This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He hypernuclei reexamined in halo/cluster effective theory

Ghanashyam Meher [email protected] Department of Physics, Indian Institute of Technology Guwahati, 781 039 Assam, India    Udit Raha [email protected] Department of Physics, Indian Institute of Technology Guwahati, 781 039 Assam, India
Abstract

The J=1/2J=1/2 iso-doublet double-Λ\Lambda-hypernuclei, namely,     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He, are examined as the three-body cluster states, ΛΛt\Lambda\Lambda t (t3t\equiv{}^{3}H or triton) and ΛΛh\Lambda\Lambda h (h3h\equiv{}^{3}He or helion), respectively, in a model independent framework utilizing pionless halo effective theory. Both singlet and triplet states of the constituent ΛT\Lambda T (Tt,hT\equiv t,h) subsystem are used in the elastic channel for the study of 4Λ{}_{\Lambda}^{4}HΛ-\Lambda and 4Λ{}_{\Lambda}^{4}HeΛ-\Lambda scattering processes. A prototypical leading order investigation using a sharp momentum cutoff regulator (Λc\Lambda_{c}) in the coupled integral equations for each type of the ΛT\Lambda T subsystem spin states, yields identical renormalization group limit cycle behavior when the respective three-body contact interactions are taken close to the unitary limit. Furthermore, irrespective of the type of the elastic channel chosen, almost identical cutoff dependence of the three-body binding energy or the double-Λ\Lambda-separation energy (BΛΛB_{\Lambda\Lambda}) is obtained for the mirror partners, evidently suggesting good isospin symmetry in these three-body systems. Subsequently, upon normalization of our solutions to the integral equation with respect to a single pair of input data from an ab initio potential model analysis for each mirror hypernuclei, yields BΛΛB_{\Lambda\Lambda} which agrees fairly well with various erstwhile regulator independent potential models for our choice of the cutoff, Λc200\Lambda_{c}\sim 200 MeV. This is either consistent with pionless effective theory or with its slightly augmented version with a hard scale of ΛH2mπ\Lambda_{H}\gtrsim 2m_{\pi}, where low-energy Λ\Lambda-Λ\Lambda interactions dominated by ππ\pi\pi or σ\sigma-meson exchange. Finally, to demonstrate the predictability of our effective theory, we present preliminary estimates of the SS-wave ΛΛT\Lambda\Lambda T three-body scattering lengths and the Λ\Lambda-separation energies using a range of currently accepted values of the double-Λ\Lambda scattering length from a variety of existing phenomenological predictions that is constrained by the recent experimental data from relativistic heavy-ion collisions.

I INTRODUCTION

The various experimental Takahashi:2001nm ; Ahn:2001sx ; Davis:2005mb ; Yoon:2007aq ; Ahn:2013poa ; Tamura:2013lwa ; Adamczyk:2014vca ; Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs ; Acharya:2018gyz ; Acharya:2019yvb and theoretical Jaffe:1976yi ; Hammer:2001ng ; Filikhin:2002wm ; Filikhin:2003js ; Nemura:2002hv ; Myint:2002dp ; Lanskoy:2003ia ; Shoeb:2004cw ; Nemura:2004xb ; Nemura:2005ze ; Ando:2013kba ; Ando:2015uda ; Contessi:2019csf investigations over several decades on the doubly strange (S=2S=-2) ss-shell light double-Λ\Lambda-hypernucler systems, such as, nΛΛ    3,nΛΛ    4,HΛΛ    4,HeΛΛ    4,HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,3}{\rm n},\,{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm n},\,{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm H},\,{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm He},\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H},\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} and HeΛΛ    6{}_{\Lambda\Lambda}^{\,\,\,\,6}{\rm He}, have elicited keen interest in the study of exotic hypernuclei in the strangeness nuclear physics community. Such multistrange systems can provide stringent tests for probing the microscopic mechanisms for the flavor SU(3) baryon-baryon interaction in the strangeness S=2S=-2 channel. In particular, essential information about the Λ\Lambda-Λ\Lambda interaction is expected to be obtained from these studies, which may hold definitive clues to the longstanding quest for the controversial H-dibaryon, an exotic six-quark (J=0,I=0J=0,\,I=0) deeply bound state, originally predicted by Jaffe in 1977 using the bag-model Jaffe:1976yi . Different perspectives regarding the existence of the HH particle have been obtained in ab initio calculations over the years. For example, the dispersion relations based analysis Gasparyan:2011kg on the 12C(K,K+ΛΛXK^{-},K^{+}\Lambda\Lambda X) reaction data from the KEK-PS Collaboration Yoon:2007aq , yielded an estimate of the S01{}^{1}{\rm S}_{0} double-Λ\Lambda scattering length, namely, aΛΛ=1.2±0.6a_{\Lambda\Lambda}=-1.2\pm 0.6 fm, that was well at odds with a possible ΛΛ\Lambda\Lambda bound state. While lattice QCD simulations Beane:2010hg ; Beane:2011zpa ; Beane:2011iw ; Inoue:2010es ; Inoue:2011pg with significantly larger pion masses yielded extrapolated results suggesting positive indications of a ΛΛ\Lambda\Lambda bound state, albeit a shallow one in the flavor SU(3) limit. However, apparently by going to the physical point, it tends to get pushed to the double-Λ\Lambda threshold, eventually dissolving into the continuum once SU(3) breaking effects are considered Shanahan:2011su ; Haidenbauer:2011ah . In fact, of late the HAL QCD (2+12+1)-flavor coupled-channel lattice simulation Sasaki:2019qnh closer to the physical point (mπLat146MeV,mKLat525MeVm^{\rm Lat}_{\pi}\simeq 146~{}{\rm MeV},\,m^{\rm Lat}_{K}\simeq 525~{}{\rm MeV}) has yielded a rather small magnitude of the S01{}^{1}{\rm S}_{0} double-Λ\Lambda scattering length, aΛΛ=0.81±0.23a_{\Lambda\Lambda}=-0.81\pm 0.23 fm, casting a significant doubt on the very existence of the HH-particle. This is consistent with the current theoretically accepted (albeit broad) range, namely, 1.92fmaΛΛ0.5fm-1.92\,\,{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5\,\,{\rm fm}, set by the fairly recent thermal correlation model based investigations Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb on Au+AuAu+Au Relativistic Heavy-Ion Collisions (RHIC) data from STAR Collaboration Adamczyk:2014vca , which is unlikely to support any ΛΛ\Lambda\Lambda bound state. It is interesting in this regard that the same RHIC data previously analysed by the STAR Collaboration themselves Adamczyk:2014vca estimated a positive scattering length, aΛΛ=1.10±0.37a_{\Lambda\Lambda}=1.10\pm 0.37 fm. Nevertheless, the rather recent Λ\Lambda-Λ\Lambda femtoscopic analysis of pp-pp and pp-Pb collision data from the ALICE Collaboration Acharya:2018gyz ; Acharya:2019yvb yielded a ΛΛ\Lambda\Lambda virtual bound state of energy 3.2\approx 3.2 MeV, thereby favoring a scattering length consistent with the above range. In short, although these analyses are clearly equivocal in their resolution of the HH particle conjecture, they evidently concur on a weakly attractive Λ\Lambda-Λ\Lambda interaction with no deeply bound state.

With the discovery of     6ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,6}He in the hybrid-emulsion experiment KEK-E373 Takahashi:2001nm , so-called the “NAGARA” event, along with indications of the conjectured     4ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,4}H bound state in the BNL-AGS E906 production experiment Ahn:2001sx , arguments on the existence of double-Λ\Lambda-hypernuclei have gained a firm foothold fostering a prolific area of modern research. A whole gamut of theoretical investigations on the double-Λ\Lambda-hypernuclei followed since then. As for the the J=1/2J=1/2 iso-doublet mirror partners, namely, HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} and HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}, until rather recently most of these investigations have been focusing on establishing phenomenological potential models. In particular, there exists both ab initio and cluster model approaches involving three- and four-body Faddeev-Yakubovsky calculations and variational methods Filikhin:2002wm ; Filikhin:2003js ; Nemura:2002hv ; Myint:2002dp ; Lanskoy:2003ia ; Shoeb:2004cw ; Nemura:2004xb ; Nemura:2005ze . In some of these model analyses, the binding energy difference between the two isospin partners has been studied using dynamical effects of mixing between different channels, such as ΣN\Sigma N, ΣΣ\Sigma\Sigma, and ΞN\Xi N. Of these, it is believed that the dominant contribution arises from the ΛΛ\Lambda\Lambda\,-ΞN\,\Xi N mixing channel. Because of this channel coupling the value of the hypernuclear binding energy (otherwise, commonly referred to in the literature as the double-Λ\Lambda-separation energy) BΛΛB_{\Lambda\Lambda} of HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} significantly exceeds that of HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}. However, such model approaches are often nonsystematic with conflicting conclusions based on ad hoc assumptions, whereby little perceptions can be gained regarding the underlying binding mechanisms inherent to these systems. It is, thus, timely to supplement the multitude of the existing model results with a general model-independent prediction based on universal arguments in few-body systems.

In a recent pioneering effort, the first microscopic pionless effective field theory (π/{}^{\pi\!\!\!/}EFT) based many-body analysis using Stochastic Variational Method (SVM) has been reported on some of the lightest double-Λ\Lambda-hypernuclei for A6A\leq 6 Contessi:2019csf . This kind of ab initio Hamiltonian constructed π/{}^{\pi\!\!\!/}EFT technique utilizing only elementary baryonic (NN,NΛ,ΛΛNN,\,N\Lambda,\,\Lambda\Lambda two-body and NNN,NΛN,ΛNΛNNN,\,N\Lambda N,\,\Lambda N\Lambda three-body) interactions was first applied to calculations of few-nucleon systems for lattice-nuclei Barnea:2013uqa ; Kirscher:2015yda ; Kirscher:2017fqc and later extended to the analysis of ss-shell Λ\Lambda-hypernuclei Contessi:2018qnz . Through a leading order (LO) assessment of the onset of double-Λ\Lambda-hypernuclei binding, the work of Ref. Contessi:2019csf quantitatively demonstrates the robust possibility of the iso-doublet partners (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}), as the lightest particle stable double-Λ\Lambda-hypernuclei, thereby discounting nΛΛ    3,nΛΛ    4{}_{\Lambda\Lambda}^{\,\,\,\,3}{\rm n}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm n} and HΛΛ    4{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm H} as possible bound states. Interestingly, as a parallel qualitative assessment to supplement the aforementioned rigorous numerical analysis, we reexamine the (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}) iso-doublet pair in view of a plausible cluster or halo nuclear nature using universal arguments in physics. Particularly, in the context of standard π/{}^{\pi\!\!\!/}EFT framework we investigate the correlations between their bound state characteristics and the SS-wave (HΛ4{}_{\Lambda}^{4}{\rm H}\,-Λ,HeΛ4\,\Lambda\,,\,{}_{\Lambda}^{4}{\rm He}\,-Λ\,\Lambda) scattering processes, respectively, in the kinematical region below the (H3,He3)+Λ+Λ({}^{3}{\rm H}\,,\,{}^{3}{\rm He})+\Lambda+\Lambda breakup thresholds. In this way, through a prototypical model-independent study we assess the role of low-energy Λ\Lambda-Λ\Lambda interactions in giving rise to universal correlations between three-body observables of such ss-shell double-Λ\Lambda-hypernuclei and their possible formations thereof.

A low-energy EFT constitutes a systematic model-independent approach with low-energy observables expanded in a perturbative expansion in terms of a small parameter, namely, ϵQ/ΛH1\epsilon\sim Q/\Lambda_{H}\ll 1, where QQ is a generic small momentum and ΛH\Lambda_{H} is the ultraviolet (UV) cutoff scale which limits the applicability of the perturbative scheme. The effective degrees of freedom consistent with the low-energy symmetries of the system are then identified in terms of which the Lagrangian of the system is constructed and expanded in increasing order of derivative interaction. The corresponding coefficients (low-energy constants) are fixed from phenomenological data. The heavy degrees of freedom above the hard scale ΛH\Lambda_{H} are integrated out and their effects are implicitly encoded in these couplings. In the so-called halo/cluster EFT formalism, the HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} and HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} systems can be regarded as the double-Λ\Lambda halo -nuclear states, namely, ΛΛt\Lambda\Lambda t (t3t\equiv{}^{3}H, i.e., the triton) and ΛΛh\Lambda\Lambda h (h3h\equiv{}^{3}He, i.e., the helion), respectively, with Tt,hT\equiv t,h being the compact core that can be considered elementary at scales chosen well below the breakup of HΛ4{}_{\Lambda}^{4}{\rm H} and HeΛ4{}_{\Lambda}^{4}{\rm He}.

The erstwhile emulsion works Juric:1973zq ; Davis:2005mb ; Tamura:2013lwa have indicated evidences of particle stable states of HΛ4{}_{\Lambda}^{4}{\rm H} and HeΛ4{}_{\Lambda}^{4}{\rm He} Λ\Lambda-hypernuclei. The existence of these states were recently reconfirmed by high-resolution decay π\pi^{-} and γ\gamma-ray spectroscopic measurements carried out by the A1 Collaboration at MAMI Esser:2015trs ; Schulz:2016kdc and the E13 Collaboration at J-PARC Yamamoto:2015avw ; Koike:2019rrs , respectively. The extracted Jp=0+J^{p}=0^{+} ground state Λ\Lambda-separation energies (Λ[0+]{\mathcal{B}}_{\Lambda}[0^{+}]) of 4Λ{}_{\Lambda}^{4}H and 4Λ{}_{\Lambda}^{4}He are 2.157±0.0772.157\pm 0.077 MeV and 2.39±0.052.39\pm 0.05 MeV, respectively, whereas those corresponding to the Jp=1+J^{p}=1^{+} first excited state (Λ[1+]{\mathcal{B}}_{\Lambda}[1^{+}]) are 1.067±0.081.067\pm 0.08 MeV and 0.984±0.050.984\pm 0.05 MeV, respectively (cf. level scheme depicted in Fig. 1). Thus, the typical momentum scale QQ associated with these single Λ\Lambda-hypernuclei can be naively identified with mean binding momentum of the ground and first excited states, namely, Q¯μΛT(Λ[0+]+Λ[1+])50\bar{Q}\sim\sqrt{\mu_{\Lambda T}\left({\mathcal{B}}_{\Lambda}[0^{+}]+{\mathcal{B}}_{\Lambda}[1^{+}]\right)}\approx 50 MeV, with μΛT=MΛMT/(MΛ+MT)\mu_{\Lambda T}=M_{\Lambda}M_{T}/(M_{\Lambda}+M_{T}) being the reduced mass of these ΛT\Lambda T subsystems. On the other hand, the experimental binding energies (T{\mathcal{B}}_{T}) of the triton and helion cores being 8.488.48 MeV and 7.727.72 MeV, respectively, the breakdown scale of our EFT framework may be associated with the corresponding binding momentum scale ΛH2μdNTmπ\Lambda_{H}\sim\sqrt{2\mu_{dN}{\mathcal{B}_{T}}}\sim m_{\pi} of the cores, with μdN\mu_{dN} being the reduced mass of the deuteron (dd) and nucleon (NN) system, and mπm_{\pi} is the pion mass. Consequently, the expansion parameter is conservatively estimated to be at the most ϵQ¯/mπ2μΛTΛ[0+]/mπ0.4\epsilon\sim\bar{Q}/m_{\pi}\lesssim\sqrt{2\mu_{\Lambda T}{\mathcal{B}}_{\Lambda}[0^{+}]}/m_{\pi}\approx 0.4, a value reasonably small to support a valid EFT framework.

A practical computational framework for investigating three-body dynamics is thus provided by the π/{}^{\pi\!\!\!/}EFT without explicit inclusion of pion. This has become a popular tool for investigating shallow bound state systems of nucleons and other hadrons (for reviews and relatively recent works, e.g., see Refs. Hammer:2001ng ; Kaplan:1998tg ; Kaplan:1998we ; vanKolck:1998bw ; Bedaque:1998kg ; Bedaque:1998km ; Bedaque:1999ve ; Braaten:2004rn ; Ando:2013kba ; Ando:2015uda ; Ando:2015fsa ; Raha:2017ahu and other references therein). Such a framework provides the most general approach to handle the dynamics of finely tuned systems with large scattering lengths and cross sections nearly saturating the unitary bound. This happens presumably in the vicinity of nontrivial renormalization group (RG) fixed points of the two-body contact couplings. Recently, a large number of works on π/{}^{\pi\!\!\!/}EFT have appeared dealing with low-energy universal physics of three-body systems. A typical signature of the onset of such universality is the appearance of a RG limit cycle resulting from the breakdown of an exact to a discrete scaling symmetry, accompanied with the emergence of a geometric tower of arbitrary shallow three-body Efimov bound states Efimov:1970zz ; Braaten:2004rn . In the context of hypernuclear physics, the Efimov effect and its universal role in the prediction of three-body exotic bound states have been discussed in a number of theoretical works Hammer:2001ng ; Ando:2013kba ; Ando:2015uda ; Ando:2015fsa ; Hildenbrand:2019sgp based on π/{}^{\pi\!\!\!/}EFT at LO. In the ensuing analysis, we use a similar set-up to investigate whether any remnant universal feature inherent to the ΛΛT\Lambda\Lambda T system indicates Efimov-like bound state character. However, the current paucity of phenomenological information to constrain the various low-energy parameters of the theory is a major hurdle in our approach which precludes a robust prediction of the existence of Efimov-like bound states in the HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} and HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} systems. As demonstrated in our analysis, a crucial piece of information required as input to the EFT analysis is a three-body datum, namely, the three-body binding or double-Λ\Lambda-separation energy BΛΛB_{\Lambda\Lambda} of a given mirror partner, for which there are currently no available experimental estimates. For this purpose, we rely on suitable predictions based on an existing potential models, e.g., the ab initio SVM analysis of Nemura et al. Nemura:2004xb . Moreover, the predictability of our halo/cluster EFT framework depends on fixing several two-body parameters from the following phenomenological information:

Refer to caption
Figure 1: Level energy (Λ{\mathcal{B}}_{\Lambda}) scheme with the ground (JP=0+J^{P}=0^{+}) state of HΛ4{}_{\Lambda}^{4}{\rm H} and the first-excited (JP=1+J^{P}=1^{+}) states of the mirror partners (HΛ4,HeΛ4{}_{\Lambda}^{4}{\rm H},\,{}_{\Lambda}^{4}{\rm He}) taken from the recent high-resolution spectroscopic measurements at MAMI Esser:2015trs ; Schulz:2016kdc and J-PARC Yamamoto:2015avw ; Koike:2019rrs , respectively. The ground state energy of HeΛ4{}_{\Lambda}^{4}{\rm He} on the other hand is taken from the erstwhile emulsion work of Ref. Davis:2005mb . The figure is adapted from Refs. Schulz:2016kdc ; Gazda:2016qva .

