This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\MakeRobustCommand\macc@depth

Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111|

(0,4)(0,4) Projective Superspaces I:
Interacting Linear Sigma Models

Naveen S. Prabhakar 111International Centre for Theoretical Sciences-TIFR, Shivakote, Bengaluru - 560089, India.
email: [email protected]
   Martin Roček 222C. N. Yang Institute of Theoretical Physics, Stony Brook University, Stony Brook, NY 11794-3840, USA.
email: [email protected]

We describe the projective superspace approach to supersymmetric models with off-shell (0,4)(0,4) supersymmetry in two dimensions. In addition to the usual superspace coordinates, projective superspace has extra bosonic variables – one doublet for each SU(2)\text{SU}(2) in the R-symmetry SU(2)×SU(2)\text{SU}(2)\times\text{SU}(2) which are interpreted as homogeneous coordinates on 𝐂𝐏1×𝐂𝐏1\mathbf{CP}^{1}\times\mathbf{CP}^{1}. The superfields are analytic in the 𝐂𝐏1\mathbf{CP}^{1} coordinates and this analyticity plays an important role in our description. For instance, it leads to stringent constraints on the interactions one can write down for a given superfield content of the model. As an example, we describe in projective superspace Witten’s ADHM sigma model – a linear sigma model with non-derivative interactions whose target is 𝐑4\mathbf{R}^{4} with a Yang-Mills instanton solution. The hyperkähler nature of target space and the twistor description of instantons by Ward, and Atiyah, Hitchin, Drinfeld and Manin are natural outputs of our construction.

1 Introduction

Two dimensional quantum field theories with chiral supersymmetry have appeared in a variety of physical and mathematical contexts. The most familiar example is the construction of heterotic string models which have (0,1)(0,1) supersymmetry on the worldsheet [GHMR85]. Conformal theories with (0,2)(0,2) supersymmetry were explored [CHSW85, HW85] in the context of compactifications of the type 𝐑4×K\mathbf{R}^{4}\times K where KK is a compact Calabi-Yau threefold. (0,2)(0,2) Landau-Ginzburg models were also found to furnish a large class of (0,2)(0,2) heterotic sigma models [DK94]. (0,4)(0,4) worldsheet conformal theories are also interesting: they describe compactifications to six dimensions [BD88, EOTY89, Sei88] and are useful in worldsheet descriptions of five-brane instantons [CHS91, CHS91a].

Since the brane revolution, many two dimensional spacetime models with chiral supersymmetry have been constructed – these appear as low-energy effective theories on two dimensional intersections of D-branes or on D1-branes probing manifolds with special holonomy. Depending on the brane setup, the models on the intersection may have (0,1)(0,1), (0,2)(0,2), (0,4)(0,4) or even (0,8)(0,8) supersymmetry [GHM97, BDL96]. Typically, D-branes have gauge fields as part of their low-energy dynamics and the chiral supersymmetric theory is a gauged linear sigma model.

For example, a D1-brane probing a Spin(7)\text{Spin}(7) manifold has (0,1)(0,1) supersymmetry on its worldvolume whereas it has (0,2)(0,2) supersymmetry when probing a Calabi-Yau fourfold. The intersection of two stacks of D5-branes on a two-dimensional plane has (0,8)(0,8) supersymmetry on the common intersection [IKS06]; including a probe D1-brane on the common intersection gives (0,4)(0,4) susy on the intersection [GMMS05, Ton14, Nek16, NP17]. Another system of D-branes which has (0,4)(0,4) susy is the D1D5D9\text{D}1\subset\text{D}5\subset\text{D}9 system which is a D1-brane probe of a gauge theory instanton on 𝐑4\mathbf{R}^{4} realized by the D5D9\text{D}5\subset\text{D}9 system [Dou98], or instantons on an ALE space realized by taking the four transverse directions of the D9-brane relative to the D5-brane [DM96]. Other brane realizations include the worldvolume theory on M5-branes wrapped on a coassociative submanifold of a G2G_{2}-manifold which has (0,2)(0,2) supersymmetry [GGP16] and M5-branes wrapped on a four dimensional submanifold of a Calabi-Yau threefold which has (0,4)(0,4) supersymmetry [MSW97, GGP14, PSY16].

Superspace has proven to be powerful in understanding supersymmetric theories primarily because it realizes the supersymmetry algebra off-shell. The advantage of an off-shell realization is that, as long as the constraints on superfields do not themselves introduce interactions, we have a clean separation of kinematics and dynamics and the sum of two supersymmetric actions is automatically supersymmetric. This has been useful in uncovering the geometric structures hidden in supersymmetric theories and also understanding dualities between very different-looking models [LR83, HKLR87]. However, the presence of so-called EE-terms can mix dynamics with kinematics, and then supersymmetry restricts the structure of the action even in superspace; we shall see that this plays a crucial role in our construction of interacting models.

Superspace descriptions of (0,1)(0,1), (1,1)(1,1), (0,2)(0,2), (1,2)(1,2) and (2,2)(2,2) theories exist [Sak85, Sie84, FM73, BW76, Zum75, DS86, Ade+76, BMG86] and are well-understood. For theories with a higher amount of supersymmetry, for instance (4,4)(4,4) in two dimensions (more generally, theories with eight supercharges in other dimensions), it is well known that ordinary superspace is not sufficient to describe off-shell charged hypermultiplets since the superspace constraints for the hypermultiplet put it on-shell (see [GGRS83, Section 4.6]).

There are at least two approaches that address these issues, harmonic superspace [GIKO+84, GIOS84] and the closely related isotwistor superspace [Ros83, RS86, Ros85], and projective superspace [GHR84, KLR84]. All approaches introduce a new set of bosonic coordinates uu which are coordinates on an S2S^{2}. In the harmonic approach the uu are viewed as harmonic coordinates on S2SU(2)/U(1)S^{2}\simeq\text{SU(2)}/\text{U(1)} where SU(2)\text{SU}(2) is the R-symmetry group or a subgroup thereof, and one considers superfields which are harmonic functions on S2S^{2}. In the projective approach, the S2S^{2} is viewed as 𝐂𝐏1{𝐂20}/𝐂\mathbf{CP}^{1}\simeq\{\mathbf{C}^{2}\smallsetminus 0\}/\mathbf{C}^{\star} and the uu are homogeneous coordinates on the 𝐂𝐏1\mathbf{CP}^{1} and the superfields are analytic functions on 𝐂𝐏1\mathbf{CP}^{1}. These two approaches are in fact related [Kuz99, JS09].

Projective superspace has been successful in describing many supersymmetric models with eight supercharges [KLR84, KLR87, IR96, LR88, LR90, LR10, AKL07, GL85, GK99]. In projective superspace, one can write down new kinds of superfields and superspace constraints which depend on the coordinates uu. More precisely, they are fibred over the coset space 𝐂𝐏1\mathbf{CP}^{1}. Superfields over projective superspace typically contain an infinite number of ordinary superfields (the coefficients in a Taylor expansion in uu) and these turn out to be crucial in realizing the off-shell version of the hypermultiplet. Dynamically, most of these superfields turn out to be auxiliary and thus do not change the on-shell content of the hypermultiplet.

(0,4)(0,4) projective superspace has been introduced in [HL17, HL17a] and has been used to give off-shell formulations of nonlinear sigma models involving hypermultiplets. In this paper, we describe linear sigma models with manifest off-shell (0,4)(0,4) supersymmetry in projective superspace.

The R-symmetry of the (0,4)(0,4) supersymmetry algebra is SU(2)×SU(2)\text{SU}(2)\times\text{SU}(2)^{\prime} and thus one has two projective superspaces with the 𝐂𝐏1\mathbf{CP}^{1}s corresponding to the two SU(2)\text{SU}(2) subgroups. The hypermultiplets are also of two kinds, transforming as a doublet under either SU(2)\text{SU}(2) or SU(2)\text{SU}(2)^{\prime}. We call them standard hypermultiplets and, following [Wit95], twisted hypermultiplets respectively. We describe these in detail in Section 3. We shall see that a hyper can be realized either as a linear polynomial in the homogeneous coordinates (the 𝒪(1)\mathcal{O}(1) superfield) or as a power series in a local coordinate on the 𝐂𝐏1\mathbf{CP}^{1} (the ‘polar’ superfield). 𝒪(1)\mathcal{O}(1) superfields are treated in some detail in [HL17, HL17a]. (0,p)(0,p) supersymmetry allows independent fermionic multiplets with chirality opposite to that of the supercharges. These are the fermi multiplets; we realize them in projective superspace in Section 4.

In (0,2)(0,2) models, we have interactions of the nonlinear sigma model type or the non-derivative type. Non-derivative interactions between chiral multiplets, gauge multiplets and fermi multiplets are described by modifying their superspace constraints with the so-called EE-terms, or by including superpotential-like JJ-terms in the Lagrangian (see Appendix A.2 of this paper). In Section 5, we describe the EE-term type non-derivative interactions for (0,4)(0,4) models containing standard hypers, twisted hypers and fermis (it turns out that (0,4)(0,4) JJ-terms are not possible). In a companion paper [PR], we describe gauge multiplets and their interactions with hypers and fermis in projective superspace.

In Section 6, we describe in projective superspace a prominent (0,4)(0,4) supersymmetric model: a linear sigma model which flows down to a sigma model with target being an instanton solution in four dimensions. The couplings of the linear sigma model and the constraints they satisfy as a consequence of (0,4)(0,4) supersymmetry encode the data that enters ADHM construction of instantons [AHDM78]. This was demonstrated in (0,1)(0,1) superspace by Witten [Wit95], and it was given a D-brane interpretation by Douglas [Dou98]. A manifest (0,4)(0,4) construction was given in harmonic superspace in [GS95, GS96] (see [GR95] for some partial results in ordinary (0,4)(0,4) superspace). In our construction in (0,4)(0,4) projective superspace, the hyperkähler nature of the target space is manifest, and the monads which describe holomorphic bundles on twistor space 𝐂𝐏3\mathbf{CP}^{3} [AHDM78] appear explicitly. We also extend this construction to self-dual solutions on 𝐑4k\mathbf{R}^{4k^{\prime}} with k>1k^{\prime}>1, i.e., of dimension greater than 4 [CGK85, Wit95].

The appendix includes a quick review of (0,1)(0,1) and (0,2)(0,2) superspaces (Appendix A), a realization of the (4,4)(4,4) hypermultiplet in (4,4)(4,4) projective superspace and its reduction to (0,4)(0,4) projective superspace (Appendix B), and finally a detailed derivation of the ordinary space component actions for the general (0,4)(0,4) supersymmetric interacting linear sigma model (Appendix C).

2 (0,4)(0,4) projective superspace

2.1 Introduction

The (0,4)(0,4) supersymmetric algebra consists of four real supercharges 𝒬μ+\mathcal{Q}_{\mu+}, μ=1,,4\mu=1,\ldots,4, of right-handed chirality. It is useful to write these real supercharges in terms of a 2×22\times 2 matrix 𝒬aa+\mathcal{Q}_{aa^{\prime}+} that satisfies the reality conditions

𝒬aa+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111εba+bbεba,\mathcal{Q}_{aa^{\prime}+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{bb^{\prime}}_{+}\,\varepsilon_{ba}\varepsilon_{b^{\prime}a^{\prime}}\ , (2.1)

where \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+bb\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{bb^{\prime}}_{+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}. Here, a=1,2a=1,2 and a=1,2a^{\prime}=1^{\prime},2^{\prime} are SU(2)\text{SU}(2)-doublet indices. The R-symmetry group is then SO(4)=(SU(2)×SU(2))/𝐙2\text{SO}(4)=(\text{SU}(2)\times\text{SU}(2))/\mathbf{Z}_{2}. We will be interested in the representations of the supersymmetry algebra which are charged under just one of the SU(2)\text{SU}(2)s and hence it is useful to consider the double cover Spin(4)SU(2)×SU(2):=F×F\text{Spin}(4)\approx\text{SU}(2)\times\text{SU}(2):=F\times F^{\prime}. The aa and aa^{\prime} indices are lowered using the invariant tensors εab\varepsilon_{ab} and εab\varepsilon_{a^{\prime}b^{\prime}} which satisfy εabεbc=δac\varepsilon^{ab}\varepsilon_{bc}=-\delta^{a}{}_{c}, εabεbc=δac\varepsilon^{a^{\prime}b^{\prime}}\varepsilon_{b^{\prime}c^{\prime}}=-\delta^{a^{\prime}}{}_{c^{\prime}} and ε12=ε12=+1\varepsilon_{12}=\varepsilon_{1^{\prime}2^{\prime}}=+1.

The supersymmetry algebra is

{𝒬aa+,𝒬bb+}=2iεabεab++.\{\mathcal{Q}_{aa^{\prime}+}\,,\mathcal{Q}_{bb^{\prime}+}\}=-2\text{i}\varepsilon_{ab}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\ . (2.2)

(0,4)(0,4) superspace 𝐑1,1|0,4\mathbf{R}^{1,1|0,4} is described by the supercoordinates z¯=(x±±,θaa+)\underline{z}=(x^{\pm\pm},\theta^{aa^{\prime}+}) where x±±=12(x0±x1)x^{\pm\pm}=\tfrac{1}{2}(x^{0}\pm x^{1}). The corresponding supercovariant derivatives are ±±=0±1\partial_{\pm\pm}=\partial_{0}\pm\partial_{1} and Daa+\mathrm{D}_{aa^{\prime}+} with the algebra

{Daa+,Dbb+}=2iεabεab++,[Daa+,±±]=0.\{\mathrm{D}_{aa^{\prime}+}\,,\mathrm{D}_{bb^{\prime}+}\}=2\text{i}\varepsilon_{ab}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\ ,\quad[\mathrm{D}_{aa^{\prime}+}\,,\partial_{\pm\pm}]=0\ . (2.3)

The derivatives Daa+\mathrm{D}_{aa^{\prime}+} also satisfy the same reality condition as for the supersymmetry generators (2.1). We loosely refer to (2.3) as the supersymmetry algebra though it differs from (2.2) by a sign. The supersymmetry generators 𝒬aa+\mathcal{Q}_{aa^{\prime}+} and the derivatives Daa+\mathrm{D}_{aa^{\prime}+} mutually anticommute: {𝒬aa+,Dbb+}=0\{\mathcal{Q}_{aa^{\prime}+}\,,\mathrm{D}_{bb^{\prime}+}\}=0.

In this paper, we work exclusively with the derivatives Daa+\mathrm{D}_{aa^{\prime}+} rather than the supersymmetry generators 𝒬aa+\mathcal{Q}_{aa^{\prime}+}. Supersymmetry transformations of some component of a superfield Φ\Phi can be expressed in terms of Daa+\mathrm{D}_{aa^{\prime}+} because of the following fact which can be easily verified by using the explicit superspace expressions for 𝒬aa+\mathcal{Q}_{aa^{\prime}+} and Daa+\mathrm{D}_{aa^{\prime}+}:

δΦ|=(ϵaa+𝒬aa+Φ)|=(ϵaa+Daa+Φ)|,\delta\Phi_{\boldsymbol{\rvert}}=\Big{(}\epsilon^{aa^{\prime}+}\mathcal{Q}_{aa^{\prime}+}\Phi\Big{)}_{\boldsymbol{\rvert}}=\Big{(}\epsilon^{aa^{\prime}+}\mathrm{D}_{aa^{\prime}+}\Phi\Big{)}_{\boldsymbol{\rvert}}\ , (2.4)

where ϵaa+\epsilon^{aa^{\prime}+} are constant Grassmann parameters, and (X)|(X)_{\boldsymbol{\rvert}} stands for the operation of setting the Grassmann coordinates θaa+\theta^{aa^{\prime}+} to zero in the expression XX. The dθaa+\text{d}\theta^{aa^{\prime}+} that appear in the superspace measure can also replaced by the corresponding Daa+\mathrm{D}_{aa^{\prime}+} up to total derivatives333This is standard procedure, see e.g. [GGRS83]..

It is convenient to define

D+:=D11+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+D22+,Q+:=D21+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+D12+.\mathrm{D}_{+}:=\mathrm{D}_{11^{\prime}+}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:=\mathrm{D}_{22^{\prime}+}\ ,\quad\mathrm{Q}_{+}:=\mathrm{D}_{21^{\prime}+}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:=-\mathrm{D}_{12^{\prime}+}\ . (2.5)

These derivatives span two (anti)commuting (0,2)(0,2) subalgebras:

{D+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111}+=2i++,{Q+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111}+=2i++,with other anticommutators equal to zero.\{\mathrm{D}_{+},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\}=2\text{i}\partial_{++}\ ,\quad\{\mathrm{Q}_{+},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\}=2\text{i}\partial_{++}\ ,\ \text{with other anticommutators equal to zero.} (2.6)

2.2 Algebras, superfields and actions

Consider two sets of commuting coordinates uau^{a} and vav^{a^{\prime}} which are doublets under the R-symmetry SU(2)\text{SU}(2) subgroups FF and FF^{\prime} respectively. These are most usefully interpreted in our context as homogeneous coordinates on 𝐂𝐏1×𝐂𝐏1\mathbf{CP}^{1}\times\mathbf{CP}^{1}{}^{\prime} (we label the second 𝐂𝐏1\mathbf{CP}^{1} as 𝐂𝐏1\mathbf{CP}^{1}{}^{\prime} to indicate its relation to FF^{\prime}). The superspace with the coordinates (x±±,θaa+,ua,va)(x^{\pm\pm},\theta^{aa^{\prime}+},u^{a},v^{a^{\prime}}) is 𝐑1,1|0,4×𝐂𝐏1×𝐂𝐏1\mathbf{R}^{1,1|0,4}\times\mathbf{CP}^{1}\times\mathbf{CP}^{1}{}^{\prime} which we refer to as projective superspace. The subspaces 𝐑1,1|0,4×𝐂𝐏1\mathbf{R}^{1,1|0,4}\times\mathbf{CP}^{1} and 𝐑1,1|0,4×𝐂𝐏1\mathbf{R}^{1,1|0,4}\times\mathbf{CP}^{1}{}^{\prime} are important for us.

We also introduce conjugate doublets u~a\widetilde{u}^{a} and v~a\widetilde{v}{}^{a^{\prime}} which satisfy

εabu~aub=1,εabv~avb=1.\varepsilon_{ab}\widetilde{u}^{a}{u}^{b}=1\ ,\quad\varepsilon_{a^{\prime}b^{\prime}}\widetilde{v}^{a^{\prime}}{v}^{b^{\prime}}=1\ . (2.7)
A shift symmetry

Note that there is more than one solution to the equation εabu~aub=1\varepsilon_{ab}\widetilde{u}^{a}{u}^{b}=1. If u~0b\widetilde{u}_{0}^{b} is one solution, then so is u~0b+ωub\widetilde{u}_{0}^{b}+\omega u^{b} for any ω𝐂\omega\in\mathbf{C}. Thus there is a shift symmetry on the u~a\widetilde{u}^{a}:

u~au~a+ωua,forω𝐂.\widetilde{u}^{a}\to\widetilde{u}^{a}+\omega u^{a}\ ,\quad\text{for}\quad\omega\in\mathbf{C}\ . (2.8)

There is a similar shift symmetry for the conjugate doublet v~a\widetilde{v}^{a^{\prime}}.

Derivatives on projective superspace

Consider the derivatives

𝐃a+:=uaDaa+,𝐃~a+:=u~aDaa+,𝐃a+:=vaDaa+,𝐃~a+:=v~aDaa+,\mathbf{D}_{a^{\prime}+}:=u^{a}\mathrm{D}_{aa^{\prime}+}\ ,\quad\widetilde{\mathbf{D}}_{a^{\prime}+}:=\widetilde{u}^{a}\mathrm{D}_{aa^{\prime}+}\ ,\quad\mathbf{D}_{a+}:=v^{a^{\prime}}\mathrm{D}_{aa^{\prime}+}\ ,\quad\widetilde{\mathbf{D}}_{a+}:=\widetilde{v}^{a^{\prime}}\mathrm{D}_{aa^{\prime}+}\ , (2.9)

where u~a\widetilde{u}^{a} and v~a\widetilde{v}^{a^{\prime}} are any solutions to the equations (2.7). The algebra of the derivatives (2.9) is obtained from (2.3):

{𝐃a+,𝐃b+}=0,{𝐃~a+,𝐃~b+}=0,{𝐃a+,𝐃~b+}=2iεab++,\displaystyle\{\mathbf{D}_{a^{\prime}+}\,,\mathbf{D}_{b^{\prime}+}\}=0\ ,\quad\{\widetilde{\mathbf{D}}_{a^{\prime}+}\,,\widetilde{\mathbf{D}}_{b^{\prime}+}\}=0\ ,\quad\{\mathbf{D}_{a^{\prime}+}\,,\widetilde{\mathbf{D}}_{b^{\prime}+}\}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\ ,
{𝐃a+,𝐃b+}=0,{𝐃~a+,𝐃~b+}=0,{𝐃a+,𝐃~b+}=2iεab++.\displaystyle\{\mathbf{D}_{a+}\,,\mathbf{D}_{b+}\}=0\ ,\quad\{\widetilde{\mathbf{D}}_{a+}\,,\widetilde{\mathbf{D}}_{b+}\}=0\ ,\quad\{\mathbf{D}_{a+}\,,\widetilde{\mathbf{D}}_{b+}\}=-2\text{i}\varepsilon_{ab}\partial_{++}\ . (2.10)

Note that the shift symmetry (2.8) shifts the derivatives 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} by ω𝐃a+\omega\mathbf{D}_{a^{\prime}+} but it leaves the algebra (2.2) unchanged. We shall see below that the action is also invariant under the shift symmetry up to total derivative terms.

We also introduce the fully contracted derivative

𝐃+=uavaDaa+=ua𝐃a+=va𝐃a+which satisfies𝐃+2=0,\mathbf{D}_{+}=u^{a}v^{a^{\prime}}\mathrm{D}_{aa^{\prime}+}=u^{a}\mathbf{D}_{a+}=v^{a^{\prime}}\mathbf{D}_{a^{\prime}+}\quad\text{which satisfies}\quad\mathbf{D}_{+}^{2}=0\ , (2.11)

due to the anticommutation relations (2.3). We can recover the algebra in (2.2) by writing 𝐃+2=uaub{𝐃a+,𝐃b+}\mathbf{D}_{+}^{2}=u^{a}u^{b}\{\mathbf{D}_{a+},\mathbf{D}_{b+}\} or 𝐃+2=vavb{𝐃a+,𝐃b+}\mathbf{D}_{+}^{2}=v^{a^{\prime}}v^{b^{\prime}}\{\mathbf{D}_{a^{\prime}+},\mathbf{D}_{b^{\prime}+}\}.

Projective superfields

An FF-projective superfield 𝚽(z¯,u)\bm{\Phi}(\underline{z},u) is a function of the superspace coordinates z¯=(x±±,θaa+)\underline{z}=(x_{\pm\pm},\theta^{aa^{\prime}+}) and the 𝐂𝐏1\mathbf{CP}^{1} coordinates uau^{a} which satisfy the following:

  1. (1)

    𝚽\bm{\Phi} is holomorphic in a domain in 𝐂𝐏1\mathbf{CP}^{1},

  2. (2)

    𝚽\bm{\Phi} satisfies the projective constraints 𝐃a+𝚽(z¯,u)=0\mathbf{D}_{a^{\prime}+}\bm{\Phi}(\underline{z},u)=0,

  3. (3)

    𝚽\bm{\Phi} may be in non-trivial representations of the R-symmetry group SU(2)×SU(2)\text{SU}(2)\times\text{SU}(2)^{\prime} and the Lorentz group SO(1,1)\text{SO}(1,1).

An FF^{\prime}-projective superfield is analogously a function of the superspace coordinates z¯\underline{z} and the 𝐂𝐏1\mathbf{CP}^{1}{}^{\prime} coordinate vav^{a^{\prime}} and is annihilated by 𝐃a+\mathbf{D}_{a+}. We discuss the different types of projective superfields in Section 2.4.

The FF-projective constraints 𝐃a+𝚽(z¯,u)=0\mathbf{D}_{a^{\prime}+}\bm{\Phi}(\underline{z},u)=0 can be encoded more economically in terms of the fully contracted derivative (2.11) 𝐃+=va𝐃a+\mathbf{D}_{+}=v^{a^{\prime}}\mathbf{D}_{a^{\prime}+}:

𝐃+𝚽=0.\mathbf{D}_{+}\bm{\Phi}=0\ . (2.12)

Since 𝚽\bm{\Phi} depends only on uu and not on vv, 𝐃+𝚽=va𝐃a+𝚽\mathbf{D}_{+}\bm{\Phi}=v^{a^{\prime}}\mathbf{D}_{a^{\prime}+}\bm{\Phi} implies 𝐃a+𝚽=0\mathbf{D}_{a^{\prime}+}\bm{\Phi}=0. The advantage of (2.12) is that it takes the same form for FF^{\prime}-projective superfields 𝚽(z¯,v)\bm{\Phi}(\underline{z},v) as well, since we can now recover 𝐃a+𝚽=0\mathbf{D}_{a+}\bm{\Phi}=0 using 𝐃+=ua𝐃a+\mathbf{D}_{+}=u^{a}\mathbf{D}_{a+}. We frequently use the derivative 𝐃+\mathbf{D}_{+} in the paper.

Actions

The constraints 𝐃a+𝚽=0\mathbf{D}_{a^{\prime}+}\bm{\Phi}=0 on a projective superfield 𝚽\bm{\Phi} imply that 𝚽\bm{\Phi} depends on only half of the Grassmann coordinates. The appropriate superspace measure which ensures (0,4)(0,4) invariance of an action composed of projective superfields is then quadratic in the derivatives 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}, i.e., 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}. The (0,4)(0,4) supersymmetric action is then given by

𝒮[𝚽]=d2x(12πiγεabuadub𝐃~1+𝐃~2+𝑲(𝚽))|,\mathcal{S}[\bm{\Phi}]=\int\text{d}^{2}x\left(\frac{1}{2\pi\text{i}}\oint_{\gamma}\varepsilon_{ab}u^{a}\text{d}u^{b}\ \widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\ {\bm{K}}_{--}(\bm{\Phi})\right)_{\boldsymbol{\rvert}}\ , (2.13)

where

  1. 1.

    |{\boldsymbol{\rvert}} sets all the Grassmann coordinates to zero (we frequently omit the |{\boldsymbol{\rvert}} from our expressions).

  2. 2.

    𝑲{\bm{K}}_{--} is the superspace Lagrangian which satisfies 𝐃a+𝑲=0\mathbf{D}_{a^{\prime}+}{\bm{K}}_{--}=0. It must carry the -- Lorentz representation (left-moving part of a vector) in order to compensate the ++++ in the projective superspace measure.

  3. 3.

    The contour γ𝐂𝐏1\gamma\in\mathbf{CP}^{1} is chosen to avoid possible singularities in 𝐃~1+𝐃~2+𝑲\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}{\bm{K}}_{--}.

The action is invariant (up to total spacetime derivatives) under the shift symmetry (2.8) 𝐃~a+𝐃~a++ω𝐃a+\widetilde{\mathbf{D}}_{a^{\prime}+}\to\widetilde{\mathbf{D}}_{a^{\prime}+}+\omega\mathbf{D}_{a^{\prime}+} since the Lagrangian 𝑲{\bm{K}}_{--} satisfies 𝐃a+𝑲=0\mathbf{D}_{a^{\prime}+}{\bm{K}}_{--}=0. Since the superspace measure εabuadub𝐃~1+𝐃~2+\varepsilon_{ab}u^{a}\text{d}u^{b}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} is invariant under FF and FF^{\prime}, the action (2.13) is manifestly invariant under FF and FF^{\prime} if the superspace Lagrangian is invariant.

Non-derivative interactions

Suppose a projective superfield Φs\Phi_{s} is in the spin ss representation of the Lorentz group SO(1,1)\text{SO}(1,1). The requirement that 𝐃a+𝚽s=0\mathbf{D}_{a^{\prime}+}\bm{\Phi}_{s}=0 can be relaxed to have a non-zero right hand side:

𝐃a+𝚽s=𝑺a,s+1,\mathbf{D}_{a^{\prime}+}\bm{\Phi}_{s}={\bm{S}}_{a^{\prime},s+1}\ , (2.14)

where 𝑺a,s+1{\bm{S}}_{a^{\prime},s+1} is a function of other superfields in the model and is in the spin s+1s+1 representation of SO(1,1)\text{SO}(1,1). This allows us to introduce interactions (the so-called EE-terms) as we will see later in Section 5:

The modified constraints (2.14) are consistent with the algebra {𝐃a+,𝐃b+}=0\{\mathbf{D}_{a^{\prime}+},\mathbf{D}_{b^{\prime}+}\}=0 only if the function satisfies

𝐃a+𝑺b,s+1+𝐃b+𝑺a,s+1=0.\mathbf{D}_{a^{\prime}+}{\bm{S}}_{b^{\prime},s+1}+\mathbf{D}_{b^{\prime}+}{\bm{S}}_{a^{\prime},s+1}=0\ . (2.15)

To ensure (0,4)(0,4) invariance of the action, we require that the superspace Lagrangian 𝑲(𝚽){\bm{K}}_{--}(\bm{\Phi}) satisfies 𝐃a+𝑲=0\mathbf{D}_{a^{\prime}+}{\bm{K}}_{--}=0 even if 𝐃a+𝚽\mathbf{D}_{a^{\prime}+}\bm{\Phi} is not zero. This further constrains the 𝑺a,s+1{\bm{S}}_{a^{\prime},s+1}.

Thus, any (0,4)(0,4) supersymmetric model must satisfy the following constraints:

  1. 1.

