right)^{1/2}\\ &\leq\left(\|z-x\|^{p}_{p}-\|z-y\|^{p}_{p}\right)^{1/2},\end{split}

and

|zxpzyp|xyp.\left|\|z-x\|_{p}-\|z-y\|_{p}\right|\leq\|x-y\|_{p}.

Set δ0>0\delta_{0}>0 satisfying that |f0(t1)f0(t2)|<ε2|f_{0}(t_{1})-f_{0}(t_{2})|<\frac{\varepsilon}{2} for all t1,t2t_{1},t_{2} with |t1t2|<δ0|t_{1}-t_{2}|<\delta_{0}. As y(t)=tpy(t)=t^{p} is uniform continuous in [0,Rp/2+1][0,R^{p/2}+1], then there exists δ1>0\delta_{1}>0 such that |t1pt2p|<δ02|t_{1}^{p}-t_{2}^{p}|<\delta_{0}^{2} for all t1,t2[0,Rp/2+1]t_{1},t_{2}\in[0,R^{p/2}+1] with |t1t2|<δ1|t_{1}-t_{2}|<\delta_{1}. Set δev=min{δ1,1}\delta_{ev}=\min\{\delta_{1},1\}. If xypδev\|x-y\|_{p}\leq\delta_{ev}, then both zxp\|z-x\|_{p} and zyp\|z-y\|_{p} are in [0,Rp/2+1][0,R^{p/2}+1] and we have that

|f0(Cx(z,t))f0(Cy(z,t))|ε2.|f_{0}(\|C_{x}(z,t)\|)-f_{0}(\|C_{y}(z,t)\|)|\leq\frac{\varepsilon}{2}.

Case 2. For the odd part, assume that there exists gC0()evg\in C_{0}(\mathbb{R})_{ev} such that f1(t)=tg(t)f_{1}(t)=tg(t). Such elements are dense in C0()oddC_{0}(\mathbb{R})_{odd}. Then, by definition,

(βx(f1)βy(f1))(z,t)=g(Cx(z,t))Cx(z,t)g(Cy(z,t))Cy(z,t)g(Cx(z,t))g(Cy(z,t))Cx(z,t)+|g(Cy(z,t))|Cx(z,t)Cy(z,t).\begin{split}\|(\beta_{x}(f_{1})-\beta_{y}(f_{1}))(z,t)\|=&\left\|g(\|C_{x}(z,t)\|)C_{x}(z,t)-g(\|C_{y}(z,t)\|)C_{y}(z,t)\right\|\\ \leq&\left\|g(\|C_{x}(z,t)\|)-g(\|C_{y}(z,t)\|)C_{x}(z,t)\right\|\\ &+|g(C_{y}(z,t))|\cdot\|C_{x}(z,t)-C_{y}(z,t)\|.\end{split}

Similarly, if both Cx(z,t)\|C_{x}(z,t)\| and Cy(z,t)\|C_{y}(z,t)\| are greater than RR, then

g(Cx(z,t))Cx(z,t)g(Cy(z,t))Cy(z,t)|f1(Cx(z,t))|+|f1(Cy(z,t))|ε.\left\|g(\|C_{x}(z,t)\|)C_{x}(z,t)-g(\|C_{y}(z,t)\|)C_{y}(z,t)\right\|\leq|f_{1}(\|C_{x}(z,t)\|)|+|f_{1}(\|C_{y}(z,t)\|)|\leq\varepsilon.

If one of Cx(z,t)\|C_{x}(z,t)\| or Cy(z,t)\|C_{y}(z,t)\| is less than RR, with a similar argument as above, we can find a δ3>0\delta_{3}>0 such that |g(Cx(z,t))g(Cy(z,t))|ε4R|g(\|C_{x}(z,t)\|)-g(\|C_{y}(z,t)\|)|\leq\frac{\varepsilon}{4R}. For the second term, we have that

Cx(z,t)Cy(z,t)=ϕ(zx)ϕ(zy).\|C_{x}(z,t)-C_{y}(z,t)\|=\|\phi(z-x)-\phi(z-y)\|.

By Proposition 3.3, there exists 0<δ4<10<\delta_{4}<1 associated with ϕ|BallB(0,R2/p+1)\phi|_{Ball_{B}(0,R^{2/p}+1)} such that if xyδ4\|x-y\|\leq\delta_{4}, then ϕ(zx)ϕ(zy)ε4g\|\phi(z-x)-\phi(z-y)\|\leq\frac{\varepsilon}{4\|g\|}. Set δodd=min{δ3,δ4}\delta_{odd}=\min\{\delta_{3},\delta_{4}\}, we conclude that if xypδodd\|x-y\|_{p}\leq\delta_{odd}, then

(βx(f1)βy(f1))(z,t)ε2\|(\beta_{x}(f_{1})-\beta_{y}(f_{1}))(z,t)\|\leq\frac{\varepsilon}{2}

for all (z,t)B×(z,t)\in B\times\mathbb{R}.

Set δ=min{δev,δodd}\delta=\min\{\delta_{ev},\delta_{odd}\}, then

βx(f)βy(f)βx(f0)βy(f0)+βx(f1)βy(f1)ε.\|\beta_{x}(f)-\beta_{y}(f)\|\leq\|\beta_{x}(f_{0})-\beta_{y}(f_{0})\|+\|\beta_{x}(f_{1})-\beta_{y}(f_{1})\|\leq\varepsilon.

This completes the proof. ∎

Corollary 3.9.

Let {Wn}n\{W_{n}\}_{n\in\mathbb{N}} be an increasing sequence of finite dimensional linear subspaces of BB with nWn\bigcup_{n\in\mathbb{N}}W_{n} dense in BB. Then

  1. (1)

    𝒜(B,B)=𝒜(B)\mathcal{A}(B,B)=\mathcal{A}(B) and 𝒜(B,Wn)𝒜(B,Wn+1)\mathcal{A}(B,W_{n})\subseteq\mathcal{A}(B,W_{n+1});

  2. (2)

    limn𝒜(B,Wn)=𝒜(B,nWn)=𝒜(B,nWn¯)\lim_{n\to\infty}\mathcal{A}(B,W_{n})=\mathcal{A}(B,\bigcup_{n\in\mathbb{N}}W_{n})=\mathcal{A}(B,\overline{\bigcup_{n\in\mathbb{N}}W_{n}}).

Proof.

The first term and the first equality in (2) are immediate from the definition. The second equality in (2) comes from Lemma 3.8. ∎

3.3 The KK-theory of 𝒜(B)\mathcal{A}(B)

In this subsection, we shall calculate the KK-theory of 𝒜(B)\mathcal{A}(B). We will show that the Bott map (βx0):K(𝒮)K(𝒜(B))(\beta_{x_{0}})_{*}:K_{*}(\mathcal{S})\to K_{*}(\mathcal{A}(B)) is an isomorphism for any x0Bx_{0}\in B. One can find a proof in [10, Remark 7.7] for the case when p=2p=2. We remark that the Bott periodicity theorem holds for any Banach space which is spherical equivalent to 2\ell^{2} by using a similar argument.

Let Nn={0,1,,n}N_{n}=\{0,1,\cdots,n\}\subseteq\mathbb{N}. We denote Bn=p(Nn,)B_{n}=\ell^{p}(N_{n},\mathbb{R}) and Hn=2(Nn,)H_{n}=\ell^{2}(N_{n},\mathbb{R}) to be the finite dimensional subspaces of BB and \mathcal{H}, respectively. It is clear that n=0Bn¯=B\overline{\bigcup_{n=0}^{\infty}B_{n}}=B and n=0Hn¯=\overline{\bigcup_{n=0}^{\infty}H_{n}}=\mathcal{H}. Denote 𝒮=C0()\mathcal{S}=C_{0}(\mathbb{R}) equipped with the grading according to even and odd functions.

Define Cb,0(Bn×+,Cliff(Hn))C_{b,0}(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) to be the subalgebra of Cb(Bn×+,Cliff(Hn))C_{b}(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) consisting of all bounded function ff such that

f(x,0)Cliff(Hn)Cliff(Hn).f(x,0)\in\textup{Cliff}_{\mathbb{C}}(H_{n})\subseteq\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R}).

Since the Mazur map restricts to a uniform homeomorphism ψn=ψ|Bn:S(Bn)S(Hn)\psi_{n}=\psi|_{B_{n}}:S(B_{n})\to S(H_{n}), for any x0Bnx_{0}\in B_{n}, we can still define the Clifford operator Cnx0C(Bn×+,Cliff(Hn))C^{n}_{x_{0}}\in C(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) on BnB_{n} by

Cnx0(x,t)=(ϕn(xx0),t)Cliff(Hn),C^{n}_{x_{0}}(x,t)=(\phi_{n}(x-x_{0}),t)\in\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R}),

where ϕn:BnHn\phi_{n}:B_{n}\to H_{n} is the extended Mazur map of ψn\psi_{n} and xBnx\in B_{n}, t+t\in\mathbb{R}_{+}. The Bott map βx0n:𝒮Cb,0(Bn×+,Cliff(Hn))\beta_{x_{0}}^{n}:\mathcal{S}\to C_{b,0}(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) is defined to be

(βnx0(f))(x,t)=f(Cnx0(x,t)).\left(\beta^{n}_{x_{0}}(f)\right)(x,t)=f(C^{n}_{x_{0}}(x,t)).
Definition 3.10.

Define 𝒜(Bn)\mathcal{A}(B_{n}) to be the subalgebra of Cb,0(Bn×+,Cliff(Hn))C_{b,0}(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) generated by

{βnx(f)f𝒮,xBn}.\{\beta^{n}_{x}(f)\mid f\in\mathcal{S},x\in B_{n}\}.

Similarly, one can also define the Clifford operator on HnH_{n} and 𝒜(Hn)\mathcal{A}(H_{n}) by taking p=2p=2. To clearfy the notation, we write the Bott map for HnH_{n} associated to vHnv\in H_{n} by βHnv\beta^{H_{n}}_{v}.

Lemma 3.11.

𝒜(Bn)\mathcal{A}(B_{n}) is a (Bn×+)(B_{n}\times\mathbb{R}_{+})-CC^{*}-algebra.

Proof.

Let 𝒜ev(Bn)\mathcal{A}_{ev}(B_{n}) be the CC^{*}-subalgebra of 𝒜(Bn)\mathcal{A}(B_{n}) generated by

{βnx(f)xBn,fC0()ev}.\left\{\beta^{n}_{x}(f)\mid x\in B_{n},\ f\in C_{0}(\mathbb{R})_{ev}\right\}.

Then 𝒜ev(Bn)\mathcal{A}_{ev}(B_{n}) is a subalgebra of the center 𝒵(𝒜(Bn))\mathcal{Z}(\mathcal{A}(B_{n})). It is clear that βnx(f)C0(Bn×+)\beta^{n}_{x}(f)\in C_{0}(B_{n}\times\mathbb{R}_{+}) for any xBnx\in B_{n} and fC0()evf\in C_{0}(\mathbb{R})_{ev}. For any different points (x1,t1),(x2,t2)Bn×+(x_{1},t_{1}),(x_{2},t_{2})\in B_{n}\times\mathbb{R}_{+} with t1t2t_{1}\leq t_{2}, we have that

Cx1(x1,t1)=|t1|<x1x2pp+t22=Cx1(x2,t2).\|C_{x_{1}}(x_{1},t_{1})\|=|t_{1}|<\sqrt{\|x_{1}-x_{2}\|_{p}^{p}+t_{2}^{2}}=\|C_{x_{1}}(x_{2},t_{2})\|.

Choose a suitable fC0()evf\in C_{0}(\mathbb{R})_{ev} such that f(Cx1(x1,t1))f(Cx1(x2,t2))f(\|C_{x_{1}}(x_{1},t_{1})\|)\neq f(\|C_{x_{1}}(x_{2},t_{2})\|), i.e.,

(βnx1(f))(x1,t1)(βnx1(f))(x2,t2)\left(\beta^{n}_{x_{1}}(f)\right)(x_{1},t_{1})\neq\left(\beta^{n}_{x_{1}}(f)\right)(x_{2},t_{2})

By Stone-Weierstrass theorem, we conclude that 𝒜ev(Bn)C0(Bn×+)\mathcal{A}_{ev}(B_{n})\cong C_{0}(B_{n}\times\mathbb{R}_{+}).

For any fCc()f\in C_{c}(\mathbb{R}), let f0C0()f_{0}\in C_{0}(\mathbb{R}) be an even function such that f0(t)=1f_{0}(t)=1 for all tsupp(f)t\in\textup{supp}(f), thus βnx(f)βnx(f0)=βnx(f)\beta^{n}_{x}(f)\beta^{n}_{x}(f_{0})=\beta^{n}_{x}(f) for any xBnx\in B_{n}. This means that C0(Bn×+)𝒜(Bn)C_{0}(B_{n}\times\mathbb{R}_{+})\cdot\mathcal{A}(B_{n}) is dense in 𝒜(Bn)\mathcal{A}(B_{n}). Then 𝒜(Bn)\mathcal{A}(B_{n}) is a (Bn×+)(B_{n}\times\mathbb{R}_{+})-CC^{*}-algebra. ∎

In [14], G. Kasparov and G. Yu introduced a CC^{*}-algebra 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}) associated with BnB_{n}. We briefly recall the definition here. Denote 𝒞(Bn)=C0(Bn,Cliff(Hn))\mathcal{C}(B_{n})=C_{0}(B_{n},\textup{Cliff}_{\mathbb{C}}(H_{n})) equipped with the grading induced from Cliff(Hn)\textup{Cliff}_{\mathbb{C}}(H_{n}). Denote 𝒮𝒞(Hn)=𝒮^𝒞(Hn)\mathcal{S}\mathcal{C}(H_{n})=\mathcal{S}\widehat{\otimes}\mathcal{C}(H_{n}) to be the graded tensor product.

Theorem 3.12.

With notations as above, 𝒜(Bn)\mathcal{A}(B_{n}) is isomorphic to 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}) for any nn\in\mathbb{N}.

Proof.

By definition, 𝒮𝒞(Bn)={f^hfC0(),hC0(Bn,Cliff(Hn))}\mathcal{S}\mathcal{C}(B_{n})=\{f\widehat{\otimes}h\mid f\in C_{0}(\mathbb{R}),h\in C_{0}(B_{n},\textup{Cliff}_{\mathbb{C}}(H_{n}))\}. Define

={fC0(+,Cliff())f(0)}.\mathcal{B}=\{f\in C_{0}(\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathbb{R}))\mid f(0)\in\mathbb{C}\}.

\mathcal{B} is induced with the grading of Cliff()\textup{Cliff}_{\mathbb{C}}(\mathbb{R})\cong\mathbb{C}\oplus\mathbb{C}, the scalar part and the vector part. We define a homomorphism φ:𝒮\varphi:\mathcal{S}\to\mathcal{B} by the following formula:

(φ(f))(t)=fev(t)1+fodd(t)e,(\varphi(f))(t)=f_{ev}(t)1+f_{odd}(t)e,

where fevf_{ev} and foddf_{odd} are respectively the even and odd parts of ff and ee is a unit vector of \mathbb{R}. It is not hard to see that φ\varphi is an isomorphism preserving the grading.

As a corollary, we have the identification:

𝒮𝒞(Bn)={fC0(Bn×+,Cliff(Hn))f(x,0)Cliff(Vn)},\mathcal{S}\mathcal{C}(B_{n})=\{f\in C_{0}(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R}))\mid f(x,0)\in\textup{Cliff}_{\mathbb{C}}(V_{n})\},

where we view Cliff(Hn)\textup{Cliff}_{\mathbb{C}}(H_{n}) as a subalgebra of Cliff(Hn)\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R}). Notice that C0(Bn×+)C0()evC0(Bn)C_{0}(B_{n}\times\mathbb{R}_{+})\cong C_{0}(\mathbb{R})_{ev}\otimes C_{0}(B_{n}) is a subalgebra of 𝒵(𝒮𝒞(Bn))\mathcal{Z}(\mathcal{S}\mathcal{C}(B_{n})), the center of 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}), which makes 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}) a (Bn×+)(B_{n}\times\mathbb{R}_{+})-CC^{*}-algebra.

Notice that 𝒜(Bn)\mathcal{A}(B_{n}) is a subalgebra of 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}). Indeed,

lim(x,t)(βnx0(f))(x,t)=0andf(C(v,0))=f(v)Cliff(V).\lim_{(x,t)\to\infty}(\beta^{n}_{x_{0}}(f))(x,t)=0\quad\text{and}\quad f(C(v,0))=f(v)\in\textup{Cliff}_{\mathbb{C}}(V).

It suffices to prove 𝒜(Bn)\mathcal{A}(B_{n}) is dense in 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}). As both algebras are (Bn×+)(B_{n}\times\mathbb{R}_{+})-CC^{*}-algebras, it suffices to prove the fiber of 𝒜(Bn)\mathcal{A}(B_{n}) at (x,t)(x,t) is the same as 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}) for any (x,t)Bn×+(x,t)\in B_{n}\times\mathbb{R}_{+}. The fiber of 𝒜(Bn)\mathcal{A}(B_{n}) at (x,t)(x,t) is given by

𝒜(Bn)/C0(Bn×\{(x,t)})𝒜(Bn)Cliff(Hnt),\mathcal{A}(B_{n})/C_{0}(B_{n}\times\mathbb{R}\backslash\{(x,t)\})\cdot\mathcal{A}(B_{n})\cong\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus t\mathbb{R}),

where

t={0,t=0;,t0,t\mathbb{R}=\left\{\begin{aligned} &0&&,t=0;\\ &\mathbb{R}&&,t\neq 0,\end{aligned}\right.

which is actually same as 𝒮𝒞(Bn)\mathcal{S}\mathcal{C}(B_{n}). We then finish the proof that 𝒜(Bn)𝒮𝒞(Bn)\mathcal{A}(B_{n})\cong\mathcal{S}\mathcal{C}(B_{n}). ∎

Corollary 3.13.

The Bott map induces an isomorphism on KK-theory:

(βxn):K(𝒮)K(𝒜(Bn))(\beta_{x}^{n})_{*}:K_{*}(\mathcal{S})\xrightarrow{\cong}K_{*}(\mathcal{A}(B_{n}))

for any xBnx\in B_{n}.

Proof.

For any x0,x1Bnx_{0},x_{1}\in B_{n}, we take xs=(1s)x0+sx1x_{s}=(1-s)x_{0}+sx_{1} for each s[0,1]s\in[0,1]. Then sxss\mapsto x_{s} is a continuous path connecting x0x_{0} and x1x_{1}. By Lemma 3.8, we have that βxs\beta_{x_{s}} forms a homotopy between βx0\beta_{x_{0}} and βx1\beta_{x_{1}}. Thus it suffices to prove the theorem for 0Bn0\in B_{n}.

Define ϕ:𝒜(Hn)𝒜(Bn)\phi^{*}:\mathcal{A}(H_{n})\to\mathcal{A}(B_{n}) by

(ϕ(σ))(x,t)=σ(ϕ(x),t),σ𝒜(Hn) and xBn.(\phi^{*}(\sigma))(x,t)=\sigma(\phi(x),t),\quad\text{$\sigma\in\mathcal{A}(H_{n})$ and $x\in B_{n}$}.