Based on these inputs, the three-body integral equations completely determine the BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlations for the ΛΛT\Lambda\Lambda T systems, using which preliminary estimates of the corresponding SS-wave three-body scattering lengths aΛΛTa_{\Lambda\Lambda T} are predicted. Such EFT predicted scattering lengths induce universal correlations between three-body observables, as elucidated by the so-called Phillips-lines Phillips:1968zze (cf. Fig. 10). Furthermore, for the recently suggested benchmark value, aΛΛ=0.80a_{\Lambda\Lambda}=-0.80 fm, in Ref. Contessi:2019csf , the Λ\Lambda-separation energies, Λ(HΛΛ    5)=2.295{\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H})=2.295 MeV and Λ(HeΛΛ    5)=2.212{\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He})=2.212 MeV, are deduced.

The paper is organized as follows. In Sec. II we present the basic set-up of the π/{}^{\pi\!\!\!/}EFT formalism. There we display the most general LO effective Lagrangian and the coupled system of integral equations for the ΛΛT\Lambda\Lambda T system, with appropriate scale dependent three-body contact interactions that describe RG limit cycle behavior. Section  III contains our numerical results of solving the integral equations in both bound and scattering domains. In particular, through our study of the BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlations, we present preliminary estimates of the ΛΛT\Lambda\Lambda T scattering lengths and the corresponding Λ\Lambda-separation energies. Finally, in Sec. IV we present our summary with concluding remarks. A brief discussion on the one- and two-body non-relativistic propagators in π/{}^{\pi\!\!\!/}EFT is relegated to the appendix.

II THEORETICAL FRAMEWORK

II.1 Effective Lagrangian

We use the theoretical framework of pionless effective field theory to investigate the bound states of the double-Λ\Lambda-hypernuclear mirror systems (    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H ,     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He). In this approach the effective Lagrangian is constructed manifestly nonrelativistic on the basis of available symmetries of the relevant low-energy degrees of freedom. In our case, the explicit elementary degrees of freedom involve two Λ\Lambda-hyperon halo fields and the generic core field, Tt,hT\equiv t,h, representing one of the two mirrors (isospin) partners, namely, the triton (tt) or the helion (hh). In addition, it is convenient to introduce auxiliary dimer fields to unitarize and renormalize the two-body sectors Bedaque:1998km ; Braaten:2004rn ; BS01 ; AH04 ; Ando:2010wq . Our formalism includes three such dimer fields, namely, the spin-singlet (S01{}^{1}{\rm S}_{0}) field u0(ΛT)su_{0}\equiv(\Lambda T)_{s}, the spin-triplet (S13{}^{3}{\rm S}_{1}) field u1(ΛT)tu_{1}\equiv(\Lambda T)_{t}, and the spin-singlet ΛΛ\Lambda\Lambda-dibaryon field us(ΛΛ)su_{s}\equiv(\Lambda\Lambda)_{s}. Notably, these u0u_{0} and u1u_{1} dimer states correspond to the experimentally observed spin-singlet (0+0^{+}) ground state and spin-triplet (1+1^{+}) excited state of the mirror hypernuclei (HΛ4,HeΛ4)({}_{\Lambda}^{4}{\rm H}\,,\,{}_{\Lambda}^{4}{\rm He}) Juric:1973zq ; Davis:2005mb ; Tamura:2013lwa ; Esser:2015trs ; Schulz:2016kdc ; Yamamoto:2015avw ; Koike:2019rrs .

The full nonrelativistic LO π/{}^{\pi\!\!\!/}EFT Lagrangian can be expressed as the following string of terms:

=Λ+T+u0+u1+us+3-body.\mathcal{L}=\mathcal{L}_{\Lambda}+\mathcal{L}_{T}+\mathcal{L}_{u_{0}}+\mathcal{L}_{u_{1}}+\mathcal{L}_{u_{s}}+\mathcal{L}_{\rm 3{\text{-}}body}\,. (1)

The one-body Lagrangian containing the contributions of the elementary fields, namely, the Λ\Lambda-hyperon and the spin-1/2 core TT, is given as

Λ\displaystyle\mathcal{L}_{\Lambda} =\displaystyle= Λ[i(v)+(v)222MΛ+]Λ,\displaystyle\Lambda^{\dagger}\bigg{[}i(v\cdot\partial)+\frac{(v\cdot\partial)^{2}-\partial^{2}}{2M_{\Lambda}}+\cdots\bigg{]}\Lambda\,\,, (2)
T\displaystyle\mathcal{L}_{T} =\displaystyle= T[i(v)+(v)222MT+]T,\displaystyle T^{\dagger}\bigg{[}i(v\cdot\partial)+\frac{(v\cdot\partial)^{2}-\partial^{2}}{2M_{T}}+\cdots\bigg{]}T\,\,, (3)

where MΛM_{\Lambda} and MTM_{T} are the respective masses of the elementary fields. Next we display the two-body parts of the Lagrangian, namely,

u0\displaystyle\mathcal{L}_{u_{0}} =\displaystyle= u0[i(v)+(v)222(MΛ+MT)+]u0\displaystyle-u_{0}^{\dagger}\bigg{[}i(v\cdot\partial)+\frac{(v\cdot\partial)^{2}-\partial^{2}}{2(M_{\Lambda}+M_{T})}+\cdots\bigg{]}u_{0} (4)
y0[u0(TT^(ΛT)(S01)Λ)+h.c.]+,\displaystyle-\,y_{0}\bigg{[}u_{0}^{\dagger}\left(T^{\rm T}\,\hat{\mathbb{P}}^{({}^{1}{\rm S}_{0})}_{(\Lambda T)}\,\Lambda\right)+\rm{h.c.}\bigg{]}+\cdots\,\,,
u1\displaystyle\mathcal{L}_{u_{1}} =\displaystyle= (u1)j[i(v)+(v)222(MΛ+MT)+](u1)j\displaystyle-(u_{1})_{j}^{\dagger}\bigg{[}i(v\cdot\partial)+\frac{(v\cdot\partial)^{2}-\partial^{2}}{2(M_{\Lambda}+M_{T})}+\cdots\bigg{]}(u_{1})_{j} (5)
y1[(u1)j(TT^(ΛT)j(S13)Λ)+h.c.]+,\displaystyle-\,y_{1}\bigg{[}(u_{1})_{j}^{\dagger}\left(T^{\rm T}\,\hat{\mathbb{P}}_{(\Lambda T)\,j}^{({}^{3}{\rm S}_{1})}\,\Lambda\right)+\rm{h.c.}\bigg{]}+\cdots\,\,,
us\displaystyle\mathcal{L}_{u_{s}} =\displaystyle= us[i(v)+(v)224MΛ+]us\displaystyle-u_{s}^{\dagger}\bigg{[}i(v\cdot\partial)+\frac{(v\cdot\partial)^{2}-\partial^{2}}{4M_{\Lambda}}+\cdots\bigg{]}u_{s} (6)
ys[us(ΛT^(ΛΛ)(S01)Λ)+h.c.]+,\displaystyle-\,y_{s}\bigg{[}u_{s}^{\dagger}\left(\Lambda^{\rm T}\,\hat{\mathbb{P}}^{({}^{1}{\rm S}_{0})}_{(\Lambda\Lambda)}\,\Lambda\right)+\rm{h.c.}\bigg{]}+\cdots\,\,,

where the spin-singlet and spin-triplet projection operators are given as

^(ΛΛ)(S01)=i2σ2,\displaystyle\hat{\mathbb{P}}_{(\Lambda\Lambda)}^{({}^{1}{\rm S}_{0})}=-\frac{i}{2}\sigma_{2}\,,\quad ^(ΛT)(S01)=i2σ2,\displaystyle\quad\hat{\mathbb{P}}_{(\Lambda T)}^{({}^{1}{\rm S}_{0})}=-\frac{i}{\sqrt{2}}\sigma_{2}\,,
^(ΛT)j(S13)\displaystyle\hat{\mathbb{P}}_{(\Lambda T)\,j}^{({}^{3}{\rm S}_{1})} =\displaystyle= i2σ2σj,\displaystyle-\frac{i}{\sqrt{2}}\sigma_{2}\sigma_{j}\,, (7)

with σj(j=1,2,3)\sigma_{j}\,(j=1,2,3) being the Pauli spin matrices. In the above equations vμ=(1,𝟎)v^{\mu}=(1,{\bf 0}) is the velocity four-vector, and the couplings y0y_{0}, y1y_{1}, and ysy_{s} are two-body contact interactions between the respective dimer and their constituent elementary fields. Adopting to the power-counting scheme for the contact interactions apposite to finely tuned systems Kaplan:1998tg ; Kaplan:1998we ; vanKolck:1998bw , these LO couplings are easily fixed as Griesshammer:2004pe

y0=\displaystyle y_{0}= y1\displaystyle y_{1} =2πμΛT,\displaystyle=\sqrt{\frac{2\pi}{\mu_{\Lambda T}}}\,,
andys\displaystyle\text{and}\qquad y_{s} =\displaystyle= 4πMΛ.\displaystyle\sqrt{\frac{4\pi}{M_{\Lambda}}}\,. (8)

The ellipses in all the above Lagrangians denote subleading order terms containing four or higher derivative operators that do not contribute to our LO analysis. For pedagogical reasons a brief description of the one- and two-body nonrelativistic propagators used in the construction of the Faddeev-type coupled integral equations is presented in the appendix.

Finally, as demonstrated later in this section, since the ΛΛT\Lambda\Lambda T three-body systems are found to exhibit RG limit cycle behavior, the set of integral equations [cf. Eqs. (11) and (12) ] becomes ill-defined in the asymptotic UV limit, and a regulator, say, in the form of a sharp momentum cutoff Λc\Lambda_{c} must be introduced to obtain regularized finite results. In that case, the basic tenet of the EFT Bedaque:1998km demands the introduction of nonderivatively coupled LO counterterms to renormalize the artificial regulator (Λc\Lambda_{c}) dependence of the integral equations. For the ΛΛT\Lambda\Lambda T (J=1/2,I=1/2J=1/2,I=1/2) mirror systems, there exists two equivalent choices for the subsystem spin rearrangements that determine the elastic channels, namely, u0Λu0Λu_{0}\Lambda\to u_{0}\Lambda (denoted “type-A”), and u1Λu1Λu_{1}\Lambda\to u_{1}\Lambda (denoted“type-B”). With the type-A, and -B choices of the elastic channels, the three-body counterterm Lagrangians are

3-body(A)\displaystyle\mathcal{L}^{(A)}_{\rm 3{\text{-}}body} =\displaystyle= g3(A)(Λc)Λc2[MTy022(u0Λ)(u0Λ)+MTy0y12(u0Λ)(𝐮1𝝈Λ)MΛysy02(u0Λ)(usT)+h.c.],\displaystyle-\frac{g^{(A)}_{3}(\Lambda_{c})}{\Lambda_{c}^{2}}\left[-\frac{M_{T}y_{0}^{2}}{2}(u_{0}\Lambda)^{\dagger}(u_{0}\Lambda)+\frac{M_{T}y_{0}y_{1}}{2}(u_{0}\Lambda)^{\dagger}\left({\bf u}_{1}\cdot\bm{\sigma}\Lambda\right)-\frac{M_{\Lambda}y_{s}y_{0}}{\sqrt{2}}(u_{0}\Lambda)^{\dagger}(u_{s}T)+{\rm h.c.}\right]\,, (9)
3-body(B)\displaystyle\mathcal{L}^{(B)}_{\rm 3{\text{-}}body} =\displaystyle= g3(B)(Λc)Λc2[MTy126(𝐮1𝝈Λ)(𝐮1𝝈Λ)+MTy0y12(𝐮1𝝈Λ)(u0Λ)MΛysy12(𝐮1𝝈Λ)(usT)+h.c.].\displaystyle-\frac{g_{3}^{(B)}(\Lambda_{c})}{\Lambda_{c}^{2}}\left[\frac{M_{T}y_{1}^{2}}{6}\left({\bf u}_{1}\cdot\bm{\sigma}\Lambda\right)^{\dagger}\left({\bf u}_{1}\cdot\bm{\sigma}\Lambda\right)+\frac{M_{T}y_{0}y_{1}}{2}\left({\bf u}_{1}\cdot\bm{\sigma}\Lambda\right)^{\dagger}(u_{0}\Lambda)-\frac{M_{\Lambda}y_{s}y_{1}}{\sqrt{2}}\left({\bf u}_{1}\cdot\bm{\sigma}\Lambda\right)^{\dagger}(u_{s}T)+{\rm h.c.}\right].\qquad (10)

The regulator dependent three-body running couplings g3(A)(Λc)g^{(A)}_{3}(\Lambda_{c}) and g3(B)(Λc)g^{(B)}_{3}(\Lambda_{c}) which are used to absorb the scale dependence of the integral equations are a priori undetermined in the EFT. Hence they must be phenomenologically fixed from essential three-body data. A typical signature that Efimov physics Efimov:1970zz ; Braaten:2004rn is manifest in the three-body system is that the RG behavior of the three-body couplings g3(A)g^{(A)}_{3} and g3(B)g^{(B)}_{3} displays a characteristic quasi-log cyclic periodicity as a function of the regulator scale Λc\Lambda_{c}\ll\infty. As originally suggested by Wilson Wilson , this unambiguously implies the onset of an RG limit cycle. Here we note that exact universality demands both three-body couplings to be identical which in principle should not depend on the details of the two-body subsystems. However, in practice, certain nominal qualitative differences do appear in the estimation of these scale dependent couplings, as seen in our results presented in the next section. This is primarily due to the specific choice of the renormalization schemes we have adopted in the treatments of the type-A and type-B integral equations [cf. discussion below Eq. (15)]. However, such differences do not have any significant influence on the qualitative nature of the results of this work.

Refer to caption
Figure 2: Feynman diagrams for the coupled-channel integral equations, with u0Λu0Λu_{0}\Lambda\to u_{0}\Lambda (type-A) choice as the elastic channel. The thin (thick) lines denote the Λ\Lambda-hyperon (core Tt,hT\equiv t,h) field propagators. The double lines denote the renormalized propagators for the spin-singlet dimer fields u0u_{0} and usu_{s}, and the zigzag lines denote the renormalized propagators for the spin-triplet dimer field u1u_{1}. The dark filled circles denote the leading order three-body contact interactions, while the square, oval, and rectangular gray blobs represent dressings of the dimer propagators with resummed loops (cf. discussion in the appendix).

II.2 Integral equations

In Figs. 2 and 3, we display the Feynman diagrams contributing to the SS-wave elastic processes, namely, u0Λu0Λu_{0}\Lambda\rightarrow u_{0}\Lambda (type-A) and u1Λu1Λu_{1}\Lambda\rightarrow u_{1}\Lambda (type-B), in terms of the half-off-shell SS-wave projected amplitudes, Ta(A,B)(p,k;E),Tb(A,B)(p,k;E)T^{(A,B)}_{a}(p,k;E),\,T^{(A,B)}_{b}(p,k;E) and Tc(A,B)(p,k;E)T^{(A,B)}_{c}(p,k;E). While Ta(A,B)(p,k;E)T^{(A,B)}_{a}(p,k;E) denotes the elastic amplitudes, Tb(A,B)(p,k;E)T^{(A,B)}_{b}(p,k;E) and Tc(A,B)(p,k;E)T^{(A,B)}_{c}(p,k;E) are the amplitudes for the inelastic processes, u0,1Λu1,0Λu_{0,1}\Lambda\to u_{1,0}\Lambda and u0,1ΛusΛu_{0,1}\Lambda\to u_{s}\Lambda, respectively. Here kk (pp) is the relative on-shell (off-shell) three-body center-of-mass momentum for the u0,1u_{0,1}\,-Λ\,\Lambda scattering processes in the initial (final) states, and E=2(s,t)thr+k2/(2μΛ(ΛT))E={\mathcal{E}}^{thr}_{2(s,t)}+k^{2}/(2\mu_{\Lambda(\Lambda T)}) is the total center-of-mass kinetic energy measured with respect to the three-particle breakup threshold (E=0)(E=0). In other words, for each ΛΛT\Lambda\Lambda T three-body system, there exists two particle-dimer breakup thresholds, viz. the deeper Λ+u0\Lambda+u_{0} breakup threshold, 2(s)thr=γ02/(2μΛT){\mathcal{E}}^{thr}_{2(s)}=-\gamma^{2}_{0}/(2\mu_{\Lambda T}), and the shallower Λ+u1\Lambda+u_{1} breakup threshold, 2(t)thr=γ12/(2μΛT){\mathcal{E}}^{thr}_{2(t)}=-\gamma^{2}_{1}/(2\mu_{\Lambda T}) (cf. discussions in Sec. III ). Here γ0\gamma_{0} and γ1\gamma_{1} are the respective binding momenta of the singlet u0(ΛT)su_{0}\equiv(\Lambda T)_{s} and triplet u1(ΛT)tu_{1}\equiv(\Lambda T)_{t} two-body subsystems, and μΛ(ΛT)=MΛ(MΛ+MT)/(2MΛ+MT)\mu_{\Lambda(\Lambda T)}=M_{\Lambda}(M_{\Lambda}+M_{T})/(2M_{\Lambda}+M_{T}) is the reduced masses of the Λ\Lambda\,-(ΛT)s,t\,(\Lambda T)_{s,t} three-body system. Using standard Feynman rules, the SS-wave projected amplitudes for the different elastic and inelastic channels can be easily worked out. With the type-A and type-B choices of the elastic channels, the two sets of coupled integral equations for the ΛΛT\Lambda\Lambda T mirror partners are given as STM1 ; STM2 ; DL61 ; DL63