    The (0,4)(0,4) algebra 𝐃+2=0\mathbf{D}_{+}^{2}=0 must be satisfied on every superfield in the model,

  2. 2.

    The superspace Lagrangian 𝑲{\bm{K}}_{--} must satisfy 𝐃a+𝑲=0\mathbf{D}_{a^{\prime}+}{\bm{K}}_{--}=0 to ensure (0,4)(0,4) supersymmetry of the action.

These criteria place stringent constraints on the superfield content and the interactions in a model.

2.3 Projective superspace in inhomogeneous coordinates

A primer on 𝐂𝐏1\mathbf{CP}^{1}

The projective space 𝐂𝐏1\mathbf{CP}^{1} is constructed as the quotient space {𝐂20}/\{\mathbf{C}^{2}\smallsetminus 0\}/\sim, where \sim is the following equivalence relation on the coordinates of 𝐂2\mathbf{C}^{2}: (u1,u2)(λu1,λu2)(u^{1},u^{2})\sim(\lambda u^{1},\lambda u^{2}), λ𝐂\lambda\in\mathbf{C}^{\star}. We describe 𝐂𝐏1\mathbf{CP}^{1} in terms of two charts 𝖴1\mathsf{U}_{1} and 𝖴2\mathsf{U}_{2}:

𝖴a:={(u1,u2)𝐂2|ua0}.\mathsf{U}_{a}:=\{(u^{1},u^{2})\in\mathbf{C}^{2}\ |\ u^{a}\neq 0\}\ . (2.16)

The map 𝒮SU(2)\mathcal{S}\in\text{SU}(2) which acts on the homogeneous coordinates as

𝒮:(u1u2)(0110)(u1u2)=(u2u1),\mathcal{S}:\ \begin{pmatrix}u^{1}\\ u^{2}\end{pmatrix}\longmapsto\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\begin{pmatrix}u^{1}\\ u^{2}\end{pmatrix}=\begin{pmatrix}-u^{2}\\ u^{1}\end{pmatrix}\ , (2.17)

interchanges the two charts. Using the equivalence (u1,u2)(λu1,λu2)(u^{1},u^{2})\sim(\lambda u^{1},\lambda u^{2}), λ𝐂\lambda\in\mathbf{C}^{\star}, we can scale out the non-zero coordinate in each of the charts and obtain a description in terms of inhomogeneous coordinates:

𝖴1={(1,ρ)|ρ𝐂},𝖴2={(ζ,1)|ζ𝐂},\mathsf{U}_{1}=\{(1,-\rho)\ |\ \rho\in\mathbf{C}\}\ ,\quad\mathsf{U}_{2}=\{(\zeta,1)\ |\ \zeta\in\mathbf{C}\}\ , (2.18)

with ρ=u2/u1\rho=-u^{2}/u^{1} and ζ=u1/u2\zeta=u^{1}/u^{2}. On the intersection 𝖴12:=𝖴1𝖴2\mathsf{U}_{12}:=\mathsf{U}_{1}\cap\mathsf{U}_{2}, the local coordinates ζ\zeta and ρ\rho are related by the 𝒮\mathcal{S} map (2.17)

𝒮:ζ1/ζ=ρ.\mathcal{S}:\ \zeta\longmapsto-1/\zeta=\rho\ . (2.19)

We can thus express all our results exclusively in terms of one of the inhomogeneous coordinates, say ζ\zeta, by appending the point ζ=\zeta=\infty to the chart 𝖴2\mathsf{U}_{2}. We frequently adopt this usage to avoid cluttering of notation.

The derivatives 𝐃a+\mathbf{D}_{a^{\prime}+}, 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}

We next express the derivatives 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in terms of the local coordinates ζ\zeta and ρ\rho in the charts 𝖴2\mathsf{U}_{2} and 𝖴1\mathsf{U}_{1} respectively. In the chart 𝖴2\mathsf{U}_{2}, we have u20u^{2}\neq 0 and ua=(u2)(ζ,1)u^{a}=(u^{2})(\zeta,1). Thus, we can choose u~a=(u2)1(1,0)\widetilde{u}^{a}=(u^{2})^{-1}(1,0) which indeed satisfies u~ubaεab=1\widetilde{u}{}^{a}u^{b}\varepsilon_{ab}=1. Using the scale invariance uaλuau^{a}\to\lambda u^{a}, we can set u2=1u^{2}=1 as discussed above (2.18). The derivatives 𝐃a+=uaDaa+\mathbf{D}_{a^{\prime}+}=u^{a}\mathrm{D}_{aa^{\prime}+} and 𝐃~a+=u~Daa+a\widetilde{\mathbf{D}}_{a^{\prime}+}=\widetilde{u}{}^{a}\mathrm{D}_{aa^{\prime}+} are then given by

In 𝖴2:\displaystyle\text{In $\mathsf{U}_{2}$}:\quad 𝐃1+=ζD++Q+,𝐃2+=ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+𝐃~1+=D+,𝐃~2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+\displaystyle\mathbf{D}_{1^{\prime}+}=\zeta\mathrm{D}_{+}+\mathrm{Q}_{+}\ ,\quad\mathbf{D}_{2^{\prime}+}=-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,\quad\widetilde{\mathbf{D}}_{1^{\prime}+}=\mathrm{D}_{+}\ ,\quad\widetilde{\mathbf{D}}_{2^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ , (2.20)

where we have used the expressions (2.5) for Daa+\mathrm{D}_{aa^{\prime}+}. A similar description can be obtained in the chart 𝖴1\mathsf{U}_{1} in which u10u^{1}\neq 0. Writing ua=u1(1,ρ)u^{a}=u^{1}(1,-\rho), choosing u~a=(u1)1(0,1)\widetilde{u}^{a}=(u^{1})^{-1}(0,-1) and setting u1=1u^{1}=1 by scale invariance, we have

In 𝖴1:𝐃1+=D+ρQ+,𝐃2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+ρ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+𝐃~1+=Q+,𝐃~2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.+\text{In $\mathsf{U}_{1}$}:\quad\mathbf{D}_{1^{\prime}+}=\mathrm{D}_{+}-\rho\mathrm{Q}_{+}\ ,\quad\mathbf{D}_{2^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}-\rho\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,\quad\widetilde{\mathbf{D}}_{1^{\prime}+}=-\mathrm{Q}_{+}\ ,\quad\widetilde{\mathbf{D}}_{2^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ . (2.21)

Observe that, in the intersection 𝖴12\mathsf{U}_{12}, the derivatives 𝐃a+(ρ)\mathbf{D}_{a^{\prime}+}(\rho) defined in 𝖴1\mathsf{U}_{1} are related to the 𝐃a+(ζ)\mathbf{D}_{a^{\prime}+}(\zeta) defined in 𝖴2\mathsf{U}_{2} as

𝐃a+(ρ)=(ρ)𝐃a+(ζ(ρ)),\mathbf{D}_{a^{\prime}+}(\rho)=(-\rho)\mathbf{D}_{a^{\prime}+}(\zeta(\rho))\ , (2.22)

which is the gluing rule for a global section of the line bundle 𝒪(1)𝐂𝐏1\mathcal{O}(1)\to\mathbf{CP}^{1} (we have used that ζ(ρ)=ρ1\zeta(\rho)=-\rho^{-1} on the overlap).

Similarly, the derivatives 𝐃~a+(ρ)\widetilde{\mathbf{D}}_{a^{\prime}+}(\rho) in 𝖴1\mathsf{U}_{1} and 𝐃~a+(ζ)\widetilde{\mathbf{D}}_{a^{\prime}+}(\zeta) in 𝖴2\mathsf{U}_{2} are related on the overlap as

𝐃~a+(ρ)=(ρ)1𝐃~a+(ζ(ρ))+ρ1𝐃a+(ρ)=(ρ)1𝐃~a+(ζ(ρ))𝐃a+(ζ(ρ)),\widetilde{\mathbf{D}}_{a^{\prime}+}(\rho)=(-\rho)^{-1}\widetilde{\mathbf{D}}_{a^{\prime}+}(\zeta(\rho))+\rho^{-1}\mathbf{D}_{a^{\prime}+}(\rho)=(-\rho)^{-1}\widetilde{\mathbf{D}}_{a^{\prime}+}(\zeta(\rho))-\mathbf{D}_{a^{\prime}+}(\zeta(\rho))\ , (2.23)

where we have used (2.22) in going to the last expression. The transformation (2.23) can be viewed as the usual transformation of a section of 𝒪(1)\mathcal{O}(-1) plus a shift term proportional to 𝐃a+\mathbf{D}_{a^{\prime}+} generated by the shift symmetry (2.8). This allows us to define 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} globally on 𝐂𝐏1\mathbf{CP}^{1}, not as a section of 𝒪(1)\mathcal{O}(-1) but as a section of the affine bundle modelled on 𝒪(1)\mathcal{O}(-1).

Note: There is an alternate way of writing the (0,4)(0,4) algebra using the derivatives 𝐃a+\mathbf{D}_{a^{\prime}+} and ζ\frac{\partial}{\partial\zeta}:

{𝐃a+,[ζ,𝐃b+]}=2iεab++.\{\mathbf{D}_{a^{\prime}+}\,,[\partial_{\zeta}\,,\mathbf{D}_{b^{\prime}+}]\}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\ . (2.24)

Thus, one may use the derivatives 𝐃a+\mathbf{D}_{a^{\prime}+} and /ζ\partial/\partial\zeta instead of 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in describing projective superspace. Observe that ζ𝐃b+\partial_{\zeta}\mathbf{D}_{b^{\prime}+} coincides with 𝐃~b+\widetilde{\mathbf{D}}_{b^{\prime}+} in 𝖴1\mathsf{U}_{1} and ρ𝐃b+\partial_{\rho}\mathbf{D}_{b^{\prime}+} coincides with 𝐃~b+\widetilde{\mathbf{D}}_{b^{\prime}+} in 𝖴2\mathsf{U}_{2}. Further, ζ𝐃a+\partial_{\zeta}\mathbf{D}_{a^{\prime}+} also satisfies the rule (2.23). However, this is expected since the derivative of a section of 𝒪(1)\mathcal{O}(1) transforms as a section of the affine bundle modelled on 𝒪(1)\mathcal{O}(-1).

A (0,2)(0,2) action which is (0,4)(0,4) supersymmetric

Plugging in the derivatives (2.20) in the action (2.13), we get

𝒮[𝚽]=d2xγdζ2πiD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑲+(𝚽).\mathcal{S}[\bm{\Phi}]=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}{\bm{K}}_{--}(\bm{\Phi})\ . (2.25)

We can also rewrite the above action in (0,2)(0,2) superspace. Using \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++ζ1𝐃2+-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}=-\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}+\zeta^{-1}\mathbf{D}_{2^{\prime}+} and 𝐃a+𝑲=0\mathbf{D}_{a^{\prime}+}{\bm{K}}_{--}=0, we get

𝒮[𝚽]=d2xγdζ2πiζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑲+(𝚽)=d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111γ+dζ2πiζ𝑲(𝚽).\mathcal{S}[\bm{\Phi}]=\int\text{d}^{2}x\ \oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}{\bm{K}}_{--}(\bm{\Phi})=\int\text{d}^{2}x\ \mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}{\bm{K}}_{--}(\bm{\Phi})\ . (2.26)
FF^{\prime}-projective superspace

For completeness, we explicitly describe some analogous aspects of FF^{\prime}-projective superspace. We have the inhomogeneous coordinate ζ\zeta^{\prime} for the 𝐂𝐏1\mathbf{CP}^{1} corresponding to the FF^{\prime} doublet vav^{a^{\prime}}. We then choose va=(ζ,1)v^{a^{\prime}}=(\zeta^{\prime},1) and v~=a(1,0)\widetilde{v}{}^{a^{\prime}}=(1,0) using the scale invariance vaλvav^{a^{\prime}}\to\lambda^{\prime}v^{a^{\prime}}, λ𝐂\lambda^{\prime}\in\mathbf{C}^{\star}. The FF^{\prime}-projective derivatives 𝐃a+\mathbf{D}_{a+} and 𝐃~a+\widetilde{\mathbf{D}}_{a+} are then

𝐃1+=ζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+𝐃2+=ζQ++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+𝐃~1+=D+,𝐃~2+=Q+.\displaystyle\mathbf{D}_{1+}=\zeta^{\prime}\mathrm{D}_{+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,\quad\mathbf{D}_{2+}=\zeta^{\prime}\mathrm{Q}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,\quad\widetilde{\mathbf{D}}_{1+}=\mathrm{D}_{+}\ ,\quad\widetilde{\mathbf{D}}_{2+}=\mathrm{Q}_{+}\ . (2.27)

A (0,4)(0,4) supersymmetric action in (0,2)(0,2) superspace for FF^{\prime}-projective superfields 𝚽\bm{\Phi}^{\prime} is given by

𝒮[𝚽]=d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111γ+dζ2πiζ𝑲(𝚽).\mathcal{S}[\bm{\Phi}^{\prime}]=-\int\text{d}^{2}x\ \mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\oint_{\gamma^{\prime}}\frac{\text{d}\zeta^{\prime}}{2\pi\text{i}\zeta^{\prime}}{\bm{K}}^{\prime}_{--}(\bm{\Phi}^{\prime})\ . (2.28)

The actions we consider in this paper will only have a single contour integral over either ζ\zeta or ζ\zeta^{\prime}.

The fully contracted derivative 𝐃+=uavaDaa+\mathbf{D}_{+}=u^{a}v^{a^{\prime}}\mathrm{D}_{aa^{\prime}+} (2.11) in terms of ζ\zeta and ζ\zeta^{\prime} is

𝐃+=ζζD11++ζD12++ζD21++D22+=ζζD+ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++ζQ++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.+\mathbf{D}_{+}=\zeta\zeta^{\prime}\mathrm{D}_{11^{\prime}+}+\zeta\mathrm{D}_{12^{\prime}+}+\zeta^{\prime}\mathrm{D}_{21^{\prime}+}+\mathrm{D}_{22^{\prime}+}=\zeta\zeta^{\prime}\mathrm{D}_{+}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}+\zeta^{\prime}\mathrm{Q}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ . (2.29)

2.4 Analytic structure of projective superfields

Recall that FF-projective superfields are holomorphic in a connected open subset of 𝐂𝐏1\mathbf{CP}^{1} and that they are annihilated by the derivatives 𝐃a+\mathbf{D}_{a^{\prime}+}. We now describe the different types of projective superfields which differ in their analytic structure on the 𝐂𝐏1\mathbf{CP}^{1}. FF^{\prime}-projective superfields are defined analogously.

𝒪(p)\mathcal{O}(p) superfields

The superfield is a homogeneous polynomial in the uau^{a} of degree p>0p>0:

𝜼(z¯,u)=ηa1ap(z¯)ua1uap=i=0pηi(z¯)(u1)i(u2)pi.\bm{\eta}(\underline{z},u)={\eta}_{a_{1}\cdots a_{p}}(\underline{z})u^{a_{1}}\cdots u^{a_{p}}=\sum_{i=0}^{p}{\eta}_{i}(\underline{z})(u^{1})^{i}(u^{2})^{p-i}\ . (2.30)

The components ηa1ap(z¯)\eta_{a_{1}\cdots a_{p}}(\underline{z}) are ordinary (0,4)(0,4) superfields, i.e., functions on 𝐑1,1|0,4\mathbf{R}^{1,1|0,4}. Note that 𝜼\bm{\eta} is a global section of the line bundle 𝒪(p)𝐂𝐏1\mathcal{O}(p)\to\mathbf{CP}^{1}. We thus call such superfields 𝓞(𝒑)\mathcal{O}(p) superfields. In the chart 𝖴2\mathsf{U}_{2} where u20u^{2}\neq 0 we can write 𝜼\bm{\eta} as

𝜼(z¯,u)=(u2)p𝜼(z¯,ζ)=(u2)pj=0pηj(z¯)ζj,\bm{\eta}(\underline{z},u)=(u^{2})^{p}\bm{\eta}(\underline{z},\zeta)=(u^{2})^{p}\sum_{j=0}^{p}\eta_{j}(\underline{z})\,\zeta^{j}\ , (2.31)

which becomes a polynomial in the inhomogeneous coordinate ζ=u1/u2\zeta=u^{1}/u^{2} when we set u2=1u^{2}=1.

Meromorphic 𝒪(n)\mathcal{O}(n) superfields

The 𝒪(n)\mathcal{O}(n) superfields discussed above are global holomorphic sections of 𝒪(n)𝐂𝐏1\mathcal{O}(n)\to\mathbf{CP}^{1}. We can consider more general superfields which are only local sections of 𝒪(n)\mathcal{O}(n) and cannot be extended to all of 𝐂𝐏1\mathbf{CP}^{1}. A familiar class of examples are the meromorphic sections of 𝒪(n)\mathcal{O}(n) which are rational functions of uau^{a}:

𝜼(z¯,u)=𝑷(z¯,u)𝑸(z¯,u)=Pi1ip(z¯)ui1uipQi1iq(z¯)ui1uiq,\bm{\eta}(\underline{z},u)=\frac{\bm{P}(\underline{z},u)}{\bm{Q}(\underline{z},u)}=\frac{P_{i_{1}\cdots i_{p}}(\underline{z})u^{i_{1}}\cdots u^{i_{p}}}{Q_{i_{1}\cdots i_{q}}(\underline{z})u^{i_{1}}\cdots u^{i_{q}}}\ , (2.32)

where 𝑷\bm{P} and 𝑸\bm{Q} are homogeneous polynomials of degree pp and qq respectively. The domain of definition 𝒟𝜼\mathcal{D}_{\bm{\eta}} of 𝜼\bm{\eta} on 𝐂𝐏1\mathbf{CP}^{1} is restricted to the open set where 𝑸(z¯,u)0\bm{Q}(\underline{z},u)\neq 0. The degree of homogeneity of 𝜼\bm{\eta} is then n=pqn=p-q and thus 𝜼\bm{\eta} is a local section of 𝒪(pq)𝐂𝐏1\mathcal{O}(p-q)\to\mathbf{CP}^{1} defined on 𝒟𝜼\mathcal{D}_{\bm{\eta}}. In terms of the inhomogeneous coordinate ζ\zeta, we have

𝜼(z¯,ζ)=a0(z¯)+a1(z¯)ζ++ap(z¯)ζpb0(z¯)+b1(z¯)ζ++bq(z¯)ζq,\bm{\eta}(\underline{z},\zeta)=\frac{a_{0}(\underline{z})+a_{1}(\underline{z})\zeta+\cdots+a_{p}(\underline{z})\zeta^{p}}{b_{0}(\underline{z})+b_{1}(\underline{z})\zeta+\cdots+b_{q}(\underline{z})\zeta^{q}}\ , (2.33)

where the ai(z¯)a_{i}(\underline{z}) are appropriate combinations of Pi1ip(z¯)P_{i_{1}\cdots i_{p}}(\underline{z}) and similarly, bi(z¯)b_{i}(\underline{z}) are combinations of the Qi1iqQ_{i_{1}\cdots i_{q}}.

Local superfields

Consider superfields which are formal power series in ζ\zeta or ζ1\zeta^{-1} or both. These appear as series expansions of local holomorphic sections in the neighbourhoods of ζ=0\zeta=0, ζ=\zeta=\infty or in the annulus 𝐂𝐏1{0,}\mathbf{CP}^{1}\smallsetminus\{0,\infty\}. Consider a power series in ζ\zeta:

𝚼(z¯,ζ)=j=0Υj(z¯)ζj.{\mathbf{\Upsilon}}(\underline{z},\zeta)=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j}(\underline{z})\zeta^{j}\ . (2.34)

Such superfields shall be termed arctic since they are well-defined at the north pole ζ=0\zeta=0 of 𝐂𝐏1\mathbf{CP}^{1} (and possibly in a neighbourhood of ζ=0\zeta=0 as well). Similarly, a superfield which is a power series in ζ1\zeta^{-1} is designated antarctic.

Finally, a superfield which is defined in the annulus and is real under the extended complex conjugation given below in Section 2.6 is called equatorial.

2.5 R-symmetry in projective superspace

We consider the R-symmetry transformation of the various objects in projective superspace for the subgroup F=SU(2)F=\text{SU}(2) in this subsection [KLR84] (the discussion for F=SU(2)F^{\prime}=\text{SU}(2)^{\prime} proceeds analogously). The homogeneous coordinates ua=(u1,u2)u^{a}=(u^{1},u^{2}) on 𝐂𝐏1\mathbf{CP}^{1} transforms as a doublet under FF:

uc(gu)c=gcudd,g=(ab\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a)witha\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b=1.u^{c}\to(g\cdot u)^{c}=g^{c}{}_{d}u^{d}\ ,\quad g=\begin{pmatrix}a&b\\ -\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}&\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\end{pmatrix}\quad\text{with}\quad a\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}+b\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}=1\ . (2.35)

Accordingly, the inhomogeneous coordinate ζ=u1/u2\zeta=u^{1}/u^{2} transforms fractional-linearly:

ζgζ=aζ+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a.\zeta\to g\cdot\zeta=\frac{a\zeta+b}{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}}\ . (2.36)

Also, a doublet ua=εabubu_{a}=\varepsilon_{ab}u^{b} with a lower index aa transforms as

ua(gu)a:=ub(g1)b.au_{a}\to(g\cdot u)_{a}:=u_{b}(g^{-1})^{b}{}_{a}\ . (2.37)
Factor of automorphy

We define a factor of automorphy j:F×𝐂𝐏1𝐂j:F\times\mathbf{CP}^{1}\to\mathbf{C} for the action of FF on 𝐂𝐏1\mathbf{CP}^{1} as follows. Let g=(ab\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a)Fg=\begin{pmatrix}a&b\\ -\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}&\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\end{pmatrix}\in F and ζ𝐂𝐏1\zeta\in\mathbf{CP}^{1}. Then we have

j(g,ζ):=(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ).j(g,\zeta):=(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta)\ . (2.38)

It is easy to check that j(g,ζ)j(g,\zeta) satisfies j(g1g2,ζ)=j(g1,g2ζ)j(g2,ζ)j(g_{1}g_{2},\zeta)=j(g_{1},g_{2}\cdot\zeta)\,j(g_{2},\zeta). Suppose we have an object 𝚽(ζ)\bm{\Phi}(\zeta) that depends holomorphically on ζ\zeta. The transformation of 𝚽\bm{\Phi} by a FF-transformation gg is denoted by g𝚽g\cdot\bm{\Phi}. An object 𝚽(ζ)\bm{\Phi}(\zeta) is said to have FF-weight nn if it satisfies

𝚽(ζ)=j(g,ζ)n×[g𝚽](gζ),gF,\bm{\Phi}(\zeta)=j(g,\zeta)^{n}\times[g\cdot\bm{\Phi}](g\cdot\zeta)\ ,\quad g\in F\ , (2.39)

That is, 𝚽\bm{\Phi} is a local section of the line bundle 𝒪(n)𝐂𝐏1\mathcal{O}(n)\to\mathbf{CP}^{1}. Note that weight 0 objects are simply local functions on 𝐂𝐏1\mathbf{CP}^{1}.

Next, we describe the RR-symmetry of 𝒪(n)\mathcal{O}(n) superfields and arctic superfields.

𝒪(n)\mathcal{O}(n) superfields

Consider an 𝒪(n)\mathcal{O}(n) superfield 𝜼\bm{\eta} given by 𝜼(u)=ηa1anua1uan\bm{\eta}(u)=\eta_{a_{1}\ldots a_{n}}u^{a_{1}}\cdots u^{a_{n}}. Since all FF-doublet indices are contracted in 𝜼(u)\bm{\eta}(u), it is invariant under FF. That is,

𝜼(u)=[g𝜼](gu),gF,\bm{\eta}(u)=[g\cdot\bm{\eta}](g\cdot u)\ ,\quad g\in F\ , (2.40)

where [g𝜼](gu)[g\cdot\bm{\eta}](g\cdot u) on the right hand side is a new 𝒪(n)\mathcal{O}(n) superfield [g𝜼][g\cdot\bm{\eta}] obtained by transforming the components ηa1an\eta_{a_{1}\cdots a_{n}}, and evaluated at the transformed coordinates gug\cdot u. In terms of the inhomogeneous coordinate ζ\zeta, we have

𝜼(u):=(u2)n𝜼(ζ),with𝜼(ζ):=j=0nηjζj,\bm{\eta}(u):=(u^{2})^{n}\bm{\eta}(\zeta)\ ,\quad\text{with}\quad\bm{\eta}(\zeta):=\sum_{j=0}^{n}\eta_{j}\zeta^{j}\ , (2.41)

where ηj\eta_{j} are appropriate combinations of the ηa1an\eta_{a_{1}\cdots a_{n}}. Similarly,

[g𝜼](gu)=(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111au2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bu1)n×𝜼g(gζ)=(u2)nj(g,ζ)n×[g𝜼](gζ).[g\cdot\bm{\eta}](g\cdot u)=(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}u^{2}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}u^{1})^{n}\times{}^{g}\bm{\eta}(g\cdot\zeta)=(u^{2})^{n}j(g,\zeta)^{n}\times[g\cdot\bm{\eta}](g\cdot\zeta)\ . (2.42)

This leads to

𝜼(ζ)=j(g,ζ)n[g𝜼](gζ).\bm{\eta}(\zeta)=j(g,\zeta)^{n}[g\cdot\bm{\eta}](g\cdot\zeta)\ . (2.43)

We define the transformation of a 𝒪(n)\mathcal{O}(n) superfield 𝜼(ζ)\bm{\eta}(\zeta) by an element gFg\in F as

𝜼(ζ)[g1𝜼](ζ):=j(g,ζ)n𝜼(gζ),\bm{\eta}(\zeta)\to\ [g^{-1}\cdot\bm{\eta}](\zeta):=j(g,\zeta)^{n}\,\bm{\eta}(g\cdot\zeta)\ , (2.44)

where the right hand side must be expanded about ζ=0\zeta=0 so that it is a function of ζ\zeta rather than gζg\cdot\zeta. Thus, an 𝒪(n)\mathcal{O}(n) superfield has weight nn (note that this is also the degree of the line bundle 𝒪(n)𝐂𝐏1\mathcal{O}(n)\to\mathbf{CP}^{1}). Meromorphic sections of 𝒪(n)\mathcal{O}(n) also transform similarly under R-symmetry.

An example

We are primarily interested in describing hypermultiplets which correspond to n=1n=1. In this case the components ηa\eta_{a} of 𝜼(z¯,u)=ηa(z¯)ua\bm{\eta}(\underline{z},u)=\eta_{a}(\underline{z})u^{a} transform as an FF-doublet. We check that 𝜼\bm{\eta} satisfies (2.43) for n=1n=1:

j(g,ζ)×[g𝜼](gζ)=(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aη1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bη2)(aζ+b)+(bη1+aη2)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ)=η1ζ+η2=𝜼(ζ),j(g,\zeta)\times\,[g\cdot\bm{\eta}](g\cdot\zeta)=(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\eta_{1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\eta_{2})(a\zeta+b)+(-b\eta_{1}+a\eta_{2})(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta)=\eta_{1}\zeta+\eta_{2}=\bm{\eta}(\zeta)\ , (2.45)

where we have used the SU(2)\text{SU}(2) transformation of a doublet ηa\eta_{a} with a lower index as described in eq. (2.37). It can be easily checked that the conjugate \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2} (cf. (2.64)) also transforms as an 𝒪(1)\mathcal{O}(1) multiplet.

Arctic superfields

Arctic superfields are typically defined only in a neighbourhood of ζ=0\zeta=0 and not globally on 𝐂𝐏1\mathbf{CP}^{1}. As a result, we may only consider infinitesimal R-symmetry transformations of arctic superfields since they retain ζ\zeta in a neighbourhood of ζ=0\zeta=0. These we obtain by setting a=1+iαa=1+\text{i}\alpha and b=βb=\beta, with α\alpha and β\beta infinitesimal, in the formula for the FF-transformation gg in (2.35). The determinant condition a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b=1a\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}+b\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}=1 then gives i(α\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)=0\text{i}(\alpha-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})=0 to first order in the infinitesimals, i.e., α\alpha is real. The infinitesimal FF-transformation of ζ\zeta is then (cf. [LR10])

δζ=β+2iαζ+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ζ2.\delta\zeta=\beta+2\text{i}\alpha\zeta+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\zeta^{2}\ . (2.46)

The FF-transformation of an arctic superfield 𝚼(ζ)=0Υjζj{\mathbf{\Upsilon}}(\zeta)=\sum_{0}^{\infty}\mathnormal{\Upsilon}_{j}\,\zeta^{j} of weight kk is then given by the infinitesimal version of [g1𝚼](ζ)=j(g,ζ)k×𝚼(gζ)[g^{-1}\cdot{\mathbf{\Upsilon}}](\zeta)=j(g,\zeta)^{k}\times{\mathbf{\Upsilon}}(g\cdot\zeta):

δ𝚼(ζ)=k(iα+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ζ)𝚼(ζ)+𝚼ζδζ,k𝐙.\delta{\mathbf{\Upsilon}}(\zeta)=-k(\text{i}\alpha+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\zeta){\mathbf{\Upsilon}}(\zeta)+\frac{\partial{\mathbf{\Upsilon}}}{\partial\zeta}\,\delta\zeta\ ,\quad k\in\mathbf{Z}\ . (2.47)

It is important to note that arctic superfields can be assigned any integral weight kk a priori since arctics go to arctics under infinitesimal transformations for any kk in eq. (2.47)444Explicitly, we have δ𝚼=[g1𝚼](ζ)𝚼(ζ)=(1kiαk\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ζ)(𝚼(ζ)+𝚼ζδζ)𝚼(ζ)=k(iα+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ζ)𝚼(ζ)+𝚼ζδζ.\delta{\mathbf{\Upsilon}}=[g^{-1}\cdot{\mathbf{\Upsilon}}](\zeta)-{\mathbf{\Upsilon}}(\zeta)=(1-k\text{i}\alpha-k\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\zeta)\left({\mathbf{\Upsilon}}(\zeta)+\frac{\partial{\mathbf{\Upsilon}}}{\partial\zeta}\delta\zeta\right)-{\mathbf{\Upsilon}}(\zeta)=-k(\text{i}\alpha+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\zeta){\mathbf{\Upsilon}}(\zeta)+\frac{\partial{\mathbf{\Upsilon}}}{\partial\zeta}\delta\zeta\ . Clearly, the right hand side is also an arctic superfield.. Further, it is easy to check that ζk\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\zeta^{k}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1}) also transforms as an object of weight kk but is no longer an antarctic superfield.