As ϕ\phi is a homeomorphism, it is clearly to see that ϕ\phi^{*} a *-isomorphism. For any f𝒮f\in\mathcal{S} and (x,t)Bn×+(x,t)\in B_{n}\times\mathbb{R}_{+}, one can check that

(ϕ(β0Hn(f)))(x,t)=(β0Hn(f))(ϕ(x),t)=f(ϕ(x),t)=(β0n(f))(x,t).\begin{split}\left(\phi^{*}\left(\beta_{0}^{H_{n}}(f)\right)\right)(x,t)&=\left(\beta_{0}^{H_{n}}(f)\right)(\phi(x),t)\\ &=f(\phi(x),t)\\ &=\left(\beta_{0}^{n}(f)\right)(x,t).\end{split}

This shows that ϕβHn0(f)=βn0(f)\phi^{*}\circ\beta^{H_{n}}_{0}(f)=\beta^{n}_{0}(f). Thus, we have the following commuting diagram:

K(𝒮){K_{*}(\mathcal{S})}K(𝒜(Hn)){K_{*}(\mathcal{A}(H_{n}))}K(𝒜(Bn)).{K_{*}(\mathcal{A}(B_{n})).}(βBn0)\scriptstyle{(\beta^{B_{n}}_{0})_{*}}(βHn0)\scriptstyle{(\beta^{H_{n}}_{0})_{*}}ϕ\scriptstyle{\phi^{*}}

It is proved that (βHn0)\left(\beta^{H_{n}}_{0}\right)_{*} is an isomorphism in [11] and [10]. As a result, (βn0)(\beta^{n}_{0})_{*} is an isomorphism. ∎

For any nn\in\mathbb{N}, we denote Bn=p(\Nn,)B^{\prime}_{n}=\ell^{p}(\mathbb{N}\backslash N_{n},\mathbb{R}). Then one can easily see that B=BnpBnB=B_{n}\oplus_{p}B^{\prime}_{n}, where p\oplus_{p} means that BnBnB_{n}\oplus B^{\prime}_{n} is equipped with the norm

(x,y)p=(xpp+ypp)1/p\|(x,y)\|_{p}=(\|x\|^{p}_{p}+\|y\|^{p}_{p})^{1/p}

for any (x,y)BnpBn(x,y)\in B_{n}\oplus_{p}B^{\prime}_{n}. Denote by Pn:BBnP_{n}:B\to B_{n} and Qn:BBnQ_{n}:B\to B^{\prime}_{n} the direct sum projection, i.e., for any x=(x1,x2)B=BnpBnx=(x_{1},x_{2})\in B=B_{n}\oplus_{p}B^{\prime}_{n} we have that Pn(x)=x1P_{n}(x)=x_{1} and Qn(x)=x2Q_{n}(x)=x_{2}. The following fact which will be very useful in the next lemma can be checked with a easy calculation:

Fact. For any (x,y)BnpBn=B(x,y)\in B_{n}\oplus_{p}B^{\prime}_{n}=B, we have that

ϕ(x,y)=(ϕ(x),ϕ(y))HnHn=,\phi(x,y)=(\phi(x),\phi(y))\in H_{n}\oplus H_{n}^{\prime}=\mathcal{H},

i.e., ϕ=ϕ|BnϕBn:BnpBnHnHn\phi=\phi|_{B_{n}}\oplus\phi_{B^{\prime}_{n}}:B_{n}\oplus_{p}B_{n}^{\prime}\to H_{n}\oplus H_{n}^{\bot}.

For any σ𝒜(B,Bn)\sigma\in\mathcal{A}(B,B_{n}), we define the restriction homomorphism πn:𝒜(B,Bn)𝒜(Bn)\pi_{n}:\mathcal{A}(B,B_{n})\to\mathcal{A}(B_{n}) by

(πn(σ))(x,t)=σ(x,t)(\pi_{n}(\sigma))(x,t)=\sigma(x,t)

for all xWnx\in W_{n}. To see πn\pi_{n} is well-defined, one can check that

(πnβx0(f))(x,t)=πn(f(Cx0(x,t)))=f(Cnx0(x,t)),(\pi_{n}\circ\beta_{x_{0}}(f))(x,t)=\pi_{n}(f(C_{x_{0}}(x,t)))=f(C^{n}_{x_{0}}(x,t)),

for any x0,xBnx_{0},x\in B_{n} and t0t\geq 0.

Lemma 3.14.

The restriction homomorphism πn:𝒜(B,Wn)𝒜(B)\pi_{n}:\mathcal{A}(B,W_{n})\to\mathcal{A}(B) is an isomorphism.

Proof.

For each (w,t)Bn(w,t)\in B_{n}^{\prime}\oplus\mathbb{R}, we define

τw,tn:Hn\tau_{w,t}^{n}:H_{n}\oplus\mathbb{R}\to\mathcal{H}\oplus\mathbb{R}

to be the inclusion which is identity on HnH_{n} and maps (0,(wp2+t2)1/2)Vn(0,(\|w\|_{p}^{2}+t^{2})^{1/2})\in V_{n}\oplus\mathbb{R} to (0,ϕ(w),t)(0,\phi(w),t), i.e., τnw,t(0)\tau^{n}_{w,t}(0\oplus\mathbb{R}) is the one-dimensional subspace of HnH_{n}^{\bot}\oplus\mathbb{R} spanned by (ϕ(w),t)(\phi(w),t) and the inclusion is an isometry. This map clearly induces an inclusion of Clifford algebras Cliff(Vn)Cliff()\textup{Cliff}_{\mathbb{C}}(V_{n}\oplus\mathbb{R})\to\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R}).

Define

Φ:C(Bn×+,Cliff(Hn))C(B×+,Cliff())\Phi:C(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R}))\to C(B\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R}))

by the following formula:

(Φ(σ))(x,t)=τnQn(x),t(σ(Pn(x),(Qn(x)p2+t2)1/2))Cliff(),(\Phi(\sigma))(x,t)=\tau^{n}_{Q_{n}(x),t}\left(\sigma(P_{n}(x),(\|Q_{n}(x)\|_{p}^{2}+t^{2})^{1/2})\right)\in\textup{Cliff}_{\mathbb{C}}(\mathcal{H}\oplus\mathbb{R}),

where (Pn(x),(Qn(x)p2+t2)1/2)Bn×+(P_{n}(x),(\|Q_{n}(x)\|_{p}^{2}+t^{2})^{1/2})\in B_{n}\times\mathbb{R}_{+}. It is clear that Φ\Phi is a *-homomorphism.

Let x0Bnx_{0}\in B_{n}, consider the Clifford operator Cnx0C(Bn×+,Cliff(Hn))C^{n}_{x_{0}}\in C(B_{n}\times\mathbb{R}_{+},\textup{Cliff}_{\mathbb{C}}(H_{n}\oplus\mathbb{R})) on BnB_{n}, i.e., Cx0n(x,t)=(xx0,t)C_{x_{0}}^{n}(x,t)=(x-x_{0},t) for each (x,t)Bn(x,t)\in B_{n}\oplus\mathbb{R}. Then for any yBy\in B, we have

(Φ(Cnx0))(y,t)=τnQn(y),t(Cnx0(Pn(y),(Qn(y)p2+t2)1/2))=τnQn(y),t(ϕ(Pn(y)x0),(Qn(y)p2+t2)1/2)=(ϕ(Pn(y)x0)ϕ(Qn(y)),t).\begin{split}(\Phi(C^{n}_{x_{0}}))(y,t)&=\tau^{n}_{Q_{n}(y),t}(C^{n}_{x_{0}}(P_{n}(y),(\|Q_{n}(y)\|_{p}^{2}+t^{2})^{1/2}))\\ &=\tau^{n}_{Q_{n}(y),t}(\phi(P_{n}(y)-x_{0}),(\|Q_{n}(y)\|_{p}^{2}+t^{2})^{1/2})\\ &=(\phi(P_{n}(y)-x_{0})\oplus\phi(Q_{n}(y)),t).\end{split} (1)

As ϕ=ϕ|Bnϕ|Bn:BnpBnHnHn\phi=\phi|_{B_{n}}\oplus\phi|_{B_{n}^{\prime}}:B_{n}\oplus_{p}B_{n}^{\prime}\to H_{n}\oplus H_{n}^{\bot}, then ϕ(x)=ϕ(x1)+ϕ(x2)\phi(x)=\phi(x_{1})+\phi(x_{2}) for any x=(x1,x2)BnBn=Bx=(x_{1},x_{2})\in B_{n}\oplus B^{\prime}_{n}=B. Thus ϕ(Pn(y)x0)+ϕ(Qn(y))=ϕ(Pn(y)+Qn(y)x0)=ϕ(yx0)\phi(P_{n}(y)-x_{0})+\phi(Q_{n}(y))=\phi(P_{n}(y)+Q_{n}(y)-x_{0})=\phi(y-x_{0}). Combining the equation (1), we have that Φ(Cx0n)=Cx0\Phi(C_{x_{0}}^{n})=C_{x_{0}} the Clifford operator of BB. Write ty=Qn(y)p2+t2t_{y}=\sqrt{\|Q_{n}(y)\|_{p}^{2}+t^{2}}. Then for any fC0()f\in C_{0}(\mathbb{R}), we have that

(Φ(βx0n(f)))(y,t)=τQn(y),tn(f(Cx0n(Pn(y),ty)))=τQn(y),tn(fev(Cx0n(Pn(y),ty)))+τQn(y),tn(fodd(Cx0n(Pn(y),ty))Cx0n(Pn(y),ty)Cx0n(Pn(y),ty))=fev(Cx0(y,t))+fodd(Cx0(y,t))τQn(y),tn(Cx0n(Pn(y),ty))Cx0(y,t)=fev(Cx0(y,t))+fodd(Cx0(y,t))Cx0(y,t)Cx0(y,t)=βx0(f)(y,t)\begin{split}(\Phi(\beta_{x_{0}}^{n}(f)))(y,t)=&\tau_{Q_{n}(y),t}^{n}(f(C_{x_{0}}^{n}(P_{n}(y),t_{y})))\\ =&\tau_{Q_{n}(y),t}^{n}\left(f_{ev}\left(\|C_{x_{0}}^{n}\left(P_{n}(y),t_{y}\right)\|\right)\right)+\\ &\tau_{Q_{n}(y),t}^{n}\left(f_{odd}\left(\|C_{x_{0}}^{n}\left(P_{n}(y),t_{y}\right)\|\right)\frac{C_{x_{0}}^{n}(P_{n}(y),t_{y})}{\|C_{x_{0}}^{n}(P_{n}(y),t_{y})\|}\right)\\ =&f_{ev}\left(\|C_{x_{0}}\left(y,t\right)\|\right)+f_{odd}\left(\|C_{x_{0}}\left(y,t\right)\|\right)\frac{\tau_{Q_{n}(y),t}^{n}(C_{x_{0}}^{n}(P_{n}(y),t_{y}))}{\|C_{x_{0}}(y,t)\|}\\ =&f_{ev}\left(\|C_{x_{0}}\left(y,t\right)\|\right)+f_{odd}\left(\|C_{x_{0}}\left(y,t\right)\|\right)\frac{C_{x_{0}}(y,t)}{\|C_{x_{0}}(y,t)\|}=\beta_{x_{0}}(f)(y,t)\end{split} (2)

This shows that Φ\Phi maps 𝒜(Wn)\mathcal{A}(W_{n}) to 𝒜(B)\mathcal{A}(B) and Φ(𝒜(Wn))\Phi(\mathcal{A}(W_{n})) is actually equal to 𝒜(B,Wn)\mathcal{A}(B,W_{n}). This also shows that Φ\Phi is the inverse of πn\pi_{n}. ∎

Theorem 3.15.

For any x0Bx_{0}\in B, the Bott homomorphism

βx0:C0()𝒜(B)\beta_{x_{0}}:C_{0}(\mathbb{R})\to\mathcal{A}(B)

induces an isomorphism on KK-theory, i.e.,

(βx0):K(𝒮)K(𝒜(B))(\beta_{x_{0}})_{*}:K_{*}(\mathcal{S})\to K_{*}(\mathcal{A}(B))

is an isomorphism.

Proof.

Similarly, it suffices to prove the theorem for some fixed x0Bx_{0}\in B.

Viewing BnB_{n} as a subspace of Bn+1B_{n+1}, one can similarly define a map

Φn:𝒜(Bn)𝒜(Bn+1,Bn)𝒜(Bn+1).\Phi_{n}:\mathcal{A}(B_{n})\to\mathcal{A}(B_{n+1},B_{n})\subseteq\mathcal{A}(B_{n+1}).

By compute on the generators, it is not hard to check that we have the following commuting diagram

𝒮\textstyle{\mathcal{S}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}βnx0\scriptstyle{\beta^{n}_{x_{0}}}βn+1x0\scriptstyle{\beta^{n+1}_{x_{0}}}𝒜(Bn)\textstyle{\mathcal{A}(B_{n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φn\scriptstyle{\Phi_{n}}Φ\scriptstyle{\Phi}𝒜(B,Bn)\textstyle{\mathcal{A}(B,B_{n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒜(Bn+1)\textstyle{\mathcal{A}(B_{n+1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi}𝒜(B,Bn+1)\textstyle{\mathcal{A}(B,B_{n+1})}

where β\beta is defined as in [11]. Combining the results we prove before, we have that

𝒜(B)=limn𝒜(B,Bn)limn𝒜(Bn).\mathcal{A}(B)=\lim_{n\to\infty}\mathcal{A}(B,B_{n})\cong\lim_{n\to\infty}\mathcal{A}(B_{n}).

As the KK-functor commutes with the direct limits (see [27]), the theorem holds directly from Theorem 3.12. ∎

4 KK-homology at infinity and Roe algebra at infinity

In this section, we will introduce KK-homology at infinity and Roe algebra at infinity for a proper metric space.

The approach to KK-homology via localization algebras is first introduced by G. Yu in [28]. In this paper, we will also need to work with a version of localization algebras introduced by R. Willett and G. Yu in [27]. For the convenience of the readers, we shall briefly recall its definition and its functoriality. Let XX be a proper metric space.

Definition 4.1 ([27]).

Let HX+H_{X}^{+} be an X+X^{+}-module, where X+X^{+} is the one point compactification. Define 𝕃[HX+;]\mathbb{L}[H_{X}^{+};\infty] to be the collection of all bounded functions (Tt)(T_{t}) from [1,)[1,\infty) to (HX+)\mathcal{B}(H_{X}^{+}) such that:

  • (1)

    for any compact subset KK of XX, there exists tK0t_{K}\geq 0 such that for all ttKt\geq t_{K}, the operators χKTt\chi_{K}T_{t} and TtχKT_{t}\chi_{K} are compact and the functions

    tχKTtandtTtχKt\mapsto\chi_{K}T_{t}\quad\mbox{and}\quad t\mapsto T_{t}\chi_{K}

    are uniformly continuous when restricted to [tK,)[t_{K},\infty);

  • (2)

    for any open neighbourhood UU of diagonal in X+×X+X^{+}\times X^{+}, there exists tU1t_{U}\geq 1 such that for all t>tUt>t_{U}

    supp(Tt)U.\textup{supp}(T_{t})\subseteq U.

Define L(HX+;)L^{*}(H_{X}^{+};\infty), or simply L(X+;)L^{*}(X^{+};\infty), to be the CC^{*}-algebra completion of 𝕃[HX+;]\mathbb{L}[H_{X}^{+};\infty] for the norm

(Tt)=suptTt(HX).\|(T_{t})\|=\sup_{t}\|T_{t}\|_{\mathcal{B}(H_{X})}.

By [27, Proposition 6.6.2], [28, Theorem 3.2] and [17, Theorem 3.4], we have the following result:

Theorem 4.2.

The KK-homology group K(X)K_{*}(X) is isomorphic to the KK-theory group K(L(HX+;))K_{*}(L^{*}(H_{X}^{+};\infty)), i.e.,

K(X)K(L(HX+;))K_{*}(X)\cong K_{*}(L^{*}(H_{X}^{+};\infty))

and K(L(HX+;))K_{*}(L^{*}(H_{X}^{+};\infty)) does not depend on the choice of ample modules up to the canonical equivalence.

Let HX+H_{X}^{+} be a geometric module. Let 𝕃0[HX+;]\mathbb{L}_{0}[H_{X}^{+};\infty] be the collection of all (Tt)𝕃[HX+;](T_{t})\in\mathbb{L}[H_{X}^{+};\infty] such that for any compact subset KXK\subseteq X there exists tK0t_{K}\geq 0 such that for all ttKt\geq t_{K},

χKTt=TtχK=0.\chi_{K}T_{t}=T_{t}\chi_{K}=0.

It is not difficult to see that 𝕃0[HX+;]\mathbb{L}_{0}[H_{X}^{+};\infty] is a *-ideal in 𝕃[HX+;]\mathbb{L}[H_{X}^{+};\infty]. Let L0(HX+;)L^{*}_{0}(H_{X}^{+};\infty) be the closure of 𝕃0[HX+;]\mathbb{L}_{0}[H_{X}^{+};\infty] inside L(HX+;)L^{*}(H_{X}^{+};\infty), let

LQ(HX+;)=L(HX+;)/L0(HX+;)L^{*}_{Q}(H_{X}^{+};\infty)=L^{*}(H_{X}^{+};\infty)/L^{*}_{0}(H_{X}^{+};\infty)

be the corresponding quotient CC^{*}-algebra. Using an Eilenberg swindle, we have the following result as in [27, Lemma 6.4.11]

Lemma 4.3.

The quotient map L(HX+;)LQ(HX+;)L^{*}(H_{X}^{+};\infty)\to L^{*}_{Q}(H_{X}^{+};\infty) induces an isomorphism on KK-theory. \square

To see the functoriality, we still need some preparations:

Definition 4.4.

Let KK be a closed subspace of XX, and let HX+H_{X}^{+} be an X+X^{+}-module. Define 𝕃[H+X;K+]\mathbb{L}[H^{+}_{X};K^{+}] to be the subset of 𝕃[HX+;]\mathbb{L}[H_{X}^{+};\infty] consisting of (Tt)(T_{t}) such that for any open subset UU of X+×X+X^{+}\times X^{+} that contains K+×K+K^{+}\times K^{+}, there exists tUt_{U} such that for all ttUt\geq t_{U}

supp(Tt)U\textup{supp}(T_{t})\subseteq U

Define L(H+X;K+)L^{*}(H^{+}_{X};K^{+}), or simply L(X+;K+)L^{*}(X^{+};K^{+}), to be the closure of 𝕃[H+X;K+]\mathbb{L}[H^{+}_{X};K^{+}] inside 𝕃[HX+;]\mathbb{L}[H_{X}^{+};\infty].

Similarly, we shall define L0(HX+;K+)=L(HX+;K+)L0(HX+;)L^{*}_{0}(H_{X}^{+};K^{+})=L^{*}(H_{X}^{+};K^{+})\cap L^{*}_{0}(H_{X}^{+};\infty) and

LQ(HX+;K+)=L(HX+;K+)/L0(H+X;K+).L^{*}_{Q}(H_{X}^{+};K^{+})=L^{*}(H_{X}^{+};K^{+})/L^{*}_{0}(H^{+}_{X};K^{+}).

It is easy to show that the quotient map L(HX+;K+)LQ(HX+;K+)L^{*}(H_{X}^{+};K^{+})\to L^{*}_{Q}(H_{X}^{+};K^{+}) induces an isomorphism on the KK-theory level. The following lemma has been proved in [27, Lemma 6.3.6].

Lemma 4.5.

The inclusion homomorphism from L(HK+;)L^{*}(H_{K}^{+};\infty) to L(HX+;K+)L^{*}(H_{X}^{+};K^{+}) induces an isomorphism from K(L(HK+;))K_{*}(L^{*}(H_{K}^{+};\infty)) to K(L(HX+;K+))K_{*}(L^{*}(H_{X}^{+};K^{+})), i.e.,

K(K)K(L(X+;K+))K(LQ(X+;K+)).K_{*}(K)\cong K_{*}(L^{*}(X^{+};K^{+}))\cong K_{*}(L^{*}_{Q}(X^{+};K^{+})).

Let KXK\subset X be a close subset and U=X\KU=X\backslash K, then we have the short sequence of topological spaces

K+iX+cU+K^{+}\stackrel{{\scriptstyle i}}{{\longrightarrow}}X^{+}\stackrel{{\scriptstyle c}}{{\longrightarrow}}U^{+}

where i:K+X+i:K^{+}\to X^{+} is the inclusion and c:X+U+c:X^{+}\to U^{+} is the collapse map which is the identity on UU and sends X+\UX^{+}\backslash U to the point at infinity in U+U^{+}.

Proposition 4.6.

With the notation above, there is a natural sic-term exact sequence

K0(K)\textstyle{K_{0}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}K0(U)\textstyle{K_{0}(U)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(U)\textstyle{K_{1}(U)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(X)\textstyle{K_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}K1(K)\textstyle{K_{1}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}

induced by the short exact sequence of CC^{*}-algebra

0LQ(X+;K+)ad(Vit)LQ(X+;)ad(Vct)LQ(U+;)0.0\to L^{*}_{Q}(X^{+};K^{+})\stackrel{{\scriptstyle ad(V^{i}_{t})}}{{\longrightarrow}}L^{*}_{Q}(X^{+};\infty)\stackrel{{\scriptstyle ad(V^{c}_{t})}}{{\longrightarrow}}L^{*}_{Q}(U^{+};\infty)\to 0.

where VitV^{i}_{t} and VctV^{c}_{t} are the covering isometries for ii and cc, respectively.