Ta(A)(p,k;E)\displaystyle T^{(A)}_{a}(p,k;E) =\displaystyle= 12(y02MT)𝒦(a)A(p,k;E)+MTμΛT0Λcdqq22π𝒦(a)A(p,q,Λc;E)𝒟0(q,E)Ta(A)(q,k;E)\displaystyle-\frac{1}{2}(y_{0}^{2}M_{T}){\mathcal{K}}^{A}_{(a)}(p,k;E)+\frac{M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{A}_{(a)}(p,q,\Lambda_{c};E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(A)}_{a}(q,k;E)}
y0y13MTμΛT0Λcdqq22π𝒦(a)A(E;p,q)𝒟1(q,E)Tb(A)(q,k;E)+y0ys80Λcdqq22π𝒦(b2)A(p,q;E)𝒟s(q,E)Tc(A)(q,k;E),\displaystyle-\,\frac{y_{0}}{y_{1}}\frac{\sqrt{3}M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{A}_{(a)}(E;p,q)\,{\mathcal{D}}_{1}(q,E)\,{T^{(A)}_{b}(q,k;E)}+\frac{y_{0}}{y_{s}}\sqrt{8}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{A}_{(b2)}(p,q;E)\,{\mathcal{D}}_{s}(q,E)\,{T^{(A)}_{c}(q,k;E)}\,,
Tb(A)(p,k;E)\displaystyle T^{(A)}_{b}(p,k;E) =\displaystyle= 32(y0y1MT)K(a)(p,k;E)y1y03MTμΛT0Λcdqq22πK(a)(p,q;E)𝒟0(q,E)Ta(A)(q,k;E)\displaystyle\frac{\sqrt{3}}{2}(y_{0}y_{1}M_{T})K_{(a)}(p,k;E)-\frac{y_{1}}{y_{0}}\frac{\sqrt{3}M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(a)}(p,q;E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(A)}_{a}(q,k;E)}
MTμΛT0Λcdqq22πK(a)(p,q;E)𝒟1(q,E)Tb(A)(q,k;E)+y1ys240Λcdqq22πK(b2)(p,q;E)𝒟s(q,E)Tc(A)(q,k;E),\displaystyle-\,\frac{M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(a)}(p,q;E)\,{\mathcal{D}}_{1}(q,E)\,{T^{(A)}_{b}(q,k;E)}+\frac{y_{1}}{y_{s}}\sqrt{24}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b2)}(p,q;E)\,{\mathcal{D}}_{s}(q,E)\,{T^{(A)}_{c}(q,k;E)}\,,
Tc(A)(p,k;E)\displaystyle T^{(A)}_{c}(p,k;E) =\displaystyle= 12(y0ysMΛ)K(b1)(p,k;E)+ysy02MΛμΛT0Λcdqq22πK(b1)(p,q;E)𝒟0(q,E)Ta(A)(q,k;E)\displaystyle-\frac{1}{\sqrt{2}}{(y_{0}y_{s}M_{\Lambda})}K_{(b1)}(p,k;E)+\frac{y_{s}}{y_{0}}\frac{\sqrt{2}M_{\Lambda}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b1)}(p,q;E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(A)}_{a}(q,k;E)} (11)
+ysy16MΛμΛT0Λcdqq22πK(b1)(p,q;E)𝒟1(q,E)Tb(A)(q,k;E),\displaystyle+\frac{y_{s}}{y_{1}}\,\frac{\sqrt{6}M_{\Lambda}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b1)}(p,q;E)\,{\mathcal{D}}_{1}(q,E)\,{T^{(A)}_{b}(q,k;E)}\,,

and,

Ta(B)(p,k;E)\displaystyle T^{(B)}_{a}(p,k;E) =\displaystyle= 12(y12MT)𝒦(a)B(p,k;E)MTμΛT0Λcdqq22π𝒦(a)B(p,q,Λc;E)𝒟1(q,E)Ta(B)(q,k;E)\displaystyle\frac{1}{2}(y_{1}^{2}M_{T})\mathcal{K}^{B}_{(a)}(p,k;E)-\frac{M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{B}_{(a)}(p,q,\Lambda_{c};E)\,{\mathcal{D}}_{1}(q,E)\,{T^{(B)}_{a}(q,k;E)}
y1y03MTμΛT0Λcdqq22π𝒦(a)B(p,q;E)𝒟0(q,E)Tb(B)(q,k;E)+y1ys240Λcdqq22π𝒦(b2)B(p,q;E)𝒟s(q,E)Tc(B)(q,k;E),\displaystyle-\,\frac{y_{1}}{y_{0}}\frac{\sqrt{3}M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{B}_{(a)}(p,q;E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(B)}_{b}(q,k;E)}+\frac{y_{1}}{y_{s}}\sqrt{24}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}{\mathcal{K}}^{B}_{(b2)}(p,q;E)\,{\mathcal{D}}_{s}(q,E)\,{T^{(B)}_{c}(q,k;E)}\,\,,
Tb(B)(p,k;E)\displaystyle T^{(B)}_{b}(p,k;E) =\displaystyle= 32(y1y0MT)K(a)(p,k;E)y0y13MTμΛT0Λcdqq22πK(a)(p,q;E)𝒟1(q,E)Ta(B)(q,k;E)\displaystyle\frac{\sqrt{3}}{2}(y_{1}y_{0}M_{T})K_{(a)}(p,k;E)-\frac{y_{0}}{y_{1}}\frac{\sqrt{3}M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(a)}(p,q;E)\,{\mathcal{D}}_{1}(q,E)\,{T^{(B)}_{a}(q,k;E)}
+MTμΛT0Λcdqq22πK(a)(p,q;E)𝒟0(q,E)Tb(B)(q,k;E)+y0ys80Λcdqq22πK(b2)(p,q;E)𝒟s(q,E)Tc(B)(q,k;E),\displaystyle+\,\frac{M_{T}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(a)}(p,q;E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(B)}_{b}(q,k;E)}+\frac{y_{0}}{y_{s}}\sqrt{8}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b2)}(p,q;E)\,{\mathcal{D}}_{s}(q,E)\,{T^{(B)}_{c}(q,k;E)}\,\,,
Tc(B)(p,k;E)\displaystyle T^{(B)}_{c}(p,k;E) =\displaystyle= 32(y1ysMΛ)K(b1)(p,k;E)+ysy16MΛμΛT0Λcdqq22πK(b1)(p,q;E)𝒟1(q,E)Ta(B)(q,k;E)\displaystyle-\sqrt{\frac{3}{2}}{(y_{1}y_{s}M_{\Lambda})}K_{(b1)}(p,k;E)+\,\frac{y_{s}}{y_{1}}\frac{\sqrt{6}M_{\Lambda}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b1)}(p,q;E)\,{\mathcal{D}}_{1}(q,E)\,{T^{(B)}_{a}(q,k;E)} (12)
+ysy02MΛμΛT0Λcdqq22πK(b1)(p,q;E)𝒟0(q,E)Tb(B)(q,k;E),\displaystyle+\,\frac{y_{s}}{y_{0}}\frac{\sqrt{2}M_{\Lambda}}{\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}\frac{dq\,q^{2}}{2\pi}K_{(b1)}(p,q;E)\,{\mathcal{D}}_{0}(q,E)\,{T^{(B)}_{b}(q,k;E)}\,,

respectively, where in the above equations the two-body couplings y0y_{0}, y1y_{1}, and ysy_{s} are determined by using Eq. (8). The SS-wave projected two-point Green’s functions (cf. Eq. (37) in the appendix), namely,

Refer to caption
Figure 3: Feynman diagrams for the coupled-channel integral equations, with u1Λu1Λu_{1}\Lambda\to u_{1}\Lambda (type-B) choice for the elastic channel. The thin (thick) lines denote the Λ\Lambda-hyperon (core Tt,hT\equiv t,h) field propagators. The double lines denote the renormalized propagators for the spin-singlet dimer fields u0u_{0} and usu_{s}, and the zigzag lines denote the renormalized propagators for the spin-triplet dimer field u1u_{1}. The dark filled circles denote the leading order three-body contact interactions, while the square, oval, and rectangular gray blobs represent dressings of the dimer propagators with resummed loops (cf. discussion in the appendix).
𝒟0(q,E)\displaystyle\mathcal{D}_{0}(q,E) =\displaystyle= 1γ0q2μΛTμΛ(ΛT)2μΛTEiηiη,\displaystyle\frac{1}{\gamma_{0}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E-i\eta}-i\eta}\,,
𝒟1(q,E)\displaystyle\mathcal{D}_{1}(q,E) =\displaystyle= 1γ1q2μΛTμΛ(ΛT)2μΛTEiηiη,\displaystyle\frac{1}{\gamma_{1}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E-i\eta}-i\eta}\,,
𝒟s(q,E)\displaystyle\mathcal{D}_{s}(q,E) =\displaystyle= 11aΛΛq2MΛ2μT(ΛΛ)MΛEiηiη,\displaystyle\frac{1}{\frac{1}{a_{\Lambda\Lambda}}-\sqrt{q^{2}\frac{M_{\Lambda}}{2\mu_{T(\Lambda\Lambda)}}-M_{\Lambda}E-i\eta}-i\eta},\,\quad (13)

contain the contributions of the u0u_{0}, u1u_{1}, and usu_{s} intermediate dimer states, with μT(ΛΛ)=(2MΛMT)/(2MΛ+MT)\mu_{T(\Lambda\Lambda)}=(2M_{\Lambda}M_{T})/(2M_{\Lambda}+M_{T}), which is the reduced mass of the TT\,-(ΛΛ)s\,(\Lambda\Lambda)_{s} three-body system. The TT-exchange interaction kernel K(a)K_{(a)}, and the two possible Λ\Lambda-exchange interaction kernels, K(b1)K_{(b1)} and K(b2)K_{(b2)}, can be expressed as

K(a)(p,κ;E)\displaystyle K_{(a)}(p,\kappa;E)\! =\displaystyle= 12pκln[p2+κ2+2μΛTMTpκ2μΛTEp2+κ22μΛTMTpκ2μΛTE],\displaystyle\!\frac{1}{2p\kappa}\ln\bigg{[}\frac{p^{2}+\kappa^{2}+\frac{2\mu_{\Lambda T}}{M_{T}}p\kappa-2\mu_{\Lambda T}E}{p^{2}+\kappa^{2}-\frac{2\mu_{\Lambda T}}{M_{T}}p\kappa-2\mu_{\Lambda T}E}\bigg{]}\,,

and

K(b1)(p,κ;E)\displaystyle K_{(b1)}(p,\kappa;E)\! =\displaystyle= 12pκln[MΛ2μΛTp2+κ2+pκMΛEMΛ2μΛTp2+κ2pκMΛE],\displaystyle\!\frac{1}{2p\kappa}\ln\bigg{[}\frac{\frac{M_{\Lambda}}{2\mu_{\Lambda T}}p^{2}+\kappa^{2}+p\kappa-M_{\Lambda}E}{\frac{M_{\Lambda}}{2\mu_{\Lambda T}}p^{2}+\kappa^{2}-p\kappa-M_{\Lambda}E}\bigg{]}\,,
K(b2)(p,κ;E)\displaystyle K_{(b2)}(p,\kappa;E)\! =\displaystyle= 12pκln[p2+MΛ2μΛTκ2+pκMΛEp2+MΛ2μΛTκ2pκMΛE],\displaystyle\!\frac{1}{2p\kappa}\ln\bigg{[}\frac{p^{2}+\frac{M_{\Lambda}}{2\mu_{\Lambda T}}\kappa^{2}+p\kappa-M_{\Lambda}E}{p^{2}+\frac{M_{\Lambda}}{2\mu_{\Lambda T}}\kappa^{2}-p\kappa-M_{\Lambda}E}\bigg{]}\,,\,\,\,\,\quad\, (14)

respectively, where the generic momentum κ=k(q)\kappa\,=k\,(q) denotes the on-shell (loop) momenta. The inclusion of the regulator-dependent (Λc\Lambda_{c}-dependent) three-body contact couplings g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}) modifies the one-particle exchange interaction kernels, K(a)K_{(a)} and K(b2)K_{(b2)}, in the respective elastic channels as:

𝒦(a)A,B(p,κ,Λc;E)\displaystyle\mathcal{K}^{A,B}_{(a)}(p,\kappa,\Lambda_{c};E) =\displaystyle= [K(a)(p,κ;E)g3(A,B)(Λc2)Λc2],\displaystyle\left[K_{(a)}(p,\kappa;E)-\frac{g^{(A,B)}_{3}(\Lambda^{2}_{c})}{\Lambda^{2}_{c}}\right]\,,
𝒦(b2)A,B(p,κ,Λc;E)\displaystyle\mathcal{K}^{A,B}_{(b2)}(p,\kappa,\Lambda_{c};E) =\displaystyle= [K(b2)(p,κ;E)g3(A,B)(Λc2)Λc2].\displaystyle\left[K_{(b2)}(p,\kappa;E)-\frac{g^{(A,B)}_{3}(\Lambda^{2}_{c})}{\Lambda^{2}_{c}}\right].\,\quad (15)

Here we point out that in this work we used a minimal prescription of introducing the scale dependent three-body couplings only in the elastic channels. In general, the most systematic method of renormalization is to include them in all the inelastic channels as well, e.g., as done in Refs. Hammer:2001ng ; Hildenbrand:2019sgp . In the present case we find that the latter method leads to certain uncontrollable numerical instabilities in determining the limit cycle behaviors of g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}). This is perhaps due to the simultaneous admixture of the negative (ΛΛ)s(\Lambda\Lambda)_{s} and positive (ΛT)s,t(\Lambda T)_{s,t} two-body scattering lengths associated with the virtual and real bound state dimers, respectively. Hence, we took recourse to the former simplistic prescription. Either way, since these unknown scale dependent three-body couplings are needed to be fixed phenomenologically during evaluations of the integral equations, they are expected to get accordingly renormalized in the different coupled channels. Thereby, the essential qualitative features of our investigations of the three-body bound states (e.g., the quasiperiodicity of the RG limit cycle) are by and large expected to remain unaffected. This issue is elucidated later in our results presented in the forthcoming section.

II.3 Three-body scattering lengths

The coupled integral equations displayed in the previous subsection must be renormalized and then solved numerically to yield predictions for the ΛΛT\Lambda\Lambda T three-body scattering amplitudes. For a given on-shell relative momentum k=|𝐤|k=|{\bf k}| and three-body center-of-mass kinetic energy EE, the kinematical scattering domain lies between the particle-dimer breakup thresholds 2(s,t)thr{\mathcal{E}}^{thr}_{2(s,t)} and the three-particle breakup threshold, i.e., 2(s,t)thr<E<0{\mathcal{E}}^{thr}_{2(s,t)}<E<0. In contrast with the kinematical domain of three-body bound states (E<2(s,t)thrE<{\mathcal{E}}^{thr}_{2(s,t)} with imaginary kk) free of singularities, the integral equations in the scattering domain develop singularities associated with poles of the (ΛT)s,t(\Lambda T)_{s,t}-dimer propagators 𝒟0,1(q,E){\mathcal{D}}_{0,1}(q,E) for certain values of the loop momenta qq. For the type-A integral equations the only poles are those that arise from the 𝒟0(q,E){\mathcal{D}}_{0}(q,E) propagator insertions at q=kq=k. While for the type-B integral equations poles arise due to the insertions of both (ΛT)s,t(\Lambda T)_{s,t}-dimer propagators, namely, 𝒟1(q,E){\mathcal{D}}_{1}(q,E) has a pole at q=kq=k and 𝒟0(q,E){\mathcal{D}}_{0}(q,E) has a pole at q=k2+(γ02γ12)(μΛ(ΛT)/μΛT)q=\sqrt{k^{2}+(\gamma_{0}^{2}-\gamma_{1}^{2})(\mu_{\Lambda(\Lambda T)}/\mu_{\Lambda T})}. To avoid these poles, a principal value prescription must be applied in the appropriate loop integrals to extract the three-body scattering amplitudes. Furthermore, it is numerically advantageous to express the otherwise complex-valued integral equations below the three-particle breakup threshold in terms of the real-valued renormalized KK-matrix elements 𝕂a,b,c(A,B)(p,k;E){\mathbb{K}}^{(A,B)}_{a,b,c}(p,k;E) for the respective choice of the elastic processes, viz. u(0,1)Λu(0,1)Λu_{(0,1)}\Lambda\to u_{(0,1)}\Lambda. To this end we display the principal value prescription modified renormalized KK-matrix integral equations:

𝕂a(A)(p,k;E)\displaystyle{\mathbb{K}}^{(A)}_{a}(p,k;E) =\displaystyle= MT4μΛT(a)A(0)(p,k;E)MT2πμΛT𝒫0Λc𝑑q(a)A(0)(p,q,Λc;E)q2q2k2𝕂a(A)(q,k;E)\displaystyle-\frac{M_{T}}{4\mu_{\Lambda T}}\mathcal{M}^{A(0)}_{(a)}(p,k;E)-\frac{M_{T}}{2\pi\mu_{\Lambda T}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{A(0)}_{(a)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(A)}_{a}(q,k;E)}
+3MT2πμΛTy0y10Λc𝑑q(a)A(0)(p,q,Λc;E)q2q2k2+μΛ(ΛT)μΛT(γ02γ12)𝕂b(A)(q,k;E)\displaystyle+\,\frac{\sqrt{3}M_{T}}{2\pi\mu_{\Lambda T}}\frac{y_{0}}{y_{1}}\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{A(0)}_{(a)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}+\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(A)}_{b}(q,k;E)}
2πy0ys𝒫0Λc𝑑q(b2)A(0)(p,q,Λc;E)q2q2k2𝕂c(A)(q,k;E),\displaystyle-\,\frac{\sqrt{2}}{\pi}\,\frac{y_{0}}{y_{s}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{A(0)}_{(b2)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(A)}_{c}(q,k;E)}\,,
𝕂b(A)(p,k;E)\displaystyle{\mathbb{K}}^{(A)}_{b}(p,k;E) =\displaystyle= 3MT4μΛTy1y0M(a)(1)(p,k;E)+3MT2πμΛTy1y0𝒫0Λc𝑑qM(a)(1)(p,q;E)q2q2k2𝕂a(A)(q,k;E)\displaystyle\frac{\sqrt{3}M_{T}}{4\mu_{\Lambda T}}\frac{y_{1}}{y_{0}}\,M^{(1)}_{(a)}(p,k;E)+\frac{\sqrt{3}M_{T}}{2\pi\mu_{\Lambda T}}\frac{y_{1}}{y_{0}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M^{(1)}_{(a)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(A)}_{a}(q,k;E)}
+MT2πμΛT0Λc𝑑qM(a)(1)(p,q;E)q2q2k2+μΛ(ΛT)μΛT(γ02γ12)𝕂b(A)(q,k;E)\displaystyle+\,\frac{M_{T}}{2\pi\mu_{\Lambda T}}\int_{0}^{\Lambda_{c}}dq\,M^{(1)}_{(a)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}+\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(A)}_{b}(q,k;E)}
6πy1ys𝒫0Λc𝑑qM(b2)(1)(p,q;E)q2q2k2𝕂c(A)(q,k;E),\displaystyle-\,\frac{\sqrt{6}}{\pi}\,\frac{y_{1}}{y_{s}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M^{(1)}_{(b2)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(A)}_{c}(q,k;E)}\,,
𝕂c(A)(p,k;E)\displaystyle{\mathbb{K}}^{(A)}_{c}(p,k;E) =\displaystyle= MΛ22μΛTysy0M(b1)(p,k;E)+MΛ2πμΛTysy0𝒫0Λc𝑑qM(b1)(p,q;E)q2q2k2𝕂a(A)(q,k;E)\displaystyle\frac{M_{\Lambda}}{2\sqrt{2}\mu_{\Lambda T}}\frac{y_{s}}{y_{0}}\,M_{(b1)}(p,k;E)+\frac{M_{\Lambda}}{\sqrt{2}\pi\mu_{\Lambda T}}\frac{y_{s}}{y_{0}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M_{(b1)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(A)}_{a}(q,k;E)}
+32MΛπμΛTysy10Λc𝑑qM(b1)(p,q;E)q2q2k2+μΛ(ΛT)μΛT(γ02γ12)𝕂b(A)(q,k;E),\displaystyle\,+\,\sqrt{\frac{3}{2}}\frac{M_{\Lambda}}{\pi\mu_{\Lambda T}}\frac{y_{s}}{y_{1}}\,\int_{0}^{\Lambda_{c}}dq\,M_{(b1)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}+\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(A)}_{b}(q,k;E)}\,,

for the type-A elastic channel with EEA=2(s)thr+k2/(2μΛ(ΛT))E\equiv E_{A}={\mathcal{E}}^{thr}_{2(s)}+k^{2}/(2\mu_{\Lambda(\Lambda T)}), and