The components Υj\mathnormal{\Upsilon}_{j} transform under (2.47) as

δΥj=(j+1)βΥj+1+(2jk)αΥj+(j1k)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj1.\delta\mathnormal{\Upsilon}_{j}=(j+1)\beta\mathnormal{\Upsilon}_{j+1}+(2j-k)\alpha\mathnormal{\Upsilon}_{j}+(j-1-k)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\mathnormal{\Upsilon}_{j-1}\ . (2.48)

Let us look at k=1k=1 which will be required in our study of hypermultiplets. We shall show below that, with our choice of action for the arctic superfield, the components Υj2\mathnormal{\Upsilon}_{j\geq 2} will turn out to be auxiliary and will be set to zero by their equations of motion. The arctic superfield then truncates to an 𝒪(1)\mathcal{O}(1) superfield after substituting Υj2=0\mathnormal{\Upsilon}_{j\geq 2}=0. It is then clear that the components Υ0\mathnormal{\Upsilon}_{0} and Υ1\mathnormal{\Upsilon}_{1} decouple from the Υj2\mathnormal{\Upsilon}_{j\geq 2} components in (2.48) and Υ0\mathnormal{\Upsilon}_{0} and Υ1\mathnormal{\Upsilon}_{1} transform as

δΥ0=αΥ0+βΥ1,δΥ1=αΥ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0.\delta\mathnormal{\Upsilon}_{0}=-\alpha\mathnormal{\Upsilon}_{0}+\beta\mathnormal{\Upsilon}_{1}\ ,\quad\delta\mathnormal{\Upsilon}_{1}=\alpha\mathnormal{\Upsilon}_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\mathnormal{\Upsilon}_{0}\ . (2.49)

These are the transformation rules for an FF-doublet (Υ1,Υ0)(\mathnormal{\Upsilon}_{1},\mathnormal{\Upsilon}_{0}) and this is the standard transformation of a hypermultiplet under SU(2)\text{SU}(2) R-symmetry.

The derivatives 𝐃a+\mathbf{D}_{a^{\prime}+},𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}

Since 𝐃a+=uaDaa+\mathbf{D}_{a^{\prime}+}=u^{a}\mathrm{D}_{aa^{\prime}+}, the same manipulations we did for 𝒪(n)\mathcal{O}(n) superfields works here and it follows from (2.43) that 𝐃a+\mathbf{D}_{a^{\prime}+} has FF-weight +1+1. Let us next discuss the FF-weight of 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}. Recall from the discussion above equation (2.20) that our chosen solution for the equation εabu~aub=1\varepsilon_{ab}\widetilde{u}^{a}u^{b}=1 is

u~a=(u2)1(10),givenua=(u1u2)=u2(ζ1).\widetilde{u}^{a}=(u^{2})^{-1}\begin{pmatrix}1\\ 0\end{pmatrix}\ ,\quad\text{given}\quad u^{a}=\begin{pmatrix}u^{1}\\ u^{2}\end{pmatrix}=u^{2}\begin{pmatrix}\zeta\\ 1\end{pmatrix}\ . (2.50)

Under FF-transformations, since u2u^{2} transforms as u2j(g,ζ)u2u^{2}\to j(g,\zeta)u^{2}, uau^{a} and u~a\widetilde{u}^{a} transform as

u~aj(g,ζ)1(u2)1(10),uaj(g,ζ)u2(aζ+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ1).\widetilde{u}^{a}\to j(g,\zeta)^{-1}(u^{2})^{-1}\begin{pmatrix}1\\ 0\end{pmatrix}\ ,\quad u^{a}\to j(g,\zeta)u^{2}\begin{pmatrix}\frac{a\zeta+b}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta}\\ 1\end{pmatrix}\ . (2.51)

From this, it is clear that 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} has FF-weight 1-1. This is consistent with the algebra {𝐃a+,𝐃~b+}=2iεab++\{\mathbf{D}_{a^{\prime}+}\,,\widetilde{\mathbf{D}}_{b^{\prime}+}\}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++} since the right hand side is independent of ζ\zeta and hence, has weight 0.

However, the transformation (2.51) of u~a\widetilde{u}^{a} does not look like that of an FF-doublet. The latter looks like

u~a(a(u2)1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b(u2)1).\widetilde{u}^{a}\to\begin{pmatrix}a(u^{2})^{-1}\\ -\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}(u^{2})^{-1}\end{pmatrix}\ . (2.52)

How do we reconcile (2.51) and (2.52)? Recall that we had a shift symmetry (2.8) δu~a=ωua\delta\widetilde{u}^{a}=\omega u^{a} in the space of u~a\widetilde{u}^{a} that satisfy εabu~aub=1\varepsilon_{ab}\widetilde{u}^{a}u^{b}=1. We could add a shift in one of the transformations, say (2.51) and see if that can be matched with (2.52) for a particular value of the shift parameter. Indeed, writing

j(g,ζ)1(u2)1(10)+ωj(g,ζ)u2(aζ+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ1)=(u2)1(a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b),j(g,\zeta)^{-1}(u^{2})^{-1}\begin{pmatrix}1\\ 0\end{pmatrix}+\omega j(g,\zeta)u_{2}\begin{pmatrix}\frac{a\zeta+b}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta}\\ 1\end{pmatrix}=(u^{2})^{-1}\begin{pmatrix}a\\ -\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\end{pmatrix}\ , (2.53)

we get a solution for ω\omega

ω=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b(u2)2j(g,ζ)1.\omega=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}(u^{2})^{-2}j(g,\zeta)^{-1}\ . (2.54)

In analogy with (2.44), we define the transformations of the 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} expressed in inhomogeneous coordinates as

𝐃a+(ζ)j(g,ζ)𝐃a+(gζ),𝐃~a+(ζ)j(g,ζ)1𝐃~a+(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃a+(gζ).\mathbf{D}_{a^{\prime}+}(\zeta)\to j(g,\zeta)\mathbf{D}_{a^{\prime}+}(g\cdot\zeta)\ ,\quad\widetilde{\mathbf{D}}_{a^{\prime}+}(\zeta)\to j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{a^{\prime}+}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\,\mathbf{D}_{a^{\prime}+}(g\cdot\zeta)\ . (2.55)
The projective superspace measure

Recall that the (0,4)(0,4) projective superspace action (2.13) is

𝒮[𝚽]=d2x12πiγεabuadub𝐃~1+𝐃~2+𝑲(𝚽).\mathcal{S}[\bm{\Phi}]=\int\text{d}^{2}x\frac{1}{2\pi\text{i}}\oint_{\gamma}\varepsilon_{ab}u^{a}\text{d}u^{b}\ \widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,{\bm{K}}_{--}(\bm{\Phi})\ . (2.56)

As discussed after (2.13), the action is manifestly FF and FF^{\prime} invariant provided the superspace Lagrangian 𝑲{\bm{K}}_{--} is invariant. In terms of FF-weight, it has weight 0 since the measure uadubu^{a}\text{d}u^{b} has two factors of uau^{a} and 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} has two factors of u~a\widetilde{u}^{a}. Let us elaborate in terms of inhomogeneous coordinates. The action takes the form

𝒮[𝚽]\displaystyle\mathcal{S}[\bm{\Phi}] =d2xγdζ2πi𝐃~1+𝐃~2+𝑲(𝚽).\displaystyle=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,{\bm{K}}_{--}(\bm{\Phi})\ . (2.57)

The measure dζ\text{d}\zeta transforms with FF-weight 22 under an FF-transformation ζgζ\zeta\to g\cdot\zeta:

dζ=j(g,ζ)2d(gζ).\text{d}\zeta=j(g,\zeta)^{2}\,\text{d}(g\cdot\zeta)\ . (2.58)

The superderivatives 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} effectively transform with FF-weight 1-1 (cf. the first term in the transformation of 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in (2.55); the second term in (2.55) is proportional to 𝐃a+\mathbf{D}_{a^{\prime}+} which annihilates 𝑲{\bm{K}}_{--}). As a result, the combination dζ𝐃~1+𝐃~2+\text{d}\zeta\,\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} has weight 0, i.e., the superspace measure is invariant (up to total derivatives). Since integrating a weight 0 object with the invariant measure yields an FF-invariant answer, the action is R-symmetric if the superspace Lagrangian 𝑲{\bm{K}}_{--} has weight 0.

2.6 Extended complex conjugation

Recall the 𝒮\mathcal{S} map (2.17) which takes ζ1/ζ\zeta\to-1/\zeta. The antipodal map \mathcal{I} that takes a point on 𝐂𝐏1\mathbf{CP}^{1} to its antipode is the composition of the 𝒮\mathcal{S} map and complex conjugation:

:(u1u2)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111),that is:ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\mathcal{I}:\ \begin{pmatrix}u^{1}\\ u^{2}\end{pmatrix}\longmapsto\begin{pmatrix}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\\ \macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\end{pmatrix}\ ,\quad\text{that is}\quad\mathcal{I}:\ \zeta\longmapsto-\frac{1}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}}\ . (2.59)

The antipodal map can be used to define a new real structure [LR88] on the (sheaf of) sections of a line bundle as the action of the antipodal map on a section followed by ordinary complex conjugation of the resulting section.

For instance, the antipodal map acts on an arctic superfield 𝚼(ζ)=j0Υjζj{\mathbf{\Upsilon}}(\zeta)=\sum_{j\geq 0}\mathnormal{\Upsilon}_{j}\zeta^{j} (which is a local section of some line bundle on 𝐂𝐏1\mathbf{CP}^{1}) as

j0Υjζjj0Υj(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)j.\sum_{j\geq 0}\mathnormal{\Upsilon}_{j}\zeta^{j}\to\sum_{j\geq 0}\mathnormal{\Upsilon}_{j}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{-j}\ . (2.60)

Ordinary complex conjugation of the resulting local section is

j0Υj(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)jj0\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ)jj.\sum_{j\geq 0}\mathnormal{\Upsilon}_{j}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{-j}\to\sum_{j\geq 0}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}(-\zeta)^{-j}\ . (2.61)

Thus, the extended complex conjugate of an arctic superfield 𝚼(ζ){\mathbf{\Upsilon}}(\zeta) is

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(1/ζ):=j0\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(1/ζ)jj.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-1/\zeta):=\sum_{j\geq 0}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}(-1/\zeta)^{j}\ . (2.62)

Let us compute the extended complex conjugate of an 𝒪(p)\mathcal{O}(p) superfield 𝜼\bm{\eta}. Since 𝜼\bm{\eta} is globally defined on 𝐂𝐏1\mathbf{CP}^{1}, and the antipodal map contains the 𝒮\mathcal{S} map, we can use the FF-transformation rule (2.44) for 𝒪(p)\mathcal{O}(p) superfields to obtain the extended complex conjugate:

𝜼(z¯,ζ)=j=0pηj(z¯)ζj(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)pj=0pηj(z¯)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)jc.c.j=0p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(z¯)j(ζ)pj.\bm{\eta}(\underline{z},\zeta)=\sum_{j=0}^{p}\eta_{j}(\underline{z})\zeta^{j}\quad\begin{subarray}{c}\mathcal{I}\\ \displaystyle\longmapsto\end{subarray}\quad(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{p}\sum_{j=0}^{p}\eta_{j}(\underline{z})(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{-j}\quad\begin{subarray}{c}\text{c.c.}\\ \displaystyle\longmapsto\end{subarray}\quad\sum_{j=0}^{p}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}(\underline{z})(-\zeta)^{p-j}\ . (2.63)

The difference between the above and (2.62) is that there is an additional factor of (\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)p(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{p} in the antipodal map step. This factor makes the new section also a global section of 𝒪(p)\mathcal{O}(p). Thus, the extended complex conjugate of an 𝒪(p)\mathcal{O}(p) superfield 𝜼\bm{\eta} is

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(z¯,ζ):=j=0p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(z¯)j(ζ)pj.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(\underline{z},\zeta):=\sum_{j=0}^{p}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}(\underline{z})(-\zeta)^{p-j}\ . (2.64)
A reality condition

As is obvious from (2.64), the extended conjugate of an 𝒪(p)\mathcal{O}(p) superfield is also an 𝒪(p)\mathcal{O}(p) superfield. Notice that applying the extended complex conjugate twice on 𝜼\bm{\eta} gives

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=(1)p𝜼.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=(-1)^{p}\bm{\eta}\ . (2.65)

Thus, we can impose a reality condition on an 𝒪(p)\mathcal{O}(p) superfield only when pp is even:

𝜼(ζ)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ),that is,j=0pηj(z¯)ζj=j=0p\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(z¯)j(ζ)pj.\bm{\eta}(\zeta)=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(\zeta)\ ,\quad\text{that is,}\quad\sum_{j=0}^{p}\eta_{j}(\underline{z})\zeta^{j}=\sum_{j=0}^{p}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}(\underline{z})(-\zeta)^{p-j}\ . (2.66)
Extended complex conjugates of 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}

Next, consider the derivatives 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}. Since they are globally defined (see the equations (2.22), (2.23) and the discussion around them), we use the global FF-transformation rules in (2.55) to get the conjugates. The factor of automorphy for the 𝒮\mathcal{S}-map is j(𝒮,ζ)=ζj(\mathcal{S},\zeta)=-\zeta. The complex conjugate of 𝐃a+\mathbf{D}_{a^{\prime}+} is then

𝐃a+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D1a+1+D2a+)c.c.ζ(ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+1a+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)2a+=εab(D2b++ζD1b+)=εab𝐃b+.\mathbf{D}_{a^{\prime}+}\quad\begin{subarray}{c}{\mathcal{I}}\\ \displaystyle\longmapsto\end{subarray}\quad-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1}\mathrm{D}_{1a^{\prime}+}+\mathrm{D}_{2a^{\prime}+})\quad\begin{subarray}{c}{\rm c.c.}\\ \displaystyle\longmapsto\end{subarray}\quad-\zeta(-\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1a^{\prime}+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{2a^{\prime}+})\\ =\varepsilon^{a^{\prime}b^{\prime}}(\mathrm{D}_{2b^{\prime}+}+\zeta\mathrm{D}_{1b^{\prime}+})=\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\ . (2.67)

The complex conjugate of 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} is obtained as follows. First, we apply the antipodal map:

𝐃~a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1𝐃~a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1𝐃a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1=(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1D1a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D1a+1+D2a+)=D2a+.\widetilde{\mathbf{D}}_{a^{\prime}+}\quad\begin{subarray}{c}{\mathcal{I}}\\ \displaystyle\longmapsto\end{subarray}\quad(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{-1}\widetilde{\mathbf{D}}_{a^{\prime}+}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1})-\mathbf{D}_{a^{\prime}+}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1})=(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})^{-1}\mathrm{D}_{1a^{\prime}+}-(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1}\mathrm{D}_{1a^{\prime}+}+\mathrm{D}_{2a^{\prime}+})=-\mathrm{D}_{2a^{\prime}+}\ . (2.68)

where we have used the fact that since the 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} are independent of ζ\zeta, the expressions for 𝐃~a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1\widetilde{\mathbf{D}}_{a^{\prime}+}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1}) are the same as in (2.20), i.e., 𝐃~a+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1=D1a+\widetilde{\mathbf{D}}_{a^{\prime}+}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{-1})=\mathrm{D}_{1a^{\prime}+}. Next, doing ordinary complex conjugation, we get

D2a+c.c.εabD1b+=εab𝐃~b+.-\mathrm{D}_{2a^{\prime}+}\quad\begin{subarray}{c}{\rm c.c.}\\ \displaystyle\longmapsto\end{subarray}\quad\varepsilon^{a^{\prime}b^{\prime}}\mathrm{D}_{1b^{\prime}+}=\varepsilon^{a^{\prime}b^{\prime}}\widetilde{\mathbf{D}}_{b^{\prime}+}\ . (2.69)

Thus, we have

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+aεab𝐃b+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+aεab𝐃~b+.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}=\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}=\varepsilon^{a^{\prime}b^{\prime}}\widetilde{\mathbf{D}}_{b^{\prime}+}\ . (2.70)

We may need to consider a slightly different version of the complex conjugates of the derivatives when they act on arctic superfields for the following reason. Under extended complex conjugation, an arctic superfield goes to an antarctic superfield (see (2.62)). We would like this to be true for the derivative of an arctic as well. However, applying (2.70) on 𝐃a+𝚼\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}} gives εab𝐃b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} which is not antarctic due to a term proportional to ζ\zeta in 𝐃b+\mathbf{D}_{b^{\prime}+}. On the other hand, treating 𝐃a+𝚼\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}} as a new arctic superfield with components

𝐃a+𝚼(ζ)=j0(ζD1a++D2a+)Υjζj=j0ζj(D2a+Υj+D1a+Υj1),\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}}(\zeta)=\sum_{j\geq 0}(\zeta\mathrm{D}_{1a^{\prime}+}+\mathrm{D}_{2a^{\prime}+})\mathnormal{\Upsilon}_{j}\zeta^{j}=\sum_{j\geq 0}\zeta^{j}(\mathrm{D}_{2a^{\prime}+}\mathnormal{\Upsilon}_{j}+\mathrm{D}_{1a^{\prime}+}\mathnormal{\Upsilon}_{j-1})\ , (2.71)

we can apply the conjugation rule (2.62) to the above and obtain

j0(1/ζ)jεab(D1b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+jD2a+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)j1,\sum_{j\geq 0}(-1/\zeta)^{j}\varepsilon^{a^{\prime}b^{\prime}}(-\mathrm{D}_{1b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}+\mathrm{D}_{2a^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j-1})\ , (2.72)

as the conjugate antarctic superfield corresponding to 𝐃a+𝚼\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}}. Clearly, (2.72) can be written as

εab(D1b+ζ1D2b+)j0(1/ζ)j\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=jζ1εab𝐃b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(1/ζ),\varepsilon^{a^{\prime}b^{\prime}}(-\mathrm{D}_{1b^{\prime}+}-\zeta^{-1}\mathrm{D}_{2b^{\prime}+})\sum_{j\geq 0}(-1/\zeta)^{j}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}=-\zeta^{-1}\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-1/\zeta)\ , (2.73)

which suggests that we modify the conjugate of the derivative 𝐃a+\mathbf{D}_{a^{\prime}+} when acting on arctic superfields to

𝐃a+𝐃˘=a+ζ1εab𝐃b+.\mathbf{D}_{a^{\prime}+}\to\breve{\mathbf{D}}{}^{a^{\prime}+}=-\zeta^{-1}\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\ . (2.74)

Similarly, we have

𝐃~a+𝚼(ζ)=j0ζjD1a+Υj.\widetilde{\mathbf{D}}_{a^{\prime}+}{\mathbf{\Upsilon}}(\zeta)=\sum_{j\geq 0}\zeta^{j}\mathrm{D}_{1a^{\prime}+}\mathnormal{\Upsilon}_{j}\ . (2.75)

Applying (2.62) to the above, we get

j0(1/ζ)jεabD2b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.j\sum_{j\geq 0}(-1/\zeta)^{j}\varepsilon^{a^{\prime}b^{\prime}}\mathrm{D}_{2b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}\ . (2.76)

Note the identity

D2b+=ζD1b++𝐃b+=ζ𝐃~b++𝐃b+.\mathrm{D}_{2b^{\prime}+}=-\zeta\mathrm{D}_{1b^{\prime}+}+\mathbf{D}_{b^{\prime}+}=-\zeta\widetilde{\mathbf{D}}_{b^{\prime}+}+\mathbf{D}_{b^{\prime}+}\ . (2.77)

This allows us to write (2.76) as

j0(1/ζ)jεabD2b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=jεab(ζ𝐃~b++𝐃b+)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(1/ζ),\sum_{j\geq 0}(-1/\zeta)^{j}\varepsilon^{a^{\prime}b^{\prime}}\mathrm{D}_{2b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j}=\varepsilon^{a^{\prime}b^{\prime}}(-\zeta\widetilde{\mathbf{D}}_{b^{\prime}+}+\mathbf{D}_{b^{\prime}+})\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-1/\zeta)\ , (2.78)

which suggests the modification

𝐃~a+𝐃~˘=a+εab(ζ𝐃~b++𝐃b+).\widetilde{\mathbf{D}}_{a^{\prime}+}\to\breve{\widetilde{\mathbf{D}}}{}^{a^{\prime}+}=\varepsilon^{a^{\prime}b^{\prime}}(-\zeta\widetilde{\mathbf{D}}_{b^{\prime}+}+\mathbf{D}_{b^{\prime}+})\ . (2.79)

Thus, on arctic superfields, we can postulate the following modified extended complex conjugates of the derivatives:

𝐃˘=+aζ1εab𝐃b+,𝐃~˘=+aεab(ζ𝐃~b++𝐃b+).\breve{\mathbf{D}}{}^{a^{\prime}}_{+}=-\zeta^{-1}\varepsilon^{a^{\prime}b^{\prime}}\mathbf{D}_{b^{\prime}+}\ ,\quad\breve{\widetilde{\mathbf{D}}}{}^{a^{\prime}}_{+}=\varepsilon^{a^{\prime}b^{\prime}}(-\zeta\widetilde{\mathbf{D}}_{b^{\prime}+}+\mathbf{D}_{b^{\prime}+})\ . (2.80)

The notation ˘\breve{\ } for the above notion of the extended complex conjugate of a derivative has been used earlier in [Kuz99] and has been called ‘smile conjugation’; we continue to use the same notation in this paper. Note that the smile conjugation simply treats 𝐃a+(ζ)\mathbf{D}_{a^{\prime}+}(\zeta) and 𝐃~a+(ζ)\widetilde{\mathbf{D}}_{a^{\prime}+}(\zeta) as local sections and applies the conjugation rule (2.62).

3 Hypermultiplets

The dynamical degrees of freedom of a (0,4)(0,4) hypermultiplet consists of two (0,2)(0,2) chiral superfields ϕ\phi and χ\chi such that (ϕ,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)(\phi,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}) form an SU(2)\text{SU}(2) doublet. The SU(2)\text{SU}(2) in question can be either FF or FF^{\prime} and the corresponding hypers are called standard and twisted hypermultiplets respectively. A standard hypermultiplet555See also [GR95] for a discussion in ordinary superspace. can be described in (0,4)(0,4) projective superspace either by an 𝒪(1)\mathcal{O}(1) superfield [HL17] or by a pair of FF-arctic superfields (𝚼,𝚼)({\mathbf{\Upsilon}},{\mathbf{\Upsilon}}_{--}). The analogous notation for the twisted hypers is 𝒪(1)\mathcal{O}(1)^{\prime} and FF^{\prime}-arctic respectively. We describe free hypermultiplets in this section and study interactions in Section 5.

3.1 Standard hypermultiplets

3.1.1 𝒪(1)\mathcal{O}(1) superfield

We start with a complex 𝒪(1)\mathcal{O}(1) superfield 𝜼=ηaua\bm{\eta}=\eta_{a}u^{a}. In terms of the inhomogeneous coordinate ζ\zeta, we have ua=(ζ,1)u^{a}=(\zeta,1) and

𝜼(ζ)=η2+ζη1,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.2\bm{\eta}(\zeta)=\eta_{2}+\zeta\eta_{1}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(\zeta)=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\ . (3.1)

The projective constraints 𝐃a+𝜼=0\mathbf{D}_{a^{\prime}+}\bm{\eta}=0 give the following constraints on η1\eta_{1} and η2\eta_{2}:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η1+=0,D+η1=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η2+=0,Q+η2=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η1+,Q+η1=D+η2.\displaystyle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{1}=0\ ,\quad\mathrm{D}_{+}\eta_{1}=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{2}=0\ ,\quad\mathrm{Q}_{+}\eta_{2}=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{2}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{1}\ ,\quad\mathrm{Q}_{+}\eta_{1}=-\mathrm{D}_{+}\eta_{2}\ . (3.2)

We see that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1} and η2\eta_{2} are (0,2)(0,2) chiral superfields since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} annihilates them. See Appendix A.2 for a review of (0,2)(0,2) superspace.

The superpartner fermions are defined as666The conjugate fermions are obtained as follows. 𝐃~a+𝜼\widetilde{\mathbf{D}}_{a^{\prime}+}\bm{\eta} is best thought of as [𝐃~a+,𝜼][\widetilde{\mathbf{D}}_{a^{\prime}+}\,,\bm{\eta}] which, under conjugation, goes to [\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111]=εac𝐃~c+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111[\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\,,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}]=-\varepsilon^{a^{\prime}c^{\prime}}\widetilde{\mathbf{D}}_{c^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}.

2ξa+:=𝐃~a+𝜼,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+aεab𝐃~b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\sqrt{2}\xi_{a^{\prime}+}:=\widetilde{\mathbf{D}}_{a^{\prime}+}\bm{\eta}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}:=-\varepsilon^{a^{\prime}b^{\prime}}\widetilde{\mathbf{D}}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ . (3.3)

The superpartners ξa+\xi_{a^{\prime}+} are in the doublet of FF^{\prime}; they are also independent of ζ\zeta since the above combinations are globally defined weight 0 superfields, i.e., global holomorphic functions on 𝐂𝐏1\mathbf{CP}^{1} which are indeed constants in ζ\zeta. Using the expressions 𝐃~a+=D1a+\widetilde{\mathbf{D}}_{a^{\prime}+}=\mathrm{D}_{1a^{\prime}+} and that 𝐃a+𝜼=0\mathbf{D}_{a^{\prime}+}\bm{\eta}=0, we can arrive at the following (0,2)(0,2) superspace definitions for the ξa+\xi_{a^{\prime}+}:

2ξ1+=D+η2,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,22ξ2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η1+,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+2D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.1\sqrt{2}\xi_{1^{\prime}+}=\mathrm{D}_{+}\eta_{2}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\ ,\quad-\sqrt{2}\xi_{2^{\prime}+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{1}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}_{+}=\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\ . (3.4)

The next superfield in the multiplet would be 𝐃~a+𝐃~b+𝜼\widetilde{\mathbf{D}}_{a^{\prime}+}\widetilde{\mathbf{D}}_{b^{\prime}+}\bm{\eta} which (1) is globally defined on 𝐂𝐏1\mathbf{CP}^{1}, (2) has FF-weight 1-1, (3) is antisymmetric in aba^{\prime}b^{\prime}, and (4) is a Lorentz vector. The only superfield which satisfies all these properties is εab++𝜼~\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\widetilde{\bm{\eta}}, where 𝜼~=u~aηa\widetilde{\bm{\eta}}=\widetilde{u}^{a}\eta_{a}. Thus, we have

𝐃~a+𝐃~b+𝜼=2iεab++𝜼~,𝐃~a+𝐃~b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=2iεab++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\widetilde{\mathbf{D}}_{a^{\prime}+}\widetilde{\mathbf{D}}_{b^{\prime}+}\bm{\eta}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\widetilde{\bm{\eta}}\ ,\quad\widetilde{\mathbf{D}}_{a^{\prime}+}\widetilde{\mathbf{D}}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ . (3.5)

The above equations (3.5) can be explicitly checked by using the expressions for 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in (2.20), the complex conjugate derivatives in (2.70), and the projective constraints (3.2).

The (0,4)(0,4) supersymmetric action that describes the (free) hypermultiplet is

𝒮\displaystyle\mathcal{S} =i2d2xγdζ2πi𝐃~1+𝐃~2+(ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝜼).\displaystyle=-\frac{\text{i}}{2}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{\eta})\ . (3.6)

Using the fact that the superspace Lagrangian is annihilated by 𝐃a+\mathbf{D}_{a^{\prime}+}, we can write it as an action in (0,2)(0,2) superspace as in (2.26). We get

𝒮\displaystyle\mathcal{S} =i2d2xγdζ2πiζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝜼)+.\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{\eta})\ . (3.7)

Next, we can obtain the component action by first performing the ζ\zeta-integral, pushing in the derivatives and using the definitions (3.4) and that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1} and η2\eta_{2} are (0,2)(0,2) chiral superfields:

𝒮\displaystyle\mathcal{S} =i2D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+d2xγdζ2πiζ((ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)2(ζη1+η2)),\displaystyle=\frac{\text{i}}{2}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\big{(}(\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2})\partial_{--}(\zeta\eta_{1}+\eta_{2})\big{)}\ ,
=i2d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111η1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112η2)+,\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\eta_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\partial_{--}\eta_{2})\ ,
=d2x(μ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaηai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+).\displaystyle=\int\text{d}^{2}x\,(-\partial_{\mu}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial^{\mu}\eta_{a}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\,a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+})\ . (3.8)

(See Appendix A.2 for a derivation of the component action from the (0,2)(0,2) action in the second line in (3.1.1).) We can also obtain the same component action as above by pushing in the derivatives 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} in (3.6), use the definitions (3.3) and (3.5), and finally perform the ζ\zeta integral (see Appendix C.2).