Proof.

Let dd be a bounded metric function on X+X^{+}. Let ZXZ\subset X be a countable dense subset of XX whose intersection with KK, UU is also dense in KK, UU respectively for each nn\in\mathbb{N}. Let HH be a separable, infinite-dimensional Hilbert space, and define ample X+X^{+}, K+K^{+} and U+U^{+}-module respectively by

H+X=2(Z,H)H,H+K=2(ZK,H)H,H+U=2(ZU,H)HH^{+}_{X}=\ell^{2}(Z,H)\oplus H,\,H^{+}_{K}=\ell^{2}(Z\cap K,H)\oplus H,\,H^{+}_{U}=\ell^{2}(Z\cap U,H)\oplus H

Define v:2(ZK,H)2(Z,H)v:\ell^{2}(Z\cap K,H)\to\ell^{2}(Z,H) to be the canonical inclusion. Let u:2(ZK,H)HHu:\ell^{2}(Z\cap K,H)\oplus H\to H be an unitary operator and define

w=id2(ZU,H)u:HX+=2(ZU,H)(2(ZK,H)H)HU+w=id_{\ell^{2}(Z\cap U,H)}\oplus u:H_{X}^{+}=\ell^{2}(Z\cap U,H)\oplus(\ell^{2}(Z\cap K,H)\oplus H)\to H_{U}^{+}

Define Vit=vidHV^{i}_{t}=v\oplus id_{H} and Vct=wV^{c}_{t}=w. It is easy to see VtiV_{t}^{i} and VtcV_{t}^{c} are the covering isometries for ii and cc, respectively.

Notice that LQ(X+,K+)L^{*}_{Q}(X^{+},K^{+}) is a two-side ideal of LQ(X+,)L^{*}_{Q}(X^{+},\infty) and ad(Vti)ad(V_{t}^{i}) is actually the inclusion. Thus it suffices to prove

LQ(X+,)LQ(X+,K+)LQ(U+,).\frac{L^{*}_{Q}(X^{+},\infty)}{L^{*}_{Q}(X^{+},K^{+})}\cong L^{*}_{Q}(U^{+},\infty).

Let (Cn)(C_{n}) be an increasing sequence of compact subsets of UU whose union is all of UU. Let χ:+B(U)\chi:\mathbb{R}_{+}\to B(U) be a continuous map from +\mathbb{R}_{+} to the set of all bounded Borel functions on UU defined by

χ(t)=(n+1t)χCn+(tn)χCn+1\chi(t)=(n+1-t)\chi_{C_{n}}+(t-n)\chi_{C_{n+1}}

if t[n,n+1)t\in[n,n+1), where χCn\chi_{C_{n}} is the characteristic function of CnC_{n}. Provisionally define maps

Φ:LQ(X+,)LQ(X+,K+)LQ(U+,),[[Tt]][ad(Vct)(Tt)]\Phi:\frac{L^{*}_{Q}(X^{+},\infty)}{L^{*}_{Q}(X^{+},K^{+})}\to L^{*}_{Q}(U^{+},\infty),\quad[[T_{t}]]\mapsto[ad(V^{c}_{t})(T_{t})]

and

Ψ:LQ(U+,)LQ(X+,)LQ(X+,K+),[Tt][[χ(t)Ttχ(t)]],\Psi:L^{*}_{Q}(U^{+},\infty)\to\frac{L^{*}_{Q}(X^{+},\infty)}{L^{*}_{Q}(X^{+},K^{+})},\quad[T_{t}]\mapsto[[\chi(t)T_{t}\chi(t)]],

where χ(t)Ttχ(t)\chi(t)T_{t}\chi(t) can be view as a operator on (HX+)\mathcal{B}(H_{X}^{+}) by viewing 2(ZU,H)\ell^{2}(Z\cap U,H) as a subspace of H+XH^{+}_{X} for each t+t\in\mathbb{R}_{+}. It is easy to see ad(Vtc)(Tt)ad(V_{t}^{c})(T_{t}) and χ(t)Ttχ(t)\chi(t)T_{t}\chi(t) satisfy the conditions in Definition 4.1.

First, we show that Φ\Phi and Ψ\Psi are well-defined *-homomorphisms. Let [Tt]LQ(X+,K+)[T_{t}]\in L^{*}_{Q}(X^{+},K^{+}). For any compact subset CUC\subset U, we have that d(C,K+)>0d(C,K^{+})>0. Take ε<d(C,K+)\varepsilon<d(C,K^{+}), there exists T>0T>0 such that

supp(Tt){(x,y)X×Xd(x,K+)<ε,d(y,K+)<ε},\textup{supp}(T_{t})\subset\{(x,y)\in X\times X\mid d(x,K^{+})<\varepsilon,d(y,K^{+})<\varepsilon\},

for all t>Tt>T. Then χC(ad(Vct)(Tt))=χCTt=0\chi_{C}(ad(V^{c}_{t})(T_{t}))=\chi_{C}T_{t}=0 for all t>Tt>T, which means that ad(Vt)(Tt)L0(U+,)ad(V_{t})(T_{t})\in L^{*}_{0}(U^{+},\infty). Therefore, Φ\Phi is a well-defined map *-homomorphism.

Similarly, one can show Ψ\Psi is also well-defined. Indeed, let TtL0(U+,)T_{t}\in L^{*}_{0}(U^{+},\infty). For any ε>0\varepsilon>0, denote 𝒩ε(K+)={xX+d(x,K+)<ε}\mathcal{N}_{\varepsilon}(K^{+})=\{x\in X^{+}\mid d(x,K^{+})<\varepsilon\}. Then C=X+\𝒩ε(K+)UC=X^{+}\backslash\mathcal{N}_{\varepsilon}(K^{+})\subset U is a compact subset of UU. By definition, there exists T>0T>0 such that χCTt=TtχC=0\chi_{C}T_{t}=T_{t}\chi_{C}=0 for all t>Tt>T. Thus, for all t>Tt>T, we have that

supp(χ(t)Ttχ(t))𝒩ε(K+)×𝒩ε(K+),\textup{supp}(\chi(t)T_{t}\chi(t))\subset\mathcal{N}_{\varepsilon}(K^{+})\times\mathcal{N}_{\varepsilon}(K^{+}),

i.e., χ(t)Ttχ(t)LQ(X+,K+)\chi(t)T_{t}\chi(t)\in L^{*}_{Q}(X^{+},K^{+}). By [27, Lemma 6.1.2], the multiplier of LQ(U+,)L^{*}_{Q}(U^{+},\infty) defined by χ(t)\chi(t) is central. Thus Ψ\Psi is a well-defined *-homomorphism.

At last, we show that Ψ\Psi induces a mutually inverse of Φ\Phi. Computing, for [Tt]LQ(U+,)[T_{t}]\in L^{*}_{Q}(U^{+},\infty)

Φ(Ψ([Tt]))=[ad(Vtc)(χ(t)Ttχ(t))]=[χ(t)Ttχ(t)],\Phi(\Psi([T_{t}]))=[ad(V_{t}^{c})(\chi(t)T_{t}\chi(t))]=[\chi(t)T_{t}\chi(t)],

here we view χ(t)Ttχ(t)\chi(t)T_{t}\chi(t) as an operator on H+UH^{+}_{U} for each t+t\in\mathbb{R}_{+}. Notice that for any compact subset CUC\subset U,

χC(Ttχ(t)Ttχ(t))=χCTtχ(t)χCTtχ(t).\chi_{C}(T_{t}-\chi(t)T_{t}\chi(t))=\chi_{C}T_{t}-\chi(t)\chi_{C}T_{t}\chi(t).

As limtProp(Tt)=0\lim_{t\to\infty}\textup{Prop}(T_{t})=0 and U=nCnU=\bigcup_{n\in\mathbb{N}}C_{n}, there exists T>0T>0 and a compact subset CUC^{\prime}\subset U such that χCχ(t)=χC\chi_{C}\chi(t)=\chi_{C} and χCTt=χCTtχC\chi_{C}T_{t}=\chi_{C}T_{t}\chi_{C^{\prime}} for all t>Tt>T. Thus χC(Ttχ(t)Ttχ(t))=0\chi_{C}(T_{t}-\chi(t)T_{t}\chi(t))=0 for all t>Tt>T, i.e., [Tt]=[χ(t)Ttχ(t)][T_{t}]=[\chi(t)T_{t}\chi(t)].

On the other hand, for [[Tt]]LQ(X+,)LQ(X+,K+)[[T_{t}]]\in\frac{L^{*}_{Q}(X^{+},\infty)}{L^{*}_{Q}(X^{+},K^{+})},

Ψ(Φ([[Tt]]))=[[χ(t)ad(Vct)(Tt)χ(t)]]=[χ(t)Ttχ(t)],\Psi(\Phi([[T_{t}]]))=[[\chi(t)ad(V^{c}_{t})(T_{t})\chi(t)]]=[\chi(t)T_{t}\chi(t)],

here we view χ(t)Ttχ(t)\chi(t)T_{t}\chi(t) as an operator on H+XH^{+}_{X} for each t+t\in\mathbb{R}_{+}. For any ε>0\varepsilon>0, let C=X+\𝒩ε(K+)UC=X^{+}\backslash\mathcal{N}_{\varepsilon}(K^{+})\subset U be a compact subset of UU. Then by a similar argument above

χC(Ttχ(t)Ttχ(t))=0\chi_{C}(T_{t}-\chi(t)T_{t}\chi(t))=0

for sufficiently large tt, this completes the proof. ∎

Let XX be a unbounded proper metric space. Fix a based point x0Xx_{0}\in X, and let KR={xXd(x,x0)R}K_{R}=\{x\in X\mid d(x,x_{0})\leq R\}. Denoted by UR=X\KRU_{R}=X\backslash K_{R}. Thus we have the following commuting diagram by [27, Proposition B.2.3]:

K0(KR)\textstyle{K_{0}(K_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}K0(UR)\textstyle{K_{0}(U_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(UR)\textstyle{K_{1}(U_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(X)\textstyle{K_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}K1(KR)\textstyle{K_{1}(K_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}

where ii_{*} is induced by the natural inclusion i:KRXi:K_{R}\to X and jj^{*} is induced by the collapse KRK_{R} to \infty map c:X+UR+c:X^{+}\to U_{R}^{+} .

If R<RR<R^{\prime}\in\mathbb{R}, we denote iRR:KRKRi_{RR^{\prime}}:K_{R}\to K_{R^{\prime}} and jRR:URURj_{RR^{\prime}}:U_{R^{\prime}}\to U_{R} the inclusion map. Let cRR:U+RU+Rc_{RR^{\prime}}:U^{+}_{R}\to U^{+}_{R^{\prime}} be the collapse map that is identity on UU and sends U+\URU^{+}\backslash U_{R^{\prime}} to the point at infinity in U+U^{+}. Then we have the following commuting diagram

KR{}\textstyle{K_{R}\sqcup\{\infty\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}iRR\scriptstyle{i_{RR^{\prime}}}X+\textstyle{X^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}c\scriptstyle{c}UR+\textstyle{U_{R}^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cRR\scriptstyle{c_{RR^{\prime}}}KR{}\textstyle{K_{R^{\prime}}\sqcup\{\infty\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}X+\textstyle{X^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}c\scriptstyle{c}UR+\textstyle{U_{R}^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\vdots}\textstyle{\vdots}\textstyle{\vdots} (3)

Taking the direct limit as RR tends to infinity, we get a commutative diagram

limRK0(KR)\textstyle{\lim\limits_{R\to\infty}K_{0}(K_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}limRK0(UR)\textstyle{\lim\limits_{R\to\infty}K_{0}(U_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limRK1(UR)\textstyle{\lim\limits_{R\to\infty}K_{1}(U_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(X)\textstyle{K_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}limRK1(KR)\textstyle{\lim\limits_{R\to\infty}K_{1}(K_{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}
Definition 4.7.

The KK-homology at infinity of XX, denote by K(X)K_{*}^{\infty}(X), is defined to be the group limRK(UR)\lim\limits_{R\to\infty}K_{*}(U_{R}).

For any locally compact, secondly countable, Hausdorff space XX, we can define a unbounded proper metric on XX. We can still define the KK-homology at infinity for XX according to this metric. By the definition, we can see that K(X)K^{\infty}_{*}(X) does not depend on the choice of the metric. Moreover, if XX is compact, then K(X)K^{\infty}_{*}(X) is zero group. Recall the definition of the representable KK-homology:

Definition 4.8 ([27]).

Let HXH_{X} be an XX module. Define R𝕃[HX]R\mathbb{L}[H_{X}] to be the collection of all elements (Tt)(T_{t}) of 𝕃[H+X,]\mathbb{L}[H^{+}_{X},\infty] such that there exists a compact subset KK of XX and tK1t_{K}\geq 1 such that

Tt=χKTtχKT_{t}=\chi_{K}T_{t}\chi_{K}

for all ttKt\geq t_{K}. Define RL(HX)RL^{*}(H_{X}) to be the completion of R𝕃[HX]R\mathbb{L}[H_{X}] for the norm

(Tt)=suptTt(HX).\|(T_{t})\|=\sup_{t}\|T_{t}\|_{\mathcal{B}(H_{X})}.

The representable KK-homology of XX, denoted by RK(X)RK_{*}(X), is defined to be the KK-theory group

RK(X):=K(RL(HX))RK_{*}(X):=K_{*}(RL^{*}(H_{X}))
Remark 4.9.

It is obvious that RL(HX)RL^{*}(H_{X}) is a closed ideal of L(HX+,)L^{*}(H_{X}^{+},\infty). Notice that limRK(KR)\lim\limits_{R\to\infty}K_{*}(K_{R}) is actually the representable KK-homology [27, Proposition 9.4.7]. Thus the diagram can be rewrite as following:

RK0(X)\textstyle{RK_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}K0(X)\textstyle{K_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}K0(X)\textstyle{K^{\infty}_{0}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(X)\textstyle{K^{\infty}_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(X)\textstyle{K_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}RK1(X).\textstyle{RK_{1}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}i\scriptstyle{i_{*}}

Let HXH_{X} be an ample XX-module, L(HX+,)L^{*}(H_{X}^{+},\infty) and RL(HX)RL^{*}(H_{X}) be as above. Define L(HX)L^{*}_{\infty}(H_{X}) to be the quotient algebra L(HX+,)/RL(HX)L^{*}(H_{X}^{+},\infty)/RL^{*}(H_{X}).

Proposition 4.10.

The KK-homology at infinity K(X)K_{*}^{\infty}(X) is isomorphic to the KK-theory group of L(HX)L^{*}_{\infty}(H_{X}), i.e.,

K(X)K(L(HX)).K_{*}^{\infty}(X)\cong K_{*}(L^{*}_{\infty}(H_{X})).
Proof.

Let ZXZ\subset X be a countable dense subset of XX whose intersection with KnK_{n}, UnU_{n} is also dense in KnK_{n}, UnU_{n} respectively for each nn\in\mathbb{N}. Let HH be a separable, infinite-dimensional Hilbert space, and define ample X+X^{+}, Kn+K_{n}^{+} and U+nU^{+}_{n}-module respectively by

H+X=2(Z,H)H,H+Kn=2(ZKn,H)H,H+Un=2(ZUn,H)HH^{+}_{X}=\ell^{2}(Z,H)\oplus H,\,H^{+}_{K_{n}}=\ell^{2}(Z\cap K_{n},H)\oplus H,\,H^{+}_{U_{n}}=\ell^{2}(Z\cap U_{n},H)\oplus H

For each n,nn,n^{\prime}\in\mathbb{N}, assume that n<nn<n^{\prime}, define vn:2(ZKn,H)2(Z,H)v_{n}:\ell^{2}(Z\cap K_{n},H)\to\ell^{2}(Z,H) and vnn:2(ZKn,H)2(ZKn,H)v_{nn^{\prime}}:\ell^{2}(Z\cap K_{n},H)\to\ell^{2}(Z\cap K_{n}^{\prime},H) to be the canonical inclusion. Let un:2(ZKn,H)HHu_{n}:\ell^{2}(Z\cap K_{n},H)\oplus H\to H and unn:2(UnKn,H)HHu_{nn^{\prime}}:\ell^{2}(U_{n}\cap K_{n^{\prime}},H)\oplus H\to H be unitaries and define

wn=id2(ZUn,H)un:HX+=2(ZUn,H)(2(ZKn,H)H)HUn+w_{n}=id_{\ell^{2}(Z\cap U_{n},H)}\oplus u_{n}:H_{X}^{+}=\ell^{2}(Z\cap U_{n},H)\oplus(\ell^{2}(Z\cap K_{n},H)\oplus H)\to H_{U_{n}}^{+}

and

wnn=id2(ZUn,H)unn:HUn+=2(ZUn,H)(2(UnKn,H))HUn+w_{nn^{\prime}}=id_{\ell^{2}(Z\cap U_{n^{\prime}},H)}\oplus u_{nn^{\prime}}:H_{U_{n}}^{+}=\ell^{2}(Z\cap U_{n^{\prime}},H)\oplus(\ell^{2}(U_{n}\cap K_{n^{\prime}},H))\to H_{U_{n^{\prime}}}^{+}

Define (Vt)n=vn(V_{t})_{n}=v_{n}, (Vt)nn=vnn(V_{t})_{nn^{\prime}}=v_{nn^{\prime}}, (Wt)n=wn(W_{t})_{n}=w_{n} and (Wt)nn=wnn(W_{t})_{nn^{\prime}}=w_{nn^{\prime}}. Then we have the following commuting diagram:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LQ(X+,K+n)\textstyle{L^{*}_{Q}(X^{+},K^{+}_{n})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ad((Vt)n)\scriptstyle{ad((V_{t})_{n})}ad((Vt)nn)\scriptstyle{ad((V_{t})_{nn^{\prime}})}LQ(X+,)\textstyle{L^{*}_{Q}(X^{+},\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ad((Wt)n)\scriptstyle{ad((W_{t})_{n})}LQ(Un+,)\textstyle{L^{*}_{Q}(U_{n}^{+},\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ad((Wt)nn)\scriptstyle{ad((W_{t})_{nn^{\prime}})}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LQ(X+;K+n)\textstyle{L^{*}_{Q}(X^{+};K^{+}_{n^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ad((Vt)n)\scriptstyle{ad((V_{t})_{n^{\prime}})}LQ(X+;)\textstyle{L^{*}_{Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ad((Wt)n)\scriptstyle{ad((W_{t})_{n^{\prime}})}LQ(Un+;)\textstyle{L^{*}_{Q}(U_{n^{\prime}}^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}\textstyle{\vdots}\textstyle{\vdots}\textstyle{\vdots}

Taking the direct limit as nn tends to infinity, by [27, Proposition 9.4.7], we have that

0RLQ(X+;)LQ(X+;)JlimnLQ(U+n;)0.0\to RL^{*}_{Q}(X^{+};\infty)\to L^{*}_{Q}(X^{+};\infty)\stackrel{{\scriptstyle J}}{{\longrightarrow}}\lim\limits_{n\to\infty}L^{*}_{Q}(U^{+}_{n};\infty)\to 0.

We denote the map

J=limnad((Wt)n):LQ(X+;)limnLQ(U+n;).J=\lim_{n\to\infty}ad((W_{t})_{n}):L^{*}_{Q}(X^{+};\infty)\to\lim\limits_{n\to\infty}L^{*}_{Q}(U^{+}_{n};\infty).