𝕂a(B)(p,k;E)\displaystyle{\mathbb{K}}^{(B)}_{a}(p,k;E) =\displaystyle= MT4μΛT(a)B(1)(p,k;E)+MT2πμΛT𝒫0Λc𝑑q(a)B(1)(p,q,Λc;E)q2q2k2𝕂a(B)(q,k;E)\displaystyle\frac{M_{T}}{4\mu_{\Lambda T}}{\mathcal{M}}^{B(1)}_{(a)}(p,k;E)+\frac{M_{T}}{2\pi\mu_{\Lambda T}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{B(1)}_{(a)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(B)}_{a}(q,k;E)}
+3MT2πμΛTy1y0𝒫0Λc𝑑q(a)B(1)(p,q,Λc;E)q2q2k2μΛ(ΛT)μΛT(γ02γ12)𝕂b(B)(q,k;E)\displaystyle+\,\frac{\sqrt{3}M_{T}}{2\pi\mu_{\Lambda T}}\frac{y_{1}}{y_{0}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{B(1)}_{(a)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(B)}_{b}(q,k;E)}
6πy1ys𝒫0Λc𝑑q(b2)B(1)(p,q,Λc;E)q2q2k2𝕂c(B)(q,k;E),\displaystyle-\,\frac{\sqrt{6}}{\pi}\,\frac{y_{1}}{y_{s}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,{\mathcal{M}}^{B(1)}_{(b2)}(p,q,\Lambda_{c};E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(B)}_{c}(q,k;E)}\,\,,
𝕂b(B)(p,k;E)\displaystyle{\mathbb{K}}^{(B)}_{b}(p,k;E) =\displaystyle= 3MT4μΛTy0y1M(a)(0)(p,k;E)+3MT2πμΛTy0y1𝒫0Λc𝑑qM(a)(0)(p,q;E)q2q2k2𝕂a(B)(q,k;E)\displaystyle\frac{\sqrt{3}M_{T}}{4\mu_{\Lambda T}}\frac{y_{0}}{y_{1}}\,M^{(0)}_{(a)}(p,k;E)+\frac{\sqrt{3}M_{T}}{2\pi\mu_{\Lambda T}}\frac{y_{0}}{y_{1}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M^{(0)}_{(a)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(B)}_{a}(q,k;E)}
MT2πμΛT𝒫0Λc𝑑qM(a)(0)(p,q;E)q2q2k2μΛ(ΛT)μΛT(γ02γ12)𝕂b(B)(q,k;E)\displaystyle-\,\frac{M_{T}}{2\pi\mu_{\Lambda T}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M^{(0)}_{(a)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(B)}_{b}(q,k;E)}
2πy0ys𝒫0Λc𝑑qM(b2)(0)(p,q;E)q2q2k2𝕂c(B)(q,k;E),\displaystyle-\,\frac{\sqrt{2}}{\pi}\,\frac{y_{0}}{y_{s}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M^{(0)}_{(b2)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(B)}_{c}(q,k;E)}\,\,,
𝕂c(B)(p,k;E)\displaystyle{\mathbb{K}}^{(B)}_{c}(p,k;E) =\displaystyle= 3MΛ22μΛTysy1M(b1)(p,k;E)+32MΛπμΛTysy1𝒫0Λc𝑑qM(b1)(p,q;E)q2q2k2𝕂a(B)(q,k;E)\displaystyle\frac{\sqrt{3}M_{\Lambda}}{2\sqrt{2}\mu_{\Lambda T}}\frac{y_{s}}{y_{1}}\,M_{(b1)}(p,k;E)+\,\sqrt{\frac{3}{2}}\,\frac{M_{\Lambda}}{\pi\mu_{\Lambda T}}\frac{y_{s}}{y_{1}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M_{(b1)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}}\,{{\mathbb{K}}^{(B)}_{a}(q,k;E)}
+MΛ2πμΛTysy0𝒫0Λc𝑑qM(b1)(p,q;E)q2q2k2μΛ(ΛT)μΛT(γ02γ12)𝕂b(B)(q,k;E),\displaystyle+\,\frac{M_{\Lambda}}{\sqrt{2}\pi\mu_{\Lambda T}}\frac{y_{s}}{y_{0}}\,{\mathcal{P}}\!\!\int_{0}^{\Lambda_{c}}dq\,M_{(b1)}(p,q;E)\,\frac{q^{2}}{q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}\,{{\mathbb{K}}^{(B)}_{b}(q,k;E)}\,,

for the type-B elastic channel with EEB=2(t)thr+k2/(2μΛ(ΛT))E\equiv E_{B}={\mathcal{E}}^{thr}_{2(t)}+k^{2}/(2\mu_{\Lambda(\Lambda T)}). The symbol “𝒫\mathcal{P}” stands for a principal value integral which involves rewriting the complex-valued dimer propagators with iηi\eta prescription in terms of real-valued propagators, namely,

1q2k2iη=𝒫1q2k2+iπδ(q2k2),\frac{1}{q^{2}-k^{2}-i\eta}={\mathcal{P}}\frac{1}{q^{2}-k^{2}}+i\pi\delta(q^{2}-k^{2})\,,

and

1q2k2μΛ(ΛT)μΛT(γ02γ12)iη\displaystyle\frac{1}{q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})-i\eta}
=𝒫1q2k2μΛ(ΛT)μΛT(γ02γ12)\displaystyle={\mathcal{P}}\frac{1}{q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}
+iπδ(q2k2μΛ(ΛT)μΛT(γ02γ12)).\displaystyle+\,i\pi\delta\left(q^{2}-k^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})\right)\,.

The SS-wave projected Λ\Lambda and TT-exchange interactions kernels in this case are rewritten as:

M(a)(0,1)(p,κ;E)\displaystyle M^{(0,1)}_{(a)}(p,\kappa;E) =\displaystyle= (μΛ(ΛT)μΛT)K(a)(p,κ;E)\displaystyle\left(\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}\right)K_{(a)}(p,\kappa;E)
×(γ0,1+p2μΛTμΛ(ΛT)2μΛTE),\displaystyle\times\,\left(\gamma_{0,1}+\sqrt{p^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}\right)\,,
M(b1)(p,κ;E)\displaystyle M_{(b1)}(p,\kappa;E) =\displaystyle= K(b1)(p,κ;E)\displaystyle K_{(b1)}(p,\kappa;E)
×(p2k21aΛΛp2MΛ2μT(ΛΛ)MΛE),\displaystyle\times\,\left(\frac{p^{2}-k^{2}}{\frac{1}{a_{\Lambda\Lambda}}-\sqrt{p^{2}\frac{M_{\Lambda}}{2\mu_{T(\Lambda\Lambda)}}-M_{\Lambda}E}}\right)\,,
M(b2)(0,1)(p,κ;E)\displaystyle M^{(0,1)}_{(b2)}(p,\kappa;E) =\displaystyle= (μΛ(ΛT)μΛT)K(b2)(p,κ;E)\displaystyle\left(\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}\right)K_{(b2)}(p,\kappa;E)
×(γ0,1+p2μΛTμΛ(ΛT)2μΛTE),\displaystyle\times\,\left(\gamma_{0,1}+\sqrt{p^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}\right)\,,

and the corresponding three-body force modified Λc\Lambda_{c} dependent kernels needed are:

(a)A,B(0,1)(p,κ,Λc;E)\displaystyle{\mathcal{M}}^{A,B(0,1)}_{(a)}(p,\kappa,\Lambda_{c};E) =\displaystyle= (μΛ(ΛT)μΛT)𝒦(a)A,B(p,κ,Λc;E)\displaystyle\left(\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}\right){\mathcal{K}}^{A,B}_{(a)}(p,\kappa,\Lambda_{c};E)
×\displaystyle\times (γ0,1+p2μΛTμΛ(ΛT)2μΛTE),\displaystyle\left(\gamma_{0,1}+\sqrt{p^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}\right)\,,
(b2)A,B(0,1)(p,κ,Λc;E)\displaystyle{\mathcal{M}}^{A,B(0,1)}_{(b2)}(p,\kappa,\Lambda_{c};E) =\displaystyle= (μΛ(ΛT)μΛT)𝒦(b2)A,B(p,κ,Λc;E)\displaystyle\left(\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}\right){\mathcal{K}}^{A,B}_{(b2)}(p,\kappa,\Lambda_{c};E)
×\displaystyle\times (γ0,1+p2μΛTμΛ(ΛT)2μΛTE),\displaystyle\left(\gamma_{0,1}+\sqrt{p^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}\right)\,,

where κ=k(q)\kappa=k\,(q) is the on-shell (loop) momentum. In the above integral equations, the unrenormalized complex-valued amplitudes Ta(A,B)(p,k;E)T_{a}^{(A,B)}(p,k;E) are related to the renormalized real-valued KK-matrix elements 𝕂a,b,c(A,B)(p,k;E){\mathbb{K}}^{(A,B)}_{a,b,c}(p,k;E) by the following relations:

𝕂a(A)(p,k;E)k2p2=(μΛT4πγ0)Z0Ta(A)(p,k;E)Z0γ0q2μΛTμΛ(ΛT)2μΛTE,\frac{{\mathbb{K}}^{(A)}_{a}(p,k;E)}{k^{2}-p^{2}}=\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{0}}\right)\frac{\sqrt{Z_{0}}\,T_{a}^{(A)}(p,k;E)\sqrt{Z_{0}}}{\gamma_{0}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}}\,,
𝕂b(A)(p,k;E)k2p2μΛ(ΛT)μΛT(γ02γ12)\displaystyle\frac{{\mathbb{K}}^{(A)}_{b}(p,k;E)}{k^{2}-p^{2}-\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}
=(μΛT4πγ0)Z0Tb(A)(p,k;E)Z0γ1q2μΛTμΛ(ΛT)2μΛTE,\displaystyle=\,\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{0}}\right)\frac{\sqrt{Z_{0}}\,T_{b}^{(A)}(p,k;E)\sqrt{Z_{0}}}{\gamma_{1}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}}\,,
𝕂c(A)(p,k;E)k2p2\displaystyle\frac{{\mathbb{K}}^{(A)}_{c}(p,k;E)}{k^{2}-p^{2}} =\displaystyle= (μΛT4πγ0)Z0Tc(A)(p,k;E)Z01aΛΛq2MΛ2μT(ΛΛ)MΛE,\displaystyle\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{0}}\right)\frac{\sqrt{Z_{0}}\,T_{c}^{(A)}(p,k;E)\sqrt{Z_{0}}}{\frac{1}{a_{\Lambda\Lambda}}-\sqrt{q^{2}\frac{M_{\Lambda}}{2\mu_{T(\Lambda\Lambda)}}-M_{\Lambda}E}}\,,

for the type-A amplitudes, and

𝕂a(B)(p,k;E)k2p2=(μΛT4πγ1)Z1Ta(B)(p,k;E)Z1γ1q2μΛTμΛ(ΛT)2μΛTE,\frac{{\mathbb{K}}^{(B)}_{a}(p,k;E)}{k^{2}-p^{2}}=\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{1}}\right)\frac{\sqrt{Z_{1}}\,T_{a}^{(B)}(p,k;E)\sqrt{Z_{1}}}{\gamma_{1}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}}\,,
𝕂b(B)(p,k;E)k2p2+μΛ(ΛT)μΛT(γ02γ12)\displaystyle\frac{{\mathbb{K}}^{(B)}_{b}(p,k;E)}{k^{2}-p^{2}+\frac{\mu_{\Lambda(\Lambda T)}}{\mu_{\Lambda T}}(\gamma^{2}_{0}-\gamma^{2}_{1})}
=(μΛT4πγ1)Z1Tb(B)(p,k;E)Z1γ0q2μΛTμΛ(ΛT)2μΛTE,\displaystyle=\,\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{1}}\right)\frac{\sqrt{Z_{1}}\,T_{b}^{(B)}(p,k;E)\sqrt{Z_{1}}}{\gamma_{0}-\sqrt{q^{2}\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}-2\mu_{\Lambda T}E}}\,,
𝕂c(B)(p,k;E)k2p2=(μΛT4πγ1)\displaystyle\frac{{\mathbb{K}}^{(B)}_{c}(p,k;E)}{k^{2}-p^{2}}=\left(\frac{\mu_{\Lambda T}}{4\pi\gamma_{1}}\right) Z1Tc(B)(p,k;E)Z11aΛΛq2MΛ2μT(ΛΛ)MΛE,\displaystyle\frac{\sqrt{Z_{1}}\,T_{c}^{(B)}(p,k;E)\sqrt{Z_{1}}}{\frac{1}{a_{\Lambda\Lambda}}-\sqrt{q^{2}\frac{M_{\Lambda}}{2\mu_{T(\Lambda\Lambda)}}-M_{\Lambda}E}}\,,

for the type-B amplitudes, where Z0,1Z_{0,1} are the u0,1u_{0,1}-dimer field wave function renormalization constants, defined as the residues of the renormalized dressed dimer propagators Δ0,1(k0,𝐤)\Delta_{0,1}(k_{0},{\bf k}) [cf. Eq. (37) in the appendix]:

Z01\displaystyle Z_{0}^{-1} =\displaystyle= d[Δ01(k0,𝟎)]dk0|k0=Λ[0+]=μΛT2y022πγ0,\displaystyle\frac{d[\Delta^{-1}_{0}(k_{0},{\bf 0})]}{dk_{0}}\bigg{|}_{k_{0}=-\mathcal{B}_{\Lambda}[0^{+}]}=\frac{\mu_{\Lambda T}^{2}y_{0}^{2}}{2\pi\gamma_{0}}\,,
Z11\displaystyle Z_{1}^{-1} =\displaystyle= d[Δ11(k0,𝟎)]dk0|k0=Λ[1+]=μΛT2y122πγ1.\displaystyle\frac{d[\Delta^{-1}_{1}(k_{0},{\bf 0})]}{dk_{0}}\bigg{|}_{k_{0}=-\mathcal{B}_{\Lambda}[1^{+}]}=\frac{\mu_{\Lambda T}^{2}y_{1}^{2}}{2\pi\gamma_{1}}\,. (22)

Finally, the J=1/2J=1/2 SS-wave ΛΛT\Lambda\Lambda T scattering lengths corresponding to the constituent spin-singlet and spin-triplet ΛT\Lambda T subsystems are obtained by numerically solving the above KK-matrix equations for the renormalized on-shell elastic-scattering amplitudes 𝕂a(A,B)(k,k){\mathbb{K}}^{(A,B)}_{a}(k,k), and then taking the threshold limit according to the definition

a3(s,t)=limk0𝕂a(A,B)(k,k).a_{3(s,t)}=-\lim_{k\to 0}{\mathbb{K}}^{(A,B)}_{a}(k,k)\,. (23)

It is notable that neither of the two three-body scattering lengths a3(s,t)a_{3(s,t)} can be considered as physical observables. On the other hand, albeit practical difficulties, it may not be on the whole impossible to extract the effective three-body scattering length aΛΛTa_{\Lambda\Lambda T} at low-energies from the (2J+1)(2J+1)-spin averaged SS-wave elastic cross section σΛΛTel\sigma^{el}_{\Lambda\Lambda T} by using the relation

aΛΛT=14a3(s)2+34a3(t)2,a_{\Lambda\Lambda T}=\sqrt{\frac{1}{4}a_{3(s)}^{2}+\frac{3}{4}a_{3(t)}^{2}}\,\,, (24)

vis-a-vis, the prescription:

σΛΛTel\displaystyle\sigma^{el}_{\Lambda\Lambda T} =\displaystyle= 14σ3(s)(type-A)+34σ3(t)(type-B);\displaystyle\frac{1}{4}\sigma_{3(s)}(\text{type-A})+\frac{3}{4}\sigma_{3(t)}(\text{type-B})\,;
a3(s,t)\displaystyle a_{3(s,t)} =\displaystyle= limk014πσ3(s,t)(type-A,B),\displaystyle\lim_{k\to 0}\sqrt{\frac{1}{4\pi}\sigma_{3(s,t)}(\text{type-A,B})}\,,
aΛΛT\displaystyle a_{\Lambda\Lambda T} =\displaystyle= limk014πσΛΛTel.\displaystyle\lim_{k\to 0}\sqrt{\frac{1}{4\pi}\sigma^{el}_{\Lambda\Lambda T}}\,. (25)

Thus, our EFT framework provides a viable prescription to determine the three-body scattering lengths via numerical solutions to the renormalized KK-matrix integral equations. Having said that it must be borne in mind that as yet there exists no experimental facility capable of extracting these scattering lengths by measuring the above elastic cross sections. The unstable nature of the Λ\Lambda-hyperon poses immense technical challenges to be used either as targets or projectiles in scattering experiments. Nevertheless, the purpose of the present exercise is to demonstrate the kind of prototypical analysis that may be necessary whenever such information becomes available from future experimental investigations.