The 𝒪(1)\mathcal{O}(1) superfield can be described in ordinary (0,4)(0,4) superspace as well. Writing 𝐃a+=uaDaa+\mathbf{D}_{a^{\prime}+}=u^{a}\mathrm{D}_{aa^{\prime}+} and 𝜼=uaηa\bm{\eta}=u^{a}\eta_{a}, the projective constraints 𝐃a+𝜼=0\mathbf{D}_{a^{\prime}+}\bm{\eta}=0 are equivalent to

Daa+ηb+Dba+ηa=0.\mathrm{D}_{aa^{\prime}+}\eta_{b}+\mathrm{D}_{ba^{\prime}+}\eta_{a}=0\ . (3.9)

As noted in [HL17], in contrast to an 𝒪(1)\mathcal{O}(1) superfield in (4,4)(4,4) projective superspace, the above (0,4)(0,4) constraints do not put the 𝒪(1)\mathcal{O}(1) superfield on-shell. Only the antisymmetric part in abab of Daa+ηbD_{aa^{\prime}+}\eta_{b} is non-zero and it gives the superpartner fermions defined in (3.3) (or equivalently (3.4)):

Daa+ηb=:2εabξa+,2εab\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+aεacεacDcc+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.b\mathrm{D}_{aa^{\prime}+}\eta_{b}=:\sqrt{2}\varepsilon_{ab}\xi_{a^{\prime}+}\ ,\quad\sqrt{2}\varepsilon^{ab}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}=-\varepsilon^{ac}\varepsilon^{a^{\prime}c^{\prime}}\mathrm{D}_{cc^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{b}\ . (3.10)

Note that the scalars ηa\eta_{a} are in an FF-doublet whereas the fermions ξa+\xi_{a^{\prime}+} are in an FF^{\prime}-doublet.

Recall from (3.2) that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1} and η2\eta_{2} are annihilated by \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} and Q+\mathrm{Q}_{+}. Thus, we can write down a manifestly (0,4)(0,4) supersymmetric action with the measure D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:

𝒮\displaystyle\mathcal{S} =i2d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111η2)+.\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\eta_{2})\ . (3.11)

This is the projective superspace action (3.6) after plugging in 𝐃~1+=D+\widetilde{\mathbf{D}}_{1^{\prime}+}=\mathrm{D}_{+}, 𝐃~2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\widetilde{\mathbf{D}}_{2^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} and performing the ζ\zeta integral; therefore, it also coincides with the (0,2)(0,2) action (3.7). The above action is not manifestly R-symmetric, but a manifestly R-symmetric action also exists which agrees with any of the above actions (up to total spacetime derivatives):

𝒮\displaystyle\mathcal{S} =i2d2xεabDaa+Dbb+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aεbcηc).\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\varepsilon^{a^{\prime}b^{\prime}}\mathrm{D}_{aa^{\prime}+}\mathrm{D}_{bb^{\prime}+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial_{--}\varepsilon^{bc}\eta_{c})\ . (3.12)

However, the above action is not manifestly supersymmetric since the measure does not involve all four superspace derivatives.

The FF-projective superspace action (3.6) does not seem to be invariant under R-symmetry since the Lagrangian does not seem to transform with FF-weight 0. To write a manifestly R-symmetric action in projective superspace, we use the arctic realization of the hypermultiplet, one that arises naturally from (4,4)(4,4) projective superspace (see Appendix B.2).

3.1.2 Arctic superfield

Consider two arctic multiplets 𝚼{\mathbf{\Upsilon}} and 𝚼{\mathbf{\Upsilon}}_{--} with ζ\zeta-expansions

𝚼(ζ)=j=0Υjζj,𝚼(ζ)=j=0Υjζj.{\mathbf{\Upsilon}}(\zeta)=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j}\zeta^{j}\ ,\quad{\mathbf{\Upsilon}}_{--}(\zeta)=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j--}\zeta^{j}\ . (3.13)

The projective constraints 𝐃a+𝚼=0\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}}=0 give

Q+Υ0=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0,Q+Υj+1=D+Υj,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+1+forj0,\displaystyle\mathrm{Q}_{+}\mathnormal{\Upsilon}_{0}=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0}=0\ ,\quad\mathrm{Q}_{+}\mathnormal{\Upsilon}_{j+1}=-\mathrm{D}_{+}\mathnormal{\Upsilon}_{j}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{j}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{j+1}\quad\text{for}\quad j\geq 0\ , (3.14)

and similarly for 𝚼{\mathbf{\Upsilon}}_{--}. The zeroth components Υ0\mathnormal{\Upsilon}_{0} and Υ0\mathnormal{\Upsilon}_{0--} are (0,2)(0,2) chiral superfields since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--}=0 whereas the Υj\mathnormal{\Upsilon}_{j}, Υj\mathnormal{\Upsilon}_{j--}, j1j\geq 1, are unconstrained as (0,2)(0,2) superfields.

The (0,4)(0,4) supersymmetric action that describes the (free) standard hypermultiplet is

𝒮\displaystyle\mathcal{S} =d2xγdζ2πi𝐃~1+𝐃~2+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼).\displaystyle=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}{\mathbf{\Upsilon}}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--}+\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}})\ . (3.15)

In fact, the above action is equivalent to that of an 𝒪(1)\mathcal{O}(1) superfield when we go partially on-shell by performing the ζ\zeta-integral in the last two terms and integrating out the fields Υj\mathnormal{\Upsilon}_{j--} for j1j\geq 1:

D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111γ+dζ2πiζ(ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼),\displaystyle-\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\left(-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--}+\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}}\right)\ ,
=D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ01+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ10+j=1(1)j+1(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υjj+1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+1j))+.\displaystyle=-\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}\mathnormal{\Upsilon}_{0--}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{0--}\mathnormal{\Upsilon}_{1}+\sum_{j=1}^{\infty}(-1)^{j+1}\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j+1}\mathnormal{\Upsilon}_{j--}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j--}\mathnormal{\Upsilon}_{j+1}\right)\right)\ . (3.16)

Since the Υj\mathnormal{\Upsilon}_{j--}, j1j\geq 1, are unconstrained as (0,2)(0,2) superfields, we can integrate them out in the above superspace action. This imposes \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=j+1Υj+1=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j+1}=\mathnormal{\Upsilon}_{j+1}=0 for j1j\geq 1 and retains only the ζ0\zeta^{0} and ζ1\zeta^{1} terms in 𝚼{\mathbf{\Upsilon}}. Integrating out Υj+1\mathnormal{\Upsilon}_{j+1}, we get Υj=i2Υj+1\mathnormal{\Upsilon}_{j--}=\frac{\text{i}}{2}\partial_{--}\mathnormal{\Upsilon}_{j+1} for j1j\geq 1. We cannot integrate out Υ0\mathnormal{\Upsilon}_{0--} in the same way and set Υ1=0\mathnormal{\Upsilon}_{1}=0 since Υ0\mathnormal{\Upsilon}_{0--} is constrained as a (0,2)(0,2) superfield, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--}=0. Instead, integrating out the constrained superfield Υ0\mathnormal{\Upsilon}_{0--} constrains Υ1\mathnormal{\Upsilon}_{1} to satisfy \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=10\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}=0.777Here is the procedure to integrate out a constrained superfield: we first relax the constraint on Υ0\mathnormal{\Upsilon}_{0--} and introduce a Lagrange multiplier superfield Λ\Lambda_{-}: D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ01+Λ(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+))+-\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}\mathnormal{\Upsilon}_{0--}+\Lambda_{-}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--})\right). Integrating out Λ\Lambda_{-} re-imposes the constraint \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--}=0 whereas integrating out Υ0\mathnormal{\Upsilon}_{0--} gives \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Λ+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\Lambda_{-}, which indeed satisfies \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=10\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}=0. We can conclude the same by going down to components, or at an intermediate stage by pushing in \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} in the first term in the Lagrangian (3.1.2) to get D+((\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)1Υ0)-\mathrm{D}_{+}\left((\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1})\mathnormal{\Upsilon}_{0--}\right). Since the remaining measure D+\mathrm{D}_{+} does not kill Υ0\mathnormal{\Upsilon}_{0--}, we can integrate it out to conclude that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=10\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}=0.

Thus, we have two (0,2)(0,2) chiral superfields Υ0\mathnormal{\Upsilon}_{0} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1} which we relabel as η2\eta_{2} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1} respectively to make contact with the 𝒪(1)\mathcal{O}(1) superfield terminology (3.1). Thus, 𝚼{\mathbf{\Upsilon}} becomes an 𝒪(1)\mathcal{O}(1) superfield when we go partially on-shell by integrating out the auxiliary superfield 𝚼{\mathbf{\Upsilon}}_{--}:

𝚼=Υ0+ζΥ1=ζη1+η2,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=1ζ1(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)2,{\mathbf{\Upsilon}}=\mathnormal{\Upsilon}_{0}+\zeta\mathnormal{\Upsilon}_{1}=\zeta\eta_{1}+\eta_{2}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}-\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}=-\zeta^{-1}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2})\ , (3.17)

and the action (3.15) becomes the 𝒪(1)\mathcal{O}(1) action (3.1.1):

𝒮\displaystyle\mathcal{S} =i2d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111η1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112η2)+=d2x(μ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaηai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+).\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\eta_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\partial_{--}\eta_{2}\right)=\int\text{d}^{2}x\,(-\partial_{\mu}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial^{\mu}\eta_{a}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\,a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+})\ . (3.18)

Since integrating out 𝚼{\mathbf{\Upsilon}}_{--} gives an 𝒪(1)\mathcal{O}(1) superfield, it is consistent to give an FF-weight of +1+1 to 𝚼{\mathbf{\Upsilon}}. However, the action does not seem to have FF-weight 0 and hence does not appear R-symmetric. But the action in ordinary space (3.18) is certainly R-symmetric! Let us see how to understand the R-symmetry of (3.15).

The terms depending on 𝚼{\mathbf{\Upsilon}}_{--} can be made to have weight 0 by declaring that 𝚼{\mathbf{\Upsilon}}_{--} is a weight 1-1 superfield. However, the kinetic term is still a problem. Since 𝚼{\mathbf{\Upsilon}}_{--} is an auxiliary superfield, we can give it a non-standard R-symmetry transformation so that it cancels that of the kinetic term (this is motivated from the (4,4)(0,4)(4,4)\to(0,4) reduction in Appendix B.2):

𝚼(ζ)j(g,ζ)1𝚼(gζ)i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝚼(gζ),whereg=(ab\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a)F.{\mathbf{\Upsilon}}_{--}(\zeta)\to j(g,\zeta)^{-1}{\mathbf{\Upsilon}}_{--}(g\cdot\zeta)-\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\partial_{--}{\mathbf{\Upsilon}}(g\cdot\zeta)\ ,\quad\text{where}\quad g=\begin{pmatrix}a&b\\ -\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}&\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\end{pmatrix}\in F\ . (3.19)

Recall that we must only perform infinitesimal FF-transformations on arctic superfields (see the discussion above eq. (2.46)). It is easy to check that the Lagrangian (3.15) transforms with weight zero when we transform 𝚼{\mathbf{\Upsilon}}_{--} according to the above rule (see Appendix B.2 for an explicit demonstration).

We could write down the (0,4)(0,4) descendants directly by acting on 𝚼{\mathbf{\Upsilon}} and 𝚼{\mathbf{\Upsilon}}_{--} with the derivatives 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+}. We could then compute the component action (3.18) by pushing the derivatives in the measure 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} into the Lagrangian in the (0,4)(0,4) action (3.15) and using the definition of the (0,4)(0,4) descendants. This procedure results in the same conclusions, namely that 𝚼{\mathbf{\Upsilon}} is truncated to an 𝒪(1)\mathcal{O}(1) superfield and 𝚼{\mathbf{\Upsilon}}_{--} is auxiliary, and hence we do not describe it here. However, see Appendix C.2 for an illustration of this method for an arctic fermi superfield.

3.2 Twisted hypermultiplets

A twisted hypermultiplet is described by a complex 𝒪(1)\mathcal{O}(1)^{\prime} superfield 𝑯(ζ)\bm{H}(\zeta^{\prime}) that is specified as

𝑯(ζ)=ζH1+H2,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ)=ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H+2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H.1\bm{H}(\zeta^{\prime})=\zeta^{\prime}H_{1^{\prime}}+H_{2^{\prime}}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(\zeta^{\prime})=-\zeta^{\prime}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{2^{\prime}}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\ . (3.20)

The FF^{\prime}-projective constraints 𝐃a+𝑯=0\mathbf{D}_{a+}\bm{H}=0 are given by

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H2+=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H2+=0,Q+H1=0,D+H1=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1+=D+H2,Q+H2=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1+.\displaystyle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{2^{\prime}}=0\ ,\ \,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{2^{\prime}}=0\ ,\ \,\mathrm{Q}_{+}H_{1^{\prime}}=0\ ,\ \,\mathrm{D}_{+}H_{1^{\prime}}=0\ ,\ \,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{1^{\prime}}=\mathrm{D}_{+}H_{2^{\prime}}\ ,\ \,\mathrm{Q}_{+}H_{2^{\prime}}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{1^{\prime}}\ . (3.21)

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}} and H2H_{2^{\prime}} are (0,2)(0,2) chiral superfields since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} annihilates them. As for the standard hyper, the superpartner fermions are defined by

Daa+Hb=2εabξa+.\mathrm{D}_{aa^{\prime}+}H_{b^{\prime}}=\sqrt{2}\varepsilon_{a^{\prime}b^{\prime}}\xi_{a+}\ . (3.22)

The above definition makes it clear that the superpartner fermions ξa+\xi_{a+} of HaH_{a^{\prime}} are in the doublet of FF. Explicitly, we have

2ξ1+=D+H2,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H,22ξ2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1+,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+ 2D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H.1\sqrt{2}\xi_{1+}=\mathrm{D}_{+}H_{2^{\prime}}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}_{+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{2^{\prime}}\ ,\quad\sqrt{2}\xi_{2+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{1^{\prime}}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\,2}_{+}=\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\ . (3.23)

The (0,4)(0,4) supersymmetric action that describes the twisted hypermultiplet is

𝒮\displaystyle\mathcal{S} =d2xγdζ2πi𝐃~1+𝐃~2+(i2ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑯)=d2xγdζ2πiζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(i2ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑯)+.\displaystyle=-\int\text{d}^{2}x\oint_{\gamma^{\prime}}\frac{\text{d}\zeta^{\prime}}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1+}\widetilde{\mathbf{D}}_{2+}\,(\tfrac{\text{i}}{2}\zeta^{\prime-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{H})=\int\text{d}^{2}x\oint_{\gamma^{\prime}}\frac{\text{d}\zeta^{\prime}}{2\pi\text{i}\zeta^{\prime}}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\tfrac{\text{i}}{2}\zeta^{\prime-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{H})\ . (3.24)

Performing the ζ\zeta^{\prime} integral, we get

𝒮=i2d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1H1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H2H2)+=d2x(μ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111HμaHai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+),\mathcal{S}=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\partial_{--}H_{1^{\prime}}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{2^{\prime}}\partial_{--}H_{2^{\prime}}\right)=\int\text{d}^{2}x\,(-\partial_{\mu}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{a^{\prime}}\partial^{\mu}H_{a^{\prime}}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}_{+}\partial_{--}\xi_{a+})\ , (3.25)

which is the action for two (0,2)(0,2) chiral multiplets \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}} and H2H_{2^{\prime}}. The HaH_{a^{\prime}} form an FF^{\prime}-doublet and hence, the above multiplet describes a twisted hyper. The description in terms of FF^{\prime}-arctic superfields is analogous to that of the standard hyper.

4 Fermi multiplets

In this section, we describe matter fermi multiplets. We focus on FF-projective fermi superfields below; the FF^{\prime}-case follows analogously. Like hypermultiplets, fermi multiplets can be realized either as 𝒪(n)\mathcal{O}(n) superfields or FF-arctic superfields. We only describe arctic superfields here since all our constructions use only those and not the 𝒪(n)\mathcal{O}(n) superfields.

Start with a weight 0 FF-arctic superfield 𝚼=0Υjζj\bm{\Upsilon}_{-}=\sum_{0}^{\infty}\mathnormal{\Upsilon}_{j-}\zeta^{j} satisfying

𝐃a+𝚼=0.\mathbf{D}_{a^{\prime}+}\bm{\Upsilon}_{-}=0\ . (4.1)

The constraints in terms of Υj\mathnormal{\Upsilon}_{j-} are

Q+Υ0=0,Q+Υj+1,+D+Υj=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+1,+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+=0.\mathrm{Q}_{+}\mathnormal{\Upsilon}_{0-}=0\ ,\quad\mathrm{Q}_{+}\mathnormal{\Upsilon}_{j+1,-}+\mathrm{D}_{+}\mathnormal{\Upsilon}_{j-}=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0-}=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{j+1,-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{j-}=0\ . (4.2)

The Υj\mathnormal{\Upsilon}_{j-} for j1j\geq 1 are unconstrained (0,2)(0,2) superfields while Υ0\mathnormal{\Upsilon}_{0-} satisfies the chirality constraint \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0-}=0. We relabel Υ0\mathnormal{\Upsilon}_{0-} as ψ\psi_{-}. The action is

𝒮\displaystyle\mathcal{S} =12d2xdζ2πi𝐃~1+𝐃~2+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼)=12d2xdζ2πiζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼)+,\displaystyle=-\frac{1}{2}\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\bm{\Upsilon}_{-})=\frac{1}{2}\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\bm{\Upsilon}_{-})\ ,
=12d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ)++12j=1(1)jd2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υjj)+,\displaystyle=\frac{1}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\psi_{-})+\frac{1}{2}\sum_{j=1}^{\infty}(-1)^{j}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j-}\mathnormal{\Upsilon}_{j-})\ ,
=12d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ)+.\displaystyle=\frac{1}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\psi_{-})\ . (4.3)

In the last step, we have integrated out the (0,2) unconstrained superfields Υj\mathnormal{\Upsilon}_{j-} with j1j\geq 1. Note that this is consistent with the FF-transformations discussed in Section 2.5 only for weight k=0k=0. In more detail, the FF transformation rules for the fields Υj\mathnormal{\Upsilon}_{j-} in (2.48) preserve the auxiliary field equations Υj=0\mathnormal{\Upsilon}_{j-}=0, j1j\geq 1, only for weight 0.

To get the component action, we push the measure derivatives D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} into the Lagrangian:

𝒮=d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111GG+i++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ),\mathcal{S}=\int\text{d}^{2}x\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}G+\text{i}\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\psi_{-})\ , (4.4)

where the auxiliary field GG is defined as 2G=D+ψ-\sqrt{2}G=\mathrm{D}_{+}\psi_{-}. In Appendix C.2, we define the ordinary space components of 𝚼{\mathbf{\Upsilon}}_{-} directly without going to (0,2)(0,2) superspace by acting on 𝚼{\mathbf{\Upsilon}}_{-} with 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} successively. We also compute the above component action by directly pushing in the (0,4)(0,4) measure 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} in (4) and using the definitions of the components that were just alluded to, and finally perform the ζ\zeta-integral.

5 Interactions

The criteria for (0,4)(0,4) supersymmetry are closure of the algebra 𝐃+2=0\mathbf{D}_{+}^{2}=0 on all the superfields and the invariance of the action (see the comments at the end of Section 2.2). In this section, we use these criteria to discover possible (0,4)(0,4) supersymmetric interactions between twisted hypers, standard hypers and fermis.

As indicated in the Introduction (Section 1), interactions could be EE-terms, gauge interactions, or of the nonlinear sigma model type. Nonlinear sigma models have been discussed for 𝒪(1)\mathcal{O}(1) standard hypers in (0,4)(0,4) projective superspace [HL17a] and arctic standard hypers in (4,4)(4,4) projective superspace [LR88]. We have not explored all the possibilities for EE-term interactions. In this paper, we consider the combination of FF-arctic standard hypers, FF-arctic fermis and 𝒪(1)\mathcal{O}(1)^{\prime} twisted hypers with the R-charge assignments given previously (of course, everything we say can be used for the mirror combination where we swap the two R-symmetry groups).

Consider FF-arctic fermi multiplets 𝚼{\mathbf{\Upsilon}}_{-}, arctic standard hypermultiplets (𝚼,𝚼)({\mathbf{\Upsilon}},{\mathbf{\Upsilon}}_{--}) and 𝒪(1)\mathcal{O}(1)^{\prime} twisted hypermultiplets 𝑯\bm{H} with the following projective constraints:

𝐃+𝚼\displaystyle\mathbf{D}_{+}{\mathbf{\Upsilon}} =0,𝐃+𝚼=2𝑪^𝚼,\displaystyle=0\ ,\quad\mathbf{D}_{+}{\mathbf{\Upsilon}}_{-}=-\sqrt{2}\widehat{\bm{C}}{\mathbf{\Upsilon}}\ ,\quad 𝐃+𝚼=12𝑪𝚼,𝐃+𝑯=0,\displaystyle\mathbf{D}_{+}{\mathbf{\Upsilon}}_{--}=\frac{1}{\sqrt{2}}\bm{C}{\mathbf{\Upsilon}}_{-}\ ,\quad\mathbf{D}_{+}\bm{H}=0\ ,
𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\displaystyle\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} =0,𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=2ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\displaystyle=0\ ,\quad\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}=\sqrt{2}\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad 𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=12ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0.\displaystyle\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}=\frac{1}{\sqrt{2}}\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\ . (5.1)

where 𝐃+=uavaDaa+\mathbf{D}_{+}=u^{a}v^{a^{\prime}}\mathrm{D}_{aa^{\prime}+} is the fully contracted derivative (see (2.29) in Section 2), 𝑪=vaCa{\bm{C}}=v^{a^{\prime}}C_{a^{\prime}} and 𝑪^=vaC^a\widehat{\bm{C}}=v^{a^{\prime}}\widehat{C}_{a^{\prime}} are 𝒪(1)\mathcal{O}(1)^{\prime} superfields which are functions of the various superfields in the model. The second line in (5) is obtained by applying extended complex conjugation on the first line and using the appropriate definitions of extended complex conjugates from Section 2.6.

The closure of the supersymmetry algebra 𝐃+2=0\mathbf{D}_{+}^{2}=0 on 𝚼{\mathbf{\Upsilon}}_{-} and 𝚼{\mathbf{\Upsilon}}_{--} give

𝐃+𝑪=0,𝐃+𝑪^=0,𝑪𝑪^=0.\mathbf{D}_{+}\bm{C}=0\ ,\quad\mathbf{D}_{+}\widehat{\bm{C}}=0\ ,\quad\bm{C}\widehat{\bm{C}}=0\ . (5.2)

The action 𝒮\mathcal{S} for the above superfields splits into an action 𝒮F\mathcal{S}_{F} in FF-projective superspace for the standard hypers and the fermis, and an action 𝒮F\mathcal{S}_{F^{\prime}} in FF^{\prime}-projective superspace for the twisted hypers, i.e., 𝒮=𝒮F+𝒮F\mathcal{S}=\mathcal{S}_{F}+\mathcal{S}_{F^{\prime}} with

𝒮F\displaystyle\mathcal{S}_{F} =d2xdζ2πi𝐃~1+𝐃~2+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼),\displaystyle=\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\left(\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}{\mathbf{\Upsilon}}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--}+\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}}-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\mathbf{\Upsilon}}_{-}\right)\ ,
𝒮F\displaystyle\mathcal{S}_{F^{\prime}} =d2xdζ2πi𝐃~1+𝐃~2+(i2ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑯).\displaystyle=\int\text{d}^{2}x\oint\frac{\text{d}\zeta^{\prime}}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1+}\widetilde{\mathbf{D}}_{2+}\left(-\tfrac{\text{i}}{2}\zeta^{\prime-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{H}\right)\ . (5.3)

The action 𝒮F\mathcal{S}_{F} and 𝒮F\mathcal{S}_{F^{\prime}} in (5) are (0,4)(0,4) invariant if the Lagrangians are annihilated by 𝐃+\mathbf{D}_{+}. This is obvious for 𝒮F\mathcal{S}_{F^{\prime}}. The action of 𝐃+\mathbf{D}_{+} on the Lagrangian in 𝒮F\mathcal{S}_{F} is

𝐃+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼)=12ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(𝑪+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)𝚼+12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑪^)𝚼.\displaystyle\mathbf{D}_{+}\left(\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}{\mathbf{\Upsilon}}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--}+\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}}-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\mathbf{\Upsilon}}_{-}\right)=-\tfrac{1}{\sqrt{2}}\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(\bm{C}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}){\mathbf{\Upsilon}}_{-}+\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}-\widehat{\bm{C}}){\mathbf{\Upsilon}}\ . (5.4)

For the right hand side to be zero, the following conditions then have to be satisfied:

𝑪¯=𝑪^,𝑪=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,i.e.,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=aεabC^b.\overline{\bm{C}}=\widehat{\bm{C}}\ ,\quad\bm{C}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\text{i.e.,}\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}=\varepsilon^{a^{\prime}b^{\prime}}\widehat{C}_{b^{\prime}}\ . (5.5)

(the two conditions are consistent with each other since we have \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=𝚽\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-\bm{\Phi} for an 𝒪(1)\mathcal{O}(1)^{\prime} superfield 𝚽\bm{\Phi}.)

Upon using (5.5), the constraints 𝑪𝑪^=0\bm{C}\widehat{\bm{C}}=0 in (5.2) become

𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0Ca\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=b12Cc\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cδabc.\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\quad\Leftrightarrow\quad C_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{b^{\prime}}=\frac{1}{2}C_{c^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{c^{\prime}}\,\delta_{a^{\prime}}^{b^{\prime}}\ . (5.6)

𝑪\bm{C} and 𝑪^\widehat{\bm{C}} are a priori functions of both standard and twisted hypers. We restrict ourselves to the case where 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} are polynomials in the standard and twisted hypers. Recall that the FF-weights of 𝐃+\mathbf{D}_{+}, 𝚼{\mathbf{\Upsilon}}, 𝚼{\mathbf{\Upsilon}}_{-} and 𝚼{\mathbf{\Upsilon}}_{--} are +1+1, +1+1, 0 and 1-1 respectively. Since the FF-weight has to be preserved in the constraint equations (5) above, 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} should have FF-weight 0. Further, since we restrict 𝑪\bm{C} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} to be polynomials in the superfields, they must simply be independent of the standard hypers 𝚼{\mathbf{\Upsilon}}.

The reality constraints (5.5) are also consistent with 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} being independent of standard hypers. However, note that 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} can be chosen to be more general FF-weight 0 functions of the standard hypers (e.g. rational functions) and these may have good Taylor expansions around both ζ=0\zeta=0 and ζ=\zeta=\infty. Then it is possible to satisfy the reality constraint (5.5) even when 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} depend on arctic standard hypers non-trivially.

Since 𝑪\bm{C} is an 𝒪(1)\mathcal{O}(1)^{\prime} superfield which is assumed to be a polynomial in the twisted hypers and is annihilated by 𝐃a+\mathbf{D}_{a+}, it must be linear in the 𝒪(1)\mathcal{O}(1)^{\prime} twisted hypers 𝑯\bm{H}. Thus, 𝑪\bm{C} must take the form

𝑪=𝑲+L𝑯,\bm{C}={\bm{K}}+L\bm{H}\ , (5.7)

where 𝑲{\bm{K}} is 𝒪(1)\mathcal{O}(1)^{\prime} and constant, and LL is constant.

Recall from Sections 3.1, 3.2 and 4 that the dynamical components of the arctic standard hyper are (ηa,ξa+)(\eta_{a},\xi_{a^{\prime}+}), those of the twisted hyper are (Ha,ξa+)(H_{a^{\prime}},\xi_{a+}) and that of the fermi is (ψ)(\psi_{-}). The full component action for these fields that follows from the projective superspace action (5) is worked out in Appendix C. We give the result here:

𝒮\displaystyle\mathcal{S} =d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaHai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaηai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++ψ)\displaystyle=\int\text{d}^{2}x\,\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}\partial_{\mu}H_{a^{\prime}}-{\text{i}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}_{+}\partial_{--}\xi_{a+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial_{\mu}\eta_{a}-{\text{i}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\partial_{++}\psi_{-}\right)
+d2x(12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Caa\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cηaa+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Ca+aψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Laξa+ψ+c.c.)).\displaystyle+\int\text{d}^{2}x\,\left(-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}C_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\eta_{a}+\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}C_{a^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}L\xi_{a+}\psi_{-}+\text{c.c.}\right)\right)\ . (5.8)

6 Example: ADHM sigma model

In this section we consider an interacting model with standard hypers, fermis and twisted hypers. This is a particular (0,4)(0,4) linear sigma model which flows to a nonlinear sigma model with target space a kk-instanton solution in Yang-Mills theory in four dimensions. This model was written in (0,1)(0,1) superspace in [Dou98, Wit95] and in harmonic superspace in [GS95, GS96].

This linear sigma model for U(n)\text{U}(n) instantons is realised by the following nested D-brane configuration in Type IIB theory [Dou98]: 1 D1-brane \subset kk D5-branes \subset nn D9-branes. The kk D5-branes appear as kk-instanton configurations in the D9-brane U(n)\text{U}(n) gauge theory and the D1-brane probes this configuration. The 1+11+1 dimensional linear sigma model is the theory on the D1-brane worldsheet.

The D1-brane worldsheet theory includes a U(1)\text{U}(1) gauge multiplet arising from the D1-D1 open string spectrum. However, the U(1)\text{U}(1) multiplet does not have an effect on the computation of the instanton connection on target space in the classical theory on the D1-brane [Dou98]. We describe the classical U(n)\text{U}(n) instanton model without the U(1)\text{U}(1) gauge multiplet in Section 6.1 and show that it reproduces the calculation in [Dou98], and redo the analysis more carefully in the companion paper [PR] with the gauge multiplet included. The novelty of the projective superspace approach is that twistor space and the relevant holomorphic bundles on twistor space required for describing instantons [War77, AW77, AHDM78] appear explicitly in the description of the model which we describe below.