For any TtR𝕃[X+;]T_{t}\in R\mathbb{L}[X^{+};\infty], there exists a compact subset KXK\subset X and tK>1t_{K}>1 such that Tt=χKTtχKT_{t}=\chi_{K}T_{t}\chi_{K} for all ttKt\geq t_{K}. Set NN\in\mathbb{N} such that KKNK\subset K_{N}, then [ad((Wt)N)(Tt)]=0LQ(UN+,)[ad((W_{t})_{N})(T_{t})]=0\in L^{*}_{Q}(U_{N}^{+},\infty). Thus J([Tt])=0J([T_{t}])=0 for all [Tt]RLQ(X+,)[T_{t}]\in RL^{*}_{Q}(X^{+},\infty). Then JJ descends to a map on the quotient:

J:L,Q(X+;)limnLQ(U+n;).J_{\infty}:L^{*}_{\infty,Q}(X^{+};\infty)\to\lim\limits_{n\to\infty}L^{*}_{Q}(U^{+}_{n};\infty).

Thus we have the following commuting diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}RLQ(X+;)\textstyle{RL^{*}_{Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LQ(X+;)\textstyle{L^{*}_{Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L,Q(X+;)\textstyle{L^{*}_{\infty,Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}J\scriptstyle{J_{\infty}}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}RLQ(X+;)\textstyle{RL^{*}_{Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LQ(X+;)\textstyle{L^{*}_{Q}(X^{+};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limnLQ(U+n;)\textstyle{\lim\limits_{n\to\infty}L^{*}_{Q}(U^{+}_{n};\infty)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Thus (J):K(X)K(L(HX))(J_{\infty})_{*}:K^{\infty}_{*}(X)\to K_{*}(L^{*}_{\infty}(H_{X})) is an isomorphism by Five Lemma, as desire. ∎

For technical convenience, we will consider the following version of localization algebra and representable localization algebra (c.f. [28, 29]). Let H0H_{0} be an infinite dimensional Hilbert space, and ZXZ\subseteq X be a countable dense subset and f[X]\mathbb{C}_{f}[X] be as in Definition 2.2.

Definition 4.11 ([28]).

The algebraic localization algebra, denoted by L[X]\mathbb{C}_{L}[X], is the *-algebra of all uniformly bounded and uniformly continuous functions

g:[0,)f[X][X]g:[0,\infty)\to\mathbb{C}_{f}[X]\subseteq\mathbb{C}[X]

such that the family (g(t))t[0,)(g(t))_{t\in[0,\infty)} satisfy the conditions in Definition 2.2 with uniform constants and there exists a bounded function R(t):[0,)[0,)R(t):[0,\infty)\to[0,\infty) with limtR(t)=0\lim_{t\to\infty}R(t)=0 such that

(g(t))(x,y)=0 whenever d(x.y)>R(t)(g(t))(x,y)=0\mbox{ whenever }d(x.y)>R(t)

for all x,yZx,y\in Z and t[0,)t\in[0,\infty).

Define CL(X)C^{*}_{L}(X) to be the completion of L[X]\mathbb{C}_{L}[X] with respect to the norm

g=supt+g(t).\|g\|=\sup_{t\in\mathbb{R}_{+}}\|g(t)\|.
Theorem 4.12 ([28, 17]).

Suppose that XX is a proper metric space with bounded geometry, then there exists a local index map μL:K(Pd(X))K(CL(Pd(X)))\mu_{L}:K_{*}(P_{d}(X))\to K_{*}(C^{*}_{L}(P_{d}(X))) which is an isomorphism.

Consequently, if XX is a discrete metric space with bounded geometry, we have the following commuting diagram:

limdK(Pd(X))\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ\scriptstyle{\mu}μL\scriptstyle{\mu_{L}}limdK(CL(Pd(X)))\textstyle{\lim\limits_{d\to\infty}K_{*}(C^{*}_{L}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev\scriptstyle{ev_{*}}K(C(X)),\textstyle{K_{*}(C^{*}(X)),}

where the evaluation homomorphism ev:CL(X)C(X)ev:C^{*}_{L}(X)\to C^{*}(X) is defined by ev(f(t))=f(0)ev(f(t))=f(0) for all fCL(X)f\in C^{*}_{L}(X). Then, to proof the coarse Novikov conjecture for XX, it suffices to prove the evaluation homomorphism

ev:limdK(CL(Pd(X)))limdK(C(Pd(X)))ev_{*}:\lim_{d\to\infty}K_{*}(C^{*}_{L}(P_{d}(X)))\to\lim_{d\to\infty}K_{*}(C^{*}(P_{d}(X)))

is an injection.

Definition 4.13.

The representable localization algebra of XX, denoted by RCL(X)RC^{*}_{L}(X), is the closure of the collection of all elements g(t)g(t) of CL(X)C^{*}_{L}(X) such that there exists a compact subset KK of XX such that

g(t)=χKg(t)χKg(t)=\chi_{K}g(t)\chi_{K}

for all t[0,)t\in[0,\infty). It is not hard to see that RCL(X)RC^{*}_{L}(X) is a two-sided closed ideal of CL(X)C^{*}_{L}(X).

The proof of the following lemma is similar with [27, Proposition 9.4.2, Proposition 6.6.2] and [28, Theorem 3.2].

Lemma 4.14.

Let XX be a proper metric space. Then we have

K(L(HX+,))K(CL(X))andK(RL(HX))K(RCL(X)).K_{*}(L^{*}(H_{X}^{+},\infty))\cong K_{*}(C^{*}_{L}(X))\quad\mbox{and}\quad K_{*}(RL^{*}(H_{X}))\cong K_{*}(RC^{*}_{L}(X)).

As a consequence, the KK-homoloogy at infinity K(X)K^{\infty}_{*}(X) is isomorphic to K(CL(X)/RCL(X))K_{*}(C^{*}_{L}(X)/RC^{*}_{L}(X)). \square

Next, we will introduce the Roe algebra at infinity for a proper metric space XX. Fix x0Xx_{0}\in X, let Kn=B(x0,n)K_{n}=B(x_{0},n) and Un=X\KnU_{n}=X\backslash K_{n}. Let ZZ be a countable subset of XX.

Definition 4.15.

The algebraic Roe algebra at infinity, denoted by [X]\mathbb{C}_{\infty}[X], is the set of all equivalence classes [T][T], where Tf(X)T\in\mathbb{C}_{f}(X) and the equivalence relation \sim on [T][T] is defined by TST\sim S if and only if

limnsupx,yUnT(x,y)S(x,y)=0.\lim_{n\to\infty}\sup_{x,y\in U_{n}}\|T(x,y)-S(x,y)\|=0.

The algebraic operation of [X]\mathbb{C}_{\infty}[X] is given by the usual matrix operations of f[X]\mathbb{C}_{f}[X]. Define the Roe algebra at infinity C(X)C^{*}_{\infty}(X) to be the completion of [X]\mathbb{C}_{\infty}[X] with respect to the norm

[T]=lim supnχUnT.\|[T]\|=\limsup_{n\to\infty}\|\chi_{U_{n}}T\|.

One can see that the Roe algebra at infinity is also invariant up to coarse equivalence, so C(X)C^{*}_{\infty}(X) is isomorphic to C(Pd(X))C^{*}_{\infty}(P_{d}(X)) for each d0d\geq 0. If XX is bounded, then C(X)=0C^{*}_{\infty}(X)=0.

Definition 4.16.

The localization algebra at infinity of XX, denoted by L,[X]\mathbb{C}_{L,\infty}[X], is defined to be the *-algebra of all bounded and unformly norm-continuous functions

g:[0,)[X]g:[0,\infty)\to\mathbb{C}_{\infty}[X]

such that gg is of the form g(t)=[Tt]g(t)=[T_{t}] with Tt[X]T_{t}\in\mathbb{C}[X] where the family (Tt)t+(T_{t})_{t\in\mathbb{R}_{+}} satisfies the conditions in Definition 2.2 with uniform constants and there exists a bounded function R(t):[0,)[0,)R(t):[0,\infty)\to[0,\infty) with limtR(t)=0\lim_{t\to\infty}R(t)=0 such that

(Tt)(x,y)=0 whenever d(x.y)>R(t)(T_{t})(x,y)=0\mbox{ whenever }d(x.y)>R(t)

for all x,yZx,y\in Z and t[0,)t\in[0,\infty).

Define CL,(X)C^{*}_{L,\infty}(X) to be the completion of L,[X]\mathbb{C}_{L,\infty}[X] with respect to the norm

g=supt+g(t).\|g\|=\sup_{t\in\mathbb{R}_{+}}\|g(t)\|.

There exists a canonical quoitent map CL(X)CL,(X)C^{*}_{L}(X)\to C^{*}_{L,\infty}(X) defined by ggg\mapsto g^{\prime} where g(t)=[g(t)]g^{\prime}(t)=[g(t)] for each t+t\in\mathbb{R}_{+}. One can also see that g=0g^{\prime}=0 for any gRCL(X)L[X]g\in RC^{*}_{L}(X)\cap\mathbb{C}_{L}[X] as g(t)g(t) is uniformly supported in some compact subset of XX. Then we have a homomorphism

q:CL(X)RCL(X)CL,(X)q:\frac{C^{*}_{L}(X)}{RC^{*}_{L}(X)}\to C^{*}_{L,\infty}(X)

which induces a homomorphism on KK-theory

q:K(X)K(CL,(X)).q_{*}:K_{*}^{\infty}(X)\to K_{*}(C^{*}_{L,\infty}(X)).
Theorem 4.17.

Suppose XX is a discrete metric space with bounded geometry. Then

q:K(Pd(X))K(CL,(Pd(X)))q_{*}:K_{*}^{\infty}(P_{d}(X))\to K_{*}(C^{*}_{L,\infty}(P_{d}(X)))

is an isomorphism for each d0d\geq 0.

Proof.

By using an Eilenberg swindle argument as [28, Theorem 3.4], one can show that both groups above are invariant under strongly Lipschitz homotopies and both groups admits a Mayer-Vietories sequence. Then it is suffices to prove the theorem for the case when Pd(X)P_{d}(X) is 0-dimensional, which obviously holds as both groups are trivial. ∎

5 Reduction to the coarse Novikov conjecture at infinity

In this section, we discuss the strategy to prove the main theorem. As general metric spaces (such as warped cones) are always not of the form of coarse disjoint unions of a sequence of bounded subsets, we can not use the techniques in [4] directly. We will show that there exists an assmbly map at infinity from the KK-homology group at infinity to the KK-theory group of the Roe algebra at infinity, and the coarse Novikov conjecture can always be reduced to verifying the assembly map at infinity to be injective whether the space is of the form of coarse disjoint union or not.

5.1 The case of coarse disjoint unions

In this section, we assume that X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n} is a coarse disjoint union of a sequence of uniformly bounded geometry, finite metric spaces such that #Xn\#X_{n}\to\infty as nn\to\infty. Actually, this situation has been discussed in Section 4 of [4].

Lemma 5.1.

Let X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n} be a coarse disjoint union of a sequence of uniformly bounded geometry, finite metric spaces such that #Xn\#X_{n}\to\infty as nn\to\infty. Then for sufficiently large dd, we have that

K(Pd(X))=n=0K(Pd(Xn))n=0K(Pd(Xn)).K_{*}^{\infty}(P_{d}(X))=\frac{\prod_{n=0}^{\infty}K_{*}(P_{d}(X_{n}))}{\bigoplus_{n=0}^{\infty}K_{*}(P_{d}(X_{n}))}.
Proof.

For any d0d\geq 0, there exists NdNN_{d}\in N large enough such that d(Xn,Xm)>dd(X_{n},X_{m})>d for n,mNdn,m\in N_{d}. Let XNd=Nd1n=0XnX_{N_{d}}=\bigcup^{N_{d}-1}_{n=0}X_{n}, then we have that Pd(X)=Pd(XNd)n>NdPd(Xn)P_{d}(X)=P_{d}(X_{N_{d}})\cup\mathop{\sqcup}\limits_{n>N_{d}}P_{d}(X_{n}). Then the maps RK(Pd(Xn))RK(Pd(X))RK_{*}(P_{d}(X_{n}))\to RK_{*}(P_{d}(X)) and K(Pd(Xn))K(Pd(X))K_{*}(P_{d}(X_{n}))\to K_{*}(P_{d}(X)) induced by the inclusions XnXX_{n}\to X induce isomorphisms

RK(Pd(X))K(Pd(XNd))n>NdK(Pd(Xn))RK_{*}(P_{d}(X))\cong K_{*}(P_{d}(X_{N_{d}}))\oplus\bigoplus_{n>N_{d}}K_{*}(P_{d}(X_{n}))

and

K(Pd(X))K(Pd(XNd))n>NdK(Pd(Xn)).K_{*}(P_{d}(X))\cong K_{*}(P_{d}(X_{N_{d}}))\oplus\prod_{n>N_{d}}K_{*}(P_{d}(X_{n})).

The inclusion n>NdK(Pd(Xn))n>NdK(Pd(Xn))\bigoplus_{n>N_{d}}K_{*}(P_{d}(X_{n}))\to\prod_{n>N_{d}}K_{*}(P_{d}(X_{n})) is an injection, i.e., RK(Pd(X))K(Pd(X))RK_{*}(P_{d}(X))\to K_{*}(P_{d}(X)) is an injection. Thus, we have the short exact sequence

0RK(Pd(X))K(Pd(X))K(Pd(X))00\to RK_{*}(P_{d}(X))\to K_{*}(P_{d}(X))\to K^{\infty}_{*}(P_{d}(X))\to 0

This means that

K(Pd(X))=K(Pd(X))RK(Pd(X))=n=0K(Pd(Xn))n=0K(Pd(Xn)),K_{*}^{\infty}(P_{d}(X))=\frac{K_{*}(P_{d}(X))}{RK_{*}(P_{d}(X))}=\frac{\prod_{n=0}^{\infty}K_{*}(P_{d}(X_{n}))}{\bigoplus_{n=0}^{\infty}K_{*}(P_{d}(X_{n}))},

which completes the proof. ∎

For each d>0d>0. let ZdPd(X)Z_{d}\subset P_{d}(X) be a countable dense subset, and let Zd,n=ZdPd(Xn)Z_{d,n}=Z_{d}\cap P_{d}(X_{n}) for any d0d\geq 0, nn\in\mathbb{N}. We assume that Zd,nZd,nZ_{d,n}\subset Z_{d,n^{\prime}}, if d<dd^{\prime}<d. In this case, the Roe algebra at infinity can be also described as follow:

Definition 5.2 ([4]).

For each d0d\geq 0, define u,[(Pd(Xn))n]\mathbb{C}_{u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}] to be the set of all equivalence classes T=[(T(0),,T(n),)]T=[(T^{(0)},\cdots,T^{(n)},\cdots)] of sequences (T(0),,T(n),)(T^{(0)},\cdots,T^{(n)},\cdots) described as follows:

  • (1)

    {T(n)}n\{T^{(n)}\}_{n\in\mathbb{N}} is a family of uniformly bounded functions, where T(n)T^{(n)} is a function from Zd,n×Zd,nZ_{d,n}\times Z_{d,n} to 𝒦\mathcal{K} for all nn\in\mathbb{N};

  • (2)

    for any bounded subset BPd(Xn)B\subset P_{d}(X_{n}), we have that

    #{(x,y)B×BZd,n×Zd,nT(n)(x,y)0}<;\#\{(x,y)\in B\times B\cap Z_{d,n}\times Z_{d,n}\mid T^{(n)}(x,y)\neq 0\}<\infty;
  • (3)

    there exists L>0L>0 such that

    #{yZd,n|T(n)(x,y)0}<L,#{yZd,nT(n)(y,x)0}<L\#\{y\in Z_{d,n}|T^{(n)}(x,y)\neq 0\}<L,\qquad\#\{y\in Z_{d,n}\mid T^{(n)}(y,x)\neq 0\}<L

    for all xZd,nx\in Z_{d,n}, nn\in\mathbb{N};

  • (4)

    there exists R>0R>0 such that T(n)(x,y)=0T^{(n)}(x,y)=0 whenever d(x,y)>Rd(x,y)>R for x,yZd,nx,y\in Z_{d,n}, nn\in\mathbb{N}. The least such RR is called the propagation of the sequence (T(0),,T(n),)(T^{(0)},\cdots,T^{(n)},\cdots).

The equivalence relation \sim on these sequences is defined by

(T(0),,T(n),)(S(0),,S(n),)(T^{(0)},\cdots,T^{(n)},\cdots)\sim(S^{(0)},\cdots,S^{(n)},\cdots)

if and only if

limnsupx,yZd,nT(n)(x,y)S(n)(x,y)𝒦=0.\lim_{n\to\infty}\sup_{x,y\in Z_{d,n}}\|T^{(n)}(x,y)-S^{(n)}(x,y)\|_{\mathcal{K}}=0.

By viewing T(n)T^{(n)} as Zd,n×Zd,nZ_{d,n}\times Z_{d,n} matrices, the product structure for u,[(Pd(Xn))n]\mathbb{C}_{u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}] is defined as the usual matrix operations. Define Cu,((Pd(Xn))n)C^{*}_{u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}) to be the completion of u,[(Pd(Xn))n]\mathbb{C}_{u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}] with respect to the norm

T=lim supnT(n),\|T\|=\limsup_{n\to\infty}\|T^{(n)}\|,

where each operator T(n)T^{(n)} is viewed as an element of the Roe algebra C(Pd(Xn))C^{*}(P_{d}(X_{n})).

The following notion of localization algebra has its origin in [28], we shall recall its relation with KK-homology at infinity.

Definition 5.3.

Let L,u,[(Pd(Xn))n]\mathbb{C}_{L,u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}] be the set of all bounded, uniformly norm-continuous functions

g:+u,[(Pd(Xn))n]g:\mathbb{R}_{+}\to\mathbb{C}_{u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}]

such that g(t)g(t) is of the form g(t)=[g(0)(t),,g(n)(t),]g(t)=[g^{(0)}(t),\cdots,g^{(n)}(t),\cdots] and satisfies that there exists a bounded function R(t):++R(t):\mathbb{R}_{+}\to\mathbb{R}_{+} with limtR(t)=0\lim_{t\to\infty}R(t)=0 such that (g(n)(t))(x,y)=0(g^{(n)}(t))(x,y)=0 whenever d(x,y)>R(t)d(x,y)>R(t) and nn\in\mathbb{N};

The localization algebra at infinity CL,u,((Pd(Xn))n)C^{*}_{L,u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}) is defined to be the norm completion of L,u,[(Pd(Xn))n]\mathbb{C}_{L,u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}], where CL,u,((Pd(Xn))n)C^{*}_{L,u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}) is endowed with the norm

g=supt+g(t).\|g\|_{\infty}=\sup_{t\in\mathbb{R}_{+}}\|g(t)\|.

One can see that the Cu,((Pd(Xn))n)C^{*}_{u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}) coincides with C(X)C^{*}_{\infty}(X) and CL,u,((Pd(Xn))n)C^{*}_{L,u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}) coincides with CL,(Pd(X))C^{*}_{L,\infty}(P_{d}(X)).

For each d>0d>0, there is a *-homomorphism

Φ:f[Pd(X)]u,[(Pd(Xn))n]\Phi:\mathbb{C}_{f}[P_{d}(X)]\to\mathbb{C}_{u,\infty}[(P_{d}(X_{n}))_{n\in\mathbb{N}}]

defined by Φ(T)=[(Φ(0)(T),,Φ(n)(T),)]\Phi(T)=[(\Phi^{(0)}(T),\cdots,\Phi^{(n)}(T),\cdots)] for Tf[Pd(X)]T\in\mathbb{C}_{f}[P_{d}(X)], with

Φ(n)(T)(x,y)={0,if n<NRT|Zd,n×Zd,n,if nNR,\Phi^{(n)}(T)(x,y)=\left\{\begin{aligned} &0,&&\mbox{if }n<N_{R}\\ &T|_{Z_{d,n}\times Z_{d,n}},&&\mbox{if }n\geq N_{R},\end{aligned}\right.

where R=Prop(T)R=\textup{Prop}(T) and NRN_{R}\in\mathbb{N} is large enough such that

dPd(X)(Pd(Xn),Pd(i=0n1Xi))>R,d_{P_{d}(X)}\left(P_{d}(X_{n}),P_{d}\left(\bigsqcup_{i=0}^{n-1}X_{i}\right)\right)>R,

for all nNRn\geq N_{R}. Then Φ\Phi extends to a CC^{*}-homomorphism Φ:C(Pd(X))Cu,((Pd(Xn))n)\Phi:C^{*}(P_{d}(X))\to C^{*}_{u,\infty}((P_{d}(X_{n}))_{n\in\mathbb{N}}), see [4, Theorem 4.5].