II.4 Asymptotic bound state analysis

In the investigation of three-body bound state characteristic in the ΛΛT\Lambda\Lambda T cluster systems, the emergence of RG limit-cycle behavior could be easily checked by studying the UV limit of the coupled integral equations where the off-shell or loop momenta is asymptotically large, i.e., q,pΛcq,p\sim\Lambda_{c}\to\infty, while the on-shell energy and relative momenta is small, i.e., E,kγ0,11/aΛΛp,qE,k\sim\gamma_{0,1}\sim 1/a_{\Lambda\Lambda}\ll p,q. In this limit the inhomogeneous parts as well as the Λc2\Lambda^{-2}_{c} suppressed three-body contributions to the integral equations drop out. After suitable redefinitions of the half-off-shell amplitudes, they may be shown to scale for generic off-shell asymptotic momenta κ\kappa as Ta,b,c(A,B)(κ)κs1T^{(A,B)}_{a,b,c}(\kappa\to\infty)\sim\kappa^{s-1}. Finally through a sequence of Mellin transformations, both sets of integral equations reduce to same transcendental form:

1\displaystyle 1 =\displaystyle= (MT2πμΛTC1)[2πssin[ssin1(a/2)]cos[πs/2]]\displaystyle\bigg{(}\frac{M_{T}}{2\pi\mu_{\Lambda T}C_{1}}\bigg{)}\bigg{[}\frac{2\pi}{s}\frac{\sin\left[s\sin^{-1}(a/2)\right]}{\cos[\pi s/2]}\bigg{]} (26)
+(MΛπ2μΛTC1C2)[2πssin[scot14b1]cos[πs/2]]2,\displaystyle+\,\bigg{(}\frac{M_{\Lambda}}{\pi^{2}\mu_{\Lambda T}C_{1}C_{2}}\bigg{)}\bigg{[}\frac{2\pi}{s}\frac{\sin\left[s\cot^{-1}\sqrt{4b-1}\,\right]}{\cos[\pi s/2]}\bigg{]}^{2},\,\quad

where

a=2μΛTMT\displaystyle a=\frac{2\mu_{\Lambda T}}{M_{T}}\,\, , b=MΛ2μΛT,\displaystyle\,\,b=\frac{M_{\Lambda}}{2\mu_{\Lambda T}}\,,
C1=μΛTμΛ(ΛT)\displaystyle C_{1}=\sqrt{\frac{\mu_{\Lambda T}}{\mu_{\Lambda(\Lambda T)}}}\,\, , C2=MΛ2μT(ΛΛ).\displaystyle\,\,C_{2}=\sqrt{\frac{M_{\Lambda}}{2\mu_{T(\Lambda\Lambda)}}}\,.

Solving for the exponent ss in above equation yields the following imaginary values:

s=±is0{s0=1.03517for HΛΛ    5s0=1.03516for HeΛΛ    5.s=\pm\,is_{0}^{\infty}\begin{cases}s_{0}^{\infty}=1.03517...&\text{for }\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\\ s_{0}^{\infty}=1.03516...&\text{for }\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}\,.\end{cases} (27)

The small numerical difference between the values of the asymptotic limit cycle parameter s0s^{\infty}_{0} reflects their universal character with reasonably good isospin symmetry in the three-body sector. The imaginary solutions can be formally attributed to the existence of Efimov states in the unitary limit of the two mirror ΛΛT\Lambda\Lambda T clusters and parametrize the onset of discrete scaling invariance. A detailed exposition of this kind of asymptotic analysis leading to the Efimov effect is found in Ref. Braaten:2004rn . In the next section we present a qualitative assay of our numerical results for the nonasymptotic solutions to the integral equations and their possible implications in the low-energy domain.

Particle Symbol Mass (MeV) Binding energy (MeV)
Λ\Lambda-hyperon Λ\Lambda 1115.683 -
Triton 3H tt 2808.921 8.48
Helion 3He hh 2808.391 7.72
Table 1: Particle data used in our calculations Mohr:2015ccw .

III RESULTS AND DISCUSSION

ΛΛ\Lambda\Lambda-Hypernuclear SS-wave ΛΛ\Lambda\Lambda ΛΛ\Lambda\Lambda-Separation Incremental binding Critical cutoff cutoff
mirror (a , b) Scattering length energy BΛΛB_{\Lambda\Lambda} energy ΔBΛΛ\Delta B_{\Lambda\Lambda} (MeV) Λcrit(n=0)\Lambda^{(n=0)}_{\rm crit} (MeV) Λpot(n=0)\Lambda^{(n=0)}_{\rm pot} (MeV)
Sets aΛΛa_{\Lambda\Lambda} (fm) (MeV) Nemura:2004xb reevaluated (this work) (with g3(A,B)=0g^{(A,B)}_{3}=0 ) (with g3(A,B)=0g^{(A,B)}_{3}=0)
Ia (    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H) -0.91 (mNDSNagels:1978sc 3.750 1.071 235.028 437.654
Ib (    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He) -0.91 (mNDSNagels:1978sc 3.660 0.989 269.621 429.833
IIa (    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H) -1.37 (NDSNagels:1978sc 4.050 1.381 205.448 403.285
IIb (    5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He) -1.37 (NDSNagels:1978sc 3.960 1.289 234.522 396.332
Table 2: Two sets of predictions for the three-body binding or double-Λ\Lambda-separation energy BΛΛB_{\Lambda\Lambda} for the (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}) mirrors using the coupled-channel potential model SVM analysis of Nemura et al. Nemura:2004xb . The corresponding double-Λ\Lambda scattering lengths used are two representative values based on the old Nijmegen hard-core potential models Nagels:1978sc (names in parentheses) consistent with the currently accepted range, 1.92fmaΛΛ0.5fm-1.92~{}{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5~{}{\rm fm} Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb , as constrained by the recent RHIC data Adamczyk:2014vca . The values of the incremental binding energies ΔBΛΛ\Delta B_{\Lambda\Lambda} are obtained utilizing the recent experimental input for the Λ\Lambda-separation energies of the ground (singlet) and first (triplet) excited states of the (HΛ4,HeΛ4{}_{\Lambda}^{4}{\rm H}\,,\,{}_{\Lambda}^{4}{\rm He}) mirrors Esser:2015trs ; Schulz:2016kdc ; Yamamoto:2015avw ; Koike:2019rrs . Furthermore, with the three-body contact interactions excluded from our integral equations, the critical cutoffs, Λc=Λcrit(n=0)\Lambda_{c}=\Lambda^{(n=0)}_{\rm crit} (see text), associated with the ground (n=0n=0) state Efimov-like trimers for each mirror double-Λ\Lambda-hypernuclei, are also displayed. The rightmost column shows our adjusted cutoff values, Λc=Λpot(n=0)\Lambda_{c}=\Lambda^{(n=0)}_{\rm pot}, which reproduce the above values of BΛΛB_{\Lambda\Lambda} as ground state eigenenergies. The paired (BΛΛ,aΛΛB_{\Lambda\Lambda}\,,\,a_{\Lambda\Lambda}) data points for cases Ia and Ib (shown in bold) are used to normalize our solutions.
Refer to caption
Refer to caption
Figure 4: The nonasymptotic RG limit cycle behaviors of the three-body couplings g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}) for the ΛΛt\Lambda\Lambda t system. Two representative choices for the SS-wave double-Λ\Lambda scattering lengths are considered, namely, aΛΛ=0.91fm(Ia)a_{\Lambda\Lambda}=-0.91~{}{\rm fm\,(Ia)} and 1.37fm(IIa)-1.37~{}{\rm fm\,(IIa)}, based on the Nijmegen hard-core potential models, mNDS and NDS, respectively Nagels:1978sc , and compatible with the range of values constrained by the recent phenomenological analyses Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb of RHIC data Adamczyk:2014vca . The corresponding three-body binding or double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} (cf. Table 2) used as input to our integral equations, are the predictions of the ab initio potential model analysis of Ref. Nemura:2004xb . The corresponding results for the ΛΛh\Lambda\Lambda h system being almost identical are not displayed for brevity.

For our numerical evaluations, we use the masses of the particles as displayed in Table. 1. As a comparison with our already obtained asymptotic limit cycle parameter s0s_{0}^{\infty} for each mirror hypernuclei, the analogous nonasymptotic parameter s0s_{0} may be obtained by studying the RG behavior of the three-body couplings g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}) for nonasymptotic kinematics. The s0s_{0} parameter is, however, nonuniversal in character and sensitive to the cutoff variations. Nevertheless, it may be shown that as Λc\Lambda_{c}\to\infty, s0s0s_{0}\to s_{0}^{\infty} Raha:2017ahu . We note that currently there is no empirical three-body information available to constraint g3(A,B)g^{(A,B)}_{3}. Thus, we adopt a strategy similar to the earlier pursued works Ando:2013kba ; Ando:2015uda ; Raha:2017ahu . We assume that     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He already form Efimov-like bound cluster states and thereby investigate the RG of g3(A,B)g^{(A,B)}_{3} by choosing two sets of values of the three-body binding or double-Λ\Lambda-separation energies111The double-Λ\Lambda-separation energy BΛΛB_{\Lambda\Lambda}, as commonly referred to in the context of potential model analyses, is interpreted in our EFT framework as the three-body eigenenergy, E=BΛΛ-E=B_{\Lambda\Lambda}, obtained as the likely ground-state solution to the homogeneous part of the integral equations. Additionally, in the cluster model framework it is conventional to define an incremental binding energy ΔBΛΛ\Delta B_{\Lambda\Lambda} which is related to BΛΛB_{\Lambda\Lambda} (measured with respect to the ΛΛT\Lambda\Lambda T three-particle breakup threshold) as Filikhin:2002wm ΔBΛΛ=BΛΛ2Λavg,\Delta B_{\Lambda\Lambda}=B_{\Lambda\Lambda}-2{\mathcal{B}}^{avg}_{\Lambda}\,, (28) where, Λavg=14Λ[0+]+34Λ[1+],{\mathcal{B}}^{avg}_{\Lambda}=\frac{1}{4}{\mathcal{B}}_{\Lambda}[0^{+}]+\frac{3}{4}{\mathcal{B}}_{\Lambda}[1^{+}]\,, (29) is the (2J+1)(2J+1) spin averaged Λ\Lambda-separation energy of the singlet and triplet two-body subsystems (interpreted in the EFT as the (ΛT)s,t(\Lambda T)_{s,t} subsystem averaged binding energy). Thus, the predicted values of BΛΛB_{\Lambda\Lambda} from past ab initio potential model analysis, such as in Ref. Nemura:2004xb , may be used to supplant the old results of ΔBΛΛ\Delta B_{\Lambda\Lambda} by reevaluating them using the recent experimental inputs for the Λ\Lambda-separation energies of the ground (singlet) and first (triplet) excited states of the (HΛ4,HeΛ4{}_{\Lambda}^{4}{\rm H}\,,\,{}_{\Lambda}^{4}{\rm He}) mirrors Esser:2015trs ; Schulz:2016kdc ; Yamamoto:2015avw ; Koike:2019rrs . (BΛΛB_{\Lambda\Lambda}) for the mirror partners, predicted by the ab initio coupled channel potential model of Nemura et al. Nemura:2004xb using SVM analysis (cf. Table. 2 ). These predictions correspond to the two representative SS-wave double-Λ\Lambda scattering lengths, namely, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 and 1.37fm-1.37~{}{\rm fm}, taken from the old Nijmegen hard-core potential models, mNDS and NDS, respectively, of Ref. Nagels:1978sc , but consistent with the constraints based on recent theoretical analyses Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb based on RHIC data Adamczyk:2014vca .

In Fig. 4 we demonstrate the cutoff regulator dependence of the three-body coupling g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}) for the ΛΛt\Lambda\Lambda t system. The characteristic quasiperiodic cyclic singularities reminiscent of the asymptotic limit cycle associated with the successive formation of three-body bound states is clearly evident in the nonasymptotic domain. Our finding in the three-body sector reveals good isospin symmetry between the two double-Λ\Lambda-hypernuclear mirror partners with very little discernible difference in the RG behavior of each partner. Consequently, for brevity, we do not display the result for the ΛΛh\Lambda\Lambda h system. As already pointed out, ideally the scale dependence of the type-A and type-B three-body couplings should be identical. However, owing to the small qualitative differences in rearrangements between the two types of elastic reaction channels where we only choose to introduce the counterterms (cf. Figs. 2 and 3 ), the type-B limit cycle plots are nominally shifted leftwards and downwards with respect to the type-A limit cycle plots. In particular, due to considerable sensitivity to the small cutoff region, Λc200\Lambda_{c}\lesssim 200 MeV, the N=0N=0 branch which is altogether washed out in the type-B plot, is still manifest in the type-A plot (top left corner). However, this branch is not associated with the formation of an Efimov state. The ground (n=N1=0n=N-1=0) state on the other hand is associated with the N=1N=1 branch. Nevertheless, the regulator values, Λc=(Λc)N\Lambda_{c}=(\Lambda_{c})_{N}, at which these couplings successively vanish remain unaltered in the two types of limit cycle plots. In each case the nonasymptotic RG limit cycle parameter s0s_{0} can be calculated via the relation

s0=πln[(Λc)N+1(Λc)N];N=1,2,s_{0}=\frac{\pi}{\ln\left[\frac{(\Lambda_{c})_{N+1}}{(\Lambda_{c})_{N}}\right]}\,;\quad N=1,2,\cdots (30)

where (Λc)N(\Lambda_{c})_{N} is the momentum cutoff corresponding to the NNth zero of g3(A,B)g^{(A,B)}_{3}. Using, say, the N=1,2N=1,2 values of Λc\Lambda_{c} we obtain s0=π/ln[(Λc)2/(Λc)1]1.03s_{0}=\pi/\ln[(\Lambda_{c})_{2}/(\Lambda_{c})_{1}]\approx 1.03, which is nearly the same as the asymptotic values of s0s^{\infty}_{0} given in Eq. (27), irrespective of the chosen type of elastic channel. It is also notable that our s0s_{0} or s0s^{\infty}_{0} values agree well with typical values anticipated from the universal calibration curve for a mass imbalanced three-body system Braaten:2004rn , namely, the plot of exp(π/s0)(\pi/s_{0}) versus the mass ratio m1/m3m_{1}/m_{3}, with m1=m2MΛm_{1}=m_{2}\equiv M_{\Lambda} and m3MTm1,2m_{3}\equiv M_{T}\neq m_{1,2}.

Next we report on our regulator (Λc\Lambda_{c}) dependence of BΛΛB_{\Lambda\Lambda} (cf. Fig. 5) obtained by numerically solving the homogeneous parts of the two sets of integral equations [cf. Eqs. (11) and (12) ], excluding the three-body contact interaction, i.e., g3(A,B)=0g^{(A,B)}_{3}\!\!=0. Here we again consider the two representative SS-wave double-Λ\Lambda scattering lengths, namely, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm and 1.37-1.37 fm Nagels:1978sc ; Rijken:1998yy ; Stoks:1999bz , compatible with the range, 1.92fmaΛΛ0.5fm-1.92~{}{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5~{}{\rm fm} Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb , constrained by RHIC data Adamczyk:2014vca . It may be noted that both choices (type-A and type-B) for the elastic channels yield identical cutoff dependence. Furthermore, both the double-Λ\Lambda-hypernuclear mirror partners yield nearly identical results, apart from the expected “mismatch” in threshold region (see inset plot of Fig. 5). Thus, it is interesting that despite the significant spin dependent charge symmetry breaking reflected in the two-body binding energies, e.g., δΛ[0+]200\delta{\mathcal{B}}_{\Lambda}[0^{+}]\gtrsim 200 keV, the corresponding difference of the spin-averaged binding energies, δΛavg5\delta{\mathcal{B}}^{avg}_{\Lambda}\sim 5 keV, is surprisingly small. This is easily seen using Eq. (29) with Λavg[HΛ4]=1.3395{\mathcal{B}}^{avg}_{\Lambda}[{}_{\Lambda}^{4}{\rm H}]=1.3395 MeV and Λavg[HeΛ4]=1.3355{\mathcal{B}}^{avg}_{\Lambda}[{}_{\Lambda}^{4}{\rm He}]=1.3355 MeV, based on the recent spectroscopic measurements Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs [cf. Table. 3 and also Fig. 1]. Such a “spin averaging” effect apparently gets implicitly reflected in the unrenormalized (regulator dependent) eigenenergies, E(Λc)BΛΛE(\Lambda_{c})\equiv-B_{\Lambda\Lambda}, obtained via our integral equations with g3(A,B)(Λc)=0g^{(A,B)}_{3}(\Lambda_{c})=0. The resulting difference of the double-Λ\Lambda-separation energy (BΛΛB_{\Lambda\Lambda}) between the (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}) mirror partners is evidently large, δBΛΛ(Λcrit(n=0))200\delta B_{\Lambda\Lambda}(\Lambda^{(n=0)}_{\rm crit})\gtrsim 200 keV, around the particle-dimer thresholds, Λc=Λcrit(n=0)\Lambda_{c}=\Lambda^{(n=0)}_{\rm crit} (i.e., the ground (n=0n=0) state critical cutoff scales for the mirror partners222In our case in general, Λc=Λcrit(n)\Lambda_{c}=\Lambda^{(n)}_{\rm crit}, denotes the nnth critical cutoff, defined as the cutoff scale at which the nnth Efimov bound state emerges just above the deeper particle-dimer (Λ+u0\Lambda+u_{0}) breakup threshold E=2(s)thrE={\mathcal{E}}^{thr}_{2(s)}.). However, this difference rapidly vanishes asymptotically (Λc\Lambda_{c}\to\infty), ultimately leading to good charge and isospin symmetry. This feature will also be apparent in our BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlation results presented later in Table. 4. Notably, due to the absence of the three-body contact interactions to renormalize the integral equations, BΛΛB_{\Lambda\Lambda} is quite sensitive to the cutoff variations, which increase with increasing cutoff above the respective Λ+u0\Lambda+u_{0} breakup thresholds. Moreover, it is apparent that the eigenenergies are also sensitive to the input double-Λ\Lambda scattering lengths, with BΛΛB_{\Lambda\Lambda} increasing with increasing |aΛΛ||a_{\Lambda\Lambda}|.