For SO(n)\text{SO}(n) instantons, we add an O9--plane to the above D-brane configuration. The orientifold projection requires an even number of D5-branes which we take to be 2k2k, and after the projection pairs of D5-branes are stuck and cannot be separated. The projection reduces the D9-brane gauge group to SO(n)\text{SO}(n), that of the D5-branes to Sp(k)\text{Sp}(k) and projects out the vector multiplet on the D1-brane. For Sp(n)\text{Sp}(n) instantons, we start with 2n2n D9-branes, kk D5-branes and 22 D1-branes and add an O9+-plane which results in an Sp(n)\text{Sp}(n) gauge group on the D9-branes, an SO(k)\text{SO}(k) gauge group on the D5-branes and an Sp(1)\text{Sp}(1) gauge group on the D1-branes (again, the two D1-branes cannot be separated). These facts may be found in, e.g., [GP96]. Since the Sp(n)\text{Sp}(n) instanton sigma model requires a gauge multiplet, and both SO(n)\text{SO}(n) and Sp(n)\text{Sp}(n) models require orientifolds, we describe both sigma models together in the companion paper [PR].

6.1 U(n)\text{U}(n) instantons

The superfield content consists of

  1. 1.

    2k2k^{\prime} twisted hypers 𝑯Y\bm{H}_{Y^{\prime}}, Y=1,,2kY^{\prime}=1^{\prime},\ldots,2k^{\prime} (we consider 2k=22k^{\prime}=2 for most of the discussion),

  2. 2.

    kk standard hypers (𝚼Y,𝚼Y)({\mathbf{\Upsilon}}_{Y},{\mathbf{\Upsilon}}_{Y--}), Y=1,,kY=1,\ldots,k,

  3. 3.

    2k+n2k+n fermis 𝚼A{\mathbf{\Upsilon}}_{A-}, A=1,,2k+nA=1,\ldots,2k+n.

The above superfields (for 2k=22k^{\prime}=2) are a subset of the low-energy spectrum of the various Dpp-Dqq open strings in the D-brane configuration described above. Since we are interested in the low-energy theory on the D1-brane, we retain only those fields that appear from the D1-Dpp open string sectors for p=1,5,9p=1,5,9. The two twisted hypers 𝑯Y\bm{H}_{Y^{\prime}} arise from the D1-D1 strings in the directions transverse to the D1-brane and D5-branes. The kk standard hypers 𝚼Y{\mathbf{\Upsilon}}_{Y} arise from D1-D5 strings and the 2k+n2k+n fermis 𝚼A{\mathbf{\Upsilon}}_{A-} arise from the D1-D5 strings (2k2k fermis) and the D1-D9 strings (nn fermis). Part of the couplings 𝑪\bm{C} described below arise from the D5-D9 open string degrees of freedom which are frozen from the point of view of the D1-brane, and they contain the instanton moduli.

We suppress the flavour indices YY^{\prime}, YY and AA on the twisted hypers, standard hypers and fermis respectively unless we wish to explicitly exhibit the flavour properties of the superfields. We work with a given symplectic structure ωYZ\omega^{Y^{\prime}Z^{\prime}} on the space of twisted hypers. This allows for a reality condition:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=YωYZ𝑯Z,i.e.,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H=aYεabωYZHbZ.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{Y^{\prime}}=\omega^{Y^{\prime}Z^{\prime}}\bm{H}_{Z^{\prime}}\ ,\quad\text{i.e.,}\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{a^{\prime}Y^{\prime}}=\varepsilon^{a^{\prime}b^{\prime}}\omega^{Y^{\prime}Z^{\prime}}H_{b^{\prime}Z^{\prime}}\ . (6.1)

(note that according to the above condition \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=Y𝑯Y\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{Y^{\prime}}=-\bm{H}_{Y^{\prime}} since ωYZωZX=δXY\omega^{Y^{\prime}Z^{\prime}}\omega_{Z^{\prime}X^{\prime}}=-\delta_{X^{\prime}}^{Y^{\prime}}. This is consistent with the result \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=𝑯\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-\bm{H} for an 𝒪(1)\mathcal{O}(1)^{\prime} multiplet). The most general (0,4)(0,4) constraints are those given in (5):

𝐃+𝚼=0,𝐃+𝚼=2𝑪^𝚼,𝐃+𝚼=12𝑪𝚼,𝐃+𝑯=0,\displaystyle\mathbf{D}_{+}{\mathbf{\Upsilon}}=0\ ,\quad\mathbf{D}_{+}{\mathbf{\Upsilon}}_{-}=-\sqrt{2}\widehat{\bm{C}}{\mathbf{\Upsilon}}\ ,\quad\mathbf{D}_{+}{\mathbf{\Upsilon}}_{--}=\frac{1}{\sqrt{2}}\bm{C}\,{\mathbf{\Upsilon}}_{-}\ ,\quad\mathbf{D}_{+}\bm{H}=0\ , (6.2)

where recall from Section 5 that 𝑪=vaCa\bm{C}=v^{a^{\prime}}C_{a^{\prime}}, 𝑪^=vaC^a\widehat{\bm{C}}=v^{a^{\prime}}\widehat{C}_{a^{\prime}} are 𝒪(1)\mathcal{O}(1)^{\prime} superfields. As discussed in Section 5, 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} are independent of the standard hypers 𝚼{\mathbf{\Upsilon}} and are linear in the 𝒪(1)\mathcal{O}(1)^{\prime} twisted hypers 𝑯\bm{H}. The constraints on the couplings 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} that follow from the closure of the (0,4)(0,4) superalgebra are (5.2) which we reproduce here for convenience:

𝐃+𝑪=0,𝐃+𝑪^=0,𝑪𝑪^=0.\mathbf{D}_{+}\bm{C}=0\ ,\quad\mathbf{D}_{+}\widehat{\bm{C}}=0\ ,\quad\bm{C}\widehat{\bm{C}}=0\ . (6.3)

𝑪\bm{C} and 𝑪^{\widehat{\bm{C}}} and are k×(2k+n)k\times(2k+n) and (2k+n)×k(2k+n)\times k matrices respectively; with the flavour indices explicitly displayed, the matrices are resp. written as 𝑪YA\bm{C}_{Y}^{A} and 𝑪^AY\widehat{\bm{C}}_{A}^{Y} . Recall from the discussion around (5.7) that 𝑪\bm{C} has to be of the form

𝑪=𝑲+LY𝑯Y,\bm{C}={\bm{K}}+L^{Y^{\prime}}\bm{H}_{Y^{\prime}}\ , (6.4)

where 𝑯Y\bm{H}_{Y^{\prime}} are the twisted hypermultiplets. The coupling 𝑲{\bm{K}} is a constant k×(2k+n)k\times(2k+n) matrix 𝒪(1)\mathcal{O}(1)^{\prime} superfield and the LYL^{Y^{\prime}} are constant k×(2k+n)k\times(2k+n) matrices (one matrix for each Y{1,,2k}Y^{\prime}\in\{1,\ldots,2k^{\prime}\}).

Twistor space

Let us consider two twisted hypers, i.e., 2k=22k^{\prime}=2 (everything we say for two twisted hypers can be extended to general kk^{\prime}). The twisted hyper superfields HaYH_{a^{\prime}Y^{\prime}} are coordinates on the target space 𝐑4\mathbf{R}^{4}. The SU(2)\text{SU}(2)^{\prime} doublet vav^{a^{\prime}} together with the projective superfields 𝑯Y\bm{H}_{Y^{\prime}} can be interpreted as homogeneous coordinates 𝒁=(v1,v2,𝑯1,𝑯2){\bm{Z}}=(v^{1^{\prime}},v^{2^{\prime}},\bm{H}_{1^{\prime}},\bm{H}_{2^{\prime}}) for a 𝐂𝐏3\mathbf{CP}^{3} which is in fact the twistor space of 𝐒4\mathbf{S}^{4} (the one-point compactification of the target 𝐑4\mathbf{R}^{4}). The symplectic structure ωYZ\omega^{Y^{\prime}Z^{\prime}} on the space of twisted hypers and the symplectic structure εab\varepsilon^{a^{\prime}b^{\prime}} on the space of FF^{\prime}-doublets together give an antiholomorphic involution vaεab\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111vbv^{a^{\prime}}\to\varepsilon^{a^{\prime}b^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{v}_{b^{\prime}}, 𝑯YωYZ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Z\bm{H}_{Y^{\prime}}\to\omega_{Y^{\prime}Z^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{Z^{\prime}}, on the 𝐂𝐏3\mathbf{CP}^{3} which squares to 1-1. The (va,HYb)(v^{a^{\prime}},H_{Y^{\prime}b^{\prime}}) serve as coordinates on the correspondence space and the incidence relations 𝑯Y=HYava\bm{H}_{Y^{\prime}}=H_{Y^{\prime}a^{\prime}}v^{a^{\prime}} are simply the definition of the 𝑯Y\bm{H}_{Y^{\prime}} as projective superfields.

Monads on twistor space

Next, we show that the couplings 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} encode the data of a monad on 𝐂𝐏3\mathbf{CP}^{3}. Let VSV_{S} and V^S\widehat{V}_{S} be the vector spaces of 𝚼{\mathbf{\Upsilon}} and 𝚼{\mathbf{\Upsilon}}_{--} respectively with dimVS=dimV^S=k\dim V_{S}=\dim\widehat{V}_{S}=k and VFV_{F} be the vector space of fermis with dimVF=2k+n\dim V_{F}=2k+n. Then, the couplings 𝑪\bm{C} and 𝑪^\widehat{\bm{C}} can be interpreted as elements of Hom(VF,V^S)\text{Hom}(V_{F},\widehat{V}_{S}) and Hom(VS,VF)\text{Hom}(V_{S},V_{F}) respectively, as is clear from the constraints (6.2). Recall that these maps are linear in the homogeneous coordinates 𝒁={va,𝑯Y}{\bm{Z}}=\{v^{a^{\prime}},\bm{H}_{Y^{\prime}}\} since 𝑪=Kava+LY𝑯Y\bm{C}=K_{a^{\prime}}v^{a^{\prime}}+L^{Y^{\prime}}\bm{H}_{Y^{\prime}}. We thus have

VS𝑪^VF𝑪V^S.V_{S}\overset{\widehat{\bm{C}}}{\longrightarrow}V_{F}\overset{\bm{C}}{\longrightarrow}\widehat{V}_{S}\ . (6.5)

The constraint 𝑪𝑪^=0\bm{C}\widehat{\bm{C}}=0 that follows from the closure of the algebra (6.3) makes (6.5) a complex. We further require that 𝑪^\widehat{\bm{C}} is injective and 𝑪\bm{C} is surjective: this imposes non-degeneracy conditions on the couplings KaK_{a^{\prime}} and LYL^{Y^{\prime}}. Then the above complex is precisely a monad and the cohomology at VFV_{F}, i.e., ker𝑪/im𝑪^\ker\bm{C}/\operatorname{im}\widehat{\bm{C}} is a holomorphic rank nn vector bundle \mathcal{E} on 𝐂𝐏3\mathbf{CP}^{3} which is trivial when restricted to lines in 𝐂𝐏3\mathbf{CP}^{3}, and has c2()=kc_{2}(\mathcal{E})=k. Thus, the data that goes into choosing the off-shell superfield content of our linear sigma model is precisely the same data that goes into defining a holomorphic bundle on twistor space 𝐂𝐏3\mathbf{CP}^{3} that is trivial on lines.

We get a symplectic structure on the bundle \mathcal{E} also from the requirement that the action is (0,4)(0,4) supersymmetric. Some reality conditions (which were implicit in the previous sections) are necessary on the vector spaces VFV_{F}, VSV_{S} and V^S\widehat{V}_{S} to write down an action for the projective superfields 𝚼{\mathbf{\Upsilon}}_{-}, 𝚼{\mathbf{\Upsilon}} and 𝚼{\mathbf{\Upsilon}}_{--}. They are (1) a hermitian structure on VFV_{F} that identifies VFVF{V}^{*}_{F}\simeq{V}^{\vee}_{F}, and (2) the identification V^SVS{\widehat{V}}^{*}_{S}\simeq{V}^{\vee}_{S}, where V{V}^{*} and VV^{\vee} stand for the complex conjugate and dual of a vector space VV respectively. With these at hand, the (0,4)(0,4) invariance of the action gives the following constraint (5.5) on the couplings 𝑪\bm{C} and 𝑪^\widehat{\bm{C}}:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=𝑪^,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=\widehat{\bm{C}}\ , (6.6)

where the bar on \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} acts the hermitian conjugate on the matrix components and extended conjugate on the 𝒪(1)\mathcal{O}(1)^{\prime} superfield. This imposes a symplectic structure on the bundle \mathcal{E} obtained from the monad (6.5). By the Penrose-Ward-Atiyah correspondence [War77, AW77], the bundle \mathcal{E} on twistor space with the symplectic structure described above corresponds to a self-dual SU(n)\text{SU}(n) connection on 𝐑4\mathbf{R}^{4} (more precisely, on the one-point compactification S4S^{4} of 𝐑4\mathbf{R}^{4}). The ADHM construction [AHDM78] gives an explicit expression for the instanton gauge field in terms of the data described above. The constraints 𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0 are precisely the ADHM equations that describe the instanton moduli space [AHDM78].

Next, we show that the model flows to an SU(n)\text{SU}(n) instanton solution in the infrared by explicitly obtaining the expression for the instanton gauge field given by the ADHM construction [AHDM78]. The material in the rest of this section is not new and follows the calculations in [Wit95, Dou98]. In Section 6.2 below, we choose particular bases for the vector spaces of superfields to give the usual standard characterization of the ADHM instanton moduli space in terms of finite dimensional matrices. Again, most of the material is standard except for a formula of the virtual dimension of the instanton moduli space on 𝐑4k\mathbf{R}^{4k^{\prime}} for k2k^{\prime}\geq 2.

Instantons on 𝐑4\mathbf{R}^{4}

The potential energy density of the model described above can be read off from the general expression in (5) and is positive-definite:

V\displaystyle V =12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Caa\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cηaa=12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CaYAaY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CηaZAaZ.\displaystyle=\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}C_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\eta_{a}=\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{aY}C_{a^{\prime}Y}^{A}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}Z}_{A}\eta_{aZ}\ . (6.7)

Recall that Ca=Ka+LYHaYC_{a^{\prime}}=K_{a^{\prime}}+L^{Y^{\prime}}H_{a^{\prime}Y^{\prime}} and the ηaY\eta_{aY} are components of the arctic standard hyper 𝚼Y=ζη1Y+η2Y{\mathbf{\Upsilon}}_{Y}=\zeta\eta_{1Y}+\eta_{2Y} once we eliminate the auxiliary superfields accompanying higher powers of ζ\zeta (see (3.17) and the discussion around it). Suppose the constant matrices KaK_{a^{\prime}} and LYL^{Y^{\prime}} are sufficiently generic so that 12Ca\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Caf1\tfrac{1}{2}C_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\equiv f^{-1} is an invertible k×kk\times k matrix, i.e., all its eigenvalues are non-zero, for any value of HaYH_{a^{\prime}Y^{\prime}}. Then, the vacuum corresponds to setting the ηaY=0\eta_{aY}=0 for every flavour Y=1,,kY=1,\ldots,k.

About this vacuum, the potential VV vanishes and in particular does not give a mass for the twisted hyper scalars: there is a classical moduli space of vacua 𝐑4\mathbf{R}^{4} parametrized by the four twisted hyper scalars with the reality condition (6.1). Under the genericity assumption on KaK_{a^{\prime}} and LYL^{Y^{\prime}}, the eigenvalues of the standard hyper mass matrix f1f^{-1} are all (1) positive since f1f^{-1} is a positive-definite matrix, and (2) strictly positive since f1f^{-1} is invertible. We list them as (m12,m22,,mk2)(m^{2}_{1},m^{2}_{2},\ldots,m_{k}^{2}). Then, the mass of the standard hyper scalars ηaY\eta_{aY} for a given YY is mYm_{Y}. The Yukawa couplings can also be read off from (5):

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Ca+aψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Laξa+ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cξa+a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+aΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Lηa.-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}C_{a^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}L\xi_{a+}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\xi_{a^{\prime}+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}\eta_{a}\ . (6.8)

On the classical vacuum moduli space characterised by ηaY=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=aY0\eta_{aY}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{aY}=0 and arbitrary HYaH_{Y^{\prime}a^{\prime}}, the twisted hyper fermions ξYa+\xi_{Y^{\prime}a+} again have no mass terms. Let us look at the mass terms for the standard hyper fermions ξYa+\xi_{Ya^{\prime}+}:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Ca+aψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cξa+a=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CaYA+aYψA\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthAΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111CξaY+AaY,-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}C_{a^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\xi_{a^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}Y}_{+}C_{a^{\prime}Y}^{A}\psi_{A-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{A}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}Y}_{A}\xi_{a^{\prime}Y+}\ , (6.9)

where we have displayed the flavour indices explicitly. Recall that we have diagonalized f1=C1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=1C2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C2f^{-1}=C_{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{1^{\prime}}=C_{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}}. By using an appropriate U(2k+n)\text{U}(2k+n) transformation, we can further cast the 2k×(2k+n)2k\times(2k+n) matrix (C1YAC2YA)\begin{pmatrix}C_{1^{\prime}Y}^{A}\\ C_{2^{\prime}Y}^{A}\end{pmatrix} into a block form with a non-trivial 2k×2k2k\times 2k block and a zero 2k×n2k\times n block:

(C1YAC2YA)=(2k×2k𝟎2k×n),\begin{pmatrix}C_{1^{\prime}Y}^{A}\\ C_{2^{\prime}Y}^{A}\end{pmatrix}=\begin{pmatrix}\bigstar_{2k\times 2k}&\mathbf{0}_{2k\times n}\end{pmatrix}\ , (6.10)

where the non-trivial 2k×2k2k\times 2k block is diag(m1,,mk,m1,,mk)\text{diag}(m_{1},\ldots,m_{k},m_{1},\ldots,m_{k}). For a fixed flavour YY of the standard hyper, the two fermions ξ1Y+\xi_{1^{\prime}Y+}, ξ2Y+\xi_{2^{\prime}Y+} and the two fermis ψY,\psi_{Y,-}, ψk+Y,\psi_{k+Y,-} interact through the 2×22\times 2 mass matrix (mY00mY)\begin{pmatrix}m_{Y}&0\\ 0&m_{Y}\end{pmatrix} and become massive with mass mYm_{Y}. Recall that the standard hyper scalars ηaY\eta_{aY} also have the same mass mYm_{Y}. The zero block of size 2k×n2k\times n implies that the nn fermis ψA\psi_{A-}, A=2k+1,,2k+nA=2k+1,\ldots,2k+n are massless. Thus, for generic values of the couplings KaK_{a^{\prime}} and LYL^{Y^{\prime}}, we have kk massive standard hypers, 2k2k massive fermis and nn massless fermis about any point of the classical vacuum moduli space that is parametrized by the massless twisted hypers.

The nn massless fermis can be characterised more generally as the solutions of the equation

A=12k+n𝑪YAψA=0.\sum_{A=1}^{2k+n}\bm{C}_{Y}^{A}\psi_{A-}=0\ . (6.11)

Let the nn massless solutions be arranged into the (2k+n)×n(2k+n)\times n matrix 𝒱Ai\mathcal{V}_{A}{}^{i} with the normalisation (𝒱)j𝒱AA=iδji(\mathcal{V}^{\dagger})_{j}{}^{A}\mathcal{V}_{A}{}^{i}=\delta_{j}^{i}. The most general massless solution is then

ψA=i=1n𝒱Aλii.\psi_{A-}=\sum_{i=1}^{n}\mathcal{V}_{A}{}^{i}\lambda_{i-}\ . (6.12)

Plugging in the above expression for ψA\psi_{A-} in its kinetic term, we get the kinetic term for the massless modes λi\lambda_{i-}:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++AψA=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(𝒱)ii++A(𝒱Aλjj)=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111[δi++j+++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H(𝒱)iYa𝒱Aj\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111HYaA]iλj.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{A}_{-}\partial_{++}\psi_{A-}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}_{-}(\mathcal{V}^{\dagger})_{i}{}^{A}\partial_{++}(\mathcal{V}_{A}{}^{j}\lambda_{j-})=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}_{-}\left[\delta_{i}{}^{j}\partial_{++}+\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{Y^{\prime}a^{\prime}}(\mathcal{V}^{\dagger})_{i}{}^{A}\frac{\partial\mathcal{V}_{A}{}^{j}}{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{Y^{\prime}a^{\prime}}}\right]\lambda_{j-}\ . (6.13)

We see that the massless fermis have now acquired an additional connection which is the pullback of a connection 𝒜\mathcal{A} on target space 𝐑4\mathbf{R}^{4}:

(𝒜Ya)i:=ji(𝒱)i𝒱Aj\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111HYaA.(\mathcal{A}_{Y^{\prime}a^{\prime}})_{i}{}^{j}:=\text{i}(\mathcal{V}^{\dagger})_{i}{}^{A}\frac{\partial\mathcal{V}_{A}{}^{j}}{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{Y^{\prime}a^{\prime}}}\ . (6.14)

This is the connection for a kk-instanton solution with U(n)\text{U}(n) gauge group, a fact that follows from standard results in the ADHM construction. Since we have assumed the instanton to be non-degenerate, the U(1)\text{U}(1) part of the connection is trivial and 𝒜Ya\mathcal{A}_{Y^{\prime}a^{\prime}} is in fact an SU(n)\text{SU}(n) instanton connection. We study the degenerate cases carefully in [PR] where we shall find that the U(1)\text{U}(1) gauge multiplet on the D1-brane worldsheet plays an important role.

6.2 The instanton moduli space and symmetries

The constraints 𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0 and the fermi zero modes (6.11) (and in turn, the formula for the instanton gauge field) are unaffected by GL(k,𝐂)\text{GL}(k,\mathbf{C}) transformations on the space of standard hypermultiplets and U(2k+n)\text{U}(2k+n) transformations of the space of fermis:

𝑪S𝑪U,SGL(k,𝐂),UU(2k+n).\bm{C}\to S\cdot\bm{C}\cdot U^{\dagger}\ ,\quad S\in\text{GL}(k,\mathbf{C})\ ,\quad U\in\text{U}(2k+n)\ . (6.15)

Thus, two different solutions of 𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0 that are related by a GL(k,𝐂)×U(2k+n)\text{GL}(k,\mathbf{C})\times\text{U}(2k+n) transformation as in (6.15) correspond to the same instanton solution. This redundancy allows us to choose a simple form for the coupling 𝑪\bm{C} and the equations 𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0.

Plugging in the explicit form 𝑪=𝑲+LY𝑯Y\bm{C}={\bm{K}}+L^{Y^{\prime}}\bm{H}_{Y^{\prime}}, we get

0=𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\displaystyle 0=\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} =𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+Z𝑯YLY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZ𝑯Y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,Z\displaystyle={\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}+{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{Z^{\prime}}+\bm{H}_{Y^{\prime}}L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}+L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\bm{H}_{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{Z^{\prime}}\ ,
=𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX𝑯X+𝑯YLY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZ𝑯YωZX𝑯X.\displaystyle={\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}+{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\,\omega^{Z^{\prime}X^{\prime}}\bm{H}_{X^{\prime}}+\bm{H}_{Y^{\prime}}L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}+L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\bm{H}_{Y^{\prime}}\omega^{Z^{\prime}X^{\prime}}\bm{H}_{X^{\prime}}\ . (6.16)

We have used the reality condition (6.1) on the twisted hypers in going to the second line above. Terms with different numbers of twisted hypers must vanish separately. Let us study each of them in turn:

  1. 1.

    The constant part 𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} of (6.2) satisfies 𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0. Displaying the SU(2)\text{SU}(2)^{\prime} indices explicitly, we have

    Kb\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcac+Ka\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcbc=0,i.e.,Kb\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111K=cμδb,cK_{b^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}a^{\prime}}+K_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}b^{\prime}}=0\ ,\quad\text{i.e.,}\quad K_{b^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}=\mu\,\delta_{b^{\prime}}{}^{c^{\prime}}\ , (6.17)

    where μ\mu is a positive-definite k×kk\times k matrix.

  2. 2.

    The vanishing of the terms linear in 𝑯Y\bm{H}_{Y^{\prime}} in (6.2) requires

    𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY+LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0,or, with SU(2) indices,Kb\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY=LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcbc.{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}+L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\ ,\quad\text{or, with $\text{SU}(2)^{\prime}$ indices,}\quad K_{b^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}=-L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}b^{\prime}}\ . (6.18)
  3. 3.

    The term quadratic in the twisted hypers LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX𝑯Y𝑯XL^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}\bm{H}_{Y^{\prime}}\bm{H}_{X^{\prime}} vanishes when

    LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX+LX\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY=0,that isLY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX=νYX,L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}+L^{X^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}=0\ ,\quad\text{that is}\quad L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}=\nu^{Y^{\prime}X^{\prime}}\ , (6.19)

    where νYX\nu^{Y^{\prime}X^{\prime}} is antisymmetric in YXY^{\prime}X^{\prime} and is an arbitrary hermitian k×kk\times k matrix for each X,Y{1,,2k}X^{\prime},Y^{\prime}\in\{1,\ldots,2k^{\prime}\}. For the special case k=1k^{\prime}=1, i.e., when there are two twisted hypers, the antisymmetric matrix νYX\nu^{Y^{\prime}X^{\prime}} is proportional to the symplectic form ωYX\omega^{Y^{\prime}X^{\prime}}:

    LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX=νωYX,that isLY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZ=νδY,ZL^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}=\nu\ \omega^{Y^{\prime}X^{\prime}}\ ,\quad\text{that is}\quad L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}=\nu\ \delta^{Y^{\prime}}{}_{Z^{\prime}}\ , (6.20)

    where ν\nu is now a single positive-definite k×kk\times k matrix.

The couplings 𝑲{\bm{K}} and LYL^{Y^{\prime}} transform under the GL(k,𝐂)×U(2k+n)\text{GL}(k,\mathbf{C})\times\text{U}(2k+n) (6.15) as

𝑲S𝑲U,LYSLYU,{\bm{K}}\to S\cdot{\bm{K}}\cdot U^{\dagger}\ ,\quad L^{Y^{\prime}}\to S\cdot L^{Y^{\prime}}\cdot U^{\dagger}\ , (6.21)

with the same GL(k,𝐂)\text{GL}(k,\mathbf{C}) matrix SS and U(2k+n)\text{U}(2k+n) matrix UU for all YY^{\prime}. This freedom can be used to choose a convenient form for LYL^{Y^{\prime}} and 𝑲{\bm{K}} as follows.

