This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

a and generators

José Alfredo de León

One can express τ(𝒢α)\vec{\tau}(\mathcal{G}_{\vec{\alpha}}), the vector τ\vec{\tau} of a PCE generator 𝒢α\mathcal{G}_{\vec{\alpha}}, in terms of a(αjk)a(\alpha_{j_{k}}), the rows or columns of matrix

a=(1111111111111111).\displaystyle a=\left(\begin{array}[]{cccc}1&1&1&1\\ 1&1&-1&-1\\ 1&-1&1&-1\\ 1&-1&-1&1\\ \end{array}\right). (5)

The aforementioned expression is

τ(𝒢α)=a(αj1)a(αjN)+𝟙4N2,\displaystyle\vec{\tau}(\mathcal{G}_{\vec{\alpha}})=\frac{a(\alpha_{j_{1}})\otimes\ldots\otimes a(\alpha_{j_{N}})+\mathbb{1}_{4^{N}}}{2}, (6)

where 𝟙4N\mathbb{1}_{4^{N}} is a 4N4^{N}-length vector with all its components equal to 1.

Note that the rows or columns a(αjk)a(\alpha_{j_{k}}) of matrix aa are eigenvectors of the reflection matrix

R=(0001001001001000)\displaystyle R=\left(\begin{array}[]{cccc}0&0&0&1\\ 0&0&1&0\\ 0&1&0&0\\ 1&0&0&0\\ \end{array}\right) (11)

with eigenvalues r0,1,2,3=1,1,1,1r_{0,1,2,3}=1,-1,-1,1. In other words, we can identify the ‘symmetric’ (‘anti-symmetric’) eigenvectors as those with eigenvalues 1 (-1).

JA Note: probar que (2) si es la tau de un generador We shall start proving that τ(𝒢α)\vec{\tau}(\mathcal{G}_{\vec{\alpha}}) has 4N14^{N-1} components equal to 1 and the rest 0.

The vector a(αj1)a(αjN)a(\alpha_{j_{1}})\otimes\ldots\otimes a(\alpha_{j_{N}}) has nn_{-} and n+n_{+} number of components with minus and plus sign, respectively.

n±\displaystyle n_{\pm} =k𝕟±[a(αjk)],\displaystyle=\sum_{k}\mathbb{n}_{\pm}\big{[}a(\alpha_{j_{k}})\big{]}, (12)

with 𝕟±[a(αjk)]\mathbb{n}_{\pm}\big{[}a(\alpha_{j_{k}})\big{]} the number of components with sign ±\pm in vector a(αjk)a(\alpha_{j_{k}}). JA Note: asumiendo que ya se probó que el número de +1 es 4N14^{N-1} o 4N4^{N} y de -1 4N14^{N-1} o 0:

Now we shall prove the symmetry.

Σ(k)[τ(𝒢α)]=a(αj1)R[a(αjk)]a(αjN)+𝟙4N2\displaystyle\Sigma^{(k)}\big{[}\vec{\tau}(\mathcal{G}_{\vec{\alpha}})\big{]}=\frac{a(\alpha_{j_{1}})\otimes\ldots\otimes R\big{[}a(\alpha_{j_{k}})\big{]}\ldots\otimes a(\alpha_{j_{N}})+\mathbb{1}_{4^{N}}}{2} (13)