Refer to caption
Figure 5: The cutoff regulator (Λc\Lambda_{c}) dependence of the three-body binding or the double-Λ\Lambda-separation energy BΛΛB_{\Lambda\Lambda} (with respect to the three-particle threshold) of ΛΛT\Lambda\Lambda T mirror systems with the three-body couplings g3(A,B)g^{(A,B)}_{3} excluded. The plots correspond to the results for both choices of the elastic channels. Two representative choices for the double-Λ\Lambda scattering lengths are considered, namely, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm and 1.37-1.37 fm, based on the old Nijmegen hard-core potential models, mNDS and NDS, respectively Nagels:1978sc , and consistent with the recent theoretical constraints Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb based on RHIC data Adamczyk:2014vca . The vertical lines in the inset plot denote the critical cutoffs, Λc=Λcrit(n=0)\Lambda_{c}=\Lambda^{(n=0)}_{\rm crit}, defined with respect to the deeper particle-dimer thresholds, namely, the Λ+u0\Lambda+u_{0} thresholds. Apart from the threshold regions, the results of both mirror partners are almost identical.
Λ\Lambda-Hypernuclear Λ[JP]\mathcal{B}_{\Lambda}[J^{P}] γΛT!(2μΛTΛ[JP])1/2\gamma_{\Lambda T}\stackrel{{\scriptstyle!}}{{\leadsto}}(2\mu_{\Lambda T}\mathcal{B}_{\Lambda}[J^{P}])^{1/2}
mirror states (MeV) (MeV)
HΛ    4[0+]{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,\,[0^{+}] 2.1572.157 Esser:2015trs ; Schulz:2016kdc γ0!58.692\gamma_{0}\stackrel{{\scriptstyle!}}{{\leadsto}}58.692
HΛ    4(1+){}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,\,(1^{+}) 1.0671.067 Yamamoto:2015avw ; Koike:2019rrs γ1!41.280\gamma_{1}\stackrel{{\scriptstyle!}}{{\leadsto}}41.280
HeΛ    4[0+]{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}\,\,[0^{+}] 2.392.39 Davis:2005mb γ0!61.779\gamma_{0}\stackrel{{\scriptstyle!}}{{\leadsto}}61.779
HeΛ    4(1+){}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}\,\,(1^{+}) 0.9840.984 Yamamoto:2015avw ; Koike:2019rrs γ1!39.641\gamma_{1}\stackrel{{\scriptstyle!}}{{\leadsto}}39.641
Table 3: Λ\Lambda-separation energies Λ[JP=0+,1+]\mathcal{B}_{\Lambda}[J^{P}=0^{+},1^{+}] of the mirror states of (HΛ    4,HeΛ    4\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}) corresponding to the central values of the experimental results of Refs. Davis:2005mb ; Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs and summarized in Fig. 1. In our EFT they are to be identified (“!\stackrel{{\scriptstyle!}}{{\leadsto}}” denotes correspondence) with the particle-dimer breakup thresholds 2(s,t)thr-{\mathcal{E}}^{thr}_{2(s,t)} for the ΛΛT\Lambda\Lambda T systems or equivalently, the u0,1(ΛT)s,tu_{0,1}\equiv(\Lambda T)_{s,t} dimer binding energies. The corresponding binding momenta γΛTγ0,1\gamma_{\Lambda T}\equiv\gamma_{0,1} are inputs to our integral equations.

We emphasize that, although in our EFT framework the u0,1(ΛT)s,tu_{0,1}\equiv(\Lambda T)_{s,t} two-body subsystems introduce two relevant energy scales 2(s,t)thr{\mathcal{E}}^{thr}_{2(s,t)}, it is the larger of the two particle-dimer thresholds, namely, the Λ+u0\Lambda+u_{0} (singlet-dimer) threshold that is effectively associated with the formation of Efimov states. In fact, irrespective of the chosen (type-A,B) elastic channels, our numerical evaluations of the integral equation only yield trimer states which are deeper than the Λ+u0\Lambda+u_{0} thresholds, viz. BΛΛ>Λ[0+]B_{\Lambda\Lambda}>{\mathcal{B}}_{\Lambda}[0^{+}] provided Λc>Λcrit(n=0)\Lambda_{c}>\Lambda^{(n=0)}_{\rm crit}. No numerically stable eigensolutions are obtained in the energy domain, 2(s)thr<E<2(t)thr{\mathcal{E}}^{thr}_{2(s)}<E<{\mathcal{E}}^{thr}_{2(t)}, lying in between the two thresholds. Thus, we should re-emphasize the correspondence of the ΛΛTΛ+u0\Lambda\Lambda T\to\Lambda+u_{0} breakup threshold energies 2(s)thr{\mathcal{E}}^{thr}_{2(s)} of the respective double-Λ\Lambda-hypernuclear mirror partners to the (ΛT)s(\Lambda T)_{s} subsystem binding energies, vis-a-vis the Λ\Lambda-separation energies Λ[0+]{\mathcal{B}}_{\Lambda}[0^{+}] of the ground (JP=0+J^{P}=0^{+}) state of the (HΛ    4,HeΛ    4)(\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}) mirror partners, namely,

BΛΛ(Λcrit(n=0))\displaystyle B_{\Lambda\Lambda}(\Lambda^{(n=0)}_{\rm crit}) \displaystyle\equiv 2(s)thr=γ022μΛT!Λ[0+]\displaystyle-{\mathcal{E}}^{thr}_{2(s)}=\frac{\gamma^{2}_{0}}{2\mu_{\Lambda T}}\stackrel{{\scriptstyle!}}{{\leadsto}}{\mathcal{B}}_{\Lambda}[0^{+}]
=\displaystyle= {2.157MeV Esser:2015trs ; Yamamoto:2015avw ; Schulz:2016kdc forHΛ    4[0+],2.39MeV Davis:2005mb forHeΛ    4[0+].\displaystyle\begin{cases}2.157~{}\text{MeV~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Esser:2015trs,Yamamoto:2015avw,Schulz:2016kdc}{\@@citephrase{(}}{\@@citephrase{)}}}}&\text{for}\,\,\,{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}[0^{+}]\,,\\ 2.39~{}\text{MeV~{}\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Davis:2005mb}{\@@citephrase{(}}{\@@citephrase{)}}}}&\text{for}\,\,\,{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}[0^{+}]\,.\end{cases}

Here, the currently accepted central values of experimentally determined Λ\Lambda-separation energies Davis:2005mb ; Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs [cf. Table. 3 and also Fig. 1] are used to fix the two-body input parameters of the (ΛT)s,t(\Lambda T)_{s,t} systems, namely, the binding momenta, defined by the correspondence, γ0,1!2μΛTΛ[JP=0+,1+]\gamma_{0,1}\stackrel{{\scriptstyle!}}{{\leadsto}}\sqrt{2\mu_{\Lambda T}\mathcal{B}_{\Lambda}[J^{P}=0^{+},1^{+}]\,}, which reflect the information regarding the two breakup thresholds in our integrals equations. These critical cutoffs for the ground (n=0n=0) states were tabulated earlier in Table. 2. The rightmost column in the same table also displays our cutoff values, Λc=Λpot(n=0)\Lambda_{c}=\Lambda^{(n=0)}_{\rm pot} that reproduce the double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} of Ref. Nemura:2004xb , begin interpreted as the plausible Efimov ground (n=0n=0) state eigenenergies. Although the Λpot(n=0)\Lambda^{(n=0)}_{\rm pot} values are significantly larger than the canonical hard scale of a π/{}^{\pi\!\!\!/}EFT, namely, ΛHmπ\Lambda_{H}\sim m_{\pi}, they are nevertheless within a reasonable ballpark in context of hypernuclear systems where one-pion exchanges are forbidden by virtue of isospin invariance. A more reasonable choice of our EFT hard scale consistent with the low-energy symmetries in this case could be ΛH2mπ\Lambda_{H}\gtrsim 2m_{\pi}, with the Λ\Lambda-Λ\Lambda interactions known to be dominated by ππ\pi\pi or the σ\sigma-meson exchange mechanism. It is, however, not inconceivable that a momentum scale of this magnitude is inconsistent with the ΛΛT\Lambda\Lambda T bound cluster ansatz, whereby the very existence of the core fields, Tt,hT\equiv t,h becomes questionable.

Refer to caption
Refer to caption
Figure 6: The double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} of     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H (left panel) and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He (right panel) as a function of the inverse of the SS-wave double-Λ\Lambda scattering length aΛΛ1a^{-1}_{\Lambda\Lambda} using different values of the three-body coupling g3(A)g^{(A)}_{3} at appropriate cutoff scales Λc\Lambda_{c}. These results correspond to the type-A choice of the elastic channel obtained using integral equations (11). The displayed data points correspond to our reevaluations [ via Eq. (28)] of the past potential model-based predictions of Refs. Filikhin:2002wm ; Filikhin:2003js ; Myint:2002dp ; Lanskoy:2003ia ; Nemura:2004xb using the current experimental input for the Λ\Lambda-separation energies Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] of (HΛ    4,HeΛ    4\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs . In particular, the two data points, namely, “Ia”: (BΛΛ=3.750B_{\Lambda\Lambda}=3.750 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm) for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and “Ib”: (BΛΛ=3.660B_{\Lambda\Lambda}=3.660 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm) for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He (large open squares), taken from Ref. Nemura:2004xb best serve to normalize our solutions to the integral equations.
Refer to caption
Refer to caption
Figure 7: The double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} of     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H (left panel) and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He (right panel) as a function of the inverse of the SS-wave double-Λ\Lambda scattering length aΛΛ1a^{-1}_{\Lambda\Lambda} using different values of the three-body coupling g3(B)g^{(B)}_{3} at appropriate cutoff scales Λc\Lambda_{c}. These results correspond to the type-B choice of the elastic channel obtained using integral equations (12). The displayed data points correspond to our reevaluations [ via Eq. (28)] of the past potential model-based predictions of Refs. Filikhin:2002wm ; Filikhin:2003js ; Myint:2002dp ; Lanskoy:2003ia ; Nemura:2004xb using the current experimental input for the Λ\Lambda-separation energies Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] of (HΛ    4,HeΛ    4\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs . In particular, the two data points, namely, “Ia”: (BΛΛ=3.750B_{\Lambda\Lambda}=3.750 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm) for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and “Ib”: (BΛΛ=3.660B_{\Lambda\Lambda}=3.660 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm) for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He (large open squares), taken from Ref. Nemura:2004xb best serve to normalize our solutions to the integral equations.

In Figs. 6 and 7, for each choice (type-A, -B) of the elastic channel, we plot our predictions for the BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlation using different values of the three-body couplings g3(A,B)g^{(A,B)}_{3} at appropriate cutoff scales. Solutions to each set of integral equations [i.e., Eqs. (11) and (12)] are normalized to a single (paired) data point which is conveniently taken from the ab initio potential model analysis of Ref. Nemura:2004xb , each for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H and     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He, namely, the data points “Ia” (BΛΛ=3.750B_{\Lambda\Lambda}=3.750 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm) and “Ib” (BΛΛ=3.660B_{\Lambda\Lambda}=3.660 MeV, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm), respectively (cf. Table. 2 ). In particular, our EFT results for the choice of the regulator, Λc=200\Lambda_{c}=200 MeV, corresponding to the three-body couplings, g3(A)=28.461g^{(A)}_{3}=-28.461 and g3(B)=0.8606g^{(B)}_{3}=-0.8606 for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}H, and g3(A)=25.252g^{(A)}_{3}=-25.252 and g3(B)=0.8362g^{(B)}_{3}=-0.8362 for     5ΛΛ{}_{\Lambda\Lambda}^{\,\,\,\,5}He, agree reasonably well with the existing regulator independent potential model results Filikhin:2002wm ; Filikhin:2003js ; Myint:2002dp ; Lanskoy:2003ia ; Nemura:2004xb (provided of course that the original model predictions of BΛΛB_{\Lambda\Lambda} or ΔBΛΛ\Delta B_{\Lambda\Lambda}, based on the superannuated Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] experimental data Juric:1973zq ; Davis:2005mb are reevaluated using the current data Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs ).333The past potential model analyses used different three-body techniques to determine either BΛΛB_{\Lambda\Lambda} or ΔBΛΛ\Delta B_{\Lambda\Lambda} in one of two ways: (i) ab initio determination, using elementary two- and three-body baryonic interactions, and (ii) cluster model determination, relying on the elementary four-body inputs (or equivalently, the two-body inputs in our particle-dimer cluster scenario), namely, the Λ\Lambda-separation energies Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] of (HΛ    4,HeΛ    4\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}) from old emulsion studies Juric:1973zq ; Davis:2005mb . With the advent of the recent high-precision data on Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] from MAMI and J-PARC Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs , the old emulsion works have now been superseded. Consequently, all model data points displayed in Figs. 6 and 7 correspond to our reevaluated BΛΛB_{\Lambda\Lambda} values from the old ΔBΛΛ\Delta B_{\Lambda\Lambda} model results using the current data via Eq. (28). There is, however, a caveat to these figures: in the absence of updated results of the old cluster model analyses Filikhin:2002wm ; Filikhin:2003js ; Myint:2002dp ; Lanskoy:2003ia , it is likely that some of the our reevaluated BΛΛB_{\Lambda\Lambda} “model data points” may be nominally faulty in using the old model ΔBΛΛ\Delta B_{\Lambda\Lambda} inputs, owing to certain degree of residual dependence on the superannuated Λ[0+,1+]{\mathcal{B}}_{\Lambda}[0^{+},1^{+}] data. To this end, each solid red curve in the figures represents our EFT generated calibration curve reflecting the inherent nature of the BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlations of the ΛΛT\Lambda\Lambda T mirror systems. Thus, in the remaining part of our analysis we use the correlation plots corresponding to Λc=200\Lambda_{c}=200 MeV to predict BΛΛB_{\Lambda\Lambda} for arbitrary values of aΛΛa_{\Lambda\Lambda}.

Refer to caption
Refer to caption
Figure 8: The EFT predicted regulator (Λc\Lambda_{c}) dependence of the J=1/2J=1/2 SS-wave Λ\Lambda\,-(Λt)s\,(\Lambda t)_{s} scattering length a3(s)a_{3(s)} for the HΛ4[0+]{}_{\Lambda}^{4}{\rm H}[0^{+}]\,-Λ\,\Lambda scattering without (left panel) and with (right panel) the three-body coupling g3(A)g^{(A)}_{3}. Two representative values of the Nijmegen hard-core potential model extracted double-Λ\Lambda scattering lengths are used, namely, aΛΛ=0.91,1.37a_{\Lambda\Lambda}=-0.91,\,-1.37 fm Nagels:1978sc , which are consistent with recent RHIC data analyses Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb . The input double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} needed to fix g3(A)(Λc)g^{(A)}_{3}(\Lambda_{c}) for renormalization are obtained by using our EFT calibration curves (solid red line in Fig. 6; see also Table. 4 ). The unrenormalized (bare) scattering length is denoted a3(s)Ba^{B}_{3(s)}. The smooth curves in the right panel represent fits to the data points based on the power series ansatz, Eq. (32). The corresponding results for ΛΛh\Lambda\Lambda h or HeΛ4[0+]{}_{\Lambda}^{4}{\rm He}[0^{+}]\,-Λ\,\Lambda scattering being very similar, are not displayed.
Refer to caption
Refer to caption
Figure 9: The EFT predicted regulator (Λc\Lambda_{c}) dependence of the J=1/2J=1/2 SS-wave Λ\Lambda\,-(Λt)t\,(\Lambda t)_{t} scattering length a3(t)a_{3(t)} for the HΛ4[1+]{}_{\Lambda}^{4}{\rm H}[1^{+}]\,-Λ\,\Lambda scattering without (left panel) and with (right panel) the three-body coupling g3(B)g^{(B)}_{3}. Two representative values of the Nijmegen hard-core potential model extracted double-Λ\Lambda scattering lengths are used, namely, aΛΛ=0.91,1.37a_{\Lambda\Lambda}=-0.91,\,-1.37 fm Nagels:1978sc , which are consistent with recent RHIC data analyses Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb . The input double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda} needed to fix g3(B)(Λc)g^{(B)}_{3}(\Lambda_{c}) for renormalization are obtained by using our EFT calibration curves (solid red line in Fig. 7; see also Table. 4 ). The unrenormalized (bare) scattering length is denoted a3(t)Ba^{B}_{3(t)}. The smooth curves in the right panel represent fits to the data points based on the power series ansatz, Eq. (32). The corresponding results for ΛΛh\Lambda\Lambda h or HeΛ4[1+]{}_{\Lambda}^{4}{\rm He}[1^{+}]\,-Λ\,\Lambda scattering being very similar, are not displayed.

The final part of our EFT analysis is concerned with the preliminary estimation of the SS-wave three-body scattering lengths aΛΛTa_{\Lambda\Lambda T}, namely, the HΛ4{}_{\Lambda}^{4}{\rm H}\,-Λ\,\Lambda and HeΛ4{}_{\Lambda}^{4}{\rm He}\,-Λ\,\Lambda scattering lengths. For this purpose, we numerically solve the two sets of coupled integral equations for the renormalized on-shell elastic KK-matrix elements 𝕂aA,B(k,k){\mathbb{K}}^{A,B}_{a}(k,k) in each case [cf. Eqs. (LABEL:eq:type-KA) and (LABEL:eq:type-KB)], which yield the scattering lengths in the threshold limit (k0k\to 0). Care must be taken to bypass the poles of the dimer propagators originating in the kinematical scattering domain close to the respective particle-dimer thresholds. In this regard, we have implemented a numerical methodology of solving a multidimensional generalization of principal value prescription modified integral equations, originally developed by Kowalski and Noyes Kowalski ; Noyes (see also Ref. Gloeckle ) for the one-dimensional case.

Figures 8 and 9 display the cutoff scale dependence of the Λ\Lambda\,- (Λt)s,t(\Lambda t)_{s,t} scattering lengths for the HΛ4[0+,1+]{}_{\Lambda}^{4}{\rm H}[0^{+},1^{+}]\,-Λ\,\Lambda scattering processes for the two input double-Λ\Lambda scattering lengths, namely, aΛΛ=0.91a_{\Lambda\Lambda}=-0.91 fm and 1.37-1.37 fm Nagels:1978sc . In this case the results for the ΛΛT\Lambda\Lambda T mirror partners are imperceptibly close to each other, so that we graphically display the results for only one of them, say, the ΛΛt\Lambda\Lambda t system, although a consolidated summary of our numerical predictions for both mirror partners are tabulated in Table. 4. It is, however, worth mentioning that in contrast with our universal LO EFT prediction with very little observable difference between the ΛΛT\Lambda\Lambda T mirrors, somewhat large isospin-breaking corrections have been reported for these systems in the context of existing potential-model analyses. This leads to significant differences in the model predictions of the two- and three-body binding energies Lanskoy:2003ia ; Gal:2015bfa . Such precision effects are not captured without a subleading-order EFT calculation, which is beyond the present scope.