First, the LYL^{Y^{\prime}} satisfy the constraints (6.19) LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX+LX\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY=0L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}+L^{X^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}=0. Suppose we choose the symplectic form canonically to be

ωY=Zdiagk/2{ω2,ω2,,ω2},withω2=(0110),\omega_{Y^{\prime}}{}^{Z^{\prime}}=\text{diag}_{k^{\prime}/2}\{\omega_{2},\omega_{2},\ldots,\omega_{2}\}\ ,\quad\text{with}\quad\omega_{2}=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\ , (6.22)

where diag\text{diag}_{\ell} indicates that length of the diagonal matrix is \ell. Let us look at the pair of matrices L1L^{1^{\prime}}, L2L^{2^{\prime}}. They satisfy

L1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L1=L2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2=ν12,L1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2=0.L^{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{1^{\prime}}=L^{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2^{\prime}}=\nu^{1^{\prime}2^{\prime}}\ ,\quad L^{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2^{\prime}}=0\ . (6.23)

By an appropriate GL(k,𝐂)\text{GL}(k,\mathbf{C}) transformation SS (6.21), we can transform ν12\nu^{1^{\prime}2^{\prime}} into the k×kk\times k identity matrix. Then, the 2k×(2k+n)2k\times(2k+n) matrix (L1L2)\begin{pmatrix}L^{1^{\prime}}\\ L^{2^{\prime}}\end{pmatrix} satisfies

(L1L2)(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2)=(𝟙k0k0k𝟙k),\begin{pmatrix}L^{1^{\prime}}\\ L^{2^{\prime}}\end{pmatrix}\begin{pmatrix}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{1^{\prime}}&\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2^{\prime}}\end{pmatrix}=\begin{pmatrix}\mathbbm{1}_{k}&0_{k}\\ 0_{k}&\mathbbm{1}_{k}\end{pmatrix}\ , (6.24)

where 𝟙k\mathbbm{1}_{k} and 0k0_{k} are the k×kk\times k identity and zero matrices respectively. Using an appropriate U(2k+n)\text{U}(2k+n) transformation UU (6.21), we can cast the above 2k×(2k+n)2k\times(2k+n) matrix into the form

(L1L2)=(𝟙k0k0k×n0k𝟙k0k×n).\begin{pmatrix}L^{1^{\prime}}\\ L^{2^{\prime}}\end{pmatrix}=\begin{pmatrix}\mathbbm{1}_{k}&{0}_{k}&{0}_{k\times n}\\ {0}_{k}&\mathbbm{1}_{k}&{0}_{k\times n}\end{pmatrix}\ . (6.25)

There is a residual U(k)×U(n)\text{U}(k)\times\text{U}(n) subgroup of GL(k,𝐂)×U(2k+n)\text{GL}(k,\mathbf{C})\times\text{U}(2k+n) which preserves the above configuration (6.25) which corresponds to

S=𝒰,U=(𝒰0k0k×n0k𝒰0k×n0n×k0n×k𝒰~),where𝒰U(k),𝒰~U(n).S=\mathcal{U}\ ,\quad U=\begin{pmatrix}\mathcal{U}&{0}_{k}&{0}_{k\times n}\\ {0}_{k}&\mathcal{U}&{0}_{k\times n}\\ {0}_{n\times k}&{0}_{n\times k}&\widetilde{\mathcal{U}}\end{pmatrix}\ ,\quad\text{where}\quad\mathcal{U}\in\text{U}(k)\ ,\quad\widetilde{\mathcal{U}}\in\text{U}(n)\ . (6.26)

The reality constraint (6.18) for Y=1,2Y^{\prime}=1^{\prime},2^{\prime}, i.e.,

𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2+L1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0,𝑲\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L1+L2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0,-{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2^{\prime}}+L^{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\ ,\quad{\bm{K}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{1^{\prime}}+L^{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\ , (6.27)

is solved by the following expression for 𝑲{\bm{K}}:

𝑲=(ζB1(1)+B2(1)ζB2(1)+B1(1)ζI(1)+J(1)).{\bm{K}}=\begin{pmatrix}\zeta^{\prime}B^{(1^{\prime})}_{1}+B^{(1^{\prime})}_{2}{}^{\dagger}&-\zeta^{\prime}B^{(1^{\prime})}_{2}+B^{(1^{\prime})}_{1}{}^{\dagger}&\zeta^{\prime}I^{(1^{\prime})}+J^{(1^{\prime})}{}^{\dagger}\end{pmatrix}\ . (6.28)

where I(1)I^{(1^{\prime})}, J(1)J^{(1^{\prime})}{}^{\dagger} are k×nk\times n matrices and B1(1)B^{(1^{\prime})}_{1}, B2(1)B^{(1^{\prime})}_{2} are k×kk\times k matrices. The remaining matrices LYL^{Y^{\prime}}, Y=3,4,,2kY^{\prime}=3^{\prime},4^{\prime},\ldots,2k^{\prime} can also be simplified to a form similar to (6.28) using the constraints

L1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2y1L2y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2=0,L2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2y1+L2y\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L1=0,y=2,,k,L^{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2y^{\prime}-1}-L^{2y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2^{\prime}}=0\ ,\quad L^{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{2y^{\prime}-1}+L^{2y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{1^{\prime}}=0\ ,\quad y^{\prime}=2^{\prime},\ldots,k^{\prime}\ , (6.29)

where we have introduced the index y=2,,ky^{\prime}=2^{\prime},\ldots,k^{\prime}, such that the pairs {2y1,2y}\{2y^{\prime}-1,2y^{\prime}\} cover the index Y{3,4,,2k}Y^{\prime}\in\{3^{\prime},4^{\prime},\ldots,2k^{\prime}\} (later, we will append the value y=1y^{\prime}=1^{\prime} as well). We then get the simplified form

(L2y1L2y)=(B1(y)B2(y)I(y)B2(y)B1(y)J(y)).\begin{pmatrix}L^{2y^{\prime}-1}\\ L^{2y^{\prime}}\end{pmatrix}=\begin{pmatrix}B_{1}^{(y^{\prime})}&-B_{2}^{(y^{\prime})}&I^{(y^{\prime})}\\ B_{2}^{(y^{\prime})}{}^{\dagger}&B_{1}^{(y^{\prime})}{}^{\dagger}&J^{(y^{\prime})}{}^{\dagger}\end{pmatrix}\ . (6.30)

Thus, the degrees of freedom that remain after fixing the GL(k,𝐂)×U(2k+n)\text{GL}(k,\mathbf{C})\times\text{U}(2k+n) symmetries are

{B1(y),B2(y),I(y),J(y)},fory=1,,k.\{B^{(y^{\prime})}_{1}\ ,\ B^{(y^{\prime})}_{2}\ ,\ I^{(y^{\prime})}\ ,\ J^{(y^{\prime})}\}\ ,\quad\text{for}\quad y^{\prime}=1^{\prime},\ldots,k^{\prime}\ . (6.31)

There k(2k2+2k2+2kn+2kn)=k(4k2+4kn)k^{\prime}(2k^{2}+2k^{2}+2kn+2kn)=k^{\prime}(4k^{2}+4kn) real degrees of freedom.

The remaining constraints on the KaK_{a^{\prime}} and LYL^{Y^{\prime}}, Y=3,4,Y^{\prime}=3^{\prime},4^{\prime},\ldots, are

Ka\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcbc+Ka\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcbc=0,Ka\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY+LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Kεcac=0,LY\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZX+LX\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111LZωZY=0.K_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}b^{\prime}}+K_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}b^{\prime}}=0\ ,\quad K_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}+L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{K}{}^{c^{\prime}}\varepsilon_{c^{\prime}a^{\prime}}=0\ ,\quad L^{Y^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}X^{\prime}}+L^{X^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{L}_{Z^{\prime}}\omega^{Z^{\prime}Y^{\prime}}=0\ . (6.32)

In terms of the matrices B1(y)B^{(y^{\prime})}_{1}, B2(y)B^{(y^{\prime})}_{2}, I(y)I^{(y^{\prime})} and J(y)J^{(y^{\prime})}, y=1,,ky^{\prime}=1^{\prime},\ldots,k^{\prime}, we have the equations

[B1(y),B2(z)]+[B1(z),B2(y)]+I(y)J(z)+I(z)J(y)\displaystyle[B_{1}^{(y^{\prime})},B_{2}^{(z^{\prime})}]+[B_{1}^{(z^{\prime})},B_{2}^{(y^{\prime})}]+I^{(y^{\prime})}J^{(z^{\prime})}+I^{(z^{\prime})}J^{(y^{\prime})} =0,\displaystyle=0\ ,
[B1(y),B1(z)]+[B2(y),B2(z)]+I(y)I(z)J(z)J(y)\displaystyle[B_{1}^{(y^{\prime})},B_{1}^{(z^{\prime})}{}^{\dagger}]+[B_{2}^{(y^{\prime})},B_{2}^{(z^{\prime})}{}^{\dagger}]+I^{(y^{\prime})}I^{(z^{\prime})}{}^{\dagger}-J^{(z^{\prime})}{}^{\dagger}J^{(y^{\prime})} =0,for ally,z=1,,k.\displaystyle=0\ ,\quad\text{for all}\quad y^{\prime},z^{\prime}=1^{\prime},\ldots,k^{\prime}\ . (6.33)

Let us get a count of the number of such equations. The above equations are symmetric in yy^{\prime}, zz^{\prime}. For y=zy^{\prime}=z^{\prime}, the last equation in (6.2) is manifestly real whereas the first equation is complex. Thus, for y=zy^{\prime}=z^{\prime}, we have k×3k2k^{\prime}\times 3k^{2} real equations. For yzy^{\prime}\neq z^{\prime}, it is sufficient to restrict y<zy^{\prime}<z^{\prime}, and both equations in (6.2) are complex. This gives a count of 12k(k1)×4k2\tfrac{1}{2}k^{\prime}(k^{\prime}-1)\times 4k^{2}. In total, the number of equations is k2k(2k+1)k^{2}k^{\prime}(2k^{\prime}+1). For k=1k^{\prime}=1, the target space is 𝐑4\mathbf{R}^{4} and the above equations are precisely the ADHM equations.

We must also remember that the instanton connection (6.14) is invariant under the residual U(k)\text{U}(k) transformations (6.26). We treat the residual U(n)\text{U}(n) in (6.26) as a symmetry of framings at \infty of the instanton solution. The B1(y)B^{(y^{\prime})}_{1}, B2(y)B^{(y^{\prime})}_{2} are inert under framing whereas the I(y)I^{(y^{\prime})} and J(y)J^{(y^{\prime})} transform as

I(y)I(y)𝒰~,J(y)𝒰~J.(y)I^{(y^{\prime})}\to I^{(y^{\prime})}\widetilde{\mathcal{U}}\ ,\quad J^{(y^{\prime})}\to\widetilde{\mathcal{U}}{}^{\dagger}J{}^{(y^{\prime})}\ . (6.34)

Thus, the moduli space of framed instantons is described by

{Fields|Equations}/Symmetries,\left\{\textsc{Fields}\ \Big{|}\ \textsc{Equations}\right\}\Big{/}\textsc{Symmetries}\ , (6.35)

with

  1. 1.

    Fields: B1(y),B2(y),I(y),J(y)B^{(y^{\prime})}_{1},B^{(y^{\prime})}_{2},I^{(y^{\prime})},J^{(y^{\prime})}, y=1,,ky^{\prime}=1^{\prime},\ldots,k^{\prime},

  2. 2.

    Equations: the equations (6.2), and

  3. 3.

    Symmetries: the residual U(k)\text{U}(k) symmetry in (6.26) which acts on the various fields as

    B1(y)𝒰B1(y)𝒰,B2(y)𝒰B2(y)𝒰,I(y)𝒰I(y),J(y)J𝒰(y).B^{(y^{\prime})}_{1}\to\mathcal{U}B^{(y^{\prime})}_{1}\mathcal{U}^{\dagger}\ ,\quad B^{(y^{\prime})}_{2}\to\mathcal{U}B^{(y^{\prime})}_{2}\mathcal{U}^{\dagger}\ ,\quad I^{(y^{\prime})}\to\mathcal{U}I^{(y^{\prime})}\ ,\quad J^{(y^{\prime})}\to J{}^{(y^{\prime})}\mathcal{U}^{\dagger}\ . (6.36)

The virtual dimension of the moduli space of framed instantons is then

dim𝐑{Fields}dim𝐑{Equations}dim𝐑{Symmetries}=k(4k2+4kn)k2k(2k+1)k2=4kknk2(2k1)(k1).\dim_{\mathbf{R}}\{\textsc{Fields}\}-\dim_{\mathbf{R}}\{\textsc{Equations}\}-\dim_{\mathbf{R}}\{\textsc{Symmetries}\}\\ =k^{\prime}(4k^{2}+4kn)-k^{2}k^{\prime}(2k^{\prime}+1)-k^{2}=4k^{\prime}kn-k^{2}(2k^{\prime}-1)(k^{\prime}-1)\ . (6.37)

When k=1k^{\prime}=1, this becomes 4kn4kn which is the virtual dimension (in fact, the dimension itself) of the SU(n)\text{SU}(n) kk-instanton moduli space on 𝐑4\mathbf{R}^{4}.

Acknowledgements
The authors thank N. Nekrasov, S. Shatashvili and J. P. Ang for useful discussions during early stages of the work. N. P. would like to acknowledge the support of the Jawaharlal Nehru Postdoctoral Fellowship for part of the duration of the work. The work of M. R. was supported in part by NSF grants PHY-19-15093 and PHY-22-15093.

Appendix A (0,1)(0,1) and (0,2)(0,2) superspace

A.1 (0,1)(0,1) superspace

(0,1)(0,1) superspace has coordinates (x±±,θ+)(x^{\pm\pm},\theta^{+}) where θ+\theta^{+} is a real Grassmann variable. The corresponding supercovariant derivatives are (±±,𝒟+)(\partial_{\pm\pm},\mathcal{D}_{+}) which satisfy the algebra

𝒟+2=i++.\mathcal{D}_{+}^{2}=\text{i}\partial_{++}\ . (A.1)

with all other commutators being zero.

Multiplets of the (0,1)(0,1) supersymmetry algebra are not constrained. The most common ones are the scalar multiplet (spin 0), the fermi multiplet (spin 12\tfrac{1}{2}, left-handed) and the gauge multiplet (spin 11). The multiplets are irreducible representations of the algebra when they are real (or hermitian).

A real scalar superfield ϕ\phi has components

ϕ|,iξ+=(𝒟+ϕ)|,\phi_{\boldsymbol{\rvert}}\ ,\quad\text{i}\xi_{+}=(\mathcal{D}_{+}\phi)_{\boldsymbol{\rvert}}\ , (A.2)

where ϕ|\phi_{\boldsymbol{\rvert}} is a real scalar field and ξ+\xi_{+} is a real right-handed fermion. We follow the usual convention of denoting the lowest component of a superfield by the same symbol and drop the ‘slash’ |{\boldsymbol{\rvert}} from here on. A supersymmetric action with the lowest number of derivatives is

𝒮scalar\displaystyle\mathcal{S}_{\rm scalar} =i2d2x𝒟+((𝒟+ϕ)ϕ)=12d2x(μϕμϕiξ+ξ+).\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathcal{D}_{+}\left(-(\mathcal{D}_{+}\phi)\,\partial_{--}\phi\right)=\frac{1}{2}\int\text{d}^{2}x\left(-\partial^{\mu}{\phi}\,\partial_{\mu}\phi-\text{i}\xi_{+}\partial_{--}\xi_{+}\right)\ . (A.3)

A real fermi superfield ψ\psi_{-} has the components

ψ,F=𝒟+ψ,\psi_{-}\ ,\quad F=\mathcal{D}_{+}\psi_{-}\ , (A.4)

where ψ\psi_{-} is a real left-handed fermion and FF is a real auxiliary field, with the action

𝒮fermi\displaystyle\mathcal{S}_{\rm fermi} =12d2x𝒟+(ψ𝒟+ψ)=12d2x(iψ++ψ+F2).\displaystyle=\frac{1}{2}\int\text{d}^{2}x\,\mathcal{D}_{+}\left(\psi_{-}\mathcal{D}_{+}\psi_{-}\right)=\frac{1}{2}\int\text{d}^{2}x\left(-\text{i}\psi_{-}\partial_{++}\psi_{-}+F^{2}\right)\ . (A.5)

One can add a potential term in the action via a term that is linear in the fermi superfields ψα\psi_{\alpha-} in the theory:

𝒮potential\displaystyle\mathcal{S}_{\rm potential} =d2x𝒟+(ψαMα)=d2x(FαMαψαMαϕiξi+),\displaystyle=\int\text{d}^{2}x\,\mathcal{D}_{+}\left(\psi_{\alpha-}M^{\alpha}\right)=\int\text{d}^{2}x\,\left(F_{\alpha}M^{\alpha}-\psi_{\alpha-}\frac{\partial M^{\alpha}}{\partial\phi_{i}}\xi_{i+}\right)\ , (A.6)

where Mα:=Mα(ϕ)M^{\alpha}:=M^{\alpha}(\phi) are functions of the scalar superfields in the theory.

A.2 (0,2)(0,2) superspace

(0,2)(0,2) superspace has coordinates (x±±,θ+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)+(x^{\pm\pm},\theta^{+},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{+}) where θ+\theta^{+} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{+} are left-handed spinors. We denote the corresponding supercovariant derivatives by (++,D+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)+(\partial_{++},\mathrm{D}_{+},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}). They satisfy the algebra

D+2=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+20,{D+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111}+=2i++.\mathrm{D}_{+}^{2}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}_{+}=0\ ,\quad\{\mathrm{D}_{+}\,,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\}=2\text{i}\partial_{++}\ . (A.7)

We review various constrained superfields that are required to write down supersymmetric actions in superspace.

Chiral

A scalar chiral superfield (or, simply a chiral superfield) ϕ\phi is a Lorentz scalar and satisfies \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ϕ+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\phi=0 and has components

ϕ,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,2ξ+:=D+ϕ,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\phi\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\sqrt{2}\,\xi_{+}:=\mathrm{D}_{+}\phi\ ,\quad-\sqrt{2}\,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ , (A.8)

and consequently, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D++ϕ=2i++ϕ\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathrm{D}_{+}\phi=2\text{i}\partial_{++}\phi. The action for a free chiral superfield is

𝒮chiral\displaystyle\mathcal{S}_{\text{chiral}} =i2d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ϕ)+=d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μϕi\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+ξ+).\displaystyle=-\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ (\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\,\partial_{--}\phi)=\int\text{d}^{2}x\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\,\partial_{\mu}\phi-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\partial_{--}\xi_{+}\right)\ . (A.9)
Fermi

A Fermi superfield ψ\psi_{-} is a left-handed spinor and satisfies the constraint \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\psi_{-}=0. It has components

ψ,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,2G:=D+ψ,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G:=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\psi_{-}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ ,\quad-\sqrt{2}\,G:=\mathrm{D}_{+}\psi_{-}\ ,\quad-\sqrt{2}\,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}:=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ . (A.10)

The action for a free Fermi multiplet ψ\psi_{-} is

𝒮Fermi\displaystyle\mathcal{S}_{\text{Fermi}} =12d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ)+=d2x(i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++ψ+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111GG).\displaystyle=\frac{1}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ (\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\psi_{-})=\int\text{d}^{2}x\left(-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\partial_{++}\psi_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}G\right)\ . (A.11)

We see that the left-handed fermion ψ\psi_{-} satisfies the equation of motion ++ψ=0\partial_{++}\psi_{-}=0 and hence is right-moving on-shell. The field GG is auxiliary with equation of motion G=0G=0.

Potential terms

Let ϕi\phi_{i} collectively denote all the (0,2)(0,2) chiral superfields in the theory and ψα\psi_{\alpha-} the (0,2)(0,2) Fermi superfields. We can modify the constraint \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψα+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\psi_{\alpha-}=0 to

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψα+=2Eα(ϕ),\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\psi_{\alpha-}=\sqrt{2}E_{\alpha}(\phi)\ , (A.12)

where the Eα(ϕ)E_{\alpha}(\phi) are holomorphic functions of the chiral multiplets ϕi\phi_{i}. This modification results in additional interaction terms in the action for the fermi superfields:

𝒮Fermi\displaystyle\mathcal{S}_{\text{Fermi}} =12d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψαα)+,\displaystyle=\frac{1}{2}\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ (\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}_{-}\psi_{\alpha-})\ ,
=d2x(i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++αψα+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111GGαα\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)αEα(ϕ)+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Eαϕiαξi++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Eα\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψα+i).\displaystyle=\int\text{d}^{2}x\left(-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}_{-}\partial_{++}\psi_{\alpha-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}{}^{\alpha}G_{\alpha}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}{}^{\alpha}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})E_{\alpha}(\phi)+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}_{-}\,\frac{\partial E_{\alpha}}{\partial\phi_{i}}\ \xi_{i+}+\frac{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}{}^{\alpha}}{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}}\,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}_{+}\,\psi_{\alpha-}\right)\ . (A.13)

We can also write a superpotential term, known as a “JJ-term” in (0,2)(0,2) literature:

𝒮J\displaystyle\mathcal{S}_{J} =12d2xD+(Jα(ϕ)ψα)+h.c.,\displaystyle=-\frac{1}{\sqrt{2}}\int\text{d}^{2}x\,\mathrm{D}_{+}\left(J^{\alpha}(\phi)\psi_{\alpha-}\right)+\text{h.c.}\ ,
=d2x(Jα(ϕ)Gα+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G\macc@depthαΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Jα(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)Jαϕjξj+ψα\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Jα\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111jα\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)+j.\displaystyle=\int\text{d}^{2}x\left(J^{\alpha}(\phi)G_{\alpha}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}{}^{\alpha}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}_{\alpha}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{})-\frac{\partial J^{\alpha}}{\partial\phi_{j}}\xi_{j+}\psi_{\alpha-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}_{-}\frac{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}_{\alpha}}{\partial\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{j}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{j}_{+}\right)\ . (A.14)

Since the superspace measure in the JJ-term involves only half the supercovariant derivatives, its invariance under (0,2)(0,2) supersymmetry requires the integrand to be chiral, i.e., \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ψαJα)+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}(\psi_{\alpha-}J^{\alpha})=0. This implies

EJ:=αEαJα=0.E\cdot J:=\sum_{\alpha}E_{\alpha}J^{\alpha}=0\ . (A.15)

If the above constraint is not satisfied, supersymmetry is softly broken down from (0,2)(0,2) to (0,1)(0,1), even though the JJ-term is written in (0,2)(0,2) superspace.

Reduction to 𝒩=(0,1)\mathcal{N}=(0,1) superspace

Define the derivatives

𝒟+=D++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+2,𝒬+=D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+2with𝒟+2=i++,𝒬+2=i++,{𝒟+,𝒬+}=0.\mathcal{D}_{+}=\frac{\mathrm{D}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}}{\sqrt{2}}\ ,\ \mathcal{Q}_{+}=\frac{\mathrm{D}_{+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}}{\sqrt{2}}\quad\text{with}\quad\mathcal{D}_{+}^{2}=\text{i}\partial_{++}\ ,\quad\mathcal{Q}^{2}_{+}=-\text{i}\partial_{++}\ ,\quad\{\mathcal{D}_{+},\mathcal{Q}_{+}\}=0\ . (A.16)

𝒟+\mathcal{D}_{+} is the real (0,1)(0,1) super derivative and 𝒬+\mathcal{Q}_{+} is the generator of the extra (non-manifest) supersymmetry.

The (0,2)(0,2) chiral and fermi multiplets (and their antichiral counterparts) become complex (0,1)(0,1) scalar and fermi multiplets with components

Chiral:\displaystyle\text{Chiral}: ϕ,𝒟+ϕ=ξ+,𝒟+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+\displaystyle\quad\phi\ ,\quad\mathcal{D}_{+}\phi=\xi_{+}\ ,\quad\mathcal{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,
Fermi:\displaystyle\text{Fermi}: ψ,𝒟+ψ=G+E=:F,𝒟+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E=:\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111F.\displaystyle\quad\psi_{-}\ ,\quad\mathcal{D}_{+}\psi_{-}=G+E=:F\ ,\quad\mathcal{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{E}=:\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{F}\ . (A.17)

We have D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+i𝒟+𝒬++i++\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}=-\text{i}\mathcal{D}_{+}\mathcal{Q}_{+}+\text{i}\partial_{++}. We can discard the second term since it gives rise to a total derivative term in the action. Using that 𝒬+\mathcal{Q}_{+} acts as i𝒟+-\text{i}\mathcal{D}_{+} on superfields satisfying \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111()+=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}(\cdot)=0, we can write the (0,2)(0,2) actions in (0,1)(0,1) superspace:

𝒮chiral\displaystyle\mathcal{S}_{\text{chiral}} =i2d2x𝒟+(𝒟+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111iϕi\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝒟+iϕi),\displaystyle=\frac{\text{i}}{2}\int\text{d}^{2}x\,\mathcal{D}_{+}\left(-\mathcal{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}\,\partial_{--}\phi_{i}-\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{i}\mathcal{D}_{+}\phi_{i}\right)\ ,
𝒮fermi\displaystyle\mathcal{S}_{\text{fermi}} =d2x𝒟+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(12𝒟+ψαμα)α+(12𝒟+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111α\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)αψα),\displaystyle=\int\text{d}^{2}x\,\mathcal{D}_{+}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}_{-}\left(\tfrac{1}{2}\mathcal{D}_{+}\psi_{\alpha-}-\mu_{\alpha}\right)+\left(\tfrac{1}{2}\mathcal{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\alpha}\right)\psi_{\alpha-}\right)\ , (A.18)

where μα=Eα+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Jα\mu_{\alpha}=E_{\alpha}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{J}_{\alpha}.

Appendix B (4,4)(4,4) projective superspace and (4,4)(0,4)(4,4)\to(0,4)

B.1 Definitions

We start with the (4,4)(4,4) real supercharges (𝒬m+,𝒬m~)(\mathcal{Q}_{m+},\mathcal{Q}_{\tilde{m}-}) with mm, m~=1,2,3,4\tilde{m}=1,2,3,4. The R-symmetry group is

Spin(4)L×Spin(4)RSU(2)L×SU(2)L×SU(2)R×SU(2)R′′.\text{Spin}(4)_{L}\times\text{Spin}(4)_{R}\simeq\text{SU}(2)_{L}\times\text{SU}(2)_{L}^{\prime}\times\text{SU}(2)_{R}\times\text{SU}(2)_{R}^{\prime\prime}\ .

We restrict our attention to the subgroup F×F×F′′F\times F^{\prime}\times F^{\prime\prime} where F=SU(2)ΔF=\text{SU}(2)_{\Delta}, the diagonal subgroup of SU(2)L×SU(2)R\text{SU}(2)_{L}\times\text{SU}(2)_{R}, F=SU(2)LF^{\prime}=\text{SU}(2)_{L}^{\prime} and F′′=SU(2)R′′F^{\prime\prime}=\text{SU}(2)_{R}^{\prime\prime}. The supercharges can then be written as (𝒬aa+,𝒬aa′′)(\mathcal{Q}_{aa^{\prime}+},\mathcal{Q}_{aa^{\prime\prime}-}) where aa, aa^{\prime} and a′′a^{\prime\prime} are doublet indices of FF, FF^{\prime} and F′′F^{\prime\prime} respectively. This restriction of the R-symmetry group to a subgroup seems to be required to obtain the vector multiplet via gauged supercovariant derivatives and the relevant superspace constraints [Sie85].

The algebra of (4,4)(4,4) supercovariant derivatives Daa+\mathrm{D}_{aa^{\prime}+} and Daa′′\mathrm{D}_{aa^{\prime\prime}-} is

{Daa+,Dbb+}=2iεabεab++,{Daa′′,Dbb′′}=2iεabεa′′b′′,{Daa+,Dbb′′}=0.\displaystyle\{\mathrm{D}_{aa^{\prime}+}\,,\mathrm{D}_{bb^{\prime}+}\}=2\text{i}\varepsilon_{ab}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\ ,\quad\{\mathrm{D}_{aa^{\prime\prime}-}\,,\mathrm{D}_{bb^{\prime\prime}-}\}=2\text{i}\varepsilon_{ab}\varepsilon_{a^{\prime\prime}b^{\prime\prime}}\partial_{--}\ ,\quad\{\mathrm{D}_{aa^{\prime}+}\,,\mathrm{D}_{bb^{\prime\prime}-}\}=0\ . (B.1)

The reality conditions on the derivatives are

Daa±=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111εba±bbεba.\mathrm{D}_{aa^{\prime}\pm}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{bb^{\prime}}_{\pm}\varepsilon_{ba}\varepsilon_{b^{\prime}a^{\prime}}\ . (B.2)

It will be useful to define the (2,2)(2,2) subalgebra spanned by the derivatives

D+:=D11+,D:=D11′′,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+D22+,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=D22′′,\mathrm{D}_{+}:=\mathrm{D}_{11^{\prime}+}\ ,\quad\mathrm{D}_{-}:=\mathrm{D}_{11^{\prime\prime}-}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:=\mathrm{D}_{22^{\prime}+}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}:=\mathrm{D}_{22^{\prime\prime}-}\ , (B.3)

which satisfy

{D±,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111}±=2i±±.\{\mathrm{D}_{\pm},\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\}=2\text{i}\partial_{\pm\pm}\ . (B.4)

The non-manifest (4,4)(4,4) supersymmetry generators are then Q+:=D21+\mathrm{Q}_{+}:=\mathrm{D}_{21^{\prime}+}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+D12+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}:=-\mathrm{D}_{12^{\prime}+} and Q:=D21′′\mathrm{Q}_{-}:=\mathrm{D}_{21^{\prime\prime}-}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=D12′′\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}:=-\mathrm{D}_{12^{\prime\prime}-}.

The general projective superspace corresponding to F×F×F′′F\times F^{\prime}\times F^{\prime\prime} is described by introducing a doublet for each of the SU(2)\text{SU}(2)s in the R-symmetry group: ua=(ζ,1)u^{a}=(\zeta,1), va=(ζ,1)v^{a^{\prime}}=(\zeta^{\prime},1) and wa′′=(ζ′′,1)w^{a^{\prime\prime}}=(\zeta^{\prime\prime},1) for the subgroups F=SU(2)ΔF=\text{SU}(2)_{\Delta}, F=SU(2)LF^{\prime}=\text{SU}(2)^{\prime}_{L} and F′′=SU(2)RF^{\prime\prime}=\text{SU}(2)^{\prime}_{R} respectively.