For any d0d\geq 0, there exists NdNN_{d}\in N large enough such that d(Xn,Xm)>dd(X_{n},X_{m})>d for n,mNdn,m\in N_{d}. Let XNd=Nd1n=0XnX_{N_{d}}=\bigcup^{N_{d}-1}_{n=0}X_{n}. As Pd(X)=Pd(XNd)(nNdPd(Xn))P_{d}(X)=P_{d}(X_{N_{d}})\bigsqcup\left(\sqcup_{n\geq N_{d}}P_{d}(X_{n})\right), we have that

K(Pd(X))=K(Pd(XNd))n=NdK(Pd(Xn)).K_{*}(P_{d}(X))=K_{*}(P_{d}(X_{N_{d}}))\bigoplus\prod_{n=N_{d}}^{\infty}K_{*}(P_{d}(X_{n})).

By the definition of the assembly maps, we have the following commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Pd(XNd))n=NdK(Pd(Xn))\textstyle{K_{*}(P_{d}(X_{N_{d}}))\oplus\bigoplus_{n=N_{d}}^{\infty}K_{*}(P_{d}(X_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(𝒦)\textstyle{K_{*}(\mathcal{K})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Pd(X))\textstyle{K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev\scriptstyle{ev_{*}}K(C(Pd(X)))\textstyle{K_{*}(C^{*}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi_{*}}K(Pd(X))\textstyle{K^{\infty}_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev,\scriptstyle{ev_{\infty,*}}K(Cu,(Pd(Xn)))\textstyle{K_{*}(C^{*}_{u,\infty}(P_{d}(X_{n})))}0\textstyle{0}

where ev,ev_{\infty,*} is induced by the evaluation map

ev:CL,(Pd(X))C(X),gg(0).ev_{\infty}:C^{*}_{L,\infty}(P_{d}(X))\to C^{*}_{\infty}(X),\qquad g\mapsto g(0).

By [16, Remark 2.12], one has that K(𝒦)K(C(Pd(X)))K_{*}(\mathcal{K})\to K_{*}(C^{*}(P_{d}(X))) is an injection.

Passing to inductive limit as dd\to\infty, the top horizontal arrow is an isomorphism for the following reason. An element in the sum, as a finite sequence, is supported on summands below some fixed mm and, as dd\to\infty, will eventually be absorbed into the first term on a single simplex. Thus, to prove μ\mu is injective, it suffices to prove μ\mu_{\infty} is injective by diagram chasing.

5.2 The case of spaces which admit an infinite coarse component

The next notion is introduced by M. Finn-Sell in [8].

Definition 5.4 ([8]).

A bounded geometry proper metric space XX is said to have an infinite coarse component if there exists R>0R>0 such that PR(X)P_{R}(X) has an unbounded connected component. Otherwise, we say XX only has finite coarse components.

Lemma 5.5.

A bounded geometry proper metric space XX has only finite coarse components if and only if it is a coarse disjoint union of a sequence of finite metric spaces.

Proof.

Let X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n} be a coarse disjoint union of the sequence of finite metric spaces {Xn}\{X_{n}\}. For each R>0R>0, there exists N>0N>0 such that d(Xi,Xj)>Rd(X_{i},X_{j})>R for all i,j>Ni,j>N. Let XNR=n=1NXnX_{N_{R}}=\bigsqcup_{n=1}^{N}X_{n} and we have that PR(X)=PR(XNR)n>NPR(Xn)P_{R}(X)=P_{R}(X_{N_{R}})\sqcup\bigsqcup_{n>N}P_{R}(X_{n}). Thus XX has only finite coarse components.

On the other hand, let XX be a metric space which has only finite coarse components. Fix x0Xx_{0}\in X, denote Pd(X)x0P_{d}(X)_{x_{0}} the connected component of Pd(X)P_{d}(X) which contains x0x_{0}. Then let

X1=P21(X)x0X;X2=(P22(X)x0X)\X1;Xn=(P2n(X)x0X)\Xn1;.\begin{split}X_{1}&=P_{2^{1}}(X)_{x_{0}}\cap X;\\ X_{2}&=(P_{2^{2}}(X)_{x_{0}}\cap X)\backslash X_{1};\\ \cdots&\\ X_{n}&=(P_{2^{n}}(X)_{x_{0}}\cap X)\backslash X_{n-1};\\ \cdots&.\end{split}

Then we have that X=nXnX=\bigsqcup_{n\in\mathbb{N}}X_{n}. As XX has bounded geometry and finite coarse components, XnX_{n} is a finite metric space for each nn\in\mathbb{N}. Assume that i,ji,j\in\mathbb{N} (i>ji>j) and any two points xiXix_{i}\in X_{i}, xjXjx_{j}\in X_{j}. As xiP2j(X)x0x_{i}\notin P_{2^{j}}(X)_{x_{0}}, we have that

d(xi,xj)>2j,d(x_{i},x_{j})>2^{j},

which means that d(Xi,Xj)d(X_{i},X_{j})\to\infty as i,ji,j\to\infty. Thus XX is the coarse disjoint union of the sequence {Xn}n\{X_{n}\}_{n\in\mathbb{N}}. ∎

Lemma 5.6.

Let XX be a bounded geometry metirc space which admits an infinite coarse component. Then

  • (1)

    the KK-theory map i:K(𝒦)K(C(X))i_{*}:K_{*}(\mathcal{K})\to K_{*}(C^{*}(X)) induced by the canonical inclusion i:𝒦C(X)i:\mathcal{K}\to C^{*}(X) is the zero map, where 𝒦=𝒦(HX)\mathcal{K}=\mathcal{K}(H_{X}) is the algebra of all compact operators on the geometric module HXH_{X};

  • (2)

    the map limdRK(Pd(X))limdK(Pd(X))\lim_{d\to\infty}RK_{*}(P_{d}(X))\to\lim_{d\to\infty}K_{*}(P_{d}(X)) induced by the canonical inclusion RCL(Pd(X))CL(Pd(X))RC_{L}^{*}(P_{d}(X))\to C^{*}_{L}(P_{d}(X)) is also the zero map.

Proof.

As XX has an infinite coarse component and bounded geometry property, then there exists R>0R>0 and x0Xx_{0}\in X for which there is a unbounded component contianing x0PR(X)x_{0}\in P_{R}(X). Thus there exists a sequence {xi}i=1X\{x_{i}\}_{i=1}^{\infty}\subset X such that limid(xi,x0)=\lim_{i\to\infty}d(x_{i},x_{0})=\infty and d(xi,xi+1)Rd(x_{i},x_{i+1})\leq R for all ii\in\mathbb{N}. Let Kn={xXd(x0,x)n}K_{n}=\{x\in X\mid d(x_{0},x)\leq n\} for all nn\in\mathbb{N}. As XX is proper metric space, for any compact subset KXK\subset X, there exists nn\in\mathbb{N} such that KKnK\subset K_{n}. We can identify 𝒦(HX)\mathcal{K}(H_{X}) by limnC(Kn)\lim_{n\to\infty}C^{*}(K_{n}), where C(Kn)C^{*}(K_{n}) is the Roe algebra of KnK_{n}.

To prove Property (1), we will only need to show that (in):K(C(Kn))C(X)(i_{n})_{*}:K_{*}(C^{*}(K_{n}))\to C*(X) is the zero map for all nn\in\mathbb{N}, where (in)(i_{n})_{*} is induced by the canonical inclusion in:KnXi_{n}:K_{n}\to X. By the definition of {xi}\{x_{i}\}, we have that Kn{xi}K_{n}\cup\{x_{i}\} is coarse equivalent to +\mathbb{R}_{+}. Thus, ini_{n} can be seen the composition KnKn{xn}XK_{n}\to K_{n}\cup\{x_{n}\}\to X. Notice that K(C(+))=0K_{*}(C^{*}(\mathbb{R}_{+}))=0, then the following diagram commutes

K(C(Kn))(in)K(X)K(C(Kn{xi}))K(C(+))=0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 28.39803pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-28.39803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(K_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 57.68028pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(i_{n})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 116.18979pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 97.01202pt\raise-29.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 116.18979pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(X)}$}}}}}}}{\hbox{\kern-3.0pt\raise-40.63608pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 52.39803pt\raise-40.63608pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(K_{n}\cup\{x_{i}\}))\cong K_{*}(C^{*}(\mathbb{R}_{+}))=0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 133.61757pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

Then (in)(i_{n})_{*} is the zero map. The canonical inclusion KnKn+1K_{n}\to K_{n+1} induces an isomorphism K(𝒦)K(𝒦)K_{*}(\mathcal{K})\to K_{*}(\mathcal{K}). Thus we have that

K(C(Kn))(in)=K(C(X))=K(C(Kn+1))(in+1)K(C(X)).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 31.97581pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-28.39803pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(K_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 32.18336pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(i_{n})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.97581pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.44446pt\raise-20.31804pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 55.97581pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 82.62373pt\raise-20.31804pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 82.62373pt\raise-29.49998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-31.97581pt\raise-40.63608pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(K_{n+1}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.6278pt\raise-34.13608pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(i_{n+1})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.97581pt\raise-40.63608pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 55.97581pt\raise-40.63608pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(X))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Therefore, i:K(𝒦)=limnK(Kn)K(C(X))i_{*}:K_{*}(\mathcal{K})=\lim_{n\to\infty}K_{*}(K_{n})\to K_{*}(C^{*}(X)) is the zero map.

We will next prove Property (2). Notice that RK(Pd(X))=limnK(Pd(Kn))RK_{*}(P_{d}(X))=\lim_{n\to\infty}K_{*}(P_{d}(K_{n})). Then it suffices to show

limdlimnK(Pd(Kn))limdK(Pd(X))\lim_{d\to\infty}\lim_{n\to\infty}K_{*}(P_{d}(K_{n}))\to\lim_{d\to\infty}K_{*}(P_{d}(X))

is the zero map for all nn\in\mathbb{N}, where the map is induced by the canonical inclusion Pd(Kn)Pd(X)P_{d}(K_{n})\to P_{d}(X) for each nn\in\mathbb{N} and d>0d>0. Notice that we have the following commutative diagram

K(Pd(Kn))K(Pd(Kn))K(Pd(Kn))K(Pd(Kn)).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 28.86865pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-28.42867pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d}(K_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 53.30865pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 53.30865pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d^{\prime}}(K_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 82.1773pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-28.86865pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d}(K_{n^{\prime}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 52.86865pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 52.86865pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d^{\prime}}(K_{n^{\prime}}))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

for all d>dd^{\prime}>d, n>nn^{\prime}>n, where the arrows are all given by the inclusions. Thus we have that

limdRK(Pd(X))limdlimnK(Pd(Kn))limnlimdK(Pd(Kn)).\lim_{d\to\infty}RK_{*}(P_{d}(X))\cong\lim_{d\to\infty}\lim_{n\to\infty}K_{*}(P_{d}(K_{n}))\cong\lim_{n\to\infty}\lim_{d\to\infty}K_{*}(P_{d}(K_{n})).

Now it suffices to show that, for each nn\in\mathbb{N}, K(Pd(Kn))K(Pd(X))K_{*}(P_{d}(K_{n}))\to K_{*}(P_{d}(X)) is the zero map for sufficiently large dd.

For given nn\in\mathbb{N}, let RnR_{n} be a real number such that diam(Kn)<Rn\textup{diam}(K_{n})<R_{n} and d(xi,xi+1)<Rnd(x_{i},x_{i+1})<R_{n} for all i0i\geq 0. For each d>Rnd>R_{n}, the inclusion Pd(Kn)Pd(X)P_{d}(K_{n})\to P_{d}(X) can be seen as the composition

Pd(Kn)Pd(Kn{xi})Pd(X).P_{d}(K_{n})\to P_{d}(K_{n}\cup\{x_{i}\})\to P_{d}(X).

Notice that Pd(Kn{xi})P_{d}(K_{n}\cup\{x_{i}\}) is homotopy equivalent to +\mathbb{R}_{+} and K(+)=0K_{*}(\mathbb{R}_{+})=0. Thus we have the following commuting diagram

K(Pd(Kn))K(Pd(X))K(Pd(Kn{xi}))K(+)=0.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 28.42867pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-28.42867pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d}(K_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 97.78014pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 91.8pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 97.78014pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d}(X))}$}}}}}}}{\hbox{\kern-3.0pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 52.42867pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(P_{d}(K_{n}\cup\{x_{i}\}))\cong K_{*}(\mathbb{R}_{+})=0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 124.4587pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces.

This shows that limdK(Pd(Kn))limdK(X)\lim_{d\to\infty}K_{*}(P_{d}(K_{n}))\to\lim_{d\to\infty}K_{*}(X) is the zero map for each nn\in\mathbb{N}. Taking the direct limit as nn tends to infinity, this completes the proof. ∎

Let g(t)RCL(X)g(t)\in RC^{*}_{L}(X) be a function such that there exists a compact subset KXK\subset X such that g(t)=χKg(t)χK𝒦g(t)=\chi_{K}g(t)\chi_{K}\in\mathcal{K} for all t[0,)t\in[0,\infty). Consider the evaluation map ev:CL(X)C(X)ev:C^{*}_{L}(X)\to C^{*}(X) defined by ev(g)=g(0)ev(g)=g(0). Notice that the restriction of evev to RCL(X)RC^{*}_{L}(X) is a *-homomorphism RCL(X)𝒦RC^{*}_{L}(X)\to\mathcal{K}.

Define Φ:C(X)C(X)\Phi:C^{*}(X)\to C^{*}_{\infty}(X) by T[T]T\mapsto[T] and the evaluation map at infinity

ev:CL,(Pd(X))C(Pd(X)) by [g][g(0)].ev_{\infty}:C^{*}_{L,\infty}(P_{d}(X))\to C^{*}_{\infty}(P_{d}(X))\quad\text{ by }\quad[g]\mapsto[g(0)].

Then for each d0d\geq 0, we have the following commuting diagram:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}RCL(Pd(X))\textstyle{RC^{*}_{L}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev\scriptstyle{ev}CL(Pd(X))\textstyle{C^{*}_{L}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev\scriptstyle{ev}CL,(Pd(X))\textstyle{C^{*}_{L,\infty}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ev\scriptstyle{ev_{\infty}}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒦\textstyle{\mathcal{K}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C(Pd(X))\textstyle{C^{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi}C(Pd(X))\textstyle{C^{*}_{\infty}(P_{d}(X))}

and the commuting diagram of KK-theory:

limdRK(Pd(X))evlimdK(Pd(X))evlimdK(Pd(X))(ev)K(𝒦)K(C(Pd(X)))ΦK(C(Pd(X))).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}RK_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 140.98093pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 58.96187pt\raise-20.29373pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.04167pt\hbox{$\scriptstyle{ev_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 73.86546pt\raise-30.08746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 140.98093pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 243.54169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 165.35771pt\raise-20.29373pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.04167pt\hbox{$\scriptstyle{ev_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 180.2613pt\raise-29.45137pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 243.54169pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\lim\limits_{d\to\infty}K_{*}^{\infty}(P_{d}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 258.47401pt\raise-20.29373pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(ev_{\infty})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 282.82207pt\raise-29.45137pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 346.10245pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 346.10245pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots}$}}}}}}}{\hbox{\kern-3.0pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 57.0835pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(\mathcal{K})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 144.36261pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.36261pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 225.01392pt\raise-34.73051pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92639pt\hbox{$\scriptstyle{\Phi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 246.92337pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 246.92337pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X)))}$}}}}}}}{\hbox{\kern 349.85245pt\raise-40.58746pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Notice that the bottom sequences of both diagrams are not exact at C(Pd(X))C^{*}(P_{d}(X)) and K(C(Pd(X)))K_{*}(C^{*}(P_{d}(X))), respectively. To prove ev:limdK(Pd(X))K(C(X))ev_{*}:\lim\limits_{d\to\infty}K_{*}(P_{d}(X))\to K_{*}(C^{*}(X)) is an injection, it suffices to prove (ev)(ev_{\infty})_{*} is an injection by diagram chasing and Lemma 5.6.

We summarize this section by the following theorem:

Theorem 5.7.

To prove the coarse Novikov conjecture for XX, it suffices to prove the coarse Novikov conjecture at infinity for XX, i.e., the KK-theoretic homomorphism induced by the evaluation map at infinity

(ev):limdK(Pd(X))K(C(X))(ev_{\infty})_{*}:\lim_{d\to\infty}K_{*}(P_{d}(X))\to K_{*}(C^{*}_{\infty}(X))

is injective.

6 Twisted algebras at infinity and their KK-theories

In the rest of this paper, we shall prove the evaluation map at infinity

(ev):limdK(CL,(Pd(X)))K(C(X))(ev_{\infty})_{*}:\lim_{d\to\infty}K_{*}(C^{*}_{L,\infty}(P_{d}(X)))\to K_{*}(C^{*}_{\infty}(X))

is an injection, where XX is a bounded geometry metric space which admits a fibred coarse embedding into p(,)\ell^{p}(\mathbb{N},\mathbb{R}). The strategy of the proof is to build the following commuting diagram for each d0d\geq 0:

K(CL,(Pd(X)))\textstyle{K_{*}(C^{*}_{L,\infty}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(βL)\scriptstyle{(\beta_{L})_{*}\qquad}(ev)\scriptstyle{(ev_{\infty})_{*}}K(CL,(Pd(X),𝒜(B)))\textstyle{K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(ev𝒜)\scriptstyle{(ev^{\mathcal{A}}_{\infty})_{*}}K(C(Pd(X)))\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta_{*}\qquad}K(C(Pd(X),𝒜(B)))\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)))} (4)

where CL,(Pd(X),𝒜(B))C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)) and C(Pd(X),𝒜(B))C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)) are twisted localization algebra and twisted Roe algebra, respectively. We will show that the evaluation homomorphism ev𝒜ev_{\infty}^{\mathcal{A}} between the twisted algebras induces an isomorphism on KK-theory and (βL)(\beta_{L})_{*} is an injection. By a diagram chasing argument, we can see that (ev)(ev_{\infty})_{*} is injective.

In this section, we will focus on proving ev𝒜ev_{\infty}^{\mathcal{A}} in (4) induces an isomorphism on KK-theory. We first introduce the twisted algebras at infinity, which are constructed by using the fact that XX admits a fibred coarse embedding into p(,)\ell^{p}(\mathbb{N},\mathbb{R}). The basic ideal of this section comes from [29, 4, 5].

6.1 The twisted algebras at infinity

Let XX be a discrete metric space with bounded geometry which admits a fibred coarse embedding into B=p(,)B=\ell^{p}(\mathbb{N},\mathbb{R}).

Definition 6.1.

Let t:BBt:B\to B be an affine isometry. We define a homomorphism

t:𝒜(B)𝒜(B)t_{*}:\mathcal{A}(B)\to\mathcal{A}(B)

by

t(βx(g))=βt(x)(g).t_{*}(\beta_{x}(g))=\beta_{t(x)}(g).

for any generator βx(g)𝒜(B)\beta_{x}(g)\in\mathcal{A}(B) where xBx\in B and g𝒮g\in\mathcal{S}.

For each d0d\geq 0, the Rips complex Pd(X)P_{d}(X) endowed with the semi-spherical metric admits a fibred coarse embedding into BB as XX is coarse equivalent to Pd(X)P_{d}(X). We give some explainations as follow. As XX is countable, we write X={x1,,xn,}X=\{x_{1},\cdots,x_{n},\cdots\}, For each n1n\geq 1, we define

Bd,xn:={itixiPd(X)|ti=0 for all i<n and tn0}.B_{d,x_{n}}:=\left\{\sum_{i\in\mathbb{N}}t_{i}x_{i}\in P_{d}(X)\,\Big{|}\,t_{i}=0\text{ for all $i<n$ and }t_{n}\neq 0\right\}.

Then it is obvious that Br,xB_{r,x} is contained in the union of the simplices that contain xx as a vertex and {Bd,x}xX\{B_{d,x}\}_{x\in X} forms a disjoint Borel cover of Pd(X)P_{d}(X) by definition. For any xPd(X)x\in P_{d}(X), there exists a unique x¯X\bar{x}\in X such that xBd,x¯x\in B_{d,\bar{x}}. Define the Borel map

jd:Pd(X)X by xx¯.j_{d}:P_{d}(X)\to X\quad\text{ by }\quad x\mapsto\bar{x}.