In contrast with little or no quantitative difference in results corresponding to each choice (type-A, -B) of the bound-state solutions, significant qualitative differences arise in the respective scattering domains. In the left panel plots of Figs. 8 and 9, which exclude the three-body contact interactions, the unregulated (bare) scattering amplitudes a3(s,t)Ba^{\rm B}_{3(s,t)} depend sensitively on the cutoff scale and diverge for specific values of Λc\Lambda_{c} associated with the successive emergence of three-body bound states. Moreover for Λc200\Lambda_{c}\lesssim 200 MeV, the very first pole-like feature seen in the unrenormalized type-A amplitude in Fig. 8, is missing from the unrenormalized type-B amplitude displayed in Fig. 9. This feature is concomitant with the associated limit cycle behavior of the three-body systems (cf. Fig.4) where the N=0N=0 branch is found to be altogether missing in the type-B plots. Nevertheless, such unphysical singularities in the scattering amplitude are renormalized by the introduction of the scale dependent couplings g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}), as revealed in the right panel plots which are free of singularities. We find that the renormalized scattering lengths a3(s,t)a_{3(s,t)} smoothly decreases with increasing Λc\Lambda_{c} converging asymptotically for Λc500\Lambda_{c}\gtrsim 500 MeV. These asymptotic values a3(s,t)(Λc)a_{3(s,t)}(\Lambda_{c}\to\infty) precisely yield our EFT predictions of the three-body scattering lengths corresponding to type-A,B choices of the elastic channels. To obtain the asymptotic values a3(s,t)a^{\infty}_{3(s,t)}, we use the power series fitting ansatz for small Q¯/Λc{\bar{Q}}/\Lambda_{c}, namely,

a3(s,t)(Λc)=a3(s,t)[1+αs,t(Q¯Λc)+βs,t(Q¯Λc)2+],\displaystyle a_{3(s,t)}(\Lambda_{c})=a^{\infty}_{3(s,t)}\!\!\left[1\!+\!\alpha_{s,t}\!\left(\frac{\bar{Q}}{\Lambda_{c}}\right)\!+\!\beta_{s,t}\!\left(\frac{\bar{Q}}{\Lambda_{c}}\right)^{2}\!\!+\cdots\!\right],\,\,\,\quad (32)

applied to our generated data points, as shown in the figures, obtained as solutions to the renormalized KK-matrix equations (LABEL:eq:type-KA) and (LABEL:eq:type-KB). As estimated earlier, Q¯50{\bar{Q}}\sim 50 MeV can be conveniently taken as the generic momentum scale of the underlying dynamics, with αs,t,βs,t\alpha_{s,t},\,\beta_{s,t} and a3(s,t)a^{\infty}_{3(s,t)} being the fitting parameters. Thus, the corresponding fitting curves, as displayed Figs. 8 and 9 (right panel plots), yield the respective three-body scattering lengths by extrapolating to Λc\Lambda_{c}\to\infty. We note that a similar ansatz was recently used in the SVM π/{}^{\pi\!\!\!/}EFT calculation of Ref. Contessi:2019csf to estimate the Λ\Lambda-separation energies Λ{\mathcal{B}}_{\Lambda} of the (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}) mirror partners.

Table. 4 summarizes our numerical estimates of the SS-wave renormalized type-A, -B three-body scattering lengths a3(s,t)a3(s,t)(Λc)a_{3(s,t)}\equiv a_{3(s,t)}(\Lambda_{c}\to\infty), as well as the spin-averaged values aΛΛTa_{\Lambda\Lambda T} for different aΛΛa_{\Lambda\Lambda} inputs within the current theoretically feasible range, 1.92fmaΛΛ0.5fm-1.92\,\,{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5\,\,{\rm fm}, based on RHIC data analyses Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb .444In contrast, the same RHIC data previously analyzed by the STAR Collaboration Adamczyk:2014vca suggested a positive value of the scattering length. It is notable, however, that our analysis in this work is only justified on the basis of a virtual bound ΛΛ\Lambda\Lambda state. Hence, we restrict our analysis to negative aΛΛa_{\Lambda\Lambda} values only. The chosen aΛΛa_{\Lambda\Lambda} values range from those extracted from the old Nijmegen potential models (e.g., NHC-F,  NSC97e,  ND,  NDS,  mNDSNagels:1978sc ; Rijken:1998yy ; Stoks:1999bz , including more recent ones based on dispersion techniques Gasparyan:2011kg and RHIC thermal correlation model analysis Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb , and up to the most recent ones based on lattice simulations by the HAL QCD Collaboration Sasaki:2019qnh . In particular, a representative value of aΛΛ=0.8a_{\Lambda\Lambda}=-0.8 fm was suggested in the recent SVM π/{}^{\pi\!\!\!/}EFT calculation Contessi:2019csf , using which Λ{\mathcal{B}}_{\Lambda} of HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} was predicted to be about 1.141.14 MeV. This value can be compared with our estimation displayed in Table. 5, which in our ΛΛt\Lambda\Lambda t cluster scenario may be naively obtained as

Hypernucleus Scattering length Type-A Type-A Type-B Type-B (2J+1)(2J+1) average
(J=12)(J=\frac{1}{2}) aΛΛa_{\Lambda\Lambda} (fm) BΛΛB_{\Lambda\Lambda} (MeV) a3(s)(Λc)a_{3(s)}(\Lambda_{c}\to\infty) (fm) BΛΛB_{\Lambda\Lambda} (MeV) a3(t)(Λc)a_{3(t)}(\Lambda_{c}\to\infty) (fm) aΛΛTa_{\Lambda\Lambda T} (fm)
-0.50 (NSC97e) Rijken:1998yy ; Stoks:1999bz 3.236 4.258 3.292 2.388 2.968
-0.60 (DR) Gasparyan:2011kg 3.377 4.109 3.418 2.404 2.925
-0.73 (NHC-F) Nagels:1978sc 3.544 3.964 3.567 2.420 2.885
-0.77 (ND) Rijken:1998yy ; Stoks:1999bz 3.592 3.927 3.610 2.425 2.875
-0.80 (SVM) Contessi:2019csf 3.627 3.902 3.641 2.428 2.868
-0.81 (HAL QCD) Sasaki:2019qnh 3.639 3.894 3.651 2.429 2.866
HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} -0.91 (mNDSNagels:1978sc 3.750 Nemura:2004xb 3.821 3.750 Nemura:2004xb 2.438 2.847
-1.20 (DR) Gasparyan:2011kg 4.030 3.668 3.997 2.456 2.809
-1.25 (RHIC) Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb 4.073 3.648 4.034 2.459 2.804
-1.32 (NHC-F) Nagels:1978sc 4.131 3.622 4.085 2.462 2.797
-1.37 (NDSNagels:1978sc 4.170 3.605 4.119 2.463 2.793
-1.80 (DR) Gasparyan:2011kg 4.461 3.493 4.374 2.473 2.764
-1.92 (RHIC) Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb 4.530 3.470 4.434 2.474 2.757
-0.50 (NSC97e) Rijken:1998yy ; Stoks:1999bz 3.163 4.714 3.221 1.831 2.841
-0.60 (DR) Gasparyan:2011kg 3.298 4.461 3.341 1.837 2.740
-0.73 (NHC-F) Nagels:1978sc 3.460 4.229 3.484 1.843 2.649
-0.77 (ND) Rijken:1998yy ; Stoks:1999bz 3.506 4.173 3.525 1.845 2.628
-0.80 (SVM) Contessi:2019csf 3.541 4.134 3.555 1.846 2.613
-0.81 (HAL QCD) Sasaki:2019qnh 3.552 4.121 3.565 1.846 2.608
HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} -0.91 (mNDSNagels:1978sc 3.660 Nemura:2004xb 4.012 3.660 Nemura:2004xb 1.849 2.567
-1.20 (DR) Gasparyan:2011kg 3.934 3.793 3.899 1.853 2.485
-1.25 (RHIC) Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb 3.976 3.766 3.935 1.854 2.474
-1.32(NHC-F) Nagels:1978sc 4.032 3.730 3.984 1.854 2.461
-1.37(NDSNagels:1978sc 4.071 3.707 4.018 1.854 2.452
-1.80 (DR) Gasparyan:2011kg 4.357 3.558 4.266 1.853 2.396
-1.92 (RHIC) Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb 4.425 3.528 4.324 1.852 2.384
Table 4: The EFT predicted J=1/2J=1/2 SS-wave ΛΛT\Lambda\Lambda T scattering lengths aΛΛTa_{\Lambda\Lambda T} [cf. Eq. (24) ] of the double-Λ\Lambda-hypernuclear mirror partners (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}), obtained for the central values of the SS-wave scattering length aΛΛa_{\Lambda\Lambda} based on various phenomenological analyses, e.g., old Nijmegen potential models (e.g., NHC-F, NSC97e, ND, NDS, mNDSNagels:1978sc ; Rijken:1998yy ; Stoks:1999bz , dispersion relations (DR) Gasparyan:2011kg , thermal correlation model of relativistic heavy-ion collisions (RHIC) Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb , ab initio π/{}^{\pi\!\!\!/}EFT (SVM) Contessi:2019csf , and lattice QCD (HAL QCD) Sasaki:2019qnh , consistent with the currently accepted range, 1.92fmaΛΛ0.5fm-1.92\,\,{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5\,\,{\rm fm} Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb . All the displayed double-Λ\Lambda-separation energies BΛΛB_{\Lambda\Lambda}, excepting the two normalization values taken from the potential model ab initio SVM analysis of Ref. Nemura:2004xb (shown in bold), are obtained using our calibration curves for the choice of the cutoff scale, Λc=200\Lambda_{c}=200 MeV.
Λ(HΛΛ    5)\displaystyle{\mathcal{B}}_{\Lambda}\left({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\right) =\displaystyle= ΔBΛΛ(HΛΛ    5)+Λavg(HΛ    4)\displaystyle\Delta B_{\Lambda\Lambda}\left({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\right)+{\mathcal{B}}^{avg}_{\Lambda}\left(\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\right) (33)
=\displaystyle= BΛΛ(Avg)Λavg(HΛ    4),\displaystyle B_{\Lambda\Lambda}({\rm Avg})-{\mathcal{B}}^{avg}_{\Lambda}(\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H})\,,

where

BΛΛ(Avg)=12[BΛΛ(type-A)+BΛΛ(type-B)]\displaystyle B_{\Lambda\Lambda}({\rm Avg})=\frac{1}{2}\Big{[}B_{\Lambda\Lambda}(\text{type-A})+B_{\Lambda\Lambda}(\text{type-B})\Big{]} (34)
Hypernucleus This work, Eq. (33) Ref. Contessi:2019csf
(J=12,I=12)(J=\frac{1}{2},\,I=\frac{1}{2}) Λ{\mathcal{B}}_{\Lambda} (MeV) Λ{\mathcal{B}}_{\Lambda} (MeV)
HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} 2.295 1.14±0.010.26+0.44\pm 0.01_{-0.26}^{+0.44}
HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He} 2.212 -
Table 5: The Λ\Lambda-separation energies, namely, Λ(HΛΛ    5){\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}) and Λ(HeΛΛ    5){\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}), corresponding the representative value, aΛΛ=0.80a_{\Lambda\Lambda}=-0.80 fm. The result for HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} of Ref. Contessi:2019csf is displayed for comparison.

is the ordinary mean of the type-A and type-B double-Λ\Lambda-separation energies of HΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H} obtained from Table. 4. Likewise, we also obtain the estimate for Λ(HeΛΛ    5){\mathcal{B}}_{\Lambda}\left({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}\right), as displayed in Table. 5. Consequently, the difference of the two Λ\Lambda-separation energies, namely, Λ(HeΛΛ    5)Λ(HΛΛ    5)=9{\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He})-{\mathcal{B}}_{\Lambda}({}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H})=9 keV, yields a naive estimate of the charge-symmetry-breaking effects inherent to these double-Λ\Lambda-hypernuclei. This is indeed small in comparison with that in the two-body sector where δΛ[0+]200\delta{\mathcal{B}}_{\Lambda}[0^{+}]\sim 200 MeV and δΛ[1+]100\delta{\mathcal{B}}_{\Lambda}[1^{+}]\sim 100 MeV. However, the charge asymmetry noted here does not directly reflect anything regarding the underlying low-energy EFT dynamics with no isospin breaking terms included in the effective Lagrangian at LO, but rather a consequence of using physical masses and phenomenologically fixed inputs. Nevertheless, given the broad range of acceptable input values of the SS-wave double-Λ\Lambda scattering lengths, namely, with δaΛΛ1.42\delta a_{\Lambda\Lambda}\approx 1.42 fm, the corresponding variations in the spin-averaged three-body scattering lengths turn out to be quite nominal, i.e., δaΛΛT0.4\delta a_{\Lambda\Lambda T}\lesssim 0.4 fm. But, it may be noticed that in contrast particularly the type-A scattering lengths a3(s)a_{3(s)} exhibit significant variations depending on the (aΛΛ,BΛΛ)(a_{\Lambda\Lambda},\,B_{\Lambda\Lambda}) inputs. In fact the behavior, of a3(s)a_{3(s)} and a3(t)a_{3(t)} are turn out to be quite the opposite, with the former increasing and the latter decreasing with both |aΛΛ||a_{\Lambda\Lambda}| and BΛΛB_{\Lambda\Lambda} decreasing.

The above discussed features are depicted clearly in the Phillips-line plots Phillips:1968zze shown in upper the panels of Fig. 10, for each choice (type-A, -B) of the elastic channel. Interestingly, the variation of the spin-averaged scattering length aΛΛTa_{\Lambda\Lambda T}, in what may be termed as the “physical” Phillips plot (lower panel) turns out to be significantly moderate. Evidently, the type-A Phillips plots are in accordance with the expected behavior of the three-body binding energies varying inversely as the three-body scattering lengths, accounting for their characteristic negative slopes. In contrast, the observed positive slope of the type-B Phillips plot may seem rather counterintuitive. It is noteworthy that these contrasting type-A, -B results are neither dependent on the nature of the three-body contact interactions used nor any artifact of the renormalization methods adopted in each case [cf. discussion below Eq. (15)]. This is easily understood by comparing the plots for the unrenormalized type-A, -B scattering lengths, which exhibit the same contrasting features. In this context, we also note that in determining a3(s)a_{3(s)}, only the dynamics near the deeper threshold, namely, the particle-dimer Λ+u0\Lambda+u_{0} threshold, is relevant, whereas the dynamics of both thresholds (Λ+u0,1\Lambda+u_{0,1}) contribute in the determination of a3(t)a_{3(t)}. Although an unambiguous physical reasoning behind this contrasting behavior could not be ascertained, a plausible explanation may be attributed to the underlying nature of the off-shell dynamics arising due to the complex interplay between the two thresholds.

To test this hypothesis we took the strategy of considering a hypothetical (unphysical) scenario in which the triplet and singlet ΛT\Lambda T subsystems are completely decoupled from each other to avoid the simultaneous contribution of both the particle-dimer thresholds for each ΛΛT\Lambda\Lambda T systems. In other words, this is essentially tantamount to the removal of the triplet-dimer field u1u_{1} contributions in the type-A integral equations (11), and the singlet-dimer field u0u_{0} contributions in the type-B integral equations (12). The resulting ΛΛT\Lambda\Lambda T dynamics become considerably simpler reducing into a system of two coupled-channel integral equations in each case. It is found that, in these reduced systems, the type-A elastic channel does not exhibit a limit cycle behavior any longer, while the type-B elastic channels continue to exhibit limit cycles but instead following a very different value of the asymptotic parameter, namely, s00.84s^{\prime\infty}_{0}\approx 0.84, for each mirror system. Subsequently, it may indeed be checked that the estimation of the scattering lengths a3(s,t)a_{3(s,t)} leads to the expected natures of the Phillips-lines with negative slopes. This ostensibly indicates plausible role of the simultaneous particle-dimer thresholds resulting in the atypical nature of the type-B Phillips-lines. However, a more satisfactory explanation of this feature demands a thorough understanding of the off-shell dynamics perhaps hinting at the need of a four-body calculations which is beyond the present scope. Finally, the fact that our results converge asymptotically for momentum scales significantly larger than mπm_{\pi}, the canonical hard scale of π/{}^{\pi\!\!\!/}EFT, there is an indication of the apparent insensitivity of the three-body dynamics to the Λ\Lambda-Λ\Lambda (two-body) correlations. In this regard, our findings corroborate the two previous π/{}^{\pi\!\!\!/}EFT analyses Ando:2013kba ; Ando:2015uda based on similar three-body calculations of HΛΛ    4{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm H} and HeΛΛ    6{}_{\Lambda\Lambda}^{\,\,\,\,6}{\rm He} double-Λ\Lambda-hypernuclei.

Refer to caption
Refer to caption
Refer to caption
Figure 10: Phillips-lines for the type-A elastic channel, i.e., HΛ4[0+]{}_{\Lambda}^{4}{\rm H}[0^{+}]\,-Λ\,\Lambda and HeΛ4[0+]{}_{\Lambda}^{4}{\rm He}[0^{+}]\,-Λ\,\Lambda scatterings (upper left panel) and the type-B elastic channel, i.e., HΛ4[1+]{}_{\Lambda}^{4}{\rm H}[1^{+}]\,-Λ\,\Lambda and HeΛ4[1+]{}_{\Lambda}^{4}{\rm He}[1^{+}]\,-Λ\,\Lambda scatterings (upper right panel) are displayed. The lower panel displays the “physical” Phillips-lines corresponding to the spin-averaged scattering lengths aΛΛTa_{\Lambda\Lambda T} plotted as a function the mean values of the three-body binding energy, namely, BΛΛ(Avg)=12[BΛΛ(type-A)+BΛΛ(type-B)]B_{\Lambda\Lambda}({\rm Avg})=\frac{1}{2}\left[B_{\Lambda\Lambda}(\text{type-A})+B_{\Lambda\Lambda}(\text{type-B})\right], obtained from Table. 4.

IV SUMMARY AND CONCLUSIONS

In summary, this work presents an assay of the putative doubly strange (S=2S=-2) mirror double-Λ\Lambda-hypernuclei (HΛΛ    5,HeΛΛ    5{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm H}\,,\,{}_{\Lambda\Lambda}^{\,\,\,\,5}{\rm He}) in the context of a LO pionless EFT. In this framework the systems are conjectured as shallow three-particle halo-bound clusters, viz. the iso-doublet pair (ΛΛt,ΛΛh\Lambda\Lambda t,\,\Lambda\Lambda h) in the J=1/2J=1/2 channel. The numerical methodology presented here closely resembles the approaches of Refs. Ando:2013kba ; Ando:2015uda ; Ando:2015fsa ; Raha:2017ahu . By solving the Faddeev-like coupled integral equations STM1 ; STM2 ; DL61 ; DL63 for each choice (type-A, -B) of the constituent (ΛT)s,t(\Lambda T)_{s,t} subsystem spin introduced in the elastic channel, we presented a qualitative RG based study of the cutoff dependence of the three-body contact interactions. In particular, we investigated the dynamical interplay between the different constituent two-body subsystems, namely, the virtual bound 1S0 ΛΛ\Lambda\Lambda cluster (with aΛΛ<0a_{\Lambda\Lambda}<0), and the (ΛT)s,t(\Lambda T)_{s,t} bound clusters (equivalently, the two-body spin-singlet and spin-triplet bound states, i.e., HΛ4[J=0+,1+]{}_{\Lambda}^{4}{\rm H}[J=0^{+},1^{+}] and HeΛ4[J=0+,1+]{}_{\Lambda}^{4}{\rm He}[J=0^{+},1^{+}]), whose interplay could plausibly lead to the emergence of three-body shallow bound states. This is formally suggested by the appearance of RG limit cycles in the running of the three-body couplings g3(A,B)(Λc)g^{(A,B)}_{3}(\Lambda_{c}). In the unitary limit this also implies that a discrete sequence of Efimov states emerges from the three-particle threshold Efimov:1970zz , and simultaneously with our LO theory in the scaling limit, the ground-state energy collapses to negative infinity (Thomas effect Thomas:1935 ). Of course, such universal phenomena are de facto unrealistic and disappear for interactions with nonvanishing range (finite momentum cutoff) and finite scattering lengths. Nevertheless, for energies in proximity to the particle-dimer thresholds (sufficiently far from open channels involving transmutations into particles like Σ,Ξ,\Sigma,\,\Xi,\cdots) with reasonably fine-tuned Λ\Lambda-TT and Λ\Lambda-Λ\Lambda correlation strengths, it can not be precluded that any remnant universal feature leads to the formation of Efimov-like trimers.