We then define the following projective supercovariant derivatives:

𝐃a+:=uaDaa+,i.e.,𝐃1+=ζD++Q+,𝐃2+=ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+\displaystyle\mathbf{D}_{a^{\prime}+}:=u^{a}\mathrm{D}_{aa^{\prime}+}\ ,\quad\text{i.e.,}\quad\mathbf{D}_{1^{\prime}+}=\zeta\mathrm{D}_{+}+\mathrm{Q}_{+}\ ,\quad\mathbf{D}_{2^{\prime}+}=-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,
𝐃a+:=vaDaa+,i.e.,𝐃1+=ζD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+𝐃2+=ζQ++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+\displaystyle\mathbf{D}_{a+}:=v^{a^{\prime}}\mathrm{D}_{aa^{\prime}+}\ ,\quad\text{i.e.,}\quad\mathbf{D}_{1+}=\zeta^{\prime}\mathrm{D}_{+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,\quad\mathbf{D}_{2+}=\zeta^{\prime}\mathrm{Q}_{+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,
𝐃a′′:=uaDaa′′,i.e.,𝐃1′′=ζD+Q,𝐃2′′=ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\displaystyle\mathbf{D}_{a^{\prime\prime}-}:=u^{a}\mathrm{D}_{aa^{\prime\prime}-}\ ,\quad\text{i.e.,}\quad\mathbf{D}_{1^{\prime\prime}-}=\zeta\mathrm{D}_{-}+\mathrm{Q}_{-}\ ,\quad\mathbf{D}_{2^{\prime\prime}-}=-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ ,
𝐃a:=wa′′Daa′′,i.e.,𝐃1=ζ′′D\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,𝐃2=ζ′′Q+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\displaystyle\mathbf{D}_{a-}:=w^{a^{\prime\prime}}\mathrm{D}_{aa^{\prime\prime}-}\ ,\quad\text{i.e.,}\quad\mathbf{D}_{1-}=\zeta^{\prime\prime}\mathrm{D}_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ ,\quad\mathbf{D}_{2-}=\zeta^{\prime\prime}\mathrm{Q}_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ . (B.5)

We also introduce the doublets u~a\widetilde{u}{}^{a}, v~a\widetilde{v}{}^{a^{\prime}} and w~a′′\widetilde{w}{}^{a^{\prime\prime}} as was done in the main text above eq. (2.9). We again choose u~=a(1,0)\widetilde{u}{}^{a}=(1,0), v~=a(1,0)\widetilde{v}{}^{a^{\prime}}=(1,0) and w~=a′′(1,0)\widetilde{w}{}^{a^{\prime\prime}}=(1,0) and define the linearly independent derivatives:

𝐃~a+:=u~aDaa+,i.e.,𝐃~1+=D+,𝐃~2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,+\displaystyle\widetilde{\mathbf{D}}_{a^{\prime}+}:=\widetilde{u}^{a}\mathrm{D}_{aa^{\prime}+}\ ,\quad\text{i.e.,}\quad\widetilde{\mathbf{D}}_{1^{\prime}+}=\mathrm{D}_{+}\ ,\quad\widetilde{\mathbf{D}}_{2^{\prime}+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\ ,
𝐃~a+:=v~aDaa+,i.e.,𝐃~1+=D+,𝐃~2+=Q+,\displaystyle\widetilde{\mathbf{D}}_{a+}:=\widetilde{v}^{a^{\prime}}\mathrm{D}_{aa^{\prime}+}\ ,\quad\text{i.e.,}\quad\widetilde{\mathbf{D}}_{1+}=\mathrm{D}_{+}\ ,\quad\widetilde{\mathbf{D}}_{2+}=\mathrm{Q}_{+}\ ,
𝐃~a′′:=u~aDaa′′,i.e.,𝐃~1′′=D,𝐃~2′′=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\displaystyle\widetilde{\mathbf{D}}_{a^{\prime\prime}-}:=\widetilde{u}^{a}\mathrm{D}_{aa^{\prime\prime}-}\ ,\quad\text{i.e.,}\quad\widetilde{\mathbf{D}}_{1^{\prime\prime}-}=\mathrm{D}_{-}\ ,\quad\widetilde{\mathbf{D}}_{2^{\prime\prime}-}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ ,
𝐃~a:=w~a′′Daa′′,i.e.,𝐃~1=D,𝐃~2=Q.\displaystyle\widetilde{\mathbf{D}}_{a-}:=\widetilde{w}^{a^{\prime\prime}}\mathrm{D}_{aa^{\prime\prime}-}\ ,\quad\text{i.e.,}\quad\widetilde{\mathbf{D}}_{1-}=\mathrm{D}_{-}\ ,\quad\widetilde{\mathbf{D}}_{2-}=\mathrm{Q}_{-}\ . (B.6)

We consider projective superfields which are functions of one projective coordinate from the left moving sector (ζ\zeta or ζ\zeta^{\prime}) and one projective coordinate from the right-moving sector (ζ\zeta or ζ′′\zeta^{\prime\prime}) and are annihilated by the corresponding set of projective derivatives. For example, an (F,F′′)(F,F^{\prime\prime}) projective superfield Φ\Phi is a function of ζ\zeta and ζ′′\zeta^{\prime\prime} and is annihilated by 𝐃a+(ζ)\mathbf{D}_{a^{\prime}+}(\zeta) and 𝐃a(ζ′′)\mathbf{D}_{a-}(\zeta^{\prime\prime}). The (4,4)(4,4) supersymmetric action is

𝒮[𝚽]\displaystyle\mathcal{S}[\bm{\Phi}] =d2xγdζ2πiγ′′dζ′′2πi𝐃~1+𝐃~2+𝐃~1𝐃~2𝑲(𝚽).\displaystyle=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\oint_{\gamma^{\prime\prime}}\frac{\text{d}\zeta^{\prime\prime}}{2\pi\text{i}}\,\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\widetilde{\mathbf{D}}_{1-}\widetilde{\mathbf{D}}_{2-}\,{\bm{K}}(\bm{\Phi})\ . (B.7)

Using that 𝑲(𝚽){\bm{K}}(\bm{\Phi}) is annihilated by 𝐃a+\mathbf{D}_{a^{\prime}+} and 𝐃a\mathbf{D}_{a-} and 𝐃~2+=ζ1𝐃2+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+\widetilde{\mathbf{D}}_{2^{\prime}+}=\zeta^{-1}\mathbf{D}_{2^{\prime}+}-\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}, 𝐃~2=ζ′′1𝐃2ζ′′1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\widetilde{\mathbf{D}}_{2-}=\zeta^{\prime\prime-1}\mathbf{D}_{2-}-\zeta^{\prime\prime-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}, we can replace the measure by the (2,2)(2,2) measure and do the ζ\zeta, ζ′′\zeta^{\prime\prime} integrals to get an action in (2,2)(2,2) superspace:

𝒮[𝚽]\displaystyle\mathcal{S}[\bm{\Phi}] =d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111γdζ2πiζγ′′dζ′′2πiζ′′𝑲(𝚽).\displaystyle=\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathrm{D}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\oint_{\gamma^{\prime\prime}}\frac{\text{d}\zeta^{\prime\prime}}{2\pi\text{i}\zeta^{\prime\prime}}\,{\bm{K}}(\bm{\Phi})\ . (B.8)

There are many choices for projective superfields: they can be a polynomial or a power series in each of the projective coordinates that they depend on. A polynomial 𝒪(n)\mathcal{O}(n) superfield with respect to FF, FF^{\prime} and F′′F^{\prime\prime} will be respectively denoted as 𝒪(n)\mathcal{O}(n), 𝒪(n)\mathcal{O}(n^{\prime}) and 𝒪(n′′)\mathcal{O}(n^{\prime\prime}). Power series superfields are typically denoted as FF-arctic, FF-antarctic, FF^{\prime}-arctic and so on. Below, we discuss the (F,F)(F,F) arctic superfield, i.e., an arctic superfield which is a power series only in ζ\zeta and is annihilated by 𝐃a+(ζ)\mathbf{D}_{a^{\prime}+}(\zeta) and 𝐃a′′(ζ)\mathbf{D}_{a^{\prime\prime}-}(\zeta).

B.2 (4,4)(4,4) standard hypermultiplet

Consider an (F,F)(F,F) arctic superfield 𝚼(ζ)=i=0Υiζi{\mathbf{\Upsilon}}(\zeta)=\sum_{i=0}^{\infty}\mathnormal{\Upsilon}_{i}\zeta^{i} with alternate notation Φ\Phi and Σ\Sigma for Υ0\mathnormal{\Upsilon}_{0} and Υ1\mathnormal{\Upsilon}_{1} respectively. The constraints 𝐃a+𝚼=𝐃a′′𝚼=0\mathbf{D}_{a^{\prime}+}{\mathbf{\Upsilon}}=\mathbf{D}_{a^{\prime\prime}-}{\mathbf{\Upsilon}}=0 give the (2,2)(2,2) constraints

Q±Φ=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Φ±=0,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Φ±=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Σ±\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Σ=0,\displaystyle\mathrm{Q}_{\pm}\Phi=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\Phi=0\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\Phi=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\Sigma\Rightarrow\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\Sigma=0\ ,
Q±Υj+1=D±Υjforj0,and\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj±=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υj+1±forj1.\displaystyle\mathrm{Q}_{\pm}\mathnormal{\Upsilon}_{j+1}=-\mathrm{D}_{\pm}\mathnormal{\Upsilon}_{j}\ \text{for}\ j\geq 0\ ,\quad\text{and}\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\mathnormal{\Upsilon}_{j}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\mathnormal{\Upsilon}_{j+1}\ \text{for}\ j\geq 1\ . (B.9)

Φ\Phi is chiral as an (2,2)(2,2) superfield since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Φ±=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{\pm}\Phi=0, Σ\Sigma is complex linear since \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Σ=0\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\Sigma=0, whereas the Υj2\mathnormal{\Upsilon}_{j\geq 2} are unconstrained as (2,2)(2,2) superfields.

The action for the arctic superfield is

𝒮[𝚼]=14d2xγdζ2πi𝐃~1+𝐃~2+𝐃~1′′𝐃~2′′(ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼).\displaystyle\mathcal{S}[{\mathbf{\Upsilon}}]=\frac{1}{4}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\,(\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}})\ . (B.10)

This action is R-symmetric since the measure has FF-weight 2-2 ( +2+2 from dζ\text{d}\zeta, 2-2 from 𝐃~1+𝐃~2+\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+} and 2-2 from 𝐃~1′′𝐃~2′′\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}) and the Lagrangian has FF-weight +2+2 (+1+1 each from 𝚼{\mathbf{\Upsilon}} and ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}, see the paragraph after equation (2.47) in Section 2.5).

Next, we obtain the (0,4)(0,4) content by applying 𝐃~a′′\widetilde{\mathbf{D}}_{a^{\prime\prime}-} to 𝚼{\mathbf{\Upsilon}}:

𝚼a′′\displaystyle{\mathbf{\Upsilon}}_{a^{\prime\prime}-} 12𝐃~a′′𝚼,𝚼14𝐃~1′′𝐃~2′′𝚼.\displaystyle\equiv\frac{1}{\sqrt{2}}\widetilde{\mathbf{D}}_{a^{\prime\prime}-}{\mathbf{\Upsilon}}\ ,\quad{\mathbf{\Upsilon}}_{--}\equiv-\frac{1}{4}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}{\mathbf{\Upsilon}}\ . (B.11)

Recall from (2.80) that the conjugate of 𝐃~a′′\widetilde{\mathbf{D}}_{a^{\prime\prime}-} when acting on arctic superfields is

𝐃~˘=a′′εa′′b′′(ζ𝐃~b′′+𝐃b′′).\breve{\widetilde{\mathbf{D}}}{}^{a^{\prime\prime}}_{-}=\varepsilon^{a^{\prime\prime}b^{\prime\prime}}(-\zeta\widetilde{\mathbf{D}}_{b^{\prime\prime}-}+\mathbf{D}_{b^{\prime\prime}-})\ . (B.12)

Using this, we get

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=a′′12εa′′b′′(ζ𝐃~b′′𝐃b′′)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=14(ζ𝐃~2′′+𝐃2′′)(ζ𝐃~1′′𝐃1′′)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}=\frac{1}{\sqrt{2}}\varepsilon^{a^{\prime\prime}b^{\prime\prime}}(\zeta\widetilde{\mathbf{D}}_{b^{\prime\prime}-}-\mathbf{D}_{b^{\prime\prime}-})\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}=\frac{1}{4}(-\zeta\widetilde{\mathbf{D}}_{2^{\prime\prime}-}+\mathbf{D}_{2^{\prime\prime}-})(\zeta\widetilde{\mathbf{D}}_{1^{\prime\prime}-}-\mathbf{D}_{1^{\prime\prime}-})\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ . (B.13)

Using 𝐃a′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\mathbf{D}_{a^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0 and {𝐃2′′,𝐃~1′′}=2i\{\mathbf{D}_{2^{\prime\prime}-}\,,\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\}=2\text{i}\partial_{--}, we get

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=a′′12ζεa′′b′′𝐃~b′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=14ζ2𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+i2ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}=\frac{1}{\sqrt{2}}\zeta\varepsilon^{a^{\prime\prime}b^{\prime\prime}}\widetilde{\mathbf{D}}_{b^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}=\frac{1}{4}\zeta^{2}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}+\frac{\text{i}}{2}\zeta\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ . (B.14)

The (0,4)(0,4) supersymmetric action is obtained by pushing in the 𝐃~a′′\widetilde{\mathbf{D}}_{a^{\prime\prime}-} derivatives in the measure:

𝒮[𝚼]\displaystyle\mathcal{S}[{\mathbf{\Upsilon}}] =14d2xγdζ2πi𝐃~1+𝐃~2+𝐃~1′′𝐃~2′′(ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼),\displaystyle=\frac{1}{4}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\,(\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}})\ ,
=d2xγdζ2πi𝐃~1+𝐃~2+(ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼i2(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)𝚼12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼1′′1′′12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼2′′2′′ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼).\displaystyle=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}}-\tfrac{\text{i}}{2}(\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}){\mathbf{\Upsilon}}-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime\prime}}_{-}{\mathbf{\Upsilon}}_{1^{\prime\prime}-}-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime\prime}}_{-}{\mathbf{\Upsilon}}_{2^{\prime\prime}-}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--})\ . (B.15)

Let us study the R-symmetry invariance of the above action in more detail. Recall that 𝚼{\mathbf{\Upsilon}} and 𝐃~a′′\widetilde{\mathbf{D}}_{a^{\prime\prime}-} (see (2.80)) transform under FF as

𝚼(ζ)𝚼(ζ)=j(g,ζ)𝚼(gζ),𝐃~a′′j(g,ζ)1𝐃~a′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃a′′(gζ),{\mathbf{\Upsilon}}(\zeta)\to{\mathbf{\Upsilon}}^{\prime}(\zeta)=j(g,\zeta){\mathbf{\Upsilon}}(g\cdot\zeta)\ ,\quad\widetilde{\mathbf{D}}_{a^{\prime\prime}-}\to j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{a^{\prime\prime}-}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\mathbf{D}_{a^{\prime\prime}-}(g\cdot\zeta)\ , (B.16)

where 𝚼{\mathbf{\Upsilon}}^{\prime} is a new superfield which is evaluated at ζ\zeta whose expression is given by expanding the right hand side j(g,ζ)𝚼(gζ)j(g,\zeta){\mathbf{\Upsilon}}(g\cdot\zeta) around ζ=0\zeta=0. The transformations of all the other superfields can be obtained by using the above. We first summarize the results and then detailed calculations. The hypers 𝚼{\mathbf{\Upsilon}}, ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} transform as weight 11 objects:

𝚼(ζ)j(g,ζ)𝚼(gζ),ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)j(g,ζ)(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1),{\mathbf{\Upsilon}}(\zeta)\to j(g,\zeta){\mathbf{\Upsilon}}(g\cdot\zeta)\ ,\quad\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1})\to j(g,\zeta)\ (g\cdot\zeta)\ \macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ , (B.17)

the fermis 𝚼a′′{\mathbf{\Upsilon}}_{a^{\prime\prime}-}, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a′′\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-} transform as weight 0 objects:

𝚼a′′(ζ)𝚼a′′(gζ),\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)a′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)a′′,{\mathbf{\Upsilon}}_{a^{\prime\prime}-}(\zeta)\to{\mathbf{\Upsilon}}_{a^{\prime\prime}-}(g\cdot\zeta)\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}(-\zeta^{-1})\to\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}(-(g\cdot\zeta)^{-1})\ , (B.18)

and 𝚼{\mathbf{\Upsilon}}_{--}, ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--} transform as weight 1-1 objects, along with an additional shift:

𝚼(ζ)\displaystyle{\mathbf{\Upsilon}}_{--}(\zeta) j(g,ζ)1𝚼(gζ)i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝚼(gζ),\displaystyle\to j(g,\zeta)^{-1}{\mathbf{\Upsilon}}_{--}(g\cdot\zeta)-\frac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\partial_{--}{\mathbf{\Upsilon}}(g\cdot\zeta)\ ,
ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}_{--}(-\zeta^{-1}) j(g,ζ)1(gζ)1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)+ζ1bi2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1).\displaystyle\to j(g,\zeta)^{-1}(g\cdot\zeta)^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}(-(g\cdot\zeta)^{-1})+\zeta^{-1}b\frac{\text{i}}{2}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ . (B.19)

Using these, the (0,4)(0,4) supersymmetric action (B.2) can be checked to be R-symmetric, a fact which was already demonstrated for the (4,4)(4,4) action (B.10).

The derivation of R-symmetry transformations

Note: In the following calculations, a on superfields denotes the transformed superfield and must not be confused with the on the R-symmetry indices.

Given the transformation of 𝚼{\mathbf{\Upsilon}} in (B.16), the transformation of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} is

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)=(a+bζ1)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1)=1ζ×(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ)×aζ+b\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ×\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1),\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1})\to\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1})=(a+b\zeta^{-1})\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)=\frac{1}{\zeta}\times(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta)\times\frac{a\zeta+b}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta}\times\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)\ , (B.20)

which implies that

ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)=j(g,ζ)(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1).\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1})\to\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1})=j(g,\zeta)\ (g\cdot\zeta)\ \macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ . (B.21)

This tells us that ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} transforms as a weight 11 field as well. 𝚼{\mathbf{\Upsilon}}_{--} transforms as

𝚼(ζ)\displaystyle{\mathbf{\Upsilon}}_{--}(\zeta)
14(j(g,ζ)1𝐃~1′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃1′′(gζ))(j(g,ζ)1𝐃~2′′(gζ))(j(g,ζ)𝚼(gζ)),\displaystyle\to-\frac{1}{4}\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\mathbf{D}_{1^{\prime\prime}-}(g\cdot\zeta)\Big{)}\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}(g\cdot\zeta)\Big{)}\Big{(}j(g,\zeta){\mathbf{\Upsilon}}(g\cdot\zeta)\Big{)}\ ,
=j(g,ζ)1𝚼(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bi2𝚼(gζ),\displaystyle=j(g,\zeta)^{-1}{\mathbf{\Upsilon}}_{--}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\frac{\text{i}}{2}\partial_{--}{\mathbf{\Upsilon}}(g\cdot\zeta)\ , (B.22)

that is,

𝚼(ζ)𝚼(ζ)=j(g,ζ)1𝚼(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bi2𝚼(gζ).{\mathbf{\Upsilon}}_{--}(\zeta)\to{\mathbf{\Upsilon}}^{\prime}_{--}(\zeta)=j(g,\zeta)^{-1}{\mathbf{\Upsilon}}_{--}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\frac{\text{i}}{2}\partial_{--}{\mathbf{\Upsilon}}(g\cdot\zeta)\ . (B.23)

Thus, 𝚼{\mathbf{\Upsilon}}_{--} transforms as a weight 1-1 superfield but with an additional shift term proportional to 𝚼\partial_{--}{\mathbf{\Upsilon}}. Finally, we need the transformation of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}. Analogous to (B.20), we have

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}_{--}(-\zeta^{-1}) =1a+bζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1)+bi2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1),\displaystyle=\frac{1}{a+b\zeta^{-1}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)+b\frac{\text{i}}{2}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)\ ,
=ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζaζ+b1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1)+bi2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111aζ1+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ba+bζ1),\displaystyle=\zeta\frac{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta}{a\zeta+b}\frac{1}{\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\zeta}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)+b\frac{\text{i}}{2}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\left(\frac{-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{a}\zeta^{-1}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}}{a+b\zeta^{-1}}\right)\ , (B.24)

which gives

ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)=j(g,ζ)1(gζ)1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)+ζ1bi2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1).\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}_{--}(-\zeta^{-1})=j(g,\zeta)^{-1}(g\cdot\zeta)^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}(-(g\cdot\zeta)^{-1})+\zeta^{-1}b\frac{\text{i}}{2}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ . (B.25)

Again, we see that ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--} transforms as a weight 1-1 superfield, along with an additional shift term proportional to \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}. We can also start with the definition of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--} in (B.14) and arrive at the above result. In detail, we have

ζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\zeta\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1})
ζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\qquad\to\zeta\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1})
=ζ(j(g,ζ)1𝐃~1′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃1′′(gζ))(j(g,ζ)1𝐃~2′′(gζ))aζ+bζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)\displaystyle\qquad=\zeta\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{1^{\prime\prime}-}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\mathbf{D}_{1^{\prime\prime}-}(g\cdot\zeta)\Big{)}\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}(g\cdot\zeta)\Big{)}\frac{a\zeta+b}{\zeta}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})
=j(g,ζ)1gζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)+2i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bgζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1).\displaystyle\qquad=j(g,\zeta)^{-1}\ g\cdot\zeta\ \widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})+2\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\ g\cdot\zeta\ \partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ . (B.26)

Also using the transformation of \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} from (B.21), we get

ζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)+2i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\zeta\widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1})+2\text{i}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1})
=j(g,ζ)1gζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)+2i(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bgζ+aζ+bζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)\displaystyle=j(g,\zeta)^{-1}\ g\cdot\zeta\ \widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})+2\text{i}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\ g\cdot\zeta+\frac{a\zeta+b}{\zeta}\right)\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})
=j(g,ζ)1(gζ𝐃~1′′𝐃~2′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)+2i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(gζ)1))\displaystyle=j(g,\zeta)^{-1}\left(g\cdot\zeta\ \widetilde{\mathbf{D}}_{1^{\prime\prime}-}\widetilde{\mathbf{D}}_{2^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})+2\text{i}\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}(-g\cdot\zeta)^{-1})\right)
+2i(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111bgζ+aζ+bζj(g,ζ)1)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1).\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+2\text{i}\left(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\ g\cdot\zeta+\frac{a\zeta+b}{\zeta}-j(g,\zeta)^{-1}\right)\partial_{--}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ . (B.27)

The quantity in the parentheses in the last line simplifies to give b/ζb/\zeta. Plugging this into (B.2) and dividing by 44, we get (B.25).

The fermis 𝚼a′′{\mathbf{\Upsilon}}_{a^{\prime\prime}-} transform as weight 0 objects:

𝚼a′′(ζ)(j(g,ζ)1𝐃~a′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃a′′(gζ))(j(g,ζ)𝚼(gζ))=𝐃~a′′(gζ)𝚼(gζ)=𝚼a′′(gζ).{\mathbf{\Upsilon}}_{a^{\prime\prime}-}(\zeta)\to\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{a^{\prime\prime}-}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\mathbf{D}_{a^{\prime\prime}-}(g\cdot\zeta)\Big{)}\Big{(}j(g,\zeta){\mathbf{\Upsilon}}(g\cdot\zeta)\Big{)}\\ =\widetilde{\mathbf{D}}_{a^{\prime\prime}-}(g\cdot\zeta){\mathbf{\Upsilon}}(g\cdot\zeta)={\mathbf{\Upsilon}}_{a^{\prime\prime}-}(g\cdot\zeta)\ . (B.28)

The conjugates \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a′′\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-} also transform with weight 0, a fact which can be seen either by complex conjugating the expressions in (B.28) or by direct calculation using the expression for \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111a′′\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-} in (B.14):

ζ𝐃~a′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)ζ𝐃~a′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)\displaystyle\zeta\widetilde{\mathbf{D}}_{a^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-\zeta^{-1})\to\zeta\widetilde{\mathbf{D}}_{a^{\prime\prime}-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}^{\prime}(-\zeta^{-1}) =ζ(j(g,ζ)1𝐃~a′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111b𝐃a′′(gζ))aζ+bζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)\displaystyle=\zeta\Big{(}j(g,\zeta)^{-1}\widetilde{\mathbf{D}}_{a^{\prime\prime}-}(g\cdot\zeta)-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{b}\mathbf{D}_{a^{\prime\prime}-}(g\cdot\zeta)\Big{)}\frac{a\zeta+b}{\zeta}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})
=gζ𝐃~a′′(gζ)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1),\displaystyle=g\cdot\zeta\widetilde{\mathbf{D}}_{a^{\prime\prime}-}(g\cdot\zeta)\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}(-(g\cdot\zeta)^{-1})\ , (B.29)

which gives

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ζ1)a′′\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111((gζ)1)a′′.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}(-\zeta^{-1})\to\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime\prime}}_{-}(-(g\cdot\zeta)^{-1})\ . (B.30)

Appendix C Component actions

In this appendix, we derive the action for the ordinary space components of the various superfields in two ways: (1) by reducing to (0,2)(0,2) superspace and using standard results from Appendix A.2, and (2) by reducing directly to ordinary space by pushing in the 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in the superspace measure.

C.1 (0,4)(0,2)(0,0)(0,4)\to(0,2)\to(0,0)

Recall from Sections 3 and 4 the ζ\zeta and ζ\zeta^{\prime} expansions of the various superfields:

𝚼=j=0Υj,𝚼=j=0Υj,𝚼=j=0Υj,𝑯=ζH1+H2.{\mathbf{\Upsilon}}=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j}\ ,\quad{\mathbf{\Upsilon}}_{--}=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j--}\ ,\quad{\mathbf{\Upsilon}}_{-}=\sum_{j=0}^{\infty}\mathnormal{\Upsilon}_{j-}\ ,\quad\bm{H}=\zeta^{\prime}H_{1^{\prime}}+H_{2^{\prime}}\ . (C.1)

Also recall that we relabelled some low-lying components of the above superfields since they were constrained as (0,2)(0,2) superfields:

Υ0η2,Υ1η1,andΥ0ψ.\mathnormal{\Upsilon}_{0}\to\eta_{2}\ ,\quad\mathnormal{\Upsilon}_{1}\to\eta_{1}\ ,\quad\text{and}\quad\mathnormal{\Upsilon}_{0-}\to\psi_{-}\ . (C.2)

We reproduce here the projective superspace constraints on the various superfields given in (5):

𝐃+𝚼\displaystyle\mathbf{D}_{+}{\mathbf{\Upsilon}} =0,𝐃+𝚼=2𝑪^𝚼,\displaystyle=0\ ,\quad\mathbf{D}_{+}{\mathbf{\Upsilon}}_{-}=-\sqrt{2}\widehat{\bm{C}}{\mathbf{\Upsilon}}\ ,\quad 𝐃+𝚼=12𝑪𝚼,𝐃+𝑯=0,\displaystyle\mathbf{D}_{+}{\mathbf{\Upsilon}}_{--}=\frac{1}{\sqrt{2}}\bm{C}{\mathbf{\Upsilon}}_{-}\ ,\quad\mathbf{D}_{+}\bm{H}=0\ ,
𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\displaystyle\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{} =0,𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=2ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\displaystyle=0\ ,\quad\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}=\sqrt{2}\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad 𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=12ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,𝐃+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0,\displaystyle\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}=\frac{1}{\sqrt{2}}\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ ,\quad\mathbf{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0\ , (C.3)

The actions are given by

𝒮F\displaystyle\mathcal{S}_{F} =d2xdζ2πi𝐃~1+𝐃~2+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼ζ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼),\displaystyle=\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\left(\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}{\mathbf{\Upsilon}}-\zeta\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{\mathbf{\Upsilon}}_{--}+\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{--}{\mathbf{\Upsilon}}-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\mathbf{\Upsilon}}_{-}\right)\ ,
𝒮F\displaystyle\mathcal{S}_{F^{\prime}} =d2xdζ2πi𝐃~1+𝐃~2+(i2ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑯),\displaystyle=\int\text{d}^{2}x\oint\frac{\text{d}\zeta^{\prime}}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1+}\widetilde{\mathbf{D}}_{2+}\left(-\tfrac{\text{i}}{2}\zeta^{\prime-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{H}\right)\ , (C.4)

The closure of the projective superspace algebra 𝐃+2=0\mathbf{D}_{+}^{2}=0 on 𝚼{\mathbf{\Upsilon}}_{--} gives the constraints

𝐃+𝑪=𝐃+𝑪^=0,𝑪𝑪^=0,i.e.,𝐃a+𝑪=𝐃a+𝑪^=0,C(aC^b)=0,\mathbf{D}_{+}\bm{C}=\mathbf{D}_{+}\widehat{\bm{C}}=0\ ,\quad\bm{C}\widehat{\bm{C}}=0\ ,\quad\text{i.e.,}\quad\mathbf{D}_{a+}\bm{C}=\mathbf{D}_{a+}\widehat{\bm{C}}=0\ ,\quad C_{(a^{\prime}}\widehat{C}_{b^{\prime})}=0\ , (C.5)

and the (0,4)(0,4) invariance of the above actions gives

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=𝑪^,that is,C^a=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cεbab.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=\widehat{\bm{C}}\ ,\quad\text{that is}\ ,\quad\widehat{C}_{a^{\prime}}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{b^{\prime}}\varepsilon_{b^{\prime}a^{\prime}}\ . (C.6)

The assumption that the 𝑪\bm{C} are polynomials in the various superfields constrains 𝑪\bm{C} to take the form 𝑪=𝑲+L𝑯\bm{C}={\bm{K}}+L\bm{H}. The constraints (C.1) lead to the following EE-terms for the (0,2)(0,2) superfield ψ=Υ0\psi_{-}=\mathnormal{\Upsilon}_{0-} and Υ0\mathnormal{\Upsilon}_{0--}:

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ+=2E=2C^2η2,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+=12C2ψ.\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\psi_{-}=-\sqrt{2}E=-\sqrt{2}\widehat{C}_{2^{\prime}}\eta_{2}\\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--}=\frac{1}{\sqrt{2}}C_{2^{\prime}}\psi_{-}\ . (C.7)

Integrating out the auxiliary superfield 𝚼{\mathbf{\Upsilon}}_{--} proceeds in the same way as in the free case, with one important difference due to the EE-term for Υ0\mathnormal{\Upsilon}_{0--} above. Unconstraining Υ0\mathnormal{\Upsilon}_{0--} in the standard way (see Footnote 7), we get

D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ01+Λ(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Υ0+12C2ψ))+.-\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}\mathnormal{\Upsilon}_{0--}+\Lambda_{-}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\mathnormal{\Upsilon}_{0--}-\tfrac{1}{\sqrt{2}}C_{2^{\prime}}\psi_{-}))\ . (C.8)

Integrating out Υ0\mathnormal{\Upsilon}_{0--} gives \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Λ+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\Lambda_{-} which implies that \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{1} is a (0,2)(0,2) chiral superfield which we labelled as \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}. In addition, there is now a (0,2)(0,2) JJ-term:

12D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(ΛC2ψ)+=12D+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21ψ2ΛC2C^2η2)=12D+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21ψ),-\tfrac{1}{\sqrt{2}}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}(-\Lambda_{-}C_{2^{\prime}}\psi_{-})=-\tfrac{1}{\sqrt{2}}\mathrm{D}_{+}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\psi_{-}-\sqrt{2}\Lambda_{-}C_{2^{\prime}}\widehat{C}_{2^{\prime}}\eta_{2})=-\tfrac{1}{\sqrt{2}}\mathrm{D}_{+}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\psi_{-})\ , (C.9)

where, in the last equality, we have used the constraint C2C^2=0C_{2^{\prime}}\widehat{C}_{2^{\prime}}=0 that follows from (C.5).