It is easy to check jdj_{d} is a coarse equivalence for each d0d\geq 0. Thus let Bx=Bx¯B_{x}=B_{\bar{x}} and s(x)=s(x¯)s(x)=s(\bar{x}) for each xPd(X)x\in P_{d}(X). We define tx(y)=tx¯(y¯)t_{x}(y)=t_{\bar{x}}(\bar{y}) for any x,yPd(X)x,y\in P_{d}(X) with y¯B(x¯,R)\bar{y}\in B(\bar{x},R). One can check that the field of V0V^{0}, sections and trivializations defined above satisfy the conditions in Definition 2.4.

Take a countable dense subset ZdPd(X)Z_{d}\subset P_{d}(X) consisting of all rational points in Pd(X)P_{d}(X), i.e. the point xXtxxPd(X)\sum_{x\in X}t_{x}x\in P_{d}(X) with all coefficients txt_{x} taking rational value. Fix x0Xx_{0}\in X, denote Kd,m=BPd(X)(x0,2m)K_{d,m}=B_{P_{d}(X)}(x_{0},2^{m}) to be the bounded subset of Pd(X)P_{d}(X) for each mm\in\mathbb{N} and d0d\geq 0 and Ud,m=X\Kd,mU_{d,m}=X\backslash K_{d,m}. By the definition of fibred coarse embedding, there exists a sequence of non-negative real number (ld,m)m(l_{d,m})_{m\in\mathbb{N}} such that

  • (1)

    there exists a trivialization txt_{x} for B(x,ld,m)B(x,l_{d,m}) as in Definition 2.4 for each xUd,mx\in U_{d,m} and m+m\in\mathbb{N}_{+};

  • (2)

    (ld,m)(l_{d,m}) is non-decreasing and unbounded, i.e. 0ld,1ld,m0\leq l_{d,1}\leq\cdots\leq l_{d,m}\leq\cdots and limmld,m=\lim\limits_{m\to\infty}l_{d,m}=\infty.

Now, we are ready to define the twisted algebras.

Definition 6.2.

For each d0d\geq 0, define [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] to be the set of all equivalence classes of [T][T], where T:Zd×Zd𝒜(B)^𝒦T:Z_{d}\times Z_{d}\to\mathcal{A}(B)\widehat{\otimes}\mathcal{K} is a bounded function satisfying the following conditions

  • (1)

    for any bounded subset FXF\subset X, we have that

    #{(x,y)(F×F)(Zd×Zd)T(x,y)0}<;\#\{(x,y)\in(F\times F)\cap(Z_{d}\times Z_{d})\mid T(x,y)\neq 0\}<\infty;
  • (2)

    there exists L>0L>0 such that

    #{yZdT(x,y)0}L,#{yZdT(y,x)0}L\#\{y\in Z_{d}\mid T(x,y)\neq 0\}\leq L,\quad\#\{y\in Z_{d}\mid T(y,x)\neq 0\}\leq L

    for all xZdx\in Z_{d};

  • (3)

    there exists R0R\geq 0 such that T(x,y)=0T(x,y)=0 whenever d(x,y)>Rd(x,y)>R for x,yZdx,y\in Z_{d}, we denote Prop(T)=R\textup{Prop}(T)=R the propagation of the representative element TT;

  • (4)

    there exists r>0r>0 such that for all x,yZdx,y\in Z_{d}, we have that

    supp(T(x,y)BB×+(tx(x)(s(x)),r)\textup{supp}(T(x,y)\subseteq B_{B\times\mathbb{R}_{+}}(t_{x}(x)(s(x)),r)

    where, tx=tx,ld,mt_{x}=t_{x,l_{d,m}} is the trivialization for xUd,mKd,m+1x\in U_{d,m}\cap K_{d,m+1} and ss is the section as in Definition 2.4.

The equivalence relationship \sim is defined by TST\sim S if and only if

limmsupx,yUd,mT(x,y)S(x,y)𝒜(B)^𝒦=0.\lim_{m\to\infty}\sup_{x,y\in U_{d,m}}\|T(x,y)-S(x,y)\|_{\mathcal{A}(B)\widehat{\otimes}\mathcal{K}}=0.

The product structure for [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] is defined as follow. For any [T],[S][Pd(X),𝒜(B)][T],[S]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)], we define

TS:Zd×Zd𝒜(B)^𝒦TS:Z_{d}\times Z_{d}\to\mathcal{A}(B)\widehat{\otimes}\mathcal{K}

to be the function such that there exists a sufficiently large MM\in\mathbb{N} depending only on the Prop(T)\textup{Prop}(T) and Prop(S)\textup{Prop}(S) such that TS(x,y)=zZdT(x,z)((txz)(S(z,y)))TS(x,y)=\sum_{z\in Z_{d}}T(x,z)\left((t_{xz})_{*}(S(z,y))\right) for all (x,y)Ud.m×Ud,m(x,y)\in U_{d.m}\times U_{d,m} with m>Mm>M where (tzx)(t_{zx})_{*} is as in Definition 6.1 and T(x,y)=0T(x,y)=0 otherwise. The product of [T][T] and [S][S] is defined to be [TS][TS].

The *-structure for [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] is defined by the formula

[T]=[T][T]^{*}=[T^{*}]

where

(T)(x,y)=(txy)(T(y,x))(T^{*})(x,y)=(t_{xy})_{*}(T(y,x)^{*})

for all x,yUd,mx,y\in U_{d,m} with mm large enough and 0 otherwise.

Remark 6.3.

We will give some explanations to the product structure and *-structure for [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] here. For any [T][Pd(X),𝒜(B)][T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)], there exists R>0R>0 such that T(x,z)=0T(x,z)=0 for all d(x,z)>Rd(x,z)>R. Then there exists M>0M>0 such that ld,m2Rl_{d,m}\geq 2R for all m>Mm>M. Thus txzt_{xz} is well-defined for all x,zUd,mx,z\in U_{d,m}. Combining with the condition (2) of Definition 2.4, we can check that TSTS defined above satisfies the condition (4) of Definition 6.2. Moreover, one can also check that the *-structure is also well-defined in a similar way.

Let xX𝒜(B)^𝒦\bigoplus_{x\in X}\mathcal{A}(B)\widehat{\otimes}\mathcal{K} be the CC^{*}-algebraic direct sum, i.e. the algebra of all bounded sequences (ax)xX(a^{x})_{x\in X} with ax𝒜(B)^𝒦a^{x}\in\mathcal{A}(B)\widehat{\otimes}\mathcal{K} for each xx. Let

Bc(Zd,xX𝒜(B)^𝒦)B_{c}\left(Z_{d},\bigoplus_{x\in X}\mathcal{A}(B)\widehat{\otimes}\mathcal{K}\right)

be the set of all bounded functions ZdxX𝒜(B)^𝒦Z_{d}\to\bigoplus_{x\in X}\mathcal{A}(B)\widehat{\otimes}\mathcal{K} with finite supports. For notational convenince, we write the element of Bc(Zd,xX𝒜(B)^𝒦)B_{c}\left(Z_{d},\bigoplus_{x\in X}\mathcal{A}(B)\widehat{\otimes}\mathcal{K}\right) by zZdaz[z]\sum_{z\in Z_{d}}a_{z}[z]. Consider 𝔼\mathbb{E} to be the subset of Bc(Zd,xX𝒜(B)^𝒦)B_{c}\left(Z_{d},\bigoplus_{x\in X}\mathcal{A}(B)\widehat{\otimes}\mathcal{K}\right) with all elements zZdaz[z]\sum_{z\in Z_{d}}a_{z}[z] with compact support satisfying that

  • (1)

    az=(azx)a_{z}=(a_{z}^{x}) and azx𝒜(B)^𝒦a_{z}^{x}\in\mathcal{A}(B)\widehat{\otimes}\mathcal{K} for each zZdz\in Z_{d} and xXx\in X;

  • (2)

    azx=0a_{z}^{x}=0 if d(x,z)>ld,md(x,z)>l_{d,m} for all zKd,m+1Ud,mz\in K_{d,m+1}\cap U_{d,m}.

Then 𝔼\mathbb{E} is a pre-Hilbert module over 𝒜(B)^𝒦\mathcal{A}(B)\widehat{\otimes}\mathcal{K}:

zZdaz[z],zZdbz[z]=zZd,xX(axz)bxz;\left\langle\sum_{z\in Z_{d}}a_{z}[z],\sum_{z\in Z_{d}}b_{z}[z]\right\rangle=\sum_{z\in Z_{d},x\in X}(a^{x}_{z})^{*}b^{x}_{z};
(zZdaz[z])a=zZdaza[z],\left(\sum_{z\in Z_{d}}a_{z}[z]\right)a=\sum_{z\in Z_{d}}a_{z}a[z],

where (aza)x=azxa(a_{z}a)^{x}=a_{z}^{x}a for any a𝒜(B)^𝒦a\in\mathcal{A}(B)\widehat{\otimes}\mathcal{K}. Define the Hilbert module EE to be the completion of 𝔼\mathbb{E}.

For any given [T][Pd(X),𝒜(B)][T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)], let TT act on EE by

T(zZdaz[z])=zZd(yZd,nT(z,y)ay)[z],T\left(\sum_{z\in Z_{d}}a_{z}[z]\right)=\sum_{z\in Z_{d}}\left(\sum_{y\in Z_{d,n}}T(z,y)a_{y}\right)[z],

where (T(z,y)ay)x=(txz)(T(z,y))axy𝒜(B)^𝒦(T(z,y)a_{y})^{x}=(t_{xz})_{*}(T(z,y))a^{x}_{y}\in\mathcal{A}(B)\widehat{\otimes}\mathcal{K} and the sum is finite for the condition (2) in Definition 6.2.

By Definition 6.2, for given [T][Pd(X),𝒜(B)][T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)], one can verify that the representation element χUd,mTχUd,m\chi_{U_{d,m}}T\chi_{U_{d,m}} is a bounded module homomorphism which has an adjoint module homomorphism for large enough mm and the adjoint is compatible with the *-structure of TT, which gives [T][T] a CC^{*}-norm. We shall check some details in the following remark.

Remark 6.4.

Assume that [T][Pd(X),𝒜(B)][T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] has propagation RR and the representation element T(x,y)=0T(x,y)=0 for all x,yKd,mx,y\in K_{d,m} with mm satisfies that ld,m>2Rl_{d,m}>2R. The reason TT acts as a bounded module homomorphism is similar to the proof of [27, Proposition 12.2.4]. We will only show how the *-structure of TT fits with the inner product.

For given [T][Pd(X),𝒜(B)][T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] , there exists R>0R>0 such that T(z,y)=0T(z,y)=0 whenever d(y,z)>Rd(y,z)>R for x,zZdx,z\in Z_{d}. By the definition, we can comupute that

zZdaz[z],TzZdbz[z]=xX,zZd(axz)(yZd,n(T(z,y)by)x)=xX,y,zZd(azx)(txz)(T(z,y))bxy.\begin{split}\left\langle\sum_{z\in Z_{d}}a_{z}[z],T\sum_{z\in Z_{d}}b_{z}[z]\right\rangle&=\sum_{x\in X,z\in Z_{d}}(a^{x}_{z})^{*}\left(\sum_{y\in Z_{d,n}}(T(z,y)b_{y})^{x}\right)\\ &=\sum_{x\in X,y,z\in Z_{d}}(a_{z}^{x})^{*}(t_{xz})_{*}\left(T(z,y)\right)b^{x}_{y}.\end{split}

Similarly, we can also comupute that

TzZdaz[z],zZdbz[z]=xX,zZd(yZd(T(z,y)ay)x)(bzx)=xX,y,zZd((txz)(T(z,y))axy)bzx.\begin{split}\left\langle T^{*}\sum_{z\in Z_{d}}a_{z}[z],\sum_{z\in Z_{d}}b_{z}[z]\right\rangle&=\sum_{x\in X,z\in Z_{d}}\left(\sum_{y\in Z_{d}}(T^{*}(z,y)a_{y})^{x}\right)^{*}(b_{z}^{x})\\ &=\sum_{x\in X,y,z\in Z_{d}}\left((t_{xz})_{*}(T^{*}(z,y))a^{x}_{y}\right)^{*}b_{z}^{x}.\end{split}

Combining the *-structure of [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] and the fact that txy=txztzyt_{xy}=t_{xz}t_{zy} whenever zB(x,R)B(y,R)z\in B(x,R)\cap B(y,R^{\prime}) such that there exists a trivialization on B(x,R)B(x,R) and B(y,R)B(y,R^{\prime}) as in Definition 2.4, we have that

xX,y,zZd((txz)(T(z,y))axy)bzx=xX,y,zZd(ayx)(txy)(T(y,z))bzx=xX,y,zZd(azx)(txz)(T(z,y))bxy.\begin{split}\sum_{x\in X,y,z\in Z_{d}}\left((t_{xz})_{*}(T^{*}(z,y))a^{x}_{y}\right)^{*}b_{z}^{x}&=\sum_{x\in X,y,z\in Z_{d}}(a_{y}^{x})^{*}(t_{xy})_{*}(T(y,z))b_{z}^{x}\\ &=\sum_{x\in X,y,z\in Z_{d}}(a_{z}^{x})^{*}(t_{xz})_{*}\left(T(z,y)\right)b^{x}_{y}.\end{split}

Thus we have show that the representation is compatible with the the *-structure. With a similar argument, we can check that the representation is also compatible under the multiplication.

Definition 6.5.

The twisted Roe algebra at infinity C(Pd(X),𝒜(B))C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)) is defined to be the operator norm closure of [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] with respect to the norm

[T]=lim supmχUd,mT,\|[T]\|=\limsup_{m\in\mathbb{N}}\|\chi_{U_{d,m}}T\|,

where TT and χUd,m\chi_{U_{d,m}} are viewed as bounded operators on EE.

Definition 6.6.

Let L,[Pd(X),𝒜(B)]\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)] be the set of all bounded, uniformly norm-continuous functions

g:+[Pd(X),𝒜(B)]g:\mathbb{R}_{+}\to\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]

such that gg can be viewed as an equivalent class [g][g] of gg, where g(t)g(t) is a function from Zd×Zd𝒜(B)^𝒦Z_{d}\times Z_{d}\to\mathcal{A}(B)\widehat{\otimes}\mathcal{K} for each tt and satisfies the following conditions

  • (1)

    there exists a bounded function R(t):++R(t):\mathbb{R}_{+}\to\mathbb{R}_{+} with limtR(t)=0\lim\limits_{t\to\infty}R(t)=0 such that (g(t))(x,y)=0(g(t))(x,y)=0 whenever d(x,y)>R(t)d(x,y)>R(t);

  • (2)

    there exists r>0r>0 such that

    supp(g(t))BB(tx(x)(s(x)),r)\textup{supp}(g(t))\subseteq B_{B}(t_{x}(x)(s(x)),r)

    for all t+t\in\mathbb{R}_{+} and x,yZdx,y\in Z_{d}, where xKd,m+1Ud,mx\in K_{d,m+1}\cap U_{d,m} for some m>0m>0 and tx=tx,ld,m:(Bz)zB(x,ld,m)B(x,ld,m)×Bt_{x}=t_{x,l_{d,m}}:(B_{z})_{z\in B(x,l_{d,m})}\to B(x,l_{d,m})\times B is the trivialization.

We remark that [g]=[h][g]=[h] if there exists m>0m>0 such that χUm(g(t)h(t))=0\chi_{U_{m}}(g(t)-h(t))=0 for all t+t\in\mathbb{R}_{+}.

Definition 6.7.

The twisted localization algebra at infinity CL,(Pd(X),𝒜(B))C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)) is defined to be the norm completion of L,[Pd(X),𝒜(B)]\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)] with respect to the norm

g=supt+g(t).\|g\|=\sup_{t\in\mathbb{R}_{+}}\|g(t)\|.

The evaluation homomorphism at infinity

ev𝒜:CL,(Pd(X),𝒜(B))C(Pd(X),𝒜(B))ev_{\infty}^{\mathcal{A}}:C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))\to C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))

is defined by ev𝒜(g)=g(0)ev_{\infty}^{\mathcal{A}}(g)=g(0). which induces a homomorphism on KK-theory:

(ev𝒜):K(CL,(Pd(X),𝒜(B)))K(C(Pd(X),𝒜(B))).(ev_{\infty}^{\mathcal{A}})_{*}:K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)))\to K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))).

6.2 The twisted coarse Baum-Connes conjecture at infinity

In this subsection, we will prove the following theorem

Theorem 6.8.

The KK-theoretic evaluation homomorphism at infinity

(ev𝒜):K(CL,(Pd(X),𝒜(B)))K(C(Pd(X),𝒜(B)))(ev_{\infty}^{\mathcal{A}})_{*}:K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)))\to K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)))

is an isomorphism.

The strategy is similar to the proof in [4, 29] by using cutting and pasting techniques. To begin with, we will first introduce the ideals of the twisted algebras at infinity associated with open subsets of BB.

Definition 6.9.

A collection O=(Ox)xXO=(O_{x})_{x\in X} of open subsets of BB is said to be coherent if there exists r>0r>0 such that for all but finite mm\in\mathbb{N}, we have that

txy(OyB(ty(y)(s(y)),r)=OxB(tx(y)(s(y)),r),t_{xy}(O_{y}\cap B(t_{y}(y)(s(y)),r)=O_{x}\cap B(t_{x}(y)(s(y)),r), (5)

for all x,yUd,mx,y\in U_{d,m} with d(x,y)ld,md(x,y)\leq l_{d,m}.

Examples 6.10.

Fix r>0r>0. We define

Ox=zBXn(x,ln)B(tx(z)(s(z)),r)O_{x}=\bigcup_{z\in B_{X_{n}}(x,l_{n})}B(t_{x}(z)(s(z)),r)

for all xXx\in X. Then the collection

O=(Ox)xXO=(O_{x})_{x\in X}

is certainly a coherent system of open subsets.

For any two coherent collections O(1)O^{(1)} and O(2)O^{(2)} of open subsets of V0V^{0}, we say O(1)O(2)O^{(1)}\subset O^{(2)} if O(1)xO(2)xO^{(1)}_{x}\subset O^{(2)}_{x} for all xXx\in X. Denote O(1)O(2)=(O(1)xO(2)x)O^{(1)}\cup O^{(2)}=(O^{(1)}_{x}\cup O^{(2)}_{x}) and O(1)O(2)=(O(1)xO(2)x)O^{(1)}\cap O^{(2)}=(O^{(1)}_{x}\cap O^{(2)}_{x}). It is easy to check both O(1)O(2)O^{(1)}\cap O^{(2)} and O(1)O(2)O^{(1)}\cup O^{(2)} are coherent.

Definition 6.11.

Let O=(Ox)xXO=(O_{x})_{x\in X} be a coherent family of open subsets of BB. We define

[Pd(X),𝒜(B)]O\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O}

to be the *-subalgebra of [Pd(X),𝒜(B)]\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)] generated by the equivalence class of [T][T] such that

supp(T(x,y))Ox¯\textup{supp}(T(x,y))\subseteq O_{\bar{x}}

for all x,yZdx,y\in Z_{d} with xBd,x¯x\in B_{d,\bar{x}} and nn\in\mathbb{N}, where x¯\bar{x} is defined such that xx belongs to the Borel set Bd,x¯B_{d,\bar{x}} as before.

Define

L,[Pd(X),𝒜(B)]O\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)]_{O}

to be the *-subalgebra of L,[Pd(X),𝒜(B)]\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)] consisting of all functions

g:+[Pd(X),𝒜(B)]O.g:\mathbb{R}_{+}\to\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O}.

Define C(Pd(X),𝒜(B))OC^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O} and CL,(Pd(X),𝒜(B))OC^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O} to be the norm closures of [Pd(X),𝒜(B)]O\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O} and L,[Pd(X),𝒜(B)]O\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)]_{O}, respectively.

It is easy to check that C(Pd(X),𝒜(B))OC^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O} is a well-defined two-side ideal of C(Pd(X),𝒜(B))C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)) for each coherent family of open set OO. The equation (5) in Definition 6.9 guarantees that the algebraic structure can be induced from C(Pd(X),𝒜(B))C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)).