For our numerical analysis we considered different choices of the input double-Λ\Lambda scattering lengths within the currently acceptable range, 1.92fmaΛΛ0.5fm-1.92\,\,{\rm fm}\lesssim a_{\Lambda\Lambda}\lesssim-0.5\,\,{\rm fm} Morita:2014kza ; Ohnishi:2015cnu ; Ohnishi:2016elb , along with the inputs for the Λ+u0,1\Lambda+u_{0,1} particle-dimer thresholds provided by the up-to-date experimental information on the Λ\Lambda-separation energies of the (HΛ    4,HeΛ    4\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm H}\,,\!\!\!{}_{\,\,\,\,\Lambda}^{\,\,\,\,4}{\rm He}) mirror hypernuclei Davis:2005mb ; Yamamoto:2015avw ; Esser:2015trs ; Schulz:2016kdc ; Koike:2019rrs . By appropriate fixing of the three-body contact interactions using the RG limit cycles at the typical cutoff scale, Λc200\Lambda_{c}\sim 200 MeV, a fairly good agreement of our EFT predicted BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlations was obtained with existing potential models Filikhin:2002wm ; Filikhin:2003js ; Myint:2002dp ; Lanskoy:2003ia ; Nemura:2004xb (provided that the BΛΛB_{\Lambda\Lambda} are reevaluated from their old model prediction of BΛΛB_{\Lambda\Lambda} using updated experimental inputs). This agreement, of course, relied on the efficacy in choosing our normalization points, taken from the ab initio potential model analysis of Nemura et al. Nemura:2004xb . In this case the double-Λ\Lambda-separation energy BΛΛB_{\Lambda\Lambda} could be identified with the eigenenergy of the ground (n=0n=0) state Efimov-like trimer, with the provision that our halo/cluster π/{}^{\pi\!\!\!/}EFT analysis could be extended to include ππ\pi\pi or σ\sigma-meson exchange interactions with an adjusted breakdown scale, ΛH2mπ\Lambda_{H}\gtrsim 2m_{\pi}. But whether such physically realizable bound states can be de facto supported in our EFT framework remains contentious, depending crucially on support from experimental or lattice QCD data which are currently altogether missing. Future feasibility studies from the much awaited production experiments, like PANDA and CBM at FAIR Pochodzalla:2010 ; Boca:2015 ; Vassiliev:2017 , and JPARC-P75 Fujioka:2019 , are likely to explicate more on the inherent character of these hypernuclei. Besides, predictions based on LO EFT analyses are by and large qualitative in nature and must be supplemented by subleading order precision analyses for robust assessments. This should naturally address issues such as the compatibility of the low-energy cluster picture at momentum scales, QΛHQ\gtrsim\Lambda_{H}, potentially probing the short-distance degrees of freedom beyond the breakup scales of the triton and helion cores.

Finally, to demonstrate the predictive power of our EFT analysis, we presented preliminary estimates of the Λ\Lambda-separation energies Λ{\mathcal{B}}_{\Lambda} of the two double-Λ\Lambda-hypernuclear mirrors of interest and the previously undetermined SS-wave three-body scattering lengths for the HΛ4{}_{\Lambda}^{4}{\rm H}\,-Λ\,\Lambda and HeΛ4{}_{\Lambda}^{4}{\rm He}\,-Λ\,\Lambda scattering processes. Needless to say that, with the scarcity of pertinent empirical inputs, a theoretical error analysis based on such empirical estimates serves little purpose and, hence, was not attempted in this work. Nevertheless, the accuracy of our results evidently relies on the precise nature of the BΛΛB_{\Lambda\Lambda}\,-aΛΛ\,a_{\Lambda\Lambda} correlations, with the latter being still poorly constrained currently. Subject to the inherent limitation pertaining to the ambiguity in the normalization of the solutions to the integrals equations, our EFT methodology demands a three-body empirical input which is provided by the BΛΛB_{\Lambda\Lambda} model predictions of Nemura et al. Subsequently, the correlation plots self-consistently determine the three-body scattering lengths aΛΛTa_{\Lambda\Lambda T}. In particular, the scale variation of the renormalized scattering lengths was found to asymptotically converge for Λc500\Lambda_{c}\gtrsim 500 MeV which is well beyond the hard scale of standard π/{}^{\pi\!\!\!/}EFT. Thus, the three-body dynamics are most likely insensitive to the low-energy Λ\Lambda-Λ\Lambda two-body interactions, unless the hard-scale ΛH\Lambda_{H} of the effective theory could be augmented sufficiently beyond without potentially invalidating the basic halo/cluster ansatz. This supports the earlier claim made in Refs. Ando:2013kba ; Ando:2015uda based on similar investigations of the other double-Λ\Lambda-hypernuclear cluster systems, such as HΛΛ    4{}_{\Lambda\Lambda}^{\,\,\,\,4}{\rm H} and HeΛΛ    6{}_{\Lambda\Lambda}^{\,\,\,\,6}{\rm He}. Although short-distance mechanisms beyond the realm of our EFT can certainly influence the formation of such exotic bound hypernuclear clusters, this does not preclude possible role of low-energy off-shell effects that may not be accessible in a three-body framework without involving four-body calculations. Such an endeavor, however, goes beyond the scope of the simple qualitative nature of this work. To this end, we reiterate once more that our estimates of the scattering lengths aΛΛTa_{\Lambda\Lambda T} should serve for demonstrative purposes only, given the current limitations of performing ΛΛT\Lambda\Lambda T scattering experiments in testing their validity thereof.

Acknowledgments

We are thankful to S.-I. Ando for providing many useful suggestions regarding this work. We are also thankful to A. Gal for apprising us of the pioneering work of Ref. Contessi:2019csf on the ab initio (SVM) pionless EFT analysis regarding the onset of double-Λ\Lambda-hypernuclear binding.

V Appendix

V.1 One- and Two-body non-relativistic Propagators

Here we summarize the one- and two-body nonrelativistic propagators specific to the ΛΛT\Lambda\Lambda T three-body systems in pionless effective theory (π/{}^{\pi\!\!\!\!/}EFT). In this framework, at sufficiently low-energies below the respective breakup scales, we may consider the triton (3H or tt) and the helion (3He or hh) as being fundamental particles. Thus, as the fundamental one-body components of the theory, the Λ\Lambda and TT propagators are given as

iSΛ,T(p0,𝐩)\displaystyle iS_{\Lambda,\,T}(p_{0},{\bf p}) =\displaystyle= ip0𝐩22MΛ,T+iη,\displaystyle\frac{i}{p_{0}-\frac{{\bf p}^{2}}{2M_{\Lambda,\,T}}+i\eta}\,, (35)

where p0p_{0} and 𝐩{\bf p} are the generic off-shell energy and three-momentum. In our analysis we only consider the SS-waves contributions from the two-body interactions at LO. We have incorporated a power counting scheme Kaplan:1998tg ; Kaplan:1998we for the S01{}^{1}{\rm S}_{0} Λ\Lambda-TT, S13{}^{3}{\rm S}_{1} Λ\Lambda-TT and the S01{}^{1}{\rm S}_{0} Λ\Lambda-Λ\Lambda interactions in the two-body sector, in which the unitarized two-body amplitudes are conveniently expressed in terms of the auxiliary fields, namely, the spin-singlet and spin-triplet ΛT\Lambda T-dimer fields u0,1u_{0,1}, and the spin-singlet ΛΛ\Lambda\Lambda-dibaryon field usu_{s}. The leading order renormalized dressed dimer propagators Bedaque:1998kg ; Bedaque:1998km ; Bedaque:1999ve are given by the expressions (see Fig. 11 )

Refer to caption
Figure 11: Diagrams for the renormalized dressed dimer propagators: (a) iΔ0i\Delta_{0} for the spin-singlet auxiliary field u0u_{0}, (b) iΔ1i\Delta_{1} for the spin-triplet auxiliary field u1u_{1}, and (c) iΔsi\Delta_{s} for the spin-singlet auxiliary field usu_{s}. Thick (thin) lines denote the Λ\Lambda-hyperon (core Tt,hT\equiv t,h) field propagators.
𝒟0,1(p0,𝐩)\displaystyle{\mathcal{D}}_{0,1}(p_{0},{\bf p}) =\displaystyle= 1γ0,12μΛT(p0𝐩22(MT+MΛ))iηiη,\displaystyle\frac{1}{\gamma_{0,1}-\sqrt{-2\mu_{\Lambda T}(p_{0}-\frac{{\bf p}^{2}}{2(M_{T}+M_{\Lambda})})-i\eta}-i\eta}\,\,,

and,

𝒟s(p0,𝐩)\displaystyle{\mathcal{D}}_{s}(p_{0},{\bf p}) =\displaystyle= 11aΛΛMΛ(p0𝐩24MΛ)iηiη,\displaystyle\frac{1}{\frac{1}{a_{\Lambda\Lambda}}-\sqrt{-M_{\Lambda}(p_{0}-\frac{{\bf p}^{2}}{4M_{\Lambda}})-i\eta}-i\eta}\,,\quad\, (37)

respectively, with the LO two-body contact interactions y0y_{0}, y1y_{1}, and ysy_{s} fixed as in Eq. (8) in the text. In the above expressions, γ0\gamma_{0} and γ1\gamma_{1} are the binding momenta of spin-singlet and spin-triplet states of the ΛT\Lambda T subsystem, and aΛΛa_{\Lambda\Lambda} is SS-wave double-Λ\Lambda scattering length.

References

  • (1) H. Takahashi et al., Phys. Rev. Lett.  87, 212502 (2001).
  • (2) J. K. Ahn et al., Phys. Rev. Lett.  87, 132504 (2001).
  • (3) D. H. Davis, Nucl. Phys. A 754 (2005) 3c.
  • (4) C. J. Yoon et al. [E522 (KEK-PS) Collaboration], Phys. Rev. C 75, 022201(R) (2007).
  • (5) J. K. Ahn et al. [E373 (KEK-PS) Collaboration], Phys. Rev. C 88, no. 1, 014003 (2013).
  • (6) H. Tamura et al., Nucl. Phys. A 914, 99 (2013).
  • (7) L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett.  114, 022301 (2015).
  • (8) T. Yamamoto et al. [J-PARC E13 Collaboration], Phys. Rev. Lett. 115, 222501 (2015).
  • (9) A. Esser et al. [A1 Collaboration], Phys. Rev. Lett.  114, 232501 (2015).
  • (10) F. Schulz et al. [A1 Collaboration], Nucl. Phys. A 954, 149-160 (2016)
  • (11) T. Koike et al. [J-PARC E13 Collaboration], AIP Conf. Proc. 2130, No.1, 020011 (2019).
  • (12) S. Achariya et al. [ALICE Collaboration], Phys. Rev. C 99, 024001 (2019).
  • (13) S. Achariya et al. [ALICE Collaboration], Phys. Lett. B 797, 134822 (2019).
  • (14) R. L. Jaffe, Phys. Rev. Lett.  38, 195 (1977).
  • (15) H. W. Hammer, Nucl. Phys. A 705, 173 (2002).
  • (16) I. N. Filikhin and A. Gal, Nucl. Phys. A 707, 491 (2002).
  • (17) I. N. Filikhin, A. Gal and V. M. Suslov, Phys. Rev. C 68, 024002 (2003).
  • (18) H. Nemura, Y. Akaishi and K. S. Myint, Phys. Rev. C 67, 051001 (2003).
  • (19) K. S. Myint, S. Shinmura and Y. Akaishi, Eur. Phys. J. A 16, 21 (2003).
  • (20) D. E. Lanskoy and Y. Yamamoto, Phys. Rev. C 69, 014303 (2004).
  • (21) M. Shoeb, Phys. Rev. C 69, 054003 (2004).
  • (22) H. Nemura, S. Shinmura, Y. Akaishi and K. S. Myint, Phys. Rev. Lett.  94, 202502 (2005).
  • (23) H. Nemura, S. Shinmura, Y. Akaishi and K. S. Myint, Nucl. Phys. A 754, 110 (2005).
  • (24) S.-I. Ando, G.-S.Yang and Y. Oh, Phys. Rev. C 89, 014318 (2014).
  • (25) S.-I. Ando and Y. Oh, Phys. Rev. C 90, 037301 (2014).
  • (26) L. Contessi et al., Phys. Lett. B 797, 134893 (2019).
  • (27) A. M. Gasparyan, J. Haidenbauer and C. Hanhart, Phys. Rev. C 85, 015204 (2012).
  • (28) S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. Lett.  106, 162001 (2011).
  • (29) S. R. Beane et al. [NPLQCD Collaboration], Mod. Phys. Lett. A 26 2587 (2011).
  • (30) S. R. Beane et al. [NPLQCD Collaboration], Phys. Rev. D 85, 054511 (2011).
  • (31) T. Inoue et al. [HAL QCD Collaboration], Phys. Rev. Lett.  106, 162002 (2011).
  • (32) T. Inoue et al. [HAL QCD Collaboration], AIP Conference Proceedings 1441, 335 (2012).
  • (33) P. E. Shanahan, A. W. Thomas and R. D. Young, Phys. Rev. Lett.  107, 092004 (2011).
  • (34) J. Haidenbauer and Ulf.-G. Meissner, Phys. Lett. B 708, 100 (2011).
  • (35) K. Sasaki et al. [HAL QCD Collaboration], Nucl. Phys. A 998, 121737 (2020).
  • (36) K. Morita, T. Furumoto and A. Ohnishi, Phys. Rev. C 91, 024916 (2015).
  • (37) A. Ohnishi, K. Morita and T. Furumoto, JPS Conf. Proc. 17, 031003 (2017)
  • (38) A. Ohnishi, K. Morita, K. Miyahara, and T. Hyodo, Nucl. Phys. A 954, 294 (2016).
  • (39) N. Barnea et al., Phys. Rev. Lett.  114, 052501 (2015).
  • (40) A. Kirscher et al., Phys. Rev. C 92, 054002 (2015).
  • (41) A. Kirscher et al., Phys. Rev. C 96, 024001 (2017).
  • (42) L. Contessi, N. Barnea and A. Gal, Phys. Rev. Lett.  121, 102502 (2018).
  • (43) M. Juric et al., Nucl. Phys. B 52, 1 (1973).
  • (44) D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424, 390 (1998).
  • (45) D. B. Kaplan, M. J. Savage and M. B. Wise, Nucl. Phys. B 534, 329 (1998).
  • (46) U. van Kolck, Nucl. Phys. A 645, 273-302 (1999).
  • (47) P. F. Bedaque, H. W. Hammer and U. van Kolck, Phys. Rev. Lett.  82, 463 (1999).
  • (48) P. F. Bedaque, H. W. Hammer and U. van Kolck, Nucl. Phys. A 646, 444 (1999).
  • (49) P. F. Bedaque, H. W. Hammer and U. van Kolck, Nucl. Phys. A 676, 357 (2000).
  • (50) E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006).
  • (51) S. I. Ando, U. Raha and Y. Oh, Phys. Rev. C 92, no. 2, 024325 (2015).
  • (52) U. Raha, Y. Kamiya, S. I. Ando, and T. Hyodo, Phys. Rev. C 98, no. 3, 034002 (2018).
  • (53) D. Gazda and A. Gal, Nucl. Phys. A 954, 161-175 (2016).
  • (54) V. Efimov, Phys. Lett. B 33, 563 (1970).
  • (55) F. Hildenbrand and H.-W. Hammer, Phys. Rev. C 100, 034002 (2019).
  • (56) M. .M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev. D 15, 2547 (1977); 20, 1633 (1979).
  • (57) T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).
  • (58) V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999).
  • (59) A. C. Phillips, Nucl. Phys. A 107, 209 (1968).
  • (60) S. R. Beane and M. J. Savage, Nucl. Phys. A 694, 511 (2001).
  • (61) S.-I. Ando and C. H. Hyun, Phys. Rev. C 72, 014008 (2005).
  • (62) S. I. Ando and M. C. Birse, J. Phys. G 37, 105108 (2010).
  • (63) H. W. Griesshammer, Nucl. Phys. A 744, 192 (2004).
  • (64) K. G. Wilson, Phys. Rev. D 3, 1818 (1971).
  • (65) G. V. Skornyakov and K. A. Ter-Martirosyan, Sov. Phys. JETP 4, 648 (1957) [Zh. Eksp. Teor. Fiz. 31, 775 (1956)].
  • (66) G. V. Skornyakov and K. A. Ter-Martirosyan, JETP 31, 775 (1956).
  • (67) G. S. Danilov, Zh. Eksp. Teor. 40, 498 (1961) [Sov. Phys. JETP 13, 349 (1961).
  • (68) G. S. Danilov and V. I. Lebedev, Sov. Phys. JETP 17, 1015 (1963).
  • (69) P. J. Mohr, D. B. Newell and B. N. Taylor, Rev. Mod. Phys. 88, no.3, 035009 (2016).
  • (70) K. L. Kowalski, Phys. Rev. Lett. 15, 798 (1965).
  • (71) H. P. Noyes, Phys. Rev. Lett. 15, 538 (1965).
  • (72) W. Glöckle, The Quantum Mechanical Few-Body Problem, (Text and Monographs in Physics, Springer-Verlag, Heidelberg, 1983).
  • (73) A. Gal, Phys. Lett. B 744, 352 (2015).
  • (74) L. H. Thomas, Phys. Rev. 47, 903 (1935).
  • (75) J. Pochodzalla et al. [PANDA Collaboration], EPJ Web of Conferences 3, 07008 (2010).
  • (76) G. Boca et al. [PANDA Collaboration], EPJ Web of Conferences 95, 01001 (2015).
  • (77) I. Vassiliev et al. [CBM Collaboration], JPS Conf. Proc. 17, 092001 (2017).
  • (78) H. Fujioka et al. [JPARC Collaboration], AIP Conference Proceedings 2130, 040002 (2019).