Rewriting the projective superspace measure in (C.1) as ζ1D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+-\zeta^{-1}\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+} and performing the ζ\zeta- and ζ\zeta^{\prime}-integrals, we get the following (0,2)(0,2) superspace actions:

𝒮F\displaystyle\mathcal{S}_{F^{\prime}} =d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1H1i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H2H2)+,\displaystyle=\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\left(\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\partial_{--}H_{1^{\prime}}-\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{2^{\prime}}\partial_{--}H_{2^{\prime}}\right)\ ,
𝒮F\displaystyle\mathcal{S}_{F} =d2xD+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111η1i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112η2+12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ)++d2xD+(12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21ψ)+c.c.,\displaystyle=\int\text{d}^{2}x\,\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\Big{(}\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\eta_{1}-\tfrac{\text{i}}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\partial_{--}\eta_{2}+\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\psi_{-}\Big{)}+\int\text{d}^{2}x\,\mathrm{D}_{+}(-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\psi_{-})+\text{c.c.}\ , (C.10)

with \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ+=2E=2C^2η2\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\psi_{-}=\sqrt{2}E=-\sqrt{2}\widehat{C}_{2^{\prime}}\eta_{2}.

Now we further push in the derivatives in the (0,2)(0,2) actions above and compute the component actions according to Appendix A.2. Recall that the superspace components of HaH_{a^{\prime}} are

2ξ1+=D+H2,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H,22ξ2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1+,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+ 2D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H,1\sqrt{2}\xi_{1+}=\mathrm{D}_{+}H_{2^{\prime}}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}_{+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{2^{\prime}}\ ,\quad\sqrt{2}\xi_{2+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}H_{1^{\prime}}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\,2}_{+}=\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\ , (C.11)

and the superspace components of ηa\eta_{a} are

2ξ1+=D+η2,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,22ξ2+=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111η1+,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+2D+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.1\sqrt{2}\xi_{1^{\prime}+}=\mathrm{D}_{+}\eta_{2}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\ ,\quad-\sqrt{2}\xi_{2^{\prime}+}=\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\eta_{1}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}_{+}=\mathrm{D}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\ . (C.12)

The components of the fermi ψ\psi_{-} are

D+ψ=2G,\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G.\mathrm{D}_{+}\psi_{-}=-\sqrt{2}G\ ,\quad\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}=-\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}\ . (C.13)

Let us work out the twisted hyper part of 𝒮F\mathcal{S}_{F^{\prime}} first. We have

𝒮F[Ha]\displaystyle\mathcal{S}_{F^{\prime}}[H_{a^{\prime}}] =d2xD+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111H1ξ2++i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+1H2)=d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaHai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+).\displaystyle=\int\text{d}^{2}x\,\mathrm{D}_{+}(-\tfrac{\text{i}}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{H}{}^{1^{\prime}}\partial_{--}\xi_{2+}+\frac{\text{i}}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}_{+}\nabla_{--}H_{2^{\prime}})=\int\text{d}^{2}x\,(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}\partial_{\mu}H_{a^{\prime}}-{\text{i}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}_{+}\partial_{--}\xi_{a+})\ . (C.14)

The standard hyper part of 𝒮F\mathcal{S}_{F} is given by

𝒮F[ηa]\displaystyle\mathcal{S}_{F}[\eta_{a}] =d2xD+(i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111ξ2++i2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+1η2)=d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaηai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+),\displaystyle=\int\text{d}^{2}x\,\mathrm{D}_{+}(-\tfrac{\text{i}}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\xi_{2^{\prime}+}+\tfrac{\text{i}}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}\partial_{--}\eta_{2})=\int\text{d}^{2}x\,(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial_{\mu}\eta_{a}-{\text{i}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+})\ , (C.15)

whereas the fermi part of 𝒮F\mathcal{S}_{F} is given by

𝒮F[ψ]\displaystyle\mathcal{S}_{F}[\psi_{-}] =12d2xD+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Gψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111E)+d2x(D+(12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21ψ)+c.c.),\displaystyle=\frac{1}{\sqrt{2}}\int\text{d}^{2}x\,\mathrm{D}_{+}(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}E)+\int\text{d}^{2}x\,\left(\mathrm{D}_{+}(-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\psi_{-})+\text{c.c.}\right)\ ,
=d2x(i(++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)ψ+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111GG\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth2Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C^22η2\displaystyle=\int\text{d}^{2}x\,\Big{(}\text{i}(\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-})\psi_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}G-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}\widehat{C}_{2^{\prime}}\eta_{2}
+12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)22ψ12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(D+C^2)η2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+1Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C^2ξ1+)\displaystyle\qquad\qquad\qquad+\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}})\psi_{-}-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}(\mathrm{D}_{+}\widehat{C}_{2^{\prime}})\eta_{2}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\widehat{C}_{2^{\prime}}\xi_{1^{\prime}+}\Big{)}
+d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C2+2ψ12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(D+C2)1ψ+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21G+c.c.),\displaystyle+\int\text{d}^{2}x\,\Big{(}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}_{+}C_{2^{\prime}}\psi_{-}-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}(\mathrm{D}_{+}C_{2^{\prime}})\psi_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}G+\text{c.c.}\Big{)}\ , (C.16)

Integrating out the auxiliary fields GG, \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}, we get

\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111G=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21,G=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cη12,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{G}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\ ,\quad G=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}}\eta_{1}\ , (C.17)

and the fermi action becomes

𝒮F[ψ]\displaystyle\mathcal{S}_{F}[\psi_{-}] =d2x(i(D++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cη12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth2Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C^22η2\displaystyle=\int\text{d}^{2}x\,\Big{(}\text{i}(\mathrm{D}_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-})\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}}\eta_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}\widehat{C}_{2^{\prime}}\eta_{2}
+12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111)22ψ12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(D+C^2)η2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth+1Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111ψ2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C^2ξ1+)\displaystyle\qquad\qquad\qquad+\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}})\psi_{-}-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}(\mathrm{D}_{+}\widehat{C}_{2^{\prime}})\eta_{2}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\widehat{C}_{2^{\prime}}\xi_{1^{\prime}+}\Big{)}
+d2x(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C2+2ψ12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(D+C2)1ψ+c.c.).\displaystyle+\int\text{d}^{2}x\,\Big{(}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}_{+}C_{2^{\prime}}\psi_{-}-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}(\mathrm{D}_{+}C_{2^{\prime}})\psi_{-}+\text{c.c.}\Big{)}\ . (C.18)

Let us look at the potential terms:

V\displaystyle-V =\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cη12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth2Δ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C^22η2=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C21\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cη12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cη21,\displaystyle=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}}\eta_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}\widehat{C}_{2^{\prime}}\eta_{2}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}C_{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}}\eta_{1}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}C_{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{1^{\prime}}\eta_{2}\ , (C.19)

where, in the second step, we have used the reality constraint (C.6). The above form does not seem invariant under R-symmetry. However, it follows from 𝑪\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=0\bm{C}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=0 that C1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C=1C2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C2C_{1^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{1^{\prime}}=C_{2^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{2^{\prime}} which allows us to write the potential in manifest R-symmetry form:

V=12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Caa\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Cηaa.-V=-\tfrac{1}{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}C_{a^{\prime}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{C}{}^{a^{\prime}}\eta_{a}\ . (C.20)

Next, let us collect all the Yukawa couplings from the fermi action (C.1):

(12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C1+)2ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C1+1ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111C22ψ12\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111D+1C2ψ)+c.c.\left(\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}C_{1^{\prime}})\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}C_{1^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}C_{2^{\prime}}\psi_{-}-\tfrac{1}{\sqrt{2}}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\mathrm{D}_{+}C_{2^{\prime}}\psi_{-}\right)+\text{c.c.} (C.21)

We have Ca=Ka+LHaC_{a^{\prime}}=K_{a^{\prime}}+LH_{a^{\prime}}. Then, we get

(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L2ξ2+ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(K1+LH1)+1ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111(K2+LH2)2ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L1ξ1+ψ)+c.c.\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}L\xi_{2+}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}(K_{1^{\prime}}+LH_{1^{\prime}})\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}(K_{2^{\prime}}+LH_{2^{\prime}})\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}L\xi_{1+}\psi_{-}\right)+\text{c.c.} (C.22)

We thus get the manifest R-symmetric form of the Yukawa couplings

(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Ka+aψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Laξa+ψ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111L+aHaψ)+c.c.,\left(-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}K_{a^{\prime}}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}L\xi_{a+}\psi_{-}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}LH_{a^{\prime}}\psi_{-}\right)+\text{c.c.}\ , (C.23)

where the first term and its complex conjugate together are mass terms which contain the fermis and the superpartners of the standard hypers. The other terms are Yukawa couplings which involve the standard hypers, the twisted hypers and the fermis.

C.2 (0,4)(0,0)(0,4)\to(0,0)

In this subsection, we directly go from (0,4)(0,4) superspace to ordinary space. We give two illustrative examples, an 𝒪(1)\mathcal{O}(1) standard hyper and an arctic fermi.

𝒪(1)\mathcal{O}(1) standard hyper

Recall from (3.3) and (3.5) that the (0,4)(0,4) descendants of 𝜼\bm{\eta} are, at the first level,

2ξa+:=𝐃~a+𝜼,2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111:=+aεab𝐃~b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\sqrt{2}\xi_{a^{\prime}+}:=\widetilde{\mathbf{D}}_{a^{\prime}+}\bm{\eta}\ ,\quad\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}:=-\varepsilon^{a^{\prime}b^{\prime}}\widetilde{\mathbf{D}}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ , (C.24)

and at the second level,

𝐃~a+𝐃~b+𝜼=2iεab++𝜼~,𝐃~a+𝐃~b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=2iεab++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\widetilde{\mathbf{D}}_{a^{\prime}+}\widetilde{\mathbf{D}}_{b^{\prime}+}\bm{\eta}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\widetilde{\bm{\eta}}\ ,\quad\widetilde{\mathbf{D}}_{a^{\prime}+}\widetilde{\mathbf{D}}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-2\text{i}\varepsilon_{a^{\prime}b^{\prime}}\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\ . (C.25)

The action is

𝒮\displaystyle\mathcal{S} =i2d2xγdζ2πi𝐃~1+𝐃~2+(ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝜼).\displaystyle=-\frac{\text{i}}{2}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{\eta})\ . (C.26)

Pushing in the derivatives in the measure and using (C.24) and (C.25), we get

𝒮\displaystyle\mathcal{S} =id2xγdζ2πiζ(i++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝜼+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+1ξ1++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+2ξ2+i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++𝜼~),\displaystyle=-{\text{i}}\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\,(-\text{i}\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\bm{\eta}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1^{\prime}}_{+}\partial_{--}\xi_{1^{\prime}+}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2^{\prime}}_{+}\partial_{--}\xi_{2^{\prime}+}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}\partial_{--}\partial_{++}\widetilde{\bm{\eta}})\ ,
=d2xγdζ2πiζ(++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112η2i\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1111++η1),\displaystyle=\int\text{d}^{2}x\oint_{\gamma}\frac{\text{d}\zeta}{2\pi\text{i}\zeta}\,(\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2}\partial_{--}\eta_{2}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+}-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{1}\partial_{--}\partial_{++}\eta_{1})\ ,
=d2x(μ\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111μaηai\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111+aξa+).\displaystyle=\int\text{d}^{2}x\,(-\partial_{\mu}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a}\partial^{\mu}\eta_{a}-\text{i}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{\,a^{\prime}}_{+}\partial_{--}\xi_{a^{\prime}+})\ . (C.27)

where, in going to the second line, we have used the explicit expressions 𝜼~=η1\widetilde{\bm{\eta}}=\eta_{1} and \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}=-\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{2} (to compute \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}, we follow the same steps as for 𝐃~a+\widetilde{\mathbf{D}}_{a^{\prime}+} in Section 2.6).

The arctic fermi superfield

We look at the weight 0 arctic fermi superfield. The descendants are

2𝑭a\displaystyle\sqrt{2}{\bm{F}}_{a^{\prime}} =𝐃~a+𝚼,\displaystyle=\widetilde{\mathbf{D}}_{a^{\prime}+}{\mathbf{\Upsilon}}_{-}\ ,\quad 2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=aεabζ𝐃~b+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111,\displaystyle\sqrt{2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}=-\varepsilon^{a^{\prime}b^{\prime}}\zeta\widetilde{\mathbf{D}}_{b^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ ,
𝑿+\displaystyle{\bm{X}}_{+} =𝐃~1+𝐃~2+𝚼,\displaystyle=\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}{\mathbf{\Upsilon}}_{-}\ ,\quad \macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111=+ζ2𝐃~1+𝐃~2+\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a1112iζ++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111.\displaystyle\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}=-\zeta^{2}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}-2\text{i}\zeta\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\ . (C.28)

The action is

𝒮\displaystyle\mathcal{S} =12d2xdζ2πi𝐃~1+𝐃~2+(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼).\displaystyle=-\frac{1}{2}\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}}\widetilde{\mathbf{D}}_{1^{\prime}+}\widetilde{\mathbf{D}}_{2^{\prime}+}\,(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\bm{\Upsilon}_{-})\ . (C.29)

Pushing in the derivatives in the measure, we get

𝒮\displaystyle\mathcal{S} =12d2xdζ2πi(2iζ1++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼ζ2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼++\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑿+2ζ1\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑭aa).\displaystyle=-\frac{1}{2}\int\text{d}^{2}x\oint\frac{\text{d}\zeta}{2\pi\text{i}}\left(-2\text{i}\zeta^{-1}\partial_{++}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\mathbf{\Upsilon}}_{-}-\zeta^{-2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}{\mathbf{\Upsilon}}_{-}+\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\bm{X}}_{+}-2\zeta^{-1}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}{}^{a^{\prime}}{\bm{F}}_{a^{\prime}}\right)\ . (C.30)

The superfields 𝑿+{\bm{X}}_{+} and 𝑭a{\bm{F}}_{a^{\prime}} are auxiliary and can be integrated out. The terms involving 𝑿+{\bm{X}}_{+} are

dζ2πi(\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝑿+ζ2\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111𝚼+)=j0(1)j\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111Xj+j+1,+c.c..\oint\frac{\text{d}\zeta}{2\pi\text{i}}(\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}{\bm{X}}_{+}-\zeta^{-2}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{+}{\mathbf{\Upsilon}}_{-})=-\sum_{j\geq 0}(-1)^{j}\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{j+1,-}X_{j+}+\text{c.c.}\ . (C.31)

Integrating out Xj+X_{j+} gives

Υj,=0forj1.\mathnormal{\Upsilon}_{j,-}=0\quad\text{for}\quad j\geq 1\ . (C.32)

Thus, the weight 0 superfield 𝚼{\mathbf{\Upsilon}}_{-} which was locally defined on 𝐂𝐏1\mathbf{CP}^{1} becomes a constant on 𝐂𝐏1\mathbf{CP}^{1}, which is nothing but a globally defined weight 0 superfield. Integrating out 𝑭a{\bm{F}}_{a^{\prime}} just sets them to zero. Relabelling Υ0ψ\mathnormal{\Upsilon}_{0-}\to\psi_{-}, the action becomes

𝒮=d2x(i)\macc@depthΔ\frozen@everymath\macc@group\macc@set@skewchar\macc@nested@a111++ψ.\mathcal{S}=\int\text{d}^{2}x\,(-\text{i})\,\macc@depth\char 1\relax\frozen@everymath{\macc@group}\macc@set@skewchar\macc@nested@a 111{}_{-}\partial_{++}\psi_{-}\ . (C.33)

References

  • [AHDM78] M. F. Atiyah, Nigel J. Hitchin, V. G. Drinfeld and Yu. I. Manin “Construction of Instantons” In Phys. Lett. A 65, 1978, pp. 185–187 DOI: 10.1016/0375-9601(78)90141-X
  • [AKL07] Masato Arai, Sergei M. Kuzenko and Ulf Lindstrom “Hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace” In JHEP 02, 2007, pp. 100 DOI: 10.1088/1126-6708/2007/02/100
  • [AW77] M. F. Atiyah and R. S. Ward “Instantons and Algebraic Geometry” In Commun. Math. Phys. 55, 1977, pp. 117–124 DOI: 10.1007/BF01626514
  • [Ade+76] M. Ademollo “Supersymmetric Strings and Color Confinement” In Phys. Lett. B 62, 1976, pp. 105–110 DOI: 10.1016/0370-2693(76)90061-7
  • [BD88] Tom Banks and Lance J. Dixon “Constraints on String Vacua with Space-Time Supersymmetry” In Nucl. Phys. B 307, 1988, pp. 93–108 DOI: 10.1016/0550-3213(88)90523-8
  • [BDL96] Micha Berkooz, Michael R. Douglas and Robert G. Leigh “Branes intersecting at angles” In Nucl. Phys. B 480, 1996, pp. 265–278 DOI: 10.1016/S0550-3213(96)00452-X
  • [BMG86] R. Brooks, F. Muhammad and S. J. Gates “Unidexterous D=2 Supersymmetry in Superspace” In Nucl. Phys. B 268, 1986, pp. 599–620 DOI: 10.1016/0550-3213(86)90261-0
  • [BW76] L. Brink and J. O. Winnberg “The Superoperator Formalism of the Neveu-Schwarz-Ramond Model” In Nucl. Phys. B 103, 1976, pp. 445–464 DOI: 10.1016/0550-3213(76)90509-5
  • [CGK85] Edward Corrigan, P. Goddard and A. Kent “Some Comments on the ADHM Construction in 4k-dimensions” In Commun. Math. Phys. 100, 1985, pp. 1 DOI: 10.1007/BF01212684
  • [CHS91] Curtis G. Callan, Jeffrey A. Harvey and Andrew Strominger “World sheet approach to heterotic instantons and solitons” In Nucl. Phys. B 359, 1991, pp. 611–634 DOI: 10.1016/0550-3213(91)90074-8
  • [CHS91a] Curtis G. Callan, Jeffrey A. Harvey and Andrew Strominger “Worldbrane actions for string solitons” In Nucl. Phys. B 367, 1991, pp. 60–82 DOI: 10.1016/0550-3213(91)90041-U
  • [CHSW85] P. Candelas, Gary T. Horowitz, Andrew Strominger and Edward Witten “Vacuum Configurations for Superstrings” In Nucl. Phys. B 258, 1985, pp. 46–74 DOI: 10.1016/0550-3213(85)90602-9
  • [DK94] Jacques Distler and Shamit Kachru “(0,2) Landau-Ginzburg theory” In Nucl. Phys. B 413, 1994, pp. 213–243 DOI: 10.1016/0550-3213(94)90619-X
  • [DM96] Michael R. Douglas and Gregory W. Moore “D-branes, quivers, and ALE instantons”, 1996 arXiv:hep-th/9603167
  • [DS86] Michael Dine and Nathan Seiberg “(2,0) SUPERSPACE” In Phys. Lett. B 180, 1986, pp. 364–369 DOI: 10.1016/0370-2693(86)91203-7
  • [Dou98] Michael R. Douglas “Gauge fields and D-branes” In J. Geom. Phys. 28, 1998, pp. 255–262 DOI: 10.1016/S0393-0440(97)00024-7
  • [EOTY89] Tohru Eguchi, Hirosi Ooguri, Anne Taormina and Sung-Kil Yang “Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy” In Nucl. Phys. B 315, 1989, pp. 193–221 DOI: 10.1016/0550-3213(89)90454-9
  • [FM73] D. B. Fairlie and D. Martin “New light on the Neveu-Schwarz model” In Nuovo Cim. A 18, 1973, pp. 373–383 DOI: 10.1007/BF02722834
  • [GGP14] Abhijit Gadde, Sergei Gukov and Pavel Putrov “Duality Defects”, 2014 arXiv:1404.2929 [hep-th]
  • [GGP16] Abhijit Gadde, Sergei Gukov and Pavel Putrov “Fivebranes and 4-manifolds” In Prog. Math. 319, 2016, pp. 155–245 DOI: 10.1007/978-3-319-43648-7˙7
  • [GGRS83] S. J. Gates, Marcus T. Grisaru, M. Rocek and W. Siegel “Superspace Or One Thousand and One Lessons in Supersymmetry” 58, Frontiers in Physics Benjamin-Cummings Publishing Company, 1983 arXiv:hep-th/0108200
  • [GHM97] Michael B. Green, Jeffrey A. Harvey and Gregory W. Moore “I-brane inflow and anomalous couplings on D-branes” In Class. Quant. Grav. 14, 1997, pp. 47–52 DOI: 10.1088/0264-9381/14/1/008
  • [GHMR85] David J. Gross, Jeffrey A. Harvey, Emil J. Martinec and Ryan Rohm “The Heterotic String” In Phys. Rev. Lett. 54, 1985, pp. 502–505 DOI: 10.1103/PhysRevLett.54.502
  • [GHR84] S. J. Gates, C. M. Hull and M. Rocek “Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models” In Nucl. Phys. B 248, 1984, pp. 157–186 DOI: 10.1016/0550-3213(84)90592-3
  • [GIKO+84] A. Galperin et al. “Unconstrained N=2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace” [Erratum: Class.Quant.Grav. 2, 127 (1985)] In Class. Quant. Grav. 1, 1984, pp. 469–498 DOI: 10.1088/0264-9381/1/5/004
  • [GIOS84] A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev “Harmonic Superspace: key to N=2 Supersymmetry Theories” In JETP Lett. 40, 1984, pp. 912–916
  • [GK99] S. James Gates and Sergei M. Kuzenko “The CNM hypermultiplet nexus” In Nucl. Phys. B 543, 1999, pp. 122–140 DOI: 10.1016/S0550-3213(98)00870-0
  • [GL85] Johan Grundberg and Ulf Lindstrom “Actions for Linear Multiplets in Six-dimensions” In Class. Quant. Grav. 2, 1985, pp. L33 DOI: 10.1088/0264-9381/2/2/005
  • [GMMS05] Sergei Gukov, Emil Martinec, Gregory W. Moore and Andrew Strominger “The Search for a holographic dual to AdS(3) x S**3 x S**3 x S**1” In Adv. Theor. Math. Phys. 9, 2005, pp. 435–525 DOI: 10.4310/ATMP.2005.v9.n3.a3
  • [GP96] Eric G. Gimon and Joseph Polchinski “Consistency conditions for orientifolds and D-manifolds” In Phys. Rev. D 54, 1996, pp. 1667–1676 DOI: 10.1103/PhysRevD.54.1667
  • [GR95] S. James Gates and Lubna Rana “Manifest (4,0) supersymmetry, sigma models and the ADHM instanton construction” In Phys. Lett. B 345, 1995, pp. 233–241 DOI: 10.1016/0370-2693(94)01653-T
  • [GS95] A. Galperin and E. Sokatchev “Manifest supersymmetry and the ADHM construction of instantons” In Nucl. Phys. B 452, 1995, pp. 431–455 DOI: 10.1016/0550-3213(95)00272-T
  • [GS96] A. Galperin and E. Sokatchev “Supersymmetric sigma models and the ’t Hooft instantons” In Class. Quant. Grav. 13, 1996, pp. 161–170 DOI: 10.1088/0264-9381/13/2/004
  • [HKLR87] Nigel J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek “Hyperkahler Metrics and Supersymmetry” In Commun. Math. Phys. 108, 1987, pp. 535 DOI: 10.1007/BF01214418
  • [HL17] Chris Hull and Ulf Lindström “All (4,0)(4,0): Sigma Models with (4,0)(4,0) Off-Shell Supersymmetry” In JHEP 08, 2017, pp. 129 DOI: 10.1007/JHEP08(2017)129
  • [HL17a] Chris Hull and Ulf Lindström “All (4,1)(4,1): Sigma Models with (4,q)(4,q) Off-Shell Supersymmetry” In JHEP 03, 2017, pp. 042 DOI: 10.1007/JHEP03(2017)042
  • [HW85] C. M. Hull and Edward Witten “Supersymmetric Sigma Models and the Heterotic String” In Phys. Lett. B 160, 1985, pp. 398–402 DOI: 10.1016/0370-2693(85)90008-5
  • [IKS06] Nissan Itzhaki, David Kutasov and Nathan Seiberg “I-brane dynamics” In JHEP 01, 2006, pp. 119 DOI: 10.1088/1126-6708/2006/01/119
  • [IR96] I. T. Ivanov and M. Rocek “Supersymmetric sigma models, twistors, and the Atiyah-Hitchin metric” In Commun. Math. Phys. 182, 1996, pp. 291–302 DOI: 10.1007/BF02517891
  • [JS09] Dharmesh Jain and Warren Siegel “Deriving Projective Hyperspace from Harmonic” In Phys. Rev. D 80, 2009, pp. 045024 DOI: 10.1103/PhysRevD.80.045024
  • [KLR84] Anders Karlhede, Ulf Lindstrom and Martin Rocek “Selfinteracting Tensor Multiplets in N=2N=2 Superspace” In Phys. Lett. B 147, 1984, pp. 297–300 DOI: 10.1016/0370-2693(84)90120-5
  • [KLR87] A. Karlhede, U. Lindstrom and M. Rocek “Hyperkahler Manifolds and Nonlinear Supermultiplets” In Commun. Math. Phys. 108, 1987, pp. 529 DOI: 10.1007/BF01214417
  • [Kuz99] Sergei M. Kuzenko “Projective superspace as a double punctured harmonic superspace” In Int. J. Mod. Phys. A 14, 1999, pp. 1737–1758 DOI: 10.1142/S0217751X99000889
  • [LR10] Ulf Lindstrom and Martin Rocek “Properties of hyperkahler manifolds and their twistor spaces” In Commun. Math. Phys. 293, 2010, pp. 257–278 DOI: 10.1007/s00220-009-0923-0
  • [LR83] U. Lindstrom and M. Rocek “Scalar Tensor Duality and N=1, N=2 Nonlinear Sigma Models” In Nucl. Phys. B 222, 1983, pp. 285–308 DOI: 10.1016/0550-3213(83)90638-7
  • [LR88] U. Lindstrom and M. Rocek “New Hyperkahler Metrics and New Supermultiplets” In Commun. Math. Phys. 115, 1988, pp. 21 DOI: 10.1007/BF01238851
  • [LR90] U. Lindstrom and M. Rocek N=2N=2 Superyang-mills Theory in Projective Superspace” In Commun. Math. Phys. 128, 1990, pp. 191 DOI: 10.1007/BF02097052
  • [MSW97] Juan Martin Maldacena, Andrew Strominger and Edward Witten “Black hole entropy in M theory” In JHEP 12, 1997, pp. 002 DOI: 10.1088/1126-6708/1997/12/002
  • [NP17] Nikita Nekrasov and Naveen S. Prabhakar “Spiked Instantons from Intersecting D-branes” In Nucl. Phys. B 914, 2017, pp. 257–300 DOI: 10.1016/j.nuclphysb.2016.11.014
  • [Nek16] Nikita Nekrasov “BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters” In JHEP 03, 2016, pp. 181 DOI: 10.1007/JHEP03(2016)181
  • [PR] Naveen S. Prabhakar and Martin Roček “N=(0,4) projective superspace: gauge multiplets” in preparation
  • [PSY16] Pavel Putrov, Jaewon Song and Wenbin Yan “(0,4) dualities” In JHEP 03, 2016, pp. 185 DOI: 10.1007/JHEP03(2016)185
  • [RS86] A. A. Roslyi and Albert S. Schwarz “Supersymmetry in a space with auxiliary dimensions” In Commun. Math. Phys. 105, 1986, pp. 645 DOI: 10.1007/BF01238937
  • [Ros83] AA Rosly “Super Yang-Mills constraints as integrability conditions” In Proceedings of the International Seminar on Group Theoretical Methods in Physics,(Zvenigorod, USSR, 1982), MA Markov (Ed.), Nauka, Moscow 1, 1983, pp. 263
  • [Ros85] A A Rosly “Gauge fields in superspace and twistors” In Classical and Quantum Gravity 2.5, 1985, pp. 693 DOI: 10.1088/0264-9381/2/5/011
  • [Sak85] Makoto Sakamoto N=1N=1/2 Supersymmetry in Two-dimensions” In Phys. Lett. B 151, 1985, pp. 115–118 DOI: 10.1016/0370-2693(85)91396-6
  • [Sei88] Nathan Seiberg “Observations on the Moduli Space of Superconformal Field Theories” In Nucl. Phys. B 303, 1988, pp. 286–304 DOI: 10.1016/0550-3213(88)90183-6
  • [Sie84] W. Siegel “Manifest Lorentz Invariance Sometimes Requires Nonlinearity” In Nucl. Phys. B 238, 1984, pp. 307–316 DOI: 10.1016/0550-3213(84)90453-X
  • [Sie85] W. Siegel “Some extended supersymmetric two-dimensional scalar multiplets” In Class. Quant. Grav. 2, 1985, pp. L41 DOI: 10.1088/0264-9381/2/3/001
  • [Ton14] David Tong “The holographic dual of AdS3×S3×S3×S1AdS_{3}\times S^{3}\times S^{3}\times S^{1} In JHEP 04, 2014, pp. 193 DOI: 10.1007/JHEP04(2014)193
  • [War77] R. S. Ward “On Selfdual gauge fields” In Phys. Lett. A 61, 1977, pp. 81–82 DOI: 10.1016/0375-9601(77)90842-8
  • [Wit95] Edward Witten “Sigma models and the ADHM construction of instantons” In J. Geom. Phys. 15, 1995, pp. 215–226 DOI: 10.1016/0393-0440(94)00047-8
  • [Zum75] Bruno Zumino “Supersymmetry” In Conf. Proc. C 750926, 1975, pp. 255–280