Lemma 6.12.

Let O(1)O^{(1)} and O(2)O^{(2)} be coherent families of open subsets of V0V^{0}. Then we have

  • (1)

    C(Pd(X),𝒜(B))O(1)+C(Pd(X),𝒜(B))O(2)=C(Pd(X),𝒜(B))O(1)O(2)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}}+C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(2)}}=C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}\cup O^{(2)}};

  • (2)

    C(Pd(X),𝒜(B))O(1)C(Pd(X),𝒜(B))O(2)=C(Pd(X),𝒜(B))O(1)O(2)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}}\cap C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(2)}}=C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}\cap O^{(2)}};

  • (3)

    C(Pd(X),𝒜(B))O(1)+C(Pd(X),𝒜(B))O(2)=C(Pd(X),𝒜(B))O(1)O(2)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}}+C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(2)}}=C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}\cup O^{(2)}};

  • (4)

    C(Pd(X),𝒜(B))O(1)C(Pd(X),𝒜(B))O(2)=C(Pd(X),𝒜(B))O(1)O(2)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}}\cap C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(2)}}=C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(1)}\cap O^{(2)}};

Proof.

The proof is similar to the proof of [29, Lemma 6.3]. We will only prove part (1) and the rest can be proved in a similar way. It suffices to show that for any [T][Pd(X),𝒜(B)]O(1)O(2)[T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O^{(1)}\cup O^{(2)}}, there exists [T(1)][T^{(1)}] and [T(2)][T^{(2)}] such that [T(1)]+[T(2)]=[T][T^{(1)}]+[T^{(2)}]=[T] and

[T(i)][Pd(X),𝒜(B)]O(i),i=1,2.[T^{(i)}]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O^{(i)}},\qquad i=1,2.

With no loss of generality, for each xZdx\in Z_{d}, we assume there exist bounded subsets C(1)xC^{(1)}_{x} and C(2)xC^{(2)}_{x} such that

supp(T(x,y))C(1)xC(2)xO(1)xO(2)x\textup{supp}(T(x,y))\subseteq C^{(1)}_{x}\cup C^{(2)}_{x}\subseteq O^{(1)}_{x}\cup O^{(2)}_{x}

for all yZdy\in Z_{d}. By using a partition of unity similar as [29, Lemma 6.3], there exists hx(1)C0(O(1)x)h_{x}^{(1)}\in C_{0}(O^{(1)}_{x}) and hx(2)C0(Ox(2))h_{x}^{(2)}\in C_{0}(O_{x}^{(2)}) such that

hx(1)(v)+hx(2)(v)=1h_{x}^{(1)}(v)+h_{x}^{(2)}(v)=1

for all vCx(1)Cx(2)v\in C_{x}^{(1)}\cup C_{x}^{(2)}. Define

T(1)(x,y)=hx(1)T(x,y) and T(2)(x,y)=hx(2)T(x,y).T^{(1)}(x,y)=h_{x}^{(1)}T(x,y)\quad\text{ and }\quad T^{(2)}(x,y)=h_{x}^{(2)}T(x,y).

Then we have

T(1)+T(2)=T and [T(i)][Pd(X),𝒜(B)]O(i),i=1,2.T^{(1)}+T^{(2)}=T\quad\text{ and }\quad[T^{(i)}]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O^{(i)}},\qquad i=1,2.

We complete the proof. ∎

Proposition 6.13.

Let GG be a subset of XX and O=(Ox)xXO=(O_{x})_{x\in X} be a coherent collection of open subsets of BB such that

  • (1)

    each OxO_{x} splits as a disjoint union Ox=gGB(x,ld,m)Ox,gO_{x}=\bigsqcup_{g\in G\cap B(x,l_{d,m})}O_{x,g} of open subsets;

  • (2)

    there exists r>0r>0 for each xx such that

    Ox,gB(tx(g)(s(g)),r);O_{x,g}\subseteq B(t_{x}(g)(s(g)),r);
  • (3)

    for any x,yUd,mx,y\in U_{d,m} with gB(x,ld,m)B(y,ld,m)g\in B(x,l_{d,m})\cap B(y,l_{d,m}), we have that

    txy(Oy,g)=Ox,g.t_{xy}(O_{y,g})=O_{x,g}.

Then the KK-theortic homomorphism

ev:limdK(CL,(Pd(X),𝒜(B))O)limdK(C(Pd(X),𝒜(B))O)ev_{*}:\lim_{d\to\infty}K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O})\to\lim_{d\to\infty}K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O})

induced by the evaluation-at-zero map is an isomorphism.

Such a coherent collection in Proposition 6.13 is also called (G,r)(G,r)-separated. We still need some preparations before we prove it. For each gGg\in G, define YgY_{g} to be a bounded subset of Pd(X)P_{d}(X). Then the collection Y=(Yg)gGY=(Y_{g})_{g\in G} forms a sequence of bounded subspaces of XX. Assume that YY satisfies

  • (1)

    gYgg\in Y_{g} for all gYgg\in Y_{g};

  • (2)

    YgY_{g} is uniformly bounded, i.e. there exists R>0R>0 such that diam(Yg)R\textup{diam}(Y_{g})\leq R for all gGg\in G.

For example, we can take Yg={g}Y_{g}=\{g\} for each gGg\in G or Yg=B(g,R)Y_{g}=B(g,R) for some given R>0R>0 and all gGg\in G. For the notational convenience, we denote GR=(B(g,R))gGG_{R}=(B(g,R))_{g\in G} when Yg=B(g,R)Y_{g}=B(g,R). Specially, G0=({g})gGG_{0}=(\{g\})_{g\in G}.

We denote 𝒜(Og,g)\mathcal{A}(O_{g,g}) to be the subalgebra of 𝒜(B)\mathcal{A}(B) with all functions whose supports are in Og,gO_{g,g}. With the notation above, we introduce the following algebra:

Definition 6.14.

Define 𝔸[Y]\mathbb{A}_{\infty}[Y] to be the subalgebra of

gGC(Yg)𝒜(Og,g)gGC(Yg)𝒜(Og,g)\frac{\prod_{g\in G}C^{*}(Y_{g})\otimes\mathcal{A}(O_{g,g})}{\bigoplus_{g\in G}C^{*}(Y_{g})\otimes\mathcal{A}(O_{g,g})} (6)

generated by all equivalence class [(Tg)gG][(T_{g})_{g\in G}] of tuples (Tg)gG(T_{g})_{g\in G} described as follows:

  • (1)

    TgT_{g} is a bounded function from (Zd×Zd)(Yg×Yg)(Z_{d}\times Z_{d})\cap(Y_{g}\times Y_{g}) to 𝒜(B)^𝒦\mathcal{A}(B)\widehat{\otimes}\mathcal{K} for all gGg\in G such that

    supgGsupx,yZdTg(x,y)<;\sup_{g\in G}\sup_{x,y\in Z_{d}}\|T_{g}(x,y)\|<\infty;
  • (2)

    for any bounded subset BYgZdB\subset Y_{g}\cap Z_{d}, we have

    #{(x,y)B×BT(x,y)0}<;\#\{(x,y)\in B\times B\mid T(x,y)\neq 0\}<\infty;
  • (3)

    there exists L>0L>0 such that

    #{yZdTg(x,y)0}L,#{yZdTg(y,x)0}L\#\{y\in Z_{d}\mid T_{g}(x,y)\neq 0\}\leq L,\quad\#\{y\in Z_{d}\mid T_{g}(y,x)\neq 0\}\leq L

    for all xYgZdx\in Y_{g}\cap Z_{d} and gGg\in G;

  • (4)

    there exists R0R\geq 0 such that Tg(x,y)=0T_{g}(x,y)=0 whenever d(x,y)>Rd(x,y)>R for all gGg\in G, the least such RR is called the propagation of the representative element TT, denoted by Prop(T)\textup{Prop}(T);

  • (5)

    there exists r>0r>0 such that for all x,yYgZdx,y\in Y_{g}\cap Z_{d} and gGg\in G, then

    supp(Tg(x,y))Og,g\textup{supp}(T_{g}(x,y))\subseteq O_{g,g}

    for all nn\in\mathbb{N}.

The algebraic structure of 𝔸[Y]\mathbb{A}_{\infty}[Y] is defined by viewing 𝔸[Y]\mathbb{A}_{\infty}[Y] as the subalgebra of the CC^{*}-algebra in equation (6) and A(Y)A^{*}_{\infty}(Y) is defined to be the norm closure of 𝔸[Y]\mathbb{A}_{\infty}[Y] with the induced norm.

Definition 6.15.

Define 𝔸L,[Y]\mathbb{A}_{L,\infty}[Y] to be the *-algebra of all bounded, uniformly norm-continuous functions

f:+𝔸[Y]f:\mathbb{R}_{+}\to\mathbb{A}_{\infty}[Y]

such that f=(fg)f=(f_{g}) satisfies the conditions in Definition 6.6 with uniform constants.

Define AL,(Y)A^{*}_{L,\infty}(Y) to be the completion of 𝔸L,[Y]\mathbb{A}_{L,\infty}[Y] with respect to the norm

f=supt+f(t).\|f\|=\sup_{t\in\mathbb{R}_{+}}\|f(t)\|.

Let evAev_{A} be the evaluation map

evA:AL,(Y)A(Y)ev_{A}:A^{*}_{L,\infty}(Y)\to A^{*}_{\infty}(Y)

defined by evA(g)=g(0)ev_{A}(g)=g(0).

Proposition 6.16.

Suppose that O=(Ox)O=(O_{x}) is a coherent collection of open subsets of BB which is (G,r)(G,r)-separated for some GG. We denote GR=(B(g,R))gGG_{R}=(B(g,R))_{g\in G} to be the family of subsets of Pd(X)P_{d}(X). Then we have

  • (1)

    C(Pd(X),𝒜(B))OlimRA(GR)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O}\cong\lim_{R\to\infty}A^{*}_{\infty}(G_{R});

  • (2)

    CL,(Pd(X),𝒜(B))OlimRAL,(GR)C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O}\cong\lim_{R\to\infty}A^{*}_{L,\infty}(G_{R}).

Proof.

Take an arbitary element

[T][Pd(X),𝒜(B)]O.[T]\in\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]_{O}.

By definition, we have that

supp(T(x,y))Ox=gB(x,ld,m)GOx,g,\textup{supp}(T(x,y))\subset O_{x}=\bigsqcup_{g\in B(x,l_{d,m})\cap G}O_{x,g},

where xKd,m+1Ud,mx\in K_{d,m+1}\cap U_{d,m}. Since the coherent open susbet is (G,r)(G,r)-separate. Then we have a direct sum decomposition

T(x,y)=GB(x,ld,m)Tg(x,y),T(x,y)=\bigoplus_{G\cap B(x,l_{d,m})}T_{g}(x,y),

where

Tg(x,y)=T(x,y)|Ox,gT_{g}(x,y)=T(x,y)|_{O_{x,g}}

is the restriction of T(x,y)T(x,y) on Ox,gO_{x,g} for all x,yZdx,y\in Z_{d} and gGg\in G. By property (4) in Definition 6.2, there exists r1>0r_{1}>0 such that

supp(T(x,y))B(tx(x)(s(x)),r1).\textup{supp}(T(x,y))\subseteq B(t_{x}(x)(s(x)),r_{1}).

Conbining with the fact that

Ox,gB(tx(g)(s(g)),r),O_{x,g}\subseteq B(t_{x}(g)(s(g)),r),

we have that Tg(x,y)=0T_{g}(x,y)=0 for all xx with d(tx(x)(s(x)),tx(g)(s(g)))>r1+rd(t_{x}(x)(s(x)),t_{x}(g)(s(g)))>r_{1}+r. It follows that there exists R>0R>0 such that Tg(x,y)=0T_{g}(x,y)=0 for all d(x,g)>Rd(x,g)>R.

We define

Sg(x,y)=(tgx)(Tg(x,y))S_{g}(x,y)=(t_{gx})_{*}(T_{g}(x,y))

for all but finite gGg\in G and 0 otherwise. Notice that TT has finite propagation and OO is (G,r)(G,r)-separated, then SgS_{g} is well defined for all gGUd,mg\in G\cap U_{d,m} with mm large enough. Then we have that SgS_{g} defines an element in C(B(g,R))𝒜(Og,g)C^{*}(B(g,R))\otimes\mathcal{A}(O_{g,g}).

Now, notice that the tuples (Sg)gG(S_{g})_{g\in G} forms an element of 𝔸[GR]\mathbb{A}_{\infty}[G_{R}]. Then the correspondence [T][(Sg)][T]\mapsto[(S_{g})] extends to a *-isomorphism by the fact that the norms in these two CC^{*}-algebras agrees. One can see the proof of [23, Lemma 3.9] for essentially the same arguments which can be used to show the norms in these two algebras agree. ∎

Now let us recall the notion of strong Lipschitz homotopy introduced by G. Yu in [28, 29]. Let (Yg)gG(Y_{g})_{g\in G} and (Wg)gG(W_{g})_{g\in G} be be two families of uniformly bounded closed subspaces of Pd(X)P_{d}(X) satisfying the condition in Definition 6.14. A map

f:gGYggGWgf:\bigsqcup_{g\in G}Y_{g}\to\bigsqcup_{g\in G}W_{g}

is said to be Lipschitz if

  • (1)

    f(Yg)Wgf(Y_{g})\subset W_{g} for all gGg\in G;

  • (2)

    there exists a constant c>0c>0 such that

    d(f(x),f(y))cd(x,y)d(f(x),f(y))\leq c\cdot d(x,y)

    for all x,yYgx,y\in Y_{g} and gGg\in G.

Definition 6.17 ([28]).

Let ff and hh be two Lipschitz maps from gGYg\bigsqcup_{g\in G}Y_{g} to gGWg\bigsqcup_{g\in G}W_{g}. A continuous homotopy F(x,t)(t[0,1])F(x,t)(t\in[0,1]) between ff and hh is said to be strongly Lipschitz if

  • (1)

    d(F(x,t),F(y,t))Cd(x,y)d(F(x,t),F(y,t))\leq Cd(x,y) for all x,yYgx,y\in Y_{g}, gGg\in G and t[0,1]t\in[0,1], where CC is a constant (called the Lipschitz constant of FF);

  • (2)

    FF is equi-continuous in tt, i.e., for any ε>0\varepsilon>0, there exists δ>0\delta>0 such that d(F(x,t1),F(x,t2))εd(F(x,t_{1}),F(x,t_{2}))\leq\varepsilon for all xgGYgx\in\bigsqcup_{g\in G}Y_{g} if |t1t2|<δ|t_{1}-t_{2}|<\delta;

  • (3)

    F(x,0)=f(x),F(x,1)=h(x)F(x,0)=f(x),F(x,1)=h(x) for all xgGYgx\in\bigsqcup_{g\in G}Y_{g}.

We say (Yg)gG(Y_{g})_{g\in G} is strongly Lipschitz homotopy equivalent to (Wg)gG(W_{g})_{g\in G} if there exists Lipschitz maps

f:gGYggGWgf:\bigsqcup_{g\in G}Y_{g}\to\bigsqcup_{g\in G}W_{g}

and

h:gGWggGYgh:\bigsqcup_{g\in G}W_{g}\to\bigsqcup_{g\in G}Y_{g}

such that fhf\circ h and hfh\circ f are strongly Lipschitz homotopy equivalent to the identity maps, respectively.

The proof of the following result is similar to [29, Lemma 6.4], one can check it with a Eilenberg swindle argument as in [29].

Lemma 6.18 ([29]).

Let AL,0,(Y)A^{*}_{L,0,\infty}(Y) be the CC^{*}-subalgebra of AL,(Y)A^{*}_{L,\infty}(Y) consisting of those functions ff such that f(0)=0f(0)=0. We have the following results:

  • (1)

    If Y=(Yg)gGY=(Y_{g})_{g\in G} is strongly Lipschitz homotopy equivalent to W=(Wg)gGW=(W_{g})_{g\in G}, then

    K(AL,0,(Y))K(AL,0,(W)).K_{*}(A^{*}_{L,0,\infty}(Y))\cong K_{*}(A^{*}_{L,0,\infty}(W)).
  • (2)

    If GR=(B(g,R))gGG_{R}=(B(g,R))_{g\in G}, then

    K(AL,0,(GR))=0.K_{*}(A^{*}_{L,0,\infty}(G_{R}))=0.

As a corollary, the evaluation map induces an isomorphism on the level of KK-theory, i.e.

(evA):K(AL,(GR))K(A(GR))(ev_{A})_{*}:K_{*}(A^{*}_{L,\infty}(G_{R}))\to K_{*}(A^{*}_{\infty}(G_{R}))

is an isomorphism.∎

Proof of Proposition 6.13.

By Proposition 6.16, we have the following commuting diagram:

limdK(CL,(Pd(X),𝒜(B))O)\textstyle{\lim\limits_{d\to\infty}K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(ev𝒜)\scriptstyle{(ev^{\mathcal{A}}_{\infty})_{*}}\scriptstyle{\cong}limdK(C(Pd(X),𝒜(B))O)\textstyle{\lim\limits_{d\to\infty}K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}limdlimRK(AL,(GR))\textstyle{\lim\limits_{d\to\infty}\lim\limits_{R\to\infty}K_{*}(A^{*}_{L,\infty}(G_{R}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}(evA)\scriptstyle{(ev_{A})_{*}}limdlimRK(A(GR))\textstyle{\lim\limits_{d\to\infty}\lim\limits_{R\to\infty}K_{*}(A^{*}_{\infty}(G_{R}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}limRlimdK(AL,(GR))\textstyle{\lim\limits_{R\to\infty}\lim\limits_{d\to\infty}K_{*}(A^{*}_{L,\infty}(G_{R}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(evA)\scriptstyle{(ev_{A})_{*}}limRlimdK(A(GR)).\textstyle{\lim\limits_{R\to\infty}\lim\limits_{d\to\infty}K_{*}(A^{*}_{\infty}(G_{R})).}

in which all vertical maps are isomorphisms. By Lemma 6.18, we have that the bottom horizontal map (evA)(ev_{A})_{*} is an isomorphism. Thus, (ev𝒜)(ev_{\infty}^{\mathcal{A}})_{*} is also an isomorphism. ∎

Finally, we are able to prove Theorem 6.8.

Proof of Theorem 6.8.

For any r>0r>0, we define Ox(r)O_{x}^{(r)} by

Ox(r)=yB(x,ld,m)B(tx(y)(s(y)),r)O_{x}^{(r)}=\bigcup_{y\in B(x,l_{d,m})}B(t_{x}(y)(s(y)),r)

for any xKd,m+1Ud,mx\in K_{d,m+1}\cap U_{d,m}. Then it is easy to check that O(r)=(Ox(r))xXO^{(r)}=(O_{x}^{(r)})_{x\in X} is a coherent collection of open subsets.

For any d0d\geq 0, by the definition of the twisted algebras, we have that

C(Pd(X),𝒜(B))=limrC(Pd(X),𝒜(B))O(r),C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))=\lim_{r\to\infty}C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}},
CL,(Pd(X),𝒜(B))=limrCL,(Pd(X),𝒜(B))O(r).C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))=\lim_{r\to\infty}C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}}.

Notice that the limits of C(Pd(X),𝒜(B))O(r)C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}} with limits order limdlimr\lim_{d\to\infty}\lim_{r\to\infty} and limdlimr\lim_{d\to\infty}\lim_{r\to\infty} are actually the same. Consequently, it suffices to prove that the KK-theortic homomorphism

ev:limdK(CL,(Pd(X),𝒜(B))O(r))limdK(C(Pd(X),𝒜(B))O(r))ev_{*}:\lim_{d\to\infty}K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}})\to\lim_{d\to\infty}K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}})

induced by the evaluation-at-zero map is an isomorphism for each r>0r>0.

For any given r>0r>0, as XX has bounded geometry, there exists Nr>0N_{r}>0 such that

X=k=1NrXkX=\bigsqcup_{k=1}^{N_{r}}X_{k}

satisfying that for any zZdUd,mz\in Z_{d}\cap U_{d,m} and x,yXkB(z,ld,m)x,y\in X_{k}\cap B(z,l_{d,m}), we have

tz(x)(s(x))tz(y)(s(y))>2r.\|t_{z}(x)(s(x))-t_{z}(y)(s(y))\|>2r.

We shall define

O(r)x,k=yXkB(x,ld,m)B(tx(y)(s(y)),r)O^{(r)}_{x,k}=\bigcup_{y\in X_{k}\cap B(x,l_{d,m})}B(t_{x}(y)(s(y)),r)

for all xXx\in X and k{1,,Nr}k\in\{1,\cdots,N_{r}\}. Then O(r)k=(O(r)x,k)xXO^{(r)}_{k}=(O^{(r)}_{x,k})_{x\in X} is a coherent collection which satisfies the condition in Proposition 6.13. Thus we have that

ev:limdK(CL,(Pd(X),𝒜(B))O(r)k)limdK(C(Pd(X),𝒜(B))O(r)k)ev_{*}:\lim_{d\to\infty}K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}_{k}})\to\lim_{d\to\infty}K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))_{O^{(r)}_{k}})

for all k{1,,Nr}k\in\{1,\cdots,N_{r}\}. Then it follows from a Mayer-Vietories argument by using Lemma 6.12 to complete the proof. ∎

7 The geometric Bott map and proof of the main theorem

In this section, we shall define the Bott map β\beta from the KK-theory group of the Roe algebra to KK-theory group of the twisted Roe algebra and its localization algebraic version βL\beta_{L}. The construction relies heavily on the Bott periodicity theorem we introduced in Section 5.

For each t1t\geq 1 and g𝒮g\in\mathcal{S}, denote gt𝒮g_{t}\in\mathcal{S} to be the function

gt(r)=g(t1r).g_{t}(r)=g(t^{-1}r).

For any xXx\in X, we define the Bott map β(x):𝒮𝒜(B)\beta(x):\mathcal{S}\to\mathcal{A}(B) to be

(β(x))(g)=βtx(x)(s(x))(g),(\beta(x))(g)=\beta_{t_{x}(x)(s(x))}(g),

where txt_{x} is the trivilazition on B(x,ld,m)B(x,l_{d,m}) defined as in Definition 2.4, tx(x)(s(x))Bt_{x}(x)(s(x))\in B and βtx(x)(s(x))\beta_{t_{x}(x)(s(x))} is the Bott map defined as in Section 5.

Definition 7.1.

For each d0d\geq 0 and t[1,)t\in[1,\infty), define a map

βt:𝒮^[Pd(X)][Pd(X),𝒜(B)]\beta_{t}:\mathcal{S}\widehat{\otimes}\mathbb{C}_{\infty}[P_{d}(X)]\to\mathbb{C}_{\infty}[P_{d}(X),\mathcal{A}(B)]

for each g𝒮g\in\mathcal{S}, [T][Pd(X)][T]\in\mathbb{C}_{\infty}[P_{d}(X)] by the formula

βt(g^[T])=[βt(g^T)],\beta_{t}(g\widehat{\otimes}[T])=[\beta_{t}(g\widehat{\otimes}T)],

where

(βt(g^T))(x,y)=(β(x))(gt)^T(x,y).(\beta_{t}(g\widehat{\otimes}T))(x,y)=(\beta(x))(g_{t})\widehat{\otimes}T(x,y).
Definition 7.2.

For each d0d\geq 0 and t[1,)t\in[1,\infty), define a map

(βL)t:𝒮^L,[Pd(X)]L,[Pd(X),𝒜(B)](\beta_{L})_{t}:\mathcal{S}\widehat{\otimes}\mathbb{C}_{L,\infty}[P_{d}(X)]\to\mathbb{C}_{L,\infty}[P_{d}(X),\mathcal{A}(B)]

for each g𝒮g\in\mathcal{S}, fL,[Pd(X)]f\in\mathbb{C}_{L,\infty}[P_{d}(X)] by the formula

((βL)t(g^f))(r)=βt(g^f(r)),((\beta_{L})_{t}(g\widehat{\otimes}f))(r)=\beta_{t}(g\widehat{\otimes}f(r)),

for each r+r\in\mathbb{R}_{+}.

The following lemma is proved similarly with [29, Proposition 7.6] and [4, Lemma 7.3]

Lemma 7.3.

For each d0d\geq 0, the maps βt\beta_{t} and (βL)t(\beta_{L})_{t} extend respectively to asymptotic morphisms

β:𝒮^𝒞(Pd(X))C(Pd(X),A(B))\beta:\mathcal{S}\widehat{\otimes}\mathcal{C}^{*}_{\infty}(P_{d}(X))\leadsto C^{*}_{\infty}(P_{d}(X),A(B))
βL:𝒮^𝒞L,(Pd(X))CL,(Pd(X),A(B)).\beta_{L}:\mathcal{S}\widehat{\otimes}\mathcal{C}^{*}_{L,\infty}(P_{d}(X))\leadsto C^{*}_{L,\infty}(P_{d}(X),A(B)).
Proof.

We will only prove it for β\beta and the case for βL\beta_{L} follows similarly.

First of all, we claim that

[βt(gh^ST)][βt(g^S)][βt(h^T)]0\left\|[\beta_{t}(gh\widehat{\otimes}ST)]-[\beta_{t}(g\widehat{\otimes}S)][\beta_{t}(h\widehat{\otimes}T)]\right\|\to 0

for any [S],[T][Pd(X)][S],[T]\in\mathbb{C}_{\infty}[P_{d}(X)]. By definition, we can calculate that the (x,y)(x,y)-th entry of the above matrix coefficients of βt(gh^ST)\beta_{t}(gh\widehat{\otimes}ST) and βt(g^S)βt(h^T)\beta_{t}(g\widehat{\otimes}S)\beta_{t}(h\widehat{\otimes}T) are

zZdβ(x)(gtht)^S(x,z)T(z,y)\sum_{z\in Z_{d}}\beta(x)(g_{t}h_{t})\widehat{\otimes}S(x,z)T(z,y)

and

zZdβ(x)(gt)(txy)(β(y)(ht))^S(x,z)T(z,y),\sum_{z\in Z_{d}}\beta(x)(g_{t})(t_{xy})_{*}(\beta(y)(h_{t}))\widehat{\otimes}S(x,z)T(z,y),

respectively. By using [9, Lemma 3.4], it suffices to prove for any ε>0\varepsilon>0 and h𝒮h\in\mathcal{S}, there exists T>0T>0 such that

β(x)(ht)(txy)(β(y)(ht))<ε\|\beta(x)(h_{t})-(t_{xy})_{*}(\beta(y)(h_{t}))\|<\varepsilon

for all tTt\geq T. To simplify the notation, we denote vx=tx(x)(s(x))v_{x}=t_{x}(x)(s(x)) and vy=tx(y)(s(y))v_{y}=t_{x}(y)(s(y)). Write RR the propagation of [ST][ST]. Assmue that d(x,y)Rd(x,y)\leq R and d(x,x0)d(x,x_{0}) is large enough such that ty(y)(s(y))=txy(vy)t_{y}(y)(s(y))=t_{xy}(v_{y}), where x0x_{0} is the base point we choose. Combining Definition 6.1, we have that

β(x)(ht)(txy)β(y)(ht)=sup(v,r)B×+ht(Cvx(v,r))ht(Cvy(v,r))=sup(v,r)B×+h(t1ϕ(vvx),t1r)h(t1ϕ(vvy),t1r)=sup(v,r)B×+h(ϕ(t2/p(vvx)),t1r)h(ϕ(t2/p(vvy)),t1r)=βt2/pvx(h)βt2/pvy(h)\begin{split}\|\beta(x)(h_{t})-(t_{xy})_{*}\beta(y)(h_{t})\|&=\sup_{(v,r)\in B\times\mathbb{R}_{+}}\|h_{t}(C_{v_{x}}(v,r))-h_{t}(C_{v_{y}}(v,r))\|\\ &=\sup_{(v,r)\in B\times\mathbb{R}_{+}}\left\|h\left(t^{-1}\phi(v-v_{x}),t^{-1}r\right)-h\left(t^{-1}\phi(v-v_{y}),t^{-1}r\right)\right\|\\ &=\sup_{(v,r)\in B\times\mathbb{R}_{+}}\left\|h\left(\phi(t^{-2/p}(v-v_{x})),t^{-1}r\right)-h\left(\phi(t^{-2/p}(v-v_{y})),t^{-1}r\right)\right\|\\ &=\|\beta_{t^{-2/p}v_{x}}(h)-\beta_{t^{-2/p}v_{y}}(h)\|\end{split}

Notice that vxvyρ+(d(x,y))ρ+(R)\|v_{x}-v_{y}\|\leq\rho_{+}(d(x,y))\leq\rho_{+}(R), where ρ+\rho_{+} is the controlled function defined as in Definition 2.4. By using the fact limtt2/p=0\lim\limits_{t\to\infty}t^{-2/p}=0 and Lemma 3.8, we complete the proof of the claim.

The rest part of the proof is similar with [29, Lemma 7.6]. One can similarly prove that

βt(g^[T])g[T].\beta_{t}(g\widehat{\otimes}[T])\leq\|g\|\cdot\|[T]\|.

for all g𝒮g\in\mathcal{S} and [T][Pd(X)][T]\in\mathbb{C}_{\infty}[P_{d}(X)]. Hence βt\beta_{t} extends to an well-defined asymptotic morphism from 𝒮^maxC(Pd(X))\mathcal{S}\widehat{\otimes}_{max}C^{*}_{\infty}(P_{d}(X)) to C(Pd(X),𝒜(B))C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)). Since 𝒮\mathcal{S} is nuclear, we complete the proof. ∎

Note that the asymptotic morphisms

βt:𝒮^C(Pd(X))C(Pd(X),𝒜(B))\beta_{t}:\mathcal{S}\widehat{\otimes}C^{*}_{\infty}(P_{d}(X))\leadsto C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))
(βL)t:𝒮^CL,(Pd(X))CL,(Pd(X),𝒜(B))(\beta_{L})_{t}:\mathcal{S}\widehat{\otimes}C^{*}_{L,\infty}(P_{d}(X))\leadsto C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))

induce homomorphisms on KK-theory

β:K(𝒮^C(Pd(X)))K(C(Pd(X),𝒜(B)))\beta_{*}:K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{\infty}(P_{d}(X)))\leadsto K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B)))
(βL):K(𝒮^CL,(Pd(X)))K(CL,(Pd(X),𝒜(B))).(\beta_{L})_{*}:K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{L,\infty}(P_{d}(X)))\leadsto K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))).
Theorem 7.4.

For any d>0d>0, the Bott map

(βL):K(𝒮^CL,(Pd(X)))K(CL,(Pd(X),𝒜(B))).(\beta_{L})_{*}:K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{L,\infty}(P_{d}(X)))\leadsto K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B))).

is an isomorphism.

Proof.

The KK-theory of the localization algebra is invariant under the strong Lipschtiz homotopy equivalence (see [28, 29]). By a Mayer-Vietoris sequence argument and induction on the dimension of the skeletons [13, 28], the general case can be reduced to the zero-dimensional case, i.e., if Δ(0)Pd(X)\Delta^{(0)}\subseteq P_{d}(X) is the 0-skeleton of Pd(X)P_{d}(X), then

(βL):K(𝒮^CL,(Δ(0)))K(CL,(Δ(0),𝒜(B)))(\beta_{L})_{*}:K_{*}\left(\mathcal{S}\widehat{\otimes}C^{*}_{L,\infty}\left(\Delta^{(0)}\right)\right)\to K_{*}\left(C^{*}_{L,\infty}\left(\Delta^{(0)},\mathcal{A}(B)\right)\right)

is an isomorphism.

Notice that

K(𝒮^CL,(Δ(0)))=γΔ(0)K(𝒮^CL({γ}))γΔ(0)K(𝒮^CL({γ}))K_{*}\left(\mathcal{S}\widehat{\otimes}C^{*}_{L,\infty}\left(\Delta^{(0)}\right)\right)=\frac{\prod_{\gamma\in\Delta^{(0)}}K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{L}(\{\gamma\}))}{\bigoplus_{\gamma\in\Delta^{(0)}}K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{L}(\{\gamma\}))}
K(CL,(Δ(0),𝒜(B)))=γΔ(0)K(CL({γ},𝒜(B)))γΔ(0)K(CL({γ},𝒜(B))).K_{*}\left(C^{*}_{L,\infty}\left(\Delta^{(0)},\mathcal{A}(B)\right)\right)=\frac{\prod_{\gamma\in\Delta^{(0)}}K_{*}(C^{*}_{L}(\{\gamma\},\mathcal{A}(B)))}{\bigoplus_{\gamma\in\Delta^{(0)}}K_{*}(C^{*}_{L}(\{\gamma\},\mathcal{A}(B)))}.

Moreover, one can see that K(𝒮^CL({γ}))K(𝒮^𝒦)K_{*}(\mathcal{S}\widehat{\otimes}C^{*}_{L}(\{\gamma\}))\cong K_{*}(\mathcal{S}\widehat{\otimes}\mathcal{K}) and K(CL({γ},𝒜(B)))K(𝒦^𝒜(B))K_{*}(C^{*}_{L}(\{\gamma\},\mathcal{A}(B)))\cong K_{*}(\mathcal{K}\widehat{\otimes}\mathcal{A}(B)) and the Bott map (βL)(\beta_{L})_{*} coincides with βtγ(γ)(s(γ))\beta_{t_{\gamma}(\gamma)(s(\gamma))} when (βL)(\beta_{L})_{*} restricts on K({γ})K(𝒮)K_{*}(\{\gamma\})\cong K_{*}(\mathcal{S}) to K(CL({γ},𝒜(B)))K(𝒜(B))K_{*}(C^{*}_{L}(\{\gamma\},\mathcal{A}(B)))\cong K_{*}(\mathcal{A}(B)). Then the theorem follows from Theorem 3.15 directly. ∎

Then we can finally prove the main result:

Proof of Theorem 2.5.

We have the following commuting diagram:

K(CL,(Pd(X)))\textstyle{K_{*}(C^{*}_{L,\infty}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(βL)\scriptstyle{(\beta_{L})_{*}\qquad}(ev)\scriptstyle{(ev_{\infty})_{*}}K(CL,(Pd(X),𝒜(B)))\textstyle{K_{*}(C^{*}_{L,\infty}(P_{d}(X),\mathcal{A}(B)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(ev𝒜)\scriptstyle{(ev^{\mathcal{A}}_{\infty})_{*}}K(C(Pd(X)))\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta_{*}\qquad}K(C(Pd(X),𝒜(B))).\textstyle{K_{*}(C^{*}_{\infty}(P_{d}(X),\mathcal{A}(B))).}

By Theorem 6.8 and Theorem 7.4, we show that ev𝒜ev_{\infty}^{\mathcal{A}} is an isomorphism and (βL)(\beta_{L})_{*} is injective. It forces evev_{\infty} to be an injection. Combining Theorem 5.7, we conclude that the coarse assembly map

μ:limdK(Pd(X))K(C(X))\mu:\lim_{d\to\infty}K_{*}(P_{d}(X))\to K_{*}(C^{*}(X))

is injective. ∎

References

  • [1] P. C. Baayen and J. de Groot. Linearization of locally compact transformation groups in Hilbert space. Math. Systems Theory, 2:363–379, 1968.
  • [2] P. Baum, A. Connes, and N. Higson. Classifying space for proper GG-actions and KK-theory of group CC^{*}-algebras. Contemp. Math., 167(167):241–291, 1994.
  • [3] X. Chen, Q. Wang, and X. Wang. Characterization of the Haagerup property by fibred coarse embedding into Hilbert space. Bull. Lond. Math. Soc., 45(5):1091–1099, 2013.
  • [4] X. Chen, Q. Wang, and G. Yu. The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math., 249:88–130, 2013.
  • [5] X. Chen, Q. Wang, and G. Yu. The coarse Novikov conjecture and Banach spaces with Property (H). J. Funct. Anal., 268(9):2754–2786, 2015.
  • [6] Q. Cheng. Sphere equivalence, property H, and Banach expanders. Studia Math., 233(1):67–83, 2016.
  • [7] J. Deng, L. Guo, Q. Wang, and Y. Zhang. Coarse embeddings at infinity and generalized expanders at infinity. arXiv e-prints, arXiv:2206.11151, June 2022.
  • [8] M. Finn-Sell. Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture. J. Funct. Anal., 267(10):3758–3782, 2014.
  • [9] G. Gong, Q. Wang, and G. Yu. Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math., 621:159–189, 2008.
  • [10] S. Gong, J. Wu, and G. Yu. The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces. Geom. Funct. Anal., 31(2):206–267, 2021.
  • [11] N. Higson, G. Kasparov, and J. Trout. A Bott periodicity theorem for infinite-dimensional Euclidean space. Adv. Math., 135(1):1–40, 1998.
  • [12] N. Higson and J. Roe. On the coarse Baum-Connes conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 227 of London Math. Soc. Lecture Note Ser., pages 227–254. Cambridge Univ. Press, Cambridge, 1995.
  • [13] N. Higson, J. Roe, and G. Yu. A coarse Mayer-Vietoris principle. Math. Proc. Cambridge Philos. Soc., 114(1):85–97, 1993.
  • [14] G. Kasparov and G. Yu. The Novikov conjecture and geometry of Banach spaces. Geom. Topol., 16(3):1859–1880, 2012.
  • [15] E. Odell and T. Schlumprecht. The distortion problem. Acta Math., 173(2):259–281, 1994.
  • [16] H. Oyono-Oyono and G. Yu. KK-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal., 257(10):3239–3292, 2009.
  • [17] Y. Qiao and J. Roe. On the localization algebra of Guoliang Yu. Forum Math., 22(4):657–665, 2010.
  • [18] J. Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc., 104(497):1–90, 1993.
  • [19] J. Roe. Index theory, coarse geometry, and topology of manifolds. Regional conference series in mathematics 90. American Mathematical Society, 1996.
  • [20] J. Roe. Warped cones and property A. Geom. Topol., 9:163–178, 2005.
  • [21] D. Sawicki. Warped cones over profinite completions. J. Topol. Anal., 10(3):563–584, 2018.
  • [22] D. Sawicki and J. Wu. Straightening warped cones. J. Topol. Anal., 13(4):933–957, 2021.
  • [23] J. Špakula and R. Willett. Maximal and reduced Roe algebras of coarsely embeddable spaces. J. Reine Angew. Math., 678:35–68, 2013.
  • [24] Q. Wang and Z. Wang. Warped cones and proper affine isometric actions of discrete groups on Banach spaces. arXiv e-prints, arXiv:1705.08090, 2017.
  • [25] R. Willett and G. Yu. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math., 229(3):1380–1416, 2012.
  • [26] R. Willett and G. Yu. Higher index theory for certain expanders and Gromov monster groups, II. Adv. Math., 229(3):1762–1803, 2012.
  • [27] R. Willett and G. Yu. Higher index theory. Cambridge University Press, 2020.
  • [28] G. Yu. Localization algebras and the coarse Baum-Connes conjecture. KK-Theory, 11(4):307–318, 1997.
  • [29] G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201–240, 2000.
  • [30] G. Yu. Hyperbolic groups admit proper affine isometric actions on lpl^{p}-spaces. Geom. Funct. Anal., 15(5):1144–1151, 2005.
  • [31] G. Yu. Higher index theory of elliptic operators and geometry of groups. In International Congress of Mathematicians. Vol. II, pages 1623–1639. Eur. Math. Soc., Zürich, 2006.

  • Liang Guo
    Research Center for Operator Algebras, School of Mathematical Sciences, East China Normal University, Shanghai, 200241, P. R. China. E-mail: [email protected]

  • Zheng Luo
    Research Center for Operator Algebras, School of Mathematical Sciences, East China Normal University, Shanghai, 200241, P. R. China. E-mail: E-mail: [email protected]

  • Qin Wang
    Research Center for Operator Algebras, and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, School of Mathematical Sciences, East China Normal University, Shanghai, 200241, P. R. China.  E-mail: [email protected]

  • Yazhou Zhang
    Research Center for Operator Algebras, School of Mathematical Sciences, East China Normal University, Shanghai, 200241, P. R. China. E-mail: [email